THE

ENCYCLOPÆDIA BRITANNICA

ELEVENTH EDITION

FIRST	edition, published in three			volumen,	$\begin{aligned} & 1768-177 \mathrm{r} . \\ & 1777-1784 . \end{aligned}$
SECOND	"	"	ten	"	
THIRD	"	"	eighteen	"	1788-1797.
FOURTH	"	"	twenty	"	8801-18io.
FIFTH	"	"	twenty	"	1885-8817.
SIXTH	"	"	twenty	"	8823-1824.
SEVENTH	"	"	twenty-one	"	2830-1842.
EIGHTH	"	"	twenty-two	"	1853-1860.
NINTH	"	"	twenty-five	"	1875-1889.
TENTH	"	ninth edition	on and clere		
		supplem	mentary volu		1902-1903.
ELEVENTH	*	prabliched in	tweaty-nipe	olumes,	1910-1913.

THE

ENCYCLOPÆDIA BRITANNICA

A
DICTIONARY

ARTS, SCIENCES, LITERATURE AND GENERAL INFORMATION

ELEVENTH EDITION

VOLUME XVIII
MEDAL to MUMPS

NEW YORK
THE ENCYCLOP牛DIA BRITANNICA COMPANY

$$
\begin{aligned}
& \text { He } \\
& \text { Rel } \\
& \text { AE } \\
& \text { ES } \\
& V, 18
\end{aligned}
$$

Copyright, in the United States of America, 19:1, by
The Encyclopedia Britannica Company.

INTTIALS USED IN VOLUME XVIII. TO IDENTTFY INDIVIDUAL CONTRIBUTORS, ${ }^{1}$ WITH THE HEADINGS OF THE ARTICLES IN THIS VOLUME SO SIGNED.

A. On	Arthur Cayley, Ll.D., F.R.S. See the biographical article, Cayley, Artaur \{ Monge, Garparti.
A.E.C.	Rev. Alpred Ernest Garvie, M.A., D.D. Principal of New College. Hampatead. Member of the Board of Theology and the $\{$ Board of Philooophy, London University. Author of Studzes in the inner Life of Jesus; \&c.
A. E. 8.	 Abthur Everett Shipley, M.A., D.Sc., F.R.S.
A. P.P.	Alpert Frederict Pollard, M.A., F.R.Hist.S. Prolessor of English History in the University of London. Fellow of AM Souls' College. Oxford. Assistant Editor of the Dictiomary of National Biography, $1893-$ 1901. Lothian Prizeman (Oxford). 1892; Arnold Prizeman, 1898. Author of England weder the Prodector Somersal; Henry VIII.; Life of Thomas Cravmer; \&e.
A. ©0.*	Rey. Alexander Gordon, M.A. Leeturer on Church History in the University of Mancheater. $\left\{\begin{array}{l} \text { Monfus; Mennonites; } \\ \text { Menno, 8lmons; } \\ \text { Morone. } \end{array}\right.$
A. G. D.	Abthue George Doughty, M.A., Litt.D., C.M.G. Dominion Archivist of Canada. Member of the Geographical Board of Canada. Author of The Cradle of New France: acc. Joint-editor of Documents relating to the Comstinutional History of Canada. $\{$ Mercier, Honosh
	Adotr Harnack. See the biographical article, Harnace, Adolf. $\quad\{$ millennium; Montadism.
A. H-B.	Sir A. Houtum-Schindler, C.I.E. General in the Persian Army. Author of Eastern Persian Irak.
A.J. 0.	Rev. Alexander Jahes Grieve, M.A., B.D.
A. 3.5	Amprew Jackson Layoureox. remp Jackson Lavoureox. Librarian, College of Agricultare, Comell University.: Formerty Editor of the $\{$ Morico: Geography. Rio News, Rio de Janeiro.
A. $\mathbf{L}_{\text {. }}$	Andrew Lang. See the biographical article, Lang, Andrew. $\{\text { Molime. }$
A. I. $^{\text {a }}$	Aones Mary Cierze. See the biographical article, Clerer, A. M. $\{\text { Moucher. }$
A. 1.	Ar.esed Newron, F.R.S. See the biographical article, Niwton, Alfxed. $\quad\left\{\begin{array}{l}\text { Megapode; Morganeor; } \\ \text { Mocking Bled; } \\ \text { Moor-Hon; Morlilon; } \\ \text { Motmot; Mouse-Bind. }\end{array}\right.$
A. 80.*	Aday Srocwict, M.A., F.R.S. Professor of Zoology at the Imperial College of Science and Technology, London.
A. in	Amteve Wauge, M.A. New College, Oxford. Newdigate Prize, 1888 . Author of Gordon in Africa: Alfred, Lord Trmnysom. Editor of Johnson's Lopes of the Poess; editions of Dickens, Tennyy som, Arnold, Lamb; ac.
	${ }^{\text {a }}$ A complete list, chowing all individual contributors, appears in the final volu

B. 3.	Bernandd Jthe (1825-1886). Formerly Professor of Classical Philology in the University of Innsbrick Author of Mongolische Mâachensammlung: Ober Wesen und Aufgabe der Sprachwissenschaft: $\{$ Mongals: Language
B. M.*	 Budgett Meakin (1866-1906).
O. 1.	Cleveland Abbe, A.M., LL.D. Professor of Meteorology. U.S. Weather Bureau, Washington. Director of the Cincinnati Observatory, 1863-1873. Editor of Monfhly Weather Review: and Bulletin of Mount Wealher Observalory. Author of Metecological Apparatus and Melhods; \&c.
C. B. T^{*} *	Cengles Bertie Weod, E.G.S. Join t-author of various pemoirs and maps of the Geological Survey
c. c.	
C. 且.	Str Charles Norton Edgcombe Eliot, R.C.M.G., C.B., M.A., LL.D., D.C.L. \int Vice-Chancellor of Sheffield University. Formery Fellow of Trinity College, Oxford. H.M.'s Commissioner and Commander-in-Chief for the British East Africa Protectorate; Agent and Consul-gencral at Zanzibar; and Consul-general for German East Africa, 1900-1904.
C. F. A.	
C. F. B.	Charlis Francis Bastable, M.A., Ll.D. Regius Professor of Laws and Professor of Political Economy in the University of Dublin. Author of Public Finance; Commerce of Nations; Theory of International $\left\{\begin{array}{l}\text { Monetary Conforanoes: } \\ \text { Money. }\end{array}\right.$ Trade; \&ce.
C. C.Aln	Chaloner Gaenville Alabaster. $\{\text { Monoy-Lending. }$
C. J. B.	
C. J. F.*	Constance Jocelyn Froulxes. Translator of Moreliis Llalian Painters; acc. $\quad\{$ Toromi.
C. J. L.	Sir Charles James Lyall, K.C.S.I., C.I.E., LL.D. (Edin.). Secretary, Judicial and Public Department, India Office. Fellow of King's College, of Anciext Arabic Poetry; \&ec.
C. 1 I.	
C. Ha.	William Cosmo Monerouse. See the biographical article, Monxbouse, Willam Cosma. $\{\text { rimas }$
c. PR.	Cripistian Prister, D-ks.-L. Professor at the Sorbonne, Paris Chevalier of the Legion of Honour. Author $\{$ Herovinglans. a Eudes sur Ls regne de Robert lc Piewx.
C. R. B.	Cearles Raymond Beazley, M.A., D.Litt., F.R.G.S., F.R.Hist.S. Professor of Modern History in the University of Birmingham. Formendy Fellow of Merton College, Orford, and University Lecturer in the History of Geography. Lothian Prizeman, Oxford. 1889. Lowell Lecturer, Boston, 1908. Authar of HCwry the Natigoter; The Dazon of Modern Geography; \&ec.
C. R. W.	C. R. W. Biggar, M.A., K.C. Howat, Sir oliver.
C. S. B .	Hon. Charles Stewart Routs, M.A., F.R.G.S. (1877-1910). Triaity College, Cambridge. British Pioneer of Motoring and Aviation. Formeriy Managing Director of Rolls-Royce, Led. Managing Director of Rolls-Royce, Ltd.
c. We.	Cecti. Weatrirrly. Formerly Scholar of Queen's College. Oxford. Barrister-at-Law.
D. B. 1/n.	Duncan Black Macdonald, M.A., D.D. Professor of Semitic Languages, Hartford Theological Seminary, U.S.A. Author $\{$ Irum. of Development of Muslim Theology, Jurisprudence and Constituional Theory; Selections from Ibn Khaldun: Religions Attitude and Life in Islam; \&c.
D. P. T.	
D. GL	Siz Davdo Gill, K.C.B., LL.D., F.R.S., F.R.A.S., D.Sc. H. M. Astronomer at Cape of Good Hope; 1879-1907. Served on Geodetic Survey of Egypt, and on the expedition to Ascension Island to determine the Solar Parallax by observations of Mars. Directed Geodetic Survey of Natal. Cape Colony, and Rhodesia. Author of Geadetic Surrey of South Africa; Catalogwes of Slars for the Equinoxes, 1850, 1860, 1885, 1800, 1900; dc.

D. G. H.	David George Hogarth, M.A. Ketper of the Ashmolean Museum, Oxford. Fellow of Magdalen Coliege, Oxford. Fellow of the British Academy. Excavated at Paphos, 1888; Naucratis 1899 and 1go3; Ephesus, 1904-1905; AEjut, 1906-1907. Directior, British Schood at Athens, 1897-1900 Director, Cretan Exploration Fund, 1899.	$\{$ yensina; Milotus.
D. H.	David Hannay. Formerly British Vice-Consul at Barcelona. Author of Short Bistory of the Royal Nary; Lije of Emilio Castelar; \&c.	$\{$ Maloria; Mins
D. L. T.	Daniel leletifr Thomas. 	\{ Merthyr Tydell
D. Ma.	Davio Masson, LL.D. See the bicgraphical article, Masson, Davib.	niton (in part).
D. 易	Rev. Dugalo Mactadyen, M.A. Minister of South Grove Congregational Church, Highgate. Author of Constructive Coneregational ldeads; ac.	$\{$ Hetrilie, Androw.
D. ${ }^{\text {I. P. }}$	Duricd Notr Paton M.D., F.R.C.P. (Edia.). Regius Profesaor of Physiology in the University of Glayow. Formery Superintendent of Research Laboratory of Royyl College of Phyieicins Edinnurgh, Bioloqical Fellow of Edinburgh Universty, 1884 . Author of Essentiads of Hwman Physiology; \&c.	Y Metubalic Disoerses.
D. R-H.	David Randall-MacIvze, M.A., D.Sc. Curator of Esyptian Department, Uaiversity of Pennaylvania. Formerly Worcester Reader in Egyptology, University of Oxiord. Author of Medieval Rhodesia; \&c.	$\{\text { ynonomotape }$
D. 8.1 [David Samoex Mazcoliouth, M.A., D.Litt. Laudian Profemor of Arabic, Oxiord. Fellow of New College. Author of Arabic Paypin of the Bodetian Library; Nokammed and the Rise of I lam; Cairo, Jerusalem and Damascus.	$\{\text { meroo. }$
E.A. 1 I	Edinado Alfied Minctin, M.A., F.Z.S., Professor of Protosootogy in the Univerity of London. Formerly Fellow of Mertan College, Oxford.	$\{\text { Moduss. }$
E. B. T.	Edfard Burnett Tylor, D.C.L., ll.d. See the biographical articie, TyLOE, Edwand Buramtr.	$\left\{\begin{array}{l} \text { Moxico: Anciout Hislory } \\ \text { (in part). } \end{array}\right.$
E.C. B.	Abbot of Downside Abbey, Bath. Author of "The Lausiac History of Palladius " Rigat Rev. Edward Cuthbert Butler, O.S.B., D.Litt. in Cambrides Tats and Siudies, voL vi.	$\left\{\begin{array}{l} \text { Yondicant Hoverwent } \\ \text { snd Orders; } \\ \text { Yonasticlem; } \\ \text { Yonto Casadno. } \end{array}\right.$
E.EA.	Eprest E. Austen. Aevistant in Department of Zoology, Natural History Museum, South Kenaington.	\{ Mesquito.
EF.S. D.	Lady Ditire. See the biographical article, Dilxs, Sur C. W., Bart.	\{ minet, Jean Frangole
E. Gr.	Eenest Arthud Gardner, M.A. See the hiographical article, Gazdnez, Pazct.	$\left\{\begin{array}{l} \text { Megalopols; } \\ \text { Megare (im part); } \\ \text { Motos. } \end{array}\right.$
E. H. B.	Sir Edward Herbert Bunbury, Bart., M.A., F.R.G.S.(d. 18g5). M.P. for Bury St Edmundm, 1847-1852. Antior od A History of A ncient Geography; $\{$ Δ	$\left\{\begin{array}{l} \text { Koln, Pompostas } \\ \text { (in parf). } \end{array}\right.$
E. H. 1 1	Elans Hovell Minns, M.A. University Lecturer in Palaeography, Cambridge. Lecturer and Asesistant Librarian at Pembroke College, Cambrige. Formerly Fellow of Pembroke College.	Toinomiseol.
E. \mathbf{K}.	Eonond .Knecht, Ph.D., M.Sc.Tech. (Manchestet), F.I.C: Professor of Technological Chemistry, Manchester University. Head of Chemical Department, Municipal School of Technology, Manchester. Examiner in Dyeing, City and Guifds of London Institute. Author of A Monval of Dyeing \& \&c. Editor city and Guilds or ondon nistitute. Author of of	Mercorising.
181.	Eduard Meyer, Pe.D., D.Litt. (Oxon.) LL.D. Professor of Ancient History in the University of Berfin. Author of Geschichle des Allerthwms; Gaschichle des allen Aegyplens; Die Iaraclien mad ikre Nachbar. fermime.	Yedia; Momnon of Rhodes; Henander (MunNDA) (in part): Mentor of Bhodes; Mithradates.
E. 0.*	Emund Owen, M.B., F.R.C.S., LL.D., D.Sc. Consulting SUurgon to St Mary's. Hoppitial, Dondon, and to the Cbildren's Hospital, Great Ormond Street Lond Great Ormond Street. London. Chevalier of the Legion of Honour. Late Examiner in Sorgery at the Universities of Cambridge, Londoa and Durham Author of A Manval of Anatomy for Senior Stmdents.	Mortification; Houth and Salliary Glands (Surgery).
tim.	Edgar Prestace. Special Lecturer in Portupuese Literature in the University of Manchester. Examiner in. Portuguese in the Universities of London, Mancbester, \&e. Commendador, Portuguese Order of S . Thiaga Correeponding Member of Lisbon Royal Academy of Sciences, Liston Geographical Society; \&e. Editor of Letters of a Portuguese Nwan; Azurare's Chrowicle of Guimea; ic.	Horases.

E. R. I_{0}	Sir Edwin Ray Lanxester, K.C.B., F.R.S., M.A., D.Sc., LL.D. Hon. Fellow of Exeter Coilege, Oxford. President of the British Association, 1906. Professor of Zooiogy and Comparative Anatomy in University College London, 1874-1890. Linacre Prolessor of Comparative Anatomy at Oxford, 1891-1898. Director of the Naturai History Departments of the British Museum, 1898-1907. Vice-President of the Royal Society, 1896. Romanes Lecturer at Oxford. 1905. Author of Degeneration; The Advancement of Science; The Kingdom of Man; \&c.
E. St.	Eugene Stock. Formerly Editorial Secretary of the Church Missionary Society. $\quad\left\{\begin{array}{l}\text { Missions (in parf). }\end{array}\right.$
E.S.S.	Edward Strapnell Suttr. Editor of The Commercial MoLor. Hon. Treasurer of the Commercial Motor Users Association. Organiser of the Lancashire Heavy Motor Trials of 1898, 1899-1901. $\left\{\begin{array}{l}\text { Motor Vehleles: } \\ \text { Heary Commercial }\end{array}\right.$ Vehicles.
F.c. C.	Fredericl Cornwallis Conybeare, M.A. D.Th. (Gicssen). Fellow of the British Academy. Formerly Fellow of University College, Oxford. $\{$ Moses of Choress Editor of The Anciend Armensan Texts of Arislotle. Author of Mylk, Hagic and $\{$ (in part). Morals; \&c.
F. G. M. B.	Frederick George Meeson Bect, M.A. Fellow and Lecturer of Clare College, Cambridge. $\{\text { Horala }$
F. G. P.	Frederick Gyuer Parsons, F.R.C.S., F.Z.S., F.R.Anthrop.Inst. Vice-President, Anatomical Society of Great Britain and Ireland. Anatomy at St Thomas's Hospital and the L.ondon School of Medicine for Worer on London. Formerly Hunterian Professor at the Royal College of Surgeons.
F. H. Mo.	Francis Henry Neville, M.A., F.R.S. Fellow and Lecturer in Natural Science, Sidney Sussex College, Cambridge $\quad\{$ Metallagraphy (in part).
F.J. H.	Francts Jorn Haverpieid, M.A., LL.D., F.S.A. Camden Professor of Ancient History in the University of Oxford. Fellow of $\{$ Brasenose Coliege. Fcllow of the British Academy. Author of Monographs on Roman History, especially Roman Britain; \&c.
F.IL G.	Francis Llewellyn Griffith, M.A., Ph.D., F.S.A. German Archaeological Institute.
F. M. I. $^{\text {I }}$	Colonel Frederic Natusci Madde, C.B. Lecturer in Military History, Manchester University. Author of War and the World's $\{$ Mots. Policy: The Leipzig Campaign; The Jena Campaign.
F.O.B.	Freoerick Orpen Bower, M.A., D.Sc., F.R.S. Regius Professor of Botany in the University of Glasgow. Author of Practical $\left\{\begin{array}{l}\text { Mohi, Bugo von. }\end{array}\right.$ Bolany for Beginners; \&c.
F. We.	Frederict Wedmore. See the biographical article, Wenmore, Frederici. $\quad\left\{\begin{array}{l}\text { Meryea. }\end{array}\right.$
F.W.R.*	Frederice Williay Rudler, I.S.O., F.G.S.
G. A. B.	Grorge A. Boulenger. D.Sc., Pu.D., F.R.S. In charge of the collections of Reptiles and Fishes, Department of Zoology, British $\{$ Eormyr. Museum. Vice-President of the Zoological Society of London.
G. C. W.	George Charles Willialson, Litt.D. arge Charles Willialson, Litt.D. Chevalier of the Legion of Honour Author of Porrait Miniatures; Life of Richard $\left\{\begin{array}{l}\text { Minature; } \\ \text { Cossooy, R.A.; George Enfleheart; Portrait Drawings; \&ec. Editor of new edition of } \\ \text { Bryan's Dictionery of Painhers amd Engavers. }\end{array}\right.$ Morland, Ceorge.
G. E. D.	Surazon-Major George Edward Dobson, M.A., M.B., FZ.S.,F.R.S. (1848-1895). Army Medical Deportment, 1868-1888. Formerly Curator of the Royal Victoria Museum. Netley. Authord Monograph of the A siatic Chiroptera, ©c.; A Honograph of the Insectivora, Systematic and Analomical. $\left\{\begin{array}{l}\text { Mose (in pard). } \\ \text { - }\end{array}\right.$
G. F. B.	Geozee F. Barwick. Assistant Keeper of Printed Books and Superintendent of Reading-room, British $\{$ Mithat Pashan Museum.
G. G. S.	George Gregory Smith. M.A. Profassor of English Literature, Queen's University, Bellast. Author of The Days $\{$ Montgomerila. of James IV.; The Tramilion Period; Specimens of Midete SCots; \&c.
G. H. Po.	George Herbert Fowler, f.Z.S., F.L.S., Ph.D. Formerly Berkeley Research Feilow: Owens College, Manchester; and Assistant $\{$ Ierotomy. Professor of Zoology at University College, London.
G. P. B.	Gerald Philip Robinson. President of the Society of Mezzotint Engravern. Mexwotint Engraver to Queen $\{$ Jempoten, Victoria and to King Edward Vll.
G. Sa.	
0.80.	Grant Showerman, A.M., Ph.D. Professor of Latin in the University of Wisconsin. Member of the Archaeological $\{$ Institute of America. Member of American Philological Association. Author of With the Professor; The Great Mother of the Gods; \&c.

G. W. T.	Rev. Grifithes Whezler Tiatcher, M.A., B.D.
E. B. We.	Formerly Assistant Director of the Geological Survey of England and Wales. $\{$ Miller, Hugh. Horace Bolngbroze Woodward, F.R.S., F.G.S. President, Geologists' Association, 1893-1894. Wallaston Medallist, 1908.
H. Ch.	Formerly Scholar of Corpus Christi College, Oxford. Editor of the itth edition $\left\{\begin{array}{l}\text { Maredith, Georgo; } \\ \text { Milan Obrenovith IV.; } \\ \text { Marlioy, Viseount. }\end{array}\right.$ Hoge Chisioly, M.A. of the Encyclopoedia Brilannica. Co-editor of the roth edition.
H.E.	Eari Hermana Ethe, M.A., Ph.D. Professor of Oriental Languages, University College, Aberyutwyth Unlversity of $\{$ Mirkhond. Wales). Author of Catalogue of Persiom (anucritts is the Indic Office Librarg. London (Clarendon Press);ac.
H. Fr.	
H. P. B.	Horatio Robert forbes Brown, LL.D. Editor of the Calendar of Venetian, State Papers, for the Public Record Office. Author of Life on the Lagoons; Venetian Studies; John Addinglon Symonds, a Biography: \&c. \&c.
H. F. G.	Hans Friedrich Gadow, F.R.S., Ph.D. Strickland Curator and Lecturer on Zoology in the University of Cambridge. Author $\left\{\begin{array}{l}\text { Migration: Zoology; } \\ \text { Moa. }\end{array}\right.$
H. E.I.	Henky Harvey Litrlejohn, M.A., M.B., C.M., F.R.C.S. (Edin.), F.R.S. (Edin.) Professor of Forensic Medicine in the University of Edinburgh. $\begin{aligned} & \text { Medieal Jurisprudence } \\ & \text { (in pert). }\end{aligned}$
H. L. H.	Haveret L. Hennessy, M.D. (Brux.), L.R.C.P.I., L.R.C.S.L $\quad\left\{\begin{array}{l}\text { Medient Education, U.S.A. } \\ \text { (in part). }\end{array}\right.$
E. L. S.	H. Lawrence Swnibune (d. 1907). $\quad\left\{\begin{array}{l}\text { Medal: War Decorations } \\ \text { (in part). }\end{array}\right.$
E. M. S.	Henry Moxse Steperens, M.A. Myy Moxse Stzprezns, M.A. Balliol College, Oxford. Profesor of History and Director of Univeraity Extension, University of Caliomia. Author of History of the French Revolutios; Modera Expopean History; \&c.
E. It. D.	Heney Newton Dicrson, M.A., D.Sc., F.R.S. (Edin.), F.R.G.S. Professor of Geography al University College. Reading. Formerly Vice-President, Royal Meteorological Socicty, Lecturer in Physical Geography, Oxford. Author of Metcorology; Elements of Weather and Climak; \&c.
H. 0.	Hermann Oelsner, M. A., Ph.D. Taylorian Professor of ithe Romance Languages in Univensity of Oxford. Memberof Council of the Philological Socicty. Author of A History of Provencal Literalure; $;$ Mistral.of
H. 8.	Henry Sturt, M.A. Author of Idole Thealri; The Idea of a Free Church; Persomal Idealism. $\quad\left\{\begin{array}{l}\text { Mletempaychosis. }\end{array}\right.$
E. 8. ${ }^{\text {. }}$.	Henry Stuart Jones, M.A. Formerly Fellow and Tutor of Trinity College, Oxiford, and Director of the British $\{$ Mosale: Ancient (in mart). School at Rome. Member of the German Imperiad Arehaeological institute. Author of The Romen Empira; \&c.
F. 8. $\mathrm{m}_{\text {. }}$	Heiriy Sutth Munroe, D.Sc., Pe.D. Professor of Mining, Columbia University, New York. $\{\text { mining. }$
E. S. W.	Henry Spenser Wiletnson, M.A.
E. T. A.	Rev. Herbert Thomas Andrews.
H. W. I. $^{\text {I }}$	Hope W. Hocc, M.A. Professor of Semitic Languages and Literatures in the Uaiverity of Manchester. $\{$ Masopotamin.,$~$
I. W.C.D.	Henry Williay Carless Davis, M.A.
E. W. R*	Rey. Henry Wheeler Robinson, M.A. (in Mansfield College Essays); \&c.
H.A.	
J. A. c.	Sir Joseph Azcher Crowe, K.C.M.G. \quad See the biographical article, Crowe, Su. A. $\quad\{$ Fomiline (in part).

J. A. F.
J. A. 8
J. A. V.
J. BL
J. B. T.

Jogn Anbrose Fleming, M.A., F.R.S., D.Sc.
Pender Professor of Electrical Engineering in the University of London. Feftow of University College, London. Formerly Fellow of St John's College, Cambridge, and Lecturer on Applied Mechanics in the University. Author of Magnets axd Electric Currents. See the biographical article, Symonds, Jobn Addington.

Jayes Bartlett.
Lecturer on Construction, Architecture, Sanitation, Quantitiez, \&c., at King's College, London. Member of Society of Architects. Member of Inatitute of Junior
Engincers.

Sir John Batty Tuke, M.D., F.R.S. (Edin.), D.Sc., LL.D.
President of the Neurological Society of the United Kingdom. Medical Director of New Saughton Hall Asylum, Ediaburgh. M.P. for the Universitues of Edinburgh and St Andrews, 1900-1910.
J. D. B.
J. E. H.
J. F. K.
J. P. P.
J. G. H.
J. G. R.

Jayes David Bourchiter, M.A. F.R.G.S.
King's College, Cambridge. Correspondent of The Times in South-Eastern Europe.
Commander of the Orders of Prince Danilo of Montenegro and of the Saviour of Greece, and Officer of the Order of St Alexander of Bulgaria.
Rev Joseph Ednund Hutton, M.A.
Author of History of the MIoravian Church.
James Futivan Reipp, D.Sc.
Profegsor of Geology. Columbia University, New York Geologist to United States
and New York Geological Surveys. Author of Handbook of Rocks; \&c.
Joseph Frink Payne, M.A., M.D., F.R.C.P.(1840-1910).
Formerly Harveian Librarian, Royal Coliege of Physicians, London. Hon. Fellow of Magdalen College, Oxford. Fellow of the University of London. Author of Lectures on Anglo-Saxon Medicine; \&c.
Joseph G. Horner, A.M.1.Mech.E. Author of Plating and Boiler Making; Proctical Metal Twrning; ac.
John George Robertson, M.A.: Ph.D.
Professor of German at the University of London. Formerly Lecturer on the
English Language, Strassburg Uaiversity. Auther of History of German Literalure; $\& c$.

Meter, Eleetric.
$\{$ Motactanto.
$\{$ Fiothodrm (in part).

Modical Education.

Medicine: History (in part).
\{ Metal-Work: Industrial.
$\{$ Molsteralaget
J. G. 8e.
J. H. F.
J. H. Je.
J. H. ${ }^{\text {M. }}$

Join Henry Midoleton, M.A., Litr.D., F.S.A., D.C.L. (1846-1806).
Slade Prolessor of Fine Art in the University o Cambridge, 1886-1899. Direetor of the Fitzwilliam Museum, Cambridge, 1889-1892. Art Director of the South Kensington Museum. 1892-1896. Author of The Enerased Gems of Clessical Times: Illuminated Manuscripts in Classical and Mediectal Times.
Sir James George Scott, K.C.I.E. Superintendent and Political Officer, Southern Shan States. Author of Burma;
The Uper Burma Gaselter. The Upper Burma Gosetteer.
$\{$ Makong; Minbu.
Menander;
$\left\{\begin{array}{l}\text { ELrror: Anciens; } \\ \text { Moesla. }\end{array}\right.$
Moesh.
$\{$ moleculo.
[Motal-Work: Art (in part);
tonrealy:
Mocalo: Arcient (in pord)
J. H. R.

John horace Round M.A., LL.D.
Author of Fendal England; Shudies in Pcerage and Family History; Paerage and $\left\{\begin{array}{l}\text { Mortain; } \\ \text { Pedigrec. }\end{array}\right.$ Howray: Family.
J. RI. R. John Holland Rose, M.A., Litt.D.

Lecturer on Modern History to the Cambridge University Local Lectures Syndicate.
Author of Life of Napoleon I.; Napoleowic Shadies; The Devalopment of the European Nations; The Life of Pill; \&c.
I. Lo. Rev. Jayes Legge, D.D.

See the biographical article, Lecgan, Jamas.
Hoilion, Count; Rontholon, Marquis de.
J. E. W.

Jessie Latdlay Weston.
Author of Archwrian Romances nimepresented in Molory.
\{ Moncines
$\{$ Sterlin.
J. R. Bu. Rev. James Monroe Bucxiey, D.D., LL.D.

Editor of the Christian Adsocate, New York. Author of Histery of Methodism in the Unilad States; \&c.
$\{$ Mothodlem: United Steke
J. 趹.

Jno. 8.
Sir Jonn Scotr, K.C.M.G., M.A., D.C.L.
Formerly Deputy Judge-Advocate-General to His Majesty's Forcea Judge, afterwards Vice-President. International Court of Appeal in Egypt. 1874-1882. Judge of High Court, Bombay, 1882-1890. Judicial Adviser to the Kbedive of Egypt, 1890-1898. Vice-President, International Law Awociatica.

Milltary Law.

J. 8. BL	 Jomin Sutarrland Black, M.A., LL.D.
J. 8.5	Petrographer to the Ceological Survey: Formerly Lecturer on Petrology in Joans Surte Flett, D.Sc., F.G.S. Edinburgh University. Neil Medallist of the Royal Society of Edinburgh. Bugsby Medallist of the Geological Society of Londan.
J.8.0.	Expert Metal Worker. Author of A rmowr in England; Irowmori (for the Educational \{ MotalWork: Modern Art. Jobm Starite Gardner, F.S.A. Department); \&c.
J. 8. 12.	James Saumarez Mann, M.A. Formerly Fellow and' Lecturer of Trinity College. Oxford. Professor of Greek at \{ Moxdeo: Modern History. Bedford College, London. Joint-editor of Saciel England,
3. T. Bo.	Joint-author of Stanford's Europe. Formerly Editor of the Scoltish Geographical $\left\{\begin{array}{l}\text { 耳err; Minsk(in part); } \\ \text { Ioscow(in Parl) }\end{array}\right.$ John Thomas Bealby. Kajasine Translator of Sven Hedin's Thoough Asia, Contral Asia and Iibet; \&c. [oscow(in part).
3. T. 6.	Josepr Thomas Cenningeak, M.A., F.Z.S. Lecturer on Zoology at the South-Western Polytechnic, London. Formerly Fellow $\left\{\begin{array}{l}\text { Wollusea (in part); } \\ \text { of Uaiversity College, Oxford. Assistant }\end{array}\right.$ Mulot University of Edinburgh. Naturalist to the Marime Biological Aswociation.
J. 7. 8**	Jaces Thomson Shotwell, Pe.D. Professor of Hibory in Columbia University, New York City.
K.A.	Kate A. Meakin (Mrs Budgett Meakin). Moroe00 (in part).
K. 8.	$\begin{aligned} & \text { Kathleen Schlesinger. } \\ & \text { Editor of the Porffolio of Musical Archoeologe. Anthor of The Instruments of the }\{\text { Yomechoed; 盇outhyleco. } \\ & \text { Orchcstre. } \end{aligned}$
I. BL	Lovis Bell, Pbid. Consulting Engineer, Boston, U.S.A. Chief Engineer, Electric Power Transmission $\{$ Motors, Electuto. Department, General Electric Co., Boston. Formerly Editor of Electrical World. New York. Author of Electric Power Transmission; \&c.
I. Bob	Ludwig Boitziann (i844-1906). Formerly Professor of Theoretical Physics, Universities of Munich, Vienna and Leipzig. Author of Lectures on the Theory of Gar; Leciwras on Marwoll's Theory
L. F.	Lazarus Fletcher, M.A. F.R.S. Difector of Natural History Departments of the British Museum. Keeper of Minerals, British Museum, $1880-1909$. Secretary to the Mineralogical Society, Formerly Fellow on of Meloorites: \&c.
L. J. 8.	$\begin{aligned} & \text { LeOnazd James Spencer, M.A. } \\ & \text { Assistant in Department of Mineralogy, British Museum. Formerly Scholar of } \\ & \text { Sidney Susex College, Cambridge, and Harkness Scholar. Editor of the Mfinera- } \\ & \text { logical Magasine. } \end{aligned}\left\{\begin{array}{l} \text { Moluconito; Miea; } \\ \text { Mieroolino; Minarite; } \\ \text { Mimetito; wineralogy; } \\ \text { Mispickel; Molybdenito; } \\ \text { Monazite. } \end{array}\right.$
I. B. C.	Montague Hughes Cracxanthorpe, M.A., D.C.L., K.C. Honorary Fellow, St John's College, Oxford. Bencher of Lincola's Inn. Formerly Honorary Fellow, St John's College, Ozford. Bencher of Lincola's Inn. Formerly Member of the Gencral Council of the Bar and of the Council of Legal Education, and Standing Couasel to the University of Oxford. President of the Eugenics Education Socicty.
1. H. 8.	Marion H. Spielmann, F.S.A. Formery Editor of the Magasins of Art. Member of Fine Art Committce of Internationa! Exhibitions of Brusscla, Paris, Buenos Aires, Rome, and the FrancoBritish Exhibition London. Author of History of "Punch"': British Portrail Painhng to the opening of the Nincteenth Century; Works of G. F. Walls, R.A.; British Sculpture and Sculptors of To-Day; Henriette Ronner; \&c.
M. H. $^{\text {T. }}$	Marcus Niebutr Tod, M.A. Fellow and Tutar of Oriel College. Oxford. University Lecturer in Epigraphy. $\{$ Messene; Mressonth Joint-author of Calalogue of Lhe Sparke Musewm.
I. O. B. C.	Maximilian Otro Bismarcy Caspari, M.A. Reader in Ancient Hismory at London Univernity. Lecturer in Greek at Birming-\{ Megara (in part). ham University, rgo5-1go8.
I. P.	Rev. Mark Patrison. See the biographical article, Paitison, Mare. $\quad\left\{\begin{array}{l}\text { More, gir Thomes. }\end{array}\right.$
N. W. T.	Northcote Whitrdge Thomas, M.A. Government Anthropologist to Southern Nigeria. Corresponding Member of the Société d'Anthropologie de Paris. Author of Thought Transference; Kinship and Marriage in Auslralia; \&c.
O. Bar	Oswald Barron, F.S.A. Editor of The Ancestor, 1902-1905. Hoo, Genealogist to Stasding Council of the $\left\{\begin{array}{l}\text { Yontagu (Family). } \\ \text { Honourable Society of the Baronetage. }\end{array}\right.$ Iortmer(Fawily).
O.C. W.	Owen Cgarles Whirehouse, M.A., D.D. Theological Tutor and Lecturer in Hebrew, Cbeshunt College, Cambridge. $\quad\{$ Messfah (in part).

دiil	INITIALS AND HEADINGS OF ARTICIES
0. Er.	$\begin{aligned} & \text { Orro HENEER, PR.D. } \\ & \text { Ou the Staff of the Can Zeiss Factory, Jena, Germany. } \end{aligned}$
P. A. I.	
P. C. M.	Peter Chalmers Mitchell, M.A., F.R.S., F Z.S., D.Sc., LL.D. Secretary to the Zoological Society of London. University Demonstrator in \{Monster (in part); Comparative Anatomy and Assistant to Linacre Professor at Oxford, 1888-1891. Author of Oulines of Biology; \&cc.
P. Ge.	Patrice Gejdes, F.R.S. (Edin.). Professor of Botany, University College, Dundee. Formerly Lecturer on Natural History in School of Medine, Edinburgh. Part-author of Evolution of Sex. Morphology (in part). Author of Chapters in Modern Botany.
P. G. E.	Padl George Konody.
P. L*.	Phoip Lare, M.A., F.G.S. Lecturer on Physical and Repional Geography in Cambridge University. Formerty of the Geological Survey of India. Author of Momograph of Brilish Cambrian $\left\{\begin{array}{l}\text { Mexico: Ceology. }\end{array}\right.$ Trilobites. Translator and Editor of Keyser's Comparafive Geology.
P. V.	Pasquale Villari See the biographical article, Villafl, Pasquale. $\quad\left\{\begin{array}{l}\text { Medial (Family). }\end{array}\right.$
R. A. S. M.	Robert Alexander Stewart Macalister, M.A., F.S.A. St John's College, Cambridge Director of Excavations for the Palestine Explora- $\left\{\begin{array}{l}\text { Nichmash; Miepmh; } \\ \text { tion Fund. }\end{array}\right.$ Moriah.
R. C. P.	Regmald Ceundall Punnett, M.A. Professor of Biology in the University of Cambridge. Fellow of Gonville and Caius $\{$ Mondolism. College. Superintendent of the Museum of Zoology.
R. H. C.	Rev. Robert Hendy Chaples, M.A. D.D., D. Litt. Grinfield Lecturer, and Lecturer in 4 blical Studies, Oxford. Fehlow of the British $\{$ Hoses, Asesmption of. Academy. Formerly Professor of Biblical Greek, Trinity College, Dublin. Author of Critical History of the Doctrine of a Future Liff; Book of Jubilees; \&ce.
R. I. P.	Reginald Innes Pococr, F.Z.S. Superintendent of the Zoological Gardens, London.
R. E. D.	Sir Robert Kennaway Douglas. Formerly Keeper of Oriental Printed Books and MSS. at the British Museum; and $\{$ Mongols. Profesor of Chinese, King's College, London. Author of The Lamgwage and Literature of Chanc; Ac.
R. In*	Riceard Lydetier, M.A., F.R.S., F.G.S., F.Z.S. \quad Megatheriam; Moje (in part); All Lands; The Game A mimals of Africa; \&c.
R. Br-S.	Richicond Mayo-Syiti, Ph.D. See the biographical article, Maro-Sirta, Ricmionth $\quad\left\{\begin{array}{l}\text { Mgration (in part). }\end{array}\right.$
R. 1. B.	Robert Nisbet Bam (d. 1900).
R. P. S.	R. Phené Spiers, f.S.A. F.R.I.B.A. Formerly Master of the Architectural School, Royal Academy, London. Past President of Architectural Association. Associate and Fellow of King's Coliege., $\{$ Mosquo; Mouldingas. London. Corresponding Member of the Institute of France. Editor of Fergusson's History of Archilecture. Author of Archilecture: East and West; \&c.
R. 8 C.	Robert Seyuour Conway, M.A., D.Litt. (Cantab.). Professor of Latin and Indo-European Philology in the University of Manchester. Formerfy Profeseor of Latin in University College, Cardiff; and Fellow of Gonville
8. Anc.	Stanley Arthur Coos, M.A. Lecturer in Hebrew and Syriac. and formeriy Fetlow, Gonville and Caius College, Cambridge. Editor for the Palestine Exploration Fund. Examiner in Hebrew and Aramaic, London University. 1904-1908. Council of Royal Asiatic Society. 1904-19os. Author of Glossary of Aramaic Inscriphions; The Low of Moses and ble Code of Hammurab; ; Critical Voles on Old Testoment Hittory; Rehgion of Ancient Palestime: Ac.
8. C.	Sidney Corvin, LL.D. See the biographical article, Colvix, Sidney.
8t. ${ }^{\text {c. }}$	
8. ${ }^{\text {B }}$	Smon Newcons, D.Sc., LL.D. See the biographical article, Newcone, Snow. $\quad\left\{\begin{array}{l}\text { Iereary; Mootion }\end{array}\right.$

T. A8	Thoeras Asmby, M.A., D.Litt. (Oxom.). Director of British School of Archaeology at Rome. Formerly Scholar of Chirt Church, Oxford Craven Fellow, 1897. Conington Priseman, 1906 Member of the Imperial German Archaeological Institute Author of The Classical Topography of the Romas Compagna,	Fellolanum; Hogart Hybleat; 19mina; Tetapontums Milan (in part); Minturnso; Misenum; Elowreng(in part); Monteleone Calabro; Eloty; Monuments Italy.
T.A. L_{0}	Thomas Allan Ingray, M.A., Ll.D. Trinity College, Dublin.	Ledical Jurfaruience (in part);这idifo;
T. Cs.	Troxas Case, M.A. President of Corpus Christi College, Oxford. Formerly Waynflete Professor of Moral and Metaphysical Philosophy in the University of Oxdord, and Fellow of Magdalen College.	Migration (in part). Mataphysles.
T. C. A	Sn Thoyas Clfyord Allsutt, K.C.B., M.A, M.D., D.Sc, LL.D., F.R.S. Regius Professor of Physic in the University of Cambridge. Physician to Addenbrooke's Hospital, Cambridge. Fellow of Gonville and Caius College, Cambridge. Editor of Systems of Medicine.	Modlelne: Maian Progress.
T. $\mathbf{H E}_{\text {. }}^{\text {H* }}$	Colonel Sir Thomens Hungerpodd Holdich, K.C.M.G., K.C.LE., D.Sc. Superintendent Frontier Surveys, India, 1892-1898, Gold Medallist, R.G.S. (London), 1887. Author of The Indiaz Bordaland; The Cowntries of the King's Amard; India; Tibet; \&c.	Mehmand
T. K. R.	Thomas Kifee Rose, D.Sc. Cherpiet and Amayer, The Royal Mint, London. Autbor of Metallurgy of Gold; The Precious Metals; \&c.	Mint
Th. $\mathrm{N}^{\text {. }}$	Theodor Noldeye, Ph.D. See the biographical article, Noudere, Tresodor.	Mo'allazet
T. 8. W.	Theodore Salisbury Woolsey, LL.D. Profemor of International Law, Yale University. Editor of Wooley's International Latw. Author of A merica's Foreign Policy; \&c.	Monroe Doeftrins.
T. W. R. D.	Tromas Williar Rays Davids, Ll.D., Ph.D. Professor of Comparative Religion, Manchester University. President of the Pali Text Society. Fellow of the British Academy. Secretary and Librariman of Royal Asiatic Society, 1885-1902. Author of Buddhism; Sacred Books of the Buddhists; Early Buddhism; Buddhist India; Dialogues of the Buddha; Bc.	$\begin{aligned} & \text { Eelhankars; } \\ & \text { Monasder (Xilinds). } \end{aligned}$
W. A. B. 0.	Rev. William Augustus Brevoort Coolidge, M.A., F.R.G.S., Ph.D.(Bern). Fellow of Magdalen College, Oxford. Professor of English Hintory, St David's College, Lampeter, 1880-1881. Author of Guide du Haut Dauphine; The Rame of the Todi; Guide io Grindeharld; Gxide to Switserland; The Alps in Noture and in Fistory; \&c. Editor of The Alpine Jowmal, 1880-1881; Ac.	Moltngen; EMran; Morinn; EOnt Conls; Morat; Mullar, Johannt von.
W. A. P.	Walter Alison Perlisps, M.A. Formerly Exhibitioner of Merton College and Senior Scholar of St John's College, Oxford. Author of Moderm Europe; dec.	Mehemat AH; Mophlistopholes; Iettarnich; Ministar; ritro.
W, B. \mathbf{H}.	Sir Willui Bzate Richmond, K.C.B. See the biographical article, Ricamosdz Siz William Blazit.	Mosalc: Moderw.
W. B. 8.*	Whituy Barclay Squire, M.A. Assistant in Charge of Printed Music, British Museum.	Yorioy, Thomas.
W. C. R-A.	Sir Whliam Chandler Robegts-Adsten, K.C.B., D.C.L., F.R.S. See the biographical article, Roberts-Austen, Sí W. C.	\{ Motallography (in part).
W. F. C.	Williay Feilden Craies, M.A. Barrister-at-Law, Inner Temple. Lecturer on Criminal Law, King's College, London. Editor of Archbold's Criminal Pleading (23rd edition).	$\left\{\begin{array}{l} \text { Mistemennore. } \end{array}\right.$
W. F. D.	William Frederici Denning, F.R.A.S. Gold Medallist, R.A.S. President. Liverpool Astronomical Society, 1877-1878. Author of Tecscopic Work for Slarlight Evenings; The Great Meteoric Shoter; \&c.	Hotoce.
W. F. Sh	Wrilin Fleetwood Sheppard, M.A. Senior Examiner in the Board of Education. Formerly Fellow of Trinity College, Cambridge. Senior Wrangler, 1884.	Momsuretion.
W. H. F.	Sir Whtilam Henry Flower, f.R.S. See the biographical article, Flower, SIe W. H.	Mint:
W. H. H.	Whilay Henry Howeli, M.D., Ph.D., Ll.D. Dean of the Medical Faculty and Professor of Physiology, Johns Hopkins University. Baltimore. President of the American Physiological Association. Associate-editor of A mericas Jowrnal of Physiolory.	Medieal Education, U8.A. (in past).
W. H. 1.	Whelay Herrice Macaulay, M.A. Fellow and Tutor of King's College, Cambridge.	Totion, Laws of.
W. L*	Walter Lemmann, D.M. Directorial Assistant, Royal Ethnographical Museum, Munich. Author of Medhods and Resulls in Mexican Resoarch; \&c.	Maxieo: Anciont History (is part).

W. 学. 0.
W. M. R.
W. P. A.
W. R. 8.
W. R. 8.*
F.8. R.W. R. S.*W. 8. R.

William Robertson Sythe ll.d.
See the biographical article, Suata, Wullak Robertson.

Willian Roy Syith, M.A., Ph.D.
Associate Professor of History, Bryn Mawr College, Pennsylvania. Author of $\left\{\begin{array}{l}\text { Diseond Compromiso. } \\ \text { Sectionalism in Penmslvamia during the Revolution ; \&c. }\end{array}\right.$
Wiminy Sexth Rocistro.
Author of A General History of M usic from the Infancy of the Greak Dramue to the P-esent Period; and other works on the history of music.
$\left\{\begin{array}{l}\text { Modina; } \\ \text { Molahtrodok (is part) } \\ \text { Mondah (is part); } \\ \text { Deah (im part); } \\ \text { Moloeh (in part). }\end{array}\right.$

Whilam Minto, Ll.D.
Swe the biographical article, Merro, Wielinu.
Sie W. Martin Conway. See the biographical article, Convat, Sin W. M.
Willuy Michael Rossetti.
See the biographical article, Rossetti, Dante, G.
Lieut.-Colonel Williay Patrick Anderson, M.Inst.C.E., F.R.G.S. Chief Engineer, Department of Marine and Fisheries of Canada. Member of the

Mithionles, Adem.
$\{$ Min, John stuart
(in part).
$\{$ Monataincertis.
$\{$ Moronit

W.R. 1 .
Geographic Board of Canada. Past President of Canadian Society of Civil Engineers,

Witham Richard Morytle, M.A. (d. 19io).

Formerly Professor of Russian and the other Slavonic Languages in the University
of Oxford. Curator of the Taylorian Institution Oxford. Author of Russia;
Srovenic Literature; \&c.
W. R.

PRINCIPAL UNSIGNED ARTICLES

Mabourne. Malon.
Meningits.
Mercantile System.
Mescury (Chemlatry).
Marmaik.
Motal.
Cataliury.

Mahigan. 1icronests.
2mint.
2ille
Tineral Waters.
Minustry.
minnesingass.

Montane. Eoots. Sloravia. Mormons. Tarphise. Bortage. Kounted infantry.

ENCYCLOPÆDIA BRITANNICA

ELEVENTH EDITION

VOLUME XVIII

MEDAL (Fr. mbdaille, from Lat. medallum), strictly the term given to a memorial piece, originally of metal, and gencrally in the shape of a coin, usod however not as currency but as an artistic product. "Medallion" is a similar term for a large medal, but is now usually restricted to a form of bas-relief in sculpture. The term "medal" is, artistically, ertended hy analogy to pieces of the same character not necessarily shaped like coins. The history of coins and medals is inseparable, and is treated under the general heading of Numsinatics. That article may be supplemented here by an account of (1) the more recent progress in the art of the medalist, and (2) the use of medals for war decorations.

1. The medal-as it is understood to-day-enjoys a life entisely independent of the coin on the one hand, and, on the other, of the sculptured medallion, or bas-relief; and its renaissance is one of the chief phenomena in art during the period since about 1870 . It is in France that it has risen to the greatest perfection. Its popularity there is well-nigh universal; it is esteemed not only for memorials of popular events and of puhlic men, but also for private celebrations of all kinds. No other mation approaches in excellence-in artistic feeling, treatment, and sensitiveness of execution-the artists and the achievements of France. In England, although the Royal Academy seeks to encourage its students to practise the art, the prize it offers commonly induces no competition. The art of the medallist is not properly appreciated or understood, and receives little or no support. The prevailing notion concerning it is that it consists in stamping cheap tokens out of white metal or bronze, on which a design, more or less vulgar, stands out in frosty relief from a dazzling, glittering background. These works, even the majority of military and civic medals, demonstrate how the exquisite art of the Renaissance had been degraded in England-almost without protest or even recognition $\rightarrow 0$ that they are, to a work of Roty or Chaplain, what a nameless daub would he to a picture by Rembrandt or Velasquex.

It is probable that Jacques Wiener (d. 1899), of Belgium, was the last of the medallists of note who habitually cut his steel dies entirely with his own hand without assistance, though others in some measure do so still. Although most modern workers, exclusively medallists, have themselves cut diea, they now take advantage of the newest methods; and the graseur en medailles has become simply a mbdaillewr. His Enowledge of effect is the same-though the effect sought is different: in earlier times the artist thought chiefly of his shadows; now he mainly regards his planes. Otherwise his cima are not dissimilar. At the present day the medallist, after making conscientious studies from life (as if he were about to paint.a picture) commonly works out his design in wax, or similar substance, upon 2 disk of plaster about 12 or 14 inches
in diameter. From that advanced model a simple mould, or matrix, is made, and a plaster cast is taken, whereupon the artist can complete his work in the utmost perfection. Then, if a struck medal is required, a steel cast is made, and from that a reduction to the size required for the final work is produced by means of the machine-the lour a reduire. It is this machine which has made possible the modern revival, and has revolutionized the taste of designers and public alike. It was invented by Contamin, who based it upon that foum d portraif which Houlot produced in 1766, and whicb helped to fame several engravers now celehrated. This macbine was first exhibited in Paris in 1839, and was sold to the Municb Mint; while a similar invention, devised at the same time by the English engraver Hill, was acquired by Wyon for $£ 2000$, and was ultimately disposed of to a private mint in Paris. From that city comes the machine, based by the French inventor M. Ledru upon the two already referred to, now in use at the Royal Mint in London. A well-served medallist, therefore, need trouble himself nowadays about little beyond the primary modelling and the final result, correcting with his own hand only the slightest touches-refining, perfecting-but sometimes merely confining himself to giving his directions to the professional engraver. ${ }^{\text {I }}$
The great majority of the artistic medals at present in the world (in the great collection of France there is a total of not fewer than 200,000 medals) are cast, not struck. There is in them a charm of surface, of patins, of the metal itself, which the struck medal, with all the added beauties which it allows of delicate finigh and exquisite detail, can hardly give. But the production of tbe cast medal is much slower, much more uncertain, and the number of fine copies that can be produced is infinitely smaller. All the early medals were cast, being first modelled in wax, and then cast hy the cire perdue (waste wax)
${ }^{1}$ The method of preparing the dies, \&c., is the same for medals as for coins, save that for larger and heavier work more strokes are required, as in the case of L. Coudray"s popular "Orphee "-rather a sculpture-relief than a medal. The dies are capable of a great yield before becoming quite worn-out; it is said that no fewer than three million copies were struck of Professor J. Tautenhayn's Austrian jubilee medal of the Emperor Francis Joseph. In France, Thonclier's perfected machine, substituting the lever for the screw, has been in usc for coins since 1844; but for the striking of medals the same old. fashioned screw-press is retained which had till then been employed both for coins and medals since the time of Louis XIV. In its present form the machinc consists of an iron or bronze frame, of which the upper part is fitted with a hollow serew wherein works an inner screw. This acrew, moved by steam or electricity, drives the dics, set in iron collars, so that they strike the blanic placed between them. This machine can deliver a strong blow to produce a hiph relief, or a delicate towch to add the finest finish. In the Paris Mint large medals can be struck with comparative case and rapichity. A hydraulic press of nearly two million pounds pressure is utilized for testing the dics
process, and were usually worked over by the chaser afterwards; indeed, it was not until the beginning of the 16 th century that dies, hitherto used only for coins executed in low relief, were employed for larger and bolder work. The medallists of those days always cast in bronze or lead, and only proceeded to use silver and gold as a luxurious taste began to demand the more precious metals. There is little doubt that the material to be preferred is dull silver (mal or sable-sand-blasted), as the work, with all its variations of light and shade, can be better seen in the delicate grey of the surface.

The medal, properly considered, is not sculpture. Vasari was happy in his definition when he described the medallic art as the link between sculpture and painting-that is to say, painting in the round with the colour left out. Less severe than sculpture, it need not be less dignified; it is bound down by the conve itions of low reliel, and by compulsions of composition and design, dependent on shape, from which sculpture, even when the relief is the lowest, is in a great measure free. In the medal, otherwise than in sculpture, elaborate perspective and receding planes are not out of place. The genius of the modern Frenchman rebelled against the rule that commonly governed the medal during the decadence, and has triumphed in his revolt, justifying the practice by his success. The modern medal and the plaquelle aim at being decorative yet vigorous, reticent and dignified, delicate and tender, graceful and pure; it may be, and often is, all these in turn. Imagination, fancy, symbolism, may always be brought into play, allied to a sense of form and colour, of arrangement and execution. By the demonstration of these qualities the artist is to be differentiated from the skilful, mechanical die-sinker, who spreads over the art the blight of his heavy and insensitive hand and brain. So with portraiture. Accurate likeness of feature as well as character and expression are now to be found in all fine works, such as are seized only by an artist of keenly sensitive temperament. It is thus that he casts the events and the actions of to-day into metallic history, beautifully seen and exquisitely recorded; thus that the figure on the medal is no longer a mere sculpturesque symbol, but a thing of flesh and blood, suave and graceful in composition, and as pleasing in its purely decorative design as imagination can inspire or example suggest. It is thus that the art, while offering easy means of permanent memorial, has afforded to men of restricted means the eagerly seized opportunity of forming small coliections of masterpieces of art at a small outlay.

France. - In France the example of Oudire, coming after that of David d'Angers, did much to revolutionize the spirit animating the modern medallist. but Chapu, by his essentially modern treatment, did more. To Ponscarme (pupil of Oudine) is chiefly due the idea of rendering mat the ground as well as the subject on the medal, the suppression of the raised rim, and the abandonment of the typographic lettering hitherto in vogue, together with the mechanical regularity of its arrangement. Degeorge, with his semi-pictorial treatment, was followed by Daniel Dupuis, whose delicate and playful fancy, almost entirely pictorial, makes us forget alike the material and the dic. J. C. Chaplain is unsurpassed as a modetler of noble heads, including, those of four presidents of the French Republic-Macmahon, Casimir-Pericr, Faure and Loubetand his allegorical designs are finely imagined and admirably worked out (see Plate); but L. Oscar Roty (pupil of Ponscarme) is at the head of the whole modern school, not only by virtue of absolute mastery of the technique of his art. but also of his originality of arrangement, of the poetic charm of his symbolism and his allegories, the delicate fancy, the exquisite touch, the chasteness and purity of taste-wedding a modern sentiment to an obvious feeling for the Greck. Though expressly less virile than Chaplain, Roty is never effeminate. To Roty belongs the credit of having first revived the form of the plaquetle or rectangular medal, which had been abandoned and forgotten along with many ot her traditions of the Renaissance (sec Plate). Alphie Dubois, Lagrange, and Borrel must ise mentioned among those who are understood to engrave their own flies. Followers are to be found in Mouchon. Lechevrel. Vernon, Henri Dubois, Patcy. Bottce (see Playe)-all sterling artists if nor innovators. Medallists of more striking originality but less finish. and of far less elegance are Michel Cazin, Levillain (who loves as much as Bandinelli to make over-display of his knowledge of muscular anatomy). Charpentier, and their school, who aim at a manner which makes less remand of highly educated annistry such as that of Roty or of Chaplain. It is learoed and accomplished in
its way, but lumpy in its result; breadth is gained. but refinement and distinction are in a great measure lost. It may be added -to give some idea of the industry of the modern medallist, and the encouragement accorded to him-that between 1879 and 1900 M. Roty executed more than 150 pieces, each having an obverse and a reverse.

Austrio.-The two leading medallists of the Austrian echool are Josef Tautenhayn (see Plate) and Anton Scharff. both highly accomplished, yet neither displaying the highest qualities of taste. ability and "keeping." which distinguishes the French masters. About 330 pieces have come from the hand of Anton Scharf. Stefan Schwartz, Franz Paplit, Stanick, Marschall and J. Tautenhayn, junior, are the only other artists who have risen to eminence.

Germany.-A characteristically florid style is here cultivated. such as lends itself to the elaborate treatment of costume. armorial bearings, and the like; but delicacy, distinction, and the highest excellence in modelling and draughtsmanship-qualities which should accompany even the most vigorous or elaborate desinng-are lacking In a great degree. Professors Hildebrand and Kowarzik have vrought some of the most artistic works there produced:

Belpium.-Although sculpt ure so greatly flourishes in Beigium, medal work shows little promise of rivalling that of France. The influence of the three brothers Wiener (Jacques, Leopold and Charles) - good medallists of the old achool-has not yet been shaken off. The remarkable architectural serics by the first-named and the coinagye of the second, have little affinity with the spirit of the modern medal. Lemaire has perhaps done as well as any. followed by Paul Dubois, §. Dillens (a follower of the French), G. Devreese and Vingottc (see Plate)-whose plaquette for the Brusscls Exhibition award (1887) is original, but more admirable in design than in finish.

Holland. - In Holland not very much has been donc. Patriotism has called forth many medals of Queen Wilheimina, and the best of them are doubtlese those of Bart van Hove and Wortman. Baars is a more virile artist, who follows Chaplain at a distance. Wienecke is interesting for the sake of his carly Netherlandic manner: the incongruity is not unpleasant.
Swizerland. - The medal is also popular in Switzorland. Here Bovy is the leader of the French tradition and Hans Frei of a more national sentiment. The last-named, however, is more remarkable as a revivalise than as an original artist.
Great Britain,-In England only two medallists of repute can be counted who practically confine themselves to their art-G. W. de Sautles, of the Royal Mint, best known by the Dinmond Jubilee medal of Queen Victoria and by his medal of Sir Cabriel Sookes. and Frank Bowcher (sec Plate) by that of Thomas lluxley. These artists both cut their own dies when necessary. Emil Fuchs, working in England in the manner of the French medallists, but with greater freedom than is the wont of the older school, has produced several examples of the art: the medals commemorative of the Soush African War and of Queen Victoria (two versions). all of 1900; and many portrait medals and plaqueltes of mall size have come from the same hand. Besides these, the ladiag English eculptors have produced medals-Lord Lcighton, Sir Edward Poynter, Hamo Thornycroft. T. Brock, Onslow Ford, G. Frampton and Goscombe John; but, practising more continually in sculpture, they do not claim rank as medallists, nor have they sought to acquire that class of dexterity which constant habit alone can give. Alphonse Legros, who has cast a certain number of portrait medals, is uswally included in the French school.

United Sickes.-Among American medallists Augustus St Gaudens (see Plate) is perhaps the most prominent; but he is not, strictly speaking, a medallist, but a sculptor who can model in the flat.

Authorities.-F. Parkes Weber, Medals and Melallions of the 10th Century relating to Entland by Forcign Artosts (London, 1894): Roger Marx." The Renaissance of the Medal in France.' The Studio (vol. xv. 1898): M. H. Spielmann, "Frank Bowcher, Medallist, with some Comment on the Medallic Art," The Magazine of Art (February 1000); Spink \& Son's Monthly Numismalic Circular (passim), 1892 onwards (in English, French and German): Roger Marx, Les Mideilleurs francais depuis 1780 (Paris, 1897): Les Medaillewrs français conlemporains (Plates) (Paris, 1899); La Monnaie de Paris d l'Exposition Universelle (Paris, 1000): Cent ans de numis-留alique fransaise (2 vols., 1893-1895); F. Mazerolli, L. O. Roty: Biographre es colulogue de son aruure (Paris, 1897); 'F. Chaplain: Brographie et calulogue de lauvre (Paris. 1897); Ir H. J. de Dompiere de Chaufcpié, Les Medailles et plaquelles modernes (in
 der Medaille," Pan 1895. Pp. 34-40; 1896. Pp. 311-315; Due Moderne Medaille (a monthly magazine, passim) (Vienna); L. Forrer, Bioeraphical Dictionary of Medallis's, vol. i. A-D. (London, 1902).
(M. H. S.)

Medals as War Decorations

Although the striking of medals to commemorate important events is a practice of considerable antiquity, yet the custom of using the medal as a decoration, and especiaily as a decoration to do boopor to those who have rendeced service to the atate
in time of war, is comparatively modern. It has been supposed that the circular ornaments on the Roman standerds had medals in their centres, but there is no evidence to show that this wes the case, and the standards shown on the column of Trajan appear oaly to have had plain boeses in their centres. It is true that the Chinese are said to have used military medals during the Han dynasty (ist century a.D.), but, as far as the West is concerned, we have to come to the 16th century hefore we find the custom of wearing medals as decorations of bonour a recognized institution.

The wearing of decorative medals was common in England in the reign of Henry VIII., hut the first medals commemorating a particular event that were evidently intended as a personal decoration, and were in all probability (though there is no abeolute proon) bestowed as reward for military services rendered to the Crown, are the "Armada" medals of Queen Elizabeth, 1588-1589. Of these there are two. The earliest, generally styled the "Ark in flood" medal, is a large oval medal of silver (2 by 1.75 in .), and bears on the ohverse a profile bust of the queen surrounded by the inscription, ELIZABETH D. G. ANGLIAE. F. ET HI. REG. On the reverse is an ark on waves, with above the rays of the sun, and around the legend, SAEVAS TRANQVILLA PER VNDAS. This medal dates from 1588 , and in the following year there was given another medal, a little larger (2.3 hy 2.1 in .) and struck in gold, silver and copper. The obverse of this second medal bore a full-face bust of Elizabeth, with the legend, characteristic both of the monarch and the period, DITIOR IN TOTO NON ALTER CIRCULUS ORBE. The reverse has an island around whicb ships arc sailing and sea-monsters swimming, and on the island there are houses, a flourishing hay-tree, standing uninjured by a storm of wind, and lightning emerging from heavy clouds above. The island is inscribed NON IPSA PERICVLA TANGVNT. Tbese medals are of special interest as demonstrating thus early the existence of a doctrine of sea-power. In fact, in the medals of James I. (1603-1625), pone of which have a distinct reference to war services, the "ark in flood" design was agrin reproduced on the reverse, this time with the legend slightly altered, viz. STET SALVVS IN VNDIS.

Other European nationalities were also about this period conferring decorative medals as a reward for war services, as for example, the "Medal to Volunteers" issued in Holland in 1622-1623 and the "Military Medal of Gustavus Adolphus" issued in Sweden in 1630 . Here it may be noted that in following the history of medals as used as a decoration to reward military services, only those of British origin need be dealt with in detail, since Great Britain has utilized them in a much greater degree than any other nationality. The countless minor wars of the 19th century, waged by the forces of the Crown of every class, navy, army and auxiliary, have no equivalent in the history of other states, even in that of France, the United States and Russia. The great wars of the igth century were divided by long intervals of peace, and the result is that with most of the great military powers the issue of campaign medals has been on a small scale, and in the main decorations have taken the form of "Orders" (see Knichthood and Chivalry: Orders), or purely personal decorations for some meritorious or exemplary service.

During the reign of Charles 1. ($1625-1649$), we come across numerous medals and badges; a considerable number of these were undoubtedly associated with, and given, even systematically given, as rewards for war services; for a royal warrant "given at our Court of Oxford, the eighteenth day of May, 1643," which directed "Sir William Parkhurst, Knight, and Thomas Bushell, Esquire, Wardens of our Mint, to provide from time to time certain Badges of silver, cuntaining our Royal image, and that of our dearest son, Prince Charles, to be delivered to wear on the breast of every man who shall be certified under the hands of their Commanders-in-Chief to have done us lailhful service in the Forlorn-bope."
From the foregoing it must not be deduced that this medal
was in any way intended to reward special valour. In those. days "forlorn-hopes" were not volunteers for some desperate enterprise, as to-day, but a tactical advanced guard which naturally varied, both in numbers and arm of the service, according to ground and circumstances. That a very free distribution of the award was contemplated is evident from the fact that "soldiers" alone were specified as recipients and that a clause was inserted in the warrant strictly forbidding the sale of the medal. This letter ran:-
" And we do, therefore, most straitly command, that no soldier at any time do sell, nor any of our subjects presume to buy, or wear, any of these said Badges, other than they to whom we shall give the same, and that under such pain and punishment as our Council of War shall think fit to inflict, if any shall presume to offend against this our Royal command."
As there are in existence soveral medals of this period which bear the effigies of both the king and Prince Charles, it is uncertain which in particular was used for the "forlorn-hope" award. Very probably it is one, an oval silver-gilt medal (1.7 by 1.3 in .) which bears on the obverse a three-quarters (r.) bust of Charles I., and on the reverse a profile (1.) hust of Prince Charles (see Mayo, Medals and Decoralions of the British Army and Navy, vol. 1. No. 16, Plate 5, No. 3). During the Commonwealth (1649-1660), parliament was lavish in the award of medals in recognition of war'services, and for the frst time we find statutory provision made for their bestowal as naval awards, in the shape of acts of parliament passed Feb. 22, 1648 and April 7, 1649 (cap. 12, 1648 and cap. 21, 1649), and Orders in Council of May 8 and Nov. 19 and 21, 1649, and Dec. 20, 1652. There is no doubt whatever that there was a "Medal of the Pariament" for sea service issued in 1649. This medal, oval (.95 by 85 in.) and struck in gold and silver, had on the olverse an anchor, from the stock of which aro suspended two shields, one bearing the cross of St George, and the other the Irish harp. The motto is MERVISTI. On the anchor stock, T. S. ${ }^{2}$ The reverse has on it the House of Commons witb the Speaker in the chair. This medal is referred to in a minute of the Council of State of Nov. 1 5, 1649:-
" (5) That the Formes of the medalls which are now hrought in to be given to the severall Mariners who have done good service this last Sulner be approved off, viz': the Armes of the Cottion wealth on one side with Meruisti written above it, and the picture of the House of Cottons on the other."
That there was a "Medal of the Parliament" for land service as well, is proved by the following extract from the Journals of the House of Commons (vii. 6, 7):-
"Resolved, That a Chain of Gold, with the Medal of the Parliament, to the Value of One Hundred Pounds, be sent to Colonel Mackworth, Governor of Shrewsbury, as a mark of the Parliament's Favour, and good acceptance of his fidelity: And that the Council of State do take care for the providing the same, and sending it forthwith."
This order was duly carried out, as is shown in the minutes of the Council of State, June 2 and July 30, 1652, but there is no trace to-day of either medal or chain. It is not unlikely that this medal is one figured at page 117 of Evelyn's Numismata (the engraving, unnumbered, is placed between Nos. 39 and 40 , and tbere is no allusion to it in the text), which has on the obverse a representation of the parliament, and on the reverse a bust of the Protector with a. camp and troops in the background.

The most splendid of all the naval awards of this perioa were those given for the three victories over the Dutch in 1653 , namely:-

[^0]1. The fight of Feb. 18/20, when Blake, Deane and Monk defeated Van Tromp and De Ruyter, the battle beginoing off Portland and ending near Calais; (2) the fight of June a and 3, of the Essex coast, when Monk, Deane (killed), Penn and Blake, again defeated Van Tromp and De Ruyter; (3) the fight of 3 rst of July off the Texel, in which Monk, Penn and Lawson beat Van Tromp in what was the decisive action of the war. The authorization for these awards will be found recorded in the Journals of the House of Commons (vii. 296, 297), under date Aug. 8, r653. Tbe medals, all oval, and in gold, were given in three sizes, as described below:-

A (2.2 by 2 in .). Only four of these medais were issued, to Admirals Blake and Monk, each with a gold chain of the value of E 300 , and to Vice-Admiral Penn and Rear-Admiral Lawson, each with a gold chain of the value of fico. On the ohverse is an anchor, from the stock of which are suspended three shields, bearing respectively St George's cross, the salitire of St Andrew, and the Irish harp, the whole encircled by the cable of the anchor. On the reverse is depicted a naval battle with, in the foreground, a sinking shlp. Both ohverse and reverse have broad, and very handsome, borders of naval trophies, and on the obverse side this border has imposed upon it the arms of Holland and Zeeland. Of these four medals three are known to be in existence. One, lent by the warden and fellows of Wadham College, Oxford (Blake, it may be noted, was a member of Wadham College) was exhibited at the Royal Naval Exhibition of 1891. A second is in the royal collection at Windsor Castle. The third, with its chain, is in the possession of the family of Stuart of Tempsford House, Bedfordshire. This latter medal is known to have been the one given to ViceAdmiral Penn, an ancestor of the Stuart family. The one at Windsor is presumably Blake's, as Tancred states "the medal given to Blake was purchased for William IV. at the price of 150 guineas (Tancred, Historical Reconds of Medals, p. 30). The medal at Wadham was formerly in Captain Hamilton's collection. He purchased it at a low figure, but secrecy was kept as to the owner, and the original chain that was with it went into the melting-pot: there is therefore nothing to show whether it was Monk's or Lawson's, as the chain would have done. It was sold at Sotheby's in May 1882 for $\mathrm{f}_{3} 305$. - B (2 by 1.8 in .). Four of these medals were issued, eacb "with a gold chain of the value of f 40 , to the "Flag Officers," i.e. to the flag captains who commgnded the four flag-ships. The obverse and reverse of this medal are, with the exception of the borders, precisely as in (A). The borders on both sides are a little narrower than those of (A), and of laurel instead of trophies. One of these medals-that given to Captain William Haddock, who was probably Monk's flag-captain in the "Yanguard," in the February fight, as he had been in that ship in the previous year, and who commanded the "Hannibal," (44) in the June battle-is now (1909) in the possewsion of Mr C. D. Holworthy, who is materually descended from Captain Haddock.
C (1.6 by 1.4 in). This medal is precisely the same as (B). but has no border of any kind, and abso was issued without the gold chains. It was in all probability one that was issued in some numbers to the captains and other senior officers of the fiect.

Some of these medals have in the plate of the reverse an inseription: FOR EMINENT SERVICE IN SAVING Y TRIUMPH FIERED IN FIGHT WH Y DVCH IN JULY t653. The medal so inscribed was given only to those who served in the "Triumph," and commemorates a special service. Blake, incapacitated by wounds received in the fight of February, took no part in this action, but his bistoric flag-ship, the "Triumph," formed part of the fleet, and early in the battle was fired by the Dutch fire-shipe. Many of the crew threw themselves overboard in a panic, but those who remained on bourd succeeded by the most indomitable and beroic eflorts in subduing the flames, and so saving the vessel.

But undoubtedty the most interesting of all the medals of the Commonwealtb period, is that known as the "Dunbar

Medal," authorized by parliament, Sept. 10, 1650 , in a resolution of wbich the following is an extract:-
"Ordered, that it be referred to the Committee of the Army, to consider what Medals may be prepared, botb for Officers and Soldiers, that were in this Service in Scolland; and set the Proportions and Values of them, and their number; and present the Estimate of them to the House. (Journals of the House of Commons, vi. 464-465.) So came into being, what, in a degree, may be regarded as the prototype of the "war medal" is we know it to-day, for the "Dunhar Medal" is the very earliest that we know was issued to all ranks alike, to the humblest soldiers is well as to the commander-in-chief. It differed however in one very material point from the war medal of to-day-in that it was issued in two sizes, and in several different metals. There is no evidence to show what was the method that governed the issue of this medal; but the medal itself undoubtedly varied in size or metal, or both, according to the rank of the recipient. Of the two sizes in which the medal was issued the smalier, I by .85 in . was apparently intended for seniors in the respective grades, for it was struck in gold, silver and copper. The larger, 1.35 by 1.15 in . was struck in silver, copper and lead (see Mayo. op. cif. i. 20-21). ${ }^{1}$ On the obverse of both issues of the "Dunbar Medal" is a left profile bust of Oliver Cromwell, with, in the distance, a battle. The reverse of the larger medal has the parliament assembled in one House with the Speaker; and, on the left, a member standing addressing the chair. The reverse of the smaller medal is the same as that of the larger, except that the member addreasing the House is omitted. Cromwell himself expressed a wish to the "Committee of the Army, at London," in a letter dated the 4 th of Fehruary 1650/51, that his likeness, to procure which accurately the committec had sent Mr Simon to Scotland, should not appear on the medal. He writes:-
© ${ }^{\prime}$ If my poor opinion may not be rejected by you, 1 have to offer to which 1 think the most noble end. to witt. The Commemoracon of that great Mercie att Dunbar, and the Gratuitie to the Army, which might be better expressed upon she Medall, by engraving, as on the one side the Parliament which 1 hear was intended and will do singulariy well, so on the other side an Army, with this inscription over the head of it, The Lord of Hosss which was our Word that day. Wherefore, if 1 may beg it as a favour from you, I mot earnently beseech you, if I may do it without offence, that it may be soe. And if you think not fitt to have it as I offer, you may alter it as you see cause; only I doe think 1 may truly say, it will be very thankfully acknowledged by me, if you will spare the having my Efigies in it."
In spite of this request Cromwell's "Effigies" is made the prominent feature of the obverse of the medal, to which the representation of the "Army" is entirely subordinated. His wish that the " word " for the day should be commemorated is, however, observed in the legend on the obverse, as is also, on the reverse, bis suggestion that on one side of the medal there should be a representation of the parliament.

During the reign of Charles II. the issue of medals was numerous, and though we have it on the authority of Evelyn that many of these were bestowed as "gratuities of respect," yet many were given as naval awards; and, for the first time, there appears official authorization for the conferring of particular awards on those who had succeeded in the very hazardous service of destroying an enemy's vessel by the use of Gre-ships. In what are probably the carliest "Fighting Instructions" issued-those of Sir William Penn, in 1653, and again in an abridged form in 1655-no allusion to these awards is made, but that the custom of rewarding this special service prevailed, there is a piece of strong indirect evidence to show, in the shape of an amusing letter from a certain Captain Cranwill, of "ye Hare Pinke," to the Admiralty Committee, dated Feb. 4, 1655:-

[^1]

Duplessis Plaquette. Roty.
 Roty.

Study.
Roty.

Wedding Medal. Roty.

Boulanger Plaquette. Roty.

Ambroisine Merlin. From the Medal by Michel Cazin.

Medals and Plaquettes.
Jules Chaplain.

Plate II.

MEDAL

Medal of Award for the Cope and Nicol School of Painting.
F. Bowcher.

France, 18 80. Roty.

Gold Medal, Vienna,
1894.
By Joseph Tautenhayn.

Great Gold Medal, Brussels, 1898. Designed by P. Woliers. Engraved by Vingotte.

Paris Universal Exhibition, 1889.
By Louis Bottes.

International Exhibition, Chicago, 1893. By Augustus St Gaudens.
${ }^{*}$ As for ye Piy yor Honrs were please to order mee for my service In ye Hare Pinke, I return mont humble thankes, and am ready to terve yor Honrs and my Country for ye future

For though ye Hare be mewned in ye sand
yet Cranwell at your mercy still doth stand
A fre Shig now doth bee Craye,
And the Fox fain would he Have.
then has hee had both Fox and Hare,
then Spanish Admirall stand you cleare,
For Cranwell means ye Chaine of goold to ware;
Sett pean to paper it is done,
for Cranwell still will be your man."
all of which goes to show that it had not been unusual to bestow gold chains, with or without medals, on the captains of fireships. By the "Fighting Instructions" issued 20th of April, 1665, by James, duke of York, lord high admiral, it was provided as follows. In the case of the destruction of an enemy's vessel of forty guns or more, each person remaining on board the fire-ship till the service was performed was to receive f io, "on board ye Admirall imediately after ye service done," and the captain a gold medal and "shuth other future encouragement by preferment and commande as shall be fitt both to reward him and induce others to perform ye like Service." If it was a flag-ship that was fired "ye Recompense in money shall be doubled to each man performing itt, and ye medall to ye Commander shall be shuth as shall particulariy express ye Eminensye of ye Service, and his with ye other officers preferement shalbe suitable to ye meritt of itt." This was followed by an "Oder of the King in Council "dated Whitehall 12th of January 1669-1670, in which the lord high admiral is sutborized " to distribute a Medall and Chaine to such Captaines of Fire Shipps as in the last Dutch Warr have burnt any Man of Warr, is also to any of them that shall perform any such service in the present Warr with Algiers. Which Medalls and Chaines are to be of the price of Thirty Pounds each or thereabouts"

To complete the story of fire-ship awards, it may bere be noted (though out of chronological order) that in 1703 revised "Fighting Instructions" were issued by Admiral Sir George Rooke, in which it was provided that the captain was to have bis choice between a gratuity of $\{100$, or a gold medal and chain of that value. Lastly an order of the king in council, dated, St James's, 16 th of December, 1742, ordered that all lieutenants of fire-ships (which originally carried no officers of this rank) should be entitled to a gratuity of 450° "in all cases where the Captain is entituled to the Reward of froo." Though probably others were conferred, so thorough an investigator as the late John Horsiey Mayo, for many years assistant military secretary at the India office, who had special opportunities of access to official records, traced but three authenticated fre-ship awards. Those were: (1) to Captain John Guy, who blew up his fire-ship the "Vesuvius" under the walls of St Malo in 1693; (2) to Captain Smith Callis who, with his fireship the "Duke," in 1742, destroyed five Spanish galleys which had put into St Tropez, to the castward of Marseilles; (3) to Captain James Wooldridge, who commanded the British freships in Aix Roads on the isth of April 1809, when four French sail of the line were burnt. This latter is believed to be the last award of the kind that was issued. Fire-ships awards are of special interest as affording a precedent, in future naval wars, for the award of special decorations for torpedo seavices.

It is in this reign also that we first find a case of medals being granted by the Honourable East India Company. The carliest of these would appear to have been a gold medal of the value of $£ 20$, conferred on Sir George Oxinden, president at Surat, 1622-1669, in 1668, for considerable civil and military services. Surat was then and until 1687, when Bombay took its place, the seat of government of the Western Presidency, and the most eminent of Sir George's services was the defence of the Company's treasures and possessions at that place against Sivajee and the Malirattas in 1664 . It is not known what has become of this medal, but there is indirect evidence to
show that it was a circular medal, three inches in diameter. On the obverse the "Arms of the Governor and Company of Merchants of London trading to the East Indies, with creast, supporters, and mottoes," and around the legend NON MINOR EST VIRTVS QUAM QVAERERE PARTA TVERI. The reverse was probably blank to admit of an inscription. This award was the forerunner of many given by the H.E.I. Co., several of which were " general distributions "of the very highest interest, which will be dealt with together later on.

The awards made in the reigns of James II., William and Mary, William III., Anne, George I., George II., may be very briefly dealt with. Almost without an exception they were dither naval or conferred by the Hon. East India Company, and with only perhaps one or two exceptions, they were "per: sonal" as distinct from "general" awards. Of the very few medals awrarded by James II., one was an undoubted military award, though curiously enough the recipient was a bishop. This was Peter Mew, who had been made bishop of Bath and Wells in 1672, was translated to Winchester 1684 , "and next year was commanded by the king, in compliance with the request of the gentry of Somerset, to go against Monmouth, and did eminent service at the battle of Sedgmoor, where he managed the artillery;. for which he was rewarded with a rich medal " (Hutchins's History of Derset, 3 rd ed., vol. iv. p. 149).

The possible exceptions in the way of a "general" distribution of a medal during the reigns under review are the cases of the medals struck after the battles of La Hogue, 1692, and Culloden, ${ }^{1746}$. By an act of parliament passed in 1692 (4 Gul. and Mar. C. 25), it was enacted that a tenth part of the prize money taken by the navy should be set apart "for Medalls and other Rewards for Officers, Mariners, and Seamen in their Majesties Service at Sea who shall be lound to have done any signal or ertraordinary service." (Later a Royal Declaration of Queen Anne, the ist of June 1702, provided that all medal and monetary awards "shall he also paid out of Her Majestics Shares of Prizes.") This is the first case in naval records authoriving the issue of medals to men as well as to officers, and the conferring of the "La Hogue" medal was the first case in which the enactment was carried into effect, at any rate as far as admirais and officers are concerned. Seamen and soldiers had a more substantial reward, for the queen sent $\mathrm{f} 30,000$ to be dist ributed amongst them, whilst gold and silver medals were struck for the admirals and officers. The medal, which was circular, 1.95 in . in diameter, had on the obversc the busts conjoined of William and Mary, r., with around GVLe ETMAR D GMBFETH REX ETREGINA. On the reverse was a representation of the fight, showing the French flag-ship, "Ie Soleil Royal," in flames, with above the legend, NOX NVLLA SECVTA EST, and, in the exergue, PVGN NAV INT ANG ET FR 21 MAY 1692.

As regards the medal struck after Culloden, fought on the 16th of April 1746, and in which the adherents of the young Pretender were completely routed, there is nothing even to sbow that it was issued even by the authority of the government, though it was undoubtedly worn, and (if a contemporary portrait is to be relied upon, that of an ancestor of Mr W . Chandos-Pole of Radhourne Hall in Derbyshire) around the neck attached to a crimson ribbon with a green edge. There is no doubt it was struck in gold, silver and copper, but how it was awarded there is no proof, probably only to officers. The ohverse had an r., bust of the duke of Cumberland, with ahove CUMBERLAND, below YEO f (Richard Yeo fecil), and, on the reverse, an Apolio, laureate, leaning upon his bow and pointing to a dragon wounded by his arrow. The reverse legend was ACTUM EST ILICET PERIIT, and, in the erergue PROEL COLOD AP XVI MDCCXLVI. The medal is a strikingly handsome one, with an ornamental border and ring for suspension, oval, 1.75 by 1.45 in., but very few specimens are known to exist. Those in gold were probably only given to officers commanding regiments and a very fine specimen of these, originally conierred on Brigadier-General Fleming (at one time in command of the 36th Foot) is now in the collection of Major-General Lord

Cheyleamore. In his monograph, Naval and Military Medals, Lord Cheylesmore mentions another "Culloden" medal in his collection, "a slightly larger one in white metal, which leads one to suppose that it was given in inferior metal to the more junior hranches, prohably officers; but whether this was the case or no I am unable authoritatively to state." However, one thing is fairly certain, that the issue of the "Culloden" medal was in no sense "general," as we now understand the term, nor as were the issues for "Dunbar" or the issues of the Honourable East India Company, which will next be dealt with.

No medal awards were made to either the naval or military services for the Seven Years' War, and the American War of Independence. In fact George III. had been more than thirty years on the throne when the first medal award by the Crown was given, in the shape of the navy gold medals, first issued in 1794. It will however be more convenient to deal later with these medals and the army gold medals and crosses given for services in the long and arduous struggle of $1793-18 \mathrm{~s}$, and to describe here in sequence those medals which were issued by the Honourable East India Company, the issue of which was, with certain limitations, "general," thus reverting to the precedent first established in the "Dunbar" award, namely an issue to all ranks. They are nine in number, and are described below in the chronological order of the military operations for which they were awarded.

1. The "DECCAN" medal. Authorized, first in 1784, and again 1785. Obverse: Figure of Britannia seated on a military trophy, with her right hand holding a wreath of laurel and extended towards 2 lortress over which the British flag flies. Reverse: Persian in-ccriptions-In centre. "Presented by the Calcutta Government in memory of good service and intrepid valour, A.D. 1784, A.H. 1199;" around, Like this coin may it endure in the world, and the exertions of those lion-hearted Englishmen of great name, victorious from Hindostan to the Deccan, become exalted." This medal was issued in two sizes, diameters 1.6 and 1.25 in . The larger medal was struck both in gold and silver, the smaller in silver only, and both were worn round the neck suspended from a yellow cord. This medal was awarded to two large detachments of the Bengal army denominated the "Bombay Detarhment "(authorized 178.4), and the "Carnatic Detachment" (authorized 1785). which respectively of India, 17^{80-84}. The medal was not given to any Europeans, only to natives: the larger medal in gold to Subadars, and in silver to Jemadars: the smaller silver medal to non-commissioned officers and sepoys. By a minute of council, dated the 15 th of July 1784 , a further boon was granted to the "Bombay Detachment," Inaamuch as it exempted all Hindus of that detachment from payment of the duties levied by the authorities on pilgrims to Coya in Behar. As the large majority of the troops were high caste Hindus, and Coya was, and is the Mecca of Hinduism, this lavour must have been much appreciated by the recipients of the medal. This is the earliest Anglo-Indian example of a medal issued alike to all ranks.
2. The "MYSORE" medal. Authorized, 1793. Obverse: A sepoy holding in his right hand the British colours, in his left an enemy's standard reversed, whilst his left foot rests on a dismounated cannon. A fortified towa is in the background. Reverse: Within a wreath; "For Services in Mysore, A.D. "179t-1792." Between wreath and rim is an inscriptinn in Persian: "A memorial of devoted services to the English government at the war of Mysore. Christian Era, 1791-1792, equivalent ta the Mabomedan Era, 1205-1206." Like the "Deccan "this medal was in two sizes, diameters I' 7 in. and $\mathrm{I}^{\prime} 5$ in., the larger being struck both in goid and silver, the smaller in silver only, and both were worn suspended from the neck by a yeliow cord. The medal was awarded for the operations against Tippoo Sultan, and was bestowed on the " Native Officers and Sepoys of the Infantry and Cavalry, and on the Artillery Lascars, who cither marched by land, or procecded by sea to the Carnatic and returned to Bengal." The large gold medals were given to Subadars, the large silver to "Jemadars and Serangs," the small silver medals to "Havildars, Naicks, Tindals, Sepoys and Lascars." The award therefore, followed preciscly the precedent set in the "Deccan" medal. One of the very rare gold specimens of this medal is in the collection o! Captain Whitaker, late 5 th Fusiliers, whose collection, and that of Lord Cheylesmore, are probably the two finest that have as yet been brought together.
3. The "CEYLON"" medal. Authorized, 1807. Obverse: An English inscription: "For Services on the Island of Ceylon, A.D. 1795-6." Reverse: A Persian inscription: "This Medal was presented to commemorate good services in Ceylon during the years of the Hegira 1209-10." This medal was issued in only one size, 2 in. diameter, and was awarded to a small force of Bengal native artillery which formed a fraction of a large body of British and native troope (the reat did not receive the medal) which captured Ceylon
from the Dutcb in 1795-96. It is the only instance of a war medal that has merely a verbal desiga on both obverse and reverse, and moreover it sets a precedent that was destined to be followed onty too often in that it was only granted twelve years after the services that had earned it had been rendered. Only 123 medals were struck. two in gold for rative officers, and 121 in silver for other ranks. Like the two preceding, it was worn from the neck suspended from a yellow cord.

4 The "SERINGAPATAM" medal. Authorized, 1799 , for services in Lord Harris's campaign of that year, and the storm of Seringapatam. Obverse: A representation of the storming of the breach at Seringapatam, with the meridian sun denoting the time of the storm. In the exergue is a Persian inscription: "The Fort of Seringapatam, the gift of God, the 4th May 1799." Reverse: A British hion overcoming a tiger, the emblem of Tippoo Sultan Above is a standard, with, in the innermost part of the hoist innmediately contiguous to the staff, the Uaion badge, and, in the fly; an Arabic legend signifying "The Lion of God is the Conqueror:" In the exergue: IV. MAY, MDCCXCIX. (the dateof the assault). It was in one size, $1 \cdot 9$ in. but of five different kinds. Although the medal was authorized in 1799, it was 1801 before orders for the preparation of 30 gold medals, 185 silver.gitc, 850 silver, 5000 copper bronzed, and 45,000 jure tin, were given, the artist being C . H . Kuchler, and the medals made by Matthew Boulton at the Soho Mint, Birmingham. It was 1808 before they came out to India for distribution, and it was not till 1815 that the Company's European officers had the prince regent's sanction to wearing them on public occasions. For the first time the issuc was absolutely "general," to Europcans as well as natives, to Crown troops as well as to those of the H.E.I. Co., but it was not till 1851, when the First India G.S. Medal was awarded, that official sanction was given to their being worn by Europeans in uniform. The medal was given in gold to general officers, in silver-gite to field officers, in silver to captains and subalterns, in copper bronzed to non-commissioned officers, and in pure grain tin to privates and sepoys. With regard to this medal there is an incident that is worth recording. The bulk of the troope engaged at Seringapatam were Crown forces, or belonged to the Madras and Bombay presidencics; the only Bengal troops taking part being five battalions of infantry, and artillery detacluments. On their return to Bengal no steps weri taken with regard to medala till 1807, when medals copied from tie Soho Mint one, but 1 -8 in. only in diameter, were made at the Caleutta Mint. Following the Bengal precedents as set in the "t Deccan," "Mysore " and "Ceylon" medals, the medals were struck in gold for officers, and in silver for the other ranks. A Bengal native officer therclore wore just the same medal as a gencral officer of any of the other forces, and similarly a Bengal scpoy wore the same medal as a British captain or subahern of the Crown. The Bengal medal can easily be distinguished from the others, for in the reverse the artist's initials C.H.K. are rendered "C Y H." Some officers, amongst them Lord Harris himself and his second-in-command Sir David Baird, wore the medal with the red, blue-bordered ribbon, which is the same as that worn with the Army Gold Medal (see below) and was in lact the only authorized miliary ribbon then in use; but though no ribbon was issued with the medal, recipients were given to understand that the ribbon would 1 of a deep maize colour and watered the shading on the ribbon stmbolizing the stripes in the fur of the tiger, Tippoo Sultan's favurite emblem. The duke of Wellington's nitual suiver gilt), has the maize (or yellow as it is often termed) ribbon, and the medal was undoubtedly more generally worn with this ribbon than with the red and blue one. There are also apparently occasional instances of it having been worn with a plain red ribbon.
5. The "EGYPT" medal. Authorized, 1802 . Obverse: A Sepoy holding the Union Flag in his right hand; in the background a camp. In exergue, in Persian: "This medal has been preseated in commenoration of the defact of the French Army in Eqypt by the victarious and brave English Army." Reverse: A British ship sailing towards the coast of Egypt. In the background, an obelisk and lour pyramids. In the exergue, MDCCCI. This medal was only awarded to native officers and men of the small force of Bengal and Bombay troope which formed part of the expeditionary force from India, that co-operated in Sir Ralph Abercromby's descent on Egypt in 1801 (see BAIRD, SIR DAYID). This was anot her case of a belated issue (18II for the Bengal troops and two years later for the Bombay troops). The medal was issued in only one size, 1.9 in. in diameter. For the Bengal troops 776 medals were struck, 16 in gold for commissioned officers, 760 in silver for other ranks. The Bombay government nbtained the approval of the court of directors for the issue of the medal to their troops in 1803 , but apparently did nothing till 1812, when they asked the Calcutta Mint or a copy If the medal to enable them to prepare similar ones. The Bombay Mint would not however appear to have been equal to the occasion, for the sample was returned to Calcutta with the request that 1439 medals might be struck there. This was accordingly done, but all of these medals were made of silver. and so the medal went to the Bombay troops in all ranks alike. As in the case of the "Deccan" medal, Hindu sepoys, who had voluateered for Egypt, were exempted from the duties levied on pilgrims. This medal was worn suspended from the neck by a yellow cord.
6. The "RODRIGUES, BOURBON AND MAURITIUS" medal. Authorized, i811. Obverse: A sepoy, holding in his right band the Britist lag, in his left a musket with bayonet fixed, stands with his left foot trampling a French eagle and sandard; beside the Gyyure i cannon, and, in the background the pea and ahips Reverse: Within a wreath, in Persizn: "This medal was conferred in commemoration of the bravery and devotion exhibited by the Sepoya of the Engtish Company in the capture of the Islands of Rodrigues, Bourbon, and Mauritius, in the eear of the Hegira 12260° In the circumference, in English: RODRIGUES.VI. UULY MDCCCIX. BOURBON VIII. JULY AND ISLE OF FRANCE III. DEC. MDCCCX. This medal was awarded to the native troops of the Bengal Presidency that formed part of the combined naval and military forcen that effected the reduction of these idands in 1809-10. The government of Bengai also suggested " for the consideration of the governments of Fort St George and Bombay, that correspondias Medals, shall be conierred on the native troops from those Establishments;" but those governments do not appear to have complied with the suggestion, a distinct injustice to the Madras and Bombay troops employed. The medals, struck at the Calcutta Mint for the Bengal troops, were 1.9 in. in diameter. and in gold and silver, 45 gold for native officers, 2156 silver for all ot her ranks They were worn as was customary in so many cases with yellow silk cord suspended from the neck.
7. The "JAVA" medal. Authorived, 1812 . Obverse: A representation of the storming of Fort Comelis. On a flag.staff the British flag is shown flying above a Dutch one, and over all is the word Cornelis. Reverse in Persian: "This medal was conferred in commemoration of the bravery and courage exhibited by the Sepoys of the English Compsny in the capture of Java, 1228, Hegira." In circumference in English: "JAVA CONQUERED XXVI. AUGUST MDCCCXI." This medal was awarded to the native troops of the Honourable East India Company (all Bengal) which took part in the expectition under Lieut. General Sir Samucl Auchmuty which effected the capture of Java from the Dutch in r8ir. The medal, 19 in . in dameter, was struck in gold and silver, 133 in the former metal for native officers, and 6519 in silver for other ranks, and was worn in the usual manner with a yellow silk cord.
8. The "NEPAL" medal. Authorized, 1816. Obverse: Hills crowned with stockades. In right foreground the colours and bayonets of an attacking force, to the left a cannon. Reverse: In Persian: "This Medal was conferred by the Nawal, CovernorGeneral Bahadur in testimony of the energy. good service, akill and intrepidity, which were displayed in the Hills in the years of the Hegira 1222 and 1230." This was awarded to the native troops of the East India Company who took pert in the arduous operations in Nepal in 1814-16. This medal, 2 in. in diamet r, marks a very interesting new departure. for it was struck on'y in silver. and given to all ranks precisely alike, whether the ricipient was commispioned or not. It was worn from the usual yellow silk cond.
9. The "BURMAH" medal. Authorixed, 1826 . Ohverse: Representation of the storming of the great pagoda at Rangoon; on the left, a palm tree under which the gencral and staff, and the river with steamer and boats of the Irra waddy fot illa joining in the at tack. In exergue, in Persian: "The Standard of the victorious Army of England upon Ava." Reverse: The Whise Elephant of Burma crouching ia mubmiasion before the British Lion; behind the lion. the Britsh flag fying broad, behind the elcphant, the Burma flag drooping and between the two flags palm trees. In the exergue, in Persian: "The elephant of Ava sulmits to the lion of England, year 1826." This. one of the most beauiful of all war medals, was designed by W. Daniell. R.A., and executed by W. Wyon; and was awarded to all the Company's native troops, tha! participated in the First Burmese War, $1824-26$. The medal. $1 \cdot 5$ in. diameter, was issued in gold to native officers, in silver to other ranks. In all there were struck; for Bengal troops, 308 gold, 13,108 silver; and for those of Madras, 450 gold and 20,025 silver. Of the Madras medals however nearly half were still unclaimed in 1840 . It is with this medal that we first find, as regards Indian medals, definite instructions as to the use of a ribbon, and the manner in which medals should be worn. In 1831 , it was officially ordered that the colour should be red with hlue edges-it was in fact precisely similar to the Waterloo ribbon (for which see Plate I.) -and the instructions were that the medal " be worn perfectly square upon the centre of the left breast, the upper edge of the riblion being even with the first button for ranks wearing Sword Belts only, and even with the second button for ranks wearing Cross Belts." Like the Waterloo medal also, it was mounted on a steel clip and fing, and the medals were struck at the Royal Mint instead of, as heretofore, in India. ${ }^{\text {a }}$

[^2]This closes the list of the Indian medals, which, with the exception of that for Seringapatam, were issued only to the native troops of the Honourable East India Company. All are now very sare and very highly valued by collectors.
As has already been stated, the first war medals awarded hy the Crown in the reign of George III., were the navy gold medals, instituted on the occasion of Lord Howe's great victory over the Frenci fleet on the ist of June 1794. On the 26th of that month the king and queen visited Portsmouth, and, on the deck of the "Queen Charlotte," Lord Howe's flag-ship, presented the victorious admiral with a diamond-hilted sword of the value of three thousand guineas. Gold chains, from which the medals were afterwards to be suspended, were also conferred on Admiral Lord Howe; Vice-Admirals Graves and Sir Alexander Hood; Rear-Admirals Gardner, Bowyer and Pasley; and Captain of the Fleet Sir Roger Curtis. At the same time the king announced his intention of conferring gold medals on each of the officers named, and similar, but smallier medals on the captains. The medals were delivered in 1796 , the Admiralty ordering "The Admuralss to wear the Medal suspended by a ribband round their necks. The Captains to wear the Medal suspended to a ribband, but fastened through the third or fourth button-hole on the left side. The colour of the ribband, blue and white."

The ribbon, which is white with broad blue borders (see Plate I), did not of course supersede the gold chain in the case of thosc officers on whom chains had been conferred. They wore their chain with the ribbon, and the medal of Admiral Bowyer (now in the collection of Lord Cheylesmore) is so suspended. The same splendid and intensely interesting medal was later conferred for various fleet and ship actions deemed worthy of special acknowledgment; and so came into being the first "regulation" medal for naval officers.

The two medals are, with but one slight distinction, identical in design, the larger being 2 , and the smaller $\mathrm{I} \cdot 3$, in. in diameter. The design is:-
Obverse: The fore part of an antique galley, on the prow of which rests a figure of Victory who is placing a wreath on the head of Britannia who stands on the deck of the galley, her right foot resting upon a felmet, her left hand holding a spcar. Behind Britannia is a "union "shield, chargeed with the Cross of $S t$ George and the Saltire of St Andrew. (Ireland bad not then been added to the Union). Reverse: Within a wreath of oak and laurel, the name of the recipient, the event for which the medal was conferred, and the date. (In the smaller medal the wreath is omitted.)
In all, eighteen actions were recognized by this medal, the complete list of which is as follows:-
The "Glorious First of June" (7 large and 28 small medals); St Vincent (Feb. 14, ${ }^{1787}$) (6 large and 15 small medals) Camperdown Oct. 11, 1797) (2 large, 15 small medals): The Nite (Aug. 1, 1798) (i large and 14 small medals); Recapture of the frigate "Hermione " from the Spaniards by the boats of H.M.S. "Surprise " at Porto Cavallo (Oct. 25, 1799) (s small medal); frafalgiar (Oct. 21, 1805) (3 large and 27 small medals): Action off Ferrol (Nov. 4. 1805) (4 small medals); Action off St Domingo (Feb, 5, 1806) (3 large and 7 small medals); Capture of Curacoa (Jan. i, 1807) (4 small medals); Capture of the Turkish frigate "Badere Zaffer" by H.M.S. "Scahorse" (July 6, 1808) (1 small medal); Capture of the French frigate "Thetis" by H.M.S. Amethyst "(Nov: 10, ri88) (1 small medal): Capture of the French frigate "Furicuse " by H.M. ship-sloop "B Bonne Citoyenne " July 6, 1800 (1 small medal): Capture of the 1 sland of Banda Neira (Aug. 9. 1810) (I small medal); Captain W. Hoste's action off Lissa (March ri, 181 11) (4 small medals); Capture of the French 74 -gun ship " Rivoli" by H.M.S. "" Victorious" (Feb. 22, 1812) (1 small medal): The "Chesapeake" and "Shannon" (June 1. 1813) (I small medal); Capture of the French frigate "Etoile" by H.M.S. "Hebrus "(March 27: 1814) (I small medal); Capture of the American Iripate "President ${ }^{\text {in }}$ by H.M.S. "Endymion " Jan. 15, 1815) (1 smail.medal)

In all 22 large medals, and 147 small, were awarded; but this does not say that all who were entited to the medal received it. This is most notably the case with regard to the "Glorious First of June." When the issure was made. in 1796, the medals were given only to thooe tlag officers who had received gold chains, and to such captains as were specially mentioned in Lord Howe's degpatch of the 2lst of June, despire the fact that the admiral specially put it on record that the selection therein made. "should not be constrved to the disadvantage of the other commanders, who may have been equaling
deserving of the approbation of the Lords Comminsioners of the Admiralty, although 1 am not enabled to make a particular statement of their merits." For this reason the medal was never awarded to Rear-Admiral B. Caldwell, fift h in cnmmand on the great day, to his flag-captain, Captain G. B. Westcott, and to geven other captains of line of battle ships engaged. One captain however, who was not mentioned in despatches, succeeded in gaining the medal by a touf de force eminently characteristic of the superb breed of naval officers that the great wars had brought into being. This was, Collingwood, who bad been fag-captain to Bowyer in the " Barfleur." When Collingrood was a warded the medal for St Vincent, where he commanded the "Excellent," he flatly refused to reccive it unless that for the First of June was also conferred upon him, which was done. For St Vincent, the Nile and Trafalgar, all 日lag officer's and captains engaged received the medal. At the Nile, Troubridge's ship. the "Culloden," grounded in entering the bay, and so, strictly apeaking, he was never engaged in the action; but the king specially included him in the award, "for his services both before and since, and for the great and wonderful exertions he made at the time of the action, in saving and getting off his ship."
For Camperdown, one captain, afterwards found guilty by courtmartial of failure in dury, did not receive the medal. Several posthumous a wards of the smaller medals were made to the relatives of officers who were eit her killed in action or dicd of wounds. These were: on the first of June, Captains Hutt ("Queen"), Montagu (" Montagu ''), Harvey (" Brunswick "); at Camperdown, Captain Burgess ("Ardent "): at the Nile, Captain Westcott (" Majestic "."): at Trafalgar, Captains Duff ("Mars ") and Cooke (" Bellerophon "). Caprain Westcott was doubly unfortunate, for he was one of the First of June captains who should have received the medal but did not. Captain Miller of the "Theseus "also did not receive his medal for the Nile, for, though not killed in the actinn, he perished at Acre in an accidental powder explosion the May following, the medal arriving after his death, and being returned to the Admiralty. In only two cases were large medals conferred on officers below flag rank, these being Sir R. Curt is, captain of the fleet to Lord Hnwe on the First of June, and Nelson, who only flew a commodore's broad pendant at St Vincent. Following this latter precedent Sir R. Strachan should have had the large medal for the action of the 4th of November 1805 , for he also was a commodore, but it was denied him for what seems quite an inadequate reason, namely that he was junior in rank to Captain Hervey of the "Temeraire"" who was the senior of the Trafalgar captains. Hervey was promoted to rearadmiral for Trafalgar on the 9th of November, and Strachan to the same rank on the following day.
The small medal too was conferred in only three cases on officers below the rank of post captain. These were Commander Mounsey of the "Bonne Citoyenne," for the capture of the "Furieuse" and Licuts. Pilfold and Stockham, who at Trafalgar commanded respectively the "Ajax" and the "Thunderer," the captains of those two ships being at the time of the action in England giving evidence at the court-martial of Sir Robert Calder. In all, of the eighteen a wards of the Navy Gold Medal, eight were for fleet actions (one of which was between squadrons of frigates), seven for single ship actions, one between line of battleships, six in which frigates were engaged, two for shore operations (in both cascs the taking of islands from the Dutch), and lastly the re-capture of the "Hermione" by the "Surprise." This last mentioned a ward is one particularfy memorable, not only because it was the first time that the medal was awarded to a frigate captain, but also because it is the only case in which the medal was a warded for boat service pure and simple.

Nelson's two great victorics, the Nile and Tralalgar, also earned a medal for all ranka that participated in them, but these awards were not made by the Crown but by the generosity of two private individuals, though of course with the king's approval and permission. The firsi of these is "Davison's Nile Medal," which Mr Alexander Davison, Nelson's prize agent and a valued friend, caused to be struck at a cost of near $\{2000$, a nd one of which wan presented to every officer and man engaged at the Nile. The medal, 1.85 in . in diameter, was given in gold to Nelson and his captains, in silver to lieutenants and officers of corresponding rank, in copper gilt to warrant and petty officers, and in copper bronse to seamen and marines:-

Obverse: Hope, wtanding on a rock in the rea, holding in her right hand an olive branch, and supporting with her left side a shield on which is the bust of Nelson surrounded by the legend: "EUROPE'S HOPE AND BRITAIN'S GLORY." Behind the figure aad shield is an anchor, whilst around all is inscribed: "REAR-ADAIIRAL LORD NEISON OF THE NILE." Rewerse: The French fleet at anchor in Aboukir Bay, the British Beet ad. vancing to the attack a setting sun denotes the time of the action, Around: "ALMIGHTY GOD HAS BLESSED HIS MAJESTY'S ARMS "; and, in exergue: "VICTORY OF THE NILE XUGUST 1 1798." In the reverse the engraver when sinking the die forgot to transpose the position of the objects, and so the sun is made to set in the earx instead of in the west, and the land which in shown on the right ehould properly be on the leit.
Davisoa's Nile medal was struck at the Soho Mint, Birminghem, by Boulton, and it was this that probably inspired the latter to breseat a meddel to all who took part in the batile of Trafalgar.
"Boulton"e Trafalgar Medal" was 1.9 in. in diameter, and given in gold to the three admirals, in silver to captains and first-lieutenaate, and in pewter to other ranks. In a very considerable number of cases the pewter medals were either returned, or thrown overboard, the recipients being disgusted at what they deerned the paltrines' of the reward. Obverse: A bust of lord Nelson in uniform with around: HORATIO, VISCOUNT NELSON, K.B. DUKE OF BRONTE, \& c. Reverse: A representation of the battle. with around on acroll: ENGLAND EXPECTS EVERY MAN WILL DO HIS DUTY. In exergue: TRAFALGAR OCTR. 211805.
Both the Davison and the Boulton medals were worn suspended from a blue ribbon. These are the only two cases in which officers and med of the navy and army have accepted and worn medals presented by a private individual.

The Gold Medal given by George III. to the superior officers in commend at the battle of Maida, in Sicily, on the 4th of July 1806, is an award of special interest, for not only was it the first military award made by the Crown during the reign, but it was moreover the prototype of the superb army gold medals and crosses which were so widely distributed during the years that followed. A general order of the duke of York, commander-in-chief, dated Horse Guards, 22nd of February 1808 , awarded a gold medal for Maida to Sir John Stuart, K.B., his three brigadiers, and nine other officers. Subsequently four other officers received it, so in all seventeen officers received the award. It was prescribed that the medal "should be worn suspended by a Rihband of the colour of the Sash, with a blue edge, from a button of the coat on the left side." It was in fact to be worn in the same way as the small Navy Gold Medal, and as this grant eatablished blue and white as the specific navy ribbon, so did the Maida a ward establish red with a blue border as the regulation military ribbon. The Maida ribbon is in fact precisely the same as the Waterloo ribbon shown in Plate I. The Maida medal was $1 \cdot 5 \mathrm{in}$. in diameter and struck in gold only. It was issued precisely alike, quite irrespective of rank, to each of its seventeen recipients.
Obverse: Head of George III., laureated and facing left, with below the legend: GEORGIUS TERTIUS REX. Reversa: Britannia casting a spear with her right hand, and on her left arm the Union shield, above, and approaching her is a Flying Victory holding out a wreath. In front of Britannia in four lines, is MAl/ DAIIVL IV/MDCCCVI/; behind her the triquetra or trinacria, the symbol of the Island of Sicily. In the exergue are crowed spears.

Two and a half years after the Maida award the king authorized the "Army Gold Medal," the first grant of which was notified by the commander-in-chief, in a Horse Guards general order dated the gth of September 18 ro . This authorized the bestowal of the medal on 107 senior officers mentioned by name. The battles commemorated were Roleia, Vimicra (t808), the cavalry actions of Sahagum and Benevente (1808), Corunna and Talavera (1809). The Army Gold Medal so awarded was in two sizes, large, 2.1 in . in diameter, for general officers, small, 1.3 in. in diameter, for officers of lower rank; and the regulations provided that it should be worn from a red ribbon edged with blue, the larger round the neck, the smaller on the left breast from a button-hole of the uniform. The ribbon was the same width, $1 \frac{7}{f}$ for both ribbons, and precisely the same later on for the Gold Cross. Both large and small medale were or identical design, in fact there was no difference, either in medals or in ribbons, except in size and the style in which they were worn :-
Obverse: Britannia seated on a globe, holding in her right hand a haurel wreath, and in her left, which rests upon a Union shield resting against the globe, a palm leaf; at her feet to her right, a lion. Reverse: A wreath of laurel, encireling the name of the batte or operations for which the medal was granted.
In the following years subsequent orders similar to the original grant extended the award of the Army Gold Medal, until eventually twenty-four distinct awards were made, commemorating twenty-six actions, or series ol operations, which took place not only in the Peninsula, but also in North America, and both the East and the West Indies.

The Peninsula medals were for Roleia and Vimiera, Sahagun and Benevente, Corunna, Talavera, Busaco, Barrosa, Fuentes d'Onor, Albuera, Ciudad Rodrigo (18ı2), Badajos (1812),

Sahmanct, Vittoria, Pyrenees, St Sebastian, Nivelle, Nive, Orthes, Toulouse. The West Indies medals were for Martinique (Feb. 1809) and Gaudaloupe (Jan.-Feb. 1810), the North American for Fort Detroit (Aug. 16, 1812), Chateauguay (Oct. 26, 1813) and Chrystler's Farm (Nov. 11, 1813), and there was, lastly, a medal awarded for Java (Aug.-Sept. 18ii).

From the above it will be seen that as time went on many officers became entitled to two, three and even more medals, and as this was found inconvenient, the metbod of granting the award was very materially amended as notified by tbe commander-in-chief, in a general order, dated Horse Guards, October 7, I_{13}. This order formulated regulations which were as follows:-

1. That one medal only was to be borne by each officer recommended for the distinction.
2. That for a second and a third action a gold clasp was to be attached to the ribbon from which the medal was suspended inscribed with the name of the action.
3. When a fourth distinction was earned, the medal and two clasps were to be replaced by a Gold Cross having the four actions for which it was awarded inscribed upon it, one upon each arm.
4. On every occasion the recipient was awarded the decoration after the fourth a Gold Clasp worn on the ribband was added to the Cross.

The regulations further laid down that only officers should be recommended who had been "personally and particularly engaged ". on the occasion, and that officers were to be named by "special selection and report of the Commander of the Forces upon the spot, as having merited the distinction by conspicuous service Further, the Commander of the Forces was restricted in his selection to General Officers, C.Os. of Brigades, C.Os. of Artillery or Enginecrs, and certain staff officers holding Geld rank, and Commanding Offirers of Units, and Officers succeeding to such command during an engagement. ${ }^{1}$ It was also ordered that awards earned by deceased officers should be transmitted "to tbeir respective families." The Cold Cross that was, under these regulations, instituted is as follows:-

A Maltese Cross, $1 \frac{3}{3}$ inches square, with an ornamental border: in the centre, a lion, facing right ; in cach limb of the cross the name of one of the actions for which it was conferred. The back of tbe cross is the same as the front. The cross was precisely the same irrespective of whether it replaced a large or a small medal.
The clasps were all of tbe same pattern, whether worn with the cross, the large gold medal, or the small gold medal. They are 2 in . in length by $\frac{1}{2} \mathrm{in}$. in width, and bear, within a border of laurel, the name of the action for whicb they were conferred. At the close of the war in the Peninsula the issue of this handsome and much coveted decoration was discontinued, the enlargement of the Order of the Bath (January 1815) affording anotber method of reward which the Crown deemed more appropriate. On the occasion of this extension all officers who had obtained the cross with one clasp, i.e. who had been decorated for five or more actions, were made Knights Commander of tbe Bath. In all 847 awards of this superb decoration were made. The medal alone went to 469 officers, wbilst 143 received it with one clasp. and 72 with two clasps. The cross was issued singly in 61 cases, witb one clasp in 46, with two in 18, with three in 17, with four in 8, and with five clasps in 7 cases. The cross Fith six clasps was gained by Sir Colin Campbell (Lord Clyde), Sir Alexander Dickson (d. 1840) and Sir George Murray (d. 1846). Two officers, Viscount Beresford and Sir Denis Pack (d. 1823) received it with seven clasps. The duke of Wellington's had mine, the decoration thus commemorating fourteen out of the twenty-six battles, sieges or operations for which tbe Gold Medals, Cross and Clasps were awarded. On the limbs of this cross are, ROLEIA AND VIMIERA, TALAVERA, BUSACO, FUENTES DE ONOR. The clasps are for CIUDAD RODRIGO, BADAJOZ, SALAMANCA, VITTORIA, PYRENEES, NIVELLE, NIVE, ORTHES and TOULOUSE. Not until

[^3]after the close of the Great War, bowever, do we meet with the real prototype of the war medal as we know it to-day; for the Waterioo Medal of 1815 is the first actual "general" medal that was ever issued, because it was issued precisely alike to all ranks. In the twelve cases in which we have seen that a medal was given to all ranks, the medals differed either in size or in metal, or in both, according to the rank of the recipient, and in eight out of the nine issued by the Hon. East India Company the award was withheld from the British officers and men employed. Again in none of the cases quoted were the awards made by the Crown. The "Dunbar" medal was awarded by the Commonwealth parliament. The men of the Nile and Trafalgar wore their medals through the generosity of private individuals. In the other nine cases the award was made by the directors of the Hon. East India Company. It was with the issue of the Waterloo Afedal that all tbis was changed ani for this well-merited and much prized boon the Services owe all gratitude to the duke of Wellington. Writiag from Orville on June 28, 1815 , to H.R.H. the duke of York, be says:-
" I would likewise beg leave to suggest to your Royal Highness (the then Commander-in-chicf) the expediency of giving to the noncommissioned officers and soldiers engaged in the bactle of Watertoo, a medal. I am convinced it would have the best effect in the army; and, if that battle should settle our concerns, they will well deserve it."
Again, writing from Paris, Sept. 17, 1815, to Lord Bathurst, then war secretary:-
"I have long intended to write to you about the medal for Water. loo. I recommend that we should all have the same medal, hung to the same ribband as that now used with the medals."
(i.e. the army gald medals and crosses). It is also falr to point out that in his place in the House of Commons, and on the day after the duke's letter to the commander-in-chief had been penned, William Watkins Wynn urged that medals should be given to the survivors of Waterloo, and that they should be the same for botb officers and men, "so tbat they who had been fellows in danger might bear the same badge of honour." And so came into being that type of "general" medal, which beginning witb Waterloo has continued down to the present.
The description of these later medals, and the points of interest about tbem, will now be given as fully as exigencies of space will allow.

1. Walerloo, 1815 --Awarded by the Prince Regent. 1816. Obverse: Bust of the Prince Regent. Les. GEORGE P. REGENT. Reverse: Figure of Victory seated; in her right hand, a palm branch; in her ifft. an clive branch. Above, WELLINGTON; below, WATERLOO, JUNE 18, 1815. Ribbon: Crimson with blue borders (Plate 1.). Clasps: NiL
The notification of this award was made in a memorandum by H.R.H. the commander-in-chicf, dated Horse Guards, March 10, 1816, and it is worth noting that the prince regent commanded that the ribhon " shall never be worn but with the medal suspended to it." The medal was conferred on all the British troops, including the King's German Legion, present on the 16 th June at Quatre Bras, on the $17^{t h}$ in the fighting that took place during the retirement through Genappe to Waterloo, and on the 18th at Waterloo. II was also given to four regiments, 2nd Batt. 35 h , rst Batt. 54 th, 2nd Batt. 59th, and ist Batt. 91 st Regiments of Foot, which formed Sir Charjes Colville's Brigade, which was detached. The reverse of this medal would appear to ha ve been copied from the Greek Coin of Elis, about 450 s.c., a specimen of which is in the British Museum. The medals most Prized by collectors are those of the 1st, 2nd, and 6th Dragoons (the "Union Brigade "), and the 28th and 42 2nd Regiments of Foot, as those regiments suffered very severely and consequently fewer survivors received the medal than in other corps.
2. Ghwsince, 1839.-Awarded by the Government of India, 1842. Obverse: The Gateway of the Fortress. Below. GHUZNEE. Reverse: In centre a space for name of recipient; above. 23rd July; below, a mural crown with underneath it 1839; the whole within a wreath of laurel. Ribbon: Particoloured, crimson and green (Plate I.). Clasps' Nil.

This medal originated with Shah Soojah, whose part the Indian government took in the Aighan troubles of the time. His downfat and death having taken place before the medals were rtady, the actual award was made by the Covernment of India. It was origitally orderod (Bengal Mititary Proceedings, May 27, 1842; Noa. 151 and 152) that the ribboo should be greea and yellow, and it was undoubtedly so worn by some recipients: but there is no official record to show why the colours were altered to green and crimson

The medal was awarded to all troops both of the Crown and of the Company that were actually present at the aiege and capture of the fortress. July 21, 22, and 23, 1839.

Syria, 1840.-Awarded by the Sultan of Turley, 1841. Obverse: A lortress on which the Turkish flag is flying, and above six stars: below, in Turkish." The People of Syria; and the Citadel of Acre. A.H. 1258." Reverse: Cypher of the Sultan, within a laurel wreath. Ribbon: Red with white edges, Clasps:Nil.

The St Jean d'Acre medal, as it is commonly called, was awarded to the officers and men of the British fleet that were engaged in the operations off the coast of Syria, against Mchemet Ali, which culminated in the bombardment and capeure of St Jean d'Acre, Nov. 3, 1840. The medal, it in in diameter, is purely a naval medal therefore, although a few artillery and engineer officers doing duty in the fleet received it. It was given in gold to officers of flag rank and captains (or field officers), in silver to quarter-deck and warrant officers, and in copper to other ranks. This is the only instance of there being a difference made according to the rank of the recipient since the " Burma " medal.
4. Chine, $1840-42$ (1st Medal): Chisa, $1857-60$ (2nd Medal). -Awarded by Queen Victoria. 1842. 1861. Obverse: Head of Queen Victoria, diademed, 1 . Leg. VICTORIA REGINA. Reverse: Naval and military trophy, with behind a palm tree, and in front a shield of the Royal Arms. Above, ARMIS EXPOSCERE PACEM. In exergue. CHINA 1842.' Ribbon; Red with yellow borders (Plate I.). Clasps: 1st medal, nil: 2nd medal, sixCHINA 1842; FATSHAN 1857 ${ }^{2}$: CANTON 1857; TAKU FORTS t858 ${ }^{2}$: TAKU FORTS 1860: PEK1N 1860.

The first China medal was awarded to all the naval and military forces, both of the Crown and of the Hon. East India Company, that took part In the first China War, 1840-42. Another medal was struck, and is to be lound in prool. but it was never issued as it was deemed it might give offence to China. Of this the obverse is the same as that described above; but the reverse had. under the same motto, the British lion trampling upon the Chuncse dragon, and in the exergue. NANKING $18+2$. The second China medal was similarly awarded to borh the naval and military forces, British and Indian, that took part in the second China war, 1857-60. To those howe ver, who were already in possession of the first Chuna medal the second medal was not awarded, they receiving a clasp CHINA 18.12 to go on their original medal, together of course with the clasps to which their services in the second war had entitled them. The eecond medal was \ln fact not a new decoration but a re-issue. The first China medal was the first to be issued with the effigy of Qucen Victoria upon it. The first medal with clasps for the second Chana war is very rare, and in almost every case would probably be found to be a naval medal. Of the second medal only one was issued with all the five new clasps. This was to a Royal Marine Artilleryman. and it is now in the Cheylesmore collection. Medals spectally valued by collectors are those given to the $15 t$ Dragoon Guards whi the two clasps TAKU FORTS 1860 and PEKIN 1860, as only two squadrons of the regiment were present. In a G.O by Lord Ellenborough, governor-general of India, dated Simla, Oct 14. 18.42, it was intimated that the Government of India would present to the Indian Acmy a medal, the design of which was indicated in the order, but this idea was of course abandoned when the queen intimated her intention of making the award.
5. Jellalabad. 1842 . - Awarded by the Goverament of India, 1842 First medal-Obverse A mural crown, above, JELLALABAD Reverse: VIl April 1842. Second medal-Obverse. Head of QueenVictoria asin China medal, but legend. VICTORIA VINDEX Reverse' Figure of Victory flying, in her right hand two wreaths, in her left the British flag. Bencath, the town of Jellalabad. Above. IELLALABAD VII APRIL in exergue, MDCCCXLII. Ribbon (both medals): Military ribbon of India (Plate l). Clasps Nil,

In a G.O. dated Allahabad. April 30, 1842, Lord Ellenborough announced that the Government of India would present a medal to the Company*s troops, and with the consent of Her Majesty. to those of the Crown, that held Jellalabad, under Sir Robert Sale (Nov. 12. 184,2-April 7, 18.42). The queen's consent to her troops (13th Foot, now Somersetshire Light Infantry) receiving the medal was granted in August. The governor-general being dissatisfied with the first medal, made at the Calcutta Mint, the sccond (geaerally known as the "Flying Victory") was ordered in England, and it was notified that on their arrival the first medals, all of which had been distributed. could be exchanged for the second. The new issue was ready by March 13, 1845, but the recipients apparently preferred the original medals. for very few were exchanged. Both are very rare, for only 2596 medals were issued. The " mibtary ribbon of India ' is a tri-colour composed of the three primary colours shading into one another. It was designed by Lord Ellenborough, and is intended to symbolize an Oriental sunrise
6. Afrhamistan, 184^{2} (ist Afghan).-Awarded by Government of India, 1842. Obverse: Head of Queen Victoria as on First China Medal. Reverse: No. t. CANDAHAR 1842 within a laurel wreath: above, a crown. No 2. GHUZNEE CABUL cach within a laurel wreath; above, a crown; below, 1842. No. 3. CANDAHAR

1 The scoond medal has no date.

- Royal Navy and Royal Marines only.

GHUZNEE CABUL 1842 all within a laurel wreath ; above, a crown. No. 4. CABUL 1842 within a laurel wreath; above, a crown. Ribbon: Military ribbon of India (Plate I.). Clasps: Nị!.

The authority for this medal is a G.O. of the governor-general dated October 4, 1842. It was awarded to all troops, both of the Crown and the Hon. East India Company, who took part in the operations in Afghanistan in 1842 , that is 10 say the scond phase of the First Af ghan War. The medal, with reverses 1,2 and 3. was awarded to those troops that were with Major-Coneral Sir William Nott in Candahar, and took part in the opcrations aronnd that place, recaptured Ghuznec, and then joined hand. with the column under Major-General Pollock at Cabul. The 1: dal with reverse 4 was awarded to the column which advanced fr m Peshawur on Cabul, being joined en ronte by the victorious garrion at Jellalabad. This is the first of the four occasions on which thy reverse of a medal has been used to denote the actual part takert it the operations by the recipient, in the manner that is nuw dwe by clasps. Of these medals the one with the No. 1 reverse is the rarest, as its issue was confined to the small portion of his army that Major-General Nott left behind him in Candahar. The medal with the No. 2 reverse is also rare, as its distribution was very limited.

7 Kelat-i-Ghisse, 1842.-Awarded by Government of India, 1842. Obverse: A shield inscribed KELAT 1 GHILZIE encircled by a laurel wreath, and surmounted by a mural crown. Reverse A military trophy, bencath, on a tablet. INVICTA MDCCCXLII. Ribbon Military ribbon of India (Plate 1.). Clasps: Nil.

The authority for this medal is the same as that for the First Afghan Medal, and the medal inself was awarded to the troops of the Hon. East India Company, which defended this hill fort ress for several months, and finally, before they were eventually relieved from Candahar utterly routed and drove off a force of four thousand men As the medal was given only to 950 in all (forty being European artillerymen, the remainder native troops), it is naturally very scarce.
8. Sinde. 1843--Awarded by Qucen Victoria to the forces of the Crown, and by the Government of India to the croops of the Company. Obverse. Head of Qucen Victoria as on First China Medal. Reverse; t MEEANEE 1843. 2. HYDERABAD 1843 3. MEEANEE HYDERABAD 1843 . In each case the inscription is surrounded by a laurel wreath, and surmounted by a crown. Ribbon. Military ribbon of India (Plate I.). Clasps. NiI.

The award of a medal for Sir Charles Napier's conquest of Sinde was first notified, as far as the troops of the Crown were concerncd, by a letter from Lord Stankey, then war secretary, to the president of the India Board, dated July 18, 1843 , and it is worth noting that this is the only insiance of any medals for Indian service being paid for by the Crown. The notification of a similar a ward by the Government of India to their own troops, followed in a G.O. by the governorgeneral, dated September 22, 1843. The award was confined to those who had been present at eisher Meeanee or Hyderabad. and the medals were issued according as to u hich actions the recipient had been present, no one of course receiving more than one medal for the campaign. In addition to the land forces of the Hon. East India Company, the medal was also given to the naval officers and crews of the Company's flotila on the Indus. The only Crown regiment that received this medal was the 22 nd Foot.
9. Gwalior, 1843 ("Maharajpoor" and "Punniar" Stars) Awarded by the Government ol India, I844. This decoration took the form of a bromze star of sixpoints, 2 in in diameter. Obverse In centre a silver star, it in in diameter, around the centre of which is a circle in which is inscribed either MAHARAJPOOR I843 or PUNNIAR 1843, and in centre of circle the date 29th DECR. Reverse. Plain for name and regiment, or corps, of recipient. Ribbon Military ribbon of Indıa (Plate I.). Clasps: Nil,
The award of a medal to the troops of the Crown and the Hon East India Company engaged in the Gwalior Campaign of 1843 was first notified in governor-general's G O., dated Camp. Gwalior Residency, January 4, 1844; and the queen's per mission for it to be worn by Crown troops given June 26,1844 . The force moved in two columns, the main and larger under Sir Hugh (Viscount) Gough, the smaller under Major-General Gray. Each force fought an action on the same day, December 29, 1843, the for:ner at Maharajpoor, the later at Punniar, and the atar was inscribed according to which action the recipient was engaged. The stars were manufactured from the metal of the captured guns. The star given to Sir Hugh Gough had in the centre a silver elephant in lieu of a silver star. and it was originally intended that all should be the same. but the silver star was substitated for reasons of economy. As there were fewer troops at Punniar that star is of course the more uncommon.
10. Sublef. 1845-46 (1st Sikh War).-Awarded by Government of India, 1845. Obverse: Head of Queen Victoria as on First China Medal. Reverse: Figure of Victery, standing. with in right hand outstretched a wreath, in left a palm branch; at her feet a trophy of captured Sikh weapons and armour In exergue, name and ycar of the first battle of the war in which recipient was engaped. These inscriptions are four, viz. MOODKEE 1845, FEROZESHUHLR 1845. ALINAL 18.46, SOBRAON 18.6. Ribbon: Blue with crimen border (PLate I.). Clasps: FEROZESHUHUR, ALIWAL, SOBRNON.

This award, given to all the troops, both Crown and Hon East India Company engaged in the First Sikh War, was first notified in goveraor-general's ©.O., dated Camp, Ferozepore, December 25. 1845. the queen's consent for Crown troops to reccive the medal being given six months later. As there was a considerable number of troops engaged in this campaign, the medal is not a very rare one, but a very rare combination is the medal with Ferozeshuhur in the exergue and the clasp for Aliwal. as only half a company of native artilery was present in these two battles and in no other. This is a specially noticeable medal, for it is the first time that "clasps were issued with a "general" medal, the precedent followed being that of the Army Gold Medal. For every action after bis first battie, which was inscribed on the medal itself, the recipient received a clasp. Thus a medal with " Moodkee" in the exergue might carry one, two or three clasps; a "Sobraon" medal could have no clasps. This and the "S Punjab"' medal, to be described later, are generally considered to be the two finest pieces of medal work by W. Wyon, R.A.
11. Napy General Service, 793-1840.-Awarded by Queen Victoria, IS47. Obverse: Head of Queen Victoria as on First China Medal: under head, 1848. Reverse: Britannia scated on a sea borse: in her right hand, a trident; in ber left, a laurel branch. Ribbon: White, with dark blue borders (Plate I.). Clasps: 23 t clasps in all wrere granted, of which 55 were for "Boat Service."
An Admiralty memorandum dated June 1, 1847, notified the grant of this award to commemorate the services of the ficet " during the wars commencing in 1793 and ending in 1815." and this practically confined the award to those operations for which the Navy Gold Medal (see amle) had been conferred. Subsequently, however, a board of admirals was appointed to consider claims, and on their recommendation an Admiralty memorandum dated June 7 . 1848. extended the grant. Clasps were to be given for: (1) All Cold Medal actions or operations. (2) All actions in which first lieutemants or commanders were promoted, as had been customary after important and meritorious engagements. (3) All "Boat Service " operations in which the officer conducting the operations was promoted. (4) For, in co-operation with the land forces, the siege and capture of Martinique, 1809, Guadaloupe, 1810, Java, 1811, and St Sebastian, 1813. for all of which operations the Army Gold Medal had been awarded; and (5) The Bombardment of Algiers, 1816; the Batile of Navarino, 1827; and operations on the coast of Syria, 1840.

Although the medal is purely a naval one, yet it was conferred on a lew soldiers who had done duty in the fieet in actions or operations, for which the medal was granted. Forty military officers in all received the Navy G.S. medal, one, Captain Caleb Chute, 69th Foot, with two clasps, viz. "14th March, 1795 " and "St Vincent." It is very difficult to compile an absolutely accurate list of all the claspe issued, for in several cases more than one clasp was given for the same action, and there were moreover ninc or ien clasps allowed for which no claims appear to have been made good. The combination of the clasps is endless, but it is curious to note that medals with more than one, or two clasps are rare; with four or five clasps, very rare; and the highest number of clasps issued with any one medal is six. Amongst very rare clasps the following may be mentioned. One survivor only, Lieut. Baugh, the officer in command, was alive io claim the clasp "Rapid. 24 th April, 1808." Only two claims were proved for "Surly, 24th Aprit, 1810"; ix for "Castor, 17 th June, 1809 "; seven for "Amazon, ${ }^{13 \text { th }}$ January, $1797^{"}$: eight for "Confiance, 1,4th January4 1809 "; and ten for Acheron, 3rd February, $1805 . "$ Of "Boat Service" clasps only
 Service" clasps are inscribed "Boat Service "with the day and month on the left, and the year on the right.) In all nearly thirty thousand claims were proved for the medal.
12. Army General Service, 1793-1814.-Awarded by Queen Victoria, 1847. Obverse: Head of Queen Victoria as on First China Medal; under head, 1848. Reverse: Queen Victoria on a dais is placing a wreath on the head of the duke of Wellington, who kneels on his left $k n e e$ before her, holding in his right hand the baton of a Field Marshal ; at the side of the dais is a lion dormant. Legend: TO THE BRITISH ARMY. In exergue: 1793-1814. Ribbon: Crimson with blue borders (Plate I.) Clasps: EGYPT, MAlDA, ROLEIA. VIMIERA. SAHACUN. BENEVENTE, SAHAGUN" GENEVENTE, CORUNNA, MARTINIQUE, ${ }^{2}$ TALAVERA, GUADALOUPE. BUSACO. BARROSA, FL'ENTES D'ONOR. ALBUHERA, JAVA: CIUDAD RODRIGO, BADAIOZ, SALA: MANCA, FORT DETROIT, CHATEAUGUAY, CHRYSTLER'S FARM, VITTORIA, PYRENEES, ST SEBASTIAN, NIVELLE. NIVE, ORTHES, TOULOUSE.

This medal, frequently erroneously termed the " Peninsular War." medal, was awarded to the survivors of the military forces of the Crown that had taken part in the Peninsular Wart and in contemporaneous operations in other parts of the world: it was also given with the clasp "Java" to the European troops of the Hon. East India Company; with the clasps" Martinique "and "Cuadaloupe" to certain local West Indian Corps: and with the clasps "Fort

1 Whether in one or both actions, only one clasp awarded.
A similar clasp was given with the Navy G.S. medal.

Detroit." "Chateauguay," and "Chrystler's Farm," to some Cansdian mititia and local levies, as well as to some Indian auxiliaries, The award of the medal, and all the clasps except "Egypt," bear date June 1, 1847; but the clasp "Egypt" was not granted till Fcbruary 12, 1850 . Although the medal is supposed to commemorate services 'tluring the wars commencing in 1793 , and ending in 1814," the earliest operations for which the medal was awarded did not take place uniil 1801. No medal was issued without a clasp, and as will be seen the medal was awarded only for those actions or operations for which the Army Gold Medals (including that for Maida) had been awarded; and in addition for the operations in Egypt in 1801. The combination of clasps is endless but only two medals, were issued with fifteen clasps, though several survivors proved their claim to fourteen clasps. In fact medals with seven, eight or nine clasps are not common, those with ten, or more, distinctly rare. For example, taking only medals issued to officers (including those of the King's German Legion), thrce were issued with 14 clasps, three with 13, nine with 12, twelve with 1 I, thirty-six winh 10, fifty-cight with 9 , ninety with 8 , and one hundred and fourteen with 7. By far the rarest of all clasps is "Benevente"" as according to the War Office lists only three would appear to have been issued, viz. to Captain Evelegh, R.H.A., Pte. G. Barrett, Ioth Hussars, and Pte. M. Gilmour, 18 th Hussars, alt hough a medal with this clasp having every appearance of being genuine and issued to Pic. William Lyne. 7th Hussars, was in the collection of Colonel Murray of Polmaise. Sahagun also is a very rare clasp, as it was received only by fifteen men of the isth Hussars and a few others, The three North American clasps are also very rare, especially Chatcauguay. Leaving out a wards to Indian warriors, the statistics regarding the issue of the North American clasps are approximately as lollows. At Chateauguay some $\mathbf{3 0 0}$ men fought, and 132 survivors proved for the clasp, of which all except three of the Royal Artillery were Canaclians. For Chrystler's Farm, the next rarest clasp, out of about 800 engaged 176 claims wore prowed: viz. 79 of the 89 th Foot. 59 Canadians, 44 of the 49 th Foot, and 4 Royal Artillery. At Fort Detroin, 1330 men were engaged, and those who proved for the clasp included 210 Canadians. 52 of the 41 st Foot. 5 Reyal Artillery; and onc mant of the 41 st Foot (who also got the clasp for Chrystler's Fárm). Onc man proved for all three elasps, another for "Fort Deroit " and "Chateauguay," a third for "Chateauguay " and "Chrystler"s Farm." 'The lormer medal is said to be in the cabinet of a New York collector. Two "regulars " also proved for the medal with clasps for "Fort Detruit " and "Chrystler's Farm," the one belonging to the Royal Artillery, the other to the 4gth Foot. The medal of the former sold at the Grey sale, in 1887 . for 825 Los .
. Punjab, 18 48 -49 (2nd Sikh War).-Awarded by Government of India, 18.49. Obverse: Head of Queen Victoria as in First China Medal, Reverse: Sikh chiefs delivering up their arms to Sir Walter Raleigh Gilbert, near Rawa! Pindi. March 14: 1849. Above TO THE ARMY OF THE PUNJAB. In exergue, MDCCCXLIX. Ribbon: Blue with yellow stripes at side (Platc 1.). Clasps: MOOLTAN, CHHLIANWALA, GOOIERAT.

The anard of this medal uas that nuthed by a C.O. uf the governorgeneral. dated Camp. Ferozepore, April 2, 1849. The medal is one of special interest, for it establishes the principle that now rules, viz. that every one participating in a campaign (including for the first time civilians) was entitled to receive the medal, apart from those who received the medal together with a clasp for a specific action. The medal in fact was granted to every officer and soldier who has been employed within the Punjab in this campaign to the date of the occupation of Peshawur." In other words it was granted to all who had served " during this campaign within the territories of Maharajah Duleep Sing,"irrespective of whet her they had qualified for any of the clasps. A very large number of medals was therefore issued without clasps. Another interesting point about this award is that after its grant it was laid down that in future no medals were to be issued by the Government of India without the consent of the Crown. As a matter of fact the Government of India was for the future only concerned in the grant of the two medals that followed, namely the First and Second India General Service Medals. No medals were issued with more than two of the three clasps, the combination being eirher "Mooltan" and "Goojerat" or "Chilianwala" and "Goojerat." Very rare medals are those of the $\mathbf{3 4}$ th Foot with the clasp for "Chilianwala," as in that action they lost more than hall their strength, their casualties a mounting to 497, of whom 250 were killed or died of wounds. Another rare medal is that given without a clasp to the officers and men of the Indian Marine that manned the Indus Flotilla; and more rare still is the same medal with the "Mooltan "clasp whieh was given to a naval brigade landed from the same fotilla.
14. India, $1799-1826$ (1st India G.S., officially styled " India, $1851^{\prime \prime}$).-Awarded by the Government of India 1851 . Obverse: Head of Queen Victoria as in First China Medal. Reverse: Victory seated, in her right hand a laurel branch, in her left a wreath; on the ground beside her a lotus flower, and in the left background a palm tree and trophy of Eastern arms. Above, TO THEARMY OF INDIA. In exergue, $1799-1826$. Ribbon: Sky błue (Plate I.). Clasps: ALLIGHUR, BATTLE OF DELHI, ASSYE. AS SEERGHUR. LASHARREE, ARGAUM. GAWILGHUR. DEFENCE OF DELHI, BATTLE OF DEIG, CAPTURE OP

DEIG, NEPAUT, KIRKEE ${ }^{1}$ POONA, ${ }^{1}$ KIRKEE-POONA ${ }^{1}$ SEETABULDEE, ${ }^{1}$ NAGPORE, ${ }^{1}$ SEETABULDEE-NAGPORE, MAHEIDPOOR, CORYCAUM, AVA, BHURTPOOR.
This medal was awarded "to the surviving officers and soldiers of the Crown and of the East India Company "' who took part in any one of seventeen specified actions and operations which occurred in India, Nepaul and Burma, during the first twenty-five years of the 19th century, " including the officers and scamen of the Royal Navy, and the Company's Marine who took part in the first Burmese War." The queen's consent to the grant of this medal was announced in the London Gazette by a Notice of the Court of Directors, dated March 2I, 1851. It was subsequently notified to the British Army by a Horse Guards G.O., dated March 21, 1851 ; to the Royal Navy by an Admiralty memorandum of the same date; and to the Army in India by a governor-gencral's G.O., dated April 14, 1851. In this medal again there is a discrepancy in dating. for though it is dated $1799-1826$, the first action for which it was a warded, the storming of Allighur, took place on September 24, 1803. No medals were issued without clasps, the largest combination of clasps known being five. According to the India Office records there were apparently men entitted to as many as seven clasps, but whether any medal was issued with more than five is very doubtful. That awarded to the duke of Wellington had three clasps, "Assye."
"Argaum" and "Gawilghur." With the exception" of medals issued with the Ava and Bhurtpore clasps, this medal is a rare one, and with a large number of the clasps, all except perhaps those for Nepaul and Maheidpote, an extremely rare one. The rarest of all is "Seetabuldee," as only two Europeans and two natives are known to have received it. "Defence of Delhi " is also a very rare clasp, as the garrison only comprised two weak battalions of native infantry ; as is also "Corygaum," which was issued to only two Europeans, "both officers," and seventy-five natives. The only European troops present at Corygaum were an officer and twenty-six men of the Madras Artillery, of whom the officer and twelve men were killed and cight wounded. As the "Burma " medal had already been given to the Company's native officers and soldiers for the First Burmese War, only the European officers and men of the Company's service reccived the medal with "Ava" clasp: but as the "Nepaul" medal had not been given to all the native troops who actually served "within the hills," the medal with clasp "Nepaul" was granted to those native troops who had not received the Nepaul medal, as well as to all the Company's European officers and men.
15. India, 1852-95 (2nd India G.S., officially styled "India, 1854° "). -Awarded by the Government of India as lar as the first two issues with their clasps are concerned, all subsequent issues and clasps, with the exception of the last two, by Queen Victoria; the last two issues and clasps by Kins Edward V1I. Obverse: Head of Queen Victoria as in First China Medal. Reverse: Victory standing, crowning a naked warrior sitting. In exergue, a lotus flower and leaves, symbolizing the connexion of the medal with India. Ribbon: Red, with two bue stripes, forming five finch stripes (Plate I.). Clasps: PEGU, PERSIA, ${ }^{2}$ NORTH-WESTFRONTIER. UMBEYLA, BHOOTAN, LOOSHAI, PERAK 1875-76.3 JOWAKI 1877-78, NAGA 1879-80, BURMA $1885-87$, SIKKIM 1888 , HAZARA 1888, BURMA 1887-89, CHIN-LOOSHAI 1889-90, SAMANA 1891, HAZARA 1891, N.E. FRONTIER 1891, HUNZA 1891, BURMA 1889-92, LUSHAI 1889-92, WAZIRISTAN 1894-95, CHIN HILLS 1892-93, K\&CHIN HILLS 1892-93;
The queen's assent to this award, to those of H.M.'s Sea and Land Forces, as well as those belonging to the East India Company's Establishment engaged in the Second Burmese War, was first made known to the Government of India in a letter from the Cour of Directors, April 6, 1853. In a Minute by Lord Dalhousic, the governor-general. December 9, 1852, it had been suggested "wihether it would not be better for the future, instead of issuing a separate Medal for each campaign, to have one Mcdal, such as the "? ndian Medal ' (i.e. the' India, 1851^{\prime} Medal), which should be issued once to each individual entitled: the particular service for which it is granted being recorded upon a Bar, and every subsequent service which may be thought 10 deserve distinction being recorded by an additional Bar. This plan would avoid the multiplication of Medals, which has accumulated of late ycars, which I humbly think is undesirable." In another letter from the Court of Directors to the Government of India, March 1. 1854, this suggestion is approved. and it was ordered that alter "a suitable design" had been procured (L. C. Wyon designed the reverse), "the Medal to be now struck shall be of a general character, the particular service for which it is now granted, viz. 'Pegu,' being recorded on a Bar, In the event of the same soldiers being entited hercafter to another similar distinction, the service will be recorded by an additional Bar to the same Medal." Occasional mistakes have however been made, ior, since the issue with the clasp for the Perak campaign, from which time it has become customary to date the clasp, many instances have occurred of men having received two medals with clasps for different campaigns. The issue to the Persian Expeditionary Force
${ }^{1}$ Whether in one or both actions, only one clasp awarded,

- The Royal Navy or Indian Marine, or both, received the medal with these clasps.
(1856-1857), with the clasp " Persia," was awarded by the Court of Directors anuary 19, 1858 , and sanctioned by the queen in the same month. The first issue of the medal by the Crown was authorized April 15, 1859, with the clasps "North-West Frontier "and "Umbeyla," the former covering various expeditions between 1849 and 1863, the latter the hard-fought Umbeyla Campaign of the latter mentioned year. All subsequent issues of the award were made by Queen Victoria, with the exception of those that carried with them the clasps "Chin Hill 1892-93." and "Kachin Hills 1892-93." which were only awarded ten ycars afterwards by King Edward VII. and notified in Army Order 9 of January 1903: the medal, which had meantime been superseded by the Third India G.S. medal described below, being re-issued with these last two clasps. The combination of clasps with this medal is very numerous, but medals with more than two or three clasps are rare. Seven is probably the greatest number awarded with any one medal, and a medal with this number, viz. "Umbeyla," "North-West Frontier," "Jowaki 1877-78." "Burma 1885-87," "Hazara 1888," "Samana 1891," and "Hunza 1891," was granted to Bhanga Singh. Sardar Bahadur, who retired as Subadar-Major of No. 4 (Derajat) Mountain Battery. Sir William Lockhart (q, v.) had the medal with six clasps. The rarest of all the clasps is probably "Hunza 1891," as less than a thousand men were employed, and the majority of these were Cashmere Imperial Seryice Troops. No European troops received the clasps, "Looshai," "Naga 1879-80," or "Hunza 1891 ." "Sikkim 1888 " is also a rare clasp as only some 2000 troops were employed, the only Europeans being two companies of the and Derbyshire Regiment. So also is "N.E. Frontier 1891," for in the Manipur expedition tor which this clasp was given about 3000 men were employed, the only Europeans being four companies of the King's Royal Rifle Corps. It was with the issue of this medal with the clasp "Burma 1885-87," that the precedent was set of awarding the medal and clasp in bronze to " all authorized followers," a precedent that was followed in all subsequent issues.

16. South Africa, 1834-35,1846-47, 1850-53.-Awarded by Queen Victoria, 1854. (South Alrica, 1877-79. Re-issue of first medal. Awarded by Queen Victoria, 1880.) Obverse: Head of Queen Victoria as in First China Medal. Reverse: A lion crouching be hind a sugar bush (Protea mellifera). Above, SOUTH AFRICA. In exerguc, ${ }^{1853}$. In the exergue of the re-issued medal, the place of the date is taken by a trophy of four assegais and a Zulu shield. Ribbon: Orange watered, with two broad and two narrow blue stripes (Plate 11.). Clasps: 1877-78-79, 1878-79, 1877-78, 1878, 1877, 1879.
The command of the queen that a medal should be awarded to the survivors of the forces that had been engaged in the first, second and third Kaffir Wars (1834-35, 1846-47, and 1850-53) was notified by Viscount Hardinge, the commander-in-chief, in a C.O. dated Horse Guards, November 22, 1854. No clasps were issued with this medal. The medal was accorded only to the "regular forces " (including the Cape Mounted Rifles), so local levies did not receive it. In the third Kaftr War a small Naval Brigade and a detachment of Royal Marines took part in the operations, and the survivors received the medal. The award of the re-issue was notified in a G.O. by the duke of Cambridge, commander-in-chicf, August 1, 1880. It was to "be granted to Her Majesty's Imperial Forces, and to such of Her Majesty's Colonial Forces, Europuan or Native, as were regularly organized and disciplined as combatants, whether raised by the Colonial Government or by the General Officer Commanding." The operations for which it was given were against the Galekas and Gaikas 1877-78, the Griquas 1878, Basutos 1879, Zulus 1879, and Sekukuni 1878-79. In both the operations against the Galekas and Gaikas, and in the Zulu War of 1879, the Royal Navy and Royal Marincs took part and reecived the medal. The clasps issued with this medal were as noted above and record the year, or years, of service covering all the operations in which the recipient was engaged. No nne received a medal with more than one clasp. The needal without a clasp was issued to such troops as wcre employed in Natal from January to September 1879, but never crossed the border into Zululand.
17. Crimea, 1854-56. - Awarded by Queen Victoria in 1854. Obverse: Head of Queen Victoria as in First China Medal: below, 1854. Reverse: Victory crowning a Roman soldier, who holds a sword in his right hand, and bears on his Ifft arm a shield on which is the figure of a lion. On the lelt, CRIMEA. Ribbon: Light hlue, with narrow ycllow borders (Plate 1.). Clasps: ALMA, BALA. KLAVA, INKERMANN, SEBASTOPOL, AZOFF.
This medal. a warded to both Services, was first notified by a commander-in-chief's G.O., dated December 15, 1854. The grant was limited to all troops landing in the Crimea up to September 9 . 1855-the day on which Sevastopol fell-" unless they shall have been engaged offer that dote in some expedtion or operation against the enemy." This hatter proviso applied in the main to the naval clasp "AZOFF." the period for which award was extended to the 22nd of November. The clasps for this medal are very ornamental, being in the shape of oak lcaves, ornamented with acorns. The Royal Navy and Royal Marines, besides the ", Azoff " slasp, received the clasps "Balaklava," "Inkermann," "Schastopol." The Royal Navy and Royal Marines.

WARS OR TEIT FRENOH BTOLTIION AND NAPOTEON THAS				
Novy Gold Medel, 1794 879-1815.	Army Gold Medaland Crows, siso. $3808-24$		Wevy Gemaral Barvien, 1 Ith 1795-1440. 	Atmy Cumeral Bervice, iste. 898-814. \qquad ancolytix
INDIA AWARDS BY TEI RON. PRTM ITDA COMPANY				
	Cheard, reat. Men. 0 . $1899 .$			
INDLA. AWARD EI.E.I.CO.	INDIA, AWARDS BY THI Chown			
Firet India G.S., test. 1799-1826. 	8econd India G.8., 8834 185-1835	Traina ITtat		Thind Falla O.E, rese Ence tros. the Cmp.
EUBEIAS AB				
Chine, steqa. $1841-42,1857-60,1900$.	$\begin{aligned} & \text { Crimen, I884. } \\ & \text { 1854-56. } \end{aligned}$	Turlite Crimen, 8 las. restsk	$\begin{aligned} & \text { Batele, ing. } \\ & \text { Riseris. } \end{aligned}$	
NORTHERA AFBIOA				
	Eyypt, 1882. 1830-89.	Eheoltva's 8xex, 1883. usega		

hirgest number of clasps to any one medal is four. Certain noncombatants received the medal without a clasp.
18. Balicic. $1854-55$--Awarded by Queen Victoria, 1856. Obverse: Head of Queen Victoria as in First China Medal. Keverse: Britannia seated and holding a trident in her right hand. In the background forts. Above, BALTIC. In exergue, 1854-1855. Ribbon: Yellow, with pale blue borders (Plate 1.). Clasps: Nil.
This award, notified by Admiralty Order, June 5, 1856, was granted "to the officers and crews of Her Majesty's ships, as well as to such offers and Men of Her Majesty's Army as were employed in the operat ans in the Baltic in the years 1854 and $1855 .{ }^{\circ "}$ The medal is, of course, practically a naval one. but two officers and nibety-nine won of the Royal Engineers were employed in the expedition, especially at Bomarsund, and received it.
19. Twrkioh Crimea Medal,-Awarded by the Sultan, 1856. Obverse: A trophy composed of a field piece, a mortar, and an anchor, the fild piece standing on the Russian Imperial Standard, and having a map of the Crimea spread over the wheel and breech. Behind are the Turkish, British, French and Sardinian flags. The flag of the nation to which the recipient belonged is in the front with that of Turkey, the flags of the other two nationalities behind. In exergue. "Crimea 1855." "La Crimée 1855," or "La Crimea 1855," according as to whether the medal was intended for British, French or Sardinian rucipients. Reverse: The Sultan's cypher, below, in Turkish, "Ci:mica," and the year of the Hegira, 1271. Ribbon: Crimson wate dd, with bright green edses (Plate 1.). Clasps: Nil.
This medal was distributed to all of the Allied Forces, both naval and military, which shared in the operations in the Black Sea and the Crimen.
medals was sunk, the remainder were issued indiscriminately, and a
large number of the British received medals which were originally intended either for the French or Sardinians. ${ }^{1}$
30. Arcic, 1818-1855 (First Arctic)-Awarded by Queen Victoria, 1857. Obverse: Head of Queen Victoria, wearing a tiara. Legend, VICTORIA REGINA. Reverse: A ship blocked in the ice, icebergs to right and left, and in forcground a sledging party, Above, FOR ARCTIC DISCOVERIES. In exergue, 1818-1855. Ribbon: White (Plate II.). Clasps: Nil.
This award was first notified in an Admiralty Notice dated, January 30, 1857. It was given to the crews of Her Majesty"s ships employed in Arctic exploration, and also "to the officers of the French Navy, and to such voluntecrs as accumpanied those expeditions "; also to those engaged in expeditions "equipped by the government and citizens of the United States ": also to the "commanders and crews of the scyeral expeditions which originated in tbe peal ancl humanity of Her Majesty's subjects " : and finally to those who eersed " in the several land expeditions, whether equipped by Her Majesty's government, by the Audson's Bay Company, or from private resources." The medal is worn on the left breast and tales rank as a war medal. It is octagonal in shape, $1-3 \mathrm{in}$., and has affixed to the upper edge a five-pointed star to which is attached a ring for suspension. The head of the queen, which is the work of L. C. Wyon, has never been reproduced on any other medal.
21. Indisn Mutiny, 1857-58.-Awarded by the Governinent of India, 1858. Obverse: Head of Queen Victoria as on First China Medal. Rewerse: Britannia standing facing left with a lion on her risht side: her right arm is extended holding out a wreath; on her lelt arm is the Union shield, and in her left hand a wreath. Aloove, INDIA. In exergue, 1857-1898, Ribbon: White, with two red stripes, forming five toinch stripes (Plate I.) Clasps: DELHI (May 30 to S.p. 14, 1857): DEFENCE OF LUCKNOW (Uune 29
to Sep. 25, 1857); RELIEF OF LUCKNOW (Nov. 1857); LUCKNOW (March 2 to 21, 1858); CENTRAL INDIA (Jan. to June 1858).

The grant of this award was first notified in a despatch from the Court of Directors to the Government which stated that "the Queen has bern graciously pleased to command that a Medal shall be granted to the troops in the Service of Her Majesty, and of the East India Company, who have becn, or may be, employed in the Euppression of the Mutiny in India." This is the last medal given by the Honourable East India Company. The medal without clasp was awarded to all, including clvilians, who had taken part in operations against the mutineers or rebels, and with the clasps enumerated above to those who shared in the operations specified. Some two or three antillery men are known to have received the medal with , the clasps "Delhi," "Relief of Lucknow," "Lucknow" and "Central 1 ndia." The medal with three clasps, viz. to the gth Lancers and the Bengal Horse Artillery, and of course
${ }^{2}$ Inaddition to this award the French emperor sent five hundred of the French "Military Medal," to be distributed a mongst specially efected non-commissioned officers and men of the army and Royal Marines, and petty officers and seamen of the Royal Navy. Only two of these medals were given to officers, viz, the duke of Cambridge and Sir William Codrington, the latter being presented by Pelissier with his own medal. The king of Sardinia also distributed 450 medals to the British forces, of which so were given to the Royal Navy and Royal Marines. and 243 to officers and 157 to non-commistoned officers and privates of the army.
yarious officers who served on the staff, as, for example, Field Marshals Earl Roberts and Sir Henry Norman. With regard to the Royal Navy and Royal Marines, the "Shannon's" brigade, under Captain Peel, received the medal with one. or both, of the clasps "Relicf of Lucknow," "Lucknow," the "Pearl's" brigade, under Captain Sotheby received the medal without clasp. This is the last medal that had on it the beautiful head of Queen Victoria which was first used for the China Medal of 1842, and of which W. Wyon, R.A., was the artist.
22. Abyssinia, 1867-68.-Awarded by Queen Victoria, 1868. Obverse: Bust of Queen Victoria, with diadem and veil; around an indented border, bet woen the nine points of which are the ietters A.B.Y.S.S.I.N.I.A. Reverse: Within a beaded circle the name of recipient, his corps, regiment or ship, the whole surrounded with a wreath of laurel. Ribbon: Red, with broad white borders Plate I.). Clasps: Nil.

The sanction of this award is to be found in a letter from Sir J. S. Pakington, secretary of state for war, to M.R.II. the duke nf Cambridge, field-marshal commanding-in-chief, which notifies the queen's pleasure "that a medal be granted to all Mer Majesty's Forces and Indian Forces, Naval and Military, employed in the operations in Abyssinia, which resulted in the capture of Magdala." In all 20,000 medals were struck. The medal is smaller than the usual, if in. in diameter, and it is surmounted by an Imperial Crown, and a large silver ring for suspension. It is altogether an unusual type of medal. and in the use of an indented border it follows a very old precedent, that of a medal commemorating the victory of Valens over Procopius, A. D. 365. (See Les Medaillons de Cempire romain, by W. Frochner, Paris, 1878). The artists responsible for this medal are Joseph S. Wyon and Alfred B. Wyon, and this bust of the queen is reproduced on only one other medal, the New Zealand.
23. New Zealand, 1845-47, 1860-66.-Awarded by Queen Victoria, 1869. Obverse: Bust of Queen Victoria as on Abyssinia medal, but larger. Legend: VICTORIA D:G:BRITT: REC:F:D: Reverse: Dated, within a wreath of Laurel, accordinp to the period in which the recipient served. Above, NEW ZEALAND; below, VIRTUTIS HONOR. Ribbon: Bluc, with a broad red stripe down centre (Plate I.). Clasps: Nil.

The grant of this award to the Army was notified in an Army Order, dated March 1, 1869, and its extension to the Royal Navy and Koyal Marines by an Admiralty Order, dated June 3, 1869. Owing to incompleteness in the returns many medals were issued undated. The dates on the reverse, in those issued dated, varied considerably; for the First Maori War, the medal was issued to the Army with one, and to the Navy with five different dates; for the Second Maori War, the medal was issued to the Army with twenty. one, and to the Navy with five different dates. No medal was dated 1862, though many of the Army medals bore date of a period covering that year, although no naval medals did.
24. West Africa, 1873-1900.-Awarded (originally as the "Ashantee " medal) by Queen Victoria in 1874, with the exception of the last issue, with clasp " 1900," which was awarded by H.M. King Edward VII. Obverse: Head of Queen Victoria, with diadem, and veil behind, by L. C. Wyon. Legend: VICTORIA REGINA. Reverse: British soldiers fighting savages In thick bush, by Sir E. J. Poynter. Ribbon: Ycllow with black borders. and two narrow black stripes (Plate II.). Clasps: COOMASSIE, $1887-8,1891-2,1892$, $1893-94$; WITU, $1890^{2}{ }^{2}$ LIWONDI, $1893:^{2}$ WITU, August 1893: ${ }^{3}$ JUBA RIVER, $1893^{\prime}{ }^{\text {² }}$ LAKE NYASSÁ. 1893: ${ }^{2}$ GAMBIA, 1894 ; ${ }^{\text {B BENIN RIVER, } 1894:^{2} \text { BRASS RIVER. }}$ 18955^{3} MWELE, 18955^{3} 4 NIGER, 1897; BENIN, 1897 ; 3 SIERRA LEONE, 1898-99; 1896-98, 1897-98, 1898, 1899, 1900.

This medal was first awarded by Army Order 43 , dated June 1 1874, to "all of Her Majesty"s Forces who have been employed on the Gold Coast during the operations against the King of Ashantec." and in addition a clasp, "Coomassie," "in the casc of those who were present at Amoaful and the actions between that place and Coomassic (including the capture of the capital), and of those who, during the five days of those actions, were engaged on the north of the Prah in maintaining and protecting the communications of the main army." In all, with and without the clasp. 11,000 medals were issued for the Ashaniee campaign to both Services. Over cighteen years later this same medal was re-issued 25 a "general service" medal, the award being for operations in Central Africa, and on the East and West Coasts, during the period 1887-92, which were covered by the dated clasps " $1887-8$," "1891-2," and "1892." As such the issue was continued for operations down to the year 1900 , although the official title " West
These clasps were all naval awards, but 2 wo companies of the West India Regiment took part in the operations for which the clasp "Gambiz, 1894," was a wnrded.
${ }_{3}$ Were a warded by the Admiralty to certain local forces which co-operated with the Naval Brigades

- "Mwele, 1895." is not strictly speaking a clasp, as it is engraved on the edge of the medal. Recipients already in possession of the medal were entitled to have the action and date engraved thereon. It corresponds. however, to a clasp in that it commemorates a particular service, and so has been included.

Alrica Medal" (see Army Order 253. of Dec. 1894) is somewhat of a misnomer, for very frequently the medal has been granted for services in Central Africa and in the Hinterland of the East Coast as for services on the West Coast. In alt issues since the original "Ashantce" medal, the clasp only was given to those who already had the medal, so subsequent issues do not make it a new award. As will be seen later, the same medal was subsequently issued with a different ribbon, and so constitured as an entirely new decoration, that could be worn in conjunction with the older onc. With the exception of those issucd with "Mwele, "895" engraved on the medal, none of these medals have been issued without a clasp since the original issue for the campaign of 1873-74; and the clasp "Coomassie" that accompanied the first issue is the only one that has been issued to regimental units of the British Army as apart from the West India Regiment and local troops. The duke of Edinburgh was married in January of the year in which this medal was first awarded, and it is said that yellow and black (the Imperial Russian colours) were chosen as the colours of the ribbon, in compliment to his consort the grand duchess Marie of Russia.
25. Arctic, 1876 (2rd Arclic Meda!).-Awarded by Queen Victoria, 1876. Obverse: Bust of Queen Victoria, crowned and with veil by G. G. Adams. Legend: VICTORIA REGINA; underneath bust, 1876. Reverse: A ship packed in floe ice: above, an Arctic sky with fleecy clouds in a clear horizon. Ribbon: White (Plate II.), Clasps: Nil.

The award of this grant was notified in an Admiralty Order, dated Nov. 28, 1876, and the award is specified "t to all persons; of every rank and class, who were serving on board Her Majesty's ships 'Alert' and 'Discovery' during the Arctic Expedition of $1875-1876$, and on board the yacht 'Pandora,' in her voyage to the Arctic Regions in 1876." The "Pandora' was owned and sailed by Commander (Sir Allen) Young, R.N.R., whose officers and crew rendered valuable services to Her Majesty's ships when in the Polar seas. Sixty-three medals were given on board the "Alert," fiftyseven on board the "Discovery." The bust on the obverse of this medal has not been reproduced on any other. The reverse (by L. C. Wyon) is copied from a photograph taken during the expedition of the "Alert" and "Discovery" under Sir George Nares, K.C.B.
26. Afghanistan, 1878-80 (2nd Alghan). Awarded by Quecn Victoria, 1880. Obverse: Bust of Quecn Victoria, crowned and with veil, by J. E. Bochm. This is the first war medal bearing the imperial kitlc. Legend: VICTORIA REGINA ET IMPERATRIX. Reverse: A column of troops emerging from a mountainpass, headed by a beavy battery elcphant carrying a gun; behind, mounted troops. Above, AFGHANISTAN. In exergue, 187°, $-79-80$. Ribbon: Green, with crimson borders (Plate 1.). Clasps: ALI MUSIID, PEIWAR KOTAL, CHARASIA, KABUL, AHMED KHEL, KANDAHAR.
At the conclusion of the first phase of the Second Aighan War, it was proposed that the (Second) India G.S. Medal should be issucd for this campaign with clasps "Afghanistan," "Ali Musjid." "Peiwar Kotal," but, after the massacre or Sir P. L. N. Cavagnari and the menbers and escort of the Embassy at Kabul, Sep. 3. 1879. and the consequent renewal of the war, it was dccided to grant a separate medal. The first official intimation of the award is in a telegram from the secretary of state for India to the viceroy. dated Aug. 7, 1880. The award, with the regulations to govern the issuc, was promulgated in a G.O. by the governor-general, Dec. 10, 1880, and subsequent G.O.'s. The medal without clasp was awarded to all who had served across the frontier between Nov. 22, 1878, and May 26, 1879 (first phase of the war), and between Sep. 1879, and Aug. 15, 1880 for the Khyber and Kurram Lines, and Sep. 20, 1880, (or Southern Afghanistan (second phase of the war). The "Kabul" clasp was awarded to all who had shared in the operations "at and near that place from the roth to the 23rd Dec., 1879. including the column under the command of Brigadier-General C. J. S. Gough, C.B., which joined Sir Frederick Roberts on the 24 th Dec., 1879." The clasp for "Kandahar" did not include the whole garrison of the beleaguered city, but only the troops that were actually "engaged in the action tought under Sir Frederick Roberts' command against Sirdar Mahomed Ayub Khan on the rst Sep., 1880." The greatest number of clasps with which the medal was issued was four, and the unite 10 which such medals were issued are the 7 2nd Highlanders, 5 th Ghoorkas, 5th Punjab Infantry and 2 zrd Punjab Pionecrs. The bust of the Queen by Sir Edgar Bochm, R.A., has not been re produced on other war medals.
27. Kabul to Kandahar, 1880.-Awarded by Queen Victorij, 1880. This decoration took the form of a five-pointed star, 1.9 ia . across from point to point, with a ball between the points; betwen the two topmost points of the star is an Imperial Crown and ing for suspension. Obverse: In the centre the imperial monorrain 1880. Reverse: Ptain, with a hollow centre, round which the recipient's name and regiment are indented in capital letters. The old rainbow-coloured military ribbon is worn with this star.

The grant of this award was first notified in a despateh from she secretary of state for India to the viceroy, dated Nov. 30, 1880. This awarded the decorasion, "to the (avie mhish arched from

Governor-General extended the grant "a to the troops which then composed the garrison of Kelat-i-Chilzai, and accompanied the force under the command of Lieutenant-General Sir F. S. Roberts, G.C.B., V.C., from that place to Kandahar.
28. Egyph, 1882-1889.-Awarded by Queen Victoria, 1882. Obverse. Head of Queen Victoria as in the West African Medal. Legend: VICTORIA REGINA ET IMPERATRIX. Reverse: A Sphinx, zhove, EGYPT; below, 1882. Ribbon: Blue, with two White stripes, forming five - inch stripes (Plate 1.). Clasps: ALEXANDRIA trh July ; TEL-EL-KEBIR, SUAKIN, 1884; ELTEB, TAMAAI, EL.TEB.TAMAA1, THE NILE, $1884-85$; ABU KLEA, KIRBEKAN, SUAKIN, 1885 ; TOFREK, GEMAI: 2AH, 1888; TOSKI, 1889.' This medal was first awarded (Admiralty Circular, Oct. 1882 ; G.O. by the commander-in-chief, Oct. 17. 1882; and G.O. by governor-general of India, Oct. 27, 1882): to all the Forces, naval and military, present and serving in Egypt between July 16, and Sep. 14, 1882 , The first two clasps were also given with this issuc. One military officer (Major.General Sir A. B. Tulloch, then of the Welsh Regiment) received the clasp "Alexandria, IIth July." as he was serving in the fieet as military adviser to Admiral Sir Beauchamp Seymour. A second issue was made in 1884, and with it the next four clasps were given: "Suakin, 1884." ${ }^{\text {" }}$ for those who landed at Suakin or Trinkitat between Feb. I9 and March 26, 1884, was, however, only given to those with the 1882 medal, those not so possessed receiving the medal without a clasp. A third issue was made in 1885, the next five claspus accompanying it. "The Nile, $1884-85$." was given to those who served south of Assouan on or before March 7, 1885; "Suakin, 1885," to those who were engaged in the operations at Suakia between March and May 14. 1885; but the former clasp was onty to go to those already possessed of the medal, others received the medal only. The medal alone was also given to all on duty at Suakin betwen March 27, 1884, and May 14, 1885. No medals were issued with single clasps, for "Tofrek," recipients of which also got clasp "Suakin, 1885," or "Abu Klea " and "Kirbekan," recipicats of which got also clasp "The Nile, 1884-85." In 1886, the meda! without was issued to those who had not previously recejved it and had served at, and south of Wady talfa, between Nov. 30, 1885 and \}an. 11, 1886, but no clasps went with this issue, although the operations included the batte of Ginnis. The last issue was made in 1890 . The medal with clasp "Gemaizah, 1888," to all who were present at that action near Suakin, Dec. 20. 1888; the medal alone to all employed on the Nile at, and south of Korosko, on Aug. 3, 1889, and with clasp "' Toski, 1889," so all present at that action, Aug. 3, 1889. Besides those already enumerated who reccived the medal without clasp, it was given to officers of hired rransports of the mercantile marine, to some civilians, native and Europtan, to the Australian contingent shat landed at Suakin, and to the Canadian boatmen employed on the Nile. In fact, not far short of fifty thousand of these medals have been struck, and the numbers issued have exceeded that of any other medal with the exception of that given for the South Arrican War. Seven clasps: "Tel-el-Kebir," "Suakin, 1884 ""; "El-Teb-Tamaai" "The Nile, $1884-85$ ": "Abu Klea" " "Gemaizah, 1888 ": and "'Toski, 1880," were awarded to one officer, Major Beech, late 20th Hussars, who also received the Bronze Star with the clasp "Tokar, 1890." The medal with six elasps was earned by four men of the 19th Hussars who were Lord Wolseley's orderlies, and who after having eapned the first five clasps enumerated in Major Beech's medal, went with Lord Wolseley to Suakin and so got the "Suakin. $1885{ }^{\text {; }}$ clasp.
29. Egypf Brosze Syar, 1882-93.-Awarded by the Khedive 1883. This decoration is in the shape of a five-pointed star (I.9 in diameter) connected by a small star and crescent to a laureated bar to which the ribbon is attached. Obverse: A front view of
the Sphinx, with the desert and pyramids in the rear Around a double band, upon which are, above, ECYPT, 1882, and below. in Arabic. "Khedive of Egypt, 1299 " (the Hegira date). In the second and third issues the dates are respectively altered to 1884. 1301 and $1884-86$ and $1301-4$; the lourth and firith iscues are dateless. Reverse: A large raised circle inside which it the
Khedivial monogram, T, M. (Tewfik Mahomed), surmounted by a Crown and Crescent and Star. Ribbon: Dark blue (Plate I.). Clasps: TOKAR, $\mathbf{1 8 9 0}$.
This star was awarded for the same operations as was the British Egyptian medal above described, but, except for a few officers
and men of the Royal Navy, the issue of the clasp TOKAR was and men of the Royal Navy, the issue of the clasp TOKAR was
confined to British asd native officers and men of the Egytian service
(H. L. 5.)
30. Caneda, 1885.-Awarded by Queen Victoria, 1885. Obverve Head of Queen Victoria as on the West African ("Ashantee") Medal. Reverse: NORTH WEST CANADA and datc, within a maple leaf. Ribbon: Blue-grey. with a crimson stripe on each side (Plate II.). Clasp: SASKATCHEWAN.
This medal, commemorative of services in the Rici Rebellion, was awarded to Canadian forces only.

[^4]3t. Canada (General Seroict).-Awarded, 1899. Obverse: Head of Cueen Vistoria, as in Thicid India G. S. Medal. Reverse: Wit hin a maple wreach, the Dominion flap, above, CANADA Ribbon:
Red, with white centre (Plate 1 .). Clasps: FENIAN RAID, 1866; FENIAN RAID. 1870; RED RIVER, 1870 O One batalion of the King's Royal Rites recceived this medal with tho Red River
Clasp. Otherwise issue confined to Canadian forces.
32. "OWern's $"$ Sudan. $1896-1898$. A Awarded by Queen Vico oria, 1899. Obverse: HaH-length effgy of ,Queen Victoria hoving secppre, by De Saulles, 25 in " Uazand, medal dercribed below Reverse: A winged Victory, seated, with oa eei her hand. the Union Jack and the Epyptian flag. The left hand holds a laurci. wreath, the right a palm branch. On a tablet below, SUDAN and below this lotus leaves, Ribbon: Halif black, half yellow. divided by a narrow red stripe (Plate 1.). Clasps: none.
Given for the operations under the command of Sir Herbert (Lord) Kitchener, which led to the reconquest of the Sudan, 1898 ; issued in bronze to followers.
33. "Khedixe's" "Sudan, 1896 -1900,-Awarded by the khedive in 1897. Obverse: "Abbas Hilmi "1." and date, in Arabic. Re. verse: A trophy of arms with a shicld in the centre, on a tablet below "Recovery of the Sudan," in Arabic. Ritibon: Ycllow, with blue centre (Plate 1.). Clasps: FIRKET. HAFIR. SUDAN, 1897 SUDAN, 1898 ; ABU HAMED, THE ATBARA, KHAR'
 BAHR-EL-GHAZAL, 1900-1902: ${ }^{1}$ 'TEROK,' ${ }^{1}$ 'YAM NYAM. ${ }^{1}$ TaLODI. ${ }^{1}$

This medal was awarded to officers and men of the British Navy and Army, to the Egyptian Army engaged in the reconquest of the Suclan and (in bronze without clasps) to followers.
34. Cape Colony General Seroice. 1900.-Awarded by the government of Cape Colony: Obverse: Bust of Queen Victoria as on the Volunteer Long Service Nedal. Reverse; Arms of Cape Colony Ribbon: Dark blue, with yellow centre (Plate II.). Clasps: BASUTOLAND, TRANSKEI, BECHUANALAND. Igsued to Colonial troops only, for services in various minor campaigns. 35. MalabeleLand, 1893 (called the Rhodesia Medal).-Awarded by the British South Alrica Company, 1896. Obverse: Bust of Queen Victoria. Reverse: A fighrin lion. Ribbon: Orange. with three dark blue stripes (Plate 11.). Clasps: RHODESIA and MASHONALAND, with dates
This is the first war medal issued by a chartered company since the close of the Company's rule in India. It was awarded to British officers and men of the Brisish service, to the Cape Mountod Rifles, Bechuanaland police, and the Chartered Company's own forces, engaged in the Matabeleland and Mashonaland Campaigns 1893. 1896 and 1897.
36. East and Central Africa, 1891-98.-Awarded by Queer Victoria in 1895. Obverse and Reverse: as in West African (or original Ashantee) Medal described above. Ribbon: Terra-cotta, white and black stripes (Plate III). Clasps: CENTRAL AFKICA 1894-96; CENTRAL AFRICA, 1899.
This medal only differs from the West African in that it has a different ribbon. It is suspended by a fing. Practically only the local lorces (and of course their British officers) received this medal. But a few officers and men of the Indian Army and of the Royal Navy have also received it.
37. Eastand Central Africa, 1899 (Hhe "Uganda" Medat).-Awarded by Queen Victoria in 1899 . Obverse: Half-length effigy of Queen Victoria, by De Saulles Reverse: Britannia with lion, gazing over a desert towards a rising sun. Ribbon: Half red, hall yellow (Phate II.). Clasps: LUBWA'S. UCANDA, 1897-98; UGANDA, 1899: UGANDA, 1900.
This medal was a warded to the local forces and also to officers and men of the Indian Army and Royal Navy.
38. Ashanti Slar, 1896.-Awarded by Queen Victoria in 1896. Obverse: An imperial crown with "Ashanti, 1896" round it. Reverse: Inscribed "from the Queen." The star is four-pointed, and is crossed by a saltire or St Andrew's cross Ribbon: Yellow with black stripes (Plate IL).
This medal was issued for the expedition against Prempeh in 1896. As there was no actual fiyhting, no medal was given, but sickness claimed many victims, amongst them Prince Henry of Battenberg. The decoration was issued to officers and men of the British Army. Royal Navy and local troops.
39. Ashanti Medal, 1900.-Awarded by King Edward VIL. in 1901. Obverse: Head and bust of King Edward VII. in the uniform of a field-marshal, by De Saulles. Reverse: a lion standing on a cliff, in the background the rising sun. Ribbon: Green with black cdies and black central stripe (Plate II.). Clasp: KUMASSI.
This medal was the first which was issued with an effgy of King Edward VII. It was given only to hocal forces, and the British officers employed on the staff or in commands
40. Africa General Service. ${ }^{1899}$. -Awarded by King Edward VII. in 1902. Obverse: As in Ashanti Mcdal of 1900 . Reverse: As in "Uganda" Medal above described. Ribbon: Yeliow, with black edges and two narrow green stripes (Plate 11.). Clasps: N. NIGERIA. with various dates; S. NIGERIA, with various
htes: UGANDA, 1900 ; JUBALAND, GAMBIA, LANGO, 1901 and 1902: 11DBALL!, KISSI, 1903 ; SOMALILAND, 1901 and 1902 -04: BRITISH CENTRAL AFRICA, 1899-1900: ARO, 1901 -02.
This medal represents an almost incessant warfare of a minor. but exacting, nature. In the first eighteen months, eleven claspa were awarded, some awards being of course retrospective. The clasp " Jubaland" is chiefly a naval award, but all the rest are almost exclusively carned by the West African Frontier Force and the King's African Rifles. It is worthy of remembrance, however, that a contingent of Boer mounted rifemen took part in the Somaliland Campaign, within one year of the peace of Vereeniging, and received the medal and clasp. The "Somaliland, 1902-1904" clasp represents indeed a considerable campaign in which contingents from Great Britain and India took part.
41. "Oueen's" South African. 1899-1902.-Awarded by King Edward VII. in tgoi shortly after Queen Victoria's death. Obverse: Bust of Queen Victoria, by De Saulles. Reverse: Britannia holding an outstretched laurel wreath towards a body of troops, in the background a coast line, the sea and war-ships. Ribbon: Centre orange bordered with blue, outside edges red (Plate II.). Clasps: see below.

The "Queen's" medal for troops engaged in the South African War was authorized, shortly after Queen Victoria's death, by Army Order 94 of 1901 . It was given "to all officers, warrant officers, non-commissioned officers and men, of the British, Indian and Colonial forces, and to all Nurses and Nursing Sisters, who actually served in South Africa between 18th of Octuber 1899, and a date to be fixed hereafter" (the war not being concluded) "to all troops stationed in Cape Colony and Natal at the out break of hostilitics, and to troops stationed at St Helena between the 14 th of April 1900, and a date to be fixed hereafter." The last provision shows a widening of the signification hitherto attaching to "war service," for the troops at St Hekna were employed in suarding Bocr prisoners. The A.O. referred to was supplemented by others in 1901 and 1902. Clasps were authorized as follows: BELMONT (Nov. 23. 1899); MODDER RIVER (Nov. 28, 1899); PAARDEBERG (Feb. 17-26, 1900): DREIFONTEIN (March io, 1900): WEPENER (April 9-25, 1900): JOHANNESBURG (May 29 1000): DIAMOND HILL (Junc 11-12, 1900); BELFAST (Aug. 26-27, 1900); WITTEBERCEN (July 1-29, 1900): DEFENCE OF RIMBERLEY (Oct, 14, 1899, Feb. 15, 1900): RELIEF OF KIMBERLEY (Feb, 15. 1900); DEFENCE OF MAFEKING (Oct. ${ }^{13} 1$ 1890-May 17, 1900); RELIEF OF MAFEKING (May 17, 1900); TALANA (Oct. 20, 1899): ELANDS. LAAGTE (Oct. 21, 1899); DEFENCE OF LADYSMITH (Nov. 3, $1809-\mathrm{Feb} .28$ 1000): TUGELA HEIGHTS (Feb. 1427, 1900): RELIEF OF LADYSMITH (Dec. 15, 1890-Feh. 28, 1900): LAING'S NEK (June 2-9, 1900). Clasps: for CAPE COLONY, NATAL, ORANGE FREE STATE and RHO. DESIA, were given to troops who served within the limits of the respective colonies and states named during the war, without being present at any action, fought inside those limits, for which a clasp was awarded. Non-enlisted men, of whatever nationality. who drew military pay, were awarded the medal in bronze instead of silver and without clasps. Militia units which volunteered and were sent to Mediterranean stations to release the regulars for ficld service were awarded (Feb. 1goz) the medal without clasp. "Mediterranean" being substituted for "South Africa" on the reverse. This was not, of course, issued to any one entitled to the Queen's Medal for South Alrica.
43. The "King's " South African Medal was awarded by King Edward VII. in 1goz, to be worn in addition to the "Queen's" by those who completed eighteen months service in South Africa during the war. On the obverse of the medal is the efligy of King Edward, by De Saulles (as on the "Ashanti, 1900"" Medal); the reverse is the same as that of the "Queen's" Medal. Ribbon: Green, white and orange (Plate II.). The two clasps awarded were in accordance with the terms of the award, general in character, to wit, SOUTH AFRICA, 1901 and SOUTH AFRICA, 1902.
44. China, 1900.-Awarded by King Edward V11., 1902. Obverse: Bust of Queen Victoria as on "Queen's" South African Medal. Reverse: As on first China Medal, but with date aliered. Ribbon: As in first China Medal (Plate 1.). Clasps: DEFENCE OF LEGATIONS, RELIEF OF PEKIN, TAKU FORTS.

This medal was issued to the Royal Navy (including some Naval volunteers), British and Indian Armies, and the (Wei-hai-Wei) Chinese Regiment, for operations during the Boxer rebellion. This was the last war medal, as the "First China "was the first to bear Qucen Victoria's effigy. Sir E.H. Seymour, the commander of the Tientsin relieving column, who had taken parz in the former China War, received the new medal as well as the old.
45. India, 1895 (Therd India General Service).- Awarded by Queen Victoria in 18g6. Obverse: Bust of Queen Victoria, by T. Brock, R.A. Reverse: A British and Indian soldier supporting a standard; below, INDIA, 1895. Ribbon: Three red and two green stripes of equal width (Plate l.). Clasps: DEFENCE OF CHITRAL, 1895 : RELIEF OF CHITRAL, 1895: MALAKAND, 1898; PUNJAB FRONTIER, 1898; TIRAH, 1897; TIRAH, 1898; WAZIRISTAN, 1901-02.
The ribbon of this medal is perhaps more frequently seed than
that of any other British war medal except those for South Alrica. In 1903 the medal was re-issued witb the military effigy of King Edward VII. (as on the Ashanti, 1900, medal) on the obverse. and the date was omitted from the reverse. The medal is issued in bronze, without claspe, to fnllowers.
46. Tibet, 1903-04--Awarded by King .Edward VII in 1905. Obverse: Military effigy of the king as on Ashanti, 1900, medal. Reverse: a representation of the Potala at Lhasa. Ribbon: Purple-red, edged with green and white stripes (Plate II.). Clasp: GYANTSE.
47. India, 1go8-A new India Gencral Service Medal was authorized in 1908 , to take the place of the medal granted by A.O. 43 of 1903. This was to be issued in silver to officers and men, and in bronze to non-enlisted men of all sorts. This medal with clasp bearing the name and date was given to the troops which took part in the North Western Frontier Expedition of 1908. The ribbon is dark blue edged with green.
48. Tronsporl Medal.-Awarded by King Edward V11. in 1002. Obverse: Head and bust of the king in naval uniform, by De Saulles. Reverse; A steamer at sea, and the five continents. Ribbon: red. with two thin stripes near the edge (Plate 1I.). Clasps: SOUTH AFRICA, 1899-1902; CHINA, 1900 . This medal is restricted to officers of the mercantile marine serving in chartered troop-ships. It is a sort of general service medal, clasps being added as earned. Up to igin only the above clasps had been authorized.
49. Polar Medal (or Anlaretic Medal).-Awarded by King Edward VII., 1go4. Obverse: Naval effigy nf the king as on Transport Medal. Reverse: In the foreground a sledge and travellers, in the background the steamer ${ }^{\text {"4 }}$ Discovery " (Capt. R. F. Scote's Expedition, 1904). Ribbon: As for rst and 2nd Arctic Medals, white (Plate I.). The medal, like the 1st Arctic Medal, is octagonal.
First awarded to officers and men of the "Discovery," whether belonging to the Royal Navy or not. It is given with a dated clasp for Antarctic exploration service.
Olker Medals and Decorations.-The above forty-nine medals are given as rewards for participating in the operatinns they commemorate, and issued generally to all concerned, irrespective of individual distinction or bravery. There are other classes of medals and decorations, civil as well as military, which must be grouped wilh them, as being allied in character. These are either (i.) awards personal to the recipient, being an acknowledgment of or reward for special individual services or good conduct (these are civil as well as military in respect of awards for bravery), or (ii.) awards that are simply of a commemorative kind, though worn as war medals and for the most part given to officers and soldiers. The more important of these two classes will be named. Orders given for service are dealt with, for the most part in the article Knigaxiood; hut particulars are given here of certain distinctively military orders that have no knighthood rights and duties, and indeed litte meaning apart from the deeds or services which led to the award-being so to speak, records of the past; rather than badges of a present membership. Individual decorations for services may he classed as (i.) for gallantry, (ii.) for special merit, and (iii.) for long service and good conduct.
B. Indian Order of Meril.-Awarded by H.E.I. Company and notified by G.O. of governor-general, Apri1 17, 1837. Obverse: Ist Class-A Gold Star, 11 in. diameter; in the cenere, in gold on a ground of dark blue enamel, crossed swords within a circle around which is the legend, REWARD OF VALOUR, the whole encircled by a gold laurel wreath. 2nd Ciass-Star similar to that of 1 st Class, but in silver. Wreath and centre as in 1st Class. 3 rd ClassStar exactly similar to that nf and Class, but the wreath and centre in silver, and dark blue enamel and silver, respectively. Reverse: Engraved ist, 2nd and 3rd Class Order of Merit, respectively, but the name of the recipient is not engraved on the decoration when issued. Ribbon: Dark blue, with red edges. This decoration is to be obtained only by a "conspicuous act of individual gaflanery" in the fieid or in the attack or defence of fortified places. It is open to alf native officers or soidiers of the Jndian Army. "without distinction of rank or grade." The 3rd Class is bestowed for the frst act of gallantry for which the recipient is secommended. The and Class is given only to those who possess the third, and for a second act of conspicuous gallantry. The tst Class is given only to those who hold the 2nd, and for a thind act of bravery. A recipient of the decoration receives an additional allowance equivalent in the 3rd Class tn one-third, in the 2nd to two-thirds, and in the Ist to the whole of the ordinary pay of his rank, over and above that pay or his pension. The widow (in the case of plurality of wives, the first married) receives the pension of the Order for three years after her husband's death.
2. Victoria Cross-Instituted by Royal Warrant, January 29, 1856. A bronze Maltese Cross, II in. diameter, with, in the centre, the Royal Crest (lica and crown), and below it a scroll
inscribed "FOR VALOUR." There is a bronze laureated bar for suspension, connected with the crosa by a V. The reverse is plain, but the name, rank and corps of the recipient are engraved on the back of the taureated bar. Ribbon: Red for the army; blue far the navy. Clasp: Far every additional act of bravery a clasp, bearing the date of such act, may be awarded.

Nothing save "the merit nf conspicuous bravery" gives claim for the decoration, and it must be evinced by "some signal act of valnur or devotion to their country" performed "in the presence of the enemy." (The regulation italicized was for a chort time abrogated, but soon restored to lorce.) The original Royal Warrant has been supplemented by various Royal Warrants (Oct. 1857, Aug. and Dec. 1858, Jan, 1867, April and Aug. 1881), and now every grade and rank of all ranks of all branches of His Majesty's Forces, British and Colonial, are eligible, with the single exception of native ranks of the Indian army, who have an equivalent decoration in their own Order of Merit In the case of recipients who are not of commissioned rank, the Cross carries with it a pension of flo a year, and an additional f5 a year for each clasp. A larger grant is sometimes given to holders nf the V.C. who are in need of monetary help. In all, up to 1904, the Cross was awarded to 521 recipients (including 15 post humous awards)
3. Distinguished Conduct in the Field (Arm).-Instituted by Royal Warrant, September 30, 1862 . Obverse: A military trophy with, in the centre, the Royal Arms (as in the Long Service and Good Conduce Medals). Reverse: inscribed "FOR DISTIN. GUISHED CONDUCT IN THE FIELD.: Ribbon: Three stripes equal width, outside red, centre blue (Plate 11.). Clasp: Royal Warrant. 7th of February 1881, authorized award nf clasps for subsequent acts of gallantry.

Individual acts of distinguished conduct in the fictd in any part of the world "entitle to this medal, and only non-commissioned officers and men of the British forces are eligible for the award. Prior to its institution, distinguished gallantry was rewarded by the "Meritorious Service" medal. Singie clasps bave been constantly conferred, and there is more than one case of a recipient having earned twoclasps tn his medal.
4^{4} Albert Medal (lor saving life at sea).-lnstituted by Royal Warrant, $7^{\text {th }}$ of March 1866 . Gold oval badge, enamelled in dark blue, with a monogram composed of the letters V and A, interfaced with an anchor erect, all in gold, surrounded with a garter in bronze, inscribed in raised ietters of gold "FOR GALLANTRY IN SAVING LIFE AT SEA," and surmounted by a representation of the crown of the prince consort, the whole edged with gold. Ribbon: dark blue, with two white stripes. Clasps are awarded for any subsequent acts of bravery. By a subsequent Royal Warrant of the 12th al April 1867, the decoration was re-constinuted in ewo classes, as foliows. Ist Claso-Badge precisely as already described. Ribbon: Dark blue, with four white stripes (il in. wide). Clasps: As authorized in original warrant. 2nd ClastBadge exactly similar to that of the $15 t$ Class, except that it is entirely worked in bronze, instead of gold and bronze. Ribbon: Dark blue, with beo white stripes. Clasps: As authorized for 1st Class.
The decoration is awarded only to those who "have, in saving or endeavouring to save the lives of others from shipwreck or other peril of the sea, endangered their own lives." The 1st Class is confined "to cases of extreme and heroic daring ": the 2nd for acts which, thnugh great courage may be shown, ", are not sufficiently distinguished to deserve " the tat Class of the decoration.
5. Newe Zealand Cross.-Instituted by an Order of the governor of New Zealand in council, 10th of March, 1869. Silver Malrese Cross with gold star on cach of the faur iimbs and in the centre, in a circle within a gold laurel wreath, NEW ZEALAND. Above the Cross a crown in gold, and connected at the tap by $V_{\text {, }}$ to a silver bar ornamented with laurel in gold. The name of recipient is cngraved on reverse. Width of Cross, it in. Ribbon: Crimson. Clasps: Authorized for subsequent acts of valour. In authorizing this decoration Sir G. F. Bowen, the then gnvernor, went outside his authority, but the queen ratified the calonial order in council, and intimated "Her gracious desire that the arrangements made by it may be considered as established from that date by Her direct authority." It was, however, stipulated that the oceasion was in no way to form a precedent. The award was to be for those " who may particularly distinguish themselves by their bravery in action or devotion to their duty while on service," and only local "Militia, Volunteers or Armed Constabulary" were to be eligible. In all only nineteen of these decorations were awarded. No clasps were a warded.
6. Conspic nous Gallaniry (Nary).-Inatituted by an Order of the queen in Council, 7 th of July, 1874. Obverse: Head of Queen Victoria, by W. Wyon. R.A. (as on China Medal), I Reverse: A laurel wreath, and within FOR CONSPICUOUS GALLANTRY. Above, a crown. Ribbon: Three stripes of equal width, outside blue, centre white (Plate Ii.). Clasps: none authorized.
To reward " acts of pre-eminent bravery in Action with the Enemy." Only petty officers and seamen nf the Royal Navy,
i Now naval effigy of King Edward VII., as on Traneport Servioe Medal.

and mon-commiseioned officers and privatet of the Royal Marinet, are eligible for this decoration. Prior to the institution of this decoration, acts of gallantry by sailors and marines were rewarded by the same medal as that given to the army before the " medal for distinguished conduct in the field "was instituted, viz. the "Meritorious Service " medal. If the holder be a Chier or First Class Petty Offcer, or a Sergeant of Marines, the awand carries with it an annuity of f20 per annum; and if a recipient's service ends before his reaching one of those ranks, be may receive a gratuity of 200 on discharge.
7. Albert Medal (for saving life on land).-Instituted by Royal Warrant. 30th of April 1877. ist Class-Similar to that of the 1st Class for saving fife at sea, hut the enamelling is in red instead of blue, and there is no anchor interlaced with the monogram V.A. Ribbon: Crimson, with four white stripes. Clasps: for subseguent acts of same character. 2nd Class-Badge similar to that of the and Class for saving life at sea, but the enamelling is in red instead of hlue, and there is no anchor interlaced with the monogram V.A. Ribbon: Crimson, with two white stripes. Clasps: As authorized for ist Class.
The conditions governing the award of this decoration are the saine that govern the award for saving life at sea. Originally the a ward was restricted to acts of gallantry performed within British dominions, but this restriction was removed by Royal Wartant, 5th of June igos.
8. Distinguished Conduct in the Field (Colonial).-Instituted hy a Royal Warrant, 24th of May t894, which was later cancelled and superseded hy Royal Warrant, 3 ist of May 1895. Ohverse: mame as "' Distinguished Conduct in the Field " (Arny). Reverse: same as "Army" medal, hut with the name of the colory inscribed above the words "For Distinguished Conduct in the Field." Ribbon: Crimson, with a line of the colonial colour in the centre Clasps: Authorized for subsequent acts of valour. Every colony or protectorate, having permarrently embodied forces, draws up regulations to govern the issue of these medals as zuit its own particular requirements, hut in sll essentials these regulations are modelled on those that govern the award of the Distinguished Conduct in the Field (Army).
9. Conspicuous Service Cross.-Instituted by an Order in Council. reth of June igor. Silver cross, with the reverse side plain: on the ohverse, in the centre, the Imperial and Royal Cypher, E.R.I. surmouated by the imperial crown. Ribbon: Three stripes equal width. outside white, centre blue. Clasps: none authorized.
This award is to recognize "Distinguished Service before the Enemy." Its grant is conkned to "Warrant Officers or Subordinate Officers" of the Royal Navy. Such, not being of "lowerdeck rating," are not eligible for the "Conspicuous Gallantry" medal; also, they, "by reason of not holding a commission in the Royal Navy, are not eligible to any existing Order or Decoration."
10. Eduard Medal.-Founded in 1907 to reward acts of courage in saving life in mines, this medal was extended in 1909 (R.W. Dec. 3) so as to be awarded "to those who in course of industrial employment endanger their own lives in saving or endeavouring to save the lives of others from perils incurred in coanexion with such industrial employment."
Certain important medals and decorations for saving life are not the gift of the Crown. These are allowed to be worn in uniform on the right breast. They are the medals of the Royal Humane Society, those given by the Board of Trade for gallantry in saving life at sea, the medals of the Royal National Lifeboat Instilution, those of the Shipwrecked Fishermen and Mariners' Royal Benevolent Society, Lloyd's Honorary Silver Medal, Liverpool Shipwrecked and Humane Society's Medals, and the Stanhope Gold Medal.
All these are suspended from a dark blue ribbon with the exception of the medals of the $\mathrm{S} . \mathrm{F}$. and M. Royal Benevolent Society, which has a light hluc ribbon, and the Stanhope Gold Medal which has a broad dark hlue centre, edged with yellow, and black borders. These medals are usually struck in silver or bronze, but occasionally gold medals are awarded. The Stanhope Gold Medal is annually awarded for the most gallant of all the acts of reacue for which the society have awarded medals during the year. This a ward has been frequently earned by officers or men of the Royal Navy. It is, in fact, the "Victoria Cross" of awards of this character.

The following are decorations for special merit:-

1. Order of British India.-Instituted by General Order of Governor-General of India, 17th of April 1837. ist Class-A gold star of eight points radiated, 11 ln . in diameter, between tbe two top points the crown of England. In the ceptre, on a ground of tight blue enamel, a gold lion statant, within a bend of dark blue enamel, containing in gold letters ORDER OF BRITISH INDIA, the whole encircled by a gold laurel wreath. The whole hangs from the rihbon by a gold loop attached by a ring to the top of the crown, and is worn round the neck, outtide the uniforms. Ribbon: originally sky-blue, changed to crimson 1838. 2nd Clase. Gold star similar to that of the ist Class, but smaller, $1 \frac{1}{2} \mathrm{in}$. diameter,
and withoot the crown. The centre aloo in similar to that of the Ist Class atar, but the enamelling is all dart blue. Suspended and worn as in the 1st Class. Ribbon: As in Ist Clase.
This, the highest military distinction to which in the ordinary course native officers of the Indian Army can attaio, and confined to them, is a reward for long, honourahle and specially meritorious service. The Ist Class is composed exclusively of officers of and above the rant of Subadar in the artillery and infantry, or of a corresponding rank in the other branches of the service. The 2nd Class is open to all native comnaissioned officers, irrespective of their rank. Originally the order was limited to 100 in the 1st Class and the same number in the and. hut it now comprises 215 in the tst Clase and 324 in the and Cless. Officers in the 1st Class are eatitled to the vitle of "Sirdar Bahadur," and receive a daily allowance of two rupees in addition to the pay, allowancea or pension of their rank, while those of the and Class are sxyled "Bahadur." and receive an extra one rupee per diem.
2. Abriity and Good Couduct-Instituted in 1842. Ohverse: A paddle-wheel steamship. Reverse: Crown and anchor, and inscribed, FOR ABILITY AND GOOD CONDUCT. Ribbon: None authorised.
No official documents as regards the institution of this decoration are oow to be found at the Admiralty, but only engineers weré eligible for the award, and it carried no gratuity or annuity. Only six were ever awarded. When, in 1847, engineera were raised to the rank of warraat officen, the iscue of this decoration was ditcontinned. It had a ring for zuspension, and was probably worn with the narrow navy blue ribbon of the "Long Service and Good Conduct " medal of the period.
3. Merilorious Service (Army and Ropal Marines).-Instituted hy Royal Warrant, 19th December 1845, for army only; grant extended to Royal Marines by Order in Council, $15^{\text {th }}$ January 1849. Obverse: Head of Queen Victoria as on China medal. ${ }^{1}$ Reverse: FOR MERITORIOUS SERVICE, within a laurel wreath Rihbon: Crimson for army (Plate III.); navy blue for Royal Marines. Only non-commissioned officers of or above the rank of sergeant are eligitle for this decoration. It carries with it an annuity not exceeding (20 per annum; but, as the total sum avail. able is strictly limited, the number of these medals that is issued is small, and a non-commissioned officer who is recommended may have to wait many years before his turn comes and he receives the award. The qualification for recommendation is long, efficient and meritorious service, and need not necessarily, although in many cases it does, include any special display of personal gallantry in action. For many years the "meritorious service" medal was considered to cancel the "long service and good conduct " medal, but by A.O. 250 of 1902 both medals can be worn together.?
4. The Distinguished Service Ordor (see Knighthood) is given only to officers (and naval and military officials of officer rank, not including lndian native officers) for services in war. Often it is the reward of actual conspicuous gallantry under $6 r e$, but its purpose. as defined in the Royal Warrant instituting the order, is to reward "individual instances of meritorious or distinguished service in war: " and the same document declares that only those shall be eligible who have been mentioned in despatches for meritorious or distinguished service in the field, or before thre enemy." In the main, therefore, it is awarded for special services in war, and not necessarily under fire; and although the services rewarded are as a fact generally rendered in action, the order is in no sense a sort of second class of the Victoria Cross. Like the latter, the Distinguished Service Order is generally referred to hy its initials.
5. The Royol Red Cross is also an Order. Membership is reatricted to women (not necessarily British suhjects), and is given as a reward for naval or military nursing service. lustituted 1883 .
6. The Kaisar-i-Hind Medal is given lor puhlic services in India.
7. The Volunicer Officers' Decoration.-Instituted in i892. An oval of silver. crossed at intervals with gold, in the centre the monogram V.R. and crown in gold. Worn from a ring. Ribbon: Dark green.
This decoration was instituted in 1892, and is the reward of twenty years' service in the commissioned ranks of the volunteer force. ft is generally called the "V.D." Since the conversion of the Volunteer into the Territorial Force (1908) it has been replaced hy THE TERRITORIAL OFFICERS' DECORATION. Officers of the Royal Naval Reserve and of the Royal Naval Volunteer Reserve are eligible for a similar decoration (19t0).
8. The Long Service and Good Conduct (A rmy) Medal was instituted in 1833. Obverse: A trophy of arms: Reverse: FOR LONG SERVICE AND GOOD CONDUCT. Ribbon: Crimson, as for "Meritorious Service" medal (Plate II.).
This is a reward for "long service with irreproachable character and conduct," the qualifying period of service being 18 years.
${ }^{2}$ Now naval effigy of King Edward VII., as on Transport Service medal.
"Other "Meritorious" or "Long Service " medals worn with a crimson ribbon are the former Long Service medal of the H.E.I. Company's European troops and the Meritorious and Long Service medals of the Indian Native Army.
a Now replaced by military effigy of King Edward VII.
9. The Long Service and Good Conduct (Navy) Medal was instituted in 1831. Ribbon: Blue, with white edges (Plate I!.).
10. The Volunkect Long Service Medal.-Instituted in 1894 Has a green ribbon. Obverse: Effigy of Queen Victoria. Reverse: A scroll within a wreath, inscribed FOR LONG SERVICE IN THE VOLUNTEER FORCE. Replaced by the Territorial Long Service Medal (1908), of which the ribbon is green with a yellow centre; and the obverse a bust of the king. The Militia Lown Service Medal (tgo4) has a light blue ribbon, the Imperial Veomanry Long Service iledal a sellow ribbon, the Ilonourable Artillery Company's Medal a black, red and yellow ribbon. All these are shown on Plate II.'
11. The Medal for the Best Shot in the Army was instituted in 1869 Obverse: Bust of Queen Victoria (now effigy of King Edward VII.). Reverse: A winged Victory crowning a warrior. Rihbon: Red, with two narrow black stripes on each edge, the two black stripes being divided by a narrow white one. There is also a "Best Shot" Medal for the Indian Native Army, which has an orange ribbon.
12. The Medal for Navol Gunnery was instituted in 1go3. Ribbon: Red centre, fianked by two narrow white stripes, two broad blue rtripes at edges (Plate II.).
Amongst medals of the last class may be mentioned the Jubilee Medals of 1887 and 1897, the Conomation Medal of 1902, the Royal Victorian Medal (this, however, is a sort of sixth class of the Royal Victorian Order, for which see Knigutiood) and the medals a warded for Durbars.

United States.-The war medals and decorations of the United States, although few in number, are interesting, as they follow a peculiar system in the colours of the rihbons.
The principal military decoration of the United States Is the "Medal of Honor." which was founded for the reward of unusual bravery or special good conduct during the Civil War. In its present form it is a five-pointed star, with a medallion in the centre bearing a head of Minerva and round it UNITED STATES OF AMERICA in relief. On each ray of the star is an oak-leaf, and the points themselves are trefoil shaped. A hurel wreath, in green enamel, encircles the whole, aod this wreath is surmounted by VALOR, which in turn is surmounted by an cagle that attaches the decoration to its ribbon. This last is blue, with thirteen white stars worked on it in silk. Accompanying this decoration there is a badge or lapel button, hexagonal, and made of blue silk with the thirteen stars in white.
The original form of the decoration had no encircling wreath; on the rays, instead of the oak-leaves, were small wreaths of laurel and oak, and the design in the central medallion was a figure of Minerva standing, with her left hand resting upon a consul's fasces and her right warding off with a shield the fgure of Discord. The background was formed by thirty-four stars. The decoration was surmounted by trophy of crossed guns, swords, \&c., with eagle above, and the ribbon was designed of the national colours, as follows: thirteen alternate red and white stripes, and across the ribbon at the top a broad band of blue (palewise gules and argent and a chief azure). The ribbon was attached to the coat bya clasp badge bearing two cornucopias and the arms of the U.S. The present decoration does not have this badge, but is suspended from a concealed bar brooch.
Another special decoration is the "Merit" Medal. This bears on the obverse an eagle, surrounded by the inscription VIRTVTIS ET AVDACIAE MONVMENTVM ET PRAEMIVM, and on the reverse the inscription FOR MERIT, surrounded by an oak-leaf wrath: in the upper part of the exergue is UNITED STATES ARMY, in the lower thirteen stars. The ribbon is red, white and blue, in six stripes, two red stripes divided by a fine white line in the centre, two white on either side of the red and two blue forming the two outer edges.
We come now to the war medals proper, issued generally to all those who took part in the events commemorated.
The Civil War Medal bears on the obverse the portrait of Lincoln, surrounded by an inscription taken from his famous Second Inau-gural-WITH MALICE TOWARDS NONE, WITH CHARITY FOR ALL. On the reverse is the inscription THE CIVIL WAR, 1861-1865 surrounded by a wreath of oak leaves and olive branches. The ribbon is somewhat similar to that last described; the' blue stripe, however, is in the centre, divided as belore by a white line, and the red stripes form the outer edges.
The "Indian Wars" Medal is interesting from the fact that its reverse was copied on other medals, this making it, in a sense, a "gencral service" medal. On the obverse is a mounted Indian in war costume bearing a spear, in the upper part of the exergue INDIAN WARS, in the lower a buffalo's skull with arrow-heads on either side. What we bave callied the "general service " design

[^5]on the reverse is composed of (a) an eagle perched on a cannon, supported by five standards (typifying the give great wars of the United States), rifles, Indian shicld, spear and arrows. Filipino dagger and Cuban machete: (b) below this trophy the words FOR SERVICE; (c) in exerguc, above, UNITED STATES ARMY. below, thirteen stars.

Ribbon of the Indian Medal, vermilion, with deep red edges.
The "War with Spain". Medal bears on the obverse a castle with two flanking towers; in exergue, above, WAR WITH SPAJN, below, the date 1898 . with, on one side of it, a branch of the tobaccoplant, and on the other a sugar-canc. Reverse: As for "Indian Wars" Medal. Ribbon: Centre golden-yellow, with two red stripes close to the edges, the edges themselves being narrow stripes of blue.

The " Philippine Insurrcction " Meda! bears on the obverse a coco-nut palm tree, with, on the left of it, a lamp (typifying En. lightemment), and on the right a balance (representing Justice). This is encircled by the inscription PHILIPPINE INSURRECTION 1899. The riblon is blue, with two red stripes near the edges. Reverse: As in " Indian Wars "Medal.

Another medal connected with the Filipino insurrection is the so-called "Congressional " Medal, which was designed to comme morate the participation in the war of regulars and voluntecrs, North. erners and Southerners, side by side. On the obverse is a colourparty of infantry with the national flag, the fly of the flag extending almost to the edge of the medal. Below is the date, 1899, and above, in a senicircle, PHILIPPINE INSURRECTION. The reverse has the inscription FOR PATRIOTISM, FORTITUDE AND LOYALTY, surrounded by a wreath of oak-leaves (typifying the North) and palrn branches (typifying the South). The ribbon is blue, edged by narrow stripes of the national colours, the blue being nearest the edge and the red nearest the centre.

The "China Relief" Medal bears on the obverse a Chinese dragon, surrounded by the inscription CHINA RELIEF EXPEDITION, and at bottom, the date 1900-I. Reverse: As for "Indian Wars" medal. Kibbon: Lemon-yellow, with narrow blue edges.
It is interesting to note that in the case of two of these medals the mational colours of the enemy (Spain and Chima) furnish those of the ribbon. The mational colours adopted by the Filipinos were red and blue, and these also figure, in spite of their similarity to the U.S. national colours, on the ribbons of the "Filipino" and "Congressional" Medals. The Indian ribbon is, similarly, of the colour of the enemy's war paint-vermilion. See, for illustrations and further details of all these medals and decorations, Journal of the [U.S.] Military Service Instifution, May-June 1909. Some of the badges of membership of associations of vetcrans, such as the Loyal Legion, are allowed to be worn as war medals in uniform. The " Rescue" Medal, in gold or silver, is awarded for bravery in saving life by land or sea.

Other Coumiries.-As has been mentioned above, foreign decorations for military service usually take the form of Orders in many classes. There are, however, numerous long service decorations, which need not be specified. The most famous of the European war and service decorations are the Prussian Iron Cross, the French Medaille Mililvire, amd the Russian. St George's Cross; all these are individual decorations.

The Iron Cross is given to officers and soldiers lor distinguished service in war. It was founded, in the enthusiasm of the War of Liberation movement, on the soth of March 1813, and revived at the outbreak of the "War for Unity "against France, 19th of July 1870. The cross is a Maltese cross of cast iron edged with siver. The 1813^{-15} crosses have the initials F. W. (Friedrich Withelin) in the centre, a crown in the upper liml) of the cross, and the date in the lower. Those of 1870 have W. (Wilhelm) in the centre, crown on the upper and date on the lower limb of the cross. There are certain distinctions between the Grand Cross, which is worn at the neck, the 1st Class Cross which is worn as an Order suspended from a ribbon, and the 2nd Class Cross, which is worn on the breast. In 1870 war medals were given, bearing on the obverse a Maltese cross superposed on a many-pointed star, and having in its centre 1870-187t within a wreath. The reverse has W, and a crown, with, for combatants the inscription Dem siegreichen Heere, and for non-combatants Für Pftichtreue im Ǩriege, in cach case surrounded by the words Golf war mit uns Thns sei die Ehre. The award of the Iron Cross to the rank aod hile carries with it an allowance of 3-6 marks monthly.
(H. L. S. ; C. F. A.)

MEDEA (Gr. Mウீewa), in Greek legend, a famous sorceress, daugher of Acces, king of Colchis. Having been thrown into prison by her father, who was afraid of being injured by her witcheraft, she escaped by means of her art and fled to the temple of Ifclios the Sun-god, her reputed grandfather. She fell in love with Jason the Argonaut, who reached Colchis at this lime, and exacted a terrible revenge for his faithlessness (see Argonauts and Jason). After the murder of Jason's
second wife and her own children, she fied from Corinth in her car drawn by dragons; the gift of Helios, to Athens, where she married king Aegeus, by whom she bad a son, Medus. But the discovery of an attempt on the life of Theseus, the son of Aegeus, forced her to leave Athens (Apollodorus i. 9, 28; Pausanias ii. 3, 6-11; Diod. Sic. iv. 45, 46, 54-56). Accompanied by her son, she returned to Colchis, and restored her father to the throne, of which he had been deprived by his own brother Perses. Medus was regarded as the eponymous hero and progenitor of the Medes. Medea was honoured as a goddess at Corinth, and was said to bave become the wife of Achilles in the Elysian fields. Tbe chief seat of her cult, however, was Thessaly, which was always regarded as the home of magic. As time went on her character was less favourably described. In the case of Jason and the Argonauts, she plays the part of a kindly, good-natured fairy; Euripides, however, makes her a barbarous priestess of Hecate, while the Alexandrian writers depicted her in still darker colours. Some authorities regard Medea as a lunar divinity, but the ancient conception of her as a Thessalian sorceress is probably correct. The popularity of the story of Jason and Medea in antiquity is shown by the targe amount of literature on the subject. The original story was probably contained in an old epic poem called Muvas roinots, the authorship of which was ascribed to Prodicus of Phocaea. It is given at some length in the fourth Pythian ode of Pindar, and forms the subject of the Argonaulica of Apollonius Rhodius. There is a touching epistle (Medea to Jason) in the Heroides of Ovid. Medea is the heroine of extant tragedies of Euripides and Seneca; those of Aeschylus and Ennius (adapted from Euripides) are lost. Neophron of Sicyon and Melanthius wrote plays of the same name. Among modern writers on the same theme may be mentioned T. Corneille, F. Grilparzer and M. Cherubini (opera).

The death of Glauce and the murder of her children by Medea was frequently represented in ancient art. In the famous picture of Tomomachus of Byzantium Medea is deliberating thether or not she shall kill her children; there are copies of this painting in the mural decorations of Herculaneum and Pompeii.

See Leon Mallinger, Medee: thude sur la lilltrature comparte, an account of Medea in Greek, Roman, middle age and modern literature (1898); and the articles in Daremberg and Saglio's Dictionnaire' des antiquit's and Roscher's Lexikon der Myhologit.

MEDELLIN, a city of Colombia and capital of the depart ment of Antioquia, 150 m . N.W. of Bogota, on a plateau of the Central Cordillera, 4823 ft . above sea-level. Pop. (1906 estimate), 50,000 . Medellin, tbe foundation of whicb dates from 1674, stands in the valley of tbe Porce, a tributary of the Cauca, and is reputed to be one of the healt hiest as well as one of the most attractive cities of the republic. It has a university, national college, school of mines and other educational institutions, assaying and refining laboratories, a public library and a mint. The principal industry of the surrounding country is mining, and gold and silver are exported in considerable quantitics. Coffee and hides are also exported, but the trade of the city has been greatly impeded by difficulties of transportation. A railway from Puerto Berrio, on the Magdalena, was begun many years before the end of the 19th century, but political and financial difficulties interposed and work was suspended when only 43 m . were finisbed. The completion of the remaining 80 m . was part of a larger scheme proposed in 1906 for bringing the Cauca Valley into railway communication with the national capital.

MEDEMBLIK, a seaport of Holland, on the Zuider Zee, the terminus of a branch railway from Hoorn, $10 \frac{1}{2} \mathrm{~m}$. S. Pop. (igo3), 3012. Once the capital of West Friesland and a prosperous town, many of its streets and quays are now deserted, though the docks and basins constructed at the end of the i6th and beginning of the 17 th centuries could still afford excellent accommodation for many ships. Close to the harbour entrance stands the castle built by Florens V., count of Holland, in 1285. It has been restored, and is used as a court of justice. The

West church, formerly called after St Boniface, the apostle of Germany, was once the richest in Friesland, and belonged from an early date to the cathedral chapter at Utrecht, where, until the Reformation, the pastor of Medemblik had a seat in the cathedral. It contains the tomb of Lord Ceorge Murray (q.v.). Among the public buildings are the town-hall (izth century), weigh-house, orphanage, the old almshouse, the house (1613) of the Water Commissioners, and a large building formerly belonging to the admiralty and now used as a state lunatic asylum. There are many interesting brick houses, dating chiefly from the first half of the $17^{\text {th }}$ century, with curious gables and picturesque ornamentation, carvings and inscriptions.
MEDFORD, a city, including several villages, of Middlesex county, Massachuselts, U.S.A., on the Mystic river and Lakes, 5 m . N. by W. of Boston. Pop. (1900), 18,244, of whom 4327 were foreign-born: (1910 census) 23.150. The city is served by the Southern Division and a branch of the Western Division of the Boston \& Maine railroad, and is connected with Boston and neighbouring cities by electric railways. The Mystic River, a tidewater stream, is navigable for small craft as far as the centre of the city. There are manufactures of considerable importance, including bricks and tiles, woollen goods, carriages and wagons, food products, iron and steel building materials and machinery. The city covers a land area of about $8 \mathrm{sq} . \mathrm{m}$., along the Mystic river, and extending to the hills. The western portion borders the Upper and Lower Mystic Lakes, which are centres for boating. In the north-west portion of Medford is a part of the Middlesex Fells, a heavily wooded reserve belonging to the extensive Metropolitan Park System maintained by the state. The broad parkways of this system also skirt the Mystic Lakes, and here is the greater part (1907, 267 out of 291 acres) of the Mystic River Reservation of the Metropolitan System. Among the city parks are Hastings, Brooks, Logan, Tufts and Magoun. Within the city limits are some of the oldest and most interesting examples of colonial domestic architecture in America, including the so-called "Cradock House" (actually the Peter Tufts house, built in 1677-1680), the "Wellington House," built in 1657, and the "Royall House." The last was built originally by Governor John Winthrop for the tenants of his Ten Hills Farm, and was subsequently enlarged and occupied. by Lieut.-Governor John Usber, and by Isaac Royall ' (c. 1720-1781) and his son, Isaac Royall, Jun.

- Medford has a public library of about 35,200 volumes, housed in the colonial residence (reconstructed) of Thatcher Magoun. The city has also a city hall, a high school and manual training school, an opera house, and one of the handsomest armory buildings in the country (the home of the Lawrence Light Guard), presented by General Samuel C. Lawrence (b. 1832), a liberal benefactor of Medford institutions and the first mayor of the city ($1892-1894$). The Salem St. Burying Ground, dating from 1689, is one of the oldest burial places in America. The Medford Historical Society maintains a library and museum in the birthplace of Lydia Maria Child. Medford is the seat of Tufts College, planned and founded as a Universalist institution in 1852 by Hosea Bailou, its first president, and others, and named in honour of Charles Tufts ($1781-1876$), a successful manufacturer, who gave the land on whicb it stands. The coilege, which had i120 students and 217 instructors in 1909, comprises a college of letters, a divinity scbool, and a school of enginecring (all in Medford), and medical and dental schools in Boston; it is now undenominational. Among the twenty college buildings, the Barnum Museum of Natural History (1885) founded by Phineas T. Barnum, and the Eaton Memcrial Library (1907), presented by Mrs Andrew Carnegie in memory of her pastor, are noteworthy. The college endowment amounted in 1908 to $\$ 2,300,000$.

Medford was first settled in 1630. A considerable portion of its area formed the plantation of Matthew Cradock (d. 1641), first governor of tbe Massachusetts Bay Company, who in 1630°
${ }^{2}$ A prominent Loyalist, whose estate was seized during the War of Independence, but was restored to bis heirs about 1800 . He endowed the fint profeseorship of law in America-at Harvard College.
sent out agents to settle his lands. John Winthrop's "Ten Hills Farm," partly within the present limits of Medford, was setuled soon afterwards. Oae of the earliest industries was ship-building, John Winthrop's "Blessing of the Bay," built on the Mystic in 1631-1632, being one of the first keels laid on the continent. In 1802 Thatcher Magoun began building sea-going vessels, and many of the famous piivateers of the War of 1812 were constructed here. By 1845 Medford employed fully a quarter of all the shipwrights of the state. The industry gradually lost its importance after the introduction of steamships, and the last keel was laid in 1873 . Another early industry was the distilling of rum; this was carried on for two centuries, especially by the Hall family and, after about 1830, by the Lawrence family, but was discontinued in 1905 . The manufacture of brick and tile was an important industry in the 17th century. The Cradock bridge, the first toll-bridge in New England, was built across the Mystic in 1638; over it for 150 years ran the principal thoroughfare, from Boston to Maine and New Hampshire. The course of Paul Revere's ride lay through Medford Square and High Street, and within a halfhour of his passage the Medford minute men were on their way to Lexington and Concord, where they took part in the engagements with the British. After the Batule of Saratoga many of Burgoyne's officers were quartered here for the winter. The Middlesex Canal was opened through Medford in 1803, and the Boston \& Lowell railroad (now the southern division of the Boston \& Maine) in 1831. Medford was chartered as a city in 1892.
See Charles Brooks, History of the Tewn of Medford (Boston, 1855; enlarged by J. M. Usher, Boston, 1886); Historical Resister of the Mediord Historical Society (1898 et seq.) ; Proccedings of the 2751h Annioresory of the Sellicment of Medford (Medford, 1905): S. A. Drake, History of Widdlesex County (2 vols., Bosion, 1880) and Helen Tikden Wild, Medford in the Revolution (Medford, 1903).

MEDRANRARA, the name of several distinguished members, in medieval times, of the Buddhist order. The oldest flourished about a.D. 1200, and was the author of the Vinaya Artha Samuccaya, a work in the Sinhalese language on Buddhist canon law. Next to him came Araffaka Medhankara, who presided over the Buddhist council held at Polonnaruwa, then the capital of Ceylon, in 1250 . The third Vanaratana Medhankara, flourished in 1280 , and wrote a poem in Pali, Jina Carila, on the life of the Buddha. He also wrote the Payoga Siddhi. The fourth was the celebrated scholar to whom King Parakrams Bahu IV. of Ceylon entrusted in 1307 the translation from Pali into Sinhalese of the JJoaka book, the most voluminous extant work in Sinhalese. The fifth, a Burmese, was called the Sangharaja Nava Medhankara, and wrote in Pali a work entilled the Loka Padipa Sdra, on cosmogony and allied subjects.
See the Journal of the Pali Text Society, 1882. p. 126; 1886, pp. 62, 67, 72; 1890, p. 63; 1896, p. 43:.Mahduamsa, ch. x1., verse 85.
(T. W. R. D.)

IHEDHUST, WALTER HENRY (1790-1857), English Congregationalist missionary to China, was born in London and educated at St Paul's school. He learned the husiness of a printer, and having become interested in Christian missions he sailed in 1816 for the London Missionary Society's station at Malacca, which was intended to be a great printing-centre. He became proficient in Malay, in a knowledge of the written characters of Chinese, and in the colloquial use of more than one of its dialects. He was ordained at Malacca in 1819, and engaged in missionary labours, first at Penang, then at Batavia, and finally, when peace was concluded with China in 1842, at Shanghai. There he continued till 1856 , laying the foundations of a successful mission. His principal labour for several years, as one of a committee of delegates, was in the revision of existing Chinese versions of the Bible. The result was a version (in High Wen-li) marvellously correct and faithful to the original. With John Stronach he also translated the New Testament into the Mandarin dialect of Nanking. His Chinese-English and EnglishChinese dictionaries (each in 2 vols.) are still valuable, and to him the British public owed its understanding of the teaching of Hung-Sew-Tseuen, the leader of the Tai-ping rising (185ı-64).

The university of New York conferred upon him in 1843 the degree of D.D. Medhurst left Shanghai in 18 g 6 in failing health, and died two days after reaching London, on the $24 t$ h of January 1857. His son, Sir Waller Henry Medhurst (18221885), was British consul at Hankow and afterwards at Shanghai.

MEDIA, the ancicat name of the north-western part of Iran, the country of the Medes, corresponding to the modern provinces of Azerbaijan, Ardelan, Irak Ajemi, and parts of Kurdistan. It is separated from Armenia and the lowlands on the Tigris (Assyria) by the mighty ranges of the Zagros (mountains of Kurdistan; in its northern parts probably called Choatras, Plin. v. 98), and in the north by the valley of the Araxes (Aras). In the east it extends towards the Caspian Sca; but the high chains of mountains which surround the Caspian Sea (the Parachoathras of the ancients and the Elburz, separate it from the coast, and the narrow plains on the border of the sea (Gilan, the country of the Gelac and Amardi, and Mazandaran, in ancient times inhabited by the Tapuri) cannot be reckoned as part of Media proper. The greater part of Media is a mountainous plateau, about $3000-5000 \mathrm{ft}$. above the sea; but it contains some fertile plains. The climate is temperate, with cold winters, in strong contrast to the damp and unwholesome air of the shores of the Caspian, where the mountains are covered with a rich vegetation. Media contains only one tiver, which reaches the sea, the Sefid Rud (Amardus), which flows into the Caspian; but a great many streams are exhausted after a short course, and in the north-west is a large lake, the lake of Urumiah or Urmia.' From the mountains in the west spring some great tributaries of the Tigris, viz. the Diyala (Gyndes) and the Kerkheh (Cbonspes). Towards the south-east Media passes into the great central desert of Iran, which east wards of Rhagae (mod. Rai, near Teheran), in the region of the "Caspian gates," reaches to the foot of the Elburz chain. On a tract of about 150 m . the western part of Iran is connected with the east (Khorasan, Parthyaea) only by a narrow district (Choarene and Comisene), where human dwellings and small villages can exist.

The people of the Mada, Medes (the Greek form M $\hat{\eta} \delta o s$ is Ionian for $M \hat{A} \delta o x$) appear in history first in 836 B.c., when the Assytian conqueror Shalmaneser II. in his wars against the tribes of the Zagros received the tribute of the Amadai (this form, with prosthelic a-, which occurs only here, has many analogies in the names of Iranian tribes). His successors undertook many expeditions against the Medes (Madai). Sargon in 715 and 713 subjected them " to the far mountain Bikni," i.e. the Elburz (Demavend) and the borders of the desert. They were divided into meny districts and towns, under petty local chieftains; from the names which the Assyrian inscriptions mention, we learn that they were an Iranian tribe and that they bad already adopted the religion of Zoroaster. In spite of different attempts of some chieftains to shake off the Assyrian yoke (cf. the information obtained from prayers to the Sun-god for oracles against these rebels: Knudtzon, Assyristhe Gebete an den Sonnengolt), Media remained tributary to Assyria under Sargon's successors, Sennacherib, Esar-haddon and Assur-banipal.

Herodotus, i. ror, gives a list of six Median tribes (rérea), a mong them the Paractaceni, the inhabitants of the mountainous highland of Paraetacene, the district of Isfahan, and the Magoi, i.e. the Magians, the hereditary caste of the priests, who in Media took the place of the "fire-kindlers" (athraven) of the Zoroastrian religion, and who spread from Media to Persia and to the west. But the Iranian Medes were not the only inhabitants of the country. The names in the Assyrian inscriptions prove that the tribes in the Cagros and the northern parts of Media were not Iranians nor Indo-Europeans, but an aboriginal population, like the early inhabitants of Armenia, perhaps connected with the numerous tribes of the Caucasus.
${ }^{1}$ Anc. Mantianc, Strabo xi. 529: Martiane, Ptol. vi. 2, 5, probably identical with the name Matiane. Matiene, by which Herodotusi. 189, 202, ifi. 94, v. 49, 52 (in i. 72 and vii. 72 they seem to be a different people in Asia Mínor): Polyb. v. 44. 9: Strabo i. 49. ii. 73. xi. $509,514,523,525$; Plin vi. 48, designate the northern part α M Media.

We can see how the Iranian element gradually became dominant: princes with Iranian names occasionally occur as rulers of these tribes. But the Gelae, Tapuri, Cadusii, Amardi, Utii and other tribes in notthern Media and on the shores of the Caspian were not Iranians. With them Polybius v. 44, 9, Strabo xi. 507, 508 , 514 , and Pliny vi. 46, mention the Anariaci, whom they consider as a particular tribe; but in reality their name, the "Not-Arians," is the comprehensive designation of all these small tribes.

In the second hall of the 7 th century the Medians gained their independence and were united by a dynasty, which, if we may trust Herodotus, derived its origin from Deioces (q.o.), a Median chieftain in the Zagros, who was, with his kinsmen, transported hy Sargon to Hamath (Hamah) in Syria in 715 b.c. The kings, who created the Median Empire, were Phraortes and his son Cyaxares. Probahly they were chieftains of a nomadic Median tribe in the desert, the Manda, mentioned by Sargon; for the Babylonian king Nabonidus designates the Medians and their kings always as Manda. The origin and history of the Median Empire is quite obscure, as we possess almost no contemporary information, and not a single monument or inscription from Media itself. Our principal source is Herodotus, who wrongly makes Deioces the first king and uniter of the whole nation, and dates their independence from c. $710-$ i.e. from the time when the Assyrian supremacy was at its height. But his account contains real historical elements, whereas the story which Ctesias gave (a list of nine kings, beginning with Arbaces, who is said to bave destroyed Nineveh about 880 B.c., preserved in Diod. ii. 32 sqq. and copied by many leter authors) has no historical value whatever, although some of his names may be derived from local traditions. According to Herodotus, the conquests of Cyaxares were interrupted by an invasion of the Scythians, who founded an empire in western Asia, which lasted twenty-cight years. From the Assyrian prayers to the Sun-god, mentioned above, we learn that the Median dynasts, who tried rebellions against the Assyrians in the time of Esar-haddon and Assur-bani-pal, were allied with chieftains of the Cimmerians (who had come from the northern shore of the Black Sea and invaded Armenia and Asia Minor), of the Saparda, Ashguza and other tribes; and from Jeremiah and Zephaniah we know that a great invasion of Syria and Palestine by northern barbarians really took place in 626 B.c. With these facts the traditions of Herodotus must in some way be connected; but at present it is impossihle to regain the history of these times. The only certain facts are that in 606 Cyaxares succeeded in destroying Nineveh and the other cities of Assyria (see Phraortes and Deioces).

From then the Median king ruled over the greatest part of Iran, Assyria and Dorthern Mesopotamia, Armenia and Cappadocia. His power was very dangerous to their neighbours, and the exiled Jews expected the destruction of Babylonia by the Medes (Iss. xiii., xiv., xxi.; Jerem. 1. li.). When Cyaxares altacked Lydia, the kings of Cilicia and Babylon intervened and negotiated a peace in 585 , by which the Halys was established as the boundary. Nebuchadrezzar married a daughter of Cyarares, and an equilibrium of the great powers was maintained till the rise of Cyrus.
About the internal organization of the Median Empire we know only that the Greeks derive a great part of the ceremonial of the Persian court, the costume of the king, \&c., from Media. But it is certain that the national union of the Median clans was the work of their kings; and probably the capital Ecbatana (g.e.) was created by them.

By the rebellion of Cyrus, king of Persia, against his suzerain Astyages, the son of Cyaxares, in 553, and his victory in 550, the Medes were subjected to the Persians. In the new empire they retained a prominent position; in honour and war they stood next to the Persians; the ceremonial of their court was adopted by the new sovereigns who in the summer months resided in Ecbatana, and many noble Medes were employed as officials, satraps and generals. After the assassination of the usurper Smerdis, a Mede Fravartish (Phraortes), who-pretended
to be of the race of Cyazares, tried to restore the Median kingdom, but was defeated by the Persian generals and executed in Ecbatana (Darius in the Behistun inscr.). Another rebellion, in 409, against Darius IL. (Xedophon, Hellen. i. 2, 19) was of short duration. But the non-Aryan tribes of the north, especially the Cadusians, were always troublesome; many abortive expeditions of the later kings against them are mentioned.

Under the Persian rule the country was divided into two selrapies. The south, with Ecbatana and Rhagae (Rai), Media proper, or "Great Media," as it is often called, formed in Darius' organization the eleventh satrapy (Herodotus iii. 92), together with the Paricanians and Orthocorybantians; the north, the district of Matiane (see above), together with the mountainous districts of the Zagros and Assyria proper (east of the Tigris) was united with the Alarodians and Saspirians in eastern Armenia, and formed the eighteenth satrapy (Herod. iii. 94; cf. v. 49, 52, vii. 72). When the empire decayed and the Carduchi and other moumtainous tribes made themselves independent, eastern Armenia became a special satrapy, while Assyria seems to have been united with Media; therefore Xenophon in the Anabasis ii. 4, 27; iii, 5 , 15 ; vii. 8 , 25 ; c. iii. 4, 8 sqq. always designates Assyria by the name of Media.
Alexander occupied Media in the summer of 330; in 328 be appointed Atropates, a former general of Darius (Arrian iii. 8, 4), as satrap (iv. 18,3, vi. 29, 3), whose daughter was married to Perdiccas in 324 (Arrian vii. 4,5). In the partition of his empire, southern Media was given to the Macedonian Peithon; but the north, which lay far off and was of little importance for the generals who fought for the inheritance of Alexander, was left to Atropates. While southern Media with Ecbatana passed to the rule of Antigonus, and afterwards (about 310) to Seleucus 1.; Atropates maintained himself in his satrapy and succeeded in founding an independent kingdom. Thus the partution of the country, which the Persien had introduced, became lasting; the north was named Atropatene (in Plin: vi. 42, Atrapatene; in Ptolem. vi. 2, 5, Tropatene; in Polyb.
 founder of the dynasty, a name which is preserved in the modern Azerbaljan; cf. Nöldeke, "Atropatene," in Zeitschrift der deusschen morgent. Gesellschaft, 34, 692 sqq . and Marquart, Eranshahr, p. 108 sqq. The capital was Gazaca in the central plain, and the strong castle Phraaspa (Dio Cass. xlix. 26; Plut. Amoon. 38; Ptol. vi. 2, 10) or Vera (Strabo xi. 523), probably identical with the great ruin Takhti Suleiman, with remains of Sassanid fire-altars and of a later palace. The kings bad a strong and warlike army, especially cavalry (Polyb. v. 55 ; Strabo xi. 253). Nevertheless, King Artabazanes was forced by Antiochus the Great in 220 to conclude a disadvantageous treaty (Polyb. V. 55), and in later times the rulers became in turn dependent on the Parthians, on Tigranes of Armenia, and in the time of Pompey who defeated their king Darius (Appian, Mithr. 108), on Antonius (who invaded Atropatenc) and on Augustus of Rome. In the time of Strabo (AD. 17), the dynasty existed still (p. 523); in later times the country seems to have become a Parthian province.
Atropatene is that country of western Asia which was least of all influenced by Hellenism; there exists not even a single coin of its rulers. But the opinion of modern authors-that it had been a special refuge of Zoroastrianism-is based upon a wrong etymology of the name (which is falsely explained as "country of fire-worship"), and has no foundation whatever. There can be no doubt that the kings adhered to the Persian religion; but it is not probable that in was decply rooted among their subjects, especially among the non-Aryan tribes.
Southern Media remained a province of the Seleucid Empire for a century and a half, and Hellenism was introduced everywhere. "Media is surrounded everywhere by Greek towns, in pursuance of the plan of Alexander, which protect it against the neighbouring barbarians," says Polybius (x. 27). Only Ecbatana retained its old character. But Rhagae became a Greck town, Europus; and with it Strabo (xi. 524) names Laodicea, Apamen, Heraclea or Achais (cf. Plin. vi. 48). Most of them were founded
by Seleucus I. and his son Antiochus I. In 221, the satrap Molon tried to make himself independent (there exist bronze coins with his name and the royal title), togother with his brother Alexander, satrap of Persis, but they were defeated and killed by Antiochus the Great. In the same way, in 161, the Median satrap Timarchus took the diadem and conquered Babylonia; on his coins he calls himself "the great king Timarchus"; but this time again the legitimate king, Demetrius I., succeeded in subduing the rebellion, and Timarchus was slain. But with Demetrius 1. the dissolution of the Seleucid Empire begins, which was brought on chiefly by the intrigues of the Romans, and shorly afterwards, about $\mathbf{1} 50$, the Parthian king, Mithradates I. (q.0.), conquered Media (Justin xli. 6). From this time Media remained subject to the Arsacids, who changed the name of Rhagae, or Europus, into Arsacia (Strabo ri. 524), and divided the country into five small provinces (Isidorus Charac.). From the Arsacids or Parthians, it passed in A.D. 226 to the Sassanids, together with Atropatene. By this time the old tribes of Aryan Iran had lost their character and had been amalgamated into the one nation of the Iranians. The revival of Zoroastranism, which was enforced everywbere by the Sassanids, completed this development. It was only then that Atropatene became a priscipal seat of fire-worship, with many fire-altars. Rhagae now became the most sacred city of the empire and the seat of the head of the Zoroastrian hierarchy; the Sassanid Adesta and the tradition of the Parsees therefore consider Rhagae as the bome of the family of the Prophet. Henceforth the name of Media is used only as a geographical term and begins to disappear from the living language; in Persian traditions it occurs under the modern form Mah (Armen. Mai; in Syriac the old name Madai is preserved; cf. Marquart, Eranshahr, $\mathbf{x} 8$ seq.).
For Mahommedan history see Calipiate; for later history Seljues and Persia.
(Ed. M.)
madiation (Lat. medims, middle), in the international sense, the intervention of a third power, on the invitation or with the consent of two other powers, for the purpose of arranging diferences between the latter without recourse to war. Mediation may also take place after war has hroken out, with a view to putting an end to it on terms. In either case the mediating power negotiates on behalf of the parties who invoke or accept its aid, hut does not go farther. Unlike an arbitrating power the mediator limits his intervention to suggestion and advice. His action is liable to be arrested at any time at the will of either party unless otherwise agreed, in which case to arrest it prematurely would be a breach of good faith. The difference between mediation and arbitration may be stated in the words of the Digest (lib. iv. tit. 8, 8 13): "Recepisse autem arbitrium videtur, ut ait Pedius، qui judicis partes suscepit finemque se sua sententia controversiis impositurum pollicetur. Quod si hactenus intervenit ut experiretur an concilio suo vel auctoritate discuti litem paterentur, non videtur arbitrium recepisse."
Some writers distinguish mediation from "good offices," but the distinction is of little practical value. We may, if we please. regard "good offices" as inchoate mediation, and "mediation" as good offices brought to the hirth. Thus we may say that a third power renders "good offices" when it brings the parties together so as to make diplomatic negotiations between them possible; whilst if it takes an active part in those negotiations it becomes for the time being a mediator. The spontaneous yet successful effort made by President Roosevelt in 1905 to bring together the Russian and Japanese governments, and to secure their appointing delegates to discuss terms of peace, although not strictly mediation, was closely akin to it.
Of successful mediation in the strict sense there have been many instances: that of Great Britain, in 1825 , between Portugal and Brazil; of France, in 1849 - $\mathbf{8 5} 50$, when differences arose between Great Britain and Greece ; of the Greal Powers, in 1868-r 869, when the relations of Greece and Turkey were strained to breaking-point by reason of the insurrection in Crete; of

Pope Leo XIII., in 1885, between Germany and Spain in the matter of the Caroline Islands. In these cases mediation averted war. The Austro-Prussian War of 1866, the war between Chile and Peru in 1882, and that between Greece and Turkey in 1897, are instances of wars hrought to a close through the mediation of neutral powers. Mediation has also been occasionally employed where differences have arisen as to the interpretation of treaties or as to the mode in which they ought to be carried out: as when Great Britain mediated between France and the United States with regard to the Treaty of Paris of the 4 th of July 1830 . In one case at least mediation has been successful after a proposal for arhitration had failed. In 1844, when war between Spain and Moroceo was threatened by reason of the frequent ralds by the inhabitants of the Rif on the Spanish setulement of Ceuta, Spain declined arbitration on the ground that ber rights were too clear for argument. But both she and Morocco subsequently accepted joint mediation at the hands of Great Britain and France.

The cause of mediation was considerably advanced by the Declaration of Paris of $\mathbf{1 8 5 6}$. The plenipotentraries of Great Britain, France, Austria, Russia, Sardinia and Turkey recorded in a protocol, at the instance of Lord Clarendon, their joint wish that "states between which any misunderstanding might arise should, before appealing to arms, have recourse so far as circumstances might allow (en tant que les circonstances l'admettraient) to the good offices of a friendly power." Article 8 of the Treaty of Paris, concluded in the same year, stipulated that "if there should arise between the Sublime Porte and one or more of the other signing powers any misunderstanding which might endanger the maintenance of their relations, the Porte and each of such powers, before having recourse to the use of force, shall afford the other contracting parties the opportunity of preventing such as extremity hy means of mediation." These precedents (in which it will be seen that "good offices" and " mediation" are used interchangeably) were followed in the general act agreed to at the Conference beld at Berlin in 1884-1885 the object of which was to secure religious and commercial liberty and to limit warlike operations in the Congo basin.

A special form of mediation was proposed hy a delegate from the United States at the Peace Conference held at the Hague in 1899, and was approved by the representatives of the powers there assembled. The clause in which this proposal was embodied provided in effect that, whenever there is danger of a rupture between two powers, each of them shall choose a third power to which these differences shall be referred, and that, pending such reference, for a period not exceeding thirty days (unless the time is extended by agreement) the powers at issue shall cease to negotiate with each other and leave the dispute entirely in the hands of the mediating powers. The powers thus appealed to occupy a position analogous to that of seconds in a duet, who are authorized to arrange an "affair of honour " between their principals. This novel device has the advantage of toning down, if not of eliminating, personal and national prejudices by which controversy is frequently embittered. It also gets over the difficulty, often met with in arbitration, of choosing a referee satisfactory to both parties. The closer the relations between states become, the more their commercial interests are intertwined, the larger the part which mediation seems destined to play. It is true that states which have accepted the intervention of a mediator remain free to adopt or reject any advice be may give, hut the advice of a disinterested power must always add considerable moral weight to the side towards which it inclines.
(M. H. C.)

MEDIATIZATION (Ger. Mediatisierung, from Lat. mediahus, mediate, middle), the process hy which at the beginning of the 19th century, a number of German princes, hitherto sovereiga as holding immediasely of the emperor, were deprived of theit sovereignty and mediatised by being placed under that of other sovereigns. This was first done on a large scale in 1803, when by a recess of the imperial diet many of the smaller fiefs were mediatized, in order to compensate those German princes who had been forced to cede their territories on the left bank of the

Rhine to Prance. In 1806 the formation of the Contederation of the Rhine involved an extension of this mediftizing process, though the abolition of the empire itself deprived the word " medialization" of its essential meaning. After the downfall of Napoleon the powers were besieged with petitions from the mediatized princes for the restoration of their "Liberties"; but the congress of Vienna (1815) further extended the process of medialization by deciding that certain houses hitherto immediale (i.a Salm, Isenburg, Leyen) should only be represent ed mediately in the diet of the new Confederation. On the other hand, at Air-la-Chapelle (1818) the powers, in response to the representations of the aggrieved parties, admonished the German sovereigns to respect the rights of the mediatized princes subject to them. Of these rights, which included the hereditary right to a seat in the estates, the most valued is that of Ebenbiztigkeil (equality of birth),which, for purposes of matrimonial alliance, ranks the mediatized princes with the royal houses of Europe.
See August Withelm Heffter, Die Sonderrechte der Souperinen und dey Mediatisisten, Dormals reichsstdndischex Hauser Dentscklands (Berlin, 1871). The mediatized families are included in the Almanack de Goike.

MEDICAL EDDCATION. Up to 1858 each University, Royal College of Physicians or of Surgeons, and Apothecaries' aroed Hall in Great Britain and Ireland laid down its siruslesed own regulations for study and examination, and Intiand granted its degree or licence without any State supervision. In that year, pursuant to the Medical Act, $21 \& 22$ Vict. c. 90 , the General Medical Council of Medical Education and Registration was established, consisting of twenty-three members, of whom seventeen were appointed by the various licensing bodies and six by the Crown. This number was increased by the amended act of 1886 to twentynine, three of the six additional members being elected by the profession as "direct" representatives. The object of the act was " to enable persons requiring medical aid to distinguish qualifed from unqualified practitioners." To this end the "Medical Register" was established, on which no person's name could be inscribed who did not hold a diploma or licence from one or more of the licensing bodies after examination. By the 1886 act a qualifying examination was defined as "an examination in medicine, surgery, and midwifery." conducted by universities or by medical corporations, of which one must be capable of granting a diploma inmedicine, and one in surgery. The Council is authorixed to require from the licensing bodies information as to courses of study and examinations, and generally at to the requisites for obtaining qualifications; and to visit and inspect examinations either personally or by deputy. If the visitors think the course of study and examination of any licensing body is not sufficient to ensure that candidates obraining its qualification possess the requisite knowledge and skill for the efficient practice of their profession the Council, on a report being made, may represent the same to the Privy Council. The Privy Coancil may, if it sees fit, deprive the accused body of its power to grant registrable qualifications. From this statement it will be seen that the powers of the Council are limited; nevertheless, by their cautious application, and by the loyal manner in which the licensing bodies have acted on the recommendations and suggestions which have from time to time been made, the condition of medical education has been improved; and although there is not a uniform standard of examination throughout the United Kingdom, the Council has ensured that the minimum requirements of any ticensing body shall be sufficient for the production of trust worthy practitioners.
One of the first subjects to which the Council applied itself was the establishment of a system of cxaminstions in general knowledge. Such examinations have to be passed before beginning medical study. On presentation of a certificate to the registrars of the Council, and on evidence being produced that the candidate is sixteen years of age, his name is inscribed on the "Students' Register." The suhjects of examinations are: (a) English tanguage, including grammar and composition
(marks not exceeding 5% of the total obtainable in this section may be assigned to candidates who show a competent knowledge of shorthand); (b) Latin, including grammar, translation from specified authors, and translation of easy pasages not taken from such authors; (c) mathematics, comp ising arithmetic; algebra, as lar as simple equations inclusive; geometry, the subject-matter of Euclid, Books I., II. and III., writh easy deductions; (d) one of the following optional subjects-Greek, French, German, Italian or any other modern language. Certificates are accepted from all the universities of Great Britain and Ireland, from the leading Indian and colonial universities, from government examination boards, and from certain chartered bodies. The German Abiturienten Examen of the gyrnnasia and real-gymnasia, the French diplomas of Bachelier ès Lettres and Bachelier ès Sciences, and corresponding entrance examinations to other continental universities are also accepted.

As regards professional education, the Council divided its resolutions inco "requirements" and "recommendations"; the former consisting of demands on the licensing bodies, non-compliance with Which renders thom liable to be reported to the I'rivy Council; the latter are regarded merely as suggestions for tli: general conduct of education and examination. The requirements may be sum marized as follows: (a) Registration as a me cal student. (b) Five years of bona-fide study between the date I registration and the date of the final examination for any dijima entitling the holder to be registered under the Medical Acts. (c) In every course of professional study and examination the following subjects must be contained, the Council offering no opinion as to the manner in which they should be distributed or combined for the purposes of teaching or examination, this being left to the discretion of the bodies or of the student-(i.) physics, including the clementary mechanica of solids and fluids, and the rudiments of heat, light and electricity; (ii.) chemistry, including the principles of the science, and the details Which bear on the study of medicine; (iii.) elementary biology: (iv.) nnatomy; (v.) physiology: (vi.) materia medica and pharmacy; (vii.) patholory: (viii.) therapeutics; (ix.) medicinc, including medical anatony and clinical medicine; (x.) surgery, including surgical anatomy and clinical surgery: (xi.) midwfery, including diseases peculiar to women and to new-born children; (xii.) theory and practice of vaccination; (xiii.) forensic medicine; (xiv.) hygiene; (xv.) mental disease. (d) The first of the four years must be passed at a school or schools of medicine recognized by any of the licensing bodies; provided that the first year may be passed at aniversity or teaching institution where the subjects of physics, chemistry and biology are taught; and that graduates in arts ar science of any university recognized by the Council, who shall have spent a yedr in the study of these subjects, and have passed in them, shall be held to have complesed the first of the five years of medical study. (a) The study of midwiftry practice must consist of three months' nttendance on the indoor practice of a iying in hospital, or the tudent must have been present at not less than twenty labours, five of which shall have been conducted throughout under the direct cupervision of a registered practitioner.

The fifth yeas of study is intended to be devoted to clinical work and may be passed at any one or more public hoppitals or dispentaries, British or foreign, recognized by the licensing authorities; six months of this year may be passed as a pupil to a practitioner possessing such opportunities of imparting practical knowledge as shall be satisfactory to the medical authoritics. This latter method is rarely cmployed.

The "recommendations" of the Council contain suggestions which may or may not be acted on by the bodics. For the most part they are complied with in connexion with the systern of practical fand clinical eaching

The Council satisfes itself that its requirements are acted on, and that the examinations are "sufficient." by cveles of inspection about every five years. The examination of meh licensing body is visited by an inspector, who forwards his report to the Connciz, which sends each report to the body for its information and remarks. As yet it has never been the duty of the Council to report to the Privy Council that any examination has not been found sufficient.
Most universinies exact attendance at more classes than the colleges and halls; for instance, botany and natural histary are taught to their students, who are also cxamined in them. But with these exceptions the system of professional education is fairly uniform. Since 1875 attendance on "practical" classes has been called for in all subjects. Under this system the larger claswes in which the bubjects are taught systematically are broken up, and the students ere taught the use of apparatus and the employment of methoda of investigation and observation. Tutorial instruction is superimposed on teaching by lecture. Much the same plan is adopted in respere of clinical instruction: not only is the student taught at the ludside by the lecturer, but he reccives, either from the houseturgeon or housc-physician or from a specially appointed clinical
tutor, an insight into methods of examination of dieases, and learns practically the use of the stethoscope and other inds to diagnosis, and of surgical and obstetrical instruments. In fat, it may be said that each subject of instruction is duplicated. If this is taken into account, it must be evident that the time of the: student is fully occupied, and the belief is rapidly growing that Give years is too ehort a period of study. As a matter of fact, the average time taken to obtain a British licence to practise is upwards of six years. The probability is that the solution of the difficulty will be found in the inclusion of such subjects as physics, biology and chemistry in a "preliminary scientific " examination, which may lave to be undertaken before registration as a medical student, thus leaving the whole five years to be devoted to purely profersional study.

The German regulations in regard to professional study are few. They are those for the Slaats Examen, for which the Corment. university degree is no longer necessary. The regulations for the admission of candidates to the Slacts Eramen are contained in the royal proclamations of the $22 n d$ of June 1883 . They comprise: (a) Certificate of a course of study at a classical gymnasium of the German Empire. In exceptional cases, the same from a classical gymnasium outside the German empire may be considered sufficient. (For details of the course of study and examinations, see Minntes of the General Medical Council, vol xxvii. appendix 3.) (b) Certificate from a university, certifying a course of medical study of at least nine halfyears at a university of the German empire. (c) Certificate that the candidate has passed, entirely at a German university, the medical Vorpriffung, and thereafter has attended for at least four half-years the medical studies of a university. (d) The special testimony of the clinical directors bearing witness that the candidate has taken part as Praktikant (clerk or dresser) during two half-years at the medical, surgical, and gynaecological clinics; has himself delivered two cases of labour in the presence of his teachers or assistant physicians; and has attended for a half-year as Praktikant the clinic for diseases of the eye.

The medical Vorprifung referred to is necessary alike for the Stads Examen and the degree of Doctor of Medicine. It takes place at the end of the second year (fourth semestre), and includes the subjects of experimental physics, chemistry, botany, zoology, anatomy and physiology. It is conducted by a board appointed yearly by the Minister of Education.

No one can practise medicine in France who does not possess the diploma of Doctor of Medicine of a French university. The Frames. qualification of Officier de sante is no longer granted. Before be can inscribe as a student of medicine the applicant must have ohtained the diplomas of Bachelier es Letfres and Bachelier is sciences. Although the course of professional study may be completed in four years, a longer time is generally taken before the student proceeds to the final examination for the doctor's degree. Each year is divided into lour Gimestres; at each trimestre the student must make a new inscription. The trimestres are (1) November and December, 56 days; (2) January, February, March, 86 days; (3) April, May, June, 86 days; (4) July, August, 56 days. Practically there are no regulations determining the division of the various subjects, or the number of lectures in each course, or requiring the st udent to attend the courses The medical facully of each university puts before the student a scheme recommending a certain order of studies (Division des tiudes) for each of the four years of the medical course, and, as a matter of fact, this order of study is enforced by the system of intermediate examinations (Examens du fin d'annec). All the lecture courses are free, as also are the clinics tind the hospital service, and there is no system of ascertaining the regularity of attendance at lectures, or of certificate of attendance. If, however, the student fails to pass the Examen du fin d'annce he is debarred from making the next trimestral inscription, and thus loses three months. The lectures are, however, closely attended. In contrast to the freedom in regard to attendance on systematic lectures, there are strict direction and cont rol in regard to hospital attendance and practical courses. The student is required to sign a register ad hor each time be goes in and out. From the beginning of the third year, e.g. from the ninth quarterly inscription, hospital attendance is enforced till the end of the fourth year. No one can renew his trimestral inscription without producing a schedule of his last trimestral
stage, showing that during it he had not absented himself more than five times without explanation. Practical work is obligttory during each of the four years.

Besides systematic courses of lectures, Conferences are held by the assistant-professors (agneds) in natural history, physiology. general pathology, internal pathology, external pathology. At the end of the first year the student is examined in osteology, myology and the elements of physiology; at the end of the second year. in anatomy and physiology in all their branches; at the end of the third year, in medicine and surgery; at the end of the fourth year. an examine: tion is held over the whole field of study.

No one is allowed to enter on the study of medicine without passing the Artium eramen of a secondary school. This is the equivalent of the German Abiturienten Examen of a classical gymnasium. After study for two semestres Deanarth an examination must be passed in psychology, logic and history. The special professional examinations consist of (i) preliminary scientific, in botany, zoology, physics, chemistry; (2) first special or professional, anatomy (orally and hy dissections), physialoty, and pharmacology; (3) second special or professional, written examinations in medicine, surgery, medical jurisprudence; practical and oral in operative surgery, in clinical medicine, and clinical surgery; and oral in pathological anatomy, medicine, surgery; and midwifery. The completion of the full medical course takes six years, of which the first two are devoted to the study of the natural sciences.

AuTHoarriss. - The history of the development of medical education from the earliest times down to 1894 will be found treated of generally in Puschmann's Geschichte des medicinischen Unterrichts (Leipzig, 1889-1905) translated by E. H. Hare (London, 1891). Those desiring more special informatinn on the subject in regard to the details of British institutiors should consult the anmals of the various universitics and colleges of Great Britain and Ireland. The following works supply much interesting information regarding the gradual rise and development of teaching and examination: Anmaks of the Barber Surgeons, by Sydney Young (1890); History of the Royal College of Surgeons of Ireland, by Cameron (1886); Early Days of the Royal Callege of Physicuams of Edinburgh, by Peel Ritchic (1899); Historical Sketch of the Royal College of Surgeons of Edinburgh. Gy Gairdner (1860); Memorials of the Pacully of Physicians and Surgeons of Glasgow, by Duncan (1896); The Story of the Unisersily of Edinburgh, by Sir A. Grant (1884); Uwiversity of Claspow, by Stewart (1891).
(J. B. T.)

As late as 1880 medical education in the United States was in a deplorable condition. In the early history of the country, before and shortly after the beginning of the 19 th century, the few medical colleges had shown a disposition to require a biberal education on the part of those who entered upon their courses, and some effort was made, through the agency of state boards, to control the licence to practise. But as the country increased in population and wealth preliminary requirements were practically abolished, the length of the courses given each year was shortened to four or five months or less, and in the second and final year there was simply a repetition of the courses given during the first year. This is to be attributed mainly to the fact that there was no general national or state supervision of medical training. Medical colleges could ohtain incorporation under state laws without difficulty, and brought considerable advantages in the way of prestige and increased practice to those concerned. That the existence. of a college depended solely upon the fees of the students encouraged the tendency to make both entrance and graduation requirements as easy as possible, especially as there was no state supervision, and the mere possession of a diploma entilled the bolder to practisc. Fortunately, during this period the practical character of the clinical instruction given in the better colleges fitted the graduates in some measure for the actual necessities of practice, while the good traditions of medicine as a learned profession stimulated those who adopted it as a career, so that in the main the body of practitioners deserved and held the confidence and respect of the community. From the middle of the igth century there bas been constant agitation on the part of the physicians themselves for an improvement in medical education. The first notable result was an increase in the time of instruction from two to three years (Chicago Medical College, 1859 ; Harvard Medical School, 187x), the lengthening of each restion to sis
months or more, and the introduction of graded courses instead of a repetition of the same lectures every year. The improvement thus begun became marked during the decade $1890-1900$, amounting almost to a revolution in the rapidity with which the course of instruction was amplified. Many factors co-operated to produce this result: the general development of scientific instruction in the colleges and secondary schools, the influence of the large number of medical graduates who completed their training by study in European schools, the adoption by many states of stringent regulations regarding the licence to practise within their borders, the good examples set by many leading schools in voluntarily raising their requirements for entrance and graduation, and, perhaps above all in its general effect, the agitation continually maintained by several national or state associations which in a measure have exerted the general regulating control that in other countrics has been enforted by national legislation. Among the most influential of these associations are the American Medical Association, the American Academy of Medicine, the Association of American Medical Colleges, the Illinois State Board of Health, and the University of the State of New Yort.

The different states make their own general regulations as to the practice of medicine within their borders. Certain states recognize the medical diplomas granted by other states having equivalent standards of examination. Such certificates are generally required to be (a) of graduation from a "reputable medical school," (b) certificates of moral character, (c) the applicant must be at least twenty-one years of age. These enable the candidate to present himself before the state board for the state examination. In many states the applicant must setisfy the board not only as to his professional, but as to his general education. The standing of the various medical schools is usually left to the state boards, each one determining the matter for its own state, consequently a school may confer a degree recognized as reputable in several states but not in others. Only three or four states regulate the chartering of institutions. In other states any body of men may secure articles of incorporation of a college or school by paying the necessary state fee, without question as to the ability of the incorporator to furnish an education. So strong, however, has been the growth of American public opinion that a four-years' course of medical training has become the standard in medical schools, and in the majority this is in addition to one or two years' training in the natural sciences. There are some sixtyGive state boards, and many have adopted strong medical practice acts.

The standard of preliminary requirements for entrance to the medical schools is being gradually raised, and a large number of the states demand a certificate of a high school education, while the colleges comprising the Association of Medical Colleges, which numbers more than half the American medical schools, accept as an entrance standard a certificate of at least one year's study at a high chool. In the report for 1908 of the United States bureau of education of 71 schools, which report the number of their students having an arts degrec, it is stated that a degree was beld by only 15% of the candidates in medicine. These students wree mostly distributed between the Johns Hopkins Medical School (which from the date of its foundation in 1893 has only admitted college graduates, and has in addition stipulated that candidates shall have a knowledge of French and German and have already completed a year's training in the natural sciences). Harvard Medical School and Columbia University, and the medical departments of the universities of Calfornia, Michigan and Chicago (Rush Medical College) require on entrance the equivalent of a two-years' college course, which must include French and German, together with physics, chemistry and biology. This tendency is in accordance with the recommended standard of medical education suggested by the Council of Medical Education and adopted by the House of Delegater of the American Medical Associatiou, of which the following is a summary:-

1. (a) The preliminary of a four-years' high school education or an examination such as would admit to a recognized university.
(b) In addition a year of not kess than nine months devoted to chemistry, physics and biology and one language (preferably French or Cerman) to be taken at a college of the liberal arts.
2. Previous to entering a medical college every student should re-ceive from the state board a "medical student's entrance certificate" to be given on the production of credeatials of training as above.
3. Four years of study in a medical college having a minimum of a 30 -weeks' course each year, with not less than 30 hours' work per week.
4. Graduation from college to entitle a cendidate to present himself for examination before a state board.
5. A satisfactory examination to be passed before the state board.
Practically all medical schools admit women, but there are three separate schools of medicine for women: The Women's Medical College of Philadelphia, Pennsylvania: Women's Medical College, Biltimore, Maryland: New York Medical College and Hospital for Women-the last being one of the eighteen homocopathic colleges of the United States.

Authorities.-J. M. Tower, Contributions to the Annals of Medical Progress and Medical Education in the United States, before and during the War of Independence (Washington Government Printing Office, 1874); N. S. Davis, History of Medical Education and Institutions in the United States (Chicago, 1851); Contributions to the Mistory of Medical Educadion and Medical Instimutions in the United States (Washington, Government Printing Office, 1877); J. B. Beck, An Historical Skefch of the State of Medicine in the American Colonies (Allany, 1850): Bulletins of the American Academy of Medicine (The Chemical Publishing Company, Easton, Pa.): H. L. Taylor, "Professional Education in the Uniced States," College Department. University of the State of New York, Bulletin 5, I SOO, and Butletin $Q_{\text {, }}$ 1000; "Courses of Study in Medical Schools," Report of the Com. missioners of Education (Washington, Igo8); F. R. Packard. M.D., The History of Medicine in the United States (1901): Journal of Aonerican Medical Association (Aug. 14, 1909) ; A. Flexner, Medical Elucation in the U.S. and Canada (1910). (W. H. II.; H. L. H.)

MRDICAL JURISPRUDEnce, or Forensic Medicine, that branch of state medicine which treats of the application of medical knowledge to certain questions of civil and criminal law. The term "medical jurisprudence," though sanctioned by long usage, is not really appropriate, since the subject is strictly a branch of medicine rather than of jurisprudence; it does not properly include sanitation or hygiene, both this and medical jurisprudence proper being distinct branches of state medicine. The connexion between medicine and the law was perceived long before medical jurisprudence was recognized, or had obtained a distinct appellation. It first took its rise in Germany, and more tardily received recognition in Great Britain. Forensic medicine, or medical jurisprudence proper as distinguished from hygiene, embraces all questions which bring the medical man into contact with the law, and embraces (1) questions affecting the civil rights of individuals, and (2) injuries to the person.

I.-Questions afpecting the Civil or Social Rigits of Individuals

1. Desolopment of the Humav Frame.-The development of the physical and mental powers of the human being is a factor of great consequence in determining criminal responsibility, civil responsibility, or the power of giving validity to civil contracts, and in determining the personal identity of a living person or of a corpse. Human life is usually divided into the five periods of infancy, childhood, youth, manhood and old age. Some writers increase the number of these unnecessarily to seven periods.

Infancy is the period from birth till the first or milk set of teeth begin to be shed-usually about the seventh year. During this period the body increases in size and stature more, relatively, than at.any other period of existence; and the mental facultics undergo great development. The milk tecth, twenty in number, are evolved in a defnite order, beginning with the central incisors at about six monthe, and ending with the second molars about the termination of the second year. From the size and stature of the body, tho development of the teeth, and the more or less advanced state of ossification or solidification of the bony skeleton, conclusions may be drawn as to the probable age of the infant.

Childhood extends from tbe commencement of the shedding of the milk teeth to the age of puberty-usually from the seventh to the fourteenth or fifteenth year. During this period the body expands, as well as the bony structures, without any clearly marked diference in structure being observable bet ween the sexes except as regards the genitals. so that it is impossible to distinguish absohutely between the male and the fermale skeleton during this period. The milk teeth are shed, and are replaced by tbe second or permanent set, thirty two in number, though these do not usually man make their appearance during childhood. Marked differcnces between the proclivities of the sexes are noticeable even at an carly period of childhood, and long before the characteristic functions begin to be developed.

Youth is marked at its commencement by the changes which occur at puberty-the development of the genitals in both sexes, the appearance of hair on the genitals, the appearance of a beard in the male, the development of the breasks in the female, the appearance of the monthly fow in the female, and the ability to serrete semen in the male. Marked mental changes now occur, and the generative functions are perfected. Youth terminates at the age of legal majority, twenty-one years, or perhaps the period ought to be extended to twenty-five years of age, as it is with some nations.
Manhoad (or Womanhood) is the period of perfection of all the bodily and mental powers. It ceases in woman with the cessation of the monthly flow at about fort y-five years of age; but in man it often extends to a much later period of life.

Old Age begins with the decay of the bodily and mental faculties, and is characterized by wrinkling of the skin, loss of the teeth, whitening of the hair. and feebleness of the limbs. In its later stages decay of the mental faculties. deafness, obecurity or loss of vision, and bowing of the spine are added.
2. Duration of Human Life.-The chances of human life form an important subject of inquiry, and on deductions from comparisons of birth and death rates is founded the system of annuities, insurance against loss in sickness, and the insurance of lives. Since the establishment of compulsory registration of deaths, our knowledge of the ordinary and extraordinary chances of human life has been extended, and surer data are available for calculations of probabilities of life, of survivorships, and of the payments which ought to be made in benefit clubs (see Insurance).
3. Persomal Identity. Where the identity has to be established or disproved after long absence, exposure to foreign climates and hardships, wounds, \&c., the problem has often been extremely dificult. The data for identifying a person are individual and family likeness, stature, the colour of the eyes, peculiarities of garb and manner, recollection of antecedent events, but more especially marks on the persons either congenital or acquired. Such are noevi or mother's marks, scars, and disunited or badly united fractures, known to havc existed upon the missing person (see Identification). In the case of the living, identification is more often matter for the police officer than for the medical man. Bertillon and Galton have cach devised methods for the identification of criminals (see Anthropoyetry, and Fingerprunts).
4. Marriage.-Under this head the medical jurist has to deal principally with the nubile age, viewed in the light of nature and according to legislative enactments, and with such physical circumstances as affect the legality of marriages, or justify divorce.
In Great Britain the age at which the sexes are first capable of propagating the species is later than in more southern climes. Ordinarily it does not occur before fifteen years of age for the male and fourteen for the female; exceptionally it occurs at the ages of thirteen and of twelve (or even less) respectively in the male and female. By law, nevertheless, parents and guardians may, in England at all events, forbid the marriage of young people till the age of legal majority. The only physical circumstances which in Great Britain form a bar to marriage are physical inahility to consummate, and the insanity of one of the parties at the time of marriage. Both those circumstances have been pleaded and sustained in the law courts. In other countries minor physical circumstances, as disease, are held to invalidate marriage.
5. Impolence and Skeritity.-These are of importance in connexion with legitimacy, divorce and criminal assaults. Impotence and sterility may arise from organic or from functional causes, and may be curable or incurable. Impotence (q.0.) is taken cognisance of by the law courts as a ground of divorce, and might, of course, be urged as a defence in a case of rape. Sterility is not a ground of divorce, but might be a question of importance in cases of legitimacy.
6. Pregnancy. -This subject presents one of the widest fields for medico-legal evidence. The limits of age between which it is possible, the limits of utero-gestation, and the signs of pregnancy may all in turn be the subjects of investigation.

The limits of age between which pregrancy is possible are usually fixed by the appearance and ceseation of the monthly fow; and these ordinarily begin about fourteen and cease at forty-ive years of age. Exceptionally they appear as early as the tenth year, and may not cease till the end of the fifth decade of life. Cales, however, have occurred where a woman has conceived before menstruating; and a few doubtul cases of conception are recorded in women upwarda
of fifty or even sixty years of age. The general fact of pregnancy being limited by the age of puberty on the one hand and the cessation of the monthly flow-or fifty-three or fifty-four years as theextreme limit of age-must be accepted as the safest guide in practice.

The limits of utero-gestation are not in England fixed by legistation. The French code fixes the extreme limit of three hundred days. The ordinary period is forty weeks and a half, or two hundred and eighty-three days from the cessation of the last monthly flux. The limit of three hundred days, as fixed by the French code, is perhaps never exceeded, if ever reached. The uncertainty of lemales in fixing the exact date of conception has given rise to the discrepant opinions of physiologists on the subject. It is well known, however, that among the higher animals the period is not precise;' and impregnation and conception need not necessarily be coincident.

The signs of pregnancy are of the utmost importance to the medical jurist. He may be called upon to pronounce upon the virtue of a female, to sustain or rebut a plea for divorce, to determine whether a capital sentence shall be carried out, or ta determine whether it is probable that an heir will be born to an estate. Medical jurists classily the signs of pregnancy as uncertain or certain; it is the former which are most regarded by the public, but the latter are alone of probative value to the jurist. The usual and uncertain signs are the cessation of the monthly flow, nausea, sickness. a darkening of the areola and the formation of a secondary areola around the nipple. enlargement of the breasts, increased size of the abdomen, the formation of a tumour in the womb, quickening, and the motions of the foetus. Also uncertain are the uterine souffle, which is a peculiar soft sound heard over the abdomen and synchronous with the maternal pulse and ballottement or the examination for a floating tumour in the abdomen between the fifth andeighth months of pregnancy. The certain signs of pregnancy are the foctal limbs palpated through the abdomen by the physician, the pulsations of the foctal heart heard by means of the stcthoscope. the pulsations-beiog much quicker and not synchronous nith the maternal pulse. This latter is inapplicable before the fourth month of gestation.
7. Parturition.-The imminence of the process of parturition is of comparatively little interest to the medical jurist; but the signs of recent delivery are all-important. These signs are the bruised, swollen, and lacerated state of the external genitals, relaxation and dilatation of the vagina and womb, the existence of a peculiar vaginal discharge known as the lochia, a relaxed and fissured condition of the abdominal walls, a peculiar aspect of the countenance, and the distended state of the breasts due to the secretion of milk. The lochial discharge is the most characteristic sign. All the signs may disappear within ten days of delivery, though this is not usual.

Connected with parturition, the question of viability (potentiality for life) of the child is not unimportant. After the intra-utcrine age of seven months is reached a child is certainly viable. The period at which the foetus becomes viable cannot be stated with certainty; but five calendar months, or one hundred and fifty days, is perhaps the nearest approximation. The viability of a child is judged by its size and weight, its general state of development; the state of the skin, hair, and nails; its strength or feebleness, the abinity to cry, and its power of taking maternal nourish ment. The question of viability has important bearings upon the crime of infanticide: In the case of succession to property the meaning of "born alive " is different from the meaning of the same expression as used respecting infanticide. In questions of tenancy by the curtesy (g.v.) it has been decided that any kind of motion of the child, as a twitching and tremuloas motion of the lips, is sufficient evidence of live-birth. By the French code, however, no child that is born alive can inhorit. unless it is born viable. As regards infanticide, proof of a conclusive separate existence of the child is demanded before live-birth is admitted.

The subject of superfoetation and superfecundatiom, or the possibility of two conceptions having occurred resulting in the birth of twins with a considerable intervening interval. is obscure and has given rise to much controversy. There is much, bowever (e.e. the existence of a double or hifid uterus), to sountenance the view that a double conception is poesible.
8. Monsters and Hermaphrodites.-To destroy any living human birth, however unlike a buman creature it may be, is to commit a crime. Blackstone states that a monster which hath not the shape of mankind hath no inheritable blood; but the law has not defined a monster, nor what constututes a human form. The same author states that if, in spite of deformity, the product of birth has human shape, it may be an heir. Hermaphrodites are beiogs with malformations of the sexual organs, simulating a double sex. Physiologists do not admit, however, the existence of true bermaphrodites with double perfect organs, capable of performing the functions of both seres.
9. Patermity and Aftialion.-These are often matters of great doubt. A considerable time may elapse between the absence or death of a father and the birth of his reputed child. As has already been said, three hundred days is the utmost limit to which physiologists would extend the period of utero-gestation. This subject involves questions respecting children borm during a second marriage of the mot her, posthumous children, bastardy, and alleged cases of posthumous children.
10. Presumplion of Survivorship. - When two or more persons perish by a common accident, when a mother and her new-born child are found dead, and in a few analogous cases, important civil rights may depend upon the question which lived the longest; and great ingenuity has been displayed in ehucidating the disputes which have arisen in the law courts in such cases.
11. Maladies exempling from Discharge of Public Dulies frequently demand the attention of the medical man. He may be called upon to decide whether a man is able to undertake military or naval service, to att as a juryman without serious risk to life or health, or to attend as a witness at a trial.
12. Feigned and Simulated Diseases often require much skill and caution in order to detect the imposture.
13. The Signs of Death.-The determination of the actual existence of death assumes a certain importance in tropical countries, where the necessity for speedy interment may involve a risk of burial alive. Such an accident cannot well occur where a medical man confirms the existence of death, and in the United Kingdom, where burial rarely takes place before the lapse of forty-eight hours, such changes usually occur in the body as to render any error practically impossible. Within a varying period, usually not more than twelve hours, the body becomes rigid, owing to the development of rigor mortis or post mortem rigidity. The blood, which during life is equally distributed throughout the body, gravitates to the most dependent parts and develops a discoloration of the skin which is known as post mortem lividity or post mortem staining. At a variable period of time, dependent on the cause of death, also the temperature and moisture of the air to which the body is exposed, decomposition or putrefaction sets in. These changes after death are of great importance, not only as affording certain proof of death, but also because they furnish valuable information as to the probable time at which it occurred, and from the fact that they may alter or destroy evidence as to the cause of death.
14. Insanity or Mental Alicnation.-A medical man may be required to give evidence in any of the law courts, civil, criminal or ecclesiastical, hefore commissions de lunatico inquirendo, or before a magistrate, as to the sanity or insanity of an individual; and be may have to sign certificates of unsoundness of mind with the view of providing for the safe custody and proper treatment of a lunatic. Hence he must be farmiliar with the chief forms of insanity (see Insanity), and be able to distinguish and treat each of these. He will also be required to detect feigned insanity, and to examine persons charged with crime with the view of preventing real lunatics from being treated as criminals.

II.-Injuries to the Peeson

1. Deforalios.-The signs of defloration are obscure and uncertain, and it is rather by the coexistence of several of the ueual marks than the existence of any one sign, that any just conclusion can be arrived at.
2. Rape.-This crime consists in the carnal knowledge of a woman fortibly and against her will. The proofs of rape apart from the consistency of the woman's story, mainly depend on the presence of marks of violence, stains, \&c. In all charges of rape, the woman and her assailant should he examined as soon as possible by a medical man, but such examination, it is important to remember, can only be carried out with the free consent of the party to be examined. It is to be noted that according to English law the slightest degree of penetration is sufficient to constitute the crime of rape.
3. Mutilation.-This may consist in the cutting or maiming of any member; castration is the most important, and perhaps but
rarely effected as a crime. Self-mutilation, giving rise to false accusations, is occasionally resorted to.
4. Criminal Abortion.-This crime consists in unlawfully procuring the expulsion of the cointents of the gravid uterus at any period short of full term. It must be noted that while this definition may he held to recognize the induction of premature labour by medical men in certain circumstances, yet, when the operation is necessary, a medical man should always protect himself from possible misconstruction of his action (i.e. criminal intent) hy having a consultation with another practitioner. The meaas employed in criminal abortion to procure the desired result may be classed under three heads: (1) general violence to the body, (2) administration of drugs supposed to have abortifacient qualities, (3) instrumental interference with the contents of the uterus. Among the drugs frequently employed for the purpose, although by no means always successfully, are ergot, strong purgatives, iron, rue, pennyroyal, savin.
5. Homicide. -The legal sense of the term bomicide excludes such injuries as are the result of either accident or of suicide. It embraces murder or wilful homicide, manslaughter or culpable homicide, casual bomicide, and justifiahle homicide.
Ordinary homicide may be accomplished by several modes that may sometimes be ascertained by examination of the body, e.g. poison.

As a preliminary in all cases of homicide, it is the duty of the medical jurist in the first place to ascertain the fact of death, and to distinguish between real and apparent death; and then to determine, if possible, the period at which death took place.

Infanticide, or child murder, is by the British law treated with the same severity as the murder of an adult. Indeed infanticide as a crime distinct from murder has no legal recognition. Practically this severity defeats itself, and hence an alternative charge of concealment of birth in England, or conccalment of pregnancy in Scot land, is usually preferred in such cases.
The iniquity of the old law which threw the onos of proof of stillbirth on the mother now no longer exists, and the law demands strict proof of live-birth at tle hands of the prosecution. Hence the subject involves nice points of forensic medicine. The child must be proved to have arrived at the period when there was a probability of its living (proof of viability) ; and as the establishment of respiration is necessary to prove live-birth the evidences of this act must be carefully investigated. The size and position of the lungs, and the state of the vessels concerned in foelal circulalion. must be carefully noted. The foctal lungs are dark, dense and liverlike in appearance and consistence, and sink when immersed in water; whilst the fully respired lungs are rosy, marbled, and soft and crepitant when handled. Minor degrees of respiration are recognized by the appearance of little groups of dilated air-vesicles, and by the fact that, although the lungs as a whole may sink in water, certain portions of them, into which respired air has penetrated. float in water even after subjection to firm pressure In the hand. Care must be taken, nevertheless, to exclude buoyancy of the lung due to putrefaction; in this case the air may be expelied hy gentle pressure, and the previously buoyant portion of lung now sinks in water. It is impossible, however, to distinguish certainly between a lung naturally inflated and one artificially insufflated.
It must be borne in mind that. although live-birth cannot be affirmed in the absence of signs of respiration. the presence of these signs is not proof of live birth in the legal sense of the term. The law demands for live-birth a scparate existence of the child after delivery; and breathing may take place whilst the child is still either wholly or partially within the maternal passages, and in some special cases whilst still within the uterus itself.
When proofs of respiration-it may be to such an extent as to Icave no doubt as to live-birth-have been found, the cause of death is then to be investigated. Wounds, and other forms of injury. must be sought for. There may be signs of strangulation. suffocation, puncture of the fontanelles and consequent injury to ihe brain, the administration of a poison, or other means of procuring death. It must be borne in mind that some of these causes may be brought about by omission, or even by accident. Thus strangulation may arise from naturab and unrelieved pressure of the navel-string on the neck of the child; suffocation from immersion of the face of the child in the maternal discharges. or by pressure of clothes on the mouth. Death may result from haemorrhage through neglect to mouth. tie the nel-string, or the infant may perish from exposure to cold. In the case of exposed infants it is important to ascertain the real mother. As such exposure usually takes place soon after birth, momparison of the age of the infant with the signs of recent delivery in the suspected mother is the best method of proving the relation.

Death from Asphyxia.-Among the forms of violent death due to this cause are drowning, hanging, strangulation, garoting, emothering, suffocation from choking, mechanical interference with the expansion of the chest walls, as when persons are crushed together during a panic in a fire, breathing poisonous gases, such as carbonic acid or carbonic oxide. Suicide and accidental death from these causes are still more common.

Drowning is thought to produce death occasionally by the suddenness of the shock causing suspension of the functions of circulation and respiration-by shock without a struggle. The usual mode of death appears, however, to be by the circulation of unoxygenated blood through the brain acting as a poison upon that organ; and this is attended with all the phenomena of asphyxia, as in suffocation. The phenomena attending asphyxia are as follows As soon as ihe oxygen in the arterial blood, through exclusion of air. sinka below the normal, the respiratory movements grow deeper and at the same time more frequent; both the inspiratory and expiratory phases are exaggcrated, the supplementary respiratory muscles are brought into play, and the breathing becomes hurried. As the blood becomes more and more vcnous, the respiratory movements continue to increase both in force and frequency. Very soon the expiratory movements become more marked than the inspiratory, and every muscle which can in any way assist in expiration is brought into play. The orderly expiratory movements culminate in expiratory convulsions; these violent efforts speedily exhaust the nervous system, and the convulsions suddenly cease and are followed by a period of calm. The calm is one of exhaustion; all expiratory active movements have ceased. and all the muscles of the body are flaccid and quiet. But at long intervals lengthened deep inspiratory movements take place; then these movements become less frequent; the rhythm becomes irregular, so that each breath becomes a more and more prolonged gasp, which becomes at last a convulsive stretching of the whole body; and with extended limbs and a straightened trunk, with the head thrown back, the mouth widely open, the face drawn and the nostrils dilated, the last breath is taken. The above phenomena are not all observed except in cases of sudden and entire exclusion of air from the lungs. In slow asphyxia, where the supply of air is gradually diminished (c.e. in drowning), the phenomena are fundamentally the same, but with minor differences. The appearances of the body after death from drowning are various. There may be pallor of the countenance, or this may be livid and swollen. The air passages are filled with frothy mucus, and there may be water in the stomach. The ends of the fingers are of ten excoriated from grasping at objects; and woeds, \&c., are sometimes found grasped in the hands. The distinction between murder and suicide by drowning can rarely be made out by examination of the body alone. and is usually decided from collateral circumstances or marks of a struggle. Attention must also be paid to the existence of wounds on the body, marks of strangulation on the neck, and the like.
Hanging may result in death Irom asphyxia, or, as is more particutarly the case in judicial hanging, some injury is inflicted on the upper portion of the spinal cord, resulting in instant death. The ordinary appearances of death from asphyxia may be found: dark fuid blood, congestion of the hrain, intensely congested lungs, the right cavities of the heart full, and the lelt comparatively empty of blood, and general engorgement of the viscera. Ecchymosis may be found beneath the site of the cord, or a mere parchmenty appearance. There may even he no mark of the cord visible. The mark, when present, usually follows an oblique course, and is high up the neck. The fact that a body may be suspended after death, and that If this be done speedily whilst the body is still warm there may be a postmortem mark undistinguishable from the mark observed in death from hanging, must not be forgotten,
Suffocation may occur from the impaction of any substance in the glotis, or by covering up the mouth and nose. It is frequenily of accidental origin. as when substances become accidentally impacted in the throat, and when infants are overlaid. The phenomena are those of pure asphyxia, which have already been detailed. On post-mortem examination the surface of the lungs is found covered with minute extravasations of blood, known as punctated ecchymosis
Strangulation may be accomplished by drawiag a cord tifhtly round the neck, or by forcibly compressing the windpipe (throtting). Hence there may be either a circular mark round the neck, not so oblique as after hanging, or the marks of the fingers may be found about the region of the larynx. The cartilaginous structures of the tarynx and windpipe may be broken. The mark of the ligature is often low dowo in the neck. The signs of asphyxis are present in a marked degree.

Mepkitism.-In the United Kingdom this Last form of death usually results accidentally (rom an escape of lighting gas, the danger has been much increased in many towns owing to the addition of carburetted water gas to the ordinary supply. Carbonic oxide gas is contained in ordinary lighting gas to the extent of about 6 to 8% and is extremely fatal when inhaled. Carburetted watergas contains about 28%, and when mixed with ordinary lightigg gas the percentage of carbonic oxide is thus very much increased. is a mode of asassination it is seldom employed, but is freqienty
resorted to on the contineat of Europe by suicides, charcoal furmes being commonly used for the purpose.
6. Death from Starvation.-Cases occur in which it is important to distinguish this from other modes of death. In such cases the skin becomes harsh and dry, and may acquire a peculiar odour; the subcutaneous fat disappears; the gums shrink away from the teeth; the tongue and mouth become dark-coloured and dry; the eycs are bloodshot; the intestines become thin and their coats translucent; the gall-bladder is distended. The period of total abstinence from food required to kill an adult is unknown, and greatly depends upon whether there be access to liquid. In some cases persons have beein able to subsist on little or no nourishment for long periods, the body being in a state of quasi-hibernation.
7. Dealk from Extremes of Tcmperalure.-(1) Death from cold is not often observed in the British Isles. A portion only of the body, as the extremity of a limb, may perish from extreme cold. After the first sensation of tingling experienced on exposure to severe cold, loss of sensation supervenes, with languor and an irresistible propensity to sleep. The tendency to this forms an extreme danger in such cases. (2) Death from extreme heat usually occurs in the for m of burning and scalding, attended with destruction of a large portion of the cutaneous structures. Here the cause of death is ohvious. The human body is capable of exposure to very hot air-as is seen in Turkish baths-for a considerable period with impunity. Sunstroke is a cerebral affection brought on hy $t 00$ great exposure to a hot atmosphere, especially whilst undergoing fatiguc.
8. Dcath by Lightning.-Lightning or an electric current may cause instant death. No visible marks of the effects of the electric current may be left, or the body may be singed or discoloured, or the skin may be perforated at one or two spots.
9. Injuries or Wounds.-These include in a medico-legal sense not only those characterized as incised, punctured, contused, lacerated, stab wounds, but also burns, injuries produced by firearms, fractures, dislocations, \&c. One of the chief questions which have to be decided in all forms of violent death is whether it was the result of accident, suicide or murder. In cases of fatal wounding, among the points to be noted, which will help to decide the question, are the situation; direction and extent of the wound, the position in which the body and any weapon may be found, together with the presence and distribution of any blood marks and the signis of a struggle. In wounds caused by firearms the injury, if suicidal, is usually situat ed in a vital and accessible part of the body, the temple, mouth, and chest being the favourite situations; but such an injury also presents, as a rule, the characteristic appearances resulting from the discharge of the weapon close to the body, viz. besides the wound of entrance of the bulket, there are singeing of the cuticle and hair, and blackening of the area immediately surrounding the wound, from particles of unconsumed powder being driven into the skin and from the smoke of the discharge. These effects are naturally not produced when the weapon is discharged at a distance exceeding 2 or 3 ft ., as usually happens in cases of homicidal shooting. They may also be wanting in undoubted suicidal wounds produced by revolvers and cartridges filled with amberite or other smokeless powders. Death from hurning is generally accidental, very rarely suicidal, and when homicidal is usually employed to conceal traces of other violence inflicted upon the body. In large conflagrations death is not always due to burning. Charred bodies may be found presenting various injuries due to the fall of beams, crushing the trampling of others trying to escape, \&ec., or fractures and lacerations may be due simply to the action of the heat. Death may result from such injuries, or from suffocation by the gases of combustion, before the victim is affected by the actual fire. Spontaneous combustion of the body has been stated to occur, but the evidence upon which the cases rest is not well authenticated.

Punctared wounds or stabs require minute attention; for thero have been instances in which death has bien produced by an instrument so small as a pin thrust into a vital part. Wourds of the heod are al ways dangerous, especially if the blow has been severe. The person so wounded may die without division of the ekin, of frecture
of the bones, as happens in whet is mown as conswssion of the brain. Contusions which do not divide the skin may fracture the akull: or the inner table of the skull may be fractured without the outer being broken or depressed. Even wounds of the scalp may prove fatal, from inflammation extending towards the brain. Punctured wounds of the head are more dangerous than cuts, as more likely to excite fatal inflammation. When the brain and its membranes are injured, all such wounds are generally fatal. Wounds of the face or organs of sense are often dangerous, always disfiguring, and productive of serious inconvenience. Wounds of the reek are always terious whenever more than the skin is divided. The danger of opening large blood-vessels, or wounding important nervet, is imminent; even the division of a large vein in the neck has proved immediately fatal, from the entrance of air into the vessel, and its apeedy conveyance to the heart. A blow on the neck has instantly proved fatal, from injury to an important nerve, generally the preumogastric or the sympathetic. Dislocations and fractures of the bones of the neck prove instantly fatal. Wounds of the chest are always serious when the cavity is penetrated, though persons may recover from wounds of the lungs, and have even survived for some time considerable wounds of the heart. This last is an important fact ; because we are not al ways to consider the spot where the body of a person killed by a wound of the beart, and apparently remaining where he fell, is found as that in which the fatal wound was inflicted. Instances have occurred of persons surviving severe wounds of the heart for several days. Broken ribs are never without danger; and the same may be said of aevere contusions of the chest, from the chance of inflammation extending inwarda. Wounds penetrating both sides of the chest are generally considered as fatal but possibly there may be recovery from such. Wounds of the choment. when they do not completely penetrate, may he considered at simple wounds, unless when inflicted with great force, so as to braise the concents of the abdominal cavity; in that case they may produce death without breach of surface, from rupture of some viscus, as sometimes happens from blows or kicks upon the belly Wounds injoring the peritoneum are highly perilous, from the risk of severe inflammation. Wounds of the stomach or intestines, or of the gallbladder, generally prove mortal, from the effusion of their contents into the peritoncal cavity producing fatal inflammation. Wounds of the liver, spleen or kidneys are gencrally soon mortal, from the proat vescularity of those organs. Wounds of the extremities, when Gatal, may generally be considered so from excessive haemorthage, from the consequences of inflammation and gangrene, or from the shock to the system when large portions of the limb are forcibly removed, as in accidents from machinery, and in wounds from frearms.

Blood Stains.-The examination of blood stains is a frequent and important operation in criminal charges. Blood stains when fresh and abundant can be recognized without difficulty, but when old, or after being acted upon by certain substances, their Identity is not readily determined.

The tests which may be applied to a suspected stain consist of (1) The microscopectest. A portion of the stain is moaked in a drop of tome fluid which will toften and cause separation of the dried blood corpuscles without altering their characteristic appearance. Such fluids are solutions of glycerine and water of a gpecific gravity of 1028 or 30% caustic potash. The recognition of blood corpuscles affords evidence of the nature of the stain (2) Chemical tests. (0) Heat applied to a solution obtained by soaking eome of the stauned fabric in cold water. A blood solution is red, and loses its red colour on application of heat, while at the same time a buff-coloured precipitate is formed. (b) On applying a drop of freshly prepared tincture of guaiacum and then some ozonic ether or peroxide of hydrogen to the stain, a blue colour is obtained if blood be present. Many other substances, however, give the same reaction. (c) If, even to the smallest particle of dried blood, a fragment of common alt and some glacial acetic acid be added, and the latter is then heated to ebullition and allowed to evaporate away, small brown rhomboid crystals-haemin crystals-will be found to have formed. and they can be recognized under the microscope. (3) Spectroscopac fask. A solution of btood obtained from a stain will show a spectrum having two dark bands between Fraunhofer's lines D and E (oxymaemoglobin). On adding ammonium sulphide to the colution the haemoglobin is reduced and only one broad dark band is seen (reduced haemoglobin). On adding caustic potash to a solution of blood, alkaline haematin is formed, and this again is transformed on the further addition of ammonium sulphide into reduced haematia or hwemochromogen, which gives a very characteristic spectrum of two dark bands situated in the yellow part of the spectrum. The production of these three different spectra from a red-coloured olution is characteristic of blood. Old blood stains are insoluble in water, whereas recent stains are readily soluble in cold water, yieditus a red solution. The application of hot water or washing Fith soap tends to $6 x$ or render blood stains insoluble. Vegetable dyes may likewise give red solutions, but they may be distinguished from blood by the addition of ammonia, which alters the colour of the former, but rather intensifies the red colour of a blood solution.

The differentiation between human blood otaias and thost pro.
daced by the blood of other animals, more especially domestic animals, is a matter of great importance to the medical jurist. When the blood stain is fresh. measurement of the corpuscles may decide the question, but in the case of dry and old stains it is im. possible to make the distinction. A method has been discovered. however. which enables the distinction to he made not only between human blood and that of other animals (with the exception of Simidae), but also between the bloods of different animals. The method depends upon the fact that if an animal (A), such as a dog or rabbit, is inoculated with the blood or serum of a nother animal (B), then the blood or serum of A is found to produce a specific reaction (namely, the production of a cloudiness or precipitate) when added to a solution of the blood of a similar animal to B, and that species of animal only. If, therefore, human blood serum is injected into an animal, its blood after a time affords an "antiserum which produces the specific reaction only in human blood solutions and not in those formed from the blood of other animals.
10. Poisoning.-There is no exact definition of a poison (q.v.). Popularly, substances which destroy or endanger life when swallowed in small quantity are called poisons, but a scientific definitlon would also include many substances which are injurious to bealth in large doses or only after repeated administration, and which act not only when swallowed, but also when taken into the system through other channels, e.g. the skin or the lungs. The branch of science which relates to poisons, their nature, methods of detection, the symptoms produced by them, and treatment of poisoning, is called Toxicology, and is one of the most lmportant subjects included under the term Medicai Jurisprudence.

The medical evidence in cases of poisoning rests upon-(i) the symptoms produced during life, (2) the post mortemappearances; (3) the chemical analysis and detection of the substance in the body, or in the excretions and vomited matters, or in articles of food; (4) experiments on animals in the case of certain poisons where other conclusive evidence is difficult to ohtain The treatment of cases of poisoning will vary according to the substance taken, but the general principles which should be followed are: (a) to get rid of the poison by means of the stomachpump, or by washing out tbe stomach with water through a soft rubber tube, or by giving an emetic such as mustard, sulphate of ainc, ipecactuanhe: (b) to neutralize the poison by giving a substance which will ferm with it an innocuous compound (e.g. in the case of the strong acids by adminlstering magnesia or common whiting), or which has an opposite pbysiological action ($e 8$ atropine in opium poisoning), (c) to promote the elimination from the body of the poison which has been already absorbed; (d) general treatment of any dangerous symptoms wbicb appear, as by stimulation in collapse or artificial respiration in aspbyxia.

Food Poisoning (see also Adolteration).-Foods may prove noxious from a variety of causes. (1) The presence of metallic poisons, as in peas artificially coloured witb copper salts, in tinned foods from dissolved tin salts, \&c. (2) The contamimation of any food with the specific gemus of disease, as for example, mily infected with the germ of enteric fever. (3) The presence in meat of parasites, such as the Trichime spiralis, or of disease in animals, capable of transmission to man, such as tuberculosis, or the presence of poison in the flesh of animals which have fed on cubstances harmleas to them but poisonous to human beings. Grain may be infected with parasitic fungi of a poisonous character, as for example Cleviceps perporea, causing epidemics of ergotism. (4) Foods of various kinds may contain saprophytic bacteriz which elaborate certain poisons, either before or after the food is taken. It is chiefty in relation to foodpoisoning from the last-mentioned cauce that our knowledge has been increased in recent years.

Many eases of food-poisoning, previously of mysterious origin, can now he explained by the setion of bacteria and the products which they give rise to-tox-albumoses, ptomaines, toxins-by splitting up proteid substances. It is not necessary that the food should show evident signs of putrefaction. It may not do so, and yet on being eaten produce violent symptoms of gastro-intestinal irritation almoet immediately, followed by verious nervous symptoms. In auch cases a chemical poison, developed by putrefactive bacteris before the food was eaten, quickly acts upon the system. On the other hand, symptoms may not appear for many hours after ingestion of the food, and then come on suddenly and with great
everity-there has been a period of incubation In such cases the food when swrallowed has contained the bacteria, but the poisonous toxin has been elaborated by them afterwards in the system during the period preceding the onset of symptoms. In both varieties of poisoning the symptoms are similar, consisting of gastro-intestinal irritation-vomiting, purging and pain in the abdomen-together with great prostration, fever, muscular twitchings, disturbances of vision, delirium and coma. The varieties of meat which have most frequently given rise to poisoning (Botulismus) are pork, ham, veal, sausages, brawn, various kinds of meat pies and potted meats. Pig fesh appears to be specially liable to become infected. A point of considerable interest, which has sometimes given rise to doubt as to the poisonous character of meat in certain instances, is, that the same food may be poisonous at one time and not at another. Thus it may be harmiess when freshly prepared, cause fatal effects if eaten a day or two afterwards, and shortly after that again prove perfectly innocuous. This is explained by the fact that the toxic substances take some time to develop, and after development are still further split up by the bacteria into ot her bodies of a harmess nature.

In some fish-e.g. Trachsmas draco. or sea weaver-the poison is a physiological product of certain glands. In others the poison is not nnown, as in the farmily Scombridae. to which the disease Kakke has been attributed. In the United Kingdom the poisonous effects produced by fish are due to bacterial agency after death, and instances have occurred from the eating of herrings, mackerel, dried salt codfish, caviare, tinned salmon and tinned sardines. Shellish may produce poisonous effects from putrefactive changes or from the development in them (oysters and mussels) of ptomaines. Brieger discovered a ptomaine in poisonous mussels to which he gave the name mytilotoxin. It is now fully proved that oysters and mussels may become contaminated with the organism of typhoid fever if placed in specifically. polluted water, and thus transmit the discase to human beings. Milk, as already stated, may be contaminated and convey the infection of scarlet fever and other diseases. It may also contain substances of bacterial origin, which are possibly the cause of infantile diarrhoea, and others, having a fatal effect upon adults. Checse has frcquently caused poisoning. Vaughan discovered a toxic substance in milk and cheese-tyrotoxicon-but there are other toxic substances of bacterial origin sometimes present in cheese to which poisonous effects have probably been due. Mush-room-poisoning resulis from the eating of poisonous fungi in mistake for the edible mushroom. The poisonous eiement in most cases is either muscarin contained in the fungus A mante muscarm, or phallin in Amanito phallordes.

History of Forensic Medicine

The true origin of medical jurisprudence is of comparatively recent date, although traces of its principles may be perceived in remote times. Among the ancient Greeks the principles of medical science appear only to have been applied to legislation in certain questions relating to legitimacy. In the writings of Galen we find, however, remarks on the differences between the foetal and the adult lungs; he also treats of the legitimacy of seven months' children, and discusees feigned diseases. Turning to Rome, we find that the laws of the Twelve Tables fix three hundred days as the extreme duration of utero-gestation. It is doubtful whether the Roman lav authorized medical inspections of dead bodics. In the code of Justinian we find De statn hominym; De poenis a manumissis; De sicaria; $D e$ inspiciendo ventre custodiendoque partu; De mulicre quae peperif undecino mense; De impolentia; De hermaphroditistitles which show ohvious traces of a recognized connexion between medicine and law. It was not, however, by the testimony of living medical witnesses that such questions were to be settled, but on the authority of Hippocrates.

Medical jurisprudence, ts a science, dates oniy from the 16 th century. In 1507 the bishop of Bamberg introduced a penal code in which the necessity of medical evidence in certain cases was recognized; and in 1532 the emperor Charies V. pecsuaded the Diet of Ratisbon to adopt a uniform code of Cerman penal jurisprudence, in which the civil magistrate was enjoined in all cases of doubt or difficulty to obtain the evidence of medical witnesses, -as in cases of personal injuries, infanticide, pretended pregnancy, simulated diseases, and poisoning. The true dawa of forensic medicine dates, however, from the publication in 1553 of the Constidutio criminalis carolina in Germany. A few years later Weiher, a physician, having undertaken to prove that witches and demoniacs are, in fact, persons subject to hypochondriasis and hysteria, and should not be punished, aroused popular indignation, and was with difficulty rescued from the flames hy his patron, William duke of Cleves.

At the close of the $\mathbf{r t h}$ century Ambrose Pare wrote on monsters, on simulated diseases, and on the art of drawing up medico-legal reports; Pineau also published his treatise on virginity and defloration. About the same time as these stimuli to the study of forensic medicine were being made known in Paris, the first systematic treatise on the science appeared in Sicily in the form of a treatise De relationibus medicorum by Fidele. Paulo Zacchia, the illustrious Roman medical jurist, moreover, published from 1621 to 1635 a work entilled Onaestiones medico-legales, which marks a new era in the history of the science-e work. which displays an immense amount of learning and sagacity in an age when chemistry was in its infancy, and physiology very imperfectly understood. The discovery of the circulation of the blood by Harvey soon followed, and gave a new impetus to the study of those branches of forensic medicine having direct relations to physiology; and to Harvey we owe the idea how to apply Galen's observations on the difierences between the foetal and the adult lungs to the elucidation of cases of supposed inlanticide. About this time, too, Sebiz published two treatises, on the signs of virginity and on the examination of wounds respectively. In the former he contended that the hymen was the real mark of virginity; but this was denied by Augenio and Gassendi. In 1663 Thomas Bartholin investigated the period of human uterine gestation, a subject which had engaged the attention of Aristotle. He also proposed the "hydrostatic test " for the determination of live-birth-a test still in use, and applied by observing whether the lungs of an infant float or sink in water. J. Swammerdam explained the rationale of the process in 1677; but it was not till 1682 that it was first practically applied by Jan Schreyer.

Germany, ever the leader in questions of forensic medicine, introduced the first public lectures on medical jurisprudence. Michaelis gave the first course about the middle of the 17 th century in the university of Ieipzig; and these were followed by the lectures of Bohn, who also published De renuticiatione oulnerum; cui accesserunt disserlationes binae de partu enecato, al an quis vious morturste aquis submersus, strangulotus, anf oulmerdus fuerts, and De officis medici duplicis, clinici at forensts Welsch and Amman wrote on the fatality of wounds, and Licetus on monsters.

From the time of Ambrose Pare the mode of conducting in vestigations in forensic medicine had attracted attention in France; and in 1603 Henry IV. authorized his physician to appoint persons skilled in medicine and surgery to make medico-legal inspections and reports in all cities and royal jurisdictions, in 1692, difficulties having arisen, Louis XIV. created hereditary royal physicians and surgeons for the performance of like duties. These, baving become a corrupt and venal body, were suppressed in 1790 . The only works on forensic medicine which appeared in France during the r 7h century, however, were Gendry's Sur les moyens de bicn rapporker a juslice and Blégny's Doctrine des rapports en chirurgie. At the beginning of the 18 th century the latter was superseded as a text-book by Devaux's L'Art de faive des rapports en chirurgie. Valentini followed with two works, which were finally incorporated in his Corpus juris medicolegale which appeared in $\mathbf{1 7 2 2}$. This work is a vast storebouse of medico-legal information, and a summary of the knowledge of the time.

Professorships for teaching the subject were founded in the German universities early in the 18th century, and numerous treatises on forensic medicine vere published. Teichmeyer's Instilutiones medicince legalis long formed the text-book of the subject; and Alberti, professor of legal medicine at Halle, in his Systema gave to the world 2 most complete and laborious treatise on the science. His industrious collection of facts renders his worts a precious mine of information. Indeed towards the close of the 18 th century the Germans were almost the oniy cultivators of legal medicine. But in France the celebrated case of Villeblanche attracted attention to the subject, and called forth Louis, who in a memoir on utero-gestation attacked with powerful arguments the pretended instances of protracted pregnancy, and paved the way for the adoption in the Code Nepoldon of
three hundred days as the fimit of utero-gestation, a period in precise accordance with the ancient Roman law of the Twelve Tables. Louis also wrote on death from hanging, and pointed out the mode by which we may distinguish murder from suicide under such circumstances. It is he who is credited with having been the first in France to publicly teach the just application of medical knowledge to jurisprudence. Fodert's celebrated Trailt de mbdecine legale appeared in 1798, and marks a new era in the annals of legal medicine.

No British author wrote systematically on forensic medicine till 1788, when Dr Samuel Farr published a short treatise on the Elements of Medical Jurisprudence; but this was merely an abridgment of an earlier work of Fazelius. Previous writersas Mead, Munro, Denman, Percival and the two Hunters-had, however, dealt with fragments of the subject; nevertheless the science as a whole was little appreciated or recognized in this country during the 18 th century.
In the igth century France took the lead; and the institution of three professorships of forensic medicine at the end of the 181 b century produced excellent fruits. In 1814 Orfila, a Spaniard by birth, but naturalized in France, published his Toxicologic, a work which revolutionized this branch of medical jurispradence, and first placed the knowledge of poisons upon a scientific basis. Since the time of Orfila, France has never ceased to have one or more living medical jurists, among the most recent of whom we must enumerate Tardieu, whose treatises on abortion, on poisons, on wounds, \&c., are justly celebrated. Germany too industri. ously pursued the subject, and Casper's great work on forensic medicine will ever remain a classic in the science. In Russia Dragendorff greatly contrihuted to our knowledge of poisons.
Though forensic medicine may be said to have been entirely meglected in England till the beginning of the 191 h century, its progreas has since been by no means alow or unimportant; and the pubject now forms a recognized and obfigatory portion of medical study. The first lectures delivered in Great Britain were siven in the university of Edinburgh in 1801 by the elder Dr Duncan; and the first prolesoorship was held by his son in 1803 . Dr Alfred Swaine Taylor gave the first course of lectures delivered in England, at Guy's Hospital in 1835 : and in 1863 the university of London made forensic medicine a separate subject for examination and honours for medical graduates. In 1822 there was not in the English language any treatise of authority either on medical jurisprudence or on any important division of the subject. For it was not till the following year that the useful compendium of Paris and Fonblanque was published: and even in the middle of the 19 th century medical jurisprudence may be said to have been almoxt in its infancy as compared with what it is now. From 1829 Great Britain produced an abundant crop of literature on forensic medicine. Sir Robert Christison's admirable treatise on Toxicology, Dr A. S. Taylor's Principles and Prachice of Medical Jurisprudence (1905 edition. by F. 1. Smith), the same author's Elements of Medical Jurisprudence, Dr Guy's Forenstc Medicine, and Ogston's Lectures on Meducd Jurispradence have become well-known and widely circuhated works. The separate memoirs of Taylor, Christison. Guy and others are also storefouses of facts and deductions in the science America, too, has not been behindhand in the race. F. Wharton and M. Stilie's Manual, Wormley's Toxicology, and the works of Beck and Reese have furthered the study of the science.
See also Dixon Mann, Forensic Medicyne and Toxicology (London, 1go2); Wynter Blyth, Poisons: their EJfects and Detection (London., 1895); Allbutt and Rolleston, A System of Medrcanc, vol. ii. '" Intoxieations" (London, 1909): Vaughan, Tuentreth Century Proclice of Medicize, vol. xiji. article "Promaines, Toxins and Leucomnines" (London, 1898); Maschka, Handbuch der gerichluchen Medtcin Trabingen, 1881-1882): Hofmann, Lehrbuch der gericklluchen Medicin (Wien, 1898); Strassmann, Lehrbuch der gerwhitlichex: Medicin (Stuttgart, 1895); Kunkel, Haxdbuch der Toxzkologic (Jena. I899); Brouardel, LInfanticide. La Pendarson, \&ic. (Paris, 1897).
(H. H. L.: T. A. I)

ELDICI, the name of a family renowned in Italian history for the extraordinary number of statesmen to whom it gave birth, and for its magnificent patronage of letters and art. They emerged from private life and rose to power by means of a very suhtle policy that was persistently pursued from generation to generation. The origin of the family is buried in obscurity Some court historians indeed declare it to have been founded by Perseus, and assert that Benvenuto Cellini's hronze Perseus holding on high the head of Medusa was executed and placed in the Loggia dei Lanzi at Florence to symbolize the victory of the

Medici over the republic. But this only proves that the real origin of the family is unknown, and equally unknown is the precise signification of the Medicean arms-six red balls on a field of gold.

The name appears in Florentine chronicles as early as the close of the 12 th century, although only casually mentioned in connexion with various offices of the republic. The first of the family to be a distinct fgure in history was Salvestro dei Medici, who, in 1378 , took an active part in the revolt of the Ciompi-so called because it was led by a wool-carder (ciompo), one Michele di Lando, and because the chief share in it was taken by the populace, who held the reins of government for some time. and sought to obtain extended political rights. Although Michele di Lando was the nominal chief of the revolt, Salvestro dei Medici was its real leader. The latter, although a member of the greater gilds, had joined the lesser and sought to be at their head, in order to lay the foundation of his own power and that of his kindred by attacking the Albizzi, who were the leading men of the greater gilds. The victory of the Ciompi, selvestre. however, was brief, for the excesses of the lower classes brought about a reaction, In which they were crushed, and Michele di Lando sent into banishment. Nevertheless the lesser gilds bad gained some ground by this riot, and Salvestro dei Medici the great popularity at which he had aimed. His policy during that period had traced the sole possible road to power in liberty-loving Florence. This was the road henceforth pursued by the Medici.

On Salvestro's death in 1388 the Albizzi repossessed themselves of the government, and conducted the wars of the republic. Vieri dei Medici, who seems to have been the next head of the family, understanding the temper of Covamat the times, abstained from becoming a popular leader, and left it to his successors to prosecute the task under easier condutions. Then, in the person of Giovanni, son of Averardo Bicci dei Medici ($1360-1429$), another branch of the family arose, and became its representative branch. Indeed this Giovanni may be considered the actual founder of Medicean greatness. He took little part in political affairs, but realized an immense fortune by trade -establishing hanks in Italy and abroad, which in his successor's hands became the most efficient engines of political power. The Council of Constance ($1414^{-1418)}$ enabled Giovanni deı Medici to realize enormous profits. Besides, like his ancestor Salvestro, he was a constant supporter of the lesser gilds in Florence. Historians record his frequent resistance to the Albizzi when they sought to oppress the people with heavier taxation, and his endeavours to cause the chief weight to fall upon the richer classes. For this reason he was in favour of the so-called law of cafasto, which, by assessing the property of every citizen, prevented those in power from arbitrarily imposing taxes that unjustly burdened the people. In this way, and by liberal loans of money to all who were in need of it, he gained a reputation that was practically the foundation-stone of the grand family edifice. Giovanni dei Medici died in 1429 leaving two sons, Cosimo ($1389-1464$) and Lorenzo (1395 -1440). From the former proceeded the branch that held absolute sway for many generations over the nominal republic of Florence, and gave to Italy popes like Leo X. and Clement VII. On the extinction of this elder line in the 16th century, the younger branch derived from $^{\text {the }}$ Lorenzo, Cosimo's brother, seemed to acquire new life, and for two centuries supplied grand-dukes to Tuscany.

Cosimo, surnamed Cosimo the Elder, to distinguish bim from the many olbers bearing the same name, and honoured after his death by the title of pater patriae, first succeeded in solving the strange problem of becoming absolute cothen ilo ruler of a republic keenly jealous of its liherty, with. out holding any fixed office, without suppressing any previous lorm of government, and always preserving the appearance and demeanour of a private citizen Born in 1389, he had reached the age of forty at the time of his father's death. He had a certain amount of literary culture, and throughout his life showed much taste and an earnest love both for letters
and art. But his father had mainly trinined him to commerce, for which he had a special liking and aptitude. He was devoted to business to the day of his death, and like his fotefathers derived pecuniary advantage from his friendly relations with the papal court. He accompanied Pope John XXII. to the Council of Constance, transacted a vast amount of business in that city, and made very large gains. He then travelled in Germany, and efter his return to Florence discharged several ambassadorial missions. At the death of his father he was possessed of a vast fortune and an extended experience, and inherited the leadership of the opposition to the then dominant party of the greater gilds headed by Rinaldo degli Albizzi, Palla Surozzi and Niccolò da Uzzano. Of gentle and kindly manners, generous in lending and even in giving money whenever be could gain popularity by that means, at critical moments he frequently came to the succour of the government itself. He was very dexterous in turning his private liberalities to account for the increase of his political prestige, and showed no less acumen and still fewer scruples in making use of his political prestige for purposes of pecuniary profit. Indeed, whenever his own interests were at stake, be showed himself capable of positive villainy, although this was always tempered by calculation. Cosimo proved his akill in these knavish arts during the war between Florence and lucca. He had joined the Albizzi in urging on this war, and many writers assert that he turned it to much pecuniary advantage hy means of loans to the government and other banking operations. When, bowever, military affairs went hadly, Cosimo joined the discontented populace in invectives against the war and those who had conducted it. This won him an enormous increase of popularity, but the hatred of the Albizi and their friends augmented in equal degree, and a conflict became inevitable. The Albizzi, who were far more impetuous and impatient than Cosimo, were now bent upon revenge. In 1433 one of their friends, Bernardo Guadagni, was elected gonfalonier. and thereupon Cosimo dei Medici was called to the palace and summarily imprisoned in the tower. A general assembly of the people was convoked and a balfa chosen, which changed the government and sent Cosimo into exile. Undoubtedly the Albizzi party would have preferred a heavier sentence, but they did not dare to attempt their enemy's life, being well aware of the great number of his adherents. Cosimo had some apprebension that he might be poisoned in prison, but Federigo dei Malavolti, captain of the palace guard, showed him the utmost kindness, and, to soothe his fears, voluntarily shared his meals. On the 3 rd of October the prisoner was sent to Padua, his allotted place of exile.

The Albizxi speedily saw that they had done either too much or too litte. While seeking to keep the government entirely in their own bands, they bcheld the continual growth of the Medici party. When it was necessary to make a campaign in Romagna against the mercenary captains commanding the forces of the duke of Milan, it was plainly seen that in hanishing Cosimo the republic had lost the only citizen banker in a position to assist it with considerable loans. The Florentines were defeated by Piccinino in 1434, and this event greatly increased the puhlic exasperation against the Albizzi. Mean while Cosimo, who had gone to Padua as a private individual, was entertained there like a prince. Then, being permitted to transfer his residence to Venice, he entered on a course of lavish expenditure. He was overwhelmed with letters and appeals from Florence. Finally, on the 1 st of September 1434,' a signory was elected composed of his friends, and his recall was decreed. Rinaldo degli Albizzi determined to oppose it by force, and rushed to the Piazza with a band of armed men; but his attempt failed, and he left the country to return no more. The Medici were now reinstated in all their former dignities and honours, and Cosimo, on the evening of the 6 th of September, rode past the deserted mansions of the Albizzi and re-entered his own dwelling after an exile of a year. For three centuries, dating from that moment, the wbole history of Florence was connected with that of the house of Medici.
Cosimo's first thought was to secure himself against all future
risk of removal from Florence, and accordiagly he drove the most powerful citizens into exile to all parts of Italy. Nor did he spare even his former political adversary, Pallia Strozzi, although the latter had been favourable to him during the recent changes. His rigour in this particular case was universally censured, but Cosimo would tolerate no rivals in the city, and was resolved to ahase the great families and establish his power by the support of the lower classes. He was accustomed to say that states could not be ruled by paternosters. Still, when cruely seemed requisite, he always contrived that the chicf odium of it should fall upon others. When Neri Capponi, the valiant soldier and able diplomatist, gained great puhlic favour by his military prowess, and his influence was further increased by the friendship of Baldaccio d'Anghiari, captain of the infantry, Cosimo resolved to weaken his position by indirect means. Accordingly, when in 1441 a partisan of the Medici was elected gonfalonier, Baldaccio was instantly summoned to the palace, imprisoned, murdered, and his body hurled from the window. No one could actually fix this crime upon Cosimo, but the majority believed that he had thus contrived to rid himself of one enemy and cripple anot her without showing his hand. It was impossible for Cosima openly to assume the position of tyrant of Florence, nor was it worth his while to become gonfalonier, since the term of office only lasted two months. It was necessary to discover some other way without resorting to violence, he accordingly employed what were then designated "civil metbods." He managed to attain his object by means of the balte. These magistracies, which were generally renewed every five years, placed in the bailotbags the names of the candidates from whom the signory and other chief magistrates were to be chosen. As soon as a balia favourable to Cosimo was formed, be was assured for five years of baving the government in the bands of men devoted to his interests. He had comprehended that the art of politics depended rather upon individuals than institutions, and that be who ruled men could also dictate laws. His foreign policy was no less astute. His great wealth enabled him to supply money not only to private individuals, but even to foreign potentates. Philippe de Comines tells us that Cosimo frequently furnisted Edward IV. of England with sums amounting to many hundred thousand florins. When Tomsnaso Parentucelli was still a cardinal, and in needy circumstances, Cosimo made him considerable loens without demanding guarantees of payment. On the cardinal's accession to the tiara as Nicholas V. he was naturally very well disposed towards Cosimo, and cmployed the Medici benk in Rome in all the aflairs of the curia. At the time when Francesco Sforza was striving for the lordship of Milan. Cosimo foresaw his approaching triumph, showed him great friendship, and aided him with large sums of money. Accordingly, when Sforza became lord of Milan, Cosimo's power was doubled.
Without the title of prince, this merchant showed royal generosity in his expenditure for the promotion of letters and the fine arts. Besides his palace in the city, be constructed noble villas at Careggi, Fiesole and other places. He huilt the basilica of Fiesole, and that of St Lorenzo in Florence, and enlarged the church and monastery of St Mark. Even in distant Jerusalem be endowed a hospice for the use of pilgrims. The artists of the day comprised men like Donatello, Brunelleschi, Ghiberti, Luca della Robhia, and many others, and Cosimo's magnificent commissions not only developed their powers but stimulated other men of wealih to the patronage of art. Without being a scholar, Cosimo had a genuine taste for letters. He purchased many Greck and Latin manuscripts; he opened the first public library at St Mark's at his own expense, and founded another in the abbey of Fiesole. The Greek refugees from Constantinople found a constant welcome in his palace. During the Council of Florence ($1439-1442$), Gemistus Pletho spoke to him with enthusiasm of the Platonic philosophy. Cosimo was so deeply attracted hy the theme that he decided to have the young Marsilio Ficino trained in philosophy and Greek learning in order to make a Latin translation of the complete works of Plato. And thus a
version was produced that is still considered one of the best ertant, and that Platonic academy was founded which led to soch important results in the history of Italian philosophy and letters. On the 1st of August 1464 Cosimo breathed his hast, at the age of seventy-five, while engaged in listening to one of Plato's dialogues.
The concluding years of his life had been years of little happiness for Florence. Being old and infirm, he had left the government to the management of his friends, among whom Luca Pitti was one of the most powerful, and they had ruled with disorder, corruption and cruelty. The lordship of Florence accordingly did not pass without some diffculty and danger into the hands of

Ploptor

Gouty.
Piero, surnamed the Gouty, Cosimo's only surviving legitimate son. Afflicted hy gout, and so terrihly crippled that he was often only able to use his tongue, the new ruler soon discovered that a plot was on foot to overthrow his power. However, showing far more courage than he was supposed to possess, he had himself borne on a litter from his villa to Florence, defeated his enemies' designs, and firmly re-established his authority. But his suctess may be mainly attributed to the enormous prestige bequeathed hy Cosimo to his posterity. Piero died at the end of five years' reign, on the 3 rd of Decemher 1469 , leaving two sons, Lorenzo (1449-1492) and Giuliano (1453-1478). The younger, the gentler and less ambitious of the pair, was quickly removed from the world. Lorenzo, on the contrary, at once seized the reins of state with a firm grasp, and was, chronologically, the second of the great men besiowed upon Italy by the touse of Medici. In literary talent he was immensely superior to Cosimo, but greatly his inferior in the conduct of the commercial affairs of the house. In politics he had nohler conceptions and higher amhitions, hut he was more easily carried away by his passions, less prudent in his revenge, and more disposed to tyranny. He had studied letters from bis earliest years under the guidance of Ficino and other leading litterati of the day. At ine age of eighteen he visited the different courts of Italy. At his father's death he was only twenty-one years old, hut instantly showed his determination to govern Florence with greater despotism than his father or grandfather. He specdily resorted to the system of the balfe, and was very dexterous in causing the first to be chosen to suit his purpose. He then proceeded to humiliate the great lamilies and exalt those of little account, and this was the policy he constantly pursued. His younger brother Giuliano, being of a mild and yielding disposition, had only a nominal share in the government.

Lorenzo's policy, altbough prosecuted with less caution, was still the old astute and fortunate policy initiated by Cosimo. But the grandson bestowed no care upon his commercial interests, although squandering his fortune with far greater lavishness. Accordingly he was sometimes driven to help himself from the public purse without ever being able to assist it as Cosimo had done. All this excited blame and enmity against him, while his greed in the matter of the alum mines of Volterra, and the sobsequent sack of that unhappy city, were crimes for which there was no excuse. Among his worst enemies were the Pazzi, and, as they formed a very powerful clan, he sought their ruin by competing with them even in business transactions. They were on the point of inheriting the large property of Giovanni Borromeo when Lorenzo hurriedly caused a law to be pasted that altered the right of succession. The hatred of the Pazzi was thereby exasperated to fury. And in addition to these things there ensued a desperate quarrel with Pope Sixtus IV., a man of very impetuous temper, who, on endeavouring to erect a state on the frontiers of the Florentine republic for the benefit of his nephews, found a determined and successful opponent in Lorenzo. Consequently the Pazzi and Archbishop Salviati, another enemy of Lorenzo, aided by the nephews of the pontiff, who was himself acquainted with the whole matter, determined to put an end to the family. On the 26th of April 1478, while Giuliano and Lorenzo were attending high mass in the cathedral of Florence, the former was mortally stabbed hy conspirators,
but the latter was able to beat back his assallants and escape into the sacristy. His life preserved, and no longer having to share the government with a brother, Lorenzo profited hy the opportunity to wreak criel vengeance upon his foes. Several of the Pazai and their followers were hanged from the palace windows; others were hacked to pieces, dragged through the streets, and cast into the Arno, while a great many more were condemned to death or sent into exile. Lorenzo seemed willing and ahle to become a tyrant. But he stopped short of this point. He knew the temper of the city, and had also to look to fresh dangers threatening him from without. The pope had excommunicated him, put Florence under an interdict, and, being seconded hy the Neapolitan king, made furious war against the republic. The Florentines began to tire of submitting to so many hardships in order to support the yoke of a fellowcitizen. Lorenzo's hold over Florence seemed endangered. But he rose superior to the difficulties by which be was encom* passed. He boldly journeyed to Naples, to the court of King Ferdinand of Aragon, who was reputed to be as treacherous as be was cruel, and succeeded in obtaining from him an honourable peace, that soon led to a reconciliation with Sixtus. Thus at last Lorenzo found himself complete master of Florence. But, as the balle changed every five years, it was always requisite, in order to retain his supremacy, that he should be prepared to renew the usual mancruvre at the close of that term and have another elected equally favourable to his aims. This was often a difficult achievement, and Lorenzo showed much dexterity in overcoming all obstacles. In 1480 he compassed the institution of a new council of seventy, which was practically a permanent balla with extended powers, inasmuch as it not only elected the chief magistrates, but had also the administration of numerous state affairs. This permanent council of devoted adherents once formed, his security was firmly established. By this means, the chroniclers tell us, "liberty was huried," but the chief affairs of the state were always conducted by intelligent and experienced men, who promoted the public prosperity. Florence was still called a republic; the old institutions were still preserved, if only in name. Lorenzo was absolute bord of all, and virtually a tyrant. His immorality was scandalous; he kept an army of spies; he frequently meddled in the citizens' most private affairs, and exalted men of the lowest condition to important offices of the state. Yet, as Guicciardini remarks, " if Florence was to have a tyrant, she could never have found a betier or mose pleasant one." In fact all industry, commerce and public works made enormous progress. The civil equality of modern states, which was quite unknown to the middle ages, was more developed in Florence than in any other city of the world. Even the condition of the peasantry was far more prosperous than elsewhere. Lorenzo's authority was not confined to Tuscany, hut was also very grear throughout the whole of Italy. He was on the friendliest terms with Pope Innocent VIII., from whom he obtained the exaltation of his son Giovanni to the cardinalate at the age of fourteen. This boy-cardinal was afterwards Pope Leo X. From the moment of the decease of Sixtus IV., the union of Florence and Rome became the basis of Lorenzo's foreign policy. By its means he was able to prevent the hatreds and jealousies of the Sforzas of Milan and the Aragonese of Naples from hursting into the open conflict that long threatened, and after his death actually caused, the beginning of new and irreparable calamities. Hence Lorenzo was styled the needle of the Italian compass.

But the events we have narrated cannot suffice for the full comprehension of this complex character, unless we add the record of his deeds as a patron of letters and his achievements as a writer. His palace was the school and resort of illustrious men. Within its walls were trained the two young Medici afterwards known to the world as Leo X. and Clement VII. Ficino, Poliziano, Pico della Mirandola and all members of the Platonic academy were its constant habitues. It was here that Pulci gave readings of his Morgante, and Michelangelo essayed the first strokes of his chisel. Lorenzo's intellectual powers were of exceptional strength and versatility. He could speak with
equal fluency on painting, sculpture, music, philosophy and poetry. But his crowning superiority over every other Maecenas known to history lay in his active participation in the intellectual labours that be promoted. Indeed at certain moments he was Lorraso as positively the leading spirit among the litterati of his aman af time. He was an clegant prose writer, and was Letters. likewise a poet of real originality. At that period Italians were forsaking erudition in order to forward the revival of the national literature by recurring to the primitive sources of the spoken tongue and popular verse. It is Lorenzo's lasting glory to have been the initiator of this movement. Without being-as some have maintained-a poet of genius, be was certainly a writer of much finish and eloquence, and one of the first to raise popular poetry to the dignity of art. In his A mbra, his Caccia del falcone and his Nencia da Barberino, he gives descriptions of nature and of the rural life that he loved, with the graphic power of an acute and tasteful observer, joined to an ease of style that occasionally sins by excess of homeliness. Both in his art and in his politics be leant upon the people. The more oppressive his government, the more did he seck in his verses to incite the public to festivities and lull it to slumber by sensual enjoyments. In his Ballate, or songs for dancing, and more especially in his carnival songs, a kind of verse invented by himself, Lorenzo displayed all the best qualitics and worst defects of his muse. Marvellously and spontancously elegant, very trutbful and fresh in style, fertile in lancy and rich in colour, they are often of a most revolting indecency. And these compositions of one filling a princely station in the city were often sung by their author in the public strects; in the midst of the populace.
Lorenzo left three sons-Pietro (1471 -1503), Giovanni ($5475-1521$) and Giuliano ($1470-1516$). He was succecded by Pietro, whose rule lasted but for two ycars. During this brief term he performed no good deeds, and only displayed inordinate vanity and frivolity. His conduct greatly helped to foment the hatred between Lodovico Sforza and Ferdinand of Naples, which hastened the coming of the French under Charies VIII., and the renewal of foreign invasions. No sooner did the French approach the frontiers of Tuscany than Pietro, crazed with fear,
pretres.
hastened to meet them, and, basely yielding to every dernand, accepted terms equaliy huniliating to himself and the state. But, returning to Horence, he found that the earaged citizens had already decreed his deposition, in order to reconstitute the republic, and was therefore compelled to escape to Venice. His various plots to reinstate himself in Florence were all unsuccessful. At last he went to the south of Italy with the French, was drowned at the passage of the Garigliano in 1503 , and was buried in the cloister of Monte Cassino.
The ensuing period was adverse to the Medici, for a republican government was maintained in Florence from 1494 to 15:2, and the city remained faithful to its alliance with the French, who were all-powerful in Italy. Cardinal Giovannj, the bead of the family, resided in Rome, playing the patron to a circle of litterati, artists and friends, secking to increase his popularity, and calmly waiting for better days. The battic of Ravenna wrought the downfall of the fortunes of France in ltaly, and led to the rise of those of Spain, whose troops entered Florence to destroy the republic and reinstate the Medici. Pictro had now been dead for some time, leaving a young son, Jorenzo ($\mathbf{r 4 9 2 - 1 5 1 9 \text {), who }}$ was afterwards duke of U'rbino. The following year ($155^{\prime} 3$) Cardinal Giovanni was clected pope, and assumed the name of

Cordian !
Ofoviatol
(Leo X.), Ghelianot Loreares

Leo X. He accordingly removed to Rome, Jeaving his brother Giuliano with his nephew Lorenzo in Florence, and accompanied by his cousin Giulio, who was a natural son of the Giuliano murdered in the conspiracy ol the Pazzi, and was soon destined to te a cardinal and ultimately a pope. Meanwhile his kinsmen in Florence continued to govern that city by means of a balia. And thus, being masters of the whole of central lialy, the Medici enjojed great authority throughout the couniry and their ambition plumed itself for still higher flights. This was the moment when Niccolo Machiavelli, in his trealise The

Prizce, counselled them to accomplish the unity of Italy by arming the whole nation, and expelling its foreign invaders.

Leo X., who is ondy indirectly connected with the history of Florence, gave his name to the age in which he lived in consequence of his magnificent patronage of art and letters in Rome. But he was merely a clever amateur, and had not the literary gifts of his father Lorenzo. He surrounded himself with versifiers and infeior writers, who enlivened his board and accompanied him wherever be went. He liked to lead a gay and untroubled life, was fond of theatrical periormances, satires and other inteliectual diversions. His patronage of the fine arts, his genuine affection for Raphael, and the numerous worls he caused to be executed by him and other artists, have served to confer an exaggerated glory on his name. He had not the remolest idea of the grave importance of the Reformation, which indeed he unconsciously promoted by his reckless and shameicss sale of indulgences. The whole policy of Pope Leo X. consisted in oscillating bet ween France and Spain, in always playing last and loose, and decciving both powers in turn. Yet the evil results of this contemptible policy never seemed to disturb his mind. He finally joined the side of the emperor Charles V., and in 1521 , at the time of the defeat of the French by the Spanish troops on the river Adda, he ceased to breathe at his favourite villa of Magliana.

Giuliano dei Medici had died during Leo's reign, in 1516, wit hout ha ving ever done anything worthy of record. He was the busband of Philiberta of Savoy, was duke of Nemours, and left a natural son, lppolito dei Medici (1511-1535), who afterwards became a cardinal. Lorenzo, being of more ambitious temper, was by no means content to remain at the head of the Florence government hampered by many restrictions imposed by repubbcan institutions, and subject to the incessant control of the pope. In his cagerness to aggrandize his kinsmen, the latter had further decided to give Lorenzo the duchy of Urbino, and Cormally invested him in its sights, after expelling on false pretences its legitimate lord, Francesco Maria dclla Rovere. This prince, however, soon teturned to Urbino, where he was joyously welcomed by his subjects, and Lorenzo regained possession only by a war of several months, in which be was wounded. In ist9 he also died, worn out by discase and excess. By his marriage with Madelcine de la Tour d'Auvergne, he had one daughter, Caterina dei Medici ($1510-1589$), marricd in 1533 to Heary, duke of Orieans, afterwards king of lirance. She played a long and sinister part in the history of that country. Lorenzo also Ieft a natural son named Alessandro, inheriting the frizzled hair and projecting lips of the negro or mulatto slave who had given him birth. His miscrable death will be presently related. Thus the only three surviving represcntatives of the chief branch of the Medici, Cardinal Giulio, Ippolito and Alessandro were all of illegitimate birth, and left no legitimate heirs.
Cardinal Giulio, who had laboured successfully for the reinstatement of his family in Florence in 1512, had been long atlached to the person of Leo X. as his trusted factotum and companion. He had been gencrally regarded as the mentor of the pope, who had no liking for hard work. But in fact, his frivolity notwithstanding, Leo \mathbf{X}. always followed his own inclinations. He had much aptitude for command, and pursued his shuffling policy without any mental anxiety. Giulio, on the contrary, shrank [rom all responsibility, muddled his brains in weighing the reasons for and against every possible decision, and was therefore a better tool of government in others' hands than be was fit to govern on his own account. When Giuliano and Lorenzo died, the pope appointed the cardinal to the government of Florence. In that post, restrncted within the limits imposed by republican institutions, and acting under the continual direction of Rome, he performed his dutics tairly well. He caressed the citizens with hopes of extended liberties, which, although never destined to be fulfilled, long served to keep men's minds in a pleasant flutter of expectation; and when the more impatient spirits

of Adrian VI., he was elected pope (1523) under the name of Clement VII., he entrusted the government of Florence to Cardinal Silvio Passerini conjointly with Alessandro and Ippolito, who were still too young to do much on their own account.
The pontificate of Leo X. had been a time of felicity to himself if of disaster to Italy and the Church. The reign of Clement, on the contrary, was fatal to himselt as well. His policy, like that of Leo X., consisted in perpetual oscillation between France and Spain. By his endeavours to trick all the world, he frequently ended in being tricked himself. In 1525 he was the ally of the French, who then suffered a terrible defeat at Pavia, where their king Francis I. was taken prisoner. The armies of Charles V. triumphantly advanced, without Clement being able to oppose any effectual resistance. Both Rome and Florence were threatened with a fearful catast rophe.
Thus far we have had no occasion to speak of the younger branch of the Medici, descended from Lorenzo, brother to Cosimo the elder. Always in obscurity, and hitherto held in check by the elder line, it first entered the arena of history when the other was on the point of extinction. In fact the most valiant captain of the papal forces was Giovanni dei Medici, afterwards known by the name of Giovanni delle Bande Nere. His father was Giovanni, son of Pier Francesco, who was the son of Lorenzo, the brother of Cosimo dei Medici. History has little to tell of the elder Giovanni; but his wife Caterina Sforza, of whom he was the third husband, was a woman of more than masculine vigour. Giovanni dei Medici married her in 1497, but died in 1498, leaving her with one son who was christened Lodovico, but afterwards took his father's name of Giovanni (1498-

Arvang numb

 1526). Trained to arms from his earliest years, this youth inherited all the energy of his mother, whose Sforza blood seemed to infuse new life into the younger branch of the Medici. Notwithstanding his extreme youth, be had already achieved the tite of the best captain in Italy. He had always fought with immense dash and daring, and was devotedly loved and obeyed by his soldiery. He was the only leader who opposed a determined resistance to the imperial forces. He was seriously wounded at Pavia when Gghting on the Frencb side. On his recovery he joined the army of the League, and was much enraged by finding that the duke of Urbino, commander of the Venetian and papal forces, would sever decide on attacking. When the imperial troops were struggling through the marshes of Mantua, surrounded on every side, and without stores or ammunition, Giovanni could not resign himself to inactivity like his colleagues in command. He was igno:ant that the imperialists had just received supplies and artillery from the duke of Ferrara, and therefore daringly attacked them with a small body of men without taking any precautions for defence. One of the first shots fired by the enemy injured him so fatally that he died a few days after. He was married to Maria Salviati, by whom he had one son, Cosimo (1519-1574), who became the first grand duke of Tuscany, and indeed the founder of the grand duchy and the new dynasty.Meanwhile the imperial army pursued its march upon Rome, captured the Eternal City after a few hours' combat, and cruelly sacked it during many days (1527). Thanks to his perpetual shuffing and excessive avarice, the pope found himself ulterly forsaken, and was obliged to seek refuge in the castle of St Angelo, whence he only effected his escape after some montbs. He then signed a treaty of alliance with the emperor (1529), who sent an army to besiege Fiorence and restore the Medici, thom the people had expelled in 1527 on the re-establishment of the republic. After an heroic defence, the city was forced to surrender (t 53); and, although it was expressly stipulated that the ancient liberties of Florence should be respected, every one foresaw that the conditions would be violated. In fact, pope and emperor immediately began to dispute as to which should be the new lord of the city. Clement VII. had inherited the traditional family dislike for the younger branch of his kin, and so the choice lay between the two bastards Ippolito and Alemandro. The former being a cardinal, the latter was cbosen.

Alessandro, who already bore the tille of duke of Citta di Penna, came to Florence in 1531 , and by imperial patent was nominated head of the republic. According to the terms of this patent, the former liberty enjoyed under the Medicean Drive
Alssengetres rule was to remain intact. But no previous ruler of the city had enjoyed hereditary power confirmed by imperial patent, and such power was incompatible with the existence of a republic. Moreover, Clement VII. showed dissatisfaction with the uncertainty of the power conferred upon his kinsman, and finally succeeded in obtaining additional privileges. On the 4 th of April 1532 a parliament was convoked for the last time in Florence, and, as usual, approved every measure proposed for acceptance. Accordingly a new council was formed of two hundred citizens elected for life, forty-eight of which number were to constitute a senate. Alessandro, as duke of the republic, filled the post of gonfalonier, and carried on the government wit h the assistance of three senators, changed every three months, who took the place of the suppressed signory.

The duke's chief advisers, and the contrivers of all these arrangements were Baccio Valori, Francesco Vettori and above all Francesco Guicciardini-men, especially the latter two, of lofty political gifts and extensive influence. The mind and character of Duke Alessandro were as yet comparatively unknown. At first he seemed disposed to rule with justice and prudence. But encountering difficulties that he was unable to overcome, he began to neglect the business of the state, and acted as if the sole function of government consisted in lulling the people by festivities and corrupting it by the dissolute life of which he set the example. The question of the moment was the transformation of the old republican régime into a princedom; as an unavoidable result of this change it followed that Florence was no longer to be the ruling city to whose inhabitants alone belonged the monopoly of political office. When the leading Florentine families realized not only that the repuhfic was destroyed, but that they were reduced to equality with those whom they had hitherto regarded as their inferiors and subjects, their rage was indescribable, and hardly a day passed without the departure of influential citizens who were resolved to achieve the overthrow of their new ruler. They found a leader in Cardinal Ippolito dei Medici, who was then in Rome, embittered by the preference given to Alessandro, and anxious to become his successor with the least
possible delay. Under the pressure of terror the duke at once became a tyrant. He garrisoned the different cities, and began the crection in Florence of the Fortezza da Basso, built chiefly at the expense of Filippo Strozzi, who afterwards met his death within its walls.

In 1534 Clement VII. died, and the election fell on Paul III., from whom Cardinal Ippolito hoped to obtain assistance. Accordingly the principal Florentine exiles were despatched to Charles V. with complaints of Alessandro's tyranny and his shameless violation of the terms upon which the city had surrendered. Cardinal Ippoloto also represented his own willingness to carry on the government of Florence in a more equiable manner, and promised the emperor a large sum of money. Reply being delayed by the emperor's absence, he became so impatient that he set out to meet Charles in Tunis, but on the roth of August 1535 died suddenly at Itri, poisoned by order of Alessandro. Such at least was the general belief, and it was confirmed by the same fate befalling other enemies ol the duke about the same time. On the emperor's return from Africa, the cxiles presented themselves to him in Naples, and the venerable patriot Jacopo Nardi pleaded their cause. Duke Alessindro, being cited to appear, came to Naples accompanied by Francesco Guicciardini, who by speaking in his defence rendered himsell odious to all friends of liberty, and irretrievahly tarnished his iliustrious name. The cardinal being dead, it was hard to find a successor to Alessandro. On this account, and perbaps to some extent through the emperor's personal liking for the duke, the latter rose higher than before in the imperial favour, married Margaret of Austria, the natural daughter of Charles;
and returned to Florence with increased power. And now Alessandro indulged unchecked in the lowest excesses of tyranny, and although so recently a bridegroom gave way to increased libertinism. His whole time was passed in vicious haunts and in seandalous adventures. In order to conceal the obscurity of his birth, he left his mother to starve, and it was even asserted that he finally got rid of her by poison.

His constant associate in this disgraceful routine was his distant kinsman Lorenzo, generally known as Lorenzino dei Medici. Of the younger branch of the Medici, the
Larentite latter was second cousin of the Cosimo already mentioned as the son of Giovanni delle Bande Nere He had much culture and literary talent, but ted an irregular life, sometimes acting like a madman and sometimes like a villain. He was a writer of considerable elegance, the author of several plays, one of which, the Aridosio, was held to be among the best of his age, and he was a worshipper of antiquity. Notwithstanding these tastes, when in Rome he knocked off the heads of some of the finest statues of the age of Adtian, an act by which Clement VII. was so incensed that he threatened to have him hanged. Thercupon Lorenzino fled to Florence, where he became the friend of Duke Alessandro, and his partner in the most licentious excesses. They went together to houses of ill-fame, and violated private dwellings and convents. They often showed themsclves in public mounted on the same horse. All Florence cyed them with disgust, but no one foresaw the tragedy that was soon to take place.

On the evening of the 5 th of January 1537 , after a day passed in the usual excesses, Lorenzino led the duke to his own lodging. and teft him there, promising shortly to return with

Assmether then of Alessardra. the wife of Leonardo Ginori. Alessandro, worn out by the exertions of the day, lell aslcep on the couch while awaiting Lorenzino's return. Before long the latter came accompanied by a desperado known as the Scoronconcolo, who aided him in falling on the sleeper. Roused by their first thrusts, the duke lought for his life, and was only despatched after a violent struggle. The murderers then lifted the body into a bed, hid it beneath the clothes, and, Lorenzino having attached a paper to it bearing the words vincit anor patriae, laudumque immensa cupido, they both fled to Venice. In that city Lorenzino was assassinated some ten years later, in 1548 , at the age of thirty-two, by order of Alessandro's successor. He wrote an A pologia, in which he defended himself with great skill and eloquence, saying that he had been urged to the deed solely by love of liberty. For this reason alone he had followed the example of Brutus and played the part of friend and courtier. The tone of this A pologia is so straightforward, sometimes even so eloquent and fofty, that we should be tempted to give it credence were it possible to believe the assertions of one who not only by his crime but by the infamy of his previous and subsequent carcer completely gave the lie to his vaunted nobility of purpose. By Alessandro's death the elder branch of the Medici became extinct, and thus the appearance of the younger line was heralded by a bloody crime.

When the duke's absence from his own palace was discovered on the morning of the 6th of January he was at first supposed to

Caslavo 1.
have spent the night with one of his mistresses; but soon, some alarm being felt, scarch was made, and Cardinal Cybo was the first to discover the murder. Enjoining the strictest secrecy, he kept the corpse concealed for three days, and then had it interred in the sacristy of San Lorenzo. Meanwhile he had hastily summoned Alessandro Vitelli and the other captains, so that, by the time Alessandro's death was made pullic, the city was already filled with troops. The cardinal then convoked the council of forty-eight to decide upon a successor. Alessandro's only issue was a natural son named Giulio, aged five. The cardinal favoured his election, in the hope of keeping the real sovercignty in his own hands. But he speedily saw the impossibility of carrying out a design that was ridiculed by all. Guicciardini, Vettori and others of tbe leading citizens lavoured the choice of Cosimo, the son of Giovanni delle Bande Nere. He was already in Florence, was aged seventeen, was
keen-witted and aspiring, strong and handsome in person, heir to the enormous wealth of the Medici, and, by the terms of the imperial patent, was Alessandro's lawiul successor. Charles V. approved the nomination of Cosimo, who without delay scized the reins of government with a firm grasp. Like Alessandro, he was named head of the republic; and Guicciardini and others who had worked hardest in his cause hoped to direct hlm and keep him under their control. But Cosimo soon proved that, his youth notwithstanding, he was resolved to rule unshackled by republican forms and unhampered by advisers disposed to act as mentors. The Florentines had now an absolute prince who was likewise à statesman of eminent ability.
On learning the death of Alessandro and the election of Cosimo, the exiles appreciated the necessity for prompt action, as delay would be fatal to the overthrow of the Medicean rule. They had reccived money and promises from France; they were strengthened by the adhesion of Filippo Strozzi and Baccio Valori, who had both become hostite to the Medici through the infamous conduct and mad tyranny of Alcesandro; and Strozzi brought them the help of his enormous fortune and the prowess of that very distinguished captain. his son Piero. The exiles asscmbled their forces at Mirandola. They had about four thousand infantry and three hundred horse; a mong them were members of all the principal Florentine families; and their leaders were Bernardo Salviati and Piero Strozzi. They marched rapidly, and entered Tuscany towards the end of July 1537. Cosimo on this occasion displayed signal capacity and presence of mind. Informed of the exiles' movements by his spies, he no sooner tearned their approach than he ordered Alessandro Vitelli to collect the best German, Spanish and Itation infantry at his disposal, and advance against the enemy without delay. On the evening of the 3 ist of July Vitelli marched towards Prato with seven hundred picked infantry and a band of one hundred horse, and on the way fell in with other Spanish foot soldiers who joined the expedition. At early dawn the following morning he made a sudden attack on the exites' advanced guard close to Montemurio, an old fortress converted into a villa betonging to the Nerli. Having utterly routed them, he proceeded to storm Montemurio, where Filippo Strozzi and a few of his young comrades had taken refuge. They made a desperate resistance for some hours, and then, overwhelmed by superior numbers, were obliged to yietd themselves prisoners. The main body of the army was still at some distance, having been detained in the mountains by heavy rains and difficult passes, and, on tearning the defcat at Montemurlo, its teader turned back by the way he had come. Alessandro Vitelli re-entered Florence with his victorious army and his fettered captives. Cosimo had achieved his first tiumph.
All the ptisoners, who were members of great families, were brought before Cosimo, and were received by him with courteous coldness. Soon, however, a scaffold was erected in the Piazza, and on four mornings in succession lour of the prisoners were beheaded. Then the duke saw fit to stay the executions. Baccio Valori, however, and his son and nephew were beheaded on the 2oth of August in the court yard of the Bargello. Filippo Strozzi still survived, confined in the Fortezza da Basso, that had been built at his expense. His family was illustrious, he had numerous adherents, and he enjoyed the protection of the French king. Nevertheless Cosimo only a waited some plausible pretext to rid himself of this dreaded enemy. He brought him to trial and had him put to the question. But this crucley led to nothing, lor Strozzi denied cvery accusation and bort the torture with much fortitude. On the 18 th of Decerfber he was found dead in his prison, with a blood-stained sword by his side, and a slip of paper bearing these words: exoriare aliquis nostris ex ossibus wltor. It was believed that. baving renounced all hope of his life being spared, Strozzi had preferred suicide to death at the hands of the executioner. Some, however, thought that Cosimo had caused him to be murdered, and adopted this mode of concealing the crime. The young prince's cold-blooded massacre of his captives cast an enduring shadow upon his reign and dynasty. But it was henceforward plain 20 all that be was
a man of sten resolve, who weat straight to his end without cruples or half-measures. Before long he was regarded by many as the incarnation of Machinvelli's Prince, "inesmuch as be joined daring to tallent and prudence, was capable of great cruelty, and yet could practise mercy in due season." Guicciardini, who still pretended to act as mentor, and who on account of his many services had a certain influence over him, was obliged to withdraw from public life and busy himself with writing his History at his villa of Arcetri. He died in this retreat in 1540, and it was immediately rumoured that the duke had cansed him to be poisoned. This shows the estimation in which Cosimo was now held. He punished with death all who dared to resist his will. By 1540 sentence of death had been pronounced againat four hundred and thirty contumacious fugitives, and during his reign one hundred and forty men and six women actually ascended the scafold, without counting those who perished in forcign lands by the daggers of his assassins. He reduced the old republican institutions to empty forms, by making the magistrates mere creatures of his will. He issued the sternest edicts against the rebels, particularly by the law known as the "Polverina," from the name of its proposer Jacopo Polverini. This kaw decreed not only the confiscation of the property of exiles, but likewise that of their beirs, even if personally acquired by the latter. Cosimo ruled like the independent sovereign of a great state, and always sbowed the capecity, firmness and courage demanded by that station. Only, his state being small and weak, he was forced to rely chiefly upon his personal talent and wealth. It was necessary for him to make heavy loans to the different European sovereigns, especially to Charles V., the most rapacious of them all, and to give enormous bribes to their ambessadors. Besides, he had to carry on wars for the extension of his dominions; and neither his inherited wealth nor the large sums gained by confiscating the estates of rebellious rubjects sufficed for all this outlay. He was accordingly compelled to burden the people with taxes, and thus begin at once to diminish its strength.
Cosimo bore n special grudge against the neighbouring republics of Siena and Lucca. Although the latter was small and weak, and the former garrisoned by Spaniards, yet the spectacle of free institutions at the frontiers of his own state served as a continual indtement to subjects disaffected to the new regime. In fact Francesco Burlamacchi, a zealous Lucchese patriot, had conceived the design of re-establishing republican government in all the cities of Tuscany. Cosimo, with the emperor's help, succeeded in having him put to death. Lucca, however, was an insignificant state making no pretence of rivalry, whereas Siens was an old and formidable foe to Florence, and bad always given protection to the Florentine exiles. It was now very reluctantly submitting to the presence of a Spanish garrison, and, being stimulated by promises of prompt and efficacious assistance from France, rose in rebellion and expelled the Spanbards in 1552. Cosimo instantly wrote to the emperor in terms that appealed to his pride, asked leave to attack Siena, and begged for troops to ensure the success of his enterprise. As no immediate answer arrived, be feigned to begin negotiations with Henry II. of France, and, by thus arousing the imperial jealousy, obtained a contingent of German and Spanish infantry. Sierna was besieged for fifteen months, and its inhabitants, aided hy the valour of Piero Strozzi, who fought under the French flag, made a most beroic resistance, even women and children helping on the walls. But fortune was against them. Piero Strozzi sustained several defeats, and finally the Sienese, having exhausted their ammunition and being decimated by famine and the sword, were obliged to capitulate on honourable terms that were shamelessly violated. By the varied disasters of the siege and the number of fugitives the popalation was reduced from forty to eight thousand inhabitants. The republicans, still eager to resist; withdrew to Montalcino. Cosimo now ruled the city and territory of Siena in the name of Charles V ., who always refused him its absolute possession. After the emperor's abdication, and the succession of Phillp II. to the Spanish throne, Cosimo
at last obtained Siens and Porto Ferraio by giving up his claim to a sum of 200,000 ducats that he was to have received from Charles V.
In 1559 Coaimo also captured Montalcino, and thus formed the grand-duchy of Tuscany, but be continued to govern the new state-i.e. Siena and its territories-separately from the old. His rule was intelligent, skilful and des. Grapornaty potic; but his enormous expenses drove him to raise formed large sums of money by special contrivances unsuited to the country and the people. Hence, notwithstanding the geaius of its founder, the grand-duchy held from the first the elements of its future decay. Cosimo preferred to confer office upon men of humble origin in order to have pliable tools, but he also liked to be surrounded by a courtier aristocracy on the Spanish and French pattern. As no Tuscan aristocracy any longer existed, he created new nobles, and tempted foreign ones to come by the concession of various feudal privileges; and, to turn this artificial aristocracy to some account, be founded the lnightly order of St Stephen, charged with the defence of the coast against pirates, which in course of time won much honour by its prowess. He also established a small standing army for the protection of his frontiers; but he generally employed German and Spanish troops for his wars, and always had a foreign bodyguard. At the commencement of his reign he opposed the popes in order to maintain the independence of his own state; but later, to obtain help, he truckled to them in many ways, even to the extent of giving up to the Inquisition his own confidant, Piero Carnesecchi, who, being accused of heresy, was beheaded and burnt in 1567. In reward for these acts of submission, tbe popes showed him friendship, and Pius V. granted him the title of grand-duke, conferring the patent and crown upon him in Rome, although tbe emperor had always withheld his consent. The measure most injurious to Tuscany was the fiscal system of taxes, of which the sole aim was to extort the grentest possible amount of money. The consequent damage to industry, commerce and agriculture was immense, and, added to the devastations caused by the Sienese War, led to their utter ruin. Otherwise Cosimo did not neglect useful measures for the interior prosperity of his' state. He was no Maecenas; nevertheless be restored the Pisan university, enlarged that of Siena, had the public records classified, and also executed public works like the Santa Trinita bridge. During the great inundations of 1557 he turned his whole energy to the relief of the sufferers.
In 1539 he had espoused Eleonorn of Toledo, daughter of the viceroy of Naples, by whom he had several children. Two died in 1562, and their mother soon followed them to the grave. It was said that one of these boys, Don Garcia, had murdered the other, and then been killed by the enraged father. Indeed, Cosimo was further accused of having put his own wife to death; but neither rumour had any foundation. He now showed signs of illness and failure of strength. He was not old, but worn by the cares of state and self-indulgence. Accordingly in 1564 he resigned the government to his cldest son, who was to act as his lieutenant, since he wished to have power to resume the sceptre on any emergency. In 1570, by the advice of Pope Pius V., he married Camilla Martelli, a young lady of whom he had been long enamoured. In 1574 he died, at the age of fifty-four years and ten months, after a reign of thirty-seven years, leaving three sons and one daughter besides natural children. These sons were Frencesco, his successor, who was already at the head of the government, Cardinal Ferdinand, and Piero.

Francesco I., born in 1541, began to govern as his father's lieutenant in $\mathbf{~ 5 6 4 ,}$, and was married in 1565 to the archduchess Giovanna of Austria. On beginning to reign on his prasousco \& own account in 1574, he speedily manifested his real character. His training in the hands of a Spanish mother had made him suspicious, false and despotic. Holding every one aloof, he carried on the government with the assistance of a few devoted ministers. He compelled his step-mother to retire to a convent, and kept his brothers at a distance from Florence. He loved the privileges of power without its burdens. Cosimo bad known how to maintain his independence, but Francesco cas
himself like a vassal at Austria's feet. Ho reaped his reward by obtaining from Maximilian II. the title of grand-duke, for which Cosimo had never been able to win the imperial sanction, but he forfeited all independence. Towards Philip II. he showed even greater submissiveness, supplying him with large sums of money wrung from his overtaxed people. He held entirely aloof from France, in order not to awake the suspicions of his protectors. He traded on his own account, thus creating a monopoly that was ruinous to the country. He raised the tax upon corn to so high a rate that few continued to find any profit in growing it, and thus the Marcmme, already partly devastated during the war with Siena, were converted into a desert. Even industry declined under this system of government; and, although Francesco founded porcelain manufactories and pietra dura works, they did not rise to any prosperity until after his death. His love of science and letters was the only Medicean virtue that he possessed. He had an absolute passion for chemistry, and passed much of his time in lis laboratory. Sometimes indeed he gave audience to his secretaries of state standing before a furnace, bellows in hand. He took some useful measures to promote the rise of a new city at Leghorn, which at that time bad only a natural and ill-sheltered harbour. The improvement of Leghorn had been first projected by Cosimo I., and was carried on by all the succeeding Medici. Francesco was a slave to his passions, and was led by them to scandalous excesses and deeds of bloodshed. His example and neglect of the affairs of the state soon caused a vast increase of crime even among the people, and, during the first eighteen months of his reign, there occurred no fewer than one hundred and sixty -eight murders.
In default of public events, the historians of this period enlarge upon private incidents, generally of a scandalous or sanguinary kind. In 1575 Orazio Pucci, wishing to avenge his father, whom Cosimo had hanged, determined to get up a conspiracy, but, soon recognizing how firmly the-Medicean rule had taken root in the country, desisted from the attempt. But the grand-duke, on hearing of the already abandoned plot, immediately caused Pucci to be hanged from the same window of the Palazzo Vecchio, and even from the same iron stanchion, from which his father before him had hung. His companions, who had fied to France and England, were pursued and murdered by the ducal emissaries. Their possessions were confiscated, and the "Polverina " law applied, so that the conspirators' heirs were reduced to penury, and the grand-duke gained more than 300,000 ducats.
Next year Isabella dei Medici, Francesco's sister, was strangled in her nuptial bed by her hushand, Paolo Giordano Orsini, whom she had betrayed. Piero dei Medici, Francesco's brother, murdered his wife Eleonora of Toledo from the same motive. Still louder scandal was caused by the duke's own conduct. He was already a married man, when, passing one day through the Piazza of St Mark in Florence, he sawan excee dingly beautiful woman at the window of a mean dwelling, and at once conceived a passion for her. She was the famous Bianca Cappello, 2 Venetian of noble birth, who had eloped with a young Florentine named Pietro Buonaventuri, to whom she was married at the time that she attracted the duke's gaze. He made'ber acquaintance, and, in order to sec her frequently, nominated her husband to a post at court. Upon this, Buonaventuri behaved with so much insolence, cven to the nobility, that one evening be was found murdered in the street. Thus the grand-duke, who was thought to bave sanctioned the crime, was able to indulge his passion unchecked. On the death of the grand-duchess in $\times 57^{8}$ he was privately united to Bianca, and afterwards married her publicly. But she had no children, and this served to poison her happiness, since the next in succession was her bitter enemy, the cardinal Ferdinand. The latter came to Florence in 1587 , and was ostentatiously welcomed by.Bianca, who was most anxious to conciliate him. On the 18th of October of the same year the grand-duke died at his villa of Poggio a Caiano, of a fever caught on a shooting excursion in the Maremme, and the next day Bianca also expired, having ruined ber health by drugs taken to cure her sterility. But rumour asserted that she had
prepared a poisoned tart for the cardinal, and that, when be suspiciously insisted on the grand-duke tasting it first, Bianca desperately swallowed a slice and followed ber busband to the tomh.

Such was the life of Francesco dei Medici, and all that can be said in his praise is that he gave liberal encouragement to a few artists, including de Giovanni Bologna (q.z.). He was the iounder of the Ufizi gallery, of the Medici theatre, and the villa of Pratolino; and during his reign the Della Cruscan academy was instituted.

Ferdinand I. was thirty-eight years of age when, in 1587 , he succeeded his brother on the throne. A cardinal from the age of fourteen, be had never taken holy orders. He
showed much tact and experience in the manage- Ferdmand f. ment of ecclesiastical affairs. He was the founder of the Villa Medici at Rome, and the purchaser of many priceless works of art, such as the Niobe group and many other statues afterwards transported by him to Florence. After his accession he retained the cardinal's purple until the time of his marriage. He was in all respects his brother's opposite. Afiable in his manners and generous with his purse, be chose a crest typical of the proposed mildness of his rule-a swarm of bees with the motto Majestate tantum. He instantly pardoned all who had opposed him, and left.his kinsmen at liberty to choose their. own place of residence. Occasionally, for political reasons, he committed acts unworthy of his character; but he re-established the adminis. tration of justice, and sedulously attended to the business of the state and the welfare of his subjects. Accordingly Tuscany revived under his rale and regained the independence and political dignlty that his brother had sacrificed to love of ease and personal indulgence. He favoured commerce, and effectualiy ensured the prosperity of Leghorn, by an edict enjoining toleration towards Jews and heretics, which led to the settlement of many foreigners in that city. He also improved the harbour and facilitated communication with Pisa by means of the Naviglio, a canal into which a portion of the water of the Arno was turned. He nevertheless retained the reprehensihle custom of trading on his own account, keeping banks in many cities of Europe. He successfully accomplished the draining of the Val di Chiana, cultivated the plains of Pisa, Fucecchio and Val di Nievole, and executed other works of public utility at Siena and Pisa. But his best energies were devoted to the foreign policy by which he sought to emancipate bimself from subjection to Spain. On the assassination (1989) of Henry III. of France Ferdinand supported the claims of the king of Navarre, undeterred by the opposition of Spain and the Catholic League, who were dismayed hy the prospect of a Huguenot succeeding to the throne of France. He lent money to Henry IV., and strongly urged bis conversion to Catholicism; he helped to persuade the pope to accept Henry's abjuration, and pursucd this policy with marvellous persistence until his efforts were crowned with success. Henry IV. showed faint gratitude for the benefits conferred upon him, and paid no attention to the expostulations of the grand-duke, who then began to slacken his relations with France, and showed that he could guard his independence by other alliances. He gave liberal assistance to Philip III. for the campaign in Algiers, and to the emperor for the war with the Turks. Hence he was compelled to burden his subjects with enormous taxes, forgetting that while guaranteeing the independence of Tuscany by his loans to forcign powers he was increasingly sapping the strength of future generations. He at last succeeded in obtaining the formal investiture of Siesa, which Spain had always considered a fief of her own.

During this grand.duke's reign the Tuscan navy was notably increased, and did itsclf much honour on the Mediterranean. The war-galleys of the knights of St Stephen were despatched to the coast of Barbary to attack Bona, the beadquarters of the corsairs, and they captured the town with much dash and bravery. In the following year (6088) the same galleys achieved their most brilliant victory in the archipelago over the stronger fleet of the Turks, by laking nine of their vessels, seven hundred prisoners, and je wels of the value of $2,000,000$ ducats.

Ferdinand I. died in 1609, leaving four anons, of whom the eldest, Cosimo II., succeeded to the throne at the age of nineteen. Coutoon r. He was at first assisted in the government by his mother and a council of regency. He had a good disposition, and the cortune to reign during a period when Europe was at peace and Tuscany hlessed vith ahundant harvests. Of his rule there is little to relate. His chief care was given to the galleys of St Stephen, and he sent them to assist tbe Druses against the Porte. On one occasion he was involved in a quarred with France. Concino Concini, tbe Marshal d'Ancre, being assassinated in 1617, Louis XIII. claimed the right of transferring the property of the murdered man to De Luynes. Cosimo, refusing to recognize the confiscation decreed by the Freach trihunals, demanded that Concini's son should be allowed to inherit. Hence followed much ill-feeling and mutual reprisals between the two countries, finally brought to an end by the intervention of the duke of Lorrai.e.

Like his predecessors, Cosimo II. studied to promote the prosperity of Leghorn, and he deserves honour for abandoning all commerce on his own account. But it was no praiseworthy act to pass a law depriving women of almost all rights of inheritance. By this means many daughters of the nobility were driven into convents against their will. He gave scanty attention to the general affairs of the state. He was fond of luxury, spent Ireely on public lestivities and detested trouble. Tuscany was apparently tranquil and prosperous; hut the decay of which the seeds were sown under Cosimo I. and Ferdinand I. was rapidly spreading, and became before long patent to all and beyond all hope of remedy. The best deed done by Cosimo II. was the protection accorded hy him. to Galileo Galilci, who had removed to Padua, and there made some of his grandest discoveries. The grand duke recalled him to Florence in 1610, and nominated him court mathematician and philosopher. Cosimo died in February 1621. Feeling his end draw near, when be was only aged thirty and all his sons were still in their childhood, he hastened to arrange his family affairs. His mother, Cristina of Lorraine, and his wife, Maddalena of Austria, were nominated regents and guardians to his eldest son Ferdinand II., a boy of ten, and a council ol lour appointed, whose functions were regulated by law. Alter Cosimo's death, the young Ferdinand was sent to Rome and Vienna to complete his education, and the government of Tuscany remained in the hands of two jealous and quarrelsome women. Thus the administration of justice and finance speedily went to ruin. Out of submissiveness to the pope, the regents did not dare to maintain their legitimate right to inherit the duchy of Urbino. . They conferred exaggerated privileges on the new Tuscan nohility, which became increasingly insolent and worthless. They resumed the practice of trading on their own account, and, without reaping much benefit therehy, did the utmost damage to private enterprise.

In 1627 Ferdinand II:, then aged seventeen, returned to Italy and assumed the reins of government; but, being of a very gentle Fwollaged if disposition, he decided on sharing his power with the regents and his brothers; and arranged matters in such wise that each was almost independent of the other. He gained the love of his subjects by his great goodness; and, when Florence and Tuscany were ravaged by the plague in 1630 , be showed admirable courage and carried out many useful measures. But he was totally incapable of energy as a statesman. When the pope made bitter complaints because tbe board of health had dared to subject certain monks and priests to the necessary quarantine, the grand-duke insisted on his officers asking pardon on their knees for having done their duty. On the death in 1631 of the last duke of Urhino, the pope was allowed to seize the duchy without the slighest opposition on the part of Tuscany. As a natural consequence the pretenaions of the Roman curia became increasingly exorbitant; ecclesiastics usurped the functions of the state; and tbe ancient laws of the repuhlic, toget her with the regulations decreed by Cosimo I. as a check upon similar abuses, were allowed to become obsolete. On the extinction of the line of the Gonzagas at Mantua in $\mathbf{6 2 7}$,
war hroke out between Prance on the one side and Spain, Germany and Savoy on the other. The grand duke, uncertain of his policy, trimmed his sails according to events. Fortunately pence was re-established in 1631. Mantua and Monferrato lell to the duke of Nevers, as France had always desired. But Europe was again in arms for the Thirty Years' War, and Italy was not at peace. Urban VIII. wished to aggrandize his nephews, the Barberini, by wresting Castro and Ronciglione Irom Odoardo Farnese, duke of Parma and hrother-in-law to Ferdinand. Farnese marched his army through Tuscany into the territories of the pope, who was greatly alarmed by the attack. Tbe grandduke was drawn into the war to defend his own state and his kinsman. His military operations, bowever, were of the feeblest. and often the most laughable character. At last, by means of the French intervention, peace was made in 1644. But, although the pope was forced to yield, be resigned none of his ecclesiastical pretensions in Tuscany. It was during Ferdinand's reign that the septuagenarian Galileo was obliged to appear belore the Inquisition in Rome, which treated bim with infamous cruelty. On the death of this great and unfortunate man, the grand-duke wished to erect a monument to him, but was withheld by fear of the opposition of tbe clergy. Tbe dynasty as well as the country now seemed on the brink of decay. Two of the grandduke's hrothers had already died childless, and Ippolito, the sole survivor, was a cardinal. The only remaining heir was his son Cosimo, born in 1642.
Like nearly all his predecessors, Ferdinand II. gave liberal patronage to science and letters, greatly aided therein by his brother Leopold, who had been trained hy Galieo Galilei, and who joined with men of learning in founding the celebrated academy Del Cimento, of which be was named president. This academy took for its motto the words Provando e riprovando, and followed the experimental method of Galien. Formed in 1657, it was dissolved in 1667 in consequence of the jealousies and dissensions of its members, hut during its briel existence won renown by the number and importance of its works.

Cosimo III. succeeded his father in 1670. He was weak, vain, bigoted and bypocritical. In 1661 he had espoused Louise of Orléans, niece of Louis XIV., who, being enamoured of duke Charles of Lorraine, was very reluctant to come to Italy, and speedily detested both her husband and his country, of which she refused to learn the language. She had two sons and one daughter, but after the hirth of her third child, Giovan Gastone, her hatred for her busband increased almost to madness. She first withdrew to Poggio 2 Caiano, and then, being unable to get her marriage annulled, returned to France, where, although supposed to live in conventual seclusion, she passed the greater part of her time as a welcome visitor at court. Even her testamentary dispositions attested the violence of her dislike to her husband.

Cosimo's hypocritical zeal for religion compelled his subjects to multiply services and processions that greatly infringed upon their working hours. He wasted enormous sums in pensioning converts-even those from other countries-and in giving rich endowments to sanctuaries. Mcanwhile funds often lailed for the payment of government clerks and soldjers. His court was composed of bigots and parasites; he ransacked the world for dainties for bis table, adorned his palace with cosily foreign hangings, had foreign servants, and filled his gardens with exotic plants. He purchased from the amperor the title of "Highness" in order to be the equal of the duke of Savoy. He remained neutral during the Franco-Spanish War, and submitted to every humiliation and requisition exacted by the emperor. He had vague notions of promoting.agriculture, but accomplished no results. At one time he eaused eight hundred families to be hrought over from the Morea for the cultivation of the. Maremme, where all of them died of fever. Bul when, after the revocation of the Edict of Nantes, French Huguenots offered to apply their lahour and eapltal to the same purpoee, the grand duke's religious scruples refused them refuge So ruin lell upon Tuscany. Crime and misery increased, and the poor, who only asked lor work, were given alms and sent oftener to church. This period
witnessed the rise of many charitahle institutions of a religious character under the patronage of the grand-duke, as for instance the congregation of San Giovanni Battista. But these could not remedy the general decay.

Cosimo's dominant anxiety regarded the succession to the throne. His eldest son Ferdinand died childless in 1713. The pleasure-loving Giovan Gastone was married to Anna Maria of Saxe-Lauenburg, widow of a German prince, a wealthy, coarse woman wholly immersed in domestic occupations. After living with her for some time in a Bohemian village, Giovan Gastone yielded to his dislike to his wife and her country, withdtew to France, and ruined his health by his excesses. Alter a briel return to Bohemia he finally separated from his wife, hy whom he had no family. Thus the dynasty was doomed to extinction.
thought on ascending it was to regain strength enough to pass the remainder of his days in enjoyment. He dismissed the spies, parasites and bigots that had formed his father's court, abolished the pensions given to converts, suppressed several taxes, and prohibited the organized espionage established in the family circle. He wished to five and iet live, and liked the people to be a mused. Everything in lact bore a freer and gaycr aspect under his reign, and the Tuscans seemed to feel renewed attachment for the dynasty as the moment of its extinction drew near. But the grand-duke was too feeble and incapable to accomplish any real improvement. Surrounded by gay and dissipated young men, he entrusted all the cares of government to a certain Giuliano Dami, who drove a profitable trade by the sale of offices and privileges. In this way all things were in the hands of corrupt

GENEALOGICAL TABLE OF THE MEDICI

Cosimo had a passing idea of reconstituting the Florentine repuhlic, but, this design being discountenanced by the European powers, he determined to transier the succession, after the death of Giovan Gastone, to his sister Anna Maria Louisa, who in lact survived him. For thls purpose tre proposed to annul the patent of Charies V., but the powers objected to this arrangement also, and by the treaty of 1718 the quadrupte alliance of Germany, France, England and Holland decided that Parma and Tuscany should descend to the Spanish Infante Don Carlos. The grand-duke made energetic but fruitless protests.

Cosimo 111. had passed his eighticth year at the time of his decease in October 1723, and was succeeded by his son Giovan Gastone, then aged fifty-three. The new sovereign

Obonan
Clstcen was in bad health, worn out by dissipation, and had neither ambition nor aptitude for rule. His throne was already at the disposal of foreign powers, and his only
individuals; while the grand-duke, compelled to pass the greater part of his time in bed, vainly sought diversion in the company of bufloons, and was oniy tormented by perceiving that all the world disposed of his throne without even asking his advice. And when, after prolonged opposition, he had resigned himself to accept Don Carios as his successor, the latter led a Spanish army to the conquest of Naples, an event afterwards leading to the peace of $\mathbf{1 7 3 5}$, by which the Tuscan succession was transferred to Francesco II., duke of Lorraine, and husband of Maria Theresa. Giovan Gastone was finally obliged to submit even to this. Spain withdrew her garrisons from Tuscany, and Austrian soldiers took their place and swore fealty to the grand-duke on the 5th of February 1737. He expired on the gth of July of the same year. Such was the end of the younger hranch of the Medici, which had found Tuscany a prosperous country, where art, letiers, commerce, industry and agriculture flourished,
and left her poor and decayed in all ways, dratned hy tamation, and oppressed by laws contrary to every principle of sound economy, downtrodden hy the clergy, and hurdened by a weak and vicious aristocracy.

Bibliography.-G. Capponi, Storia della repubiice di Fireke (Florence, 1875) F. T. Perrens, Histoive de Florence depuis la Lomination des Medicis jusqu'd la chule de la republique (Paris, :518, ane.): W. Roscoe, Life of Lorento de Medici (new ed., London, 15-2) and Life of Leo X. (London, 1846); A. von Reumont, Geschrithe Toscanas seil der Ende des florent. Freishates (2 vols., Gotha, 14-6) and Lorenso de' Medici (Leipzig, 1874) : A. Fabroni. Loupenii Med: tei magrifici vila (2 vols-, Pisa, 1784) and Magni Cosimi Medicen ita (2 vols. Pisa, 1789); Buser, Lorenso de' Medici als ilalienistier Slakimann (Leipzig, 1879) and Die Bexiehungen der Medicer sw Prathreich (Leipzig, 1879); E. Armstrong, Lorenso de' Muici (London, 1896) : P. Villari, La Sloria di Girolamo Sanonarola (Florenix, 1887) and Machiavelli (Florence, $1878-1883$, several subsequant editions) ; Galluzzi, Storia del granducato di Toscana sollo il gereno d case Medici (5 vols., Florence, 1787) ; E. Robiony, Gli uilimi Medici (Florence, 1gos); E. L. S. Horsburgh, Lorenzo the Magnifit ind and Florexce in her Golden Age (1908): and Janct Ross, Lives of the Medici from their Letters (I910). See also under Florence and Tuscany.
(P. V.)

MEDICI, OIACOMO (1817-1882), Italian patriot and soldier, was born at Milan in January 1817. Exiled in 1836, he fought in Spain against the Carlists between 1836 and 1840 , and in 1846 joined Garibaldi at Montevideo. Returning to Italy with Garibaldi in 1848 , he raised a company of volunteers to $\mathbf{i g h t}$ against Austria, and commanded the volunteer vanguard in Lombardy, proceeding thence to Rome, where he gained distinction by defending the "Vascello," a position near the Porte San Pancrazio, against the French. During the siege of Rome be himself was wounded. In the war of 1859 he commanded a volunteer regiment, and was sent by Cavour into Tirol. In 1860 he tried in vain to dissunde Garibaldi from the Marsala expedition, but, after his chief's departure, he sailed for Sicily vith the second expedition, taking part in the whole campaign, during which he forced Messina to capitulate after an eight days' siege. Joining the regular army, he was appointed military commandant of Palermo, in which capacity he facilitated the abortive ampaign of Garibaldi in 1862. In 1866 be commanded the division which invaded Tirol, hut the effect of his victories was neutralized by the conclusion of peace. Returning to Palermo he did good work in restoriag order in Sicily. He became a senator in 1870, and marquis of the "Vascello" and first aide-de-camp to the king in $\mathbf{5 8 7 6}$. He died on the gth of March 1882.
EEDICIIR.-The science of medicine, as we understand it, has for its province the -treatment of disease. The word " medicine" (Lat. medicina: sc. ars, art of healing, from mederi, to heal) may be used very widely, to include Pahology ($q .0$. .), the theory of the causation of disease, or, very narrowly, to mean only the drug or form of remedy prescribed by the physician-this being more properly the subject of Therapeutics (q.v.) and Pharmacology (q.v.). But it is necessary in practice, for historical comprehensiveness, to keep the wider meaning in view.
Disease (see Patiolocy) is the correlative of health, and the word is not capable of a more penetrating definition. From the time of Galen, however, it has been usual to speak of the tife of the body either as proceeding in accordance with nature (card ϕ how, secundum naluram) or as overstepping the bounds of nature (rapd $\phi 0 \% \sigma_{1}$, proder natwram). Taking disease to be a defiexion from the line of health, the first requisite of medicine is an extensive and intimate acquaintance with the norm of the body. The structure and functions of the body form the suhject of Anatomy (q.a.) and Physidogy (q.s.).
The medical art (ars medendi) divides itself into departments and subdepartments. The most fundamental division is into internal and external medicine, or into medicine proper and surgery (q, v.). The treatment of wonnds, injuries and deformities, with operative interference in general, is the special department of surgical practice (the corresponding parts of pathology, including inflammation, repair, and removable tumours, are sometimes grouped together as surgical pathology); and where the wort of the profession is highly subdivided,
surgery becomes the exchusive province of the surgeon, while internal medicine remains to the physician. A third great department of practice is formed by obstetric medicine or midwifery (gee Ossienelics); and dentistry (q.v.), or dental surgery, is given up to a distinct branch of the profession.
A state of war, actual or contingent, gives occasion to special developments of medical and surgical practice (military hygiene and military surgery). Wounds caused by projectiks, sabres, bec, are the special subject of naval and military surgery; white under the bead of military hygiene we may include the general subject of ambulances, the sanitary arrangements of camps, and the various forms of epidemic camp sickness.

The administration of the civil and criminal law involves frequent relations with medicine, and the professional subjects most likely to arise in that connerion, together with a summary of couses cullbivas, ave formed into the department of Medical Junisprudence ($q .5$.).
In preserving the public health, the medical prolession is again brought into direct reletion with the state, through tbe public medical officers.

History or Medicine

Hadicine as Portncyed in the Hemeric Pooms.-In the state of society pictured by Homer it is clear that medicine has already had a history. We find a distinct and organized profession; we find a system of treatment, especially in regard to injuries, which it must have been the work of long experience to frame; we meet with a nomenclature of parts of the body substantially the same (acconding to Daremberg) as that employed long afterwards in the writings of Hippocrates; in short, we find a scionce and an organization which, however imperfect as compared with those of later times, are yet very far from being in their beginning. The Homeric heroes themselves are represented as having considerable akill in surgery, and as able to attend to ordinary wounds and injuries, but there is also a professional class, represented by Machaon and Podalirius, the two sons of Asclepius, who are treated with great respect. It would appear, too, from the Aetkiopis of Archinus (quoted by Welcker and Hiser) that the duties of these two were not precisely the same. Machaon's task was more especially to heal injuries, while Podalirius had received from his father the gift of " recognizing what was not visible to the eye, and tending what could not be healed." In other words, a rough indication is seen of the separation of medicine and surgery. Asclepius appears in Homer as a Thessalian king, not as a god, though in later times divine honours were paid to him. There is no sign in the Homeric poems of the subordination of modicine to religion which is seen in ancient Egypt and India, nor are priests charged, as they were in those countries, with medical functions-all circumstances which throw grave doubts on the commonly received opinion that medicine derived its origin in all countries from religious observances.
Although the actual organization of medicine arnong the Homeric Greeks was thus quite distinct from religion, the worship of Asclepius (or Aesculapius) as the god of healing demands some notice. This cult spread very widely among the Greeks; it had great civil importance, and lasted even into Christian times ; but there is no reason to attribute to it any special connexion with the development of the science or profession of medicine. Sick persons repaired, or were conveyed, to the temples of Asclepius in order to be healed, just as in modern times relief is sought by a devotional pilgrimage or from the waters of some sacred spring, and then as now the healing infuence was sometimes sought by deputy. The sick person, or his representative, after ablution, prayer and sacrifice, was made to sleep on the hide of the sacrificed animal, or at the feet of the statue of the god, while sacred rites were performed. In his sleep (incubatio, truopmots) the appropriate remedy was indicated by a dream. Moral or dietetic remedies were more often prescribed than drugs The record of the cure was inscribed on the columns or walls of the temple: and it has been thought that in this way was introduced the custom of "recording cases," and that the physicians of the Hippocratic school thus learnt to accumulate elinical experience. But the priests of Asclepius were not physicians Although the latter were often called Asclepiads, this was in the first place to indicate their real or supposed descent from Asclepius, and in the second place as a complimentary tite. No medical writing of antiquity speake of the worship of Asclepius in such a way as to
imply any connexion with the ordinary ast of healing. The two systems appear to have existed side by side, but to have been distinct, and if they were ever united it must have been before the times of which we have any record. The theory of a development of Greek medicine from the rites of Asclepius, though defended by eminent names, must accordingly be rejected.

Development of Medicine in Greece.-It is only from nonmedical writers that anything is known of the developinent of medicine in Greece before the age of Hippocrates. The elaborate collections made by Daremberg of medical notices in the poets and historians illustrate the relations of the profession to society, but do little to prepare us for the Hippocratic period. Nor is much importance to be attached to the influence of the philosophical sects on medicine except as regards the school of Pythagoras. That philosopher and several of his successors were physicians, but we do not know in wbat relation they stood to later medical schools. We must therefore hasten onward to the age of Pericles, in which Hippocrates, already called " the Great," was in medicine as complete a representative of the highest efforts of the Greek intellect as were his contemporaries the great philosophers, orators and tragedians. The medical art as we now practise it, the character of the physician as we now understand it, both date for us from Hippocrates. The justification of this statement is found in the literary collection of writings known by his name. Of these certainly many are falsely ascribed to the historical Hippocrates of Cos; others are almost as certainly rightly so ascribed; others again are clearly works of his school, whether from his hand or not. But which are to be regarded as the "genuine works" is still uncertain, and authorities are conflicting. There are clearly two schools represented in the collection-that of Cnidus in a small proportion, and that of Cos in far the larger number of the works. The litter was that to which Hippocrates belonged, and where he gave instruction; and accordingly it may be taken that works of this school, when not obviously of a different date, are Hippocratic in doctrine if not in actual authorship.

Hippocratic Medicine.-The first grand characteristic of Hippocratic medicine is the high conception of the duties and status of the physician, shown in the celcbrated "Oath of Hippocrates" and elsewhere-equally free from the mysticism of a priesthood and the vulgar pretensions of a mercenary craft. So matured a professional sentiment may perhaps have been more the growth of time and organization than the work of an individual genius, but certainly corresponds with the character universally attributed to Hippocrates himseff. The second great quality is the singular artistic skill and balance with which the Hippocratic physician used such materials and tools as he possessed. Here we recognize the true Greek owppootwo. But this artistic completeness was closely connected with the third cardinal virtue of Hippocratic medicine-the clear recognition of discase as being equally with life a process governed by what. we should now call natural laws, which coutd be known by observation, and which indicated the spoataneous and normal direction of recovery, by following which alone could the phygicien sucoeed. In the fourth place, these views of the "natural history of disease" (in modern language) led to habits of minute observation and accurate interpretation of symptoms, in which the Hippocratic school was unrivalied in antiquity, and has been the model for all succeeding ages, so that even in these days, with our enormous advances in knowledge, the true method of clinical medicine may be said to be the method of Hippocrates
The actual science of the Hippocratic school was of course very limited. In anatomy and physiology little advance had been made, and so of pathology in the sense of an explanation of morbid procesen, or knowledge of diseased structures there could be very little. The most valuable intellectual possession was a large mass of recorded observations in individual cases and epidemicis of disease. Whether these observations were systematic or individual, and how they were recorded, are points of which we are quite ignorant, as the theory that the votive tablets in the temples supplied such materials must be abandoned.

Though the Hippocratic medicine was so largely founded on observation. it would be an error to auppose that dogma or theory had no place. The dominating theory of diseave was the hencoral, which has never since ceased to influence medical thought and practice. According to this celebrated theory, the body contains four humours-blood, phlegm, yellow bile and black bile, a right proportion and mixture of which constitute bealth; improper proportions or irregular distribution, disease. It is doubtful whether the treatise in which this theory is fully expounded (real thrwen if purmou) is as old as Hippocrates himself: but it was reqarded as 2 a Hippocratic doctrine, and, when taken up and expanded by Galen, its terms not only became the common property of the profeation,
but passed into general literature and common language. Another Hippocratic doctrine, zhe influence of which is not cven yet exhausted, is that of the healing power of nature. Not that Hippocrates taught, as he was afterwards reproached with tcaching, that nature is sufficient for the cure of diseases: for he held strongly the efficacy of art. But he recognized, at least in acute diseasess, a natural process which the humours went through-being first of all crudts. then passing through coction or digestion, and finally being expelled by resolution or crisis through one of the natural channels of the body. The duty of the physician, was to foresee these changes, "to assist or not to hinder them," so that " the sick man might conquer the disease with the help of the physician." The times at which crises were to be expected were naturally looked for with anxiety; and it was a cardinal point in the Hippocratic system to foretell them with precision. Hippocrates, influenced as is thought by the Pythagorear doctrines of number, taught that they were to be expected on days fixed by certain numerical rules, in some cases on odd, in others on even numbers-the celebrated doctrine of "critical days." This false precision can have had no practical value, but may have enforced habits of minute observation. It follows from what has been said that prognosis, or the art of foretclling the course and event of the disease, was a strong point with the Hippocratic physicians. In this shey have perhaps never been excelled. Diagnosis, or recognition of the diseasc, must have been necessarily imperfect, when no scientific nosology or system of discase existed, and the knowledge of anatomy was quite inadequate to allow' of a precise determination of the scat of disease: but symptoms were no doubt observed and interpreted skillully. The pulse is not spoken of in any of the works now attributed to Hippocrates himself, though it is mentioned in other works of the collection.
In the treatment of disease, the Hippocratic school attached great importance to diet, the variations necessary in different diseases being minutely defined. Medicines were regarded as of secondary importance, but not neglected, two hundred and sixty-five drugs being mentioned at different places in the Hippocratic works. Blood-letting was known, but not greatly practised. The highest importance was attached to applying all remedies at the right moment, and the general principle enforced of making all influences -internal and external-co-operate for the relief of the patient. The principles of treatrent just mentioned apply more especially to the cure of acute diseases; but they are the most salient characteristics of the Hippocratic school. In chronic cases diet, exercise and natural methods were chiefly relied upon.

The school of Cnidus, as distinguished from that of Cos, of which Hippocrates is the representative, appears to have differed in attaching more importance to the differences of special discases, and to have made more use of drugs. A ireatise on the diseases of women, contained in the Hippocratic collection, and of remarkable practical value, is attributed to this school.
The above skerch of Hippocratic medicine will make it less necessary to dwell upon the details relating to subsequent medical schools or sects in ancient times. The general conception of the physician's aim and task remained the same, though, as knowledge increased, there was much divergence both in theory and practiceeven opposing schools were found to be developing some part of the Hippocratic system. Direct opponents or repudiators of the authority of Hippocrates were rare, all generally appealing to his authority. But, insensibly, the least valuable part of the Hippocratie work, the theory, was made permanent; the most valuable, the practical, naglected.
Post-Hippocratic Medicine.-After Hippocrates the progress of medicine in Greece does not call for any special remark in such a sketch as this, but mention must be made of one great name. Though none of Aristotle's writings are strictly medical, he has by his researches in anatomy and physiology contributed greatly to the progress of medicine. It should also be remembered that he was of an Asclepiad family, and received that partly medical education which was traditional in such families, and also himself is said to have practised medicine as an anateur. Moriover, his works on natural history doubrless furthered the progress among the Greeks of sciences tributary to medicine, though the only specimens of such works which have come down to us from the Peripaterie school are those of Theophrastus, who may be considered the founder of the scientific study of botany. Among his encyclopaedi writings were some oa medical subjects, of which fragments only have been preserved. The Peripatetic school may have been more favourable to the development of medicine, as of other department of natural knowledge, than any other; but there is no evidence that any of the philosophical echools had important influence on the progress of medicine. The fruit of Aristotle's teaching and example was seen later on in the schools of Alexandria.

The century after the death of Hippocrates is a time almost blank in medical annals. It is probable that the science, like others shared in the general intellectual decline of Greece after the Macco donian supremacy; but the works of physicians of the period art almost entirely lost, and were so even in the time of Gaten. Galea classes them all as of the dogmatic school; but, whatever may have been their characteristics, they are of no importance in the bintory of the acience.

Atceandrias School of Madicime.-The dispersion of Greek science and intellectual activity through the world by the conquests of Alerander and his successors led to the formation of more than one learned centre, in which medicine among other sciences was represented. Pergamum was early distinguished for its medical school; but in this as in other respects its reputation was ultimately effaced by the more brilliant fame of Alerandria. It is here that the real continuation and development of Hippocratic medicine can be traced.

In one department the Alexandrion school rapidly sarpassed its Greek original-namely, in the study of anatomy. The dissection of the human body, of which some doubtful traces or hints only are found in Greek times, was assiduously carried out, being favoured or even suggested perhaps by the Etgptian custom of disembowelling and embalming the bodies of the dead. There is no doubt that the organs were also examined by opening the bodies of living persons-criminals condemmed to death being given over to the anatomists for this purpose.

Two eminent names stand in the first rank as leaders of the two earliest schools of medicine which arose in Alezandria, Ererophilus and Erasistratus.
Herophilus (335^{-280} e.c.) was a Greek of Chalcedon, a pupil of the echooks both of Cos and of Cridus. He was especially noted for his profound researches in anatomy (see $i, 802$), and in the knowledge and practice of medicine he appears to have beea equally renowned. He professed himself a close adhereat of Hippocrates, and adopted his theory of the humours. He also made extensive me of drugs and of bleeding. The reputation of Herophilus is attested by the fact that four considerable physicians wrote worka about him and his writings, and he is further spoken of with the highest respect by Galen and Celsus. By the general voice of the medical world of antiquity he was placed only second to Hippocrates.
Erasictratus (d. 280 B.c.) was the contemporary and rival of Herophilus. Little is known of his life, except that he spent some time at the court of Seleucus Nicator at Antioch before coming to Alexandria, and that he cultivated anatomy late in Hfe, after he had taken up his abode in the latter city. His numerous works are also almost extirely lost, fragments only being preserved by Galen and others. Erasistratus, instead of following Hippocrates as Herophilus did, depreciated him, and seems to have been rather agressive and independent in his views. He appears to have leaned to mechenical explanations of the symptoms of disenee, as was especially the case with inflammation, of which he gave the first rational, though necessarily inadequate, theory.
The two ectrools composed of the followers of Herophilus and Erasiatratus respectively long divided between them the medical world of Alecandria. The names of many prominent members of both sects bave been preserved, but it would be useless to repeat them. The Herophilists still reverenced the memory of Hippocrates. and wrote numerous commentaries on his works. They produced many erminent anatomists, but in the end seern to have become lost in theoretical subtleties, and to mave maistained too high a standard of literary cultivation. The school of Erasistratus was lees distinguished in anatomy than that of Herophilus, but paid more attention to the special symptoms of diseases, and employed a great variety of druga It was longer-lived than that of Herophilus, for it utif numbered many adherents in the and century after Christ, a century after the latter had become extinct.
-The Erasistrateans paved the way for what was in some respects the most important school which Alexandria produced, that known as the empinc, which, though it recognized no master by name, may be considered to have been founded by Philinus of Cos (280 B.c.). a pupil of Herophilus; but Serapion, a great name in antiquity, and Glaucias of Tarentum, who traced the empirical doctrixe back to the writings of Hippocrates, are also named among its founders. The most striking peculiarity of the empirics was that they rejected anatomy, regarding it as useless to inquire into the causes of things, and thu3, as they contended, being the more minute in their observa: tion of the actual phenomena of disease. They professed that their whole practice was based upon experience, to which word they gave a special meaning. Three pources, and three only, could experience draw from: observation, history (i.e. recorded observation). and judgment by analogy. These three bases of knowledge were known is the "tripod" of the empirics. It should not, however, be forgotten that the empirics read and industriously commented on the works of Hippocrates. They were extremely successful in practical matters. especially in surgery and in the une of drugs. and a large pert of the routine knowledge of diseases and remedies which bocame traditional in the times of the Roman empire is believed to have been derived from them. In the and century the school became closely connected with the philosophica! sect of the Sceptics. Whose loader, Sextus (200 a.c.), was an empirical physician. It lived and houriched far beyond this time, when tranaplanted to Rome, not
lese thas in its native Alexandria, and appears to be recognizable even up to the beginaing of the middle ages.

If we look at the work of the Alerandrian schools in medicine as a whole, we must admit that the progress made was great and permanent. The greatest service rendered to medicine was undouhtedly the systematic study of anatomy. It is clear that the knowledge of function (physiology) did not by any means keep pace with the knowledge of structure, and this was probably the reason why the important sect of the empirics were able entirely to dispense with anatomical knowledge. The doctrines of Hippocrates, though lightly thought of by the Erasistrateans, still were no doubt very widely accepted, but the practice of the Hippocratic school had been greatly improved in almost every department-surgery and obstetrics being probably those in which the Alexandrian practitioners could compare most favourably with those of modern times. We have now to trace the fortunes of this body of medical doctrine and practice when transplanted to Rome, and ultimately to the whole Roman world.

Roman Medicine.-The Romans cannot be said to have at any time originated or possessed an independent school of medicine. They had from early times a very complicated system of superstitious medicine, or religion, related to disease and the cure of discase, borrowed, as is thought, from the Etruscans; and, though the saying of Pliny that the Roman people got on for six hundred years without doctors was doubtless an exaggeration, and not, literally speaking, exact, it must he accepted for the broad truth which it contains. When a medical profession appears, it is, so far as we are able to trace it, as an importation from Greece.

The finst Greek physician whose name is preserved as baving migrated to Rome was Archagathus, who came over from the Peloponneaus in 218 日.c.; but there, were probably others before him. When Greece was made a Roman province, the number of such physicians who sought their fortunes in Rome must have been very large. The bitter words of M. Porcius Cato, who disliked them as he did other representatives of Grrek culture, are evidence of this. The most eminent of these eariier Greck physicians at Rome was Asclepiades, the friend of Cicero (born 124 B.C. at Prusa in Bithynia). He came to Rome as a young man, and sooa became distinguished both for his medical skitl and his oratorical power. He introduced a system which, so far as we know, was his own. though founded upon the Epicurean philosophical creed; on the practical side it conformed pretty closely to the Stoic rule of life, thus adapting itself to the leanings of the better stamp of Romans in the later times of the republic. According to Asclepiades all diseascs depended upon alterations in the size, number, arpangement or movement of the "atoms," of which, according to the doctrime of Epicurus, the body consisted. These atoms were united into passages (rdoco) through which the juices of the body wereconveyed. This doctrine, of which the developments need not further be followed, was important chiefly in so far that it was perfectly distinct from, and opposed to, the humoral pathology of Hippocrates. In the treatment of disease Asclepiades attached most importance to diet, exercise, passive movements or frictions, and the external use of cold water-in short, to a modified athletic training. He rejected the vis medicatrix naturae, pointing out that nature in many conses not ouly did not help but marred the cure. His knowiedge of disease and surgical skipl were, as appears from the accounts given by Celsus and Caclius Aurelianus, very considerable. Asclepiades had many pupils who adhered more or less closcly to his doctrines, but it was especially one of them, Themison, who gave permanence to the teachings of his master by framing out of them, with some modifications, a new system of medical doctrine, and founding on this basis a school which lasted for some centurics in successful rivalry with the Hippocratic tradition. which. as we have seen, was up to that time the prevailing influence in medicine.
This syatem wis koown as methodism, its adherents as the methodic or methodists. Its main principles were that it was uscless to consider the causes of a disease, or even the organ affected by the discase, and that it was sufficient to know what was common to all diseases, viz. their common qualities (communitates, noubropes). Of theme there were three possible forms-(1) relaxation, (2) contraction of the miaute peseages or mbooc, and (3) a mixed state, partly lax partly constricted. The signs of these morbid states were to be found in the general constitution of the body, especially in the excretions. Besides this it was important only to consider whether the disease was acute or chronic, whether it was increasing, declining or stationary. Treatment of disease was dirested not to any special oryan, nor to producing the crises and critical discharges of the Hippocratic school, but to correcting the morbid common condition or "community," relaxing the body if it was constricted, causing
contraction if it was too lax, and in the " mixed state "acting according tis the predominant condition. This simple rule of treatment was the systern or "method "from which the school took its name.

The methodists agreed with the empirics in one point, in their contempt for anatomy; but, strictly speaking, they were dogmatists, though with a dogma different from that of the Hippocratic schook. Besides Themison, its systematic founder, the school boasted many physicians eminent in their day, among whom Thessalus of Tralles, a half-educated and boastful pretender, was one of the most popular. He reversed the Hippocratic maxim " art is long." promising his scholars to teach them the whole of medicine in six months, and had anscribed upon his tomb. Larpovions, as being superior to all living and bygone physicians.

In the 2nd century a much greater name appears amons the methodists, that of Soranus of Ephesus, a physician mentioned with praise even by Tertullian and Augustine, who practised at Rome in the reigns of Trajan and Hadrian. Soranus is known by a work, still extant in the Greek original, on the diseases of women, and also by the Latin work of Caelius Aurclianus, three centuries later, on acute and chronic diseases, which is based upon, if not, as some thiak, an actual translation of, the chief work of Soranus, and which is the principal source of our knowledge of the methodic school. The work on discases of women is the oully complete work on that subject which has come down to us from antiquity, and shows remarkable luliness of practical knowledge in relation to its subject. It is notable that an important instrument of research, the epeculum, which has been reinvented in modern times, was used by Soranus; and apecimens of still earlier date, showing great mechanscal perfection, have been found among the ruins of Pompeii. The work on acute and chronic diseases is also full of practical knowledge, but penetrated with the theories of the methodists.

The methodic school lasted certainly. for some centuries, and influenced the revival of medical science in the middle ages, though overshadowed by the greater reputation of Galen. It was the first definite product of Greek medicine on Roman soil, but was destined to be followed by others, which kept up a more or less succeseful rivalry with it, and with the Hippocratic tradition.

The so-called pneumatic school was founded by Athenaeus, in the Ist century after Christ. According to its doctrines the pormal as well as diseased actions nif the body were to be referred to the operation of the pneuma or universal soul. This doctrine, crudely transferred (rom philosophical speculation, was intended to reconcile the humoral (or Hippocratic) and solidist (or methodic) schools but the methodists seem to have claimed Athenaeus as one of themselves.

The conflicts of the opposing schools, and the obvious deficienciea of each, led many physicians to try and combine the valuable parts of each system, and to call themselves eclectics. Among these were found many of the most eminent physicians of Gracco-Roman tindes. It may be sufficient to name Rufus or Epherus (2nd contury A.D.), and Archigenes (A. A.D. 90), who is mentioned by Juvenal.

Although no system or important doctrine of medicine was originated by the Roman intellect, and though the practice of the profession was probably almost entirely in the hands of the Greeks, the most complete picture which we have of medical thought and activity in Roman times is due to a Latin pen, and to one who was, in all probahility, not a physician. A. Comelius Celsus, a Roman patrician, who lived probably in the ist century, appears to have studied medicine as a hranch of general knowledge. Whether he was a practising physician or not has been a matter of controversy. The conclusion supforted by most evidence seems to be that he practised on his friends and dependants, hut not as a remunerative profession. His well-known work, De medicina, was one of a series of treatises intended to embrace all knowledge proper for a man of the world. It was not meant for the physicians, and was certainly little read by them, as Celsus is quoted hy no medical writer, and when referred to by Pliny, is spoken of as an author not a physician. There is no doubt that his work is chiefly a compilation; and Daremberg, with other scholars, has traced a large number of passages of the Letin text to the Greek originals from which they were translated. In the description of surgical operations the vagueness of the language seems sometimes to show that the author had not performed such himself; but in other parts, and especially in his historical introduction, he speaks with more confidence; and everywhere he compares and criticizes with learning and judgment. The whole body of medical literature belonging to the Hippocratic and Alexandrian times is ably summarized, and a knowledge of the state of medical science up to and during the times of the author is thus conveyed to us which can be ohtained from no other source. The work of Celsus is thus for us only second in importance to
the Hippocratic writings and the works of Galen; but it is valuable rather as a part of the listory of medicine than as the subject of that history. It forms no link in the general cbain of medical tradition, for the simple reason that the influence of Celsus (putting aside a few scanty allusions in medieval times) commenced in the 1 gth century, when his works were first discovered in manuscript or committed to the press. Since then, however, he has been almost up to our own times the most popular and widely read of all medical classics, partly for the qualities already indicated, partly because be was one of the few of those classics accessible to readers of Latin, and partly also because of the purity and classical perfection of his language.

Of Pliny, another encyclopaedic writer, a few words must be said, though be was not a physician. In his Naturel History we find as complete a summary of the popular medicine of his time as Celsus gives of the scientific medicine. Pliny disliked doctors, and lost no opportunity of depreciating regular medicine; nevertheless he has left many quotations from, and many detaila about, medical authors which are of the highest value. He is useful to us for what he wrote about the history of medicine, not for what he contributed. Likc Celsus, be had litte influence on succeeding medical literature or practice.

We now come to the writer who, above all others, gathered up into himself the divergent and scattered threads of ancient medicine, and out of whom again the greater part of modern European medicine has flowed. Galen was a man furnished with all the anatomical, medical and philosophical knowledge of his time he had studied all kinds of natural curiosities, and had stood in near relation to important political events; he possessed enormous industry, great practical sagacity and unbounded literary fluency. He had, in fact, every quality necessary for an encyclopaedic writer, or even for a literary and professional autocrat. He found the medical profession of his time split up into a number of sects, medical science confounded under a multitude of dogmatic systems, the social status and moral integrity of physicians degraded. He appears to bave made it his object to reform these evils, to reconcile scientific acquirements and practical skill, to bring back the unity of medicine as it had been understood by Hippocrates, and at the same lime to raise the dignity of medical practitioners.

Galen was as devoted to anatomical and, so far as then understood, physiological rescarch as to practical medicine. He worked enthusiastically at dissection, though, the liberty of the Alexandrian achools no longer existing, he could dissect only animals, not the human body. In his anatomical studies Galen had a twofold object Fhilosophical, to show the wisdorn of the Creator in making everything fit to serve its purpose; and a practical, to aid the diapnosis, or recognition, of diseasc. The Grst led him into a teleological system so minute and overstraincd as to defeat its own end; the second was successfully attained by giving greater precision and certainty to medical and surgical practice in difficult coses. His general physiology was essentially founded upon the Hippocratic theory of the four elements, with which he combined the notion of spirit (pneuma) penetrating all parts, and mingled with the humours in differcit proportions. It was on this fied that he most vehemently attacked the prevailing atomistic and materialistic viewa of the methodic school, and his cuncetion of the pneuma became in some respects hall metaphysicat. His own researches in special branches of physiology were important, but do not strictly belong to our present subject.

The application of physiology to the explanation of diseases, and thus to practice, was chiefly by the theory of the temperaments or mixtures which Galen Iounded upon the Hippocratic doctrine of humours, but developed with marvellous and fatal ingenuity. The nocmal condition or temperament of the body depended upon a proper mixiure or proportion of the four elements-hot. cold, wet and dry. From faulty proportions of the same aroce the intemprics (" distempers"), which, though not diseases, were the occasions of disease. Equal importance attached to faulty mixtures or dyscrasiae of the blood. By a combination of these morbid predispositions with the action of deleterious infuences from without all discases were produced. Calen showed extreme ingenuity in explaining all symptoms and all diseases on his system. No phenomenon was without a name, no problem without a solution. And, though it was preciseiv in bis fine-spun zubtlety that he departed furthest from acientific method and practical utility, it was this very quality which seems in the end to have secured his popularity and established his pre-eminence in the medical world.

Galen's use of drugs was influenced largely by the same theorica. In drugs were to be recognised the ame elementary qualities-. ${ }^{\text {mot, }}$
cold, moist, dry, ace-as in the human body: and, on the principle of curing by contraries, the use of one or other whan indicated. The Writings of Galen contain less of simple objective observations than those of several other atrient physicians, all being swept into the current of dogmatic exposition. But there is enough to show the thoroughness and extent of his practical knowledge. Unfortunatcly it was neither this nor his zeal for remearch that chiefly won him followers, but the completeness of his theoretical explanations, which fell in with the mental habits of succeeding centuries, and were such se have flattered the intellectual indolence of all ages. But the reputation of Galen grew slowly; he does not appear to have enjoyed any pre-eminence over other physicians of his time, to most of whon he wets strongly oppoeed in opinion. In the next peneration he began to be esteemed only as a phíosopher: gradually his system was implicitly accepted, and it enjoyed a great though not exclusive predominance till the fall of Roman civilization. When the Arabs possessed themselves of the scattered remains of Greek culture, the works of Galen were more highly esteemed than any others except those of Aristotle. Through the Arabs the Galenical system [ound its way back again to western Europe. Even when Arabian medicine gave way before the direct teaching of the Greek authors rescued from oeglect, the authority of Galen was increased instead of being diminished; and he assumed a position of autocracy in medical acieace which was only slowly undermined by the growth of modern science in the 17 th and 28 th centuries

The history of medicine in Roman times is by no means the same thing as the history of the fate of the works of Galen. For some centuries the methodic school was popular at Rome, and produced one physician, Caelius Aurelianus, who must be pronounced, next to Celsus, the most considerable of the Latin medical writers. His date was in all probability the end of the $4^{\text {th }}$ or the beginning of the 5 th century. The works bearing bis name are, as has been said, entirely based upon the Greek of Soranus, but are important both because their Greek originals are lost, and because they are evidence of the state of medical practice in his own time. The popularity of Caelius is evidenced by the fact that in the 6th century an abridgment of his larger work was recommended by Cassiodorus to the Benedictine monks for the study of medicine.

Before quitting this period the name of Aretaeus of Cappadocia must be mentioned. So little is known about him that even his date cannot be fixed more closely than as being between the second half of the ist century and the beginning of the 3 rd. His works have been much admired for the purity of the Greck style, and his accurate descriptions of disease; hut, as he quotes no medical author, and is quoted by none before Alexander of Aphrodisias at the beginning of the 3rd century, it is clear that he belonged to no school and founded none, and thus his position in the chain of medical tradition is quite uncertain. Alexander of Aphrodisias, who lived and wrote at Athens in the time of Septimius Severus, is best known by his commentaries on Aristotle, but also wrote a treatise on fevers, still extant.

Anciess Medicime offer Galen.-The Byzantine school of medicine, Which closely corresponds to the Byzantine literary and historical schools, followed closely in Galen's footsteps, and its writers were chiefly compilers and encyclopaedists. The earliest is Oribasius (326-403), whose date and position are fixed by his being the friend and court phytician of Julian the Apostate He was a Greek of Pergenum, educated in Alexandria, and long resident in Byzantium. His great work Zurayoryal laypuact, of which only about one-third has been preserved, was a medical encyclopaedia founded on extracts from Hippocrates, Galen, Dioeconides (μ. A.D. 50) and certain Greek writert who are otherwise very imperfectly known. The Eork is thus one of great historical value but of no originality. The next name which requires to be mentioned is that of Actius (A.D. 550), a compler who closely followed Oribasius, but with mferior powers, and whowe work also has an historical bat no original value. A higher rank amoty medical writers is assigned to Alexander of Tralles ($525-605$), whoee doctrine was that of an eclectic. His practical and thetapeutical rules are evidently the fruit of his own experience, though it would be difficult to attribute to him any decided advance in medical tnowledge. But the most prominent figure in Byzantine medicine is that of Paul of Aegina (Peutus Aegineta), who lived probably in the early part of the Th $^{\text {th }}$ century. His skill, especially in surgery, must have been considerable, and his Tarpuse gives a very complete picture of the achievements of the Greeles in this department. Another work, on obstetrics, now low, was equally famous, and procured for him, anong the Arabe, the mame of "the Obetetrician". His reputation lasted through the middie ages, and was not less in the Arabian schools than in the West. in this respect Paulas is a most important influence in the development of medicine. His great work on surgery was early
translated into Arabic, and became the foundation of the surgery of Abulcasis, which in turn (to anticipate) was one of the chief sources of surgical knowledge to Europe in the middle ages. The succeeding period of Byrantine history was so little favourable to science that no name worthy of note occurs again (though many medical works of this period are still extant) till the 13 ch century, when we meet with a group of writers. Demetrius Pepagomenus, Necolaus Myrepsus and Johannes, called Actuarius, who fourished under the protection of the Palaeologi. The work of the last has some independent merit; but all are interesting as showing a fusion of Greek and Arabian medicine, the latter having begun to exercise even in the 1 Ith century a reflex influence on the schools of Byzantium. Something was borrowed even from the school of Salerno, and thus the close of Byzantine medicine is brought into connexion with the dawn of scisnce in modern Europe.

In the West the period after Galen affords little evidence of, anything bot a gradual though unvarying decline in Roman medicine. Caelius Aurelignus, already referred ta as the follower of Sqranus, must be mentioned as showing the persistence of the merhodic school. An abridgment of one of his writings, with the title of Aurelins, became the most popular of all Latin medical works. As a writer be was worthy of a better period of medical literature. Little else was produced in these times but compilations, of the most neagre kind, chiefly of the nature of herbals, or domestic receiptbooks; amoog the authors of which it may be sufficient to name Serenus Sammonicus (3rd century), Gargilius Martialis (3rd century) and Marcellue Empiricus (sth century). Certain compilations still extant bear the falsely-etsumed names of eminent writers, such as Pliny and Hippocrates. A writer with the (perhaps assumed) name of Apuleius Platonicus produced a herbal which held its ground till the 15 th century at least, and was in the 9th translated into Anglo-Saxon. These poor compilations, together with Latin translations of certain works of Galen and Hippocrates, formed a medical literature, meagre and unprogressive indeed, but of which a great part survived through the middle ages till the discovery of printing and revival of learning. it is important to remember that this obscure stream of tradition flowed on, only partially affected by the infux of Arabian, or even the early revival of purer classical barning.

Arabian Medicine.-The rise of the Mahommedan Empire, which influenced Europe so deeply both politically and intellectually, made its mark also in the history of medicine. As in the parallel case of the Roman conquest of Greece, the superior culture of the conquered race asserted its supremacy over their Arab conquerors. After the Mahommedan conquests became consolidated, and learning began to flourish, schools of medicine, often connected with bospitals and schools of pharmacy, arose in all the chief seats of Moslem power. At Damascus Greek medicine was zealously cultivated with the aid of Jewish and Christian teachers. In Bagdad, under the rule of Harinn el Rashid and his successors, a still more flourishing school arose, where numerous translations of Greck medical works were made. The names of Mesua, or Yabya ibn Māsawaih (d. A.D. $857^{-8} 5^{8}$), celebrated for his knowledge of drugs, and Honein ibn Ishaq el 'IbädI (d. 873) or Joannitius, the translator and commentator of Hippocrates and Galen, belong to this period. Certain writings of Joannitius, translated into Latin, were popular in the middle ages in Europe, and were printed in the 16 th century. At the same time the Arabs became acquainted with Indian medicine, and Indian physicians lived at the court of Bagdad. The Islamite rulers in Spain were not long behind those of the East in encouraging learning and medical science, and developed culture to a still bigher degree of perfection. In that country much was due to the Jews, who had already established schools in places which were afterwards the seats of Moslem dominion. From the roth to the rath century was the brilliant period of Arabian medicine in Spain. ${ }^{1}$
The classical period of Arabian medicine begins with Rhazes (Abo Bakr Mubammad ibn Zalariyn el-Raxi, A.D. 92 5-926), a native of Rai in the province of Dailana (Persia), who practised with distinction at Bagdad; he followed the doctrines of Galen, but learnt much from Hippocrates. He was the first of the Arabs to treat medicine in a comprehensive and encyclopasedic manner, surpassing probably in voluminoueness Galen himself, though but a amall proportion of his works are extant. Rhazes is deservedly reme mbered as having first described small-pox and measles in an accurate manner. Hall, ihe Ali ibr el. Abbisa a Persian, wrote a medical textbook, known as the "Royal Book," which was the standard authority among the Arabs up to the time of Avicenna (A.D. 980-1037) and was more than once translated into Latin and printed. Other
${ }^{1}$ See Dozy, Cat. Cod. Or. Lag. Bat. ii. 296.
writers of this century need not be mentioned here; but the next, the inth century, is given as the probable though uncertain date of a writer who had a great influcnce on European medicine, Mesua the younger of Damascus, whose personality is obscure, and of whose very existence some historians have doubted. thinking that the mame was assumed by some medieval Latin writer. The work De simplicibus, which bears his name, was for centuries a standard authority on what would now be called materia medica, was printed in twenty-six editions in the 15 th century and later, and was used in the formation of the first London pharmacopocia, issued by the College of Physicinns in the reign of James I. Either to the toth or the ilth century must be referred the mame of anocher Arabian physician who has also attanced the position of a classic, Abu'l Lasim or Abulcasis, of El-Zahra, near Cordova. in Spain. His great work, Allasrif, a medical encyclopaedia, is chiefly valued for its surgical portion (already mentioned), which was transhated into Latin in the t6th century, and was for some centuries a standard if not the standard authority on surgery in Europe. Among his own countrymen the fame and position of Abulcasis were soon eclipsed by the greater name of Avicenna.

Avicenna has always been regarded as the chief representative of Arabian medicine. He wrote on philosophy also, and in both 3ubjects acquired the highest reputation through the whole of eastern Islam. In Mahommedan Spain he was len regarded, but in Europe his works even eclipsed and superseded thoee of Hippocrates and Gaten. His style and expository power are highly praised, but the subject-matter shows tittle originalíty. The work by which he is chiefly known, the celebrated "canon", is an encyclopeedia of medical and surgical knowledge, lounded upon Galen, Aristotle, the later Greek physicians, and the carlier Arahian writers, singularly complete and systematic, but is thought not to show the practical experience of its author. As in the case of Galen, the formal and encyclopacdic character of Avicenna's work was the chiel cause of his popularity and ascendancy, though in modern times these very qualities in a scientific or medical writer would rather cause him to hecothe more speedily antiquated.

In the long list of Arabian medical writers nonc can here be mentioned except the great names of the Hispano-Moorish school, a school both philosophically and medically antagonistic to that of Avicenna. Of these the carliest is Avenzoan or Abumeron, that is, Abū Merwän 'Abd al-Malik lbn Zuhr (beginning of 12 th century). a member of a family which gave several distinguished members to the medical profession. His chief work, Al-Teysir (facilitatio), is thought to show more practical experience than the writings of Avicenna, and to be less based upon dialectical subtictics. It was lranslated into Latin, and more than once printed, as were some of his leaser works, which thus formed a part of the contrilation made by the Arabians to European medicine. His frienel and pupil Averroes of Condova (q.v.), so well known for bis philosophical writings, was also an author in medical subjects, and as such widely rcad in Latin. The famous Rabbi Marmonides (A.D. 1135-1204) (q.5.) closes for us the roll of medical writers of the Arabian school. His works exist chiefly in the original Arabic or in Heforew translations; only some smaller treatises have been translated into Latin, so that no definite opinion can be formed as to their medical value. But. so far as is known, the independent and rationalistic spirit which the two last-named writers showed in phitosophy did not lead them to take any origimal point of view in medicine.

The works of the Arablan medical writers who have now been mentioned form a very sinall fraction of the existing literature. Three hundred medical writers in Arabic are enumerated by Ferdinand Wustenfeld (1808-1899), and other historianslave enlarged the list (Hsiser), but only three have been printed in the original; a certain number more are known through old latin translations, and the great majority still exist in manuscript. It is tlus cvident that the circumstance of having been translated (which may have beca in some cases almost an accident) is what has chicfly determined the influence of particulaur writers on Western medicine. But it is improbable that further research will alter the general estimate of the value of Arabian mediciue. There can be no doubt that it was in the main Greek medicinc, modified to suit other climates, habits and mational tasics, and with some important additions from Oriental sources. The greater part is taken from Hippocrates, Galen, Dioscorides and later Greek writers. The Latin medical writers were necessarily unknown to the Arabs: and this was partly the cause that even in Europe Galenic medicine assumed such a preponderance, the methodic school and Celsus being forgoten or neglected. In anatomy and physiology the Arabians distinctly went back: in surgery they showed no advance upon the Greeks; in practical medicine nothing new can be traced, except the description of certain disesses (e.g. small-pox and meastes) unknown or imperfectly known to the Greeks; the only real advance was in pharmacy and the therapeutical use of drugs. By their relations with the farther Fast, the Arabs became acquainted with valuable new remedies which have held their ground till modern times; and their skill in chemistry enabled them to prepare new chemical remedies, and form many combinations of thoee already in use. They produced the first pharmacopoeia, and established the first apothecaries shope. Many of the names and many forms of medi-
cines now used, and in fact the general outline of modern pharmacy, except oo far as modified by nodern chemistry, started with the Arabs. Thus does Arabian medicine appear as judged from a modern standpont; but to medieval Europe, when litule but a tradition remained of the great ancient schools, it was invested with a lar higber degree of originality and importance.

It is now necessary to consider what was the state of medicine in Europe after the fall of the Western Empire and before the influence of Arabian science and literature began to be felt This we may call the pre-Arahian or Salernitan period.

Medicine in the Early Middle Ages: Scheal of Salerno.-In medical as in civil history there is no real break. A continuous thread of learning and practice must have connected the last period of Roman medicine already mentioned with the dawn of science in the middle ages. But the intellectual thread is naturally traced with greater difficulty than that which is the theme of civil history; and in periods such as that from the 5th to the roth century in Europe it is almost lost. The chief homes of medical as of other learning in these disturbed times were the monasterics. Though the science was certainly not advanced by their labours, it was saved from total oblivion, and many ancient medical works were preserved either in Latin or vernacular versions. The Anglo-Saxon Lecchdoms I of the inth century, published in the Rolls series of medieval chronicles and memorials, admirably illustrate the mixture of magic and superstition with the relics of ancient science which constituted monastic medicine. Similar works, in Latin or other languages, exist in manuscript in all the great European libraries. It was among the Benedictines that the monastic study of medicine first reccived a new direction, and aimed at a higher standard. The study of İippocrates, Galen, and other classics was recommended by Cassiodorus (6 th century), and in the original mother-abbey of Monte Cassino medicine was studied; but there was not there what could he called a medical school; nor had this foundation any connexion (as has been supposed) with the famous school of Salerno.

The origin of this, the most important source of medical knowledge in Europe in the early middie ages, is involved in obscurity. It is known that Salerno, a Roman colony, in a situation noted in ancient times for its salubrity, was in the 6th century at least the seat of a hishopric, and at the end of the 7 th century of a Benedictine monastery, and that some of the prelates and higher clergy wore distinguished for leaming, and even for medical acquirements. But it has by recent researches been clearly established that the celebrated Schola salernitana was a purcly secular institution. All that can with certainty be sajd is that a school or collection of schools gradually grew up in which especially medicine, hut also, in a subordinate degree, law and philosophy were taught. In the gth century Salernitan physicians were already spoken of, and the city was known as Civitas hispocratica. A litule later we find great and royal personages resorting to Salcrno for the restoration of their health, among whom was Willism of Normandy, afterwards the Conqueror. The number of students of medicine must at one time have been considerable, and in a corresponding degree the number of teachers. Among the latter many were married, and their wives and daughters appear also in the lists of profestors. The most noted female professor was the celebrated Trotula in the inth century. The Jewish element appears to have been important among the students, and possibly among the professors. The reputation of the school was great till the 12 th or 13 th century, when the introduction of the Arab medicine was gradually fatid to it. The foundation of the university of Naples, and the sise of Montpellier, also contributed to its decline.

The teachings of the Salernitan doctors are pretty well known through existing works, some of which have only recently been discovered and published. The best-known is the rhyming Latin poem on health by loaapes de Meditano, Regimen sanidalis Saberme, profesedly written for the use of the " king of England," suppoeed to mean William the Conqueror; it had an immense repulation in the middic ages, and was afterwards many times printed, and tranclated into most European languasea This was a popular work intended for the laity; but there are others etrictly profesmonal.
${ }^{\text {i }}$ Derived from the Anglo-Saron leece, a phyaicinn, and dom, a ln

Among the writers it may be sufficient to mention here Gariopontus: Copho, who wrote the Anatome porci, a well-known medieval book; Joannes Platearius, first of a family of physicians bearing the same name, whone Practics, or medical compendium, was afterwards eeveral times printed; and Trotula, believed to be the wife of the hast-named. All of these fall into the first period belore the advent of Arabian medicine In the transitional period, when the Arabian school began to influcnce European medicine, but before the Salernitans were superseded, comes Nicolaur Praepositus, who wrote the Antidotarimen, a collection of formulae for compound medicines, which became the standard work on the subject, and the foundation of many later compilations. An equally popular writer was Gilles de Corbeil (Aegidius Corboliensis), at one time a teacher at Salerno, afterwards court physician to Philip Augustus of France, who composed several poems in Latin hexameters on medical subjoccte. Two of thern, on the urine and the pulse respectively, attained the position of medical classics
None of these Salernitan works rise much above the rank of compilations, being founded on Hippocrates, Galen and later Gruek writers, with an unmistakable mixture of the doctrines of the methodists. But they often show much practical experience, and exhibit the naturalistic method of the Hippocratic school.
eneral plan of treatment is dictetic rather than pharmaceutical, though the art of preparing drugs had reached a high degree of complexity at Salerno. Anatomy was as little regarded as it was in the later ancient schools, the cmpirle and methodic, but denmonstrations of the perts of the body were given on swinc. Althorgh it cannot be said that the science of medicine was advanced at Salerno, still its decline was arrested at a time when cvery ot her branch of learning was rapidly falling into decay; aind there can be no doubt that the observation of petients in houpitals, and probably clinical instruction, were made use of in learning and teaching. The chool of Salerno thus forms a bridge between the ancient and the modern medicine, more direct though less conspicyous than that circuitous route, through Byzantium. Bagdad and Cordova, by which Hippocrates and Galen, in Arabian dress, again entered the European world. Though the glory of Salerno had departed, the school actually existed til it was finally dissolved by an edict of the emperor Napoleon I. in the year 18ir.

Introduction of Arabian Medicine: The Scholastic Period.About the middle of the IIth century the Arabian medical writers began to be knowm by Latin translations in the Western world. Constantinus Africanus, a moak, was the author of the earliest of such versions (A.D. roso); his labours were directed chiefly to the less important and less bulky Arabian authors, of whom Haly was the most noted; the real classics were not introduced till later. For some time the Sadernitan medicine held its ground, and it wes not till the conquest of Toledo by Alphonso of Castile that any large number of Western scholars came in contact with the learning of the Spanish Moors, and systematic efforts were made to translate their philosophical and medical works. Jewish scholars, often under the patronage of Christian bishops, were especially active in the work. In Sicily also the Oriental tendencies of Frederick Barbarossa and Frederick II. worked in the same direction. Gerard of Cremona, a physician of Toiedo (1114-1187), made translations, it is said by command of Barbarossa, from Avicenne and others. It is needless to point out the influence of the crusades in making Eastern ideas known in the Western world. The influence of Arabian medicine soon began to he felt cven in the Hippocratic city of Salerno, and in the $13^{\text {th }}$ century is said to have held an even balance witb tbe older medicinc. After this time the foreign influence predominated; and by the time that the Aristotelian dialectic, in the introduction of which the Arabs had so large a share, prevailed in the schools of Europe, the Arabian version of Greek medicine reigned supreme in the medical vorld. That this movement coincided with the establishment of some of the older European universities is well known. The history of medicine in the period now opening is closely combined with the history of scholastic philosophy. Both were infected with the same dialectical subtlety, which was, from the nature of the subject, especially injurious to medicine.
At the sarne time, through the rise of the universities, medical learning was much more widely diffused, and the first definite forward movement was seen in the school of Mont pellier, where a medical.faculty existed early in the rath century, afterwards united with faculties of law and philosophy. The medical school owed its foundation largely to Jewish teachers, themselves educated in the Moorish schools of Spain, and imbued, with the
intellectual independence of the Averroists. Its rising prosperity coincided with the decline of the school of Salerno. Montpellier became distinguished for the practical and empirical spirit of its medicine, as contrasted with the dogmatic and scholastic teaching of Paris and other universities. In Italy, Bologna and Padue were earliest distinguished for medical studies-the former preserving more of the Galenical tradition, the latter being more progressive and Averroist. The northern universities contributed little-the reputation even of Paris being of later growth.

The supremacy of Arabian medicinc lasted till the revival of learning, when the study of the medical classics in their original language worked another revolution. The medical writers of this period, who chiefly drew from Arabian sources, have been called Arabists (though it is difficult to give any clear meaning to this term), and were afterwards known as the neoterics.

The medical literature of this period is extremely voluminous, but essentially second-hand, consisting mainly of commentarics on Hippocrates, Galen, Avicenna and others, of of compilations and compendia still less original than commentaries. Among these may be mentioned the Concilialoy of Peter of Abano (1250-1355), the Aggregator of Jacob de Dondi (1298-1359), both of the school of Padua, and the Pandectae medicinat of the Salernitan Mathacus Sylvaticus (d. 1342), a sort of medical glossary and dietionary. But for us the most interesting fact is the first appearance of Englishmen as authors of medical works having a European reputation, distinguished, according to the testimony of Haser, by a practical tendency characteristic of the British race, and fostered in the school of Montpellier.

The first of these works is the Compendium medicinac, also called Lawrea of Rosa anglicana, of Gilbert (Gilbertus Anglicus, about 1290), said to contain good observations on leprosy. A more important work, the Practica seu lilium medicince, of Bernard Gordon, a Scottish professor at Montpellier (written in the year 1307), was more widely spread, being translated inta French and Hebrew, and printed in several editions. Of these two physicians the first probably, the latter certainly, was educated and practised abroad, but John Gaddesden (1280?-1361), the author of Rosa anglica ses practica medicimas (between I 305 and 1317), was a graduate in medicine of Merton Colloge, Oxford, and court physician. His compendium is entirely wanting in originality, and perhaps unusually destitute of common sense, but it became 50 popular as to be reprinted up to the end of the i6th century. Works of this kind became still more abundant in the 14 th and in the first half of the s5th century, till the wider distribution of the medical classics in the original put them out of fashion.
In surgery this period was lar more productive than in medicine, eapecially' in Italy and France, but the limits of our subject only permit us to mention Gulicimus de Saliceto of Piacenza (about 1275), Lanfranchi of Milan (died about 1306), the French surgeon, Guy de Chautiac (about I350) and the Englishman, John Ardern (about 1350). In anatomy also the beginning of a new epoch was made by Mondino de Liucci or Mundinus (1275-1326), and his followersThe medical writings of Arnald de Villanova ($c .1235-13$ I 3) (if the Breviarixm practicae be rightly ascribed to him) risc above the rank of compilations. Finally, in the 13 th and especially the 14 th century we find, under the name of consilia, the first medieval reporta of medical cases which are preserved in such a form as to be intelligible. Collections of consilia were published, among others, by Gentilis Fulgineus before 1348, by Bartolomco Montagnana (d. 1470), and by Baverius de Baveriis of Imola (about 1450). The last-named contains much that is interesting and readable.

Period of the Revival of Learning.-The impulse which all departments of intellectual activity received from the revival of Greek literature in Europe was felt by medicine among the rest. Not that the spirit of the science, or of its corresponding practice, was at once changed. The basis of medicine through the middle ages had been literary and dogmatic, and it was literary and dogmatic still; but the medical jiterature now brought to light-including as it did the more important works of Hippocrates and Galen, many of them hitherto unknown, and in addition the forgotten element of Latin medicinc, especially the work of Celsus-was in itself far superior to the second-hand compilations and incorrect versions which had formerly been accepted as standards. The classical works, though still regarded with unreasoning reverence, were found to have a germinative and vivifying power that carried the mind out of the region of dogma, and prepared the way for the scieatific movement which has been growing in strength up to our own day.

Tro of the most important resulls of the revival of learning were indeed such as are excluded from the scope of this brief sketch-namely, the reawakening of anatomy, which to a liarge extent grew out of the study of the works of Gaien, and the investigation of medicinal plants, to which a fresh impulse was given by the revival of Dioscorides (A.D. so) and other ancient naturalists. The former brought with it necessarily a more accurate conception of physiology, and thus led up to the great discovery of Harvey, which was the turningpoint in modern medicine. The latter gave rise, on the one hand, to the modern science of botany, on the other to a more rational knowledge of drugs and their uses. At the same time, the discovery of America, and increased intercourse with the East, by introducing a variety of new plants, greatly accelerated the progress both of botany and pharmacology.
But it was not in these directions that improvement was first looked for. It was at first very naturally imagined that the simple revival of classical and especially of Greek literature would at once produce the same brilliant results in medicine as in literature and philosophy. The movement of reform started, of necessity, with scholars rather than practising physicians-more precisely with a group of learned men, whom we may be permitted, for the sake of a name, to call the medical humanists, equally enthusiastic in the cause of letters and of medicine. From both fields they hoped to expel the evils which were summed up in the word barbarism. Nearly all medieval medical literature was concemned under this name; and for it the humanists proposed to substitute the originals of Hippocrates and Galen, thus leading back medicine to its fountain-head. Since a knowledge of Greek was still confined to a small body of scholars, and a still smaller proportion of physicians, the first task was to translate the Greek classics into Latin. To this work several learned physicians, chiefly Italians, applied themselves with great ardour. Among the earliest were Nicolaus Leonicenus of Vicenza (1428-1524), Giovanni de Monte or Montanus ($\mathbf{r} 498$-1552), and many others in Italy. In northern Europe should be mentioned Gulielmus Copus ($147 \mathrm{r}-\mathrm{r} 53^{2}$) and Guinther of Andernach ($\mathbf{r} 487-\mathrm{r} 584$), better known as Guinterius Andernacensis, both for a time professors at Paris; and, among the greatest, Thomas Linacre (about 1460-r 524 ; see Linacre). A little later Janus Cornarius or Hagenhut ($\mathrm{r} 500-1558$) and Leonhard Fuchs ($150 \mathrm{r}-\mathrm{x} 566$) in Germany, and John Kaye of Caius (1510-1572) in England, carried on the work. Symphorien Champier (Champerius or Campegius) of Lyons (147 2-1539), a contemporary of Rabelais, and the patron of Servetus, wrote with fantastic enthusiasm on the superiority of the Greek to the Arabian physicians, and possibly did something to enlist in the same cause the two far greater men just mentioned. Rabelais not only lectured on Galen and Hippocrates, but edited some works of the latter, and Michael Servetus (151 1-1553), in a litele tract Syruporum uniocrsa ratio, defended the practice of Galen as compared with that of the Arabians. The great Aldine Press made an important contribution to the work, by edilioncs princtpes of Hippocrates and Galen in the original. Thus was the campaign opened against the medieval and Arabian writers, till finally Greek medicine assumed a predominant position, and Galen took the place of Avicenna. The result was recorded in a formal manner by the Florentine Academy, sometime shortly before 1535: "Quae, excusso. Arabicae et barbarac scrvitutis medicae jugo, ex professo se Calenicam appellavit et profigato barbarorum exercitu unum totum at solum Galenum, ut optimum artis medicac authorem, in omnibus se sequuturam pollicita est." Janus Cornarius, from whom this is quoted, laments, bowever, that the Arabians still reigned in most of the schools of medicine, and that the Italian and French authors of works called Practica were still in high repute. The triumph of Gaienism was therefore not complete by the middle of the 16th century. It was probably most so. and earliest, in the schook of Italy and in those of England, where the London College of Physicians might be regarded as an offishoot of the Italian schools. Pars was the stronghold of conservatism, and Germany was stirred
by the teachings of one who must be considered apart from all schools-Paracelsus. The nature of the struggle between the rival systems may be well illustrated by a formidable controversy about the rules for bleeding in acute diseases. This operation, according to the Arabian practice, was always performed on a vein at a distance. from the organ affected. The Hippocratic and also Galenic rule, to let blood from, or near to, the disensed organ, was revived by Pierre Brissot ($\mathbf{4} 4 \mathrm{P}^{-1522 \text {), a professor in the university of Paris. His attempt }}$ at reform, which was taken to be, as in effect it was, a revolt against the authority of the Arabian masters, led to his expulsion from Paris, and the formal prohibition by the parliament of his method. Upon this apparently trifling question arose a controversy which lasted many years, occupied several universities, and led to the interposition of personages no less important than the pope and the emperor, but which is thought to have largely contributed to the final downfall of the Arabian medicine.

Paracelsus and Chemical Medicine.-Contemporary with the school of medical humanists, but litlle infuenced by them, lived in Germany a man of strange genius, of whose character and importance the most opposite opinions have been expressed. The first noticeable quality in Paracelsus (c. 1490-1541) is his revolutionary independence of thought, which was supported by his immense personal arrogance. Himself well trained in the learning and medical sceence of the day, be despised and trampled upon all traditional and authoritative teachings. He began his lectures at Basel by burning the books of Avicenna and others; he afterwards boasted of having read no books for ten years; he protested that his shoc-buckles were more learned than Galen and Avicenna. On the other hand, he spoke with respect of Hippocrates, and wrote a commentary on his Aphorisms. In this we see a spirit very different from the enthusissm of the bumanists for a purer and nobler philosophy than the scholastic and Arabian versions of Greek thought. There is no record of Paracelsus' knowledge of Greek, and as, at least in his student days, the most important works of Greek medicine were very imperfectly known, it is probable be had fittle first hand acquaintance with Galen or Hippocrates, while his breach with the bumanists is the more conspicuous from his lecturing and writing chiefty in his native German.
Having thus made a clean sweep of nearly the whole of the dogmatic medicine, what did Parmelsus put in its place? Certainly not pure empiricism, or habits of objective observation. He had a dogma of his own-one founded, according to his German expositors, on the views of the Neoplatonists, of which a few disjointed specimens must here suffice. The human body was a " microcosm" which corresponded to the " macrocosm," and contained in iiself all parts of visible nature,--sun, moona, stars and the poles of heaven. To know the nature of man and how to deal with it, the physician slould study, not anatomy, which Paracelsus utterty rejected, but all parts of external nature. Life was a perpetual germinative process controlled by the indwelling apirit or Archeus; and diseases, according to the mystical conception of Paracelsus, were not natural but spiritual. Nature was sufficient for the cure of most diseases; art had only to interfere when the internal physician, the man himset, was tired or incapable. Then some remedy had to be introduced which sbould be antagonistic, not to the disease in a physical sense, but to the spiritual seed of the discase. These remedies were arcane-a word corresponding partly to what we now call specific remedies, but implying a mysterious connexion between the remedy and the "essence" of the disease. Arcana were often shown to be such by their physical properties, not only by such as heat, cold, \&cc., but by fortuitous resemblances to certain parts of the body; thus arose the famous doctrine of "signatures," or signs indicating the virtues and uses of natural objects, which was afterwards developed into great complexity. Great imporiance was also attached to chemicaly prepared remedies as containing the essence or spintual quality of the material from which they were derived. The actwal therapeutical repources. of Paracelsus included.
large number of metalic preparations, in the introduction of some of which he did good service, and, among vegetable preparations, the tincture of opium, still known by the name he gave it, laudanum. In this doubless be derived much advantage from his knowledge of chemistry, though the science was as yet not disentangled from the secret traditions of alchemy, and was often mixed up with imposture.
German historians of medicine attach great importance to the revolt of Paracelsus against the prevailing systems, and trace in his writings anticipations of many scientific truths of later times. That his personality was infuential, and his intrepid originality of great value as an example in his own country, is undeniable. As a national reformer he has been not inaptly compared to Luther. But his importance in the universal history of medicine we cannot estimate so highly. The chicf immediate result we can trace is the introdaction of certain mineral remedies, especially antimony, the use of which became a kind of badge of the disciples of Paracelsus. The use of these remedics was not, however, necessarily connected with a belief in his system, which seems to have spread little beyond his own country. Of the followers of Paracelsus sume became mere mystical quacks and impostors. Others, of more learning and better repute, were distinguished from the regular physicians chicfly by their use of chemical remedies. In France the introduction of antimony gave rise to a bitter controversy which lasted into the ifth century, and led to the expulsion of some men of mark from the Paris faculty. In England "chemical medicine " is first heard of in the reign of Elizabeth, and was in like manner contemned and assailed by the College of Physicians and the Society of Apothecaries. But it should be remembered that all the chemical physicians did not call Paracelsus master. The most notorious of that school in England, Francis Anthony (i550-1623), never quotes Paracelsus, but reliea upon Arnald de Vilanova and Raimon Lull. From this time, however, it is always possible to trace a school of chemical practitioners; who, though condernned by the orthodox Galenists, held their ground. till in the 17 th century a successor of Paracelsus arose in the celebrated J. B. Van Helmont.

Conseguences of the Reviocl of Ancient Medicine.-The revival of Galenic and Hippocratic medicine, though ultimately it conferred the greatest benefits on medical sciences, did not immediately produce any important or salutary reform in practical medicine. The standard of excellence in the ancient writers was indeed far above the level of the 16th century; but the fatal babit of taking at second hand what should have been acquired by direct observation retarded progress more than the posesssion of better models assisted $i t$, so that the fundamental faults of medieval science remained uncorrected.
Nevertheless some progress has to be recorded, even if not due directly to the study of ancient medicine. In the first place the 15 th and 16 th centuries were notable for the outbreak of certain epidemic discases, which were unknown to the old physicians. Of these the chief was the "sweating sickness" or "English sweat," especially prevalent in, though not confined to, the country whence it is named. Anong many descriptions of this disease, that by John Kaye or Caius, already referred to, was one of the best, and of great importance as showing that the works of Galen did not comprise all that could be known in medicine. The spread of syphilis, a disease equally unknown to the ancients, and the failure of Gaten's remedies to cure it, had a similar effect.
In another direction the foundations of modern medicine were being laid during the xth century-namely, by the introduction of clinical instruction in hospitals In this Italy, and especially the renowned school of Padua, took the first step, where Giovanni De Monte (Montanus), ($\mathbf{I}^{28-1552 \text {), }}$ already mentioned as a humanist, gave clinical lectures on the petients in the hospital of St Francis, which may still be read with interest. Pupils flocked to him from all European countries; Germans are especialiy mentioned; a Polish student reported and published some of his lectures; and the Englishman Kaye was a realous disciple, who does not, however, seem to bave done anything towards transplanting this method of instruction to his own country. Inspections of the dead, to ascertain the nature of the disease, were mande, though not without difficulty, and thus the modern period α the science of morbid anatomy was ushered in.
Kadicine in the i7k Century.-The medicine of the early y 7 th century presents no features to distinguish it from that xvili 2
of the preceding century. The practice and theory of medicine were mainly founded upon Hippocrates and Galen, with everincreasing addiuions from the chemical school. But the development of mathematical and physical science soon introduced a fundamental change in the babits of thought with respect to medical doctrine.

These discoveries not only weakened or dest royed the respect for authority in matters of science, but brought about a marked tendency to mechanical explanations of life and disease. When William Harvey by his discovery of the circulation furnished an explanation of many vital processes which was reconcilable with the ordinary laws of mechanics, the efforts of medical theorists were naturally directed to bringing all the departments of medicine under similar laws. It is often assumed that the writings and influence of Bacon did much towards introducing a more scientific method into medicine and physiology. But, without discussing the general philosophical position or historical importance of Bacon, it may safely be said that his direct influence can be Little traced in medical writings of the first half of the 17th century. Harvey, as is well known, spoke slightingly of the great chancellor, and it is not till the rapid development of physical science in England and Holland in the latter part of the century, that we find Baconian principles explicilly recognized.

The dominant factors in the 17 th-century medicine were the discovery of the circulation by William Harvey (published in 1628), the mechanical philosophy of Descartes and the contempotary progress of physics, the teaching of Van Helmont and the introduction of chemical explanations of morbid processes, and finally, combined of all these, and inspiring them, the rise of the spirit of inquiry and innovation, which may be called the scientific movement. Before speaking in detail of these, we may note that by other influences quite independent of theorics, important additions were made to practical medicine. The method of clinical instruction in hospitals, commenced by the Italians, was introduced into Holland, where it was greatly developed, especially at Leiden, in the bands of Francis de la Boé, called Syivius (164I-1672). It is noteworthy that concurrently with the rise of elinical study the works of Hippocrates were more and more valued, while Galen began to sink into the background.

At the same time the discovery of new diseases, unknown to the ancients, and the keener attention which the great epidemics of plague caused to be paid to those already known, led to more minute study of the natural history of disease. The most important disease hitherto undescribed was rickets, first made known by Arnold de Boot, a Frisian who practised in Ireland, in 1649 , and afterwards more fully in the celebrated work of Francis Glisson (1597-1677) in 1651. The plague was carefully studied by Isbrand de Diemerbroek, in his D_{s} Peste (1646), and others. Nathanicl Hodges of London (16291688) in 1665 seems to have been the first who had the courage to make a post mortem inspection of a plague patient. Christopher Bennet (16if-r655) wrote an important work on consumption in 1654 . During the same period many new remedies were introduced, the most important being cinchona-hark, brought to Spain in the year 1640 . The progress of pharmacy was shown hy the publication of Dispensatories or Phama-copocioe-such as that of the Royal College of Physicians of London in 1618. This, like the earlier German works of the same kind (on which it was partly founded), contains both the traditional (Galenical) and the modern or chemical remedies.
Van Fedmont.-The medicine of the 17th century was especially distinguished by the rise of sytems; and we must hrst speak of an eccentric genius who endeavoured to construct a system for himself, as original and opposed to tradition as that of Paracelsus. J. B. Van Heimont ($157^{8-1644 \text {) was a man of noble family in Brussels, }}$ who, after mastcring all other branches of learning as then understood, devoted himself with enthusiasm to medicine and chemistry. By education and position a little out of the regular lines of the profession, he took up in medicine an independent attitude. Well ac quainted with the doctrines of Gaien, he rejected them as thoroughly as Paracelsus did, and borrowed from the latter some definite iceas as well as his revolutionary spirit. The archeus of Paracelsus
appears again, but with still further complications-the whole body being controlled by the archews infiums, and the organ of the soul and its various parts by the archei insidi, which are subject to the central archeus. Many of the symptoms of disenses were caused by the passions and perturbations of the archeus, and medicincs acted by modifying the ideas of the same archeus. These and other notions cannot be here stated at sufficient length to be intelligitsle. It is enough to say that on this fantastic basis Helmont constructed a medical system which had some practical merits, that his therdpeutical methods were mild and in many respects happy, and that he did service by applying newer chemical methois to the preparation of drugs. He thus had some share, though a share not generally recognized, in the foundation of the iatro-chemical school, now to be spoken of, But his avowed followers formed a small and discredited sect, which, in England at least, can be clearly traced in the latter part of the century.

Discovery of the Circulation of the Blood. - The influence of Harvey's discovery began to be felt before the middle of the century. Its merits were recognized by Descartes. among the first, nine years after its publication. For the history of the discovery, and its consequences in anatomy and physiology, we must refer to the article Hasvey, In respert of practical medicine, much less effect was at first noticeable. But this example, combined with the Cartcsian principles, set many active and íngenious spirits to work to recontruct the whole of medicine on a physiological or even a mechanical basis-to endeavour to form what we should now call physiological or scientific medicine. The result of this was not to eliminate dogma from medicinc, though it weakened the authority of the old dogma. The movement led rather to the formation of schools or systems of thought, which under various names lasted on into the $\mathbf{1 8 t h}$ century, while the belief ia the utility or necessity of schools and systems lasted much longer. The most important of these were the so-called iatro-physical or mechanical and the iatro-chemical schools.
fatro-Physical School.-The iatro-physical school of medicine grew out of physiological theories. Its founder is held to have been G. A. Borelli ($1608-1679$), whose treatise De moin animalium, published in 1680 , is regarded as marking an epoch in physiology. The tendency of the school was to explain the actions and functions of the body on physical, and especially on mechanical, principles. The movernents of bones and muscles were referred to the theory of levers; the process of digestion was regarded as essentially a process of trituration: nutrition and secretion were shown to be dependent upon the tension of the vessels, and so forth. The developments of this school belong rather to the history of physiology, where they appear. seen in the light of modern science, as exceltent though premature endeavours in a scientific direction. But the influence of these theories on practical medicine was not great. The more judicious of the mechanical or physical achool refrained, as a judicious modern physiologist does, from too immediate an application of their principles to daily practice. Mechanical theories were iatroduced into pathology, in explanation of the processes of fever and the like, but had little or no influence on therapeutics. The most important men in this school alter Borelli were Nicolaus Stensen (Steno). (c638-1686), Giorgio Baglivi (16692707) and Lorenzo Bellini (1643-1704), An English physician, William Cole (1635-1716), is also usually ranked with them. One of the most elaborate developments of the system was that of Archibald Pitcairne ($1652-1713$), a Scottish physician who became prolessor at Leiden, to be spoken of hereafter.

Ialro-Chemical School.-The so-called iatro-chemical school stood in a much choser relation to practical medicine than the iatrophysical. The principle which mainly distinguished it was not merely the use of chemical medicines in addition to the traditional, or, as they were called in distinction, "Galenical " remedies, but a theory of pathology or causation of disease entirely different from the prevailing " humoral "pathology. Its chief aim was to reconcile the new views in physiology and chemistry with practical medicine. In some theoretical views, and in the use of certain remedies, the achool owed something to Van Helmont and Paracelsus, but took in the main an independent positioa. The founder of the iatrochemical school was Sylvius (1614-1672), who belonged to a French family settled in Holland, and was for fourteen years prolessor of medicine at. Leiden, where he attracted students from all quarters of Europe. He made a resol ute attempt to reconstruct medicine on the two bases of the doctrine of the circulation of the blood and the new views of chemistry. Fermentation, which was suppooed to take place in the stomach, played an important part in the vital processes. Chemical disturbances of these processes, called acridities, \&c., were the cause of fevers and other diseases, Sometimes acid sometimes allcaline properties predominated in the juices and secretions of the body, and produced corresponding disturbances. In nervous diseases disturbances of the vital "spirits" were most important. Still in some parts of his system Sylvius shows an anxiety to base his pathology on anatomical changes. The remedies he employed were partly galenical, partly chemical. He was very moderate in the use of bleeding.

The doctrines of Syivius became widely spread in Holland and Germany; less so in France and Italy. In England they were not
generally accepted till adopted with some modifications by Thomat Willis the great anatomist ($1621-1675$), who is the chicf English representative of the chemical school. Willis was as thorough-going a chemist as Sylvius. He regarded all bodies, organic and inorganic, as composed of the three elements-spirit, sulphur and salt, the first being only found abundantly in animal bodies. The "intestine movement of particles'" in every body, or fermentation, was the explanation of many of the processes of life and discase. The sensible properties and physical alterations of animal fluids and solids depended upon different proportions, moveinents and combinations of these particles. The elaborate work Pharmaceutice ralionalis (1674), based on these materials, had much influence in its time. though it was soon forgotten. But some parts of Willis's works, such as his descriptions of nervous diseascs, and his account (the earliest) of diabetes, are classical contributions to scientific medicine. In the application of chemistry to the examination of secretions Willis made some important steps. The chemical school met with violent opposition, partly from the adherents of the ancient medrine, partly from the iatro-mechanical school. Towards the end of the 17 th century appeared an English medical reformer who sided with none of these schools, but may le said in some respects to have surpassed and dispensed with thein.

Sydenham and Locke.-Thomas Sydenham (1624-1689) was educated at Oxford and at Montpellier. He was well acguainted with the works of the ancient physicians, and probably lairly so with chemistry. Of his knowledge of anatomy nothing defnite can be said, as he seldom refers to it. His main avowed principle was to do without hypothesis, and study the actual diseascs in an unbiassed manner. As his model in medical methods, Sydenham repeatedly and pointedly refers to Hippocrates, and he has not unfairly been called the English Hippocrates. He resembled his Greek master in the high value he set on the study of the " natural history of disease "' in the importance he attached to "epidemic constitution "-that is, to the influence of weather and other natural causcs in modifying discase; and further in his conception of the healing power of nature in disease, a doctrine which he even expanded beyond the teaching of Hippocrates. According to Sydenham, a disease is nothing more than an effort of nature to restore the health of the patient by the elimination of the morbific matter. The extent to which his practice was influenced by this and other a priori conceptions prevente us from classing Sydenham as a pure empiric; but he had the rare merit of never permitting himself to be enslaved even by his own theories. Still less was his mind warped by either of the two great systems, the classical and the chernical, which then divided the medical world. Sydentham's influcnce on European medicine was very great. His principles were welcomed as a return to nat ure by those who were weary of theoretical disputes. He introduced a milder and better way of treating fevers-especially small-pox, and gave strong support to the use of specific medicinesespecially Peruvian bark. He was an advocate of bleeding, and often carried it to excess. Another important point in Sydenham's doctrine is his clear recognition of many diseases as being what would be now called specific, aad not due merely to an alteration in the primary qualities or humours of the older schools. From this springs his high zppreciation of specific medicines.

One name should always be mentioned along with Sydenhamthat of his friend John Locke. The great scnsational philosopher was a thoroughly trained physician, and practised privately. He shared and defended many of Sydenham's principles, and in the lew medical observations be has left shows himself to be even more thorough-going than the "English Hippocrates.". It is deeply to be regretted in the interests of medicine that he did not write more. It is, however, reasonable to suppose that his commanding intellect often makes itsclf felt in the words of Sydenham. One sentence of Locke's, in a letter to William Molvneux, sums up the practical side of Sydenhtm's teaching:-
"You cannot imagine how far a little observation carefully made by a man not tied up to the four humours [Galen], or sal, sulphur and mercury [Paracelsus], or to acid and alcali [Sylvius and Willis] which has of late prevailed, will carry a man in the curing of diseases though very stubborn and dangerous; and that with very little and common thinge, and almost no medicine at all."

We thus gee that, while the great anatomists, physicists and chemists-men of the type of Willis, Borelli and Boyle-were laying foundations which were later on built up into the fabric of scientific medicine, little good was done by the premature application of their half-understood principles to practice. The reform of practical medicine was effected by men who aimed at, and partly succeeded in, rejecting all hypothesis and returning to the unbiassed study of natural processes, as shown in health and disease.

Sydenharm showed that these processes might be profitably studied and dealt with withaut explaining them; and, by turning men's minds away from explanations and fixing them on facts, he enriched medicine with a method more fruitful than any discoveries in detail. From this time forth the reign of canonical authority in medicine was at an ead, though the docmatic spirit long eurvived.

The 181h Century.-The medicine of the 18 th century is notable, like that of the later part of the t th, for the striving
after complete theoretical systems. The influence of the iatro-physical school was by no means exhausted; and in England, especially through the indirect infuence of Sir Isaac Newton's (1642-1727) great astronomical gencralizations, it took on a mathematical aspect, and is sometimes known as iatro-mathematical. This phase is most clearly developed in Archibald Pitcaine ($1652-1713$), who, though a determined opponent of metaphysical explanations, and of the chemical doctrines, gave to his own rude mechanical explanations of life and disease almost the dogmatic completencss of a theological system. His countryman and pupil, George Cheyne (I6711743), who lived some years at Bath,'published a new theory of fevers on the mechanical system, which had a great reputation. Their English contemporaries and successors, John Freind, William Cole, and Richard Mead, leaned also to mechanical explanations, but with a distrust of systematic theoretical completeness, which was perhaps partly a national characteristic, partly the result of the teaching of Sydenham and Locke. Freind (1675-1728) in his Emmonologia gave a mechanical explanation of the phenomena of menstruation. He is also one of the most distinguished writers on the history of medicine. Cole ($1635-1716$) (see above) puhlished mechanical hypotheses concerning the causation of fevers which closely agree with those of the Italian iatro-mechanical school. More distinguished in his own day than any of these was Mead (1673-1754), one of the most accomplished and socially successful physicians of modern times. Mead was the pupil of the equally popular and successful John Radeliffe (1650-1 714), who had acquired from Sydenham a contempt for book-learning, and belonged to no school in medicine but the school of common sense. Radcliffe left, however, no work requiring mention in a history of medicine. Mead, a man of great learning and intellectual activity, was an ardent advocate of the mathematical doctrines. "It is very evident," he says, "that all other means of improving medicine have been found ineffectual, by the stand it was al for two thousand years, and that, since matheriaticians have set themselves to the study of it, men already begin to talk so intelligihly and comprebensibly, even about abstruse matters, that it is to be hoped that mathematical learning will be the distinguishing mark of a physician and a quack." His Mechanical Accourt of Poisons, in the first edition (1702), gave an explanation of the effects of poisons, as acting only on the blood. Afterwards he modified his hypothesis, and referred the disturbances produced to the " nervous liquor," which he supposed to be a quantity of the "universal elastic matter" diffused through the universe, by which Newton explained the phenomena of light-i.e. what was afterwards called the luminiferous ether. Mead's treatise on The Pourer of the Sun and Moon over Human Bodies (1704), equally inspired hy Newton's discoveries, was a premature attempt to assign the influence of atmospheric pressure and other cosmical causes in producing disease. His works contain, however, many original experiments, and excellent practical ohservations. James Reill (1673-1719) applied Newtonian and mechanical principles to the explanation of bodily functions with still greater accuracy and completeness; but his researches have more importance for physiology than for practical medicine.

Boerthate:-None of these men founded a school-a result due in part to their intellectual character, in part to the absence in England of medical schools equivalent in position and importance to the universities of the Continent. An important academical position was, on the other hand, one of the reasons why a physician nut very different in his way of thinking from the English physicians of the age of Queen Anne was able to take a far more predominant position in the medical world. Hermann Boerhasve (1668-1738) was emphatically a great teacher. He was for many years professor of medicine at Leiden, where he lectured five hours a day, and excelsed in influence and reputation not only his greatest forerunners Montanus of Padua and Sylvius of Leiden, but probably every subsequent teacher. The hospital of Leiden, slough with only twrelve beds available for teaching, became the centre of medical influence in Europe. Many of the leading English physicians of the 18th century studied there; Gerard Van Swieten (17001772), a pupil of Boerhaave, transplanted the latter's method of teaching to Vienna, and founded the noted Vienna school of medicine.

As the orpanizer, and almod the constructor, of the modern method of clinical instruction, the services of Boerhaave to the progress of medicine were immense, and can hardly be overrated. In his teaching. as in his practice, he avowedly followed the method of Hippocrates and Sydenham, both of whom he enthusiastically admured. In his medical doctrines he must be propounced an eclectic, though taking his stand mainly on the iatro-mechanical school. The bestknown parts of Boerhaave's system are hib doctrines of inflammation, obstruction and "plethora." By the last mamed especially he was long remembered. His object was to make all the anatomical and physiological acquisitions of his age, even microscopical anatomy, which he diligently studied, available for use in the practice of nicdicinc. He thus differed from Sydenham, who took almost as little account of modern science as of ancient dogma. Boerhaave may be in some reppects compared to Galen, but again differed from him in that he always abstained from attempting to reduce his knowledge to a uniform and coherent system. Boerhaave attached great importance to the study of the medical classics, but rather treated them historically than quoted them as canonical authoritics. It almost follows from the nature of the case that the great task of Bocrhaver's life, a synthesis of ancient and modern medicine, and the work in which this is chiefly contained. his celebrated Institutions, could not have any great permanent value. Nearly the same thing is true even of the Aphorisms, in which. following the example of Hippocrates, be endeavoured to sum up the results of his long experience.
Hoffmann and Slah.- We have now to speak of two writers in whom the systematic tendencv of the 18 th century showed itself most completely.

Friedrich Hoffmaan ($1660-1742$), like Boerhave, owed his influence, and perhaps partly his intellectual characteristics, to his academical position. He was in 1693 appointed the first professor of medicine in the university of Mialle, then just founded by the elector Frederick III. Here he became, as did his contemporary and rival Stahl, a popular and influential teacher, though their university had not the European importance of Leiden. Hoémann's "system" was apparently intended to reconcile the opposing "spiritual " and "materialustic" views of nature, and is thought to have been much influenced by the philosoplyy of Leibnitz. His medical theories rest upon a complete theory of the universe. Life depended upon a universally diffused ether, which animals breathe is from the atmosphere, and which is contained in all parts of the body. It accumulates in the brain, and there generates the "nervous fluid" or pnewma-a theory closely reaembling that of Mead on the " nervous liquor," unicss indeed Mead borrowed it from Hoffmann. On this system are explained all the phenomena of life and disease. Health depends on the maintenance of a proper "tome" in the body-some discases being produced by excess of tone, or" spasm": others by "atony," or want of tone. But tt is impossible bere to follow its further devclopmonts. Independently of his system, which has long ceased to exert any influence, Hoffmann made some contnbutions to practical medicinc; and his great knowledge of chemistry enabled him to investigate the subject of mineral waters. He was equally skilful in pharmacy, but lowered his position by the practice, which would be unpardonable in a modern physician, of trafficking In sccret remedies.

George Ernest Stáh ($\mathrm{I} 660-1734$) was for more than twenty years professor of medicine at Halle, and thus a colleague of Hoffmann, whom he rescmbled in constructing a complete theoretical system, though their systems had little or nothing in common. Stahl's chief aim was to oppose materialism. For mechanical conreptions he substituted the theory of "animism "-attributing to the soul the functions of udinary animal life in man, while the life of other creatures was left to mecharical laws. The symptoms of discase were explained as efforts of the soul to rid itself from morbid influences, the soul a ting reasomably with respect to the end of self-preservation. The anima thus corresponds partly to the "nature" of Sydenham, while in other respects it resembles the archeus of Van llelmont. Animism in its completeness met with little acceptance durng the lifetime of its author, but influenced some of the iatro-phycal school. Stahl was the author of the theory of "phlogiston" in chemistry, which in its day had great importance.

Haller and Mforgagni.-From the subtletics of rival systems it is a satisfaction to turn to two movements in the medicine of the 18th century which, though they did not extinguish the spirit ot system-making, opened up paths of investigation by which the systems were ultimately superseded. These are physiology in the modern sense, as dating from Haller, and pathological anatomy, as dating from Morgagn.

Albrecht von Halier (1708-1777) was a man of even more encyclopaedic atlainments than Boerhave. He advanced chemistry, botany, anatomy, as well as physiology, and was incessantly occupied in endeavouring to apply his scientific studies to practical medicine. thus continuing the work of his great teacher foerhaave. Eesides all this he was probably more profoundly acquainted with the literature and bibliography of medicinc than any one before or since. Haller occupied in the new university of Gottingen (founded 1737) a position corresponding to that of Boerhaave at Lriden, and in like manner influenced a very large circle of pupils

The appreciation of his work in physiology belongs to the history of that ecience: we are only concerned bere with its influence on medicine. Haller's definition of irritability as a property of muscular tispue, and ite distinction from sensibility as a property of nerves, struck at the root of the prevailing hypothesis respecting animal ectivity. It was no longer necessary to suppose that a hallconscious "anima" was directing every movement. Moreover, Haller's views did not rest on a priori speculation, but on numerous experiments. He was among the first to investigate the action of medicines on healthy persons. Unfortunately the lesson which his contemporaries learnt was not the importance of experiment but only the need of contriving cther "systems " less open to objection; and thus the influence of Haller led directly to the theoretical subtleties of William Cullen and John Brown, and only indirectly and later on to the general anatomy of M.F. X. Bichat. The great name of Haller does not therefore occupy a very prominent place in the history of practical medicine.

The work of Giovanni Battista Morgagni (1682-1771) had and still preserves a permanent importance beyond that of all the contemporary theorists. In a series of letters, De sedibus et causis morborum per anatomen indagatis, published when he was in his eightieth year, be describes the appearances met with at the post mortem examination as well as the symptoms during life in a number of cases of various diseases. It was not the first work of the kind. The Swiss physician, Theophile Bonet (1620-1689) had published his. Sepulcrefum in 1679; and observations of post mortem appearances had been made by Montanus. P. Tulp Raymond Vieuseens, A.M. Valsalva, G. M. Lancisi, Halter and others. But never before was so large a collection of cases brought together, described with such accuracy, br illustrated with equal anatomical and medical knowledge. Morgagni's work at once made an epoch in the science. Morbid anatomy now became a recognized branch of medteal research, and the movement was otarted which has lasted till our own day.

The contribution of Morgagni to medical science must be regarded as in somte respects the counterpart of Sydenham's. The latter had, in neglecting anatomy, neglected the most solid basis for studying the natural history of discase; though perhaps it was less from choice than because his practice, as he was not attached to a hospital, gave him no opportunities. But it is on the combination of the two methods-that of Sydenhamand of Morgagni-that modern medicine rests; and it is through these that it has been able to make steady progress in its own field, independently of the advance of physiology or other sciences.

The method of Morgagni found many imitators, both in his own country and in others. In England the first important name in this field is at the same time that of the first writer of a systematic work in any language on morbid anatomy, Matthew Bailfic (17611823). a nephew of John and William Hunter, who published his treatise in 1795.

Cullen and Brown.-It remains to speak of two systematic writers on medicine in the 18 th century, whose great reputation prevents them from being passed over, though their real contribution to the progress of medicine was not great-Cullen and Brown. William Cullen (1710-1790) was a most eminent and popular professor of medicine at Ediaburgh. The same academical influences as surrounded the Dutch and German founders of systems were doubtless partly concerned in leading him to form the plan of a comprehensive system of medicine. Cullen's system was largely based on the new physiological doctrine of irritability, but is especially noticeable for the importance attached to nervous action. Thus even gout was regarded as a "ncurosis." These pathological principles of Cullen are contained in his First Lines of the Practice of Physic, an extremely popular book, often reprinted and translated. More importance is to be attached to his Nosology or Classification of Diseases. The attempt to classify discascs on害 natural-history plan was not new, having been commenced by Sauvages and others, and is perhaps not a task of the highest importance. Cullen drew out a classification of great and needless complexity, the chicf part of which is now forgotten, but several of his main divisions are still preserved.

It is difficult to form a clear estimate of the importance of the last systematizer of medicine-John Brown (1735-1788) -for, though in England he has been but little regarded, the wide though shortFived popularity of his system on the Continent shows that it must have contained some elements of brilliancy. if not originality. His theory of medicine professed to explain the processes of life and disense, and the methods of cure, upon one simple principlethat of the property of "excitability," in virtue of which the "exciting powers", defined as being (1) extermal forces and (2) the functions of the system itself, call forth the vital phenomena "sense, motion, mental function and passion." Al] exciting powers are ptimulant, the apparent debilitating or sedative effect of some being due to a deficiency in the degree of stimulus; so that the final conclusion is that "the whole phenomena of life, health as well as disease, consist in stimulus and noshing else." Brown recognized tome diseases as shenic, others ns asihenic, the latter tequiring stimulating treatment. the former the reverse; but his practical conclusion was that 97% of all diseases required a "stimufring" trentment. In this be ctaimed to have made the mont
salutary reform because all *phyticians from Hippocrates had treated diseases by depletion and debilitating measures with the object of curing by elimination. It would be unprofitable to attempt a complete analysis of the Brunonian system; and it is difficult now to understand why it attracted so much attention in its day. To us at the present time it seems merely a dialectical construction, having its beginning and end in definitions: the words power, stimulus, \&c, being used in such a way as not to correspond to any precise physical conceptions, still less to definite material objects or forces One recommendation of the system was that it favoured a milder system of treatment than was at that time in vogue; Brown may be said to have been the first advocate of the modern stimulant or feeding, treatment of fevers He advocated the use of "animal soups" or beef-tea. Further, he had the discernment to see that certain symptoms-such as convulsions and delisium, which were then commonly held always to indicate inflammation-were often really signs of weakness.

The fortunes of Brown's system (called, from having been originally written in Latin, the Brunonian) form one of the strangest chapters in the history of medicine. In Scotland, Brown sofar won the sympathy of the students that riotous conflicts took place between his partisans and opponents. In England his system took little root. In Italy, on the other hand, it received enthusiastic support, and, naturally, a corresponding degree of opposition. The most important adherent to Browns system was]. Rasori (1763-1837), who taught it as professor at Pavia, but alterwards substituted his own system of contra-stimulus. The theoretical differences between this and the "stimulus" theory need not be expounded. The practical difference in the corresponding treatment was very great, as Rasori advocated a copious use of bleeding and of depressing remedies, such as antimony. Joseph Frank (1774-1841), a German professor at Pavia, afterwards of Vienna, the author of an encyclopaedic work on medicine now forgotten embraced the Brunoninn system, though he afterwards introduced some modifications, and transplanted it to Vienna. Many names are quoted as partisans or opponents of the Brunonian system in Italy, but scaroely one of them has any other claim to he remembered. In Germany the new system called forth, a little later, no less enthusiasm and controversial heat. C. Girtanner (i7601800) first began to spread the new ideas (though giving them out as his own), but Weikard was the first avowed advocate of the system. Roschlaub (1768-1835) modified Brown's system into the theory of excitement (Erregungstheoric). Which for a time was extremely popular in Cermany. The enthusiasm of the younger Brunonians in Germany was as great as in Edinburgh or in Italy, and led to serious riots in the university of Gottingen. In America the system was enthusiastically adopted by a noted physician, Benjamin Rush ($1745-1813$). of Pbiladelphia, who was followed by a considerable school. France was not more influenced by the new school than England. In both countries the tendency towards positive science and progress by objective investigation was too marked for any theoretical system to have more than a passing influence. In France, however, the influence of Brown's theories is very clearly seen in the writings of François J. V. Broustais, who, though not rightly classed with the system-makers, since his conclusions were partly based upon anatomical investigation. resembled them in his attempt to unite theory and practice in one comprehensive synthesis. The explanation of the meteoric eplendour of the Brumonian system in other countries seems to be as follows. In Italy the period of intellectual decadence had set in. and no serious scientific ardour remained to withstand the novelties of abstract theory. In Germany the case was somewhat dificrent. Intellectual activity was not wanting, but the great achievements of the 18 th century in philosophy and the moral sciences had fostered a love of abstract speculation; and some sort of commical or general system was thought indispensable in every department of special science. Hence another generation had to pass away before Germany found hermelf on the level, in ecientific investigation, of France and England.

Before the theoretic tendegry of the 18th century was quite exhausted, it displayed itself in a system which, though in some respects isolated in the history of medicine, stands nearest to that of Brown-that, mamely, of Hahnemann (sce Hososopathy). S. C. F. Hahnemann ($1753-1844$) was in conception as revolutionary a relormer of medicine as Paracelsus. He professed to base medicine entircly on a knowledge of symptoms, regarding all investigation of the causes of symptoms as useless. While thus rejecting all the lessons of morbid anatomy and pathology, he put forward view respecting the causes of discase which hardly bear to be serioudy stated. All chronic maladies result either from three diseasespsora (the itch), syphilis or sycosis (a skin disease), or eise are maladics produced by medicines. Seven-eighths of all chronic diseases are produced by itch driven inwarda! (It is fair to mey that these views were published in owe of his later works.) Ia treatment of disease Hahnemann rejected entirely the notion of a vis medicolrix mafurae, and was guided by his well-known principle
1 The itch (scabies) is really an aflection produced by the presence in the skin of a specics of mite (Acarus scabici), and when this is destroyed or removed the disease is at an end.
= mimitia stonitibus curatutury which the exploined as depencting on the law that in order to get rid of a disease some remedy must be given which should substitute for the disease an action dynarnically Emilar, but weaker. The original malady being thus got rid of, the vital force would easily be able to cope with and extinguish the slighter disturbance caused by the remedy. Sornething vory sirailar was theld by Brown, who taught that "indirect debility" wras to be cured by a lesser degree of the same stimulus as had caused the original disturbance. Cenerally, however, Hahnemann's views contradict those of Brown, though moving somewhat in the same plane. In order to select remedies which should fulfil the indication of producing symptoms fike those of the disease, Hahneman made many observations of the action of drugs on bealthy persons. He did not originate this line of research, for it had been pursued, if not originated, by, Haller, and cultivated systematically by Tommasini, an Italian "contra-stimulist "; but be carried it outt with much elabortion. His reuults, mevertheless, were vitinted by being obtained in the interest of a theory, and by singular want of discrimination. In his second period he developed the theory of "potentiality" or dynamization-namely, that medicines pained in strength by being diluted, if the dilution was accompanied by shating or pounding, which was supposed to "potentialize" or increase the potency of the medicine. On this principle Hahnemanp ordered his original tinctures to be reduced in strength to onefiftieth; these first diturions again to one-fiftieth; and so on, even till the thircieth dilution, which he himself used by preference, and to which he ascribed the highest "potentiality." From a theoretical point of view Hahnemann's is one of the abstract systems, pretending to universality, which modern medicine neither accepts nor finds it worth while to controvert. In the treatment of disease his practical innovations came at a lortunate time, when the excesses of the depletory system had only partially been superseded by the equally injurious oppoaite extreme of Brown's stimulant treatment. Hahnemann's use of mild and often quite inert remedies contrasted favourably with both of these. Forther, he did good by insisting upon simplicity in prescribing, when it was the custom to give a number of drigs, often heteropeneous and inconsistent, in the same preseription. But these indirect benefiss werequite independent of the truth or falsity of his theoretical system.

Positite Progress in'the I8th Cetulury.-In looking back on the repeated attempts in the 8 8th century to construct a universal system of mediciac, it is impossible not to regret the waste of brilliant gifts and profound acquirements which they involved. It whs fort unate, however, that the accumulation of positive lnowledge in medicine did not cease. While Germany and Scotland, as the chief homes of abstract speculation, gave birth to most of the theories, progress in objective science was most marked in other countries-in Italy first, and afterwards in England and France. We must retrace our steps a Ititie to enumerate several distinguished names which, from the nature of the case, bardly admit of classification.

In Italy the tradition of the great atatomists and physiotogists of the 17 th century produced a series of accurate observers and practitioners. Among the Grst of these wete Antonio Maria Vabsalva (1666 -1723), still better known as an anatomist; Giovanni Maria Lancisiv (1654-1720), also an anatomist, the anthor of a classical work on the diseases of the heart and ancurisms; and Ippolito Francisco Abbertini (r66z-r738), whose researches on the sama class of diseases were no less traportants

In France, Jean Baptiste Senac (1693-1770) wrote also an important work on the affections of the beart. Sauvages, otherwise F. B. de Lacroiz ($1706-1707$), gave, under the title Nosologie melhodica, a natural-bistory classification of diseases; Jean Astruc ($1684-1766$) contributed to the knowiedge of general diseases. But the state of medicine in that country till the end of the $\mathbf{1 8 t h}$ century was unsatisfactory as compared with some other parts of Europe.

In England the brilliancy of the early part of the century in practical medicine was hardly maintained to the end, and presented, indeed, a certain contrast with the remarkable and untaging progress of surgery in the same period. The roll of the College of Pbysicians does not furnish many distingoished names. Among these should be mentioned John Fothergill (1712-1780), who investigated the "putrid sore throat" now called diphtheria, and the form of neuralgia popularly known es tic douloureux. A physician of Plymouth, John Hurham ($1694^{-1768 \text {), made researches on epidemic fevers, }}$ in the spirit of Sydenhman and Hippocrates, which are of the
highest importance. Witian Feberden (1710-180r), a Londan physician, called by Samuel Johnson witimes Romamorume, "the last of our learned physicians," left a rich legacy of practical observations in the Commentories published fter his death. More important in their results than any of these worts were the discoveries of EDWARD JENNEE (q.v.), respecting the prevention of small-pox by veccination, in which he superseded the partially useful but dangeroms practice of inoculation, which had been intreduced into England in 1721. The history of this discovery need not be told birc, but it mey be pointed out that, apart from its practical importance, it bas had great influence on the scientific study of infectious diseases. The name of John Pringle (1707-1782) should also be mentioned as one of the first to study epidemirs of fevers occurring in prisons and camps. His work, entitled Obseroctions on the Diseases of an Army, was translated into many European languages and became the standard authority on the subject.

In Germany the orly important scbool of practical medicine was that of Vienna, as revived by Gerard van Swieten (1700-1772), a pupil of Boerhaave, under the patronage of Maria Theresa. Van Swieten's commentaries on the aphorisms of Boerhasave art thought more valuable than the original text. Other eminent names of the same school are Anton de Haén (17a4-1776), Anton Storck (173I-1803), Maximilian Stoll (1742-1788), and John Peter Frank ($1745-1821$), father of Joseph Frank, before mentioned as an adherent of the Brownian system, and like his son carried away for a time by the new doctrines. This, the old "Vienna School," was not distinguished for any notahle discoveries, but for success in clinical teaching, and for its sound method of studying the actual facts of disease during life and after death, which largely contributed to the establishment of the "positive medicine" of the igtb century.

One novelty, however, of the first importance is due to 2 Vienna physician of the period, Leopold Auenbrugger (:7221809), the inventor of the method of recognizing disesses of the chest by percussion. Auenbrugger's method was that of direct percussion with the tips of the fingers, not that which is now used, of mediale percussion with the intervention of a finger or plessimeter; but the results of his method were the same and its value neariy as great. Auenbrugger's great work, the Intentum notum, was published in 176 r . The new practice was received at first with contempt and even ridicule, and afterwards by Stoll and Peter Frank with only grudging approval. It did not receive due recognition till 1808 , when J. N. Corvisart translated the Inoentum novum tnto French, and Auenbrugger's method rapidlyattained a European reputation. Surpassed, but not eclipsed, by the still more important art of auscultation introduced by R. T. H. Laennec, it is hardly too much to say that this simple and purely mechanical invention has had more influence on the development of modern medicine than all the " systems" evolved by the most brilliant intellects of the I8th century.

Rise of the Positive School in France.-The reform of medicine in France must be dated from the great intellectual awazening ceused by the Revolution, but more definitely starts with the researches in anatomy and physiology of Marie Francois Xavier Bichat (1771-1802). The importance in science of Bichat's classical works, especially of the Analomie gentrale, cannot be estimated here; we can only point out their value as supplying a new basis for pathology or the science of disease. Among the most ardent of his followers was Francois Josepl Victor Bromsaais (1772-1838), whose theoretical views, partly founded on those of Brown and partly on the so-called vitalist school of Fheophile Bordeu ($1732^{-1776)}$ and Paul Joseph Barthez (1734-1806), differed from these essentially in being avowedly hased on anatemical obecrvations. Broussais's chief aim was to find an amatomical basis for all diseasea, hut he is especially known for his attempt to erplain all fevers as a conserpence of irritation or inflammation of the intestinal canal (gastroenterite). A number of other maladies, eapecially general diseascs and those commonly regarded as nervons, were attix batedite the same catue It would be impossible now to trese
the steps which led to this wild and long since exploded theory. It led, among other consequences, to an enormous misuse of bleeding. Leeches were his favourite instruments, and so much so that he is said to have used 100,000 in his own hospital wards during one year. He was equalled if not surpassed in this excess by his follower Jean BouiHaud (1796-188!), known for his important work on heart diseases. Broussais's systern, to which he gave the name of "Medecine physiologique," did much indirect good, in fixing attention upon morhid changes in the organs, and thus led to the rise of the strongly opposed anatomical and pathological school of Corvisart, Laennec and Bayle.
Jean Nicolas Corvisart (1755-1821) has already been mentioned es the translator and introducer into France of Auenbrugger's work on percussion. He introduced some improvements in the method, but the only real advance was the introduction of mediate percursion by Pierre Adolphe Piorry (1794-1879) in 1828. The discovery had, however, yet to be completed by that of auscultation, or listening to sounds produced in the chest by breathing, the movements of the heart, \&c. The combination of these methods constitutes what is now known as physical diagnosis. René theophile Hyacinthe Laennec ($1781-1826$) was the inventor of this most important perhaps of all methods of medical research. Except for some trifing notices of sounds heard in certain diseases, this method was entirely new. It was definitely expounded in an almost complete form in his work Ds l'auscultotion mediciace, published in 1819. Laennec attached undue importance to the use of the stethoscope, and taid too much weight on specific signs of specific diseases; otherwise his method in its main features has remained unchanged. The result of his discovery was an entire revolution in the knowledge of diseases of the chest; but it would be a mistake to forget that an essential factor in this revolution was the simultaneous study of the condition of the diseased organs as seen after death. Without the latter, it is difficult to see how the information conveyed by sounds could ever have been verified. This increase of knowledge is therefore due, not to auscultation alone, but to auscultation combined with morbid anatomy. In the case of Laennec himself this qualification takes nothing from his fame. for he studied so minutely the relations of post-mortem appearances to symptoms during life that, had he not discovered auscultation, his researches in morbid anatomy would have made him famous. The pathologico-anatomical method was also followed with great zeal and success by Gaspard Laurent Bayle (1774-1816). Whose researches on tubercle, and the changes of the lungs and other organs in consumption, are the foundation of most that has been done since his time. It was of course antecedent to the discovery of auscultation. Starting from these men arose a school of physicians who endeavoured to give to the study of symptoms the same precision as belonged to anatomical observations. and by the combination of both methods made a new era in clinical medicine. Among thase were Auguste Francois Chomel ($177^{88-1858 \text {), Pierre Charles }}$ Alexandre Lous (1787-1872), Jean Cruveilhier (1791-1874) and Gabriel Andral (i797-1876). Louis, by his researches on pulmonary consumption and typhoid fever, had the chief merit of refuting the doctrines of Broussais. In another respect also he aided in establishing an exact scieace of medicine by the introduction of the numerical or statistical method. By this method only can the lallacies which are attendant on drawing conclusions from isolated cases be avoided; and thus the chief objection which has been made to regarding medicine as an inductive science has been removed. Louis's method was improved and systematized by Louis Denis Jules Gavarret (1809-1890): and its utility is now universally recognized. During this brilliant period of French medicine the superiority of the school of Paris could hardly be contested. We can only mention the names of Pierre Bretonneau ($1771-1862$), Louis Lton Rootan ($1790-1866$). Jean Louis D'Alibert (1766-1837). Pierre Francois Olive Rayer (1793-1867) and Armand Trousseau (1801-1866), the eloqueat and popular teacher.
English Medicine from 1800 to 1890.-The progress of medicine in England during this period displaya the same characteristics as at ocher times, vit, a gradual and uninterrupted development, without starting changes such as are caused by the sudden sise or fall of a new school. Hardly any theoretical system is of English birth; Erasmus Darwin (3731-1802), the grandfather of the great Charies Datwin, alone makes an exception. In his Zomoomia (1794) he expounded a theory of bife and disease which had some resemblance to that of Brown, though arrived at (he says) by a different chain of reasoning.
Darwin's work shows, however, the tendency to comect medicine with physical science, which was an inmediate consequence of the scientific discoveties of the end of the r8th century, mben Priestley and Cavendish in England exercised
the same infuence as Lavoisier in France. The English schood of medicine was also profoundly stirred by the teachings of the two brothers William and John Hunter, especially the latter-who must therefore be briefly mentioned, though their own researches were chiefly concerned with subjects lying a little outside the limits of this sketch. William Hunter (1718-1783) was known in London as a brilliant teacher of anatomy and successful obstetric physician; his younger brother and pupil, John Hunter (1728-1793), was alse a teacher of anatomy, and practised as a surgeon. His immense contributiohs to anatomy and pathology cannot be estimated here, but his services in stimulating research and training investigators belong to the history of general medicine. They are sufficlently evidenced by the fact that Edward Jenner and Matthew Baillie were his pupils.
The same scientific bent is seen in the greater attention paid to morbid anatomy (which dates from Baillie) and the more scientific method of studying diseases. An instance of the latter is the work of Robert Willan (1757^{-1812}) on diseases of the skin-a department of medicine in which abstract and hypothetical views had been especially injurious. Willan, by following the natural-history method of Sydenham، at once put the study on a sound basis; and his work has been the starting-point of the most important modern researches. About the same time William Charles Wells (1757 -1817), a scientific inveatigator of remarkable power, and the author of a celebrated essay on dew, puhlished ohservations on alterations in the urine, which, though little noticed at the time, were of great value as assisting in the important discovery made some years afterwards hy Richard Bright.

These observers, and others who cannot be mentioned here, belong to the period when English medicine was still little influenced by the French school. Shortly after 18:5, however, when the continent of Europe was again open to English travellers, many English doctors studied in Paris, and the discoveries of their great French contemporaries began to be known. The method of anscultation was soon introduced into England by pupils of Laennec. John Forbes ($1787-1861$) in 1824 , and William Stokes (1804-1878) of Dublin in 1825, published treatises on the use of the stethoscope. Forbes also translated the works of Laennec and Auenbrugger, and an entire revolution was soon effected in the knowledge of diseases of the chest. James Hope (1801-1841) and Peter Mere Latham (1789-1875) further developed this subject, and the former was also known for bis researches in morbid anatomy. The combination of clinical and anatomical research led, as in the hands of the great French physicians, to important discoveries by English investigators. The discovery hy Richard Bright (1789-1858) of the disease of the kidneys known by bis name proved to be one of the most momentous of the century. It was published in Reports of Medical Cases 1827-1831. Thomas Addison (17931860) takes, somewhat later, a scarcely inferior place. The remarkahle physiological discoveries of Sir Charles Bell (17741842) and Marshall Hall (1790-1857) for the first time readered possible the discrimination of diseases of the spinal cord. Several of these physicians were also eminent for their clinical teaching-an art in which Englishmen had up till then been greatly deficient.

Although many names of scarcely lesa note might be mentioned among the London physicians of the early part of the century, we must pase them over to consider the progress of medicine in Scolland and Ireland. In Edinburgh the admirable tcaching of Culken had raised the medical faculty to a height of prosperity of which his suecessor, James Gregory ($1758-1821$), was not unworthy. His nephew. William Puteney Alison ($1790-1899$). was even mone videly known. These great teachers maintained in the northem university a continuous iradition of successful teaching, which the difference in academical and other circumstances rendcred hardly possible in London. Nor was the northern school wanting in special investigatort, such as John Abercrombic (1780-1844), know for his work on diseases of the brain and spinal cord, published in 1828 , and many others. Turning to Ireland, it should be wid that the Dublin school in this period produced two physicians of the highest distinction. Robert James Graves (1796-1853) was a most eminent clinical tacher end observer, whoee lectures are regarded ta the
model of clinicad teaching, and indped eerved as auch to the mox popular teacher of the Paris school in the middle of this century, Trousseau. William Stokes (1804-1878) was especially known for his works on diseases of the chest and of the hearr, and for his clinical teaching.

German Medicine from 1800 to 1840.-Of the other countries of Europe, it is now only necessary to mention Germany. Here the chief horne of positive medicine was still for a long time Vienna, where the "new Vienna school" continued and surpassed the glory of the old. Joseph Skoda (i805-1881) extended, and in some respects corrected, the art of auscultation as left by Laennec. Rarl Rokitansky ($1804-1878$), by his colonsal labours, placed the science of norbid anatomy on a permanent basis, and enriched it by numerous discoveries of detail. Most of the ardent cultivators of this science in Germany in the next generation were his pupils. In the other German schools, though some great names might be found, as Moritz Heinrich Romberg (1795-1873), the founder of the modern era in the scudy of nervous diseases, the general spirit was scholastic and the result barren till the teaching of one man, whom the modern German physicians generally regard as the regenerator of scientific medicine in their country, made itself felt. Johann Lucas Schbnlein (1793-1864) was first professor at Warzburg, afterwards at Zürich, and for (wenty years at Berlin (irom 1839-1859). Schonntein's positive contributions to medical science were not large; but be made in 1839 one discovery, apparently small, but in reality most suggestive, namely, that the contagious disease of the head called favus is produced by the growth in the hair of a parasitic fungus. In this may be found the germ of the startling modern discoveries in parasitic disesses. His systematic doctrines founded the so-called "natural history school" ; hut his real merit was that of the founder or introducer of a metbod. In the words of H. Hiser: "Schonleiu has the incontestable merit of having been the first to establish in Germany the exact method of the French and the English, and to impregate this method with the vivifying spirit of German research."
(J. F. P.)

Modern Progress.-In recent times the positive bent of modera knowledge and methods in other spheres of science and thought, and especially in biology, bas influenced medicine profoundly. Minuter accuracy of observation was inculcated by the labours and teaching of the great anatomists of the 87 th century; and, for modern times, experimental physiology was instituted by Harvey, anstomy having done litte to interpret bite in its dynamic aspects. For medicine in England Harvey did what William Giibert did for physics and Robert Boyle for chemistry; he insisted upon direct interrogation of natural processes, and thereby annihilated the ascendancy of mere autbority, which, while nations were in the making, was an essential principle in the welding together of heterogeneous and turbulent peoples. The degradation of medicine between Galen and Harvey, if in part it consisted in the blind following of the authority of the former physician, was primarily due to other causes; and its new development was not due to the discovery of the experimental method alone: social and political causes also are concerned in the advance even of the exact sciences. Among such contributory causes is the more familiar intercourse of settled nations which we enjoy in our own day; the ideas of one nation rapidly permeate neighbouring nations, and by the means of printed books penetrate into remoter provinces and into distant lands. Hence the description of the advance of medicine in western Europe and America may for the latest stage be taken as a whole, without that separate treatmene, nation by nation, which in the history of earlier times was necessary. Italy lost the leading place she had taken in the new development of science. The several influences of modern Germany, France and America became of the first importauce to English medicine; but these tides, instead of pursuing their courses as independent streams, have become confluent. The work of Theodor Schwann ($1810-1882$), Johannes Miller ($3800-$ (875), Rudolph Virchow and Rarl Ludwig (1816-1805) ifi Germany, of R. T. H. Laennec and Claude Bernard in France, was accepted in England, as that of Mathew Baillie, Charies

Bell, Bright, Graves and others of the British school, quickly made itself felt abroad.

The character of modern medicine canbot be sammed in a word, as, with more or less aptness, that of some previous periods may he. Modern medicine, like modern Expert science, is as boldly speculative as it has been in monend any age, and yet it is as observant as in any natural Moctoof istic period; jts success lies in the addition to these qualities of the method of verification; the fault of previous times being not the activity of the spoculative faculty, without which no science can be fertile, bet the lack of methodical reference of all and sundry propositions, and parts of propositions, to the test of experiment. In no department is the experimental method more continually justified than in that of the natural history of disense, which at first sight would scem to have a certain independence of it and a somewhat oxclusive value of its own. Hippocrates had no opportunity of verification by necropsy, and Sydenham ignored pathology; yet the clinical features of many but recently described diseases, such, for example, as that named after Graves, and myxoedema, both associated with perversions of the thyroid gland, lay as open to the eye of physicians in the past as to our own Again, to the natoralist the symptoms of tabes dorsalis were distinctive enough, had he noted them. No aid to the trained eye was necessary for such observations, and for many other sych; yet, if we take Sir Thomar Watson (1792-1882) as a modern Sydenham, we may find in his lectures no suspicion that there may be a palsy of muscular co-ordination apert from deprivation of strength. Indeed, it does not seem to have occurred to any one to compare the muacular strength in the various kinds of paraplegia. Thus it was, partly because the habit of acceptance of authority, waning but far from extirpated, dictated to the clinical observer what be should see; partly because the eye of the clinical observer lacked that special training whicb the habit and influence of experimental verification alone can give, that physicians, even acute and practised physicians, failed to see many and many a sympto matic series which weat through its evolutions conspicuously enough, and needed for its appreciation no unknown aide or methods of research, nor any further edvances of pathology. We see now that the practice of the experimental method endows with a new vision both the experimenter himself and, through his influence, those who are associated with him in medical science, even if these be not themselves actnally engaged in experiment; a new discipline is imposed upon old faculties, as is seen as well in other sciences as in thote on which medicine more directly depends. And it is sot only the perceptions of eye or ear which tell, but also the association of concepts behind these adits of the mind. It was the concepts derived from the experimental methods of Harvey, Lavoisier, Liebig, Claude Bernard, Helmholtz, Darwia, Pasteur, Lister and others which, directly or indirectly, trained the eyes of ctinicians to observe more closely and accuratety; and not of clinicians only, bat also of pathologists, such an Matthew Baillie, Cruveilhier, Rokitansky, Bright, Virchowto name but a few of those who, with (as must he adraitued) new facilities for necropsies, began to pile upon us discoveries in morbid anatomy and histology. If at first in the 18 th centary, and in the earlier 19th, the discoveries in this branch of medical knowledge had a certain isolation, due perhaps to the prepossessions of the school of Sydenham, they soon became the property of the physician, and were brought into co-ordination pith the clinical phenomena of disease. The great Morgagni, the founder of morbid anatomy, himself set the example of carrying on this study parallel with clinical observation; and always insisted that the clinical story of the case should be brought side by side with the revehations of the necropsy. In pathology, indeed, Virchow's (1821-1902) influence in the transfiguration of thris branch of sclence may almost be compared to that of Darwin and Pateur in their respective domaina, In the last quarter of the rgth century the conception grew clearer that morbid anatomy for the most part demonstratet
disease in its static aspects ondy, and also for the most part in the particular aspect of final demolition; and it became manifest as pathology and clinical medicine became more and more thoroughly integrated, that the proceases which initiate and are concerned in this dissolution were not revealed by the scalpel.

Again, the physician as naturalist, though stimulated by the pathologist to delineate disease in its fuller manifestations, yet was hampered in a measure by the didactic method of constructing "types" which should command the attention of the disciple and rivet themselves on his memory; thus too often those incipient and transitory phases which initiate the patha of dissolution were missed. Not only so, but the physicion, thus fascinated by " types," and impressed by the silent monuments of the pathological museum, was led to localize disease too much, to isolate the acts of nature, and to forget not only the continuity of the phases which lead up to the exemplary forms, or link them together, but to forget also that even between the types themselves relations of affinity must exist-and these oftentimes none the less intimate for apparent diversities of form, for types of widely different form may be, and indeed often are, more closely allied than types which have more superficial resemblance-and to forget, moreover, how largely negative is the process of abstraction. hy which types are imagined. Upon this too static a view, both of clinical type and of post-mortem-room pathology, came a despairing spirit, almost of fatalism, which in the contemplation of organic nuins lost the hope of cure of organic diseases. So prognosis became pessimistic, and the therapeutics of the abler men negative, until fresh hopes aroee of stemming the tides of evil at their earliest flow.
Such was medicine, statically ordered in pathology, statically ordered in its clinical concepts, when, on the 24 th of November ${ }^{1859}$, the Origin of Species was published. It is no tofnemar of exaggeration to say that this epoch-making work brought to birth a world of conceptions as new as the work of Copernicus. For the natural philosopher the whole point of view of things was changed; in biology not only had the anthropocentric point of view been banished, but the ancient concept of perpetual flux was brought home to ordinary men, and entered for good into the framework of thought. The study of comparative pathology, yet in an inchoate stage, and of embryology, illuminated and enlarged biological conceptions, both normal and abnormal; and the ens reale subsistens in corpore disappeared for ever-at any rate from physiology and medicine. Before Darwin-if the name of Darwin may be used to signify the transformation of thought of which be was the chief artificer -natural objects were regarded, not in medicine and pathology only, as a set of hidebound eveats; and natural operations as moving in fixed grooves, after a lashion which it is now difficult for us to realize. With the melting of the ice the more daring apirits dashed into the new current with such ardour that for them all traditions, all institutions, were thrown into hotchpot; even elderly and sober physicians took enough of the infection to biherate their minds, and, in the field of the several diseases and in that of post-mortem pathology, the bollowness of classification by superficial resemblance, the transitoriness of forms, and the flow of processea, broke upon the view. Thus it came about not only that classifications of disease based on superficial like-nest--such as jaundice, dropsy, inflammation-were broken up, and their parts redistributed, but also that even more set diseases began to lose their sethements, and were recognized as terms of series, as transitory or culminatiog phases of perturbations which might be traced to their origins, and in their earlier stages perbnps withstood.

The doctrine of beredity in disease thus took a larger aspect; the view of morbid series was no longer boupded even by tho life of the individual; and the propagation of taints, and of morbid varicties of man, from gencration to generation proved to be ao mere repetition of fired features hut, even more frequently, to be modes of development of of diasolution betraying themsselves often in widely diseimilar forms, is series often extending
over many llves, the terms of which at first sight had seemed wholly disparate. Thus, for example, as generations succeed one adother, nervous disorders appear in various guise; epilepsy, megrim, insanity, asthma, hysteria, neurasthenia, a motiey array at first sight, seemed to reveal themselves as terms of a morbid series; not only so, but certain disorders of other systems also might be members of the series, such as certain diseases of the skin, and even peculiar susceptibilities or immunities in respect of infections from without. On the other band, not a few disorders proved to be alien to classes to which narrower views of causation had referred them; of such are tabea dorsalis, neuritis, infantile palsy or tetanus, now removed from the category of primary nervous diseases and placed in one ot other of the class of infections; or, conversely, certain forms of disease of the joints are now regarded with some certainty as members of more than one series of diseases chiefly manilest in the nervous system. In the effects of simpler poisons the recognition of unity in diversity, as in the affiliation of a peripheral neuritis to arsenic, illustrated more definiteiy this serial or eliological method of classifying diseases. On the other hand, inheritance was dismissed, or survived only as a "susceptibility," in the cases of tubercle, leprosy and some other maladies now recognized as infectious; while in others, as in syphilis, it was seen to consist in a translation of the infectious element from parent to offspring. These new conceptions of the multiplicity in unity of disease, and of the fluidity and continuity of morbid processes, might have led to vagueness and over-holdness in speculation and reconstruction, had not the experimental method been at hand with clucs and tests for the several series. Of this method the rise and wonderful extension of the science of bacteriology also furnished no inconsiderable part.

In the disease of the scalp called favus, Schonlein had discovered a minute mycelial fungus; a remarkable discovery, for it was the first conspicuous step in the attribution of diseases to the action of minute parasites. Schonlein thus did something to introduce new and positive conceptions and exacter methods into Germany; but unfortunately his own mind retained the abstract habit of his country, and his abilities were dissipated in the mere speculations of Schelling. Similarly Karl Hoffmann of Würzburg wasted his appreciations of the newer schools of developmental biology in fanciful notions of buman diseases as reversions to normal stagen of lower animals; scrofula being for him a reversion to the insect, rickets to the mollusc, epilepsy to the oscillaria, and so forth. Even that distinguished physiologist Johannes Müller remained a staunch vitalist. Fortunately Germany, which at the beginning of the century was delivered over to Brownism and vitalism and was deaf to Bichat, was rescued from this sort of barrenneas by the brilliant experimental work of Claude Bernard and Pasteur in France-work which, as regards the attenuated virus, was a development of that of Edward Jenner, and indeed of Schwann, Robert Koch worthily following Pasteur with his work on the becillus of anthrar and with his discovery of that of tuberculosis; and by tbe cellular doctrine and abundant lahours in palbology of Virchow. Ludwig Brieger then discovered the toxins of certain infections; and Emil A. von Behring completed the sphere of the new study by his discovery of the antitozins of diphtheria and tetanus. In practical medicine the subsequent resules of Behring and his followers have in diphtheria attained a signal therapeutical success. If the striking conceptions of Paul Ehrlich and Emil Fischer continue to prove as fertile in inspiring and directing research as at present they seem to he, another wide sphere of conceptions will be opened out, not in bacteriology only, but also in biological chemistry and in molecular physics. Again, besides giving us the clue to the nature of many diseases and to the continuity of many morbid series, by bacteriology certain diseases, such as actinomycosis, have been recognized for the first time.

As the prevalence of the conceptions signified and inspired by the word "phlogiston" kept alive ontological notions of disease, so the dissipation of vilalistic conceptions in the field of physice prepared men's minds in pachology for the new
dems opened by the discoveries of Pastenr on the sidd of pathogeny, and of J. F. Cohnheim (1839-1884) and of

Iliya Metchnikoff on the dynsmical side of his-

Fivers and Inflamer

 thest tology. Of the older ontological notions of disease the strongest ware thooe of the essence of fever and of the easence of inflemmation. Broussais had done much to destroy the notion of fever as an entity, but by extravaEances in other directions he had discredited the value of his main propositions. Yet, although, as Andral and other French physicians proved, it was extravagant to say that all fevers take their origin from some local inflammation, it was true and moat useful to insist, as Broussais vebermently insisted, that "fever" is no substance, but a generalization drawn from symptoms common to many and various diseases springing from many various and often local causes; from causes agreeing perhaps coly in the factor of elevation of the temperature of the body. To the establishment of this new conception the improvement and general use of the clinical thermometer gave invaluable advantages. This instrument, now indiepensable in our daily work at the bedside, had indeed long been known both to phystologiats (Haller) and to elinicians. In the 18th century A. de Hakn, and, in the United Kingdom, George Cleghonn (1716-1789) of Dublin and Jamea Currie ($1756-1805$), carried on the use of the thermometer in fevers; and on the continent of Europe in later years F. G. F. von Bärensprung (1822-1865) and Ludwig Treube ($\mathbf{1 8 1 8 - 1 8 7 6 \text {) did the same service; but it is to the work of Kart }}$ August Wuaderlich (1815 -1877) that we owe the establishment of this means of precision as a method of regular obsorvation both in pethology and in clinical medicine. By his almost exhaustive comparison of febrile movements as symptomatic processes Wunderlich dealt the last blow to the expiring doctrine of the "entity" of "fever"; while on the clinical side Bretonnean and Louis, in 1862-1872, by their careful clinical and patholegical studiea of forms of fever, relisved the new doctrine of the extravagances of Broussais, and prepared the way for the important distinction of enteric from typhus fever by (1811-1880), Charles Murchisen ($1830-1879$), J. H. F. Autenrieth ($\mathrm{r}_{772-1835 \text {), Heinrich Gustav Magnus (1802-1870), }}$ Huss and others. By the learned and accomplished Armand Troussean British and German influences were carried into France.

Meanwhile Cohnheim and Metchnikof were engaged in destroying the ontological conception not of fever paly, but also of inflammation, of which, as a local event, an ontological conception was no less strongly inplanted. By his researches on the migration of the white corpascles of the blood Colmheim, on the bases laid by Virchow, brought the processes of inflammation within the scope of the normal, seeing in them but a modification of normal processes under perturbations of relatively external incidence; even the formation of abscess was thus hrought by him within the limits of perversion of processes not differing essentially from those of health; and " new formations," "plastic exudations," and other discontinuous origins of an "easential" pathology, fell into oblition. And it is not alien from the present point of view to tum for a moment to the light thrown on the cardio-arterial pulse and the measurement of its motions by the more intimate researches into the phenomena of the circulation by many observers, among whom in the rgth century James Hope, E. J. Marey (i830-1904) and C. F. W. Ludwis will always take a leading place. By them the demonstration of Harvey that the circulation of the blood is in large part a mechanical process, and nowhere independent of mechanical laws, was considerably enlarged and extended. In particular the fluctuations of the pulse in fevers and inflammations were better understood, and accurately registered; and we can scarcely realize now that before Harvey the time of the pulse seems not to have been counted by the watch. Discovery in these various directions then led physicians to regard fever and inflammation not as separable entities, but as fluctuating symptomgroups, due to swervings of function from the normal balance under contingent forces.

As to such reforms in our conceptions of disease the advances of bacteriology profoundly contributed, so under the stress of consequent discoveries, almost prodigious in their entent and revolutionary effect, the conceptions of the Noy Coor etiology of disense underwent no less a transforma- exithong. tion than the conceptioes of disease itself. It is proper to point out here how intimately a pathology thus regenerated modified current conceptions of disease, in the tinking of disease to oscillations of bealth, and the regarding many diseases as modifications of the normal set up by the impingement of extornal causes; not a few of which indeed may be gesarated within the body itsell-" autogenetic poisoning." The appreciation of guch modifications, and of the working of such causes, has been facilitated greatly by the light thrown upon normal processes by advances in physiology; so dependent is each branch of knowledge upon the advances of contiguous and incident studies. To biological chemistry we have been deeply indebted during the latter half of the rgth century. In 1872, Hoppo-Seyler (1825-1895) gave a new beginning to our knowledge of the chemistry of secretion and of eacretion; and later students have increased the range of physiotogical and pathological chemistry by investigations not only into the several stages of albuminoid material and the transitions which all foodstufs undergo in digestion, but even into the structure of protoplasm itself. Digestion, regarded not long ago as little more then a trituration and "coction" of ingesta to fit them for absorption and transfer them to the tissues, now appears as an claboration of peptones and kindred intermediate products which, so far from being always bland, and mere bricks and mortar for repair or fuel for combustion, pass through phases of change during which they become so unfit for assimilation as to be positively poisonous. The formation of prussic acid at a certain period of the vital processes of certain plants may be given as an example of such phases; and poisons akin to muscarin seem to arise frequently in development or regression, both in animals and plants. Thus the digestive function, in its largest sense, is now seen to consist, not only in preparation and supply, hut in no small measure also of protective and antidotal conversions of the matters suhmitted to it; coincidently with agents of digestion proper are found in the circuit of normal digestion "anti-substances" which neutralize or convert peptones in their poisonous phases; an autochthonous ferment, such as rennet for instance, calling forth an anti-rennet, and so on. Now as our own bodies thus mampulate substances poisonous and antidotal, if in every hour of health we are averting selfintoxication, so likewlse are we concerned with the various intruding organisms, whose processes of digestion are as dangerous as our own; if these destructive agents, which no doubt are incessantly gaining admission to our bodies, do not meet within us each its appropriate compensatory defensive agent, dissofution will begin. Thus, much of infection and immunity are proving to be but special cases of digestion, and telcological conceptions of protective processes are modified.

Under the name of chemotaxis (W. Pfeffer) are designated certain of the regulative adaptations by which such ends are attained. By chemical warnings the defensive processes seem to be awakened, or summoned; and Natural when we think of the infinite varicty of such possible Pestareace. when we think of the infinite variety of such possible phases, and of the multitude of corresponding defensive agents, we may form some dim notion of the complexity of the animal blood and tissues, and within them of the organic molecules. Even in normal circumstances their play and counterplay, attractive and repellent, must be manifold almost beyond conception; for the body may be regarded as a collective organization consisting of a huge colony of micro-organisms become capable of a common life by common and mutual arrangement and differentiation of function, and by toleration and utilization of each other's peculiar products; some organs, such as the liver, for example, being credited with a special power of neutralizing poisons, whether generated under normal conditions or under abnormal, which gain entrance from the intestinal tract. As a part of these discoveries has arisen another but kindred doctrine
that of hormones (Starling), juices prepered, not for ercretion, not even for partial excretion, but for the fulfilment of physiological equilibrium. Thus the reciprocity of the various organs, maintained throughout the divisions of physiological labour, is not merely a mechanical stability; it is also a mutual equilibration in functions incessantly at work on chemical levels, and on those levels of still higher complexity which seem to rise as far beyond chemistry as chemistry beyond physics. Not only are the secreted juices of specialized cells thus set one against another in the body, whereby the various organs of the body maintain a mutual play, but the blood itself also in its cellular and fluid parts contains elements potent in the destruction of bacteria and of their sectetions. Thus endowed, the blood, unless overwhelmed by extraordinary invasions, does not fail in stability and seff-purification. So various are the conditions of selfregulation in various animals, both in respect of their peculiar and several modes of assimilating difierent foods, and of protecting themselves against particular dangers from without, that, as we might have expected, the bloods taken from difierent species, or even perhaps from different individuals, are found to be so divergent that the healthy serum of one species may be, and often is, poisonous to another; not so much in respect of adventitious substances, as because the phases of physiological change in different species do not harmonize; each hy its peculiar needs has been modified until, in their several conditions of life, they vary so much about the mean as to have become. almost if not quite alien one to another.

In the preservation of immunity then, in its verious degrees and kinds, not only is the chemistry of the blood to be studied, but also its histology. By his eminent labours in cellular pathology, Virchow, and Metchnikoff later, gave the last blow to the mere humoral pathology which, after an almost unchallenged prevalence for some two thousand years, now finds a resting-place only in our nurseries. Now the cellular pathology of the blood, investigated hy the aid of modera staining methods, is as important as that of the solid organs; no clinical investigator -indeed, apart from research, no practitioner at this day-can dispense with examination of the blood for purposes of diagnosis; its coagulability and the kinds and the variations of the cells it contains being evidence of many defnitely morbid states of the body. Again, not only in certain discases may strange cells be found in the blood (e.g. in myclogenic leucoemia), but parasites also, both in man, as those of malaria, of sleeping sickness, of kala-azar, and in animals, as redwater, yellow fever, n'gana have beendiscovered, to the great advantage of preventive medicine. For some of these, as redwater (pyrosoma), antidotes are already found; for others, as for yellow fever - of which the parasite is unknown, hut the mode of its transmission, by the mosquito, discovered (Finlay-Reed)-preventive measures are reducing the prevalonce.
It is obvious that the results of such advances prescribe for the clinical physician methods which cannot be pursued without spectallam. expert assistance; a physician engaged in busy pracspectalsm. tice cannot himself undertake even the verifications required in the conauct of individual cases. Skill in modern laboratory work is as far out of the reach of the untaught as performance on a musical instrument. In spite, thercfore, of the encyclopaedic tradition which has persisted from Aristote through the Arab and medieval schools down to Herbert Spencer, it is forced upon us in our own day that in a pursult so manysided as medicine, whether in its scientific or in its practical aspect, we have to submit more and more to that division of labour which has been a condition of advance in all other walks of life. It is now fully recognized that diseases of infants and children, of the insane, of the generative organs of women, of the larynx, of the cye, have been brought successively into the light of modern knowiedge hy "specialists," and hy them distributed to the profession; and that in no other way could this end have been attained. That the division of labour, which may seem to disintegrate the calling of the physician, really unites it, is well scen in the clinical laboratories which were initiated in the later seth century, and which are destined to a great
future. By the approach of skilled pathologists to the clinical wards, a link is forged between practitioners and the men of science who pursue pathology disinterestedly. The first clinical laboratory seems to have been that of Von Ziemssen (1829-1902) at Mubich, founded in 1885; and, although his example has not yet been followed as it ought to have been, enough has been done in this way, at Johns Hopkins University and elsewhere, to prove the vital importance of the system to the progress of modern medicine. At the same time provision must be made for the integration of knowledge as well as for the winning of it hy several adits. A conspicuous example of the incalculable evil wrought hy lack of integration is well seen in the radical divorce of surgery from medicine, which is one of the most mischievous legacies of the middie ages-one whose mischief is scarcely yet fully recognized, and yet which is so deeply rooted in our institutions, in the United Kingdom at any rate, as to be hard to ohliterate. That the methods and the suhject-matter of surgery and of medicine are substantially the same, and that the advance of one is the advance of the other, the division being purely artificial and founded merely on accidents of personal bent and skill, must be insisted upon at this time of our history. The distinction was never a scientific one, even in the sense in which the word science can be used of the middie ages; it originated in social conceits and in the contempt for mechanical arts which came of the cultivation of "ideas" as opposed to converse with ' matter," and which, in the dawn of modern methods, led to the derision of Boyle by Oxiord humanists as one given up to " base and mechanical pursuits," Had physicians been brought into contact with facts as hard as those faced hy the surgeons of the 16th century (cf. Ambrose Pare), their art would not have laiu so long in degradation. It is under this closer occupation with mechanical conditions that surgery to-day is said-not without excuse, but with no more than superficial truth-to have made more progress than medicine. Medicine and surgery are hut two aspects of one art; Pasteur shed light on both surgery and medicine, and when Lister, his disciple, penetrated into the secrets of wound fevers and septicaemia, he illuminated surgery and medicine alike, and, in the one sphere as in the other, co-operated in the destruction of the idea of "essential fevers" and of inflammation as an "entity." Together, then, with the necessary multiplication of specialism, one of the chief lessons of the latter moiety of the igth century was the unity of medicine in all its branches-a unity strengthened rather than weakened hy special researches, such as those into "medical" and "surgical" pathology, which are daily making more manifest the absurdity of the distinction. Surgeons, physicians, oculists, laryngologists, gynaecologists, neurologists and the rest, all are working in allotments of tbe same field, and combining to a common harvest.

While pathology then, which is especially the "science of medicine," was winning territory on one side from physiology, of which in a sense it is but an aspect, and on another by making ground of its own in the post mortem room and museum of morbid anatomy, and was fusing these gains in the laboratory so as to chaim for itself, as a special branch of science by virtue of peculiar concepts, its due place and provision-provision in the establishment of chairs and of special laboratories for its cbemical and biological subdivisionsclinical medicine, by the formal provision of disciplinary classes, was illustrating the truth of the experience that teaching and research must go hand-in-hand, the one reinforcing the other: that no :eacher can be efficient unless he be engaged in research also; nay, that for the most part even the investigator needs the encouragement of disciples. Yet it was scarcely until the last quarter of the 1 git century that the appreniceship system, which was a mere initiation into the art and mystery of a craft. was recognized as antiquated and, in its virtual exclusion of academic study, even mischievous. In place of it, systematic clinical classes have become part of the scheme of every efficient school of medicine. A condition of this reform was the need of a preliminary training of the mind of the pupil in pure science, even in physics and chemistry; that is to say, before introduction
into his professional studies. The foumding of mow teaching universities, in which England, and even France, had been at some disadvantage as compared with Scolland and Germany, strengthened the movement in favour of salarging and liberalizing technical training, and of anticipating technical instruction by some broader scientific discipline; though, as in all times of transition, something was lost temporarily by a departure from the old discipline of the grammar schoot before a new acheme of training the mind in scientific habits and conceptions was eatablished or fully apprehended. Yet on the whole, even from the beginning, the revolt was useful in that it shook the ponition of the "learned physician," who took a literary, fastidious and meditative rather than an experimental interest in his profession, and, as in great part a descendant of the bumanists, was never in full sympathy with experimental science. At the risk no doubt of some defects of culture, the newer education cleared the way for a more positive temper, awoke a new sense of accuracy and of verification, and created a sceptical attitude towards all conventions, whether of argument or of practice. Among the drawbacks of this temper, which on the whote made for progress, was the rise of a school of excessive scepticism, which, forgetting the value of the accumulated stores of empiricism, despised those degrees of moral certainty that, in so complex a study and so tentative a practice as medicine, must be our portion for the present, and even for a long future, however great the triumphs of medieine may become. This scepticism took form in the school, most active between 1860 and 1880, known as the school of "Expectant Medicine." These teachers, generinely touched with a sense of the scantiness of our knowledge, of our confidence in abstract terms, of the insecurity of our alleged "facts," case-bistories and observations, alienated from traditional dogmatisms and disgusted by meddlesome polypharmacy -enlightened, moreover, by the issuc of cases treated by means such as the homoeopathic, which were practically "expectant" -urged that the only course open to the physician, duly conscious of his own ignorance and of the mystery of nature, Is to put his patient under diet and nursing, and, relying on the tendency of al equilibriums to recover themselves under perturbation, to await events (Vis madicatrix naturac). Those physicians who had occupied themselves in the stady of the exacter sciences, or more closely or more exctosively of the wreckage of the post mortem room, were the strongest men of this school, whether in England or abroad.

But to sit down helpless before human suffering is an unendurable attitude. Moreover, the insight into origins, into Thers prutice: initial morbid processes reveated hy the pathotogists, awoke more and more the hope of dealing with the elements of disease, with its first beginnings; and in the field of therapeutics, chemical and biological experiment, as in the case of digitalis, mercury and the iodides, was rapidly simplifying remedies and defining their virtues, 20 that these agents could he used at the bedside with more precision. Furthermore, the aversion from drugging had the advantage of direeting men's minds to remedies taken from the region of the physical forces, of electricity (G. B. Duchenne, $1806-1875$), of gymnastics (Ling. ${ }^{1776-1839}$), of hydropathy (V. Priessnitz), of massage (Weir Mitchell), of climate (James Clarke), of diet (R. B. Todd, King Chambers, \&c.), and even of hypnotisnf (James Braid 1795^{2} 1860), while with the improvement of the means of iocomotion came the renewal of the ofd faith and the establishment of new methods in the use of mineral springs. These and such means, often in combination, took much of the place formerly given to the use of drugs.
Again, a like spirit dictated the use of the physical or " natural" methods on a larger scale in the field of prevention. From the new regard given by physiologists and atoperen. pathologists to the study of origins, and in the new
hopes of thus dealing with disease at its springs, not in individuals only but in cities and nations, issued the great school of Preventive Medicine, initiated in England-E, A. Parkes (1810-1876), J. Simon, Sir B. W. Richardson (1828-1896), Sir H. W. Acland (1815-3900), Sir G. Buchanan (1831-1895), and
forwarded in Germany by Max von Pettenkofer (1818-1901). Hygiene became for pathology what "milien " is for physiology. By the modification of physical conditions on a national scale a prodigious advance was made in the art of preventing disease. The ghestly roll of infantile mortality was quickly purged of its darkest features (Ballard and others); aided by bacteriology, sanitary measures attained some considerable degree of eractness; public medicine gained such an ascendancy that special training and diplomas were offered at universities; and in 1875 a consolidated act was passed for the United Kingdom establisbing medical officers of health, and responsible lay sanitary authorities, with no inconsiderable powers of enforcing the means of public health in rural, urban, port and other jurisdicLions, with summary methods of procedure. A department of public health was formed within the precincts of the Local Government Board; goverament laboratories were established, and machinery was devised for the notification of infectious diseases. The enommous growth of towns during the second half of the 19th ceatory was thus attended with comparative safety to these great aggregates of mankind; and the death-rates, so far from being increased, relatively decreased in substantial proportions. In 1878 an act was passed giving like powers in the case of the infections diseases of animala. The establishment in England of the Register of qualified practitioners and of the General Medical Council (in 1858) did something, however imperfectly, to give unity to the profession, unhappily bisected by "the two colleges"; and did much to organize, to strengthen and to purify medical education and qualification. In 1876 women were admitted to the Register kept by the Council. In 187x the Asetomical Act of 1832 was amended; and in 1876 the Vivisection Act was paseed, a measure which investigators engaged in the medical sciences of physiology and pathology resented as likely to prevent in England the advance of knowledge of living function, both in its normal balance and in its aberrancies, and moreover to slacken that habit of incessant roference of propositions to verification which is as necessary to the clinical obscrver as to the experimentalist. However the opinion of later generations may stand in respect of the Vivisection Act, it will surcly appear to them that the other acts, largely based upon the results of experimental methods, strengthening and consoliduting the medical profession, and fortifying the advance of medical education, led directly to a fundamental change in the circumstames of the people in respect of beath. The intelligent classes have become far better educated in the laws of heakh, and less disposed to quackery; the less intelligent are better cared for and protected by municipal and-central authority. Thus the bousing of the poor has been improved, though this dificult problem is yet far from solution; mot the large towns only, but the larger villages also, are cleansed and drained; food has been submitted to inspection by akilled officers; water supplies have been undertaken on a vast scale; personal cleanliness has been encouraged, and with onderful saccess efforts have been made to bring civilized Europe bacik from the effects of a long wave of Oriental asceticism, which in its neglect and contempt of the body led men to regard filth even as a virtue, to its pristine cleantiness under the Greeks and Romans. During the latter half of the igth century the death-rate of many towns was reduced by something like 50%. Some plagues, such as typhus fever, have been dispelied; others, such as enteric fever, have been almost banished from large areas; and there in much reason to hope that cholere and plague, if introduced, could not get a footing in western Europe, or in any case could be combated on scientific principles, and greatly reduced. Tem. perance in the use of alcohod has followed the demonstration not only of its unimportance as a food or tonic, but also of its harmfulness, save in very small quantities. In the earhier part of the roth century, and in remoter districts even in its later years, the use of alcohol was regarded not as a mere indulgence, bat as essential to health; the example of teetotallers, as seen in private life and in the returns of the insurance offices, has undersined this prepossession. From the time of Plato medicine has been accused of ministering to the survival of unfit persons, and to
their propagation of children. Bet bodily defect is largely a result of evil circumstances, in the prevention of which the physician is not unsuccessfully engaged, and the growth of sympathy means a stronger cement of the social structure. At any rate the mean standard of health will be raised, perhaps enormously.
In the tropics, as well as in Europe, such methods and such researches threw new light upon the causes and paths of the terrible infections of these climates. In 1880, two years before Koch discovered the bacillus of tubercle, C. L. A. Laveran (b. 1845) discovered the parasite of malaria, and truly conceived its relations to the disease; thus within two years were made two discoveries either of which was sufficient to make the honour of a century. Before the end of the igth century this discovery of the blood parasite of malaria was crowned by the hypothesis of Patrick Manson, proved by Ronald Ross, that malaria is propagated by a certain genus of gnat, which acts as an intermediate hoet of the parasite. Cholera (Hafline) and yellow fever are yielding up their secrets, and falling under some control. The 20th century, by means of this illumination of one of the darkest regions of disease, may diminish human suffering enormously, and may make habitable rich and beautiful regions of the earth's suriace now, so far as man's work is concerned, condemned to sterility. Moreover, freedom of trade and of travel has been promoted hy a reform of the antiquated, cumbrous, and too often futile methods of quarantine-a reform as yet very far from complete, but founded upon a better understanding of the nature and propagation of disease.

Special Depertments.-Hitberto we have presented a aurvey of the progress of the science and practice of medicine on general lafoctoas. lines; it remains to give some indication of the advance of these subjects of study and practice in particular departments. As regards infections, it is not to be supposed that our knowledge of these maladies has been advanced by pathology and bacteriology only. In the clinical feld also it has rectived a great enlargement. Diphtheria, long no doubt a plague among mankind, was not carefuly described untia by Pierre Bretonncau in 1826; and since his time our con. ception of this disease has been extended by the study of later, secondary and incidental phases of it , such as neuritis, which had always formed part of the diphtheritic series, though the connexion had not been detected. Influenza, again, was well known to us in 1836-1840, yet clinical observers had not traced out those sequels which, in the form of nearitis and mental disorder, have impressed upon our minds the persistent virulence of this infection, and the manifold forms of its activity. By the discovery of the becillus of tubercie, the physician has been enabled to piece together a long and varied list of maladies under several names, such as scrofula and lupus, many of them long suspected to be tuberculous, but now known to belong to the series. It is on clinical grounds that beriberi, scarlet fever, measles, \&c., are recognized as belonging to the same class, and evolving in phases which differ not in intimate nature but in the more superficial and inessential characters of time, rate and polymorphism; and the impression is gaining strength that acute rheumatism belongs to the group of the infections, certain sore throats, chorea and other apparently distinct maladies being terms of this serics. Thus the field of disease arising not from essential defect in the body, but from external contingencies, is vastly enlarging; while on the other hand the great variability of individuals in streceptibility explains the very variable results of such extrinsic causes. Coincidently therewith, the bope of neutralizing infections by fortifying individual immunity has grown brighter, for it appears that immunity is not a very radical character, but one which, as in the case of vaccination, admits of modification and accurate adjustment in the individual, in no long time and by no very tedious methods Evidence is accumulating which may end in the explanation and perhaps in the prevention of the direst of human woes-cancer itself, though at present inquiry is being directed rather to intriasic than to extrinsic causes.

When, leaving the infections, we book for evidence of progress
in our knowledge of more or less local diseases, we may begin with the nervous system. It is in this department, from its abstruseness and complexity, that we should expect the advance of anatomy and physiology-normal and

Nemraleg. morbid-to be most delayed. If we consult the medical works even of the middle of the igth century we shall find that, in the light of the present time, accurate knowiedge in this sphere, whether clinical, pathological or therapeutical, could scarcely be said to exist. Even in the hands of J. A. Lockhart Clarke (1817-1880), one of the earliest investigators of nervons pathology, the improvement of the compound microscope had not attained the achromatism, the penetration and the magnification which have since enabled J. L. C. Schroeder-van der Kolk (1797-1862), Altert von Külliker, Santiago Ramon y Cajal, C. Golgi (h. 1844) and others to reveal the minute anatomy of the nervous centres; while the discrimination of tissues and morbid products by stains, as in the silver and osmic acid methods, and in those known by the names of Carl Weigert or Marchi, had scarcely begun. In England the Hospital for the Paralysed and Epileptic was founded in 1859, where Charles E. BrownSéquard (1817-1894), J. Hughlings-Jackson, Thomas Buzzard, Henry C. Bastian (b. 1837), Sir W. R. Gowers and David Ferrier (b. 1843) found an adequate ficld for the clinical and pathological parts of their work. In France, in the wards of the Hotel Dieu, Guillaume Benjamin Duchenne ($1806-1875$), in association with Trousseau and in his private clinic, pursued his memorable clinical and therapeutical researches into the diseases of the nervous system; and Jean M. Charcot (1825-1893) in that great asylum for the wreckage of humanity-the Salpétriére-discovered an unworked mipe of chronic nervous diseasc. M. H. Romberg (1795-1873) and Theodor Meyncrt (183;-1892) also were pioneers in the sudy of nervous diseascs, but it was not till later in the century that Germany took a high piace in this department of medicine. The discoveries of the separate paths of sensory and motor impulses in the spinal cord, and consequently of the laws of reflex action, by Charies Bell and Marshall Hall respectively, in their illumination of the phenomena of nervous function, may be compared with the discovery in the region of the vascular system of the circulation of the blood; for thercin a key to large classes of nermal and aberrant functions and a fertile principle of interpretation were obtained. Nor was the theory of reflex action confined to the more "mechanical "functions. By G. H. Lewes and others the doctrine of "cerebral reflex" was suggested, whereby actions, at first achieved only by incessant attention, became organized as conscious or subconscious habits; as for instance in the playing on musical or other instruments, when acts even of a very elaborate kind may directly follow the impulses of sensations, conscious adaptation and the deliberate choice of means being thus economized. This law has important ethical and political bearings; but in the province of discase this advance of what may be compared to the interiocking of points and signals has had wide influence not only in altering our conceptions of disease, but also in enlarging our views of all perturbations of function. The grouping of reflex "units," and the paths wherein impulses travel and become associated, have been made out by the physiologist (Sherrington and others) working on the healthy animal, 25 well as by the record of disease; and not of spontaneous disease alone, for the artificial institution of morbid processes in animals has led to many of these discoveries, as in the method of A. V. Waller ($1816-1870$), who tracked the line of nervous strands by experimental sections, and showed that when particular strands are cut off from their nutritive centres the consequent degeneration follows the line of the separated strands. By similar methods nature, unassisted, betrays herself but too often; in many instances-probably originating primarily in the nervous tissues themselves-the course of disease is abserved to follow certain paths with remarkable consistency, as for instance in diseases of particular tracts of the spinal cord. In such cases the paths of degeneration are so neally defined that, when the tissucs are prepared after death by modern methods, they are plainly to be seem running along certain columns, the sublivisions
of which in the normal state may hardly be distinguishable one from another: some run in strips along the periphery of the spinal cord, at its anterior, middle or posterior segments, as the case may be; in other cases such strips occur within its substance, whether along columns of cells or of white matter. It is needless to point out how such paths of disease, in their association with characteristic symptoms, bave illuminated the clinical features of disease as well as the processes of normal function.

Not, however, all diseases of the nervous system conduct themselves on these definite paths, for some of them pay no attention to the geography of structure, but, as one may say, hlunder indiscriminately among the several parts; others, again, pick out particular parts definitcly enough, but not parts immediately continuous, or even contiguous. Diseases of the latter kind are especially interesting, as in them we see that parts of the nervous structure, separated in space, may nevertheless he associated in function; for instance, wasting of a group of muscles associated in function may depend on a set of central degenerations concurting in parts whose connexion, in spite of dissociation in space, we thus perceive. The undiscriminating diseases, on the other band, we suspect not to he primarily of nervous origin, hut to depend rather on the agency of other constituent tissues of this system, as of the blood-vessels or the connective elements. Thus, arguing inversely, we may learn something of the respective natures of these influences and of the way in which the nervous system is affected sccondarily.

Yet even the distrihution of toxic matters by the blood is not necessarily followed by general and indiscriminate injury to the
 nervous elements. In infantile palsy, for example, and in tabes dorsalis, there is good reason to believe that, definitely as the traces of the disease are found in certain physiologically distinct nervous elements, they are due nevertheless to toxic agents arriving by way of the blood. Here we enter upon one of the most interesting chapters of disorders and modes of disorder of this and of other systems. It has come out more and more clearly of late years that poisons do not betray even an approximately indifferent affinity for all tissues, which indeed a little reflection would tell us to be a prioni improbable, but that each tends to fix itself to this cell group or to that, picking out parts for which they severally have affinities. Chemical, physiological and pathological research is exploring the secret of these more refined kinds of "anchorage" of molecules. In 1868 Drs A. Crum Brown and T. R. Fraser proved that by substitution of molecules in certain compounds a stimulant could be converted into a sedative action; thus by the addition of the methyl group CH_{2} to the molecule of strychnine, thebaine or brucine, the tetanizing action of these drugs is converted into a paralysing action. The number of these instances, and the variety of them, are now known to be very large; and it is supposed that what is true of these simpler agents is true also of far more elaborate phases of vital metabolism. Now, what is remarkable in these and many other reactions is not only that effects apparently very opposite may result from minute differences of molecular construction, hut also that, whatever the construction, agents, not wholly indifferent to the body or part, tead to anchor themselves to organic molecules in some way akin to them. Highly complex as are all animal tissues, or nearly all, yet in this category of high complexity are degrees higher and higher again of which we can form little conception, so elaborate they are, so peculiar in their respective properties, and probably so fugitive. It is this wide range of dynamic peculiarities above the common range of known physical and chemical molecules which excites our wonder; and a reflection of these peculiar properties is seen in their affinities for this or that toxic or constructive agent, whereby the peculiarity, for example, of a particular kind of nerve cell may he altered, antagonized, reinforced or converted. On the other hand, the reagents by which such modifications are apt to be produced are not necessarily simple; many of them likewise are known to be of very high degrees of complexity, approaching perhaps in complexity the molecules to which they
are akin. Of such probably are the toxins and antitoxins of certain infections, which, anchoring themselves not by any means indiscriminately, but to particular and concerted molecules, by such anchorage antagonize them or turn them to favourable or unfayourable issues. Toxins may thus become so closely keyed into their corresponding atom groups, as for instance in tetanus, that they are no longer free to combine with the antitoxin; or, again, an antitoxis injected before a toxin may anticipate it and, preventing its mischievous adhesion, dismiss it for excretion. In the mutual hehaviour of such cells, torins, and antitoxins, and again of microbes themselves, we may demonstrate even on the field of the microscope some of the modes of such actions, which seem to partake in great measure at any rate of a chemical quality (agglutinins, coagulins, chemotaxis). It is convenient bere to add that such reactions and modifications, if more conspicuons in the nervous system, are of course root confined to it, but are concerned in their degree in all the processes of metabolism, being most readily traced by us in the blood.

Many other diseases formerly regarded as primarily diseases of the nervous system are not snch; but, hy means of agents either introduced into the body or modified there, establish themselves after the affinities of these in contiguous aseociated parts of the structure, as in vascular, membranous or connective clements, or again in distant and peripheral parts; the perturbaLions of nervous function being secondary and consequential. Of such are tetanus and diphtheria, now known to be due to the establishment from without of a local microbic inifection, from which focus a toxin is diffused to the nervous matter. The terrible nervous sequels of some forms of inflammation of the membranes of the brain, again, are due primarily to microbic invasion rather of the membranes than of their nervous contents; and many other diseases may he added to this list. The grave pakies in such diseases as influenza, diphtberia, beriberi, or ensuing on the absorption of lead, are in the main not central, but due to a symmetrical peripheral neuritis.

Among diseases not primarily nervous, but exhibited in certain phenomena of nervous disorder, are diseases of the blood-vessels. Much light has been thrown upon the variations of arterial and venous blood pressures by Karl Ludwig Iadtwatad (1816-1895) and his many followers: by them not Porrsang of only the diseases of the circulatory system itself are elucidated, but also those of other systems-the nervous, for instance-which depend intimately on the mechanical integrity of the circulation of the blood as well as on the chemical integrity of the blood itself. With changes of the pressures of the blood in arteries, veins or capillaries, and in the heart itself and its respective chambers, static changes are apt to follow in theseparts; such as degeneration of the coats of the arteries, due cither to the silent tooth of time, to persistent high blood pressures, or to the action of poisons such as lead or syphilis. Syphilitic lesion of the arteries, and likewise of other fibrous tissues, often involves grave consequential damage to nervous structures fed or supported by such parts. Some of the most successful of the advanoes of medicine as a healing art have followed the detection of syphilitic disease of the vessels, or of the supporting tissues of nervous centres and of the peripheral nerves; so that, by specific medication, the treatment of paralytic, convulsive, and ot her terrible manifestations of nervous disease tbus secondarily induced is now undertaken in early stages with definite prospect of cure.

Not of leas importance in this respect, and in other disorders many of them of grave incidence, is the knowledge of the phenomena of ambolism and of thromhosis, also gained during the latter half of the 19th century-W. S. Kirkes (1823-1864), R. Virchow. By embolism is meant the more or lest sudden stoppage of a vessel by a plug of solid matter carried thither by the current of the blood; be it a little clot from the heart or, what is far more pernicious, an infective fragment from some focus of infection in the body, by which messengers new foci of infection may be scattered about the body. Thrombosis is an accident
of not dissimilar character, whereby a ressel is blocked not by a travelling particle, but by a dotting of the blood in sits, probably on the occasion of some harm to the epithelial lining of the vessel. Such injuries are apt to occur in syphilitic endarteritis, or senile arterial decay, whereby an artery may be blocked permanently, as if with an embolus, and the area supplied by it, in so far as it was dependent upon this vessel, deprived of nutrition. These events, although far more mischievous in the brain, the functions of which are far-reaching, and the collateral circulation of which is ill-provided, are seen very commonly in other parts.
It is in the structure of the brain itself that modern rescarch has attained the most remarkable success. In 186 I an alleged " centre" of speech was detected, by a combination of clinical and pathological researches, by Paul Broca (1824-1880). By these means also, in the hands of Hughlings-Jackson, and more conclusively hy experimental research initiated by G. T. Fritsch (b. 1838) and T. E. Hitrig (b. 1838), but pursued independently and far more systematically and thoroughly by David Ferrier (b. 1843) and his disciples, it was proved that the cerebrum is occupied by many such centres or exchanges, which preside over the formulation of sensations into purposive groups of motions-kinaesthesis of H. Chariton Bastian (b. 1837). The results of these experimental researches by many inquirers into the constitution of the hrain have transformed our conceptions of cerebral physiology, and thrown a flood of light on the diseases of the brain. Not only so, but this mapping of the brain in areas of function now often enables the clinical physician to determine the position of disease; in a certain few cases of tumour or abscess, so precisely that he may be enabled to open the skull above the part affected and to extirpate it-operations which are surely a triumph of science and technical skill (Lister, W. MacEwen, V. Horsley).
The remarkable discovery of the dual nature of the nervous system, of ita duplex development as a lower and upper system of "neurons," has shed much light upon the problems of practical medicine, but this construction is described under Brain; Neuropathology; Muscle and Nerve, \&c.
In mendal diseases little of first-rate importance has been done. Tbe chief work has been the detection of chronic changes in the cortex of the brain, by staining and other histological methods, in degenerative affections of this organ-Theodor Meynert ($1833-1892$), W. Griesinger (1817-1868), Bevan Lewis-and in the separation from insanity due to primary disease or defect of nerve elements of such diseases as general paralysis of the insane, which probably arise, as we have said, by the action of poisons on contiguous structures-such as blood-vessels and connective elements-and invade the nervous matter secondarily. Some infections, however, seem to attack the mental fahric directly; intrinsic toxic processes which' may be suspected on the detection of neurin and cbolin in the fluids of the brain (F. W. Mott). Truer conceptions of normal psychology have transformed for us those of the morbid-P. Pinel (1745-1826), Griesinger, Henry Maudsley (b. 1835), Mercier, Kräpelin, Rivers -and indicated more truly the relations of sanity to insanity. In the treatment of insanity little has been done but to complete the non-restraint system which in principle belongs to the earlier pert of the igth century (Pinel, Tuke, R. G. Hill, J. Conolly). An enormous accumalation of lunatics of all sorts and degrees seems to have paralysed public authorities, who, at vast expense in buildings, mass them more or less indiscriminately in barracks, and expect that their sundry and difficult disorders can be properly studied and treated by a medical saperintendent charged witb the whole domestic establishment, with a few young assistants under him. The life of these insane patients is as bright, and the treatment as humane, as a barrack life can be; but of science, whether in pethology or medicine, there can be littie. A considerahle step in advance is the establishment by the London County Council of a central laboratory for its asylume, witb an eminent pathologist at its bead: from this laboratory valaahle reports are in course of issue. Provision for the reception and treatment of insanity in its earliest and more curable stages can scarcely be said to exist. Sufferers from
mental disease are still regarded too much as troublesome persons to be hidden away in humane keeping, rather than as cases of manifold and obscure disease, to be studied and treated by the undivided attention of physicians of the highest skill. The care and education of idiots, initiated by Guggenbuhl and others, is mating way in England, and if as yet insufficient, is good of ita kind.
By the genius of Rene Theophile Laennec (1781-1826), diseases of the lwngs and heart were laid on a foundation so broad that his successors have been occupied in detail and refinement rather than in reconstruction. In heart disease the chief work of the latter half of the 19th century was, in the first quarter, such clinical work as that of William Stokes and Peter Mere Latham ($1789-1875$); and in the second quarter the fuller comprehension of the vascular system, central and peripheral, with its cycles and variations of blood pressure, venous and arterial. Moreover, the int ricacies of structure and function within the heart itself have been more fully discriminated (W. H. Gaskell, Aschofi, A. Keith, Wenkebach, J. Mackenzie). By the greater thoroughness of our knowledge of the physics of the circulation-Etieane Marey (b. 1830), Karl Ludwig (1816-1895), Leonard Hill-we have attiked to a better conception of such events as arterial discase, apoplexy, "shock," and so forth; and pharmacologists bave defined more precisely the virtucs of curative drugs. To the discovery of the parts played in disease by thrombosis and embolism we have referred above. With this broader and more accurate knowledge of the conditions of the health of the circulation a corresponding efficiebcy has been gained in the manipulation of certain remedies and new methods of treatment of heart diseases, especially by baths and exerciscs.

As regards pulmonary disease, pneumonia has passed more and more definitely into the category of the infections: the modes of invasion of the lungs and pleura by tuberculosis has been more and more accurately followed; and the treatment of these diseases, in the spheres both of prevention and of cure, has undergone a radical change. Instead of the close protection from the outer air, the respirators, and the fancy diets of our fathers, the modern poilrinaire camps out in the open air in all weathers, is fed with solid food, and in his exercise and otherwise is ruled with minute particularity according to the indications of the clinical thermometer and other symptoms. The almost reckless reliance on climate, which, at Davos for instance, marked the transition from the older to the modern methods, has of late been sobered, and supplemented by more systematic attention to all that concerns the mode of life of the invalid. The result is tbat, both in physicians and in the public, a more hopeful attitude in respect of the cure of phthisis has led to a more earnest grappling with the infection in its earliest stages and in every phase, with a correspondingly large improvement in prevention and treatment. Indeed, in such early stages, and in patients who are enabled to command the means of an expensive method of cure, phthisis is no longer regarded as desperate; while steps are being taken to provide for those wbo of their own means are unable to obtain these advantages, by tbe erection of special sanatoriums on a more or less charitable basis. Perbaps no advance in medicine has done so much as the study of tuberculosis to educate the public in the methods and value of research in medical subjects, for the results, and even the methods, of such labours have been brought home not only to patients and their friends, but also to the farmer, the dairyman, the butcher, the public carrier, and, indeed, to every home in the land.

It was in the management of pleurisies that the aid of surgical means first became eminent in inward disease. In the treatment of effusions into the pleura and, though with less advantage, of pericardial effusions, direct mechanical interference was practised by one physician and another, till these means of attaining rapid and complete cure took their places as indispensable, and were extended from thoracic diseases to those of the abdominal and other inner parts formerly beyond the reach of direct therapeutics. Lord Lister's discoveries brought these new methods to bear with a certainty and a celerity previously undreamed of; and many visceral maladies, such as visceral ulcers, disease of the pancreas,
stame of the kidney or gall-bladder, perityphlitis, ovarian dropsy, which in the earlice part of the roth century were either fatal or crippling, are now taken promply and safely in hand, and dealt with surcessfully. Even for internal cancer cure or substantial relief is not infrequently obtained. We have said that this advance is often quated, not very wisely, to signify that in modern progress "medicine" has falien behind surgery-as if the ant of the physician were not one and indivisible. That certain Fellows of the College of Physicians (especially in gynaccology) have personally taken operative procedures in hand ia some good omen that in time the unreal and mischievous schism between medicine and surgery may be bridged over.

In the department of abdominal disease progress has been made, sot onily in this enormous extension of means of cure by operative methods, but also in the verification of diagnosis. The first recognition of a disease may be at a necropsy, but then usually by irresponsible pathologists; it is another matter when the physician himself comes under rebuke for failing to seize a way to cure, while the chance remained to him, by section of the abdomen during life. The abdomen is still "full of surprises"; and the who has most experience of thil deceptive region will have least confidence in expressing positive opinions in particular cases of disease without operative mnestigation. Besides the attainments mentioned above, in respect of operative progress, many important revisions of oider rule-of-thumb knowledge have come about, and not a few other sutestantial discoveries. Among the revisions may be adduced some addition to our knowledge of dyspepsia, attained by analytic investigations into the contents of the stomach at various stages of digestion, and by examining the passage of opeque substances through the primae wice by the Rontgen rays. Thus the defects, whether of this secretion or of that, and again of motor activity, the state of the velvalar junctions, the volume of the cavities, and their position in the abdomen, may be ascertained, and dealt with as far as may be; so that, although the fuctuations of chemical digestion are still very obscure, the application of remedies after a mere traditional routine is no longer excusable. In our conceptions of the hater stages of assimilation and of excretion, with the generation of poisons (auto-intoxication) in tbe intestinal tract, there is still much obscurity and much guess-work; yet in some directions positive knowledge has been gained, partly by the physiologist, -partly by the pbysician himself. Of such are the better understanding of the functioas of the liver in normal catabolism, in the neutralization of poisons absorbed from the intestines or elsewhere, in the causation of jaundice, and in diabetes [Bernhardt Naunya (b. 1839) and F. W. Pavy]. Nor must we forget the unfolding of a new chapter of disease, in the nosology of the pancreas. In diabetes this organ seems to play a part which is not yet precisely determined; and one fell disease at least has been traced to a violent access of inflammation of this organ, caused perhaps by entry of foreign matters into its duct. The part of the pancreas in digestion also is better understood. The part of the spleen in the motley group of dyspepsias and anaemias, conspicuous as it often is, still remains very enigmatic.

The peritoneum is no longer regarded with awe as inviolable; by modern methods, if not as manageable as otber lymphatic sacs, it is at any rate accessible enough witbout considerable risk to life. Not only in its bacteriological relations are the conditions of peritonitis recognized in its various kinds, but also the state known as "sbock" turns out to be quasi-mechanical, and avoidable by measures belonging in considerable part to this category. Thus, by the avoidance botb of toxaemia and of shock, peritonitis and other dangers of the abdomen, such as strangulations or intussusceptions of the bowels, formerly desperate, can in many cases be dealt with saiely and effectively.

Our knowledge of diseases of the kidneys has made no great advance since the time of Richard Bright. In tbe sphere of physiology and in the interpretation of associated arterial diseases much obscurity still remains; as, for instance, concerning the nature of the toxic substances which produce those bilateral changes in the kidneys which we call Bright's disease, and bring about the "uraemia" whichis characteristic of it Lardaceous
disease, however, here and in other regions, now appears to be due to the specific toxins of pyogenetic micro-organisms. In stone of the kidney a great advanco hos been made in treatment by operative means, and tbe formation of these stones seems to recent observers to depend less upon constitutional bent (gout) than upon unhealthy local conditions of the passages, which in their turn again may be due to the action of microorganisms.

To Thomas Addison's descriptions of certain anaemias, and of the discase of the suprarenal capsules which bears his name, something has been added; and W. Hunter's researches on the severer anaemias are doing much to elucidate these subtle maladies. And on the influence of these inconspicuous bodies and of the pituitary body in sustaining arterial blood pressures physiologists have thrown some important light.

The secret of the terrible puerperal septicaemia was read by J. P. Semmelweiss (g.v.), wherein he proved himself to be the greatest of Lister's forerunners (see LISTER).

The diseases peculiar to women (see Gynaecolocy) have received attention from carly times, but litlle progress had bees made in their interpretation till the 19th century. In the middle part of the century, by a natural exaggeration of the importance of aewly-discovered local changes in the pelvic organs, much barm was done to women by too narrow an atten. tion to the site, characters and treatment of these; the meddlesomeness of the physician becoming in the temperament of woman a morbid obsession. To James Mat thews Duncan (1826-1890) we chicfly owe a saner and brouder comprehension of the relative importance of the local and the general conditions which enter into the causation of uterine and ovarian disordecs. In operations for diseases of the pelvis, ovarian dropsy, cancer of the uterus, and other grave diseases of the region, success has been stupendous.

In the subject of diseases of the skin much has been done, in the minuter obseryation of their forms, in the description of forms previously unrecognized, and in respect of bacterial and other causation and of treatment: The comparison of observations in various climates and peoples has had some weight; while in the better knowledge of their causes their treatment has found permanent advantage. Not oniy is the influence of bacteria in the causation of many of them newly revealed, but it is now recognized also that, even in skin diseases not initiated by microbic action, microbes play a considerable and often a determining part in their perpetuation; and that the rules of modern aseptic surgery are applicable with no little success to skin therapeutics. We have learned that "constitutional"causes play a smaller part in them than was supposed, that a large number of diseases of the skin, even if iniliated by general disorder, are or soon become local diseases, being, if not initiated by local infection get perpetuated thereby, so that, generally speaking, they are to be cured by local means.

The diseases of childres have not lacked the renewed attention, the successful investigation, and the valuable new lights which have been given to other departments of medicine. That infan+ tile paralysis is an infection, and that its unhappy sequels are now treated with more hope of restoration, has been indicated already. Infantile diarrhoea has ako been recognized as a common infection (Ballard), and the means of its avoidance and cure ascertained. The conditions of diet and digestion in children are now far better understood, and miany of their maladies, formerly regarded as organic or incomprebensible, are cured or prevented by dietetic rules. Rickets, scurvy and "marasmus " may be instanced as diet discases in children. Acute inflamma. tion of the ear, with its alarming extensions to the cerebral cavity, is now dealt with successfully by surgical means, and infected sinuses or even encephalic abscesses are reached and cleansed. The origins, kinds and processes of meningitis are more clearly distinguished, and referred each to its proper cause -for the most part bacterial.

As by the discovery of stethoscopy by Laennec a new fied of medical acience and ant was opened up, so, more recently, inventions of other new methods of investigation in modicipe
have opened to us ocher fields of little less interest and importance. Of such is the ophthalmoscope, invented by H . von Helmholtz in 185r. By the revelations of this instrument not only have the diseases of the eye been illuminated, but much light has been thrown also upon the part of the eye in more general maladies; as, for instance, in syphilis, in diabetes, in kidney diseases, and in diseases of the brainF. C. Donders (1818-1889), Alfred von Gräle (1830-1899) and others. A remarkable help to the cure of headaches and wider nervnus disorders has come out of the hetter appreciation and correction of errors of refraction in the eye. Radiography has done great things for surgery; for medicune its services are already appreciahle, and may prove mnre and more valuahle hereafter. In 1879 the use of the spectroscope in medicine was pointed gut by Dr Charles A. MacMunn (b. 1852) By E. du Bois-Reymond, Rohert Remak (1815-1865), Carlo Matteucci (i8is-1868), Guillaume Duchenne (i806-1875), the value of electricity in medicine, greater in diagnosis perhaps than in therapertics, was demonst rated. By the sphygmograph (E. J Marey, 1863) attention was drawn to the physical features of the circulatinn, to the signs nf degeneration of the arterial tree, and less definitely to the fluctuations of blood pressure; but as we have said under the consideration of diseases of the beart, the kymographs of Ludwig and his pupils brought out these fluctuations far more accurately and completely. By these, and other instruments of precision, such as the thermometer, of which we have already spoken, the eminently scientific discipline of the measurement of functional movements, so difficult in the complex science of biology, has been cultivated. By the laryngoscope, invented about 1850 by Manuel Garcia the celebrated singing master, and perfected by Johann Czermak (1828-1873) and others, the diseases of the larynx also have been brought into the general light which has been shed on all felds of disease; and many of them, previously known more or less empirically, submitted to precise definition and cure. Of such we may cite tuherculosis of the laryan, formerly as incurahle as distressing; and "adenoids "-a disease revealed by intrascopic methodswhich used grievously to thwart and stiffe the growth both of mind and body in children, are now promptly removed, to the infinite advantage of the rising generation. To the value of stains in climical diagnosis, especially in investigation of perversions of the blood in many maladies, we have already made some reference. The discovery of the Rontgen rays has also extended the physician's power of vision, as in cases of aortic aneurysm, and other thoracic diseases.

By pbotography and diagrammatic records the clinical work of hospital wards has been brought into some hetter definition, and teaching made more accurate and more impressive. The separation of the alkaloids belongs rather to the earlier part of the 19th century, but the administration of these more accurate medications by means of hypodermic injection (see Thera. peumics) belongs to the latter. The ancient practice of transfusion has been placed on a more intelligible footing, and by the method of saline injections made more manageable as a means of relief or even of cure. Finally, calculation by statistics (William Farr, Karl Pearson, and others) has been brought into line with other scientific methods: the method is a difficult one, and one full of pitfalls for the unwary, yet when by co-operation of physician and mathematician its applications have been perfected its services will appear more and more indispensable.

Among the achicvements of the medicine of the 19th century the growth of the medical press must not he forgotten. In England, hy the boldness of the Lancet (founded in 2823), the tyranoy of prescription, inveterate custom, and privilege ahused was defied and broken down; freedom of learning was regained, and promotion thrown open to the competent, independently of family, gild and professional status. For the record and diffusion of rapidly growing knowiedge, learned societies, univer. sities and laboratories, greatly increased in number and activity, lanne their transections in various fieds; and by means of year. books and central news-sheets the eccumulation of knowledge is organized and made sccemsible.

It is interesting $t n$ find that, with all this activity in the preseat reformed methods of research and verification are not confined to the wort of the passing day; in the brilliant achievements of modern research and reconstruction the maxim that "Truth is the daughter of Time" has not been forgotten. In the feld of the History of Medicine the work of scholars such as Francis Adams of Banchory (1796-1861), William A. Greenhill (18141894) and C. Creighton in England, Maximilien P. Littre (18011881) and Charles V. Daremberg (1817 -1872) in France, and Heinrich Haser (r8ri-r888) and August Hirsch, Diels, Weltmann and Julius Pagel in Germany, will prove to our children that tradition was as safe in our hands as progress itself.
(T. C. A.)

Biblooraphy.-Oster and McCrat, Moders Modicine; F. T. Roberts, The Proctice of Medicine (igog): Hermann Nothagel. Internathonale Beurdge sur innerem Medicin (1002); Ed. Brovardel, Tratte de medecine (1895-1902); T. D. Savill. Clinical Ledicine (1909): W. Osler. The Principles and Practice of Medicine (1909); Allbutt and Rolleaton, A System of Meduine (1906-191n): Sir Patrici Manson, Tropical Medxine (1007); Frederick Taylor, A I (anual of the Practice of Medicine (1908).
MEDINA JOSE TORIBIO ($8852-$), Chilean bibliographer, was born at Santiago, and was educated for the bar. His first publication, when a very young man, was a metrical translation of Longfellow's Evangeline. When twenty-two he was appointed secretary to the legation at Lima. After his return he published a history of Chilean literature (1878), and a work upon the aborignal tribes (1884). In this latter year he was appointed secretary of legation in Spain, and availed hirnself of the opportunity of examining the treasures of the old Spanish libraries. These researches, repeated on subsequent visits to Spain, and also to France and England, enriched him with a mass of historical and bibliographical material. Among his publications may be mentioned the Bibliofeca hispono-americama, a catalogue of all books and pamphlets relating to Spanish America printed in Spain; the Brblioteca hispano-chilena, similar work, commenced in 1897 ; the standard and magnificent history of printing in the La Plata countries (1892); comprehensive works on the Inquisition in Chile, Peru and the Philippines; and the standand treatise on South American medals (1899). In addition, Sefior Medina produced the fullest bibliographies yet attainable of books printed at Lima, Mexico and Manila, and a number of memoirs and other minor writingz. No other man had readered anything like the same amount of service to the literary history and bibliography of the Spanish colonies.

MEDINA, or rather Al-Medina (the city), or Medinat Rasul. Allah (the city of the apostle of God), a town of the Hejaz in A rabia, about 820 m . by rail S.S.E. of Damascus, in $25^{\circ} \mathrm{N}$., 40° E., ${ }^{1}$ the refuge of Mahomet on his emigration from Mecca, and a renowned place of Moslem pilgrimage, consecrated by the possession of his tamb. The name Medina goes back to the Koran (sur. xxxiii. 60); the nld name was Yathrib, the Lathrippa of Ptolemy and Iathrippa of Stephanus Byzantius.

Medina stands in a basin at the northern extremity of an elevated plain, on the western skirt of the mountain range which divides the Red Sea coast-lands from the central plateau of Arabia. At an hour's distance to the north it is dominated by Mourt Ohod, an outlying spur of the great mountains, the scene of the well.known battle (see Maromet), and the site of the tomb and mosque of the Prophet's uncle Hamza. To the cast the plain is bounded by a long line of bills eight or ten bours distant, over which the Nejd road runs. A number of torrent courses (of which Wadi Kanat to the north, at the foot of Mount Ohod, and W. Akik, some miles to the south, are the most important) descend from the mountains, and converge in the neighbourhood of the town to unite farther west at a place called Zaghabs, whence they descend to the sea through the " mountains of the Tehama "一the rough country between Medina and its
'This is a very rough estimate. The road from Yambo on the Red Sea. which runs somewhat north of east, is hy Burton's estimate 132 m . From Medina to Mecca by the inland or high road he makes 248 m . The usual road near the coast by Rabigh and Khuless and thence to W. Fatima cannot be very different in length. Caravass iraverse it in about ten or eleven days.
port of Yambu-under the name of W. Idam. Southwards from Medina the plain extends unbroken, but with a slight rise, as far as the eye can reach. The convergence of torrent-courses in the neighbourhood of Medina makes this one of the bestwatered spots in northern Arabia. The city lies close to one of the great volcanic centres of the penusula, which was in violent cruption as late as A.D. 1266, when the lava stream approached within an hour's distance of the walls, and dammed up W. Kanat. The result of this and older prehistoric eruptions has been to confine the underground water, so important in Arabian tillage, which can be reached at any point of the oasis by sinking deep welk. Many of the wells are brackish, and the natural fertility of the volcanic soil is in many places impaired by the salt with which it is impregnated, but the date-palm grows well everywhere, and the groves, interspersed with gardens and cornfields, which surround the city on all sides except the west, have been famous from the time of the Prophet. Thus situated, Medina was originally a city of agriculturists, not like Mecca a city of merchants; nor. apart from the indispensable trade in provisions, has it ever acquired commercial importance like that which Mecea owes to the pilgrimage. ${ }^{1}$ Landowners and cultivators are still achief element in the population of the city and suburbs. The latter, who are called Nakhawila, and more or less openly profess the Shf'aopinions, marry only among themselves. The townsmen proper, on the other hand, are a very motley race. ${ }^{2}$ New settlers remain behind with each pilgrimage; attracted by the many offices of profit connect ed with the mosque, the stipends paid by the sultan to every inhabitant, and the gains to be derived by pilgrim-cicerones (M uzatowirs) or by those who make it a business to say prayers at the Prophet's mosque for persons who send a fee from a distance, as well as the alms which the citizens are accustomed to collect when they go abroad, especially in Turkey. The population of the city and suburbs may be from 16,000 to 20,000 .

The city proper is surrounded by a solid stone wall,' with towers and four massive gateways of good architecture. forming an irregular oval running to a kind of angle at the north-west, where stands the castle, held by a Turkish garrison. The houses are good stone buildings similar in style to those of Mecca; the streets are narrow but clean, and in part paved.' There is a copious supply of water conducted from a tepid source (ezZarkx) at the village of Kuba, 2 m . south, and distributed in underground cisterns in each quarter.' The glory of Medina, and the only important building, is the mosque of the Prophet, in the eastern part of the city, a spacious enclosed court between 400 and 500 ft . in length from north to south, and two-thirds as much in breadth. The minarets and the lofty dome above the sacred graves are imposing features; but the circuit is hemmed in by houses or narrow lanes, and is not remarkable except for the principal gate (Bab al-Salam) at the southern end of the west front, facing the sacred graves, which is richly inlaid with marbles and fine tiles, and adorned with golden inscriptions. This gate leads into a deep portico, with ten rows of pillars, running along the southern wall. Near the farther end of the portico, but not
${ }^{1}$ The pigrimage to Medina, though bighly meritorious, is not obligatory. and it is not tied to a single season: so that there is no general concourse at one time, and no fair like that of Mecca.
${ }^{2}$ A small number of farmilies in Medina still claim to represent the ancient Ansar. the "defenders" of Mahomet; there are also soope Suddigixath claiming despent from Abu Bekr. But in fact the old population emigrated en masse after the sack of Medina by Noslim in 683 , and passed into Spain in the armies of Musa. In the 13th century one old man of the Khazraj and one old woman of the Aos tribe were all that remained of the old stock in Medina (Maqqari, i. 187: Dozy. Mws. d'Espogne, i. 111). The aristocratic lamily of the Beni Hosain, who chaim descent from the martyr of Kerbela. and so from the Prophet, have apparently a better established pedigree.
${ }^{3}$ According to Ibn Khallikan (Slane's trans iii. 927) the walls are of the 12th century, the work of Jamal ud-Din aflapebani.
-The Balat or great paved strest of Medina, a very unusual feature in an Eastern town, dates from the 1st century of Islam. (See Wastenfeld's abstract of Sambüdi, p. 115.)
${ }^{4}$ Kubl is famous as the place where the Prophet lived before be entered Medina. and the site of the first momue ia which be prayed. It lies amidst orchards in the ricbest part of the casis.
adjoining the wills, is a sort of doorless house or chamber hung with rich curtains, which is supposed to contain the graves of Mahomet, Abu Bekr and Omar. To the north of this is a smaller chamber of the same kind, draped in black, which is said to represent the tomb of Fatima. Both are enclosed with an iron railing, 80 closely interwoven with hrass wire-work that a glimpse of the so-called tombs can only be got through certain apertures, where intercessory prayer is addressed to the prophet, and pious salutations are paid to the other saints. ${ }^{\text {. }}$ The portico in front of the railing is not ineffective, at least by nightlight. It is paved with marble, and in the eastern part with mosaic, laid with rich carpets; the southern wall is clothed with marble pierced with windows of good stained glass, and the great railing has a striking aspect, but an air of tawdriness is imparted by the vulgar painting of the columns, especially in the space between the tomb and the pulpit, which has received, in accordance with a tradition of the Prophet, the name of the Garden (roudo), and is decorated with barbaric attempts to carry out this idea in colour.? The throng of visitora passing along the south wall from the Bab al-Salam to salute the tombs is separated from the Garden by an iron railing. The other three sides of the interior court have porticoes of less depth and mean aspect, with three or four rows of pillars. Within the court are the well of the Prophet, and some palm-trees said to have been planted by Fatima; this "grove" is separated from the rest of the court by a wooden partition.

The original mosque was a low building of brick, roofed with palm-branches, and much smaller than the present structure. The wooden puipit from which Mahomet preached appears to have stood on the same place with the present pulpit in the middle of the south portico. The dwelling of the Prophet and the huts of his women adjoined the mosque. Mahomet died in the hut of Ayesha and was buried where he died; Abu Bekr and Omar were afterwards buried beside bim. In a.d. 7 II the mosque, which had previously been enlarged by Omar and Othman, was entirely reconstructed on a grander scale and in Byzantine style by Greek and Coptic artificers at the command of the caliph Walid and under the direction of Omar Ibn Abd-al-Aziz The enlarged plan included the huts above named. which were pulled down. Thus the place of the Prophet's burial was brought within the mosque; but the recorded discontent of the city at this step shows that the fecling which regards the tomb as the great glory of the mosque, and the pilgrimage to it as the most meritorious that can be undertaken except that to Mecca, was still quite unknown. It is not even certain what was done at this time to mark of the graves. Ibn 'Abd Rabbih, in the beginning of the roth century ($1 / k d$, Cairo ed., iii. 366), describes the enclosure as a hexagonal wall, rising within three cubits of the ceiling of the portico, clothed in marble for more than a man's height, and above that height daubed with the unguent called kholuk. This may be supplemented from Istakhri, who calls it a lofty house without a door. That there are no gravestones or visible tombs within is certain from what is recorded of occasions when the place was opened up for repairs. Ibn Jubair (p. 193 seq.) and SamhûdI speak of a small casket adorned with silver, fixed in the eastern wall, which was supposed to be opposite the bead of the Prophet, while a silver mail in the south wall indicated the point to which the corpse faced, and from which the salutation of worshippers was to be addressed (Burton misquotes). The European fable (mentioned and refuted, e.ge in Hisloire des Arabes par l'abbe de. Marigny, t. i. p. 46, Paris, 1750) of the coffin suspended by magnets is totally unknown to Moslem tradition. The smaller chamber of Fatima is comparatively modern. In the time of Ibn Jubair and of ibn Batuta (undese

[^6]the latter, as is so often the case, is merely copying his predecessor) there was only a small marble trough north of the rauda (or grave) which " is said to be the house of Fatima or her grave, hut God only knows." It is more prohable that Fatima was buried in the BakI, where her tomb was also shown in the 12 th century (Ibn Jubair, pp. 198 seq.).
The mosque was again extended by the caliph Mahdt (a.D. 78i) and was burned down in 1256 . Of its appearance before the fire we have two authentic accounts by Ibn 'Abd Rabbih early in the toth century, and by Ibn Jubair, who visited it in 1 s84. The old mosque had a much finer and more regular appearance than the present one; the interior walls were richly adorned with marble and mosaic arabesques of trees and the like, and the outer walls with stone marquetry; the pillars of the south portico (seventeen in each row) wete in white plaster with gilt capitals, the other pillars were of marble. Ibn 'Abd Rabbih speaks of eighteen gates, of which in Ibn Jubair's time, as at present, all but four were walled up. There were then three minarets. After the fire which took place just at the time of the fall of the caliphate, the mosque long lay in a miserable condition. Its repair was chiefly due to the Egyptian sultans, especially to Kait Bey, whose restoration after a second fire in 1481 a mounted almost to a complete reconstruction. Of the old building nothing scems to have remained but some of the columns and part of the walls. The minarets have also been rebuilt and two new ones added. The great dome above the tomb, the railing round it, and the pulpit, all date from Käit Bey's restoration.

The suburbs, which occupy as much space as the city proper, and are party walled in, lie south-west of the town, from which they are separated by an open space, the halting-place of caravans. Through the suburbs runs the watercourse called Wadi Buthan, a tributary of W. Kanát, which the Yanhu' road crosses by a stone bridge. Thesuburbs are the quarter of the peasants. Thirty or forty families with their catile occupy a single courtyard (hosh), and form a kind of community often at feud with its neighbours. The several clans of Medina must have lived in much the same way at the time of the Prophet. The famous cemetery called Baki' el-Gharkad, the resting-place of a multitude of the "companions" of the Prophet, lies immediately to the west of the city. It once contained many monuments, the chief of which are described by Ibn Jubair. Burckhardt in $18: 5$ found it a mere waste, but some of the mosques have since been rebuit.

Hislory.-The story of the Amalekites in Yathrib and of their conquest by the Hebrews in the time of Moses is purely fabulous (see Nöldeke, Uber die A malckiler, 1864, p. 36). The oasis, when it first comes into the light of history, was held by Jews, among whom emigrants from Yemen afterwards setiled. From the time of the emigration of Mahomet (A.D. 622) till the Omayyads removed the seat of empire from Medina to Damascus, the town springs into historic prominence as the capital of the new power that so rapidly changed the fate of the East. Its fall was not less rapid and complete, and since the batile of Harra and the sack of the city in 683 it has never regained political importance (see Caliphate, B. \& 8 1, 2, \& \& C.). Mahomet invested the country round Medina with an inviolahle character like that of the Haram round Mecea; but this provision has never been observed with stric:ness. After the fall of the caliphs, who maintained a governor in Medina, the native amirs enjoyed a fluctuating measure of independence, interrupted by the aggressions of the sherifs of Mecca, or controlled by an intermittent Egyptian protectoratc. The Turks after the conquest of Egypt held Medina for a time with a firmer hand; but their rule gtew weak, and was almost nominal long before the Wahhebls took the city in 1804 . A Turko-Egyptian force retook it in 1852, and the Turks now maintain a pasha with a military establishment, while the cadi and chief agha of the mosque (a eunuch) are sent from Constantinople. In late years the influence of the Turkish government has been much strengthened, an important factor in its consideration being the construction of the railway from Syria to the Hejaz. Railway communication between Damascus and Medina was effected in 1908.

AUTHORInES. - Mcdina has been described from personal ohservation by Burckhards, who visited it in 1815 , and Burton, who made the pilgrimage in 1853 . Sadlier on his ju urney from Katif to Yambu (1819) was not allowed to enter the holy city. Burckhardt was prevented by ill-lealth from examining the city and country with his usual thoroughness. Litile is adderl to our information by the report of 'Abd el-Razzalq, who períormed the pilgrimage in $\mathbf{1 8 7 8}$. on a medical commission from the English government. The chief Arabic authoricy besides Ibn 'Ald Rabbih and Ibn Jubair is Samhűdi, of whose histury Wüstenfeld published an abstract in the Güttingen Abhandlunger, vol. ix. (1861). It goes down tu the end of the 15 th century. The top raphy of the country about Medina is interesting both historically and geographically; Bakri, Yequit and other Arabic geographers, spply much material on this topic. Some good information conce ning Medina is contained in the and volume of Doughty's Tra:xie in Arabta Deserta.
(W. R.S.J

MEDINA, a village of Orleans county, in nort b-west New York, U.S.A., about 40 m. N.E. of Buffalo, and on Oak Orchard Creek. Pop. (1900), 4710 . (857 foreign-born); (1905, state census), 5114 ; (1910) 5683. It is served by the New York Central \& Hudson River railroad, by the Buffalo, Lockport \& Rochester (inter. urhan) railway, and hy the Erie Canal. On Oak Orcbard Creek and near the city are electicic power plants, at the Medina Falls and at a large storage dam (60 ft . high) for water power, built in 1902. In the neighbourhood are extensive apple, peach and pear orchards; and vegetables, especially beans, are grown. There are valuable quarries of Medina sandstone, a good building., paving- and flag stone, varying in colour from light grey to brownishb red, readily shaped and split, and less likely than limestone to crack or than granite to wear slippery; it was first found at Medina in 1837 . There was a saw-mill on the creek near here in 180 s , but the place was litue settled before 1824, and its growth was due to the Erie Canal. It was incorporated in 1832.

MEDINA SIDONIA, DON ALONSO PEREZ DE GUZYIAN EL BUENO, 7 TH Duke of ($1550-1615$), the commander-in-chief of the Spanish Armada, was born on the roth of September 1550. He was the son of Don Juan Claros de Guzman, eldest son of the 6th duke, and of his wife Dofia Leonor Manrique de Zuñiga y Sotomayor. II is father died in 1555 , and Don Alonso became duke, and master of one of the greatest fortunes in Europe, on the death of his grandfather in 1539 . The family of Guzman mas originally lords of Abiados, on the southern slope of the Picos de Europs in the hill country of Leon. The name is believed to be a contraction or corruption of Gundamaris, i.e. son of Gundamar. Ar early family tradition represents them as having come from Britain, and they may bave descended from one of the Scandinavian invaders who attacked the north coast of Spain in the roth century. It is in the roth century that they first appear, and they grew great by the reconquest of the country from the Mahommedans. The branch to which the dukes of Medina Sidonia belonged was founded hy Alonso Perez de Guzman ($1256-1309$), suramed El Bueno, the good, in the sense of good at need, or stout-hearted. In 1296 he defended the town of Tarita on behalf of Sancho IV., and when the besiegers threatened to murder one of his sons whom they held as a prisoner if he did not surrender, be allowed the boy to be killed. He was rewarded by great grants of crown land. The duchy of Medina Sidonia, the oldest in Spain, was conferred by John II. in 1445 on one of his descendaits, Juan Alonzo de Guzman, count of Niebla. The addition "El Bueno" to the family name of Gusman was used by several of the house, which included many statesmen, generals and colonial viceroys.' The 7th duke wias betrothed in 1565 to Ana de Silva y Mendoza, who was then four years of age, the daughter of the prince of Eboli. In 1572 when the duchess was a little more than ten years of age, the pope granted a dispensation for the consummation of the marriage. The scandal of the time, for which there appears to be no foundation, accused Philip II. of a love intriguc with the princess of Eboli. The unvarying and unmerited favour he showed the duke has been accounted for on the ground that he

1 The tilles and grandeeship passed, in accordance with Castilizat law. by marriage of a daughter and heiresa in 1777. to the marqucan of Villairanca, and have since remained in that house.
took a paternal interest in the duchess. Don Alonso, though be bore the name of El Bueno, was a man of mean spirit. He made no serious efiort to save his mother-in-law from the persecution she suffered at the hands of Philip II. His correspondence is full of whining complaints of poverty, and appeals to the king for pecuniary lavours. In 158 I be was created a knight of the Golden Flecce, and was named captain-general of Lombardy. By pressing supplications to the king he got himself exempted on the ground of poverty and poor health. Yet when the marquess of Santa Cruz (q.v.) died, on the oth of February 1588, Philip insisted on appointing him to the command of the Armada. He was chosen even before Santa Cruz was actually dead, and was forced to go in spite of his piteous declarations that he had neither experience nor capacity, and was always sick at sea. His conduct of the Armada justified his plea. He was even accused of showing want of personal courage, and was completely broken by the sufferings of the campaign, which turned bis hair grey. The duke retained his posts of "admiral of the ocean" and captain-general of Andalusia in spite of the contempt openly expressed for him by the whole nation. When an English and Dutch amament assailed Cadiz in 1596 his sloth and timidity were largely responsible for the loss of the place. He was held up to ridicule by Cervantes in a sonnet. Yet the royal favour continued unabeted even under the successor of Philip II. In 1606 the obstinacy and folly of the duke caused the loss of a squadron which was destroyed near Gibraltar by the Dutch. He died in 1615 .
See Cesario Duro, La Armada imuincible (Madrid, 1884), which gives numerous references to authorities.
medina sidonia, or Medinasidonia, a town of southern Spain, in the province of Cadia, 21 m . by road E.S.E. of Cadiz. Pop. (1900), 11,040 . Medina Sidonia is built on an isolated hill surrounded by a cultivated plain. It contains a fine Gothic church, several convents, and the ancestral palace of the dukes of Medina Sidonin. It has a somall agricultural trade, chiefly in wheat, olives and oats.
Medina Sidonia has been identified by some with the Asido of Pliny, but this is uncertain. Under the Visigoths the place was erected into a bishopric (Assidonia), and attained some importance; in the beginning of the 8th century it was taken by Tariq. In the time of Idrisi (rith century) the province of Shodime or Shidoma included, among other towns, Seville and Carmona; later Arab geographers plece Shodina in the province of Seville.
MEDIOLANUM, or Mediolantux (mod. Milan, q.v.), an ancient city of Italy, and the most important in Gallia Transpadana. Livy attributes its foundation to the Galli Insubres under Bellovesus after their defeat of the Etruscans, in the time of the older Tarquin. According to other authorities, the Etruscan city of Melpum which preceded it was destroyed in 396 B.c. Objects of the Bronze age have been found oatside the city on the south. The name liself is Celtic. The Rormans defeated the Insubres in 225-222 B.c., and stormed Dediolanum.itseff in the latter year. Its inhabilants rebelled some twenty years later in the Hannibalic War, but were defeated and finally reduced to obedience in 196 s.c. They probably acquired Latin rights in 89 , and full civic rights in 49 B.C., as did those of the other towns of Gallia Transpadana. It appears later on (but not before the and century A.D.) to have become a colony It acquired a certain amount of literary eminence, for we hearoof youths going froma Comum to Mediolanum to stady. In Surabo's time it was on an equaliky with Verona, hut smaller than Pasavium, but in the later times of the empine its importance increased. At the end of the 3 rd century th became the seat of the governor of Aemilia and Liguria (which then included Gallia Transpadana also, thus consisting of the gth and atth regions of Augustus) and at the end of the 4 th , of the governor of Liguria only; Aemilia baving one of its own thenceforth. From Diocletian's time onwards the praefectus practorio and the imperial vicar of Italy also had their seat here: and it became one of the principal mints of the empire. The emperors of the West resided at Mediolanum durtiog the ath century, until Honorius preferred.

Ravenna, and in 402 transfecred his court there. Its importance, described in the poems of Ausonius, is demanstrated by its many inscriptions, and the interest and variety of their contents. In these the rarity of the mention of its chief magistrates is surprising: and it is not impossible that owing to its very importance the right of appointing them had been taken from it (as Mommsen thinks). The case of Ravenaa is not dissimilar. The inscriptions indicate a strong Celtic character in the population. Procopius speaks of it as the first city of the West, after Rome, and says tbat when it was captured by the Goths in 539, 300,000 of the inhabitants were killed. It was an important centre of traffic, from which roads radiated in several directions -as railways do to-day-to Comum, to the foot of the Lacus Verbanus (Lago Maggiore), to Novaria and Vercellae, to Ticinum, to Laus Pompeia and thence to Placentia and Cremona, and to Bergomum. None of these roads had an individual name, so far as we know. To its secular power corresponds the independent position which its Church took in the time of St Ambrose (q.v.), bishop of Milan in 374-397, who founded the church which bears his name, and here baptized St Augustine in a.D. 387, and whose rite is still in use throughout the diocese. Theodosius indeed did penance here at Ambrose's bidding for his slaughter of the people of Thessilonica. After his death the period of invasions begins; and Milan felt the power of the Huns under Attila (452), of the Heruli under Odoacer (476) and of the Goths under Theodoric (493). When Belisarius was sent by Justinian to recover Italy, Datius, the archbishop of Milen, joined him, and the Goths were expelled from the city. But Uraia, nephew of Vitigis the Gothic king, subsequently aseaulted and retook the town, after a brave resistance. Uraia destroyed the whole of Milan in 539; and hence it is that this city, once so important a centre of Roman civilization, possesses to few remains of antiquity. Narses, in lis campaigns against the Goths, had invited the Lombards to his aid. They came in a body under Alboin, their king, in 568, and were soon masters of north Italy. They entered Milan in the next year, bat Pavia became the Lombard capital.

Of Roman remains little is to be seen above ground, but a portico of sixteen Corinthian columns near S. Lorenzo, which may belong to the baths of Hercules, mentioned by Ausonius, or to the palace of Maximian. Close to the Torre del Carrobio remains of an ancient bridge and (possibly) of the walls of Maximian were found: and many remains of ancient buildings, including a theatre, have been discovered betow groand-level. The objects foupd are preserved in the archaeological museum in the Castello Sforzesco. (See Milan.)

See Th. Mormsen in Corp. inscrip. Latin. (Berlin, 1883). v. 617 sqq. (with full bibliography); Notisie degli Sctsi, passim.

Mediterrankar ERA. The Meditertadean is all that remains of a great ocean which at an early geological epoch, before the formation of the Atlantic, encircled ball the globe along a line of latitude. This ocean, already diminished in area, retreated after Oligocene times from the Iranian plateat, Turkestan, Asia Minor and the region of the north-west Alps. Next the plains of eastern Europe were lost, then the AraloCaspian region, southern Russia and finally the valley of the Danube. The "Mediterranean region," as a geographical unit, includes all this area; the Black Sea and the Sea of Marmora are within its submerged portion, and the climate of the whole is controlled by the oceanic influences of the Mediterranean Sea. Professor Suess, to whom the above description is due, finds that the Mediterranedn forms no exception to the rule in affording no evidence of elevation or depression within historic times; but it is noteworthy that its present basin is remarkable in Europe for its votcanic and seismic activity. Submarine earthquakes are in some parts sufficiently frequent and violent as seriously to interfere with the working of telegraph cables. Suess divides the Mediterraneen basin into four physical regions, which afford probably the best means of description : (1) The weatern Mediterranean, from Gibraltar to Malte and Sicily,
enclosed by the Apennines, the mountains of northern Africa, and of southern and south-eastern Spain (Condillize betrque). (2) The Adriatic, occupying the space between the Apennines and the Dinaric group (Suess compares the Adriatic to the valley of the Brahmaputra). (3) A part surrounded by the Iragments of the Dinaro-Taurus arch, especially by Crete and Cyprus. This includes the Aegean and the Black Sea, and its margin skirts the south coast of Asis Minor. These three parts belong strictly to Eurasia. (4) Part of the coastal region of IndoAfrica, terraced downwards in successive horizontal planes from the Shot, reaching the sea in the Little Syrte, and continuing to tbe southern depressions of Syria. Malta and Gozo are the only islands of the Mediterranean which can be associated with this section, and, per contra, the mountain chain of north-west Africa belongs to Eurasia. Murray (1888) estimates the total area of the Mediterranean at 813,000 sq. m . Karstens (1894) hreaks it up into parts as follows:-

A more recent calculation by Rrimmel gives the total area as $\mathbf{2 , 9 6 7 , 5 7 0} \mathrm{sq}$. $\mathbf{k m}$. or $1,145,830 \mathrm{sq}$. m . (See Ocean-) Murray estimates the total surface of the Mediterranean drainage area, with which must be included the Black Sea, at 2,934,500 sq. m., of which $1,420,800$ are Eurasian and $1,513,800$ are African. The principal rivers entering the Mediterranean directly are the Nile from Africa, and the Po, Rhone and Ebro from Europe.
The physical divisions of the Mediterranean given above hold grod in describing the form of the sea-bed. The western Mediterranean is cut off by a bank crossing the narrow strait between Sicily and Cape Bon, usually known as the Adventure Bank, on which the depth is nowhere 200 fathoms. The mean depth of the western basin is estimated at 88. fathoms, and the deepest sounding recorded is 2040 fathoms. In the castern Mediterranean the mean depth is nearly the same as in the western basin. The Sicilian-Ionian basin has a mean depth of 885 fathoms, and the Levant basin, 793 tathoms. Deep water is found close up to the coast of Siclly, Greece, Crete and the edge of the African plateau. The steepest slope observed occurs of the ialasd of Sapienza, near Navarino, where 1730 fathoms has been obtained only 10 miles from land. In 1897 the ship "Washington" obtained depths of 2220 fathoms in the middle of the eastern Mediterranean; and the Austrian expeditions in the "Pola" discovered in the " Pola Deep " ($35^{\circ} 44^{\prime} \mathrm{N} ., 11^{\circ} 45^{\prime}$ E.), south-west of Cape Matapan, a maximum depth of 2046 fisthoms. Between these two deep areas a ridge runs in a Dorth-westerly direction 550 fathoms from the surface-possibly a projection from the African plateau. Another bank 1100 fathoms Irom the surface rans south from the east end of Crete, separating the Pola Deep from the depths of the Levant hasin, in which a depth of tgof fathoms was recorded near Makri on the cosst of Asia Minor. The later expedition of the "Pola" discovered the "Rhodes Deep " ($36^{\circ} 5{ }^{\circ} \mathrm{N} ., 28^{\circ} 36^{\prime}$ E.), with a maximum depth of 2110 fachoms: this deep is closed to the south-east by a ridge running south-cast, over which the depth is soso fathoms. Oft the coast of Syria the "Pola "obtained four soundings of more thap 1100 fathoms, and between Cyprus and the coast of Asia Minor only two over 550 fathoms. Murray gives the following figures for the areas and volumes of the Mediterrabean at different depths:-

which gives a mean depth over all of 768 fathoms. The following table is due to Karstens:-

Krammel gives the total volume of the basin as $\mathbf{4 , 2 4 9 , 0 2 0}$ cubic kilometres or $1,019,400$ cubic statute miles, and the mean depth as 782 fathoms. (See Ocean.)

Metcorology.-As already stated, the "Mediterra'nean region" forms a distinct climatic unit, chiefly due to the form and position of the Mediterrancan Sea. The prevailing winds in this region. which the sea traverses longitudinally, are westerly, but the sea itself causes the formation of bands of low barometric pressure during the winter season, within whick cyclonic disturbances frequently develop, while in summer the region comes under the infuence of the polar margin of the tropical high pressure belt. Hence the Mediterranean region is charaseristically one of winter rains, the distinctive feature becoming liss sharply defined from south to north, and the amount of cotal sunual fal! increasing in the same direction. The climate becomes nore continental in type from west to cast, but there are great lons 1 irregularities-the efevated plateaus of Algeria and Spain cause is rise of pressure in wi-ter and dclay the raing scasons; the rains st in eatlier in the west than in the east, and the total fall is greater. Temperature varies greatly, the annual mean varying from $56^{\circ} \mathrm{F} . t 077^{\circ} \mathrm{F}$. In the west the Atlantic influence limits the meas annual range to about $10^{\circ}-12^{\circ}$ F., but in the east this increas to 36° and even 40°. Auturn is warmer than spring, especial! |t in the coastal regions. and this is exaggerated in the eastern w on by local land winds, which replace the cool sea-breczes of sumiter: overcoats are ordinarily worn in Spain and Italy till July, and are then put aside till October. Local winds form an importatit feature in nearly all the coast climates of the Mediterranean, , "pecially in wimter, where they are primarily caused by the rapil change of temperature from the sea to the snow-clad hinterlands. Cold dry minds, often of great violence, orcur in the Rhone vally. (the Mistral), in Istria, and Dalmatia (the Bora), and in the wester Caucasus. In summer a north-west "trade" wind, the Maestro, occurs in the Adriatic. The Sirocco is a cyclonic wind characterstic of the winter raiay season; in the Adriatic it is usually accemparied by cloud and moisture, often by rain. In Sicily and suethern Italy the Sirocco occurs at all seasons: it is a dry, dusty wind from southeest or south-west. The dust is chicly of local drigin, but pertly comes from the Sahara. Similar winds are met with in Spain (the Levecbe), but they reach their greate3t development it the Simooms of Algeria and Syria, and the Khamsin of Egypt.
Temperature.-The mean surface tempuature of the waters of the Mediterrancan f 31 ll from south cast, where it is over $70^{\circ} \mathrm{F}$., to north-west, the average at the coast of the Guif of Lyons being 60°. The isothermal of 65° runs from Gibraltar o the north of Sardinia. and thence by the Strait of Messina to the Gulf of Corinth. A similar distribution is found 100 fathoms from the surface, temperature falling from 60° in the Levant to 55° east of Gibraltar. At 200 fathoms temperature falls in the satio way from 58° to 55°. but below 250 (athoms temperatures are actically uniform to the bottom, $55-5^{\circ}$ in the western basin and 5° in the eastern. The bottom temperature observed in the Polal ieep was 56.3°.
Salinity-I In the extreme west the salivity of the surface water is about 36.3 per milie, and it increases intwards to 37.6 east of Sardinia and $39 \cdot 0$ and upwards in the l vant. Observations of salinity in the depths of the western Meditet anean are very deficient. but the average is probably between 38.0 d 38.5 . In the eastern basin the "Pola" expedition observed salini ies of 38.7 to 30.0 to the ens1 of a line joining Cape Matapan with Nexandria, and 38-2 to 38.7 to the west of it. The salter waters $~$ pparently tend to make their way westwards close to the African cust, and at the bottom the highest salinities have been observed uth of Crete. Evnitzki states that the saltest water of the whole bhin occurs in the Acgean Sea.

Circulation.-There is little definite circulation of water within the Mediterrancan itself. In the straits jo. ing it with the Aclantic and the Black Sea the fresher surface witers of these seas flow inwards to assist in making good the loss dy evaporation at the surface of the Mediterrancar, and in both nses dence water makes its way outwards along the bottom of the hannels, the outfowing currents being less in volume and delithry than the inflowing. Elsewhere local surface currents are deveioped, either drifur dae to the direct aetion of the winds, or striums produced by wind action heaping water up against the land; th these nowhere rise to the dignity of a distinct current system. Hhougb they are often sufficient io obliterate the feeble ridal act in characteristic of the Mediterranean. Dr Natterer, the chemist nt the "Pola "expeditione. has expressed the opinion that the poveri: of the pelagic faume is solcly due to the want of circulation in the depthe

Deposisis.-A great pert of the bottom of tbe Mediterranean is covered with blue muds, frequently with a yellow upper layer containing a considerable proportion of carbonate of lime, chiefly shells of pelagic Foraminifera. In many parts, particularly in the eastern basin. a calcareous or siliceous crust, from half an inch to three inchea in thickness, is met with; and Natterer suggested that the formation of this crust may be due to the production of carbonate of ammonium where deposits containing organic matter are undergoing oxidation, and the consequent precipitation of carbonate of hme and other substances from the waters nearer the surface. This view, however, has not met with general acceptance.
(H. N. D.)

MeDIDI, primarily a person through whom, as an intermediate, communication is deemed to be carried on between living men and spirits of the departed, according to the spiritistic hypothesis; such a person is better termed sensitive or automatist. The phenomena of mediumship fall into two classes, (1) "physical phenomena " (q.v.) and (2) trance and automatic phenomena (utterances, script, \&c.); both these may be manifested by the same person, as in the case of D. D. Home and Stainton Moses, but are often independent.
I. No sufficient mass of observations is to hand to enable us to distinguish between the results of trickery or hallucination on the one hand, and genuine supernormal phenomena on the other; but the evidence for raps and lights is good; competent observers have witnessed supposed materializations and there is respectable evidence for movements of ohjects.
Mediumship in the modern sense of the term may be said to have originated with the Rochester rappings of 1848 (sce Spieitualism); but simitar phenomena had been reported by such authors as Apollonius of Tyana; they figure frequently in the lives of the saints; and the magician in the lower stages of culture is in many respects a counterpart of the white medium. Among physical mediums who have attained celebrity may be mentioned D. D. Home (q.v.), Stainton Moses and Eusapia Palledino; the last has admittedly been fraudulent at times, but no deceit was ever proved of Home; Stainton Moses sat in a private circle and no suspicion of his good faith was ever aroused.
W. Stainton Moses (1839-1892) was a man of university education, a clergyman and a schoolmaster. In 1872 he became interested in spiritualism and soon began to manifest mediumistic phenomena, which continued for some ten years. These included, besides trance communications, raps, telekinesis, levitation, production of lights, perfumes and musical sounds, apports and materialized hands. But the conditions under which the experiments were tried were not sufficiently rigid to exclude the possibility of normal causes being at work; for no amount of evidence that the normal life is marked by no lapse from rectitude affords a presumption that uprightness will characterize states of sccondary personality.
Eusapia Palladino has been observed by Sir O. Lodge, Profeasor Richet, F. W. H. Myers, and other eminent investigators; the first named reported that norte of the phenomena in his presence went beyond what could be accomplished in a normal manner by a frec and uncontrolled person; but he was convinced that movements were produced without apparent contact. Among other phenomena asserted to characterize the mediumship of Eusapia are the production of temporary prolongations from the medium's body; these have been seen in a good light by competent witnesses. It was shown in some sittings held at Cambridge in $\mathbf{i} 895$ that Eusapia produced phenomena hy fraudulent means: but though the evidence of this is conclusive it has not been shown that her mediumship is entirely fraudulent. Automatic records of seances can alone solve the problems raised by physical mediumship. It has been shown in the DaveyHodgson experiments that continuous observation, even for a short period, is impossible, and that in the process of recording the observations many omissions and errors are inevitable. Even were It otherwise, no care could provide against the possibility of hallucination.
II. The genuineness of trance mediumship can no longer be called in question. The problem for solution is the source of the information. The best observed case is that of Mrs Piper of Boston; at the outset of ber career, in 1884, she did not difier
from the ordinary American trance medium. In 1885 the attention of Professor William James of Harvard was attracted to her; and for twenty years she remained under the supervision of the Society for Psychical Research. During that period three phases may be distinguished: (1) 1884-1891, trance utterances of 2 "control " calling himself Dr Phinuit, a French physician, of whose existence in the body no trace can be found; (2) 1892-1896, automatic writing by a " control " known as "George Pelham," the pseudonym of a young American author; (3) 1896 onwards, supervision by "controls" purporting to be identical with those associated with Stainton Moses. There is no evidence for regarding Mrs Piper as anything bat absolutely honest. Much of the Piper material remains unpublished, partly on account of its intimate character. Many of those to whom the communications were made have been convinced that the "controls" are none other than discarnate spirits. Probably no absolute proof of identity can be given, though the reading of sealed letters would come near it; these have been left by more than one prominent psychical researcher, but so far the "controls" who claim to be the writers of them have failed to give their contents, even approximat ely.

Professor Flournoy has investigated a medium of very differont type, known as Hélène Smith; against her good faith nothing can be urged, hut her phenomena-trance utterance and glosso-lalia-have undoabtedly been produced by her own mind. These represent her to be the reincarnation of a Hindu princess, and of Marie Antoinctte among others, but no evidence of identity has been produced. The most striking phenomenon of her trance was the so-called Martian language, eventually shown by analysis to be a derivative of French, comparable to the languages invented by children in the nursery, but more elaborate.
Aut horities.-F. W. H. Myers, Haman Personality; F. Podmore, Modern Spirisualism; the Proctedjags and Journal of the Society for Psychical Rescarch, passim; for a convenient survey of the Piper case, see F. Sage, Mfadame Piper; J. Maxwell, Les Phbnomènes psychiques (t903; Eng. trans. 1905); Th. Flournoy, Des Indes a la plandte Mars. For raudulent methods, see Confessions of a Medium (London. ${ }^{1882 \text {): Truesdell, Bottom Facts of Spiriualism, }}$ and works cited by Myers, 11., 502-503.
(N. W. T.)

MRDIIDIE, or Mejore, the name of a military and knightly order of the Turkish Empire, and also of a silver Turkish coin, worth twenty piastres. The coin was first struck in 1844 , and the onder was instituted in 1852 by the sultan Abd-ul-Mejid, whose name was therefore given to them. (See Knigitiono and Chivalzy: $£$ Orders of Knighthood.)

MEDLAR, Mespilus germanica, a tree of the tribe Pomeae of the order Rosacsae, closely allied to the genus Pyrus, in which it is sometimes included; it is a native of European woods, \&c., from Holland southwards, and of western Asia. It occurs in hedges, \&c., in middle and south England, as a small, muchbranched, deciduous, spinous tree, but is not indigenous. The mediar was well known to the ancients. Pickering (Chron. Hist. $P l$. p. 201) identifies it with a tree mentioned in a Siao-ya ode (Ske-King, ii. 1, 2), 827 B.c. It is the $\mu \varepsilon \sigma \pi \lambda_{\eta} \eta$ of Theophrastus and Mespilus of Pliny. The Latin mespilus or mespilum became ia Old French mesie or medle, "the fruit," meslier, medier, "the tree." The modern French neffe is from a corruption nespilum of the Latin. The German Mispel preserves tbe original moreclosely. The well-known fruit is globular, but depressed above, with leafy persistent sepals, and contains stones of a hemispherical shape. It is not fit to eat until it begins to decay and becomes "bletted," when it has an agreeable acid and somewhat astringent flavour. Several varieties are known in cultivation. . The large Dutch medlar, which is very widely cultivated, has a naturally crooked growth; the large, much-fiattened fruit is inferior in quality to the Notlingham, which is a tree of upright hahit with fruits of about I in, diameter, superior to any ot her variety. There is also a stoneless variety with still smaller fruits, but the quality is not so good.

The mediar is propagated by budding or grafting upon the white-thors, which is most suitable if the soil is dry and sandy, or on the quince if the soil is moist; the pear stock also succeeds
well on ordinary soils. It produces the best fruit in rich, loamy, somewhat moist ground. The tree may be grown as a standard, and chiefly requires pruning to prevent the branches from rubbing each other. The fruit should be gathered in November, on a dry day, and laid out upon shelves. It becomes "bletted" and fit for use in two or three weeks. The Japanese medlar is Eriobotrya japonica (see Loquat), a genus of the same tribe of Rosaceac.

Ḿ́dDOC, a district in France adjoining the left bank of the Gironde from Blanquefort (N, of Bordeaux) to the mouth of the Gironde. Its length is about 50 m ., its breadth averages between 6 and 7 m . It is formed by a number of low hills, which separate the Landes from the Gironde, and is traversed only by small strearns; the Gironde itself is muddy, and often enveloped in log, and the region as a whole is far from picturesque. Large areas of its soil are occupied by vineyards, the products of which form the finest growths of Bordeaux. (Sce Wine.)

MEDUSA, the name given by zoologists to the familiar marine animals known popularly as jelly-fishes; or, to be more accurate, to those jelly-fishes' in which the form of the body resembles that of an umbrella, bell or parachute. The name medusa is suggested by the tentacles, usually long and often numerous, implanted on the edge of the umbrella and bear the stinging organs of which sea-bathers are often disagreeably aware. The tentacles serve for the capture of prey and are very contractile, being often protruded to a great length or, on the other hand, retracted and forming corkscrew-like curls. Hence the animals have suggested to vivid imaginations the head of the fabled Gorgon or Medusa with her chevelure of writhing snakes.

The medusa occurs as one type of individual in the class Hydrozoa (q.p.), the other type being the polyp (q.r.). In a typical medusa we can distinguish the following parts. The u mbrella-ike body bears a circle of tentacles at the edge, whereby the body can be divided into a convex exumbrella or exumbral surface and a concave subumbrclla or subambral surface. The vast majority of jelly-fish float in the sea, with the cxumbrella upwards, the subumbrella downwards. A few species, however, attach themselves temporarily or permanently to some firm object by the exumbral surface of the body, and then the subumbral surface is directed upwards. From the centre of the subumbral surface hangs down the manubrium, like the handle of an umbrella or the clapper of a bell, bearing the mouth at its extremity. In addition to the tentacles, the margin of the umbrella bears sense-organs, which may be of several kinds and may altain a high degree of complexity.

Medusae capture their prey, consisting of small organisms of various kinds, especially Crustacea, by means of the entacles which hang out like fishing-lines in all directions. When the prey comes into contact with the tentacles it is paralysed, and at the same time held firmly, by the barbed threads shot out from the stinging organs or nematocysts. Then by contraction of the tentacles the prey is drawn into the mouth. Medusae thus lorm an important constituent of the plankton or floating Cauna of the ocean, and compete with fish and other animals for the food-supply furnished by minuter forms of life.

A medusa has a layer of muscles, more or less strongly developed, running in a circular direction on the surface of the subumhrella, the contractions of which are antagonized by the elasticity of the gelatinous substance of tbe body. By the contraction of the subumbral circular muscles the concavity of the subumbrella is increased, and as water is therehy forced out of the subumbral cavity the animal is jerked upwards. In this way jelly-fish progress feehly by the pumping movements of the umbrella. Besides the circular subumbral muscles, there may be ot hers running in a radia! direction, chiefly developed as the longitudinal retractor muscles of the manuhrium. In some cases the circular subumbral muscles form a rim known as the velum (0. , see fig. 1). projecting into the subumbral cavity just within the ring of marginal tentacles. The two principal
${ }^{2}$ The gooxeberry-like or band-shaped jelly-fishes belong to the clase Ctenophora (g.v.).
divisions of the medusae are characterized by the presence or absence of a velum.

Correlated with the well-developed muscular system and sense-organs of the medusa, we find also a distinct nervous system, either, when there is no velum, in the form of concentrations of nervous matter in the vicinity of each scise-organ, or, when a velum is present, as two continuous rings running round the margin of the umbrella, one external to the velum (exumbral nerve-ring, $n \cdot r$, see fig. 1), the other internal to it (subumbral nerve-ring, n. r^{2}.). The exumbral nerve-ring is the larger and supplies the tentacies; the subumbral ring supplies the velum.

Every possible variety of body-form compatible with the foregoing description may be exhibited by different species of medusac. The body may show modifcations of form which can be compared to a shallow saucer, a cup, a bell or a thimble. The marginal tentacles may be very numerous or may be few in number or even absent altopether; and they may be simple filaments, or branched in a complicated manner. The manubrium may be excessively long or very short, and in rare cases absent. the mouth then being fush with the subumbral surface. The mouth may be circular or four-cornered, and in the latter case the manubrium at the angles of the mouth may become drawn out into four lappers, the oral arms, each with a groove on its inner side continuous with the corner

Fic. 1.
Diagram of the structure of a medusa: the ectoderm is left clear, the endoderm is dotted, the mesogloea is shaded black; $a-b$, principal axis (sce Hydrozoa); to the left of this line the section is supposed to pass through an inter-radius (I.R.); to the right through a radius (R). The exumbral surface is uppernost. the subumbral surface, with the manubrium and moutb, is facing downwards.
Sl. Stomach.
r.c. Radial canal.
c.c. Circular or ring-canal.
e.l. Endoderm-lameila.
G.r. ${ }_{\text {I }}^{\text {Gonads. }}$ Exumbral (so-calied
n.r. ${ }^{2}$ Subperral nerve-ring. (so-called lower) nerve-ring. lowcr) nery
HyDROZOA.
of the mouth. The oral arms are the starting-point of a fursher series of variations; they may be simple flaps, crinkled and colded in various ways, or they may be subdivided, and then the branches may simulate tentacies in appcarance. In the genus Rhizostoma, common on the British coasts and conspicuous on account of its large size, the oral arms, originally distinet and four in number, undergo concrescence, so that the entrance to the mouth is reduced to numerous fine pores and canals.?
Like the external structure, the internal anatomy of the medusa shows a complete radial symmetry, and is simple in plan but often complicated in detail (sce fig. 1). As in all Hydrozoa (9.v.) the body wall is composed of two celi-layers, the ectoderm and endoderm. between which is a structureless gelatinous secreted layer, the mesogloea. As the name jelly-fish implies, the mesogloen is greatiy developed and abundane in quantity. It may be traversed by proceses of the cells of the ectoderm and endoderm, or it may contain cells which have migrated into it from these two layers. The ectoderm covers the whole external surface of the animal, while the endoderm lines the coelenteron or gastrovascular space: the two layers meet each other, and become continuous, at the edge of the mouth.
The mouth leads at once into the true digestive cavity, divicible into an oesophageal region in the manubrium and a more dilated cavity, the stomach (st.), occupying the centre of the umbrella. From the stomach, canals arise sermed the radial canala (r.e.): typically four in number, they run in a radial direction to the edge
${ }^{2}$ For other variations of the medusa. of ten of importance for systematic classification, see Hypzonedusaz and Scy promedusak
of the umbrelle. There the radiel canals ape joined by a ringcanal (c.c.) which runs round the margin of the umbreila. From the ring-canal are given off tentacle-canals which run down the aris of each tentacle; in many cases, however, the cavity of the tentacle is obliterated and instead of a canal the tentacle contains a solid core of endoderm. Oesophagus, stomach. radial canals, ring-canal and tentacle-canals, constitute together the gastrovascular system and are lined throughout by endoderm, which forms also fat sheet of cells connecting the radial canals and ring canal together like a weh; this is the so-called endoderm-Lomells (L_{1}), a most important feat ure of medusin morpbology. the nature of thich will be apparent when the development is deacribed. As a gencral rule the mouth is the only aperture of the gastrovascular system: in a lew cases, however, excretory pores are found on the ring-canal, but there is never any anal opening.

The seate-organs of medusae are of two classes: (1) pigment spots, sensitive to light, termed acelli, which may become elaborated into eye-Jike structures with lens, retina and vitreous body; (2) organs of the sense of balance or orientation, commonly termed odocysts or slatocysts. The sense-organs are always situated at the margin of the uabrella and may be distinguished from the morphological point of view into two categories, according as they are; or are not, derived from modifications of tentacles; in the former case they are termed teniaculacysts. (For fuller information upon the cense-organs see Hypronedusaz.)

Meduane are nearly always of separate ecxes, and instances of hermaphroditism are rare. The gonads or generative organa ray be produced either in the ectoderm or the cadoderm. When the gomads are endodermal, they are formed on the floor of the stomach; when ectodermal (G. see fig. 1), they are formed on the subumbral surface, either on the manubrium or under the stomach or under the radial canals. or in more than one of these regions. Medusae often have the power of budding, and the buds are formed either on the manpbrium, or at the margin of the umbreila, or on an outgrowth or "stolon" produced from the exumbral surface.

The internal anatomy of the medusa is as variable as its external features. The mouth may lead dircetly into the stomach, without any oesophagus. The stomach may be situated in the disk, or may be drawn out into the base of the manuhrium, so that the dist is oceupied onty by the radial canals. On the other hand the stomach may have lobes extending to the ring-canal, 60 that radial canals may be very short or abscnt. The radlal canals may be foor, rarely six, or a multiple of thesc numbers, and may be very nomerous. They may be simple or branched. (For other anatomical variations see Hypromedusag and Scyphomedusae.)

In development the medusa can be derived easily by a process of differenial growth, combined with concrescence of cell-layers, from the actinula-larva. (For figures see Hyprozon.) The actinula is polyp-like, with a sack-like or rounded body; a crown of tentacles surrounds a wide peristome, in the centre of which is the mouth, undally raised on a conical process termed the hypostome. To produce a medum the actinula grows greatly along a plane at right angles to the vertical axis of the body, whereby the aboral surface of the actinula becomes the exumbrella, and the peristome becomes the subumbrella. The crown of tentacles thus comes to form a fringe to the margin of the body, and the hypostome becomes the manubrium. As a result of this change of form the gastric cavity or cockenteron becomes of compresecd lenticular form, and the endoderm lining it can be distinguished as an upper or exumbral layer and a lower or subumbral loyer. The nexe event is a great growth in thickness of the gelatinots mesogloca, especially on the cxumbral side; as a result the flattened coelenteron is still further coapresoed to that in cortain spols its cavity is obliterated, and its exumbral and subumbral layers of endoderm come into contact and undergo concrescence. As a rule four such areas of concrescence or cathommata (E. Hacckel) are formed. The cathammal areas may remain very small. mere wedge-shaped partitions dividing up the coeleateron in to a four-lobed stormach, the lobes of which comanunicate at the periphery of the body by a spacious ring-canal. More usually each cathamma is a wide triangular arca, reducing the peripheral portion of the coelenteron to the four narrow modial canals and the ring-canal above described. The two apposed layers of endoderm in the cathammal area undergo complete tusion to form a single layer of epitheliam, the endoderm-lamella of the adult medusa.

Medusac, when they reproduce themselves by budding, always produce medusae. but when they reproduce by the sexual method the embryos produced from the efg grow into medusae in some cases, in other cases into polyps which hud medusae in their turn. la this way coinplicated cycles of altcrnating gencrations arise, which are described fully in IIYDROMEDUSAE and SCvPIIOMEDUSAE.
Medusae are exclusively aquatic animals and for the most part amarine. but at least two fresh-water species are known. Limnocodines soteriby was first dizcovered swimming in the tank in which the water-lily. Vicloria rcgic, is cultivated in Kew Gardens, and
${ }^{2}$ C. L. Boulenger (Proc. Zool. Soc. of London, 1907, P. 516) recorded the discovery of a third epccies by himsclf and iV. A. Cunnington, in the brackish water of bake Birket el Kerun in the Egyptian Fayum.
has since been found eporadically is saminer situation in other botanical gardens, its most recent appearance being at Lille. These jelly-fishcs are probably budded from a minute polyp-stock introduced with the roots of the lily. Another fresh-water form is Limmocnida tamganyicas, discovered first in lake Tanganyika. and now known to occur also in the Victoria Nyana eod in the Niger. A medusa with a remarkable habit of life is Minestra parasiles, which is parasitic on the pelagic mollusc Phyllirrhoe, attaching itsclif to the host hy its subumbral surface; its tentacles, no longer required for obtaining lood, have become rudimentary. A parasitic mode of We is also seen in medusae of the genus Cmrina during the larval condition, but the habit is abandoned, in this case, when the medusae become adult.
For figures of medusae ace (1) E. Haeckel. "Das System der Medusen," Denkschrifter med-natroiss. Ges. Jena (1879, 2 vols.); (2) Id., "Deep-Sea Medume," Challenger Reports, Zoology, IV. pt. ii. (1882): (3) O. Maas " "Die craspedoten Medusen," "Ergebn. Planktom-Expedilion, II. (18g3); (4) id.." Die Medusen," Jen. Mus. Comp. Zool. Harvard, XXili. (1897); (5) G. J. Allman, "A Monograph of the Gymnoblastic or Tubularinn Hydroids." Roy. Soc. (1871-1872).
(E. A. M.)

MEDAY, a river in the south-east of England. It rises in the Forest Ridges, S.W. of East Grinstead in Sussex, and, inereased by many feeders from these picturesque hilis, bas an casterly course to the county boundary, which it forms, turning northward for a short distance. Entering Kent near Asburst, its course becomes north-easterly, and this direction is generally maintained to the mouth. The river passes Tonbridge, receiving the Edien from the west, and later the Teise and Beult from the south and cast, all these streams watering the tich Weald (q.o.) to the south of the North Downs. These hills are breached by the Medway in a beautiful valley, in which lies Maidstone, generally mach narrower than the upper valley. The characteristic struct ure of this part of the valley is considered under the heading Downs, Below Maidstone the valley forms a perfect hasin, the hills descending upon it closely above Rochester. Below this city the river enters a broad, winding est uary, passing Chatham, and at Shecrness joining that of the Thames, so that the Medway may be considered a trihutary, and its drainage area of 680 sq . m . reckoned as part of that of the greater river. The length of the Medway is about 60 m ., excluding its many lesser windings. The estuary is navigable for sea-going vessels drawing 24 It. up to Rochester Bridge. A considerable traffic is carried on by small vessels up to Maidstone, and by barges up to Tonbridge, the total length of the navigation being 43 m . The marshy lowlands along the course of the river have yicided extensive remains of Roman pottery, a plain ware of dark state-colour.

MEEANEE, of MIANI, a village in Sind, India, on the Indus 6 m . N. of Hyderabad. Pop. (1901), 962. It is famous as the scenc of the battle in which Sir Charles Napicr, with only 2800 men, broke the power of the mirs of Sind on the 17 th of February 1843. The result of this victory was the conquest and annexation of Sind,

MEEK, FIELDING BRADFORD (1817-1876), American geologist and palacontologist, the son of a lanyer, was born at Madison, Indiana, on the roth of December 1817. In carly life he was in business as a merchant, but his leisure hours were devoted to collecting fossils and studying the rocks of the neighbourhood of Madison. Being unsuccessful in business he turned his whole altention to science, and in 18.48 he gained employment on the U.S. Gcological Survey in Iowa, and subsequently in Wisconsin and Minnesota. In 1852 he became assistant to Professor James Hall at Albany, and worked at palacontology with him until 1858 . Meanwhile in 1853 he accompanied Dr F. V. Hayden in an exploration of the "Bad Lands" of Dakota, and brought back valuable collections of fossils. In 1858 be went to Washington, where he devoled his time to the patacontological work of the United States geological and gcographical surveys, his work bearing "the stamp of the most faithful and conscientious research," and raising him to the highest rank as a palacontologist. Besides many separate contributions to science. he prepared with W. M. Gabb (1839-1878), two volumes on the palacontology of California (t864-1869); and also a Report on the Introtebrate Crelaceons and Tertiary Fossils of the Uppe Missouri Commtry (1876). He died at Wastington, on the 2and of December 1876 .

IESER, JAN VAN DER (1632-1675), more often called Vermeer of Delft-not to be confounded with the elder (16281691) or younger ($1656-1705$) Van der Meer of Haarlem, or with Van der Meer of Utrecht-is one of the excellent Dutch painters about whom the Dutch biographers give us little information.' Van der Meer, or Vermeer, was born in Delft, and was a pupil of Carel Fabritius, whose junior he was by only eight years. The works by Fabritius are few, hut his contemporaries speal of him as a man of remarkahle power, and the paintings now ascertained to be from his hand, and formerly ascribed to Remhrandt, prove him to have been deeply imbued with the spirit and manner of that master. Whether Van der Meer had ever any closer relation to Rembrandt than through companionship with Fabritius remains uncertain. In 1653 he married Catherine Bolenes, and in the same year he entered the gild of St Luke of Delft, becoming one of the heads of the gild in 1662 and again in 1670. He died at Delft in 1675 , leaving a widow and eight children. His circumstances cannot have been flourishing, for at his death he left twenty-six pictures undisposed of, and bis widow had to apply to the court of insolvency to be placed under a curator, who was Leeuwenhoek, the nat uralist.

For more than two centuries Van der Meer was almost completely forgotten, and his pictures were sold under the names and forged signatures of the more popular De Hooch, Metsu, Ter Borch, and even of Rembrandt. The attention of the artworid was first recalled to this most original painter by Thoré, an exiled Frenchman, who described his then known works in Mustes de la Hollande (1858-1860), published under the assumed name of \mathbf{W}. Bürger. The result of his researches, continued in his Golcrie Suermondl and Galerie d'Arenberg, was afterwards given hy him in a charming, though incomplete, monograph (Gazelle des beaux-arts, 1866, pp. 297, 458, 542). The task was prosecuted with success by Havard (Les Artistes hollandais), and by Obrcen (Nederlandsche Kunstgeschiedenis, Dl. iv.), and we are now in a pasition to refer to Van der Meer's works. His pictures are rarcly dated, hut one of the most important, in the Dresden Gallery, bears the date 1656, and thus gives us a key to his styles. With the exception of the "Christ with Martha and Mary " in the Coats collection at Glasgow, it is perhaps the only one, hitherto recognized, that has Gigures of life size, though his authorship is claimed for several others. The Dresden picture of a "Woman and Soldier," with other two figures, is painted with remarkable power and boldness, with great command over the resources of colour, and with wonderful expression of life. For strengt hand colour it more than holds its own beside the neighbouring Rembrandts. To this early period of his career belong, from internal evidence, the "Reading Girt" of the same gallery, the Iuminous and masterly "View of Delft " in the museum of the liague, the "Milk-Woman" and the small street view, both identified with the Six collection at Amsterdam, the former now in the Rijksmuseum; the magnificent "The Letter" also at Amsterdam, "Diana and the Nymphs" (formerly ascribed to Vermeer of U(recht) at the Hague Gallery, and others. In all these we find the same hrilliant style and vigorous work, a solid impasto, and a crisp, sparkling touch. His first manner seems to have been influenced by the pleiad of painters circling round Rembrandt, a school which lost favour in Holland in the last quarter of the century. During the final ten or twelve years of his life Van der Meer adopted a second manner. We now find bis painting smooth and thin, and his colours paler and softer. Instead of masculine vigour we have refined delicacy and subtlety, but in both styles beauty of tone and perfect harmony are conspicuous. Through all his work
${ }^{1}$ This undeserved neglect seems to have fallen on him at an early period, for Houbraken (Groote Schouburih, 1718), writing little more than forty years after his death, does not even mention him. The only definite information we have from a contemporary is given by Bleyswijck (Beschrijiving der Stad Delft, 1687), who icils us that he was born in 1632 , and that he warked with Carel Fabritius, an able disciple of Rembrandt, who lost his life by an explosion of a powder magazine in Delft in 1654 It is to the patient researches of W. Burger (Th. Thord). Havard, Obreen, Soutendam, and others, that we owe our know kdge of the nain lacts of bis life, discovered in the archives of his native lown.
may be traced his love of lemon-yellow and of blue of all shades. Of his second style typical examples are to be seen in "The Coquette" of the Brunswick Gallery, in the "Woman Reading" in the Van der Hoop collection now at the Rijksmuseum at Amsterdam، in the "Lady at a Casement" belonging to Lord Powerscourt (exhibited at the Reyal Academy, 1878) and in the "Music Master and Pupil " belonging to the King (exhibited at the Royal Academy, 1876).

Van der Meer's authentic pictures in puhlic and private collections amount to about thirty. There is but one in the Louvre, the "Lace Maker"; Dresden has the two aforementioned, while Berlin has three, all acquired in the Suermondt collection, and the Czernin Gallery of Vienna is fortunate in possessing a fine picture, believed to represent the artist in his studio. In the Arenberg Gallery at Brussels there is a remarkable head of a girl, hall the size of life, which seems to be intermediate between his two styles. Several of his paintings are in private foreign collections. In all his work there is a singular completeness and charm. His tone is usually silvery with pearly shadows, and the.lighting of his interiors is equal and natural. In all cases his figures seem to move in light and air, and in this respect he resembles greatly his fellow-worker De Hooch. It is curious to read that, at one of the auctions in Amsterdam about the riddic of the 18th century, a De Hooch is praised as being " nearly equal to the famous Van der Meer of Delft."

See also Havard, Van der Meer (Paris, 1888); Vanzype. Vermeer de Delff (Brussels, 1ga8), and Hofstede de Groot. Jan Vermeer ton Delft (Leipzig, 1909).

MEERANE, a lown in the kingdom of Saxony, 9 m . N. of Zwickau and 37 S. of Leipzig by rail. Pop. (1905), 26,005. It contains a fine medieval church (Evangelical). It is one of the most important industrial centres of Germany for the manufacture of woollen and mixed cloths, and in these products has a large export trade, especially to America and the Far East. There are also extensive dyeworks, tanneries and machine factories. See Leopold. Chronik wnd Beschreibung der Fabrik. and Handel. stadt Meerane (1863).

MEERSCHAUM, a German word designating a soft white mineral sometimes found floating on the Black Sea, and rathes suggestive of sea-foam (Meerschaum), whence also the French name for the same substance, tcume de mor. It was termed by E. F. Glocker sepiolite, in allusion to its remote resemblance to the "bone" of the sepia or cuttle-fish. Meerschaum is an opaque mineral of white, grey or cream colour, breaking with a conchoidal or fine carthy fracture, and occasionally though rarely, fibrous in texture. It can be readily scratched with the nail, its hardness being about 2. The specific gravity varies from 0.988 to 1.279, but the porosity of the mineral may lead to crror. Mecrschaum is a hydrous magnesium silicate, with the formula $\mathrm{H}_{3} \mathrm{Mg}_{2} \mathrm{Si}_{3} \mathrm{O}_{10}$, or $\mathrm{Mg}_{2} \mathrm{Si}_{3} \mathrm{O}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

Most of the meerschaum of commerce is obtained from Asia Minor, chiefly from the plain of Eski-Shehr, on the Haidar Pasha-Angora railway, where it occurs in irregular nodular masses, in alluvial deposits, which are extensively worked for its extraction. It is said that in this district there are 4000 shafts leading to horicontal galleries for extraction of the meerschaum. The principal workings are at Sepetdji-Odjaghi and Kemikdji-Odjaghi, about 20 m. S.E. of Eski-Shehr. The mineral is associated with magnesite (magnesium carbonate), the primitive source of both minerals being a serpentine. When first extracted the meerschaum is soft, but it hardens on exposure to solar heat or when dried in a warm trom. Meerschaum is found also, though less abundantly, in Gieece, as at Thebes, and in the islands of Euboea and Samos; it occurs also in serpentine at Hrubschitz near Kromau in Moravia. It is found to a limited extent at certain localitics in France and Spain, and is known in Morocco. In the United States it occurs in serpentine in Pennsylvania (as at Nottingham, Chester county) and in South Carolina and Utah.

Mecrschaum has occasionally been used as a substitute for soap and fuller's carth, and it is said also as a building material: but its chief use is for tobacco-pipes and cigar-holders. The
entural nodules are first scraped to remiove the red earthy matrix, then dried, again scraped and polished with wax. The rudely shaped masses thus prepared are sent from the East to Vienna and other manufacturing centrea, where they are turned and carved, smoothed with glase-paper and Dutch rushes, heated in wax or stearine, and finally polished with bone-ash, \&cc. Imitations are made in plaster of Paris and other preparstions.
The soft, white, earthy mineral from Lingbanshyttan, in Vermand, Sweden, known as aphrodite (appos, foam), is cooely related to meerschaum. It may be noted that meerschaum has sometimes been called magnesite ($q, 3$.).
MERRUT. a city, district and division of British India, in the United Provinces. The city is half-way between the Ganges and the Jumna, and has two stations on the NorthWestern railway, 37 m. N.E. from Delhi. Pop. (rgoi), 118, r29. The city proper lies south of the cantonments, and although dating back to the days of the Buddhist emperor Asoka (c. 250 8.c.) Meerut owes its modern importance to its selection by the British government as the site of a great military station. In r805 it is mentioned as "a ruined, depopulated town." The cantomment was established in 1806, and the population rose to 29,014 in 1847, and 82,035 in 1853 . The town is an important centre of the cotton-trade. It is the headquarters of the 7 th division of the northern army, with accommodation for horse and field artillery, British and native cavalry and infantry. It was here that the first outbreak of the Mutiny of 1857 took place. (See Indian Mutiny.)
The Disterct or Meerut forms part of the upper Doab, or tract between the Ganges and the Jumna, extending from siver to river. Area, $2354 \mathrm{sq} . \mathrm{m}$. Though well wooded in places and ahundantly supplied with mango groves, it has but few patches of jungle or waste land. Sandy ridges run along the low watersheds which separate the minor channels, hut with this exception the whole district is one continuous expanse of careful and prosperous tillaga. Its fertility is largely due to the system of irrigation canals. The Eastern Jumns canal runs through the whole length of the district, and supplics the rich tract between the Jumna and the Hindan with a net work of distributary streams. The main branch of the Ganges canal passes across the centre of the plateau in a sweeping curve and waters the midland tract. The Anupshahr branch supplies irtigation to the Ganges slope, and the Agra canal passes through the southern comer of Loni pargana from the Hindan to the Jumna. Besides these natural and artificial channels, the country is everywhere cut up by small water-courses. The Burh Ganga, or ancient bed of the Ganges, lies àt some distance from the modern stream; and on its hank stood the abandoned city of Hastinapur, the legendary capital of the Pandavas at the period of the Mahobhdrata, said to have been deserted many centuries before the Christian era, owing to the encroachments of the river.

- The comparatively high latitude and elevated position of Meerut make it.one of the healthiest districts in the plains of India. The average temperature varies from $57^{\circ} \mathrm{F}$. in January to 87° in June. The rainfall is small, less than 30 in. annually. The only endemic disease in the district is malarial fever; but small-pox and cholera occasionally visit it as epidemics. The population in 1901 was $\mathrm{x}, 540,175$, showing an increase of 10.6% in the decade. The principal crops are wheat, pulse, millet, sugar-cane, cotton and indigo, but this last crop has declined of late years almost to extinction. The district is traversed hy the North-Western railway, and also contains Ghaziabad, the terminus of the East Indian system, whence a branch runs to Delhi, while a hranch of the Oudh \& Rohilkhand railway from Moradabad to Ghaziabad was opened in 1900.

1. The authentic history of the district begins with the Moslem invasions. The first undoubted Mahommedan invasion was that of Kutbeddin in rigr, when Meerut town was taken and all the Bindu temples turned into mosques. In 1398 Timūr captured the fort of Loni after a desperate resistance, and put all his Hindu
prisoners to death. He then proceoded to Delhi, and after his memorable sack of that city returned to Meerat, captured the town, razed all the fortifications and houses of the Hindus, and put the male inhabitants to the spord. The establishment of the great Mogul dynasty in the 16th century, under Baber and his successors, gave Meerut a period of internal tranquillity and royal favour. After the death of Aurangzeb, bowever, it was exposed to alternate Sikh and Mahratta invasions. From 1707 till 1775 the coantry was the scene of perpetual strife, and was only rescued from anarchy by the exertions of the military adventurer Walter Reinhardt, afterwards the husband of the celebrated Begum Samru, who established himself at Sardhina in the north, and ruled a large estate. The southern tract, however, remained in its anarchic condition under Mahratta eractions until the fall of Delhi in 1803 , when the whole of the country between the Jumna and the Ganges was ceded by Sindhia to the British. It was formed into.a separate district in 1818. In the British period it has become memorable for its connexion with the Mutiny of 1857.
The Divisron or Meerut comprises the northern portion of the Doah. It consists of the six districts of Dehra Dun, Saharanpur, Muzaffarnagar, Meerut, Bulandshabr and Aligarh. Area, 11,302 sq. m.; pop. (rgor), 5,979,711, showing an increase of 12.3% in the decade.
See Meerut District Gaselleer (Allahabad, 1904).
IEEETHIG (from " to meet," to come together, assemble, O. Eng. milan ; cf. Du. moeten, Stwed. mola, Goth. gamoljan, \&c., derivatives of the Teut. word for a meethg, seen in 0 . Eng. mot, moot, an assembly of the people; cf. witanagemot), a gathering together of persons for the purpose of discussion or for the transaction of business. Public meetings may be either those of statutory bodies or assemblies of persons called together for social, political or other purposes. In the case of statutory bodies, by-laws usually fix the quorum necessary to constitute a legal meeting. That of limited companies may be either by reference to the capital held, or by a fixed quorum or one in preportion to the number of shareholders. It has been held that in the case of a company it takes at least two persons to constitute a meeting (Sharp v. Daws, 1886, 2 Q.B.D. 26). In the case of public meetings for social, political or other purposes no quorum is necessary. Theymay be held, if they are for a lawful purpose, in any place, on any day and at any hour, provided they satisfy certain statutory provisions or by-laws made under the authority of a statute for the safety of persons attending such meetings. If, however, a meeting is held in the street and it causes an obstruction those convening the meeting may be proceeded against for obstructing the highway. The control of a meeting and the subjects to be discussed are entirely within the discretion of those convening it, and whether the meeting is open to the public without payment, or subject to a charge or to membership of a specified body or society, those present are there merely by virtue of a licence of the conveners, which licence may be revoked at any time. The person whose licence is revoked may be requested to withdraw from the meeting, and on his refusal may be ejected with such force as is necessary. If he employs violence to those removing him be commits a breach of the peace for which he may be given into custody. An important English act has dealt for the first time with the disturbance of a public meeting. The Public Meeting Act 1908 enacted that any person who at a lawful public meeting acts in a disorderly manner for the purpose of preventing the transaction of the business for which the meeting was called together shall be guilty of an offence, and if the offence is committed at a political meeting held in any parliamentary constituency between the issue and return of a writ, the offence is made an illegal practice within the meaming of the Corrupt and Illegal Practices Prevention Act 1883. Ary person who incites another to commit the offence is equally guilty. A public meeting is usually controlled by a chairman, who may be appointed by the conveners or elected hy the meeting itself. On the chairman falls the duty of preserving order, of calling on persons to speat, deciding points of order, of putting questions to the meeting
for decision, and declaring the result and other incidental matters.
In England it is illegal, by a statute of George III. (Seditious Meetings Act 1817), to hold a public meeting in the open air within 1 m . of Westminster Hall during the sitting of Parliament.
See C. P. Blackwells Law of Meetings (1910).
MEGALOPOLIS, an ancient city of Arcadia, Greece, situated in a plain about 20 m . S.W. of Tegea, on both banks of the Helisson, about $2 \frac{1}{2} \mathrm{~m}$. above its junction with the Alpheus. Like Messene, it owed its origin to the Theban general Epaminondas, and was founded in 370 b.c., the year after the batule of Leuctra, as a bulwark for the southern Arcadians against Sparta, and as the seat of the Arcadian Federal Diet, which consisted of ten thousand men. The builders were protected by a Theban force, and directed by ten native oecists (official "founders "),
an attempt to reduce Megalopolis; but the Thebans sent assistance and the city was rescued. Not stare of this assist. ance, the Megalopolitans had appealed to Athens, an appeal which gave occasion to the oration of Demosthenes, IIepl Meranomoderât. The Spartans were now obliged to conclude peace with Megalopolis and acknowledge her autonomy. Nevertheless their feellng of hostility did not cease, and Megalopolis consequently entered into friendly relations with Philip of Macedon. Twenty years later, when the Spartans and their allies rebelled against the power of Macedon, Megalopolis remained firm in its allegiance, and was subjected to a long siege. Aftor the death of Alexander, Megalopolis was governed by native tyrants. In the war between Cassander and Polyperchon it look part with the former and was besieged by the latter. On this occasion it was able to send into the field an army of fifteen tbousand.

who likewise attended to the peopling of the new city, which apparently drew inhabitants from all parts of Arcadia, but especially from the neighbouring districts of Maenalia and Parrhasia. Forty townships are mentioned by Pausanias (viii. 27, 3-5) as having been incorporated in it. It was 50 stadia in circumference, and was surrounded with strong walls. Its territory was the largest in Arcadia, extending northward 24 m . The city was built on a magnificent scale, and adorned with many handsome buildings, both publle and private. Its temples contained many ancient statues brought from the towns incorporated in it. After the departure of Epaminondas, Lycomedes of Mantineia succeeded in drawing the Arcadian fedcration away from its alliance with Thebes, and it was consequently obliged to make common cause with Athens. An attempt on the part of the federation to use the treasures of the temple of Zeus at Olympia led to internal dissensions, so that in the batile of Mantineia (362) one half of the Arcadians fought on the side of the Spartans, the other on that of the Thebans. After this battle many of the inhabitants of Megalopolis sought to return to their former homes, and it was only by the assistance of three thousand Thebans under Pammenes that the authorities were able to prevent them from doing to. In 353, when Thebes had her bands full with the so-called Sacred War, the Spertans made

In 234 B.c. Lydiades, the last tyrant of Megalopolis, voluntarily resigned his power, and the city joined the Achaean League. In consequence of this it was again exposed to the hatred of Sparta. In 222 Cleomenes plundered it and killed or dispersed its inhabitants, but in the year following it was restored and its inhabitants reinstated by Philopoemen, a native of the city. After this, however, it gradually sank into insignificance. The only great men whom it produced were Philopoemen and Polybius the historian. Lycortas, the father of the latter, may be accounted a third. In the time of Pausanjas the city was mostly in ruins.
The site of Megalopolis was excavated by members of the British School at Athens in the years $1890-1892$. The description of Pausanias is so clear that it enabled Curtius, in his Pelopon. nesos, to give a conjectural plan that was found to tally in most respects with the reality. The town was divided inte two approximately equal parts by the river Helisson, which flows through it from east to west. The line of the walls may be traced, partly by remains, partly by the contours it must have followed, and confirms the estimate of Polybius that they had a circuit of 50 stades, or about $5 \frac{1}{2} \mathrm{~m}$. It is difficult to sce how the river bed, now a broad and shingly waste, was dealt with in ancient times; it must have been embanked in some way, but there are no remains to show whether the fortification wall
was carried acrose the river af either end or along the parallel embankments so as to make two separate enclosures. There must have been, in all probability, a bridge to connect the two haives of the city, but the foundations seen by Leake and athers, and commonly supposed to belong to such a bridge, proved to be only the substructures of the precinct of Zeus Soter. The buildings porth of the river were municipal and were grouped round the square agora. One, of which the complete plan has been recovered, is the portico of Philip, a splendid building, which bounded the agora on the north; it was 300 ft . long, with three rows of columns running its whole length, three in the outer line to each one in the two inner lines; it had a slightly projecting wing at either end. At the south-west of the agora was found the precinct of Zeus Soter: it consists of a square court surrounded by a double colonnade, and faced on the west side by a small temple; on the east side was an entrance or propylacum approached by a ramp. In the midst of the court was a substructure which has been variously interpreted as an altar or as the base of the great group of Zeus and Megalopolis, which is recorded to have stood bere. North of 1 bis was the Stos Myropolis, forming the east boundary of the agora, and, between this and the Stoa of Philip, the Archeia or municipal offices. These huildings were of various dates, but seem all to fit into an harmonious plan. The buildings on the south and west of the agora have been almost entirely destroyed hy the Helisson and a tributary hrook. On the south bank of the river were the chief iederal buildings, the theatre (noted by Pausanias as the largest in Greece), and the Thersilion or parliament hall of the ten thousand Arcadians. These two buildings form part of a common design, the great portico of the Thersilion facing the orchestra of the theatre. As a consequence of this arrangement, the plan of the theatre is abnormal. The auditorium has ns its lowest row of seats 2 set of "thrones" or ornamental benches, which, as well as the gutter in front, were dedicated by a certain Antiochus; the orchestra is about 100 ft . in diameter; and in place of the western parados is a closed room called the Scanotheca. The chici peculiarity, however, lies in the great portico already mentioned, which has its base about 4 ft .6 in . above the level of the orchestra. It was much too lofty to serve as a proscenium; yet, if a proscenium of the ordinary Greek type were erected in front, it would hide the lower part of the columns. Such a proscenium was actually erected in later times; and beneath it were the foundations for an carlier wooden proscenium, which was probably erected only when required. In later times steps were added, leading from the base of the portico to the revel of the orchestra., The theatre was probably used, like the theatre at Athens, for political assemblies; but the adjoining Thersilion provided covered accommodation for the Arcadian ten thousand in wet weather. It is a buikding unique in plan, sloping up from the centre towards all sides bike a theatre. The roof was supported by columns that were placed in lines radiating from the centre, so as to obscure as little as possible the view of an orator in this position from all parts of the building; there were two entrances in each side.
See Excanations al Mcgalopolis (E. A, Gardner, W. Loring, G. C. Richards, W. J. Woodhouse: Architecture, by R. W. Schultz); Supplementary Paper issucd by the Society for the Promotion of Hellenic Studies. 1892 i Journal of Hellenic Studies. xiii. 328 , A. G. Bather: P. 319. E. F. Benson ("Thersilion"); 1898, p. 15 , A. B. Bury ("Double City ") W. Dorpleld " "Das griechische Theater "); O. Puchstein," Griechische Buhne " (Theatre).
megandeleus (also called Macronuclevs), in Infusoria (q.v.)., the large nucleus which undergoes direct (amitotic) division in fission, and is lost during conjugation, to be replaced by a nucleus, the result of the karyogamy of the micronuclei.
MBGAPODE (Gr. $\mu \boldsymbol{\mu}$ yas, great and π rous, foot), the name given generally to a small but remarkable family of birds, characteristic of some parts of the Australian region, to which it is almost peculiar. The Megapodiidae, with the Cracidae and Phasianidae, form that division of the sub-order Gulli named by Huxley

Peristeropodes (Proc. Zool. Soc., 1868, p. 296). Their most remarkable habit is that of leaving their eggs to be hatched without incubation, burying them in the ground (as many reptiles do), or in a mound of earth, leaves and rotten wood which they scratch up. This habit attracted attention nearly four hundred years ago, ${ }^{1}$ but the accounts given of it by various travellers were generally discredited, and as examples of the birds, probably from their unattractive plumage, appear not to have been brought to Europe, no one of them was seen by any ornithologist or scientifically described until near the end of the first quarter of the igth century. The first member of the family to receive authoritative recognition was one of the largest, inhabiting the continent of Australia, where it is known as the brush-turkey, and was originally described by J. Latham in 1821 under the misleading name of the New Holland vulture. It is the Catheturus lathami of modern ornithologists, and is nearly the size of a hen turkey. This East Australian bird is of a sooty-brown colour, refieved beneath by the lighter edging of some of the feathers, but the head and neck are nearly bare, beset with fine bristles, the skin being of a deep pinkishred, passing above the breast into a large wattle of hright yellow. The tail is commonly carried upright and partly folded, something like that of a domestic fowl. Allied to it are three or four species of Talegallus, from New Guinea and adjacent islands.
Another form, an inhabitant of South and West Australia, commonly known in England as the mallee-bird, but to the colonists as the "native pheasant "-the Lipoa ocellofa, as described by J. Gould in the Proc. Zool. Soc. (1840), p. 126, has much shorter tarsi and toes, the head entirely clothed, and the tail expanded. Its plumage presents a combination of greys and browns of various tints, interspersed with black, white and buff, the wing-coverts and feathers of the back bearing each near the tip an oval or subcircular patch, whence the scientific name of the hird is given, while a stripe of black feathers with a median line of white extends down the front of the throat from the chin to the breast. There is but one species of this genus known, as is also the case with the next to be mentioned, a bird long known to inhabit Celebes, but not fully
${ }^{2}$ Antonio Pigafetta, one of the survivors of Magellan's voyage, records in his journal, under date of April 1521, among the peculiarities of the Philippine Islands, then first discovered by Europeans, the existence of a bird there, about the size of a lowl, which laid its eggs, as big as a duck's, in the sand, and left them to be hatched by the heat of the sun (Premier voyage aulour du monde, ed. Amoretti. Paris, A.R. ix. 88). More than a hundred years later the Jesuit Nieremberg, in his Historia naturae. published at Antwerp In 1635 , described, (p. 207) a bircl called "Daie," and by the natives named". Tapun," not larger than a dove, which, wish its tail (!) and feet exca vated a nest in sandy places and laid thercin egss bigger than those of a goose. The publication at Rome in 1651 of Hernandez's Hisl. azriwm novae Hispanize shows that his papers must have been accessible to Nieremberg, who took from them the passage just mentioned, bur, as not unusual with him. misprinted the names which stand in Hernandez's work (p. 56, cap. 220) "Daic "and "Tapum" respectively. and omitted his predecessor's important addition "Viuit in Philippicis." Not long after, the Dominiean Navarrete, a miseionary to China, made a considerable stay in the Philippines, and returning to Europe in 1673 wrote an account of the Chincse empire, of which Churclith (Collection of Voyages and Travels, vol. i.) gave an English translation in 1704. It is thercin stated (p . 45) that in many of the lslands of the Malay Archipelago "t there is a very singular bird call'd Tabon," and that "What I and many more admire is, that it being no bigger in body than an ordinary chicken, tho' long legg'd, yet it lays an egg larger than a goosrs, 50 that the egg is bigger than the bird itself. ... In order to lay its eggs, it digs in the sand above a yard in depth; after laying. it fills up the hole and makes it even with the rest; there the egga hatch with the heat of the sun and sand." Gemelli Careri, who travelled from 1663 to 1699, and in the latter year published an account of his voyage round the world, gives similar evidence respecting this bird, which he calls "tavon," in the Philippine ldands (Voy. du lour do monde, ed. Paris, 1727. v. 157, 158). The megapode of Luzon is fairly described by Camel or Camelti in his observations on the birds of the Philippines communicated by Petiver to the Royal Society in 3703 (Phil. Trans. xxiii. 1398). In 1726 Valentyn published his elaborate work on the East Indies, wherein (cleel iii. bk. v. p. 320) he correctly, describes the megapode al Amboina under the name of " malleloe," and also a larger kind found in Celebes.
described until $8846,{ }^{2}$ when it received from Salomon Muller (Arch. f. Naturgeschichte, xii. pt. 1, p. 116) the name of Macroccphalon maleo, but, being shortly afterwards figured by Gray and Mitchell (Gen. Birds, iii. pl. 123) under the generic term of Micgacephacon, has since commonly borne the latter appellation. This bird bcars a helmet-like protuberance on the back of its head, all of which, as well as the neck, is bare and of a bright red colour; the plumage of the body is glossy black above, and beneath roscatc-white.
Of the megapodes proper, constituting the genus Megapodius, about fifteen species are admitted. The birds of this genus range from the Samoa Islands in the east, through the Tonga group, to the New Hebrides, the northern part of Australia, New Guinea and its neighbouring islands, Celebes, the Pelew islands and the Ladrones, and have also outliers in detached portions of the Indian Region, as the Philippines (where indeod they were first discovered by Europeans), Labuan, and even the Nicobars-though none is known from the intervening islands of Borneo, Java or Sumatra. Within what may be deemed their proper area they are found, says A. R. Wallace (Gcogr. Distr. Animals, ii. 34r), " on the smallicst islands and sandbanks, and can evidently pass over a few miles of sea with ease." Indeed, proof of their roaming disposition is afforded by the fact that the bird described by Lesson (Voy. Coguille: Zoologie. p. 703) as Alectheclia uroillii, but now considered to be the young of Mfegapodius freycineti, flew on board his ship when more than 2 m . (rom the nearcst land (Guebe), in an exhausted state, it is true, but that may be altributed to its youth. The species of 1 fcgapodius are about the size of small fowls, the head generally crested, the tail very short, the feet enormous, and, with the exception of M. wollacii (Proc. Zoot. Soc., 1860, Aves, pl. 171), from the Moluccas, all have a sombre plumage.
Megapodes are shy terrestrial birds, of heavy flight, and omnivorous diet. In some islands they are semi-domesticated, although the ficsh is dark and generally unpalatable. (A. N.)
megara, an ancient Greek town on the road from Attica to Corinth. The country which belonged to the city was called Merapis or \dagger Meyapxini; it occupied the broader part of the isthmus between Autica. Boeotia, Corinth, and the two gulfs, and its whole area is estimated by Clinton at 143 sq. m. The range of Mount Gerancia extends actoss the country from cast $t 0$ west, forming a barrier between continental Greece and the Peloponnesus. The shortest road across this range passes along the castern side of the mountains, and the most dificult part is the celebrated Scironian rocks, the mythic home of the robber Sciron. The only plain in the rugged little country was the White Plain, in which was situated the only important town, Megara. The modern town of Megara is situated on two low hills which formed part of the ancient site; it is the chief town of the eparchy of Megaris; pop. about 6400 . It contains few remains of antiquity, except of the aqueduct and basin, said to have been made by the arehitect Eupalinus for the tyrant Theagenes.
(E. GR.)

From the somewhat conflicting evidence of mythology it may be gathered that in prehistoric days Megara had mariiime intercourse with the southern Aegean. The early inhabitants, whose race is unknown, were extirpated or absorbed in the Dorian migration, for in historic times the city had a homogeneous Dorian population. Favoured by its proximity to two great waterways and by its two ports, Nissea on the Saronic and Pegae on the Corinethian Gull, Megara took a prominent part in the commercial expansion of Greece from the 8th century onwards, and for two hundred years enjoyed prosperity out of proportion to the slight resources of its narrow territory. Its trade was mainly directed towards Sicily, where Megarian colonies were established at Hybln (Megara Hyblaea) and Selinus, and towards the Black Sea, in which region the Megarians were probably

- As we have seen, it was mentioned in 1726 by Valentyn. and - young example was in 183 , described and Gigured by Quoy and Gaimard (Voy. de $P A$ stry).' 1 : Oiseaur, p. 239. pl. 25) as the Megatedims rulripes of Temminck, a wholly differemt burd.
pioneers of Greck commerce. In the Sea of Marmore they had to face the competition of the Samians, with whom they waged a war concerning the town of Perinthus, and of Miletus; hut on the Bosporus they established themselves by means of settlements at Chalcedon and, above all, Byzantium (founded, according to tradition, 675 and 658 respectively). In the Black Sca they exploited the shores of Pontus and Scythia, whose products they exchanged for textiles spun from the wool of their own country. Their chief colonies in this sea were Astacus and Heraclea in Bithynis, and another Heraciea in the Crimea. In the later 7th century this current of trade dwirdled in face of the great commercial and colonizing activity of Miletus; it probably received further injury through the subsequent interference of Athens on the Hellespont. Simultaneously Megarian commerce in Sicily began to be supplanted by Corinth and Corcyia.
Megara's economic development entailed a change in the distribution of wealth, and consequently of political power, which io commented upon in the elegies of theognis (g.v.). The original land-holding aristocracy, which hat probably initiated and for a time monopolized commerce, was parily supplanted by prosperous upstarts, and with the general increase of prosperity began to lose its hold upon the community of arlisans. In the ensuing party struggles the city passed under a tyrant, Theagenes (about 640), whose rule was too brief to produce great changes. The power of the nobles would seem to have been more effectively broken in a war with Athens, in which Megara ultimately loat the island of Salamis (about 570 . see Solon), for ahortly afterwards the constitution was changed to a democracy, and eventually was fixed as an oligarchy of a moderate type.

During the Persian wars the state, which had recently joined the Peloponnesian League, could stinl muster 3000 hoplites. But the subsequent expansion of Athens ruined the commerce of Megara, and the town itsclf was threatened with absorption by some powerful ncighbour. In 459 an attack by Corinth, which had always coveted Megara's territory, Induced the people to summon the aid of the Athenians, who secured Megara in battle and by the construction of long walls between the capital and its port Nisaes. In 445 a
revulsion of feeling led the Megarians to massacre their Athenian revulsion of feeling led the Megarians to massacre their Athenian garrison. The Athenians retaliated by placing an embargo upon Megarian trade throughout their empire (432), and in the Peloponnesian War, which the Meparians had consequently striven 10 hasten on, reduced their aecighborars to misery by blockade and devastations. In 424 they nearly captured Megara, in collusion with a democratic party within the town, and succeeded in securing Nisaca, which they held till 410 . In the 4 th century Megara recovered some measure of prosperity, but played an insignificant part in politica, its only notable move being the participation in the final confict against Philip 11. of Macedon (338). During the Macedonian supremacy the town, passed in turn from Cassander and Demetrius Poliorcetes to Antigonus Gonatas, and finally was incorporated in the Achacan League. Megara suffered severely during the Civil War of 48 B.C., but secms at some later period to have received new settlers. it mainteined itself as a place of some size in subsequent centuries, but was depopuiated by the Venctians in A.D. 1500. The inhabitants of the modern village are mostly of Albanian origin.
in literature Megara figures as the reputed home of the comedian Susarion, and in the $4^{\text {th }}$ century rave ite name to a school of philosophy lounded by Euclid.
See Strabo ix. 391-395; Theognis; Thucydides i.-iv.; Aristophanes, Acharnians, 729-835; F. Cauer, Partsien und Politiker in Megara und Athen (Stuttgart, 1890), pp. t-44: B. V. Head, Historia numorum (Oxford, 1887), pp. 329-330; R. Delbrick and K. G. Vollmoller," Das Brunnenhaus des Theagenes," in Milleil. d. deussch. Inst. Alhen. XXV. (1900).
(M.O.B.C.)
mboara hyblaea (perhaps identical with Hybla Major). an ancient city of Sicily, on the E. coast, 12 m . N.N.W. of Syracuse, founded in 728 m.c. by Megarean colonists, who had previously settled successively at Trotilon, Leontini and Thapsus. A hundred years later it founded Selinus, apparentiy because it had no room for development. It never seems to bave been a town of great importance, and had no advantages of position. It was destroyed by Gelon about 481 b.c., and its walls seem to have been razed to the ground. In the Athenian expedition against Syracuse (415 -413) Lamachus proposed (it being then deserted) to make it the Athenian base of operations; but his advice was not taken, and in the next spring the Syracusans fortified it. In 309 it was still fortified; but, after Marcellus captured it, in 214, we hear little more of it. Excavations carried on in 1891 led to the discovery of the
eecthern pertioe of tbe wetern town wall, which in one section served at the same time as an embankment against floods (it was apparently more conspicuous in the time of \mathbf{P}. Cluver, Sicilia, p. 133), of an extensive necropolis, about 1000 tombs of which have been explored, and of a deposit of votive objects from a temple. The barbour lay to the north of the town.
See P. Orsi in Monumenti dei Lincei (1891), i. 689-950; and Alli ded eongresso delle sciense storiche, $\mathrm{v}, 181$ (Rome, 1904). (T. As.)
been found at Tiryns and Mycenae, and references are made to it in the Iliod and the Odyssey.

MEGATHERIUM (properly Megalohherium), a huge extinct edentate mammal from the Pleistocene deposits of Bueno Aires, typifying the family Megatheriidae (or Megalotheriidac), and by far the largest representative of the Edentata. Except, indeed, for its relatively shorter limbs Megatherimm americanum rivalled an elephant in bulk, the total length of the skeleton being is feet, five of which are taken up by the tail. The Mcgatheriidae, which include a number of genera, are collectively founded by Euclides of Megara, one of the pupils of Socrates. Two main elements went to make up the Megarian doctrine. Like the Cynics and the Cyrenaics, Euclides started from the Socratic principle that virtue is knowleage. But into comblnation with this be brought the Eleatic doctrine of Unity. Perceiving the difficulty of the Socratic dictum he endeavoured to give to the word " knowledge " a definite content by divorcing it absolutely from the sphere of sense and experience, and confining it to a sort of transcendental dialectic or logic. The Eleatic unity is Condness, and is beyond the sphere of sensible apprehension. This goodness, therefore, alone exists; matter, motion, growth and decay are figments of the senses; they bave no existence for Reason. "Whatever is, is !" Knowledge is of ideas and is in conformity with the necessary laws of thought. Hence Plato in the Sophist describes the Megarians as " the friends of ideas." Yet the Megarians were by no means in agreement with the Platonic idealism. For they held that ideas, though eternal and immovabie, have neit her life nor action nor movement.

This dialectic, initiated by Eucides, became more and more opposed to the testimony of experience; in the hands of Eubuides and Alexinus it degenerated into hairsplitting, mainiy in the form of the reductio ad absurdum. The strength of these men lay in destructive criticism rather than in construction: as dialecticians they were successful, but they contributed little to ethical speculation. They spent their energy in attacking Plato and Aristotle, and hence earned the opprobrious epithet of Eristic. They used their dialectic subttety to disprove the possihility of motion and decay; unity is the negation of change, increase and decrease, birth and death. None the less, in ancient times they received great respect owing to their intellectual pre-eminence. Cicero (Academics, ii. 42) describes their doctrine as a "nobilis disciplina," and identifies them closely with Parmenides and Zeno. But their most immediate influence was upon the Stoics (q.v.), whose founder, Zeno, studied under Stilpo. This philosopher, a man of striking and attractive personality, succeeded in fusing the Megarian dialectic with Cynic naturalism. The result of the comhination was in fact a juxtaposition rather than a compound; it is manifestly impossible to find an organic connexion between a practical code like Cynicism and the transcendental logic of the Megarians. But it served as a powerful stimulus to Zeno, who by descent was imured with oriental mysticism.

For bibliographical information about the Megarianss soe Euclides; Etbulides; Diodonus Cronus: Stilpo. See also Eleatic School: Cymics: Stoics; and, for the connexion between the Megarians and the Eretrians. Menedemus and Piafedo. Also Zelter, Socrates and the Sorratic Schools: Dyeck. De Megaricorum debsinc (Bonn, 1827); Mallet, Historre de t '́cole de Megare (Paris, 184S): Rituer, Dber die Philasophis der meg. Schule: Pranil, Geschichte der Logik, i. 32 ; Henne, L'tcole de Afigare (Paris, 1843): Comperz, Greek Thinkers (Eng. trans. 1905), it. 170 seq.

MBOARON, the principal hall of the ancient Creek palace. situated in the andron or men's quarter. Examples have

Fig. 1.-Skeleton of the Megatherium, from the specimen in the Museum of the Royal College of Surgeons of England.
known as ground-sloths, and occupy a position intermediate between the sloths and the ant-eater: their skullis being of the type of the former, while their limbs and vertebrae conform in structure to those of the latter. As in the other typical South American edentates, there are no teeth in the front of the jaws, while those of the check-series usually comprise five pairs in the upper and four in the lower. In nearly ay the other Pleistocene forms these teeth were subcylindrical in shape, with the summit of 'the crown (except sometimes in the first pair) forming a cup-like depression; enamel being in all cases absent. From all these \boldsymbol{M} cgatherium differs in the form and structure of the teeth.

In form, as shown in fig. 2, the teeth are quadrangular prisms, each of which is surmounted by a pair of transverse ridges. They grew apparently throughout ifie, and were implanted to a great depth in the jaws, being 7 or 8 in . in length, with a cross-section of at least an inch and a hall. The ridges on the crown are due to the arrangement of the vertical layers of hard dentine (fig. 3, d) solter vasodentine (v) and ccorent (c). The skull is relatively small, with the lower jaw very deep in its central portion, and produced in pert into a long enout like symphysis for the reception, doubtleme, of 2 large and festhy tonguc (fig. 2). Unlike sloths, the megatherium has seven cervical vertebrae; and the spines of all the Irunk, vertebrie incline backwards. The pelvis and hind-limbs are much more powerful than the fore-quarters; thereby enabling these animals, in all probasility, to rear themselves on their hind-guarters, and thus pull down the branches of trees: if not, indeed. in some cases to bodily uproot the trees themselves. Large chevron bones are suas. pended to the vertebrae of the tail, which was massive. and probably afforded a support when the monater was sitting up. The humerus has no foramen, and the
whole fore-limb wes very mobile. The first front toe was nudimentary, having no phalanges, but the fifth was rather less aborted. al. though clawless; the other three carried enormous claws, protected by reflected sheaths. The hind-foot is remarkable for the great backward projection of the cakaneum. and likewuef for the peculiar shape of the astragalus; the middle toe alone carrics a claw. this being of huge size, and ensheathed like those of the fore foot. No trace

(From Owen.)
Fic. 3.-Section of Upper Molar Teeth of Megahherimm.
of a bony armour in the skin has been detected: but, from the evidence of other genera, it may be assumed that the body was clothed in a coat of long. coarse hair. Although similar teeth occur in the phosphorite beds of South Carolina, which may have been transported from elsewhere. no undoubted remains of Miegathertum are known from North America.

The eypical species ranged from Argentina and Chili to Braxil. For certain small ground-sloths from Patagonia, with Mempheriumlike teeth, see Mylodon.
(R. L.*)

MEGHNA, a river of India. It forms, in the lower part of its course, the great estuary of the Bengal delta, which conveys to the sea the main body of the waters of the Ganges and the Brahmaputra, which unite at Goalanda in Faridpur district. The united waters, turbid and of greal depth, are sometimes split into hall a dozen channels by sand-banks, sometimes spread into 2 wide sheet of water. 1 The river enters the sea by four principal mouths, enclosing the three large islands of Dakshin Shahbazpur, Hatia and Sandwip. It is navigable by native boats and river steamers all the year; but the navigation is difficult and sometimes dangerous on account of shifting sand-banks and snags, and boisterous weather when the monsoon is blowing. The most favourahle season is bet ween November and February. Alluvion and diluvion are constantly taking place, especially along the seaboard, and in Noakhali district the land is said to bave made rapid advance on the sea; while the islands lringing the mouth are annually being cut away and redeposited In fresh shapes. The regular rise of the tide is from 10 to 18 ft ., and at springs the sea rushes up in a dangcrous bore. It is greatest at the time of the biennial equinoxes, when navigation is sometimes impeded for days togetber. The tidal wave advances like a wall topped with foam of the height of nearly 20 ft ., and at the rate of 15 m . an hour; in a few minutes it is past, and the river has changed from ebb to flood tide. A still greater danger is the "storm wave" which occasionally sweeps up the Meghna under a cyclone.

MEHADIA, a market town of Hungary, in the county of Krassó-Szöreny, 287 m . S.E. of Budapest by rail. Pop. (1900), 2492. The town is the site of the ancient Roman colony Ad Mediam. near which passed the Roman road from the Danube to Dacia. It contains the ruins of a fortress, and other Roman remains. In its neighbourhood are the famous Hercules baths (Hungarian, Herkulesfirdo). These are situated in a narrow rocky ravine in the valley of the Cserna, where there are 22 hot springs, of which nine are in usc, the most powerful being the Hercules spring. The springs are all strongly impregnated with
salts of sulphur, iodine, bromine and chlorine, and their average temperature is 70° to $145^{\circ} \mathrm{F}$. They were famous in the Roman period under the name of Thermace Herculis or Fontes Herculis. Their popularity is attested by numerous inscriptions and relics. After the fall of the Roman Empire they fell into disuse until 1735 , but in modern times they have been much frequented.

SEHEMET ALI ($1769-1849$), pasha and afterwards viceroy of Egypt, was born at Kavala, a small scaport on the frontier of Thrace and Macedonia. His father, an Albanian, was an aga, a small yeoman farmer, and he himself lived in his native town for many years as a petty official and trader in tobacco. In 1998 he became second in command of a regiment of bashi-bazouks, or volunteers, recruited in his neighbourhood to serve against Napolcon in Egypt. He took part in the battle of Aboukir (July 25, 1799), was driven into the sea with the routed Turks, and was saved from drowning by the gig of the British admiral, Sir Sidney Smith. In 1801 be returned to Egypt, in command of his regiment, and on the oth of May distinguished himself by heading a bold cavalry charge at the batlle of Rahmanieh. In the troubled years that followed, Mehemet Ali, leader of a compact body of Albanian clansmen, was in the best position to draw advantage from the struggle for power between the Mamelukes and the representatives of the Porte. In 1803 he cast in his lot with the former; in 1804 he turned against them and proclaimed his loyalty to the sultan; in 1805 the sheiks of Cairo, in the hope of putting a stop to the intolerable anarchy, elected him pasha, and a year latct an imperial firman confirmed their choice. The disastrous British expedition of 1807 followed: and while at Constantinopte the prestige of the sultan was being undermined by the series of revolutions which in 1808 brought Mahmud II, to the throne. that of Mehemet Ali was enhanced by the exhibition at Cairo of British prisoners and an avenue of stakes decorated with the heads of British slain.

The situation revealed to the astute Albanian boundless possibilitics for gratifying his ambition. In spite of his chance victories, be was too shrewd an observer not to recognize the superiority of European methods of warfare; and as the first step towards the empire of which he dreamed he determined to create an army and a fleet on the European model. In 1808 the building and organizat ion of the navy was begun with the aid of French officers and engineers. In 1811 the massacre of the Mamelukes left Mehemet Ali without a rival in Egypt, while the foundations of his empire beyond were laid by the war against the Wahhabis and the conquest of the holy cities of Mecca and Medina. The WahhäbI War, indeed, dragged on till 1818 , when Ihrahim (q.v.), the pasha's son, who in 1816 had driven the remnant of the Mamelukes into Nubia, brought it to an end. This done, the pasha tutned bis attention southward to the vast country watered by the Upper Nile. In 1820 the oasis of Siwz was subdued by his arms; in 1823 he laid the foundations of Khartum.

By this time Mehemet Ali was the possessor of a powerful feet and of an army of veterans disciplined and drilled by European officers. To oblain these money had been necessary: and to raise money the pasha had instituted those internal "reforms" -tbe bizarre system of state monopolies and the showy experiments in new native industries which are described in the article Egypt (q.⿻.). The inherent viciousness of these expedients had, however, not as yet been revealed by their inevitable results, and Mebemet Ali in the eyes of the world was at once the most enlightened and the most powerful of the sultan's valis. To Mahmud II., whose whole policy was directed to strengi hening the authority of the ceneral power, this fact would have sufficed to make bim diserust the pasha and desire his overthrow; and it was sorely against his will that, in 1822, the ill-success of his arms against the insurgent Greeks forced him to summon Mchemet Ali to his aid. The immediate price was the pashalik of Crete; in the event of the victory of the Egyptian, arms the pashaliks of Syria and Damascus were to fall to Mehemet All, that of the Morca to his son Ihrahim. The part played by Mehemet Ali in the Greek War is described elsewhere (see Turk.r: Hidery; Geeece; History; Guese Independence, Waz or;

Itramin). The intervention of the powers, culminating in the shattering of the Egyptian fleet at Navarino (g.v.), robbed him of his reward so far as Greece was concerned; the failure of his arms in face of this intervention gave Sultan Mahmud the excuse be desired for withholding the rest of the stipulated price of his assistance.

This disappointment of his ambition would not perhaps in itself have sufficed to stir Mehemet Ali to revolt against his master; but it was ominous of perils to come, which the astute pasha thought it wise to forestall. The sultan's policy had been coasistently directed to crushing the overgrown power of his vaseals; in the spring of 1831 two rebellious pashas, Hussein of Bosnia and Mustafa of Scutari, had succumbed to his arms; and, since he was surrounded and counselied by the personal enemies of the pasha of Egypt, it was likely that, so soon as he should leed himself strong enough, he would deal in like manner with Mehemet Ali. It was to anticipate this peril that Mehemet Ali determined himself to open the struggle: on the $15 t$ of November 1831 a lorce of 9000 Egyptian infantry and 2000 cavalry crossed the frontier into Syria and met at Jaffa the fleet which brought Ibrahim as commander-in-chief. The combined forces at once laid siege to St Jean d'Acre.
The stubborn resistance of the garrison delayed Ibrahim's progress; and, meanwhile, wild rumours went abroad as to Mehemet Ali's intentions. He was master of the holy cities, and the official Moniteur Olloman denounced his supposed plan of aiming at the caliphate in collusion with the sherlf of Mecca. As lor the pasha himself, he loudly disclaimed any such disloyal pretensions; his aim was to chastise Abdulla, pasha of Acre, who had harboured refugees from his "reforms"; to overthrow Khusrev. who had encouraged him in his refusal to surrender them; to secure the fulfilment of the sultan's promise with regard to Syrla and Demascus. Mahmud, on the other hand, was torn between hatred of the pasha and hatred of the Christian powers which had forced him to make concessions to the Greeks. Voices urged him to come to terms with Mehemet Ali, secure peace in Islam, and turn a united face of defiance against Europe; and for a while he harboured the idea. He was conscious of bis own intense unpopularity, the outcome of his efforts at reform; he knew thet in popular opinion Mehemet Ali was the champion of Islam against the infidel caliph, and that the issue of a struggle with him was more than doubtful. He was hampered by the unpaid debt to Russia; by unrest in Bosnia and Albania; above all, by the revolt of the Greek Islands, which had left his navy, deprived of its best sailors, in no condition to dispute the Egyptian command of the sea. In the end, however, his pride prevailed; in April 1833 the Turkish commander-jn-ehief Husscin Pasha left Constantinople for the front; and in the third week in May the ban of outlawry was launched against Mehemet Ali.

Meanwhile. Ibrahim had occupied Gaza and Jerusalem as well as Jafia; on the 27th of May, a few days after the publication of the ban. Acre was stormed; on the 1 gth of June the Egyptians occupied Damascus. Ibrahim pressed on with characterisic rapidity. his rapid advance being favoured by the friendly attitude of the various sections of the Syrian population, whom he had been at pains to conciliate. He defeated the Ottoman advance-guard at Homs on the oth of July and at Hamah on the 11th, entered Aleppo on the 17th, and on the 2gth inflicted a crushing defeat on the main Turkish army under Husscin Pasha at the pass of Beilan. All Syria was lost to the sultan, and the Egyptian advance-guard passed the mountain defiles into Adana in Asia Minor.

Mahmud, in desperation, now turned for help to the powers. Russian aid, though promptly offered, was toe double-edged a weapon to be used save at the last extremity. Ausirian diplomacy was, for the moment, that of Russia. France had broken her long tradition of friendship for Turkey by the occupation of Algiers. Great Britain, prodigal of protestations of goodwill, alone remained; and to her Mahmud tarned with a definite offer of an offensive and defensive alliance. Stratford Canning, who was at Constantinople for the purpose of superintending the eegotiations for the delimitation of tbe frontiers of Greece, wrote
home urging the government to accept, and suggesting a settlement of the Egyptian question which foreshadowed that of 1841 . Palmerston, however, did not share Canning's bellef in the possible rogeneration of Turkey; he heid that an isolated intervention of Great Britain would mortally offend not only Russia hut France, and that Mehemet Ali, disappointed of his amhitions, would find in France a support that would make him doubly dangerous. ${ }^{2}$

In the autumn Sultan Mahmud, as a last independent effort, despatched against Ibrahim the army which, under Reshid Pasha, had been engaged in pacifying Albania. The result was the crowning victory of the Egyptians at Konia (Dec. 21). Tbe news reached Constantinople at the same time as Count Muraviev arrived on a special mission from the tsar. The Russian offers were at once renewed of a squadron of battleships and of a land force for the protection of the capital. Efforts were made to escape the necessity of accepting the periious aid. Ottoman agents, backed by letters from the French charge d'affaires, were sent to Mehemet Ali and to Ibrahim, to point out the imminence of Russian intervention and to offer modified terms. Muraviev himself went to Alexandria, where, backed by the Austrian agent, Count Prokesch-Osten, he announced to the pasha the tsar's immutable hatred of rebels. Mchemet Ali merely protested the. complete loyalty of his intentions, Ibrahim, declaring that as a soldicr he had no choice but to obey his father's orders, advanced to Afium. Kara hissar and Kutaiah, whence he wrote to the sultan asking his gracious permission to advance to Brusa. He was at the head of $, 00,000$ men, well organized and flushed with victory; the Ottoman army survived only as demoralized rabble. Panic seized the Seraglio; and at the beginning of February the assistance of Russia was formally demanded. The representatives of France and Great Britain made every effort to secure a reversal of this fatal step; but, while they were threatening and promising. Russia was acting, and on the roth of February a Russian squadron entered the Bosporus.

In view of this it became necessary for the objecting powers to take a new line. The new French ambassador, Admiral Roussin, had arrived on the 17 th; he now, with the full concurrence of Mandeville, the British charge d'affaires, persuaded the Porte to invite the Russians to withdraw, undertaking that France would secure the acceptance by Mehemet Ali of the sultan's terms. A period of suspense followed. The Russian squadron was detalned by contrary winds, and before it could sail peremptory orders arrived from the tsar for it to remain until Ibrahim should have repassed the Taurus mountains. Meanwhile, Mehemet Ali had scomfully rejected the offers of the Porte; he would be content with nothing but the concession of his full demands-Syria, Icheli, Aleppo, Damascus and Adana. France and Great Briain now urged the sultan to yield, and in March a Turkish agent was sent to Ibrahim to offer the pashaliks of Syria, Aleppo and Damascus. The crisis was precipitated by the arrival on the sth of April of a second division of the Russian fleet in the Bospotus. and of a Russian force of 6000 men, which landed on the Asiat ic shore. The Porte now tried once more to modify its terms; but the Western powers were now Intent on getting rid of the Russians at all costs, and as a result of the pressure they brought to bear on both partics the preliminary convention of Kutaiah, conceding all the Egyptian demands, was signed on the 8 th of April, and Ibrahim began his withdrawal. The convention stipulated for the bestowal of the pashaiik of Adana on Ibrahim; but when on the 16 th he received the official list of appointments, he found that Adana had been expressly rescrved by the sultan. He at once arrested his march; but the pressure of famine in the capital, caused by the cutting of of supplies from Asia and the presence of the large Russian force, compelled Mahmud to yicld, and on the 3rd of May a firman ceded Adana to Ibrahim under the pretext of appointing him muhassil, or collector of the revenue.

When Lord Ponsonby, the new British ambassador, arrived at
' Canning's original memorandom is in the Foreign Office Reconds in the volume marked F.O. Turthey: Prom Sir Stratford Canning (August to (lecember: 18,2), It bears elaborate pencil notes in Palmeraton's handwriting, in part alresoy obliterated.

Constantinople on the 1st of May be found Russia practically in possession. Sultan Mahmud was to the last degree embittered against the powers which, with lively protestations of friendship, had forced him to bumiliate bimself before his hated vassal. Russia had given him deeds, not words; and to Russia he committed himsell. A further contingent of six or seven thousand Russians had arrived on the 22nd of April; Russian engineers were busy with the fortifications along the Straits; Russian agents alone were admitted to the sultan's presence. "It is manifest," wrote Lord Ponsonby, "that the Porte stands in the relation of vassal to the Russian government." $"$ The relation was soon to be yet more manifest. Before, on the gth of July, the Russian fleet, with the Russian troops on board, weighed anchor for the Black Sea, there was signed at the palace of Unkiar Skelassi the famous treaty (July 8, 1833) which. under the guise of an offensive and defensive alliance, practically made Russia the custodian of the gates of the Black Sea. (See Turkey: History.)

Mehemet Ali had triumphed, but he was well aware that he held the fruits of his victory by a precarious tenure. ' He was still but a vali among the rest, bolding bis many pashaliks nominally by the sultan's will and subject to annual reappointment; and he knew that both his power and his life would be forfeit so soon as the sultan should be strong enough to deprive him of them. To achieve this one end had, indeed, become the overmastering passion of Mahmud's life, to defeat it the object of all Mehemet Ali's policy. So early as 1834 it seemed as though the struggle would be renewed; for Mehemet Ali had extended to his new pashaliks his system of monopolies and conscription, and the Syrians, finding that they had exchanged Turkish whips for Egyptian scorpions, rose in a passion of revolt. It needed the intervention of Mehemet Ali in person before, in the following year, they were finally subdued. Meanwhile it had needed all the diplomatic armoury of the powers to prevent Mahmud hastening to the assistance of his "oppressed subjects." The threats of Great Britain and France, the failure of Russia to back him up, induced him to refrain; but sooner or later a renewal of the war was inevitable; for the sultan, with but one end in view, was reorganizing his army, and Mehemet Ali, who in the autumn of 1834 had assumed the style of viceroy and sounded the powers as to their attitude in the event of his declaring his complete independence, refused to continue to pay tribute which he knew would be used against himself.

The crisis came in 1838. In March the Egyptians were severely defeated by the revolted Arabs of the Hauran; and the Porte, though diplomatic pressure kept it quiet, hurried on prepara. tions for war. Mehemet Ali، too, had small reason for postponing the conflict. The work of Moltke, who with other German officers who had been engaged in organizing the Turkish army, threatened to destroy his superiority in the ficld; the commercial treaty signed by the Ottoman government with Great Britain (Aug. 16), which applied equally to all the territorics under his rule, threatened to destroy at a blow the Jucrative monopolies which supplied bim with the sinews of war. Months of suspense followedi for the powers had threatened to cast their weight into the scale against whiehever side should prove the aggressor, and Mehemet All was too astute to make the first move. In the end Mahmud's passion played into his hands. The old sultan thirsted to crush his rebellious vassal, at any cost; and on the 21 st of April 1830 the Ottoman army, stationed at Bir on the Euphrates, crossed the stream and invaded Syria. On the 23 rd of June it was attacked and utterly routed by lbrahim at Nezib. On the ist of July the old sultan died, unconscious of the fatal news, leaving his throne to Abd-ul-Mejid, a lad of sixteen. To complete the desperateness of the situation the news reached the capital that Ahmed Pasha, the Ottoman admiral-in-chief, had sailed to Alexandria and surrendered his fieet to Mehemet Ali, on the prelext that the sultan's advisers were sold to the Russians.

So far as the forces of the Otioman Empire were concerned,
${ }^{1}$ From Lord Ponsonby, F.O., Twarky, May 22, 1833.

Mehemet Ali was now absolute master of the situation. The grand vizier, in the sultan's name, wrote beseeching him to avoid the further shedding of Mussulman blood, oftering him a iree pardon, the highest honours of the state, the hereditary pashalik of Egypt for himself, and Syria for Ibrahim until he should succeed his father in Egypt. Mehemet Ali replied diplomatically; for, though these offers fell far short of his amhitions, a studious moderation was essential in view of the doubtiul altitude of the European powers.

On the $27^{\text {th }}$ of July the ambassadors of the five powers presented to the Porte a joint note, in which they declared that an agreement on the Eastern Question had been reached by the Give Great Powers, and urged it "to suspend all definite decision made without their concurrence, pending the effect of their interest in its welfare." The necessity for showing a united front justified the diplomatic inexactitude; but the powers were agreed on little except the need for agreement. Especially was this need realized by the British government, which foared that Russia would seize the occasion for an isolated intervention under the treaty of Unkiar Skelessi. On the est of August Palmerston wrote to Ponsonby impressing upon him that the representatives of the powers, in their communications with the Porte, " should act not only simultaneously in point of time, but identically in poinf of monner "-a principle important in view of later developments. Yet it was a task all but impossible to preserve this appearance of unanimity in view of the divergent views within the concert. France and Great Britain had hitherto acted together through common opposition to the supposed designs of Russia. Austria, to0, now that the revolutionary spectres of 1830 had been laid, was reverting to her traditional opposition to Russiz in the affairs of the Near East, and Metternich supported Palmerston's proposal of an international conference at Viense. Everything depended on the altitude of the emperor Nicholas. This was ultimately determined by his growing distrust of Austria and his perennial hatred of the democratic regime of France. The first caused him to reject the idea of a conference of which the activities would have been primarily directed against Russia; the second led him to drive a wedge into the AngloFrench entente by making direct overtures to Great Britain. Palmerston listened to the tsar's proposals, conveyed through Baron Brunnow, " with surprise and admiration." The emperor Nicholas was prepared to accept the views of Great Britain on the Turco-Egyptian question; to allow the Treaty of Unkiar Skelessi to lapse; to act henceforth in the Ottoman Empire only in concert with the other powers, in return for an agreement closing the Dardanelles to the war-ships of all nations and to extend the same principle to the Bosporus. Finally, Brunnow was empowered to arrange a coalition of the great powers with a view to the settlement of the Egyptian question; and in this coalition the tsar was willing, for political reasons, that France should be included, though be stated his personal preference for her exclusion.

To these views Austria and, as a natural consequence, Prussia acceded without difficulty. The attitude of France was a more doubtful quantity. In France Mehemet Ali had become a popular bero; under him French civilization had gained a foothold in Egypt; he was regarded as invincible; and it was hoped that in alliance with bim French influence in the Mediterranean would be supreme. Palmerston, on the other hand. believed that the Ottoman empire would never be secure until "the desert had been placed between" the pasha of Egypt and the sultan; and the view that the coalition should be directed against Mehernet Ali was shared by the other powers. In the circumstances France should either have loyally accepted the decision of the majority of the concert, to which she had committed herself by signing the joint note of the 27th of July, or should have frankly stated her intention of taking up a position outside. The fact that she did neither led to a crisis that for a moment threatened to pluage Europe into war.

For nearly a year the diplomatic pourparlers continued without an agreement being reached; France insisted on Mehemel Ali's receiving the hereditary pashalik of Syria as well as that of

Eypt, a proposition to which Palmeratom; though sincerely andious to preserve the Ando. French andents, refused to agree. The temsion of the situation was increased when, on the 20th of February i840, Thiers came into power. The diplomacy of Guirot, backed now by Austris and Pruasia, had succeoded in persunding Palmerston to concode the principle of allowing Mehemet Ali to roceive, besides Egypt, the pashalik of Acre as far as the frontien of Tripoli and Damascus (May 7). Thiers, bowever, refused to listen to any suggeation for depriving him of any part of Syria; but, instead of breaking off the correspondence and lea ving the concort, he continuod the negotiations, and before long circumstances came to the knowledge of the British government which seernod to prove that be was only doing 80 with a view to gaining time in order to secure a separate settlement in accordance with French views.
The opportunity for thin aroce from a change in the situation at Constantinople, where the dismisal of Khuarev Paeha had, in Mchemet Ab's view, removed the main obetacle to his reconcilia, tion with the sultan. He proposed to the French concoul-general at Alexandria to make advances to the Porto, and suggestod sending back the Ottoman fleat as an etrruest of his good intentions, a course which, it was boped, " would kead to a dirocd and amicable arrangement of the Turco-Egyptinal queation." On the 2 rst of June his envoy, Sami Bey, actually arrived at Constantinople, ostensibly to congratulate the sultan on the birth of a deughter, really to make use of the French inftucnce now supreme at the Porte in order to effect a setlement. In the circumetances the proper course for Thiers to bave pursued would have been to have commuxicated to the powers, to whom he was bound by the moral engagement of the 27 th of July 1839 , the new conditions arising out of Mehemet Ali's offer. Instead he wrote to Guisot, on the 3oth of June, saying that the situation argued strongly in favour of poatponing any docistion in London, adding: "I have written to Alexandria and Constantinople to counsel moderation on both sides; but I have been careful to forbid the agents to enter on their own account, and as a French undertaking, on a negotiation of which the avowed aim is a direct arrangement. If such an enterprise is imputed to u, you will be in a position to deny it."

The discovery of what seemed an underhand intrigue on the part of France produced upon the powers cractly the effect that Thiers had foreseen and deprecated. They regarded it as an attempt to ruin the work of the concert and to secure for France 2" complete individual triumph" at Alexandria and Constantinople; and their countermove was to sign at London on the 15 th of July, without the concurrence of France, a convention with the Porte for the settlement of the affairs of the Levant. By this instrument it was agreed that the terms to be offered to Mehemet Ali having been concerted with the Porte, the signatory powers would unite their forces in order to compel the pasha to accept the setilement. As to the terms to be offered, it was arranged that, in the event of Mehemet Ali yielding within ten days, be should receive the hereditary pashalik of Egypt and the adminiuration for life of southern Syria, with the title of Pasha of Acre and the possession of the fortrese of St Jean d'Acre. At the end of ten days, should he remain obdurate, the offer of Syria and Acre would be withdrawn; and if at the end of another ten days be was still defiant, the sultan would bold himseli at liberty to withdraw the whole offer and to take such measures as his own interests and the counsels of his allies might suggest to him.

The news of this "mortal affront" to the honour of France caused immense excitement in Paris. The whole press was clamorous for war; Thiers declared that the alliance with Great Britain was shattered. and pressed on warlike preparations; even Louis Philippe was carried away by the fever. The immediate effect was that Mehemet Ali, confident of French assistance, maintained a defiant attitude. The situation, however, was rapidly changed by the unexpected results of the armed intervention of the Alties. The appearance of the combined British, Austrian and-Russian fleets, under Sir Charles Napier, off Beirut (Aug. ni) was the slgnal for a general rising of the Syrians against Ibrahim's tyranoy. On the rith of
x viil 2 *

September, Suldiman Pasha not having obeyed the summons to evacuate the town, the hombardment was begun, and Ottoman troops were landed to co-operate with the rebels. On the 3rd of October Beirut fell; and Ibrahim, cut off from his communications by sea, and surrounded by a hostile population, began a hurried retreat southward. On the 3 rd of November Acre surreadered to the allied fleet. Mehemet Ali's power in Syria had collapeed like a pricked bubble; and with it had gone for ever the myth of his humane and enlightened rule. The sole question now was whether be should be allowed to retain Egypt itself.

On the isth of September the sultan, who had broken off all negotiations with Mehemet AH on receipt of the news of the Syrian revolt, acting on tho-advice of Lord Ponsonby, declared the pasha deposed, on the ground that the term allowed by the Convention of London had expired, and nominated his successor. Mehernet Ali received the news with his accustomed sang-froid, observing to the consuls of the four powers, who had corne to notily their own removal, that "such denunciations were nothing new to him; that this was the fourth, and that he boped to get over it as well as he had done the other three, with the help of God and the Prophet." In the end his confidence proved to be justified. The mews of the events in Syria and especially of the deprivation of Mehemet Ali had produced in France what appeared to be an exceedingly dangerous temper; the French government deciared that it regarded the maintenance of Mehomet AH in Egypt as essential to the European balance of power; and Louis Philippe sought to make it clear to the British government, through the ling of the Belgians, that, whatever might be his own desire to maintain peace, in certain events to do so would be to risk his throne. Palmerston, indeed, who did not believe that under the Bourgeois Monarchy France would translate her brave wofds into action, was in favour of settling the Turco-Egyptian question once for all by depriving Mehemet Ali of Egypt as well. The influences against him, however, were too powerful. Metternich protested against a course which would result, in his opinion, either in a war or a revolution in France; King Leopold enlarged on the wickedness and absurdity of riskling a European war for the sake of putting an end to the power of an old man who could have but few years to live; Queen Victoria urged ber minibters to come to terms with France and relieve the emberrasements of the "dear King "; and Lord Molbourne, with the majority of the cabinet, was in favour of compromise. When therefore, on the 8th of October, Guizot, in ma interview with Palmerston, presented what was prectically an ultimatum on the part of Frince, "it was determined that this intimation should be met in a friendly spirit, and that Lord Palmerston should see the Ministers of the other powers and agree with them to acquaint the French that they with England would use their good offices to induce the Poite not to insist on the deprivation of Mehemet Ali so far as Egypt is concerned." In accordance with this Palmerston instructed Ponsonby to press upon the sultan, in the event of Mehemet Ali's speedy submission, not only to withdraw the sentence of deprivation but to confer upon him the hereditary pashalik of Egypt.

For a while it seemed that even this would not avert a European war. Thiers still maintained his warlike tone, and the king's speech prepared by him for the opening of the Chambers on the 28th of October was in effect a declaration of defiance to Europe. Louis Philippe himself, however, was not prepared to use this language; whereupon Thiers resigned, and a new cabinet was formed under Marshal Soult, with Guizot as foreign secretary. The equivocal tone of the new speech from tbe Throne raised a storm of protest in the Chambers and the country. It was, however, soon clear that Palmerston's diagnosis of the temper of the French bourgeois was correct; the clamour for war subsided; on the 4th of December the address on the Egyptian Question proposed by the government was carried, and peace wat assured. Nine days earlier Sir Charles Napier had appeared withe British squadron off Alexandria and, partly by persuasion, partly by threats, had induced Mehemet Ali to submit to the sultan and to send back the Ouoman fleet, in return for a guarantee
of the hereditary pashalik of Egypt. This arrangement was rstified by Palmerston; and all four powers now combined to press it on the reluctant Porte, pointing out, in a joint note of the 3oth of January 1841, that "they were not conscious of advising a course out of harmony with the sovereignty and legitimate rights of the sultan, or contrary to the duties imposed on the Pasha of Egypt as a subject appointed by His Higbness to govern a province of the Ottoman Empire" This principle was elaborated in the firman, issued on the $13^{\text {th }}$ of February, by which the sultan conferred on Mehemet Ali and his heirs by direct descent the pashalik of Egypt, the greatest care being taken not to bestow any rank and authority greater than that enjoyed hy other viziers of the empire. By a second firman of the same date Mehemet Ali was invested with the government of Nubia, Darfur, Khordofan and Sennaar, with their dependencies. On the roth of June the firman was solemnly promulgated at Alexandrin.

Thus ended the phase of the Egyptian Question with which the name of Mehernet Ali is specially bound up. The threatened European conflict had been averted, and presently the wounded susceptibilities of France were healed by the invitation extended to her to take part in the Straits Convention. As for Mehemet Ali himself, he now passes of the stage of history. He was an ald man; his mind was soon to give way; and for some time before his death on the and of August 1849 the reins of power were held by his son and successor Ibrahim.

Prohably no Oriental ruler, not even excepting Ali of Iannina, has ever stirred up so much interest among his contemporaries as Mehemet Ali. The spectacle of an Eastern despot apparently advancing on the lines of European progress was in itself as astonishing as new. Men thought they were witnessing the dawn of a new era ia the East; Mehemet Ali was hailed as the most beneficent and enlightened of princes; and political philosophers like Jeremy Bentham, who sent hint elaborste letters of good advice, thought to find in him the means for developing their theories in virgin soil. In fact the pasha was an illiterate barbarian, of the same type as his countryman Ali of Lannina, courageous, cruel, astute, full of wiles, avericious and boundlessly ambitious. He never learned to read or write, though late in life he mastered colloquial Arabic; yet those Europeans who were brought into contact with him praised alike the dignity and charm of his address, his ready wit, and the astonishing perspicacity which enahled him to read the motives of men and of governments and to deal effectively with each situation as it arose.
The latest account of Mehernet Ali and the Eiuropean crisis arising out of his revolt is that by W. Alison Phillipe in vol. x ch. xvii. of the Cambridge Modern History (1907). The bibliography attached to this chapter (p. 852) gives a list of all the principal published documents and works, together with some analysis of the unpublished Foreign Office records bearing on the subject. Of the works mentioned C. de Freycinet's La Quastion d'Esypto (Paris, 1905) gives the most authoritative account of the diplomatic developments.
(W. A. P.)

MEHIDPUR, or MamDPUR, a town of India, in Indore state of Central India, on the right bank of the Sipra, 1543 ft . above the sea, and 24 m . N. of Ujjain. Pop. (igoi), 668r. Though of some antiquity and frequented by Hindu pilgrims, it is best known for the battle fought in the neighbourhood on the 20th of December 1817, in which Sir John Malcolm defeated the army of Holkar. The result was the Treaty of Mandasor and the pacification of Malwa. Mehidpur was again the scene of some sharp fighting during the Mutiny. The British cantonment, placed here in 1817, was removed in 1882.

MhHOL ETIEIME HEARI (or ETIENNE NICOLAS) (17631817), French composer, whe born at Givet in Ardennes, on the 24 th of June 1763. His father being too poor to give him a regular nuusical education, his first ideas of art were derived from a poor blind organist of Givet; yet such was his aptitude that, when ten years old, be was appointed organist of the convent of the Recollets. In 1775 an abie German musician and organist, Wilhelm Hauser, was engaged for the monastery of Lavaldieu, a few miles from Givet, and Mrehul became his
occasional pupil. In 177^{8} he was taken to Paris by a millicary officer, and placed himself under Edelmann, a good musician and harpsichord player. His first attempts at instrumental composition in 1781 did not succeed, and he therefore turnod his attention to sacred and drsmatic music. Gluck gave him advice in his studies. After various disappointments during his efforts for six years to obtain, at the Grand Opera, a representation of his Cord ed Alonaso, he offered to the Opera Comique his Euphrosine at Coradin, which, being accepted and performed in 1790 , at once fixed his reputation. His opera of Stratonice was also received with enthusiasm in 1792. After several unsuccessful operas, his Adrien appeared, and added much to his fame, which was further increased by his three best works, Le Jeune Henri, Uthal and Jaseph, the finest of the series. Uthal was written for an archestra without violins. Mehul held a post as one of the four inspectors of the Paris Conservatoire, but this office made him feel continually the insufficiency of his early studies, a want which he endeavoured to remedy by incessant application. Timollon, Ariodout and Bion followed. Epicure was composed by Mehul and Cherubini jointly; but the superiority of the latter was evident. Méhul's next opera, L'Iraio, failed. After writing forty-two operas, besides a number of songs for the festivals of the republic, cantatas, and orchestral pieces of various kinds, his health gave way, from an affection oi the chest, and he died on the r8th of October 18 l 7 in Paris.
See Lives by Pougin (1889), Viellard (1859), and Quatremere de Quincey (1818).
MEIBOM, HEINRICH (1555-1625), German historian and poet, was born at Lerngo on the 4th of December 1555، and died on the 2oth of September 1625, at Helmstedt, where he had held the chair of history and poetry since 1583 . He was a writer of Latin verses (Parodiarmm horalianarum libri III. et sylvarum libri II., 1588); and his talents in this direction were recognized by the emperor Rudolph II., who ennobled him; but his claim to be remembered rests on his services in clucidating the medieval bistory of Germany.
His Opuscula aistorica ad res germanicas spectantia was edited and published in 1660 by his grandson, Heinrich Meibom (16381700), who was professor of medicine and then of history and poetry at Helmstedt, and incorporated his grandfather's work with his own Rerkm germanicaram scriplores (1688).

MEIDERICH, a town of Germany, in the Prussian Rhine province, $2 \frac{1}{2} \mathrm{~m}$. by rail N.E. of Ruhrort, whose river harbour is in great part within its confines. Pop. (1905), 40,822. Iron and steel works, coal-mines, sa w-mills, brick works, and machineshops furnish the principal occupations of the inhabitants. Meiderich, which is first mentioned in 874, was united with Duisburg in 1905.
See Graeber, Tausendjakrige Geschichte now Meiderick (1893).
MEIKTILA, a district and division in Upper Burma. The district is the most easterly of the districts in the dry zone, and has an area of $2183 \mathrm{sq} . \mathrm{m}$. It lies between Kyaukse, Myingyan, Yamesthin, and on the east touches the Shan States. It is a slightly undulating plain, the gentle slopes of which are composed of black "cotton" soil and are somewhat arid. The only hills above 300 ft . are on the slopes of the Shan hills The lake is the chief feature of the district. It is artificial, and according to Burmese legend was begun 2400 years ago by the grandfather of Gautama Buddha. It is 7 m . long, averages half a mile broad, and covers an area of $3^{\frac{1}{i}} \mathrm{sq}, \mathrm{m}$. With the Minhla and other connected lakes it irrigates a large extent of country.
There are small forest reserves, chielly of cutch Large numbers of cattie are bred. The chicf agricultural products are rice, sesamum, cotton, peas, maize, millet and gram. Pop. (1901), 252,305. Famines in 1891, 1895 and 1896 led to considerable emigration. The climate is healthy except in the submontane townships. The temperature rises to $100^{\circ} \mathrm{F}$. and over between the months of March and June, and the mean minimum in January is about 61°. The rainfall is uncertain (36.79 in. in 1893, 25.59 in 1891). The vast majority
of the population are Buddhists. The headquarters town, Mriximh, stands on the banks of the lake, which supplies good drinking water. Pop. (1901), 7203. A wing of a British regiment is stationed bere. A branch railway connects it al Thazi station with the Rangoon-Mandalay line, and continues westward to its terminus on the Irrawaddy at Myingyan.
The division includes the districts of Meiktila, Kyaukg, Yamezthin and Myingyan, with a total area of $10,852 \mathrm{sq} . \mathrm{m}$., and a population (1901) of 992,807, showing an increase of 10.2% in the preceding decade, and giving a density of 91 inhabitants to the square mile. All but a small portion of the division lies in the dry zone, and cultivation is mainly dependent on irrigation.

MEILHAC, HENRI (1831-1897), French dramatist, was born in Paris on the anst of February 1831, and while a young man began writing fanciful articles for the newspapers and mandevilles for the theatres, in a vivacious boulevardier spirit which brought him to the front. About 1860 he met Ludovic Halevy, and the two began a collaboration in writing for the stage which lasted for twenty years. An account of their wark is given under Halévy. Meilhac wrote a few pieces with lesser collaborators. In 1888 he was elected to the Academy. He died at Paris in 1898.

MEINBERG, a village and watering-place of Germany, in the principality of Lippe Detmold, situated in a pleasant valley under the Teutoburger Wald, 12 m . S.E. from Detmold by the railway to Atenbeken. Pop. (1905), 1300. The waters of Meinberg, which attract annually about 1200 visitors, are sulphur springs, and are used for drinking, bathing and inhalation. They became known in tbe 18 th century.
See Gilbert and Meisaner, Bad Meinberg und seine Kurmittel (Berlin, 1902).
MEIMEKE, JOHANN ALBRECET FRIEDRICH AUGUST ($1790-1870$), German classical scholar, was born at Soest in Westphalia on the 8th of December 1790. After holding educational.posts at Jenkau and Danzig, he was director of the Joachimsthal gymnasium in Berlin from 1826 to 1856. He died at Berlin on the 12th of December 1870 . He was distinguished in conjectural criticism, the comic writers and Alexandrine poets being his favourite authors.
His most important works are: Groecorwom comicorsem fragmenta (1839-1857, the first volume of which contains an essay on the development of Greek comedy and an account of its chief representatives); Aristophanes (1860); Analecta alexamdrina (1843, containing the fragments of Rhianus, Euphorion, Alexander of Aetolia, and Parthenius); Callimachue (1861): Theocritus, Bion, Moschus (3rd ed., 1856); Alciphron (1853); Strabo (2nd ed.,1866) and Virdicioc strabosianae (1852); Stobacus (1855-1863): Athenacus (1858-1867). See monographs by F. Ranke (1871), H. Sauppe (1872), tand E. Forstemano in Augemeine dextsche Biographic, XXI. (1885); also Sandya, Hist. Class. Schol. (1908), iii. 117 .
HEMMITGEN, a town of Germany, capital of the duchy of Sare-Meimingen, romantically situated in forests on the right bank of the Werra, 40 m . S. of Eisenach by rail. Pop. (1905), 15,989. It consists of an old town and several handsome soburbs, but much of the former has been rebuilt since a fire in 1874. The chief building is the Elisabethenburg, or the old ducal palace, containing several collections; it was built mainly about 1680 , although part of it is much older. Other buidings are the Henneberger Haus with a collection of antiquities, and the town church, with twin towers, built by the emperor Henry 11. in the 11th century. The theatre enjoyed for many years ($1875-1890$) a European reputation for its actors and scenic effects. The English garden, a beautiful public park, contains the ducal mortuary chapel and several monuments, including busts of Brahms and Jean Paul Richter.
Meiningen, which was subject to the bishops of Wurzburg ($1000-1542$), came into the possession of the duke of Sarony in 1583, having th the meantime belonged to the counts of Henneberg. At the partition of 1660 it fell to the share of Sesco-Atenberg, and in 1680 became the capital of SaxeMeiningen.
See E. Dobner, Bausteine su einer Geschichte der Stad! Meiningen (Meiniagen, 1902).

MEth, Jewish rabbi of the and century, was born in Asia Minor and according to legend was a deacendant of the family of Nero. He was the most notable of the disciples of Aqiba (q.v.), and after the Hadrianic repressions of A.D. 135 was instrumental in refounding the Palestinian schools at Usha. Among his teachers was also Elisha ben Abuya ($q \cdot v$.), and Meir continued his devotion to Elisha after the latter's apostasy. He is said to have visited Rome to rescue his wife's sister. His wife, Beruriah, is often cited in the Talmud as an exemplar of gencrosity and faith. She was a daughter of the martyr Hananiah ben Teradion. On one occasion MeIr, who had been frequenuly troubled by his ungodly neighbours, uttered a prayer for their extinction. "Nay," said Beruriah, "it is written (Ps. civ. 35) let sims be hlotted out, not sinners "; whereupon MeIr prayed for the evildoers' conversion. But she is best known for her conduct at the sudden death of her two sons. It was the Sabbath, and Melr returned home towards sunsol. He repeatedly asked for tbe children, and Beruriah, after perrying his question, said: "Some time ago a precious thing was left with me on trust, and now the owner demands its return. Must I give it back ?" "How can you question it?" rejoined her husband. Beruriah then led bim to the bed whereon were stretched the bodies of the children. Meir burst into tears. But the wife explained that this was the treasure of which she bad spoken, adding the text from Job: "The Lord gave and the Lord hath taken away; blessed be the name of the Lord." MeIr himself was the author of many famous sayings: "Look not to tbe flask, but to its contents. Many a. new vessel contains old wine, but there are old casks which do not contain even new wine." "Condole not with a mourner while his dead is laid out before him." "Man cometh into the world with closed hands as though claiming the ownership of all things; but be departeth hence with hands open and limp, as if to show that he taketh naught with him." "What God does is well done." "The tree itself supplies the handle of the are which cuts it down." His wisdom was proverbial, and to him was in particular assigned an intimate acquaintance with fahles, and he is reported to have known 300 Fox-Fables. "With the death of Rabbi MeIr," says the Mishnah (Sota ix 15), "Fabulists ceased to be."
MeIr's wide sympathies were shown in his inclusion of all mankind in the hopes of salvation (Sifra to Leviticus xviii. 5). He was certainly on friendly terms with heathen scholars Mefr contributed largely to the material from which finally emerged the Mishnah. His dialectic skill was excessive, and it was said jestingly of him that he could give 150 reasons to prove a thing clean, and as many more to prove it unclean. His balanced judgment fitted him to carry on Aqiba's work, sifting and arranging the oral traditions, and thus preparing the ground for the Mishnaic Code.

MeIr left Palestine some time before his death, owing to disagreements between him and the Patriarch. He died in Asia Minor, but his love for the Holy Land remained dominant to the last. "Bury me," be said," by the shore, so that the sea which washes the land of my fathers may touch also my bones." The tomb shown as that of Meir at Tiberias is induthentic.
Sce Bacher, A gada der Tannaiten, vol. II. ch. i.; Graetz, Hisfory of the Jewas (Eng trans.), vol. 11. ch. xvi. ; Jewish Encyedopedia (whence some of the above cited sayings are quoted), viit. 432-435. Oa
Meir's place in the history of the fahie, see J. Jacobs, The Fables of Aesop, i. yII, \&c. (see Index s.v.).
(I. A.)

MBIR OF ROTHEMBURG (c. 1215-1293), German rabbi and poet, was born in Worms c. 1215 . He played a great part in organizing the Jewish communal life of the middle ages. In 1286 for some unknown reason he was thrown into prison in Alsace, where he remained until his death in 1293 . His friends offered to find a ransom, but he declined the suggestion, fearing that the precedent would lead to extortion in other cases. He wrote glosses to the Talmud (tosaphot) and many Respousa of the utmost value for historical research. Through his disciples Asher ben Yebiel and Mordecai ben Hille, Meir exercised much
influence on subsequent developments of Judaism. He was also i liturgical poet of considerable merit. One of his finest elogies is translated into English in Nina Davis's Songs of Exike.
Sce L. Ginzberg, Jewish Encyclopedia, viii. 437-440. (I. A.)
LEIRINGEN, the principal village on the Hasle (or the upper Aar) valley in the Swiss canton of Bern. It is built at a height of 1969 ft . on the right bank of the Aar and on the level floor of the valley, but is much exposed to the south wind (or Fohn), and has several times been in great part destroyed by fire (1632, 1879 and 1891). It has 3077 inhabitants, all German-speaking and Protestants. The parish church is ancient, and above it are the ruins of the medieval castle of Resti. Meiringen is frequented by travellers in summer, as it is the meeting-point of many routes: from Interlaken by the lake of Brienz and Brienz, from Lucerne by the Branig railway (28 m .), from Engelberg by the Joch Pass (7267 ft.), from the upper Valais by the Grimsel Pass (7100 ft .), and from Grindelwald by the Great Scheidegg Pass (6434 ft .). Many waterialls descend the hill-sides, the best known being the Reichenbach and the Alpbach, while the great gorge plerced by the Aar through the limestone barrier of the Kirchet is remarkable. The village and valley belonged of old to the emperor, who in 1234 gave the advowson to the Knights of St Lazarus, by whom it was sold in 1272 to the Austin Canons of Interiaken, on the suppression of whom in 1528 it passed to the state. In 1310 the emperor mortgaged the valley to the lords of Weissenburg, who sold it in 1334 to. the town of Bern.
(W. A. B. C.)

MEISSEN, a town of Germany, in the kingdom of Saxony, on both banks of the Elbe, 15 m . N.W. from Dresden, on the raitway to Leipzig via Doxbeln. Pop. (1905), 32,336. The old town lies on the left bank of the river, between the streams Meisse and Triebisch, and its irregular hilly site and numerous fine old buildings make it picturesque. Most of its streets are narrow and uneven. The cathedral, one of the finest early Gothic buildings in Germeny, stands on the Schlossberg, 160 ft . above the town. It is said to have been founded by the emperor Otto the Great, hut the present building was begun in the $13^{\text {th }}$ century and was completed about 1450 . Here are tombs of several rulers and princes of Saxony, including those of Albert and Ernest, the founders of the two existing branches of the Saxon house. Tbe cathedral also contains works by Peter Vischer and Lucas Cranach and several other interesting monuments. A restoration, including the rebuilding of the two towers, was carried out in 1903-1908. Adjoining the cathedral is the castie, dating from 1471-1483, but restored and named the Albrechtsburg about 1676. Another restoration was undertaken after 1860, when 1 series of historical frescocs was painted upon its walls. A stone building of the 13th century connects the Schlossberg with the Afraberg, which owes its name to the old convent of St Afra. The convent was suppressed by Duke Maurice in 1543, and was by him converted into 2 school (the Firsten Schule), one of the most renowned classical schools in Germany, which counts Lessing and Gellert among its former pupils. Ouber public buildings of interest are the town-hall, built in 1479 and restored in 1875; the fine town church, called the Franenkirche or Marienkirche; the Nikolaikirche and the Afrakirche. The Franciscan church is now used as a museum of objects connected with the history of Meissen. Since 1710 Meissen has been the seat of the manufacture of Dresden china. Till 1860 the royal porcetain factory was in the Albrechtsburg, but in that year it was transferred to a large new building it the Triebischtal, near the town. Meiseen also contains iron foundries, factories for making earthenware stoves and pottery, sugar refineries, breweries and tanneries. A considerable trade is carried on in the wine produced in the surrounding vineyards, and other industries are spinning and weaving.

Meissen was founded about 920 by Henry the Fowier (see Meissen, Margraviate). From 968 to 1581 Meissen was the seat of a line of bishops, who ranked as princes of the empirc. During the 1 sth century the town suffered greatly from the Husaites, and it was captured by tbe imperial troops during
the war of the league of Schmalkalden, and again in tbe Thirty Years' War. In 1637 it suffered much from the Swedes, and in 1745 it fell into the hands of the Prussians. The bridge over the Elbe was destroyed by the French in 1813, and again by the Saxons in June 1866 in order to impede the march of the Prussians on Dresden. Colln on the right bank of the Elbe was incorporated with Meissen in 1901.
See Reinhard, Die Stadt Meissen, ihre Merkwürdigkeiten (Mcissen, 1829); Loose, Ah-Meissen in Budern (Meissen, 1889); Jaschke, Mcissen wnd seine Kirchen (Leipzig. 1902); and Gerudorf, Urkundenbuch der Stadl Meissen (Leiprig, 1873).
HEISSEN, a German matgraviate now merged in the kingdom of Saxony. The mark of Meissen was originally a district centring round the castle of Meissen or Misnia on the Middle Elbe, which was built about 920 by the German king Henry I., the Fowler, as a defence against the Slavs. After the death of Gero, margrave of the Saxon east mark, in 965 , his territory was divided into five marks, one of which was called Meissen. In 985 the emperor Otto III. bestowed the office of margrave upon Ekkard I., margrave of Mersehurg, and the district comprising the marks of Meissen, Merseburg and Zeitz was generally known as the mark of Meissen. In 1002 Ekkard was succeeded by his brother Gunzelin, and then by his sons Hermann I. and Ekkard II. Under these margraves the area of the mark was further increased, but when Ekkard 11. died in 1046 it was divided, and Meissen proper was given successively to William and Otto, counts of Weimar, and Egbert II., count of Brunswick. Egbert was a rival of the emperor Henry IV. and died under the imperial ban in ra89, when Meissen was bestowed upon Henry I., count of Wettin, whose mother was a sister of the margrave Ekkard II. Henry, who already ruled lower Lusatia and the new and smaller Saxon east mark, was succeeded in 1103 by his cousin Thimo, and in 1104 by his son Henry II., whose claim on the mark was contested by Thimo's son Conrad. When Henry died without issue in 1123 Meissen was given hy the emperor Henry V. to Hermann II., count of Wintzenburg; but, renewing his claim, Conrad won the support of Lothair, duke of Saxony, afterwards the emperor Lothair II., and obtained possession in 1130. Conrad, talled the Great, extended the boundaries of Meissen before abdicating in 1156 in favour of his son Otto, known as the Rich. Otto appointed his younger son Dietrich as his successor and was stlacked and taken prisoner by his elder son Albert; but, after obtaining his release by order of the emperor Frederick 1., he had only just renewed the war when he died In 1190 . During his reign silver mines were opened in the Harz Mountains, towns were founded, roads were made, and the general condition of the country was improved. Otto was succeeded by his son Albert, called the Proud, who was engaged in wariare with his brother Dietrich until his death in 1195. As Albert left no children, Meissen was seized by the emperor Henry VI. as a vicant fief of the empire; but Dietrich, called the Oppressed, secured tbe mark after Henry's death in 1197. Dietrich married Jutta, daughter of Hermann I., landgrave of Thuringia, and was succeeded in 1221 by his infant son Heary, surnamed the Illustrious; who on arriving at maturity obtained as reward for supporting the emperor Frederick II. against the pope a promise to succeed his uncle, Henry Raspe IV., as landgrave of Thuringia. In 1243 Henry's son Albert was betrothed to Margaret, daughter of Frederick II.; and Pleissnerland, a district west of Meissen, was added to his possessions. Having gained Thuringia and the Saxon palatinate on his uncle's deeth in 1247, he granted rections of his lands to bis three sons in 1265 , but retained Meissen. A series of family feuds followed. His second son Dietrich died in 1285 , and on Henry's own death in 1288 Meiseen was divided between his two remaining sons, Albert (called the Degenerate) and Frederick, and his grandson Frederick Tutta, the son of Dietrich. Albert was engaged in struggles with his three sons, who took him prisoner in 1288; but he was released the following year by order of the German king Rudulph I. Nioot this time he sold his portion of Meissen to his nepbew Frederick Tutta, who beld the title-
of margrave and ruled the greater part of the mark until his death in 1291. Albert's two remaining sons, Frederick and Dietrich or Diezmann, then claimed Meissen; but it was seized hy King Adolph of Nassau as a vacant fief of the empire, and was for some time retained by him and his auccessor King Albert I. In the course of constant efforts to secure the mark the brothers Frederick and Dietrich defeated the troops of King Albert at Lucka in May 1307 and secured partial possession of their lands. In this year Dietrich died and Frederick became reconciled with his father, who, after renouncing bis claim on Meissen lor a yearly payment, died in 1314- Having obtained possession of the greater part of the mark, Frederick was invested with it by the German king Henry VII. in 1310 . During these years the part of Meissen around Dresden had been in the possession of Frederick, youngest son of the margrave Henry the lllustrious, and when be died in 1316 it came to his nephew Frederick. About 1312 Frederick, who had become involved in a dispute with Waldemar, margrave of Brandenburg, over the possession of lower Lusatia, was taken prisoner. Surrendering lower Lusatia he was released, hut it was only after Waldemar's death in 1319 that he obtained undisputed possession of Meissen. Frederick, who was surnamed the Peaceful, died in 1323 and was followed as margrave by his son Frederick II., called the Grave, who added several counties to his inheritance. From this latter Frederick's death in 1349 until 1381 the lands of the family were ruled by his three sons jointly; hut after the death of his eldest son Frederick III. in 13^{81} a division was made by which Meissen fell to his youngest son William I. In 1407 William was succeeded by his nephew Frederick, called the Warlike, who in 1423 received from the emperor Siglsmund the eloctoral duchy of Saxe-Wittenberg. The mark then became merged in the duchy of Saxony, and at the partition of 1485 fell to the Albertine line. As Meissen was relieved from the attacks of the Slavs by the movement of the Germen boundary to the east, its prosperity increased. Many towns were founded, armong which were Dresden, Lefpeig and Freiburg; Chemnits began its textile industry; and although the condition of the peasants was wretched, that of the townsmen was improving. The discoveries of silver brought great wealth to the margraves, but they resorted at times to bedes, which were contributions from the nobles and ecclesiastics who met in a lind of diet. During this period the mark of Meissen lay on both banks of the Elbe, and stretched from Bohemia to the duchy of Saxe-Wittenberg, embracins an area of about 3000 sq. m.
See O. Posse, Die Markgrafon won Meissen and das Haws Weltin (Leiprig. 1881); F. W. Tittmann, Geschichte Heinricks des arlauchlen Karkerafen zu Mreissen (Dresdicn, 1845-1846): C. F. von PosernKlett. Zar Geschichte der Varfassung der Markgrafschaft Meissen im 13. Johrhumdort (Leipzig, 1863). See also Urkunden der Markerafen toon Leissen und Landgrafen oon Thïringow, edited by E. G. Gersdori (Leiprig, 1864); and H. B. Meyer, Hof- ind Zentralvervaliwen der Weltimer (Leiprig, 1902).
meissonter, Jean louis ERNEST (1815-1891), French painter, was born at Lyons on the 21st of February 1815. From his schooldays he showed a taste for painting, to which some early sketches, dated 1823 , bear witness. After being placed with a druggist, he obtained leave from his parents to become an artist, and, owing to the recommendation of a painter named Potier, himself a second class Prix de Rome, he was admitted to Leon Cogniet's studio. He paid short visits to Rome and to Switzerland, and exhibited in the Salon of 1831 a picture then called "Les Bourgeois Flamands" (" Dutch Burghers"). but also known as "The Visit to tbe Burgomaster," subsequently purchased hy Sir Richard Wallace, in whose collection (at Hertiord House, London) it is, with fifteen other examples of this painter. It was the first attempt in France in the particular getrs which was destined to make Meissonicr famous: microscopic painting-miniature in oils. Working hard for daily bread at illustrations for the publishers-Curmer, Heteel and Dubocher-be also exhibited at the Salon of 1836 the "Chess Player" and the "Errand Boy." After some not very happy attempts at religious painting, he returned, under the
influence of Chensvand, to the class of work he wis born to excel in, and exhibited with much success the "Game of Chess" (1841), the "Young Man playing the 'Cello" (1842), "The Painter in his Studio " (1843), "The Guard Room," the "Young Man looking at Drawings," the "Game of Piquet " (1845), nnd the "Game of Bowls"-works which show the finish and certainty of his technique, and assured his success. After bis "Soldiers" (1848) he began "A Day in June," which was never finished, and exhibited "A Smoker " (1849) and ". Bravos" ("Les Bravi," 1852). In 1855 he touched the highest mark of his achievement with "The Gamblers" and "The Quarrel" ("La Rixe"), which was presented by Napoleon III. to the English Court. His triumph was sustained at the Salon of 1857, whon be exhibited nine pictures, and drawings; among them the "Young Man of the Time of the Regency," "The Painter," "The Shoeing Smith," "The Musician," and "A Reading at Diderot's." To the Salon of 186 I he sent "The Emperor at Solfcrino," "A Shocing Smith," "A Musician," "A Painter," and "M. Louis Fould "; to that of 1864 another version of "The Emperor at Solferino," and "1814." He subsequently exhibited "A Gamblers' Quarrel" (1865), and "Desaix and the Army of the Rhine" (1867). Meissonitr worked with elaborate care and a scrupulous observation of nature. Some of his works, as for instance his " 1807 " remained ten years in course of execution. To the great Exhibition of 1878 he contributed sixteen pictures: the portrait of Alexandre Dumas which had been seen at the Salon of 187\%, "Cuirassiers of 1805 ," "A Venetian Painter," "Morcau and his Staff before Hohenlinden," a " Portrait of a Lady," the "Road to La Salice," "The Two Friends," "The Outpost of the Grand Guard," "A Scout," and "Dictating bis Memoirs." Thenceforward be exhibited less in the Salons, and sent his work to smaller exhibitions. Being chosen president of the Great National Exhibition in 1883, he was represented there by such works as "The Pioneer," "The Army of the Rhine," "Tbe Arrival of the Guests," and "Saint Mark." On the 24tb of May 1884 an exhibition was opened at the Petit Gallery of Meissonier's collected works, including 146 examples. As president of the jury on painting at the Exhibition of 1889 he contributed some new pictures. In the following year the New Salon was formed (the National Society of Fine Arts), and Meissonicr was president. He exhibited there in 1890 his picture " 1807 "; and in 1891, shortly after his death, his "Barricade" was displayed there. A less well-known class of work than his painting is a series of etchings: "The Last Supper," "The Skill of Vuillaume the Lute Player," "The Little Smoker," "The Old Smoker," the "Preparations for a Ducl," "Anglers," "Troopers," "The Reporting Sergeant," and "Polichinclle," in the Hertford House collection. He also tricd lithography, but the prints are now scarcely to be found. Of all the painters of the century, Meissonier was one of the most fortunate in the matter of payments. His "Cuirassiers," now in the late due d'Aumale's collection at Chantilly, was bought from the artist for $£ 10,000$, sold at Brussels for $£ 12,000$, and finally resold for $£ 16,000$. Besides his genre portraits, be painted some others: those of "Doctor Lefevre," of "Chenavard," of "Vanderbilt," of " Doctor Guyon," and of "Stanford." He also collaborated with the painter Francais in a pieture of "The Park at St Cloud." In 18.38 Meissonier married the sister of M. Steinheil, a painter. Meissonler was attached by Napoleon III. to the imperial staff, and accompanied him during the campaign in Italy and at the beginning of the war in 1870. During the siege of Paris in $\mathbf{1 8 7 1}$ he was colonel of a marching regiment. In 1840 he was awardod a chird-class medal, a second-class medal in 1841, first-class medals in 1843 and 1844 and medals of honour at tbe great exhibitions. In 1846 he was appointed knight of the Legion of Honour and promoted to the higher grades in 1856, 1867 (June 29), and 1880 (July 12), receiving the Grand Croes in 1889 (Oct. 29). He nevertheless cherished cortain ambitions which remained unfulilled. He hoped 10 become a profescor at the Ecole des Beaux Arts, hut the appointment be desired was never given to him. On various occasions.
t00, he aspired to be chosen deputy or made senator, hut he was not elected. In 186r he succeeded Abel de Pujol as member of the Academy of Fire Arts. On the occasion of the centenary festival in honour of Michelangelo in 1875 he was the delegate of the Institute of France to Florence, and spoke as its representative. Meissonier was an admirable draughtsman upon wood, his illustrations to Les Contes Rémois (engraved by Lavoignat), to Lamartine's Fall of an Angel, to Pawl and Virginia, and to The Franck Painted by Themseloes being among the best known. The leading engravers and etchers of France have been engaged upon plates from the works of Meissonier, and many of these plates command the highest esteem of collectors. Meissonier died in Paris on the 21st of January r8gr. His son, Jean Charles Meissonier, also a painter, was his father's pupil, and was admitted to the Legioa of Honour in 1889.
See Alexandre, Histoire de la peinture militaire en Fratrce (Paris, 1891); Laurens, Notice sur Mcissonier (Paris, 1892): Greard, Meissonier (Paris and London, 1897): T. G. Dumas, Maives modernes. (Paris, 1884); Ch. Formentin, Meissonier, sa vic-son auere (Paris, 1901): J. W. Mollett, Niustrated Biographies of Modern Artists: Afeissonitr (London, 1882).
(H. FR.)

MRISSONIER, JUSTE AURELE (1695-1750), French goldsmith, sculptor, painter, architect, and furniture designer, was born at Turin, but became known as a worker in Paris, where he died. His Italian origin and training were probably responsible for the extravagance of his decorative style. He shared, and perhaps distanced, the meretricious triumphs of Oppenard and Germain, since he dealt with the Baroque in its most daring and flamboyant developments. Rarely does he leave a foot or two of undecorated space; the effect of the whole is futile and fatiguing. It was because Meissonier carried the style of his day to its extreme that he acquired so vast a popularity. Like the English brothers Adam at a later day he not only as architect built houses, but as painter and decorator covered their internal walls; he designed the furniture and the candlesticks, the silver and the decanters for the table; he was as ready to produce a snuff-box as a watch case or a sword hilt. Not only in France, but for the nobility of Poland, Portugal and other countries who took their fashions and their taste from Paris, he made designs, which did nothing to improve European taste. Yet his achievement was not wholly without merit. His work in gold and silver-plate was often graceful and sometimes boid and original. He was least successful in furniture, where his twirls and convolutions, his floral and rocaille motives were conspicuously offensive. He was appointed hy Louis XV. Dessinateur de la chambre et du cabinel du roi; the post of designer pour les pompes /unebres et galantes was also held along with that of Orfiure du roi.
For our knowledge of his work we are considerably indebted to his own books of design: Litre dornements en trente picices; Litra d'orfèreric d'église en six pieces, and Ornomevis de la carte chronologique.

MEISTBRSINGER (Ger. for " master-singer"), the name given to the German lyric poets of the 14 th, 15 th and 16 th centuries, who carried on and developed the traditions of the medieval Minnesingers (q.v.). These singerg, who, for the most part, belonged to the artisan and trading classes of the German towns, regarded as their masters and the founders of their gild twelve poets of the Middle High German period, among whom were Wolfram von Eschenbach, Konrad von Würzburg, Reinmar von Zweter and Fravenhob. The last mentioned of these, Frauenlob, is said to have eatablished the earliest Meistersinger school at Mainm, early in the 14th centary. This is only n tradition, but the inatitution of such schools originated undoubtedly in the upper Rhine district. In the 14th century there were schools at Mainz, Strassburg, Frankfort, Waraburg, Zürich and Prague; In the Igth at Augsburg and Nuremberg, the last becoming in the following century, under Hans Sachs, the most famous of aH. By this time the Meistersinger schools han spread all over south and central Germany; and isolated gilds were to be found farther north,-at Magdeburg, Brealan, Gorlits and Danzig.

Each gitd numbered various clastes of members, ranging from beginners, or Schiller (corresponding to trade-apprentices), and Schul/reunde (who were equivaient to Gesellew or journeymen), to Meistor, a Meister being a poet who was not merely able to write new verses to existing melodies hut had himself invented a new melody. The poem was technically known as a Bar or Gcselz, the melody as a Ton or Wcis. The songs were all sung in the schools without accompaniment. The rules of the art were set down in the so-called Tabulatur or law-book of the gild. The meetings took place either in the Rathaus, or town hall, or, when they were held-as was usually the case-on Sunday, in the church; and three times a year, at Easter, Whitsuntide and Christmas, special festivals and singing competitions were instituted. At such competitions or Schulsingen Judges were appointed, the so-called Merker, whose duty it was to criticize the competitors and note their offences against the rules of the Tabulatur.

The literary value of the Meistersinger poetry was hardly in proportion to the large part it played in the life of the German towns of the $15^{\text {th }}$ and 16 th centuries. As the medieval lyric decayed, more and more attention was given to the externals of poetic composition, the form, the number of syllables, the melody; and it was such externals that attracted the interest of these burgher-pocts. Poctry was to them a mechanical art that could be learned by diligent application, and the prizes they had to bestow were the rewards of ingenuity, not of genius or inspiration. Consequently we find an extraordinary development of strophic forms corresponding to the many new "tones" which every Meistersinger regarded it as his duty to invent-tones which bore the most remarkable and often ridlculous names, wuch as Gestroiflsaframblimboinmeis, Felldacksweis, Vielfrassweis, geblamfe Paradicsweis, \&c. The verses were adapted to the musical strophes by a merely mechanical counting of syllables, regardiess of rhythm or sense. The meaning, the sentiment, the thought, wort the last things to which the Meistersingors gave heed. At the same time there was a certain healthy aspect in the cultivation of the Meistergesang among the German middle classes of the 15 th and $16 t h$ centuries; the Meistersinger poetry, if not great or even real poetry, had -especially in the hands of a poet like Hans Sachs-many germs of promise for the future. It reflected without exaggera. tion or literary veneer the faith of the German burgher, his blunt good sense and honesty of purpose. In this respect it was an important factor in the rise of that middle-class literature which found its most virile expression in the period of the Reformation. The Meistergesang reached its bighest point in the r6th century; and it can hardly be said to have ouslived that epoch, although the traditions of the Meistersinger schools lingered in south German towns even as late as the 1 gth century.

Specimens of Meistersinger poetry will be found in various collections. such as J. J. Gürres, Alldeuliche Volks- und Meisterlieder (1817); K. Bartsch, Meisterlieder der Kolmarer Handschrft (Publ. of the Stuttgart Literarischer Verein, yol lxviii.: 186a). Of the odder sources of informaiion about the Meistersinger the most important are Adam Puschmann. Gruindicher Bericht' des deutschen AIcistergesangs zusami der Tobulatur (1571 ; reprinted in W. Braune's Neudrucke deutscher Liceralurwerke des 16. wand 17. Jahrh., 73, 1888). and J. C. Wagenscil, De civitate Noribergensi (iGg7). See further J. Grimm, Ober den alldcuischen Meistergesang (181i); F. Schnorr von Carolsfeld, Zwr Geschichic des deutschen Meistergesangs (1872): R. von Liliencron, Uber den Inkall der allgemeinen Bildung in dep Zeil der Scholustik (1876); G. Jacobsthal, "Die musikalische Bildung der Meistersinger "(Zeuschrit/für deul. A Aertum. xx., 18;6); O. Lyon, Minne- und lfeistergesang (1882); K. Mey. Der Afristergesang in Geschicke und Kunsl (1892). The art of the Meistersingers has licen immortalized by Richard Wagner in his music drama, Die Neisiersinger (1868).
(U. G. R.)

MEKCNG, or ME NAM KONG (pronounced Kawng), sometimes known sa the Cambodia River, the great river of Indo-China, having its origin in the Tibetan highlands. It is the third or fourth longest river in Asia and the eeventh or eighth in the world. It is about 2800 m . in length, of which 1200 flow through portions of the Chinese Empire and Tibet and 1600 through French territory. Its sources are not definitely settled, but it is supposed wo rive on the slopes of Dra-Nag-Lung-Mung in about
33° N., 93° E., at an altitude of $\mathbf{1 6 , 7 0 0}$ it. above sea-level. Throughout the greater part of its course in Tibet, where it is called the Daa-Chu, it flows south-east wards to Chiamdo, on the great east and west caravan route from China to Lhasa. At this point it is about $10,000 \mathrm{ft}$. above sea-level. From here it flows southwards through little-known mountain wastes. Below Dayul in lat. 29° it is known hy the Chinese name of Lantsan Kiang. For the next 300 m . of its course the Lantsan Kiang, or, as it soon becomes known among the Thai peoples inhabiting its rugged valley, the Mekong, is very little known to us. The river flows bencath bare and rocky walls. A few scattered villages of Lusus and Mossos exist in this region; there is no trade from north to south. In $25^{\circ} 18^{\prime} \mathrm{N}$. the Tali-Bhamo caravan route, described by Colborne Baker, crosses the river by one of those iron suspension bridges which are a feature of Yun-nan, at a height of 4700 ft . above sen-level. From this point to Chieng or Keng Hung, the head of the old confederacy of the Sibsawng Punne or Twelve States, it is little known; the fact that it falls some 900 ft . for cach degree of latitude indicates the character of the river. Under the provisions of the Anglo-French agreement of January 1896 , from the Chinesc frontier southwards to the mouth of the Nam Hok the Mekong forms the frontier between the British Shan States on the west and the territorics acquired from Siam by France in 1893. By the treatyof 1893 , from that point southwards to about $13^{\circ} 30^{\prime} \mathrm{N}$. it is also the frontier between French Indo-China and Siam, and a zone extended 25 kilometres inland from the right bank, within which the Siamese government agreed not to construct any fortified port or maintain any armed force. This 25 kilometre neutral zone was aholished in 1905 when France surrendered Chantabun to the Siamese, who in their turn ceded the port of Krat and the provinces of Melupre and Bassac, together with various trading concessions to France on the right bank of the Mekong. Below the Siamese Shan town of Chieng Sen the river takes its first great easterly bend to Luang Prabang, being joined by some important tributaries. This portion is obstructed by rapids. The country is mountainous, and the vegetation of the lower beights begins to assume a tropical aspect. From Luang Prabang the river cuts its way southwards for two degrees through a lonely jungle country among receding bills of low elevation. From Chieng Khan the river again turns eastwards along the 18 th perallel, forcing its way through its most serious rapid-barrier, and receiving some important tributaries from the highlands of Tung Chieng Kum and Chieng Kwang, the finest country in Indo-China. In $104^{\circ} \mathrm{E}$. the river resumes a southerly course through a country thinly peopled. At Kemarat ($16^{\circ} \mathrm{N}$.) the fourth serious rapid-barricr occurs, some 60 m . in length, and the last at Khong in $14^{\circ} \mathrm{N}$. From here to its outfall in the China Sca the river winds for some 400 m . through the French territories of Cambodia and Cochin China, and to its annual overflow these countries owe their extraordinary fertllity. The French have done much to render the river navigable. Steamers ply regularly from Saigon through Mytho to Pnompenh, and launches proceed from this place, the capital of Cambodia, to the Preapatano rapids, and beyond this a considerable portion of the distance to Luang Prabang, the journey betng finished in native boats.

MELA, POMPONIUS (A. C. A.D. 43), the earliest Roman geographer. His little work (De situ orbis libri III.) is a mere compendium, occupying less than one hund red pages of ordinary print, dry in style and deficient in method, but of pure Latinity, and occasionally relieved by pleasing word-pictures. Excepting the geographical parts of Pliny's Historia natwralis (where Mela is cited as an important authorit y) the De sitw orbis is the only formal treatise on the subject in classical Latin. Nothing is known of the author excepl his name and birthplace-the small town of Tingentera or Cingentera in southern Spain, on Algeciras Bay (Mela ii. 6, 896 ; but the text is here corripl). The date of his writing may he approximately fixed by his allusion (iii. 6 § 49) to a proposed British expedition of the reigning emperor, almost certainly that of Claudius in a.d. $43 \cdot$ That this passage cannot refer to Julius Caesar is proved by
several refereaces to events of Augustus's reign, especially to certain new names given to Spanish towns. Mela las been without probability identified by some with L. Annaeus Mela of Corduba, son of Sencea the rhetorician, and brother of the great Seneca.

The general views of the De situ orbis mainly agree with those current among Greck writers from Eratosthencs to Strabo; the latter was probably unknown to Mela. But Pomponius is unique arnong ancient geographers in that, after dividing the eafth into five zones, of which two only were habitable, he asserts the existence of antichihones, inhabiting the southern temperate zone inaccessible to the folk of the northern temperate regions from the unbearable heat of the intervening torrid bels. On the divisions and boundaries of Europe, Asin and Africa, he repcats Eratosthenes; like all classical geographers from Alexander the Great (except Ptolemy) he regards the Caspian Sea as an inlet of the Northern Ocean, corresponding to the Persian and Arabian (Red Sea) gulfs on the isouth. . His Indian conceptions are inferior to those of some earlier Greek writers; he follows Eratosthenes in supposing that country to occupy the south-eastern angle of Asia, whence the coast trended northwards to Scythia, and then swept round westward to the Caspian Sea. As usual, he places the Rlipaean Mountains and the Hyperborcans near the Scythian Ocean. In western Europe his knowledge (as was natural in a Spanish subject of Imperial Rome) was somewhat in advance of the Greek geographers. He defines the western coast-line of Spain and Gaul and its indentation by the Bay of Biscay more accurately than Eratosthenes or Strabo, his idceas of the British Isses and their position are also clearer than this predecessors'. He is the first to name the Orcades or Orkneys, which he defines and locates pretty correctly. Of northern Europe this knowledge was imperfect, but he speaks vaguely of a great bay ("" Codanus sinus ") to the north of Germany, among whose many islands was one, "Codanovia," of pre-emunent size; this name reappears in Pliny as "Scandinavia." Mela's descriptive method is peculiar and inconvenient. Instead of treating each continent separately he begins at the Straits of Gibraltar, and describes the countrics adjoining the south coast of the Mediterranean; then he moves round by Syria and Asia Minor to the Black Sea, and so returns to Spain along the north shore of the Euxine, Propontis, \&c. After treating the Mediterrancan islands, he next takes the ocean littoral-to west, north, east and south successively-from Spain and Gaul round to India, from India to Persia, Arabia and Ethiopia: and so again works back to Spain round South Africa. Like most classical geographers he conceives the Dark Continent as surrounded by sea and not extending very far south.

The first edition of Mela was published at Milan in 1471 ; the first Good edition was by Vadianus (Bascl, 1522), superseded by those of Voss (1658), J. Gronovius (1685 and 1696), A. Gronovius (1722 and 1728), and Tzschucke (1806-1807), in seven parts (Leipzig: the most elaborate of all); G. Parthey's (Berlin, 1867), gives the best text. The English trans. by Arthur Golding (1585), is famous; siee also E. H. Bunbury, Ancient Geography, ii. 352-368, and D. Detlefsen, Quellen und Forschungen zur Gllen Gesch. und Geog. (1908).
(E. H. B.; C. R. B.)

MELACONITE, a mineral consisting of cupric oxide, CuO , and known also as black copper ore. In appearance it is strikingly different from cuprite (q.v.) or red copper ore, which is cuprous oxide. Crystals are rare; they belong to the monoclinic, or possibly to the anorthic system, and have the form of thin triangular or hexagonal scales with a steel-grey colour and brilliant metallic lustre. More often the mineral is massive, earthy or pulverulent, and has a dull iron-black colour. Hence
 dust, which was originally given by F. S. Beudant in 1832 in the form melaconise. The crystallized Vesuvian mineral was Inter named tenorite, a name commonly adopted for the species. The hardness of the crystals is 3-4, but the earthy and powdery forms readily soil the fingers; the spec. grav. is 5%. Crystais have been found only at M: Vesuvius, where they encrust lava, and in Cornwall. The other forms of the mincral, however, are common in copper mines, and have resulted by the alteration of chalcocite, chalcopyrite and other copper ores, on which they often form a superficial coating. (L. J. S.)

MELAMPUS, in Greck legend, a celcbrated seer and physician. son of Amythaon and Eidomene; brother of Bias, mythical eponymous hero of the family of the Mclampodidae. Two young serpents, whose life he had saved, licked his ears while he silept, and from that time he understood the language of birds and beasts. In the art of divination be received instruction from Apollo himself. To gain the consent of Neleus, king of Pylos, to the marriage of his daughter Pero with Bias, Melampus
undertook to obtain possession of the oxen of the Thessalian prince Iphiclus. As Melampus had forctold, be was caught and imprisoned, but was released by Phylacus (the father of Iphiclus) on giving proof of his powers of divination, and was finally presented with the oxen as a reward for having restored the virility of the son. Melampus subsequently ohtained a share in the kingdom of Argos in return for having cured the daughters of its king Proetus, who had been driven mad for offering resistance to the worship of Dionysus or for stealing the gold from the statue of Hera. At Aegosthena in Megara there was a sanctuary of Melampus, and an annual festival was held in his honour. According to Herodotus, he introduced the cult of Dionysus into Greece from Egypt, and his name ("' black foot ' 7 is probably "a symbolical expression of his character as a Bacchic propitiatory priest and seer" (Preller). According to the traditional explanation, he was so called from his foot having been tanned by exposure to the sun when a boy. In his character of physician, he was the reputed discoverer of the herh melampodium, a kind of hellebore. Melampus and Bias are symbolical representatives of cunning and force.
See Apollodorus i. 9, I1, 12; ï. 2, 2; Odyssey, 9v. 225-240; Diod. Sic. iv. 68; Herodotus ii. 42 i' ix. 34 ; Pausanias IV. 18, 4 ; iv. 36. 3; scholiast on Theocritus iti. 43 ; Ovid, Metam. xv. 325 ; C. Eckermann, Melampus und sein Geschilechu (1840).

Melampus is also the name of the author of a short extant treatise of little value on Divination by means of Palpitation (IIa入н $\hat{\omega} \boldsymbol{v}$) and Birthmarks ('Enau(us). It probably dates from the time of Ptolemy Philadelphus (3rd cent. B.c.). Edition by J. G. Franz in Scriptores physiognomiae veleres (1780).

MBLANCHLABNf (from Gr. pìhas, and xגaíva, "Blackcloaks "), an ancient tribe to the north of Scythia, probably about the modern Ryazan and Tambov (Herodotus iv, 106). They have been identified with the Finnish tribes Merja (now extinct) and Cheremis, now driven north-east on to the middle Volga. These, till recently, wore black. There has been confusion between this tribe and another of the same name mentioned by Pliny ($N . H$. vi. 15), and Ptolemy in the Caucasus.
(E. H. M.)
 bile), originally a condition of the mind or body due to a supposed excess of black bile, also this hlack bile itself, one of the chief "humours" of the body, which were, according to medieval physiology, blood, phlegm, choler and melancholy (see Hovour): now a vague term for desponding grief. From the 17 th century the name was used of the mental discase now known as "melancholia" (see InsanITY), but wilbout any reference to the supposed cause of it.

- MRLANCHTHON, PHILIPP (1497-1560), German theologian and reformer, was born at Bretten in Baden on the 16th of February 1497. His father, Gcorge Schwartzerd, was an armourer under the Palatinate princes. His mother, Barbara Reuter, a nicce of Johann Reuchlin, was shrewd, thrifty and affectionate.' Her father, Johann Reuter, long burgomaster of Bretten, supervised the education of Philipp, who was taught first by Johannes Hungarus and then by Georg Simler at the academy of Pfortzheim. Reuchlin took an interest in him, and, following a contemporary custom, named him Melanchthon (the Greek form of Schwartzerd, black earth). In October 1509 he went to Heidelberg, where he took the B.A. degree, afterwards proceeding M.A. at Tubingen. The only other academic distinction he accepted was the B.D. of Wittenberg (isig). He would never consent to become a "doctor," because he thought the title carried with it responsibilities to which he felt himself unequal. At Tubingen he lived as student and teacher for six years, until on Reuchlin's advice, the elector of Saxony called him to Wittenberg as professor of Greek, in 1518.
${ }^{1}$ Her character is evidenced by the familiar proverb-
Wer mehr will verzehren
Denn sein Pflug kann erehren,
Der muss zuletzt verderben
Und vielleicht am Galgen sterben-
of which Melanchthon said to his students "Didici hoe a mea matre, vos etiam observate." (For Melanchthoa's Latin verdon of the saying see Corpus reformalorwm, X, 469.)

This appointment marked an epoch in German university education; Wittenberg became the school of the nation; the scholastic methods of instruction were set aside, and in a Discourse on Reforming the Studios of Youth Melanchthon gave proof, not only that he had caught the Renaissance spirit, but that he was fitted to become one of its foremost leaders. He began to lecture on Homer and the Epistle to Titus, and in connexion with the former he announced that, like Solomon, he sought Tyrian brass and gems for the adornment of God's Temple. Luther received a fresh impulse towards the study of Greek, and his translation of the Scriptures, begun as early as 1517 , now made rapid progress, Melanchthon helping to collate the Greck versions and revising Luther's translation. Melanchthon felt the spell of Luther's personality and spiritual depth, and seems to have been prepared on his first arrival at Wittenberg to accept the new theology, which as yet existed mainly in subjective form in the person of Luther. To reduce it to an objective system, to exhibit it dialectically, the calmer mind of Melanchthon was requisite.

Melanchthon was first drawn into the arena of the Reformation controversy through the Leipzig Disputation (June 27-July 8, 1519), at which he was present. He had been reproved by Johann Eck for giving aid to Carlstadt ("Tace tu, Philippe, ac tua studia cura nec me perturba '"), and he was shortly afterwards himself attacked by the great papal champion. . Melanchthon replied in a hrief and moderately worded treatise, setting forth Luther's first principle of the supreme authority of Scripture in opposition to the patristic writings on which Eck relied. His marriage in 1520 to Catharine Krapp of Wittenberg gave a domestic centre to the Reformation. In 1521, during Luther's confinement in the Wartburg, Melanchthon was leader of the Reformation cause at the university. He defended the action of Carlstadt, when he dispensed the Eucharist in an "evangelical fashion." ${ }^{2}$
With the arrival of the Anabaptist enthnsiasts of Zwickau, he had a more difficult task, and appears to have been irresolute. Their attacks on infant baptism scemed to him not altogether irrational, and in regard to their claim to personal inspiration he said "Luther alone can decide; on the one hand let us beware of quenching the Spirit of God, and on the other of being led astray hy the spirit of Satan." In the same year, 1521, he published his Loci communcs rerum theologicarum, the first systematized presentation of the reformed theology. From 1522 to 1524 he was busy with the translation of the Bible and in publishing commentaries. In 1524 he went for reasons of health into southern Germany and was urged by the papal legate Campegio to renounce the new doctrines. He refused, and maintained his refusal by publishing his Summa doctrinae Lutheri.
After the first Diet of Spires (1526), where a precarious peace was patched up for the reformed faith, Melanchtion was deputed as one of twenty-eight commissioners to visit the reformed states and regulate the constitution of churches, he having just published a famous treatise called the Libellus visidatorims, a directory for the use of the commisoloners. At the Marburg conference (1529) between the German and Swiss reformers, Luther was pitted against Oecolampadius and Mclanchthen against Zwingli in the discussion regarding the real presence in the secrament. How far the normally conciliatory spirit of Melanchthon was here biased by Luther's intolerance is evident from the exaggerated accounts of the conierence written by the former to the elector of Saxony. He was at this time even more embittered than Luther against the Zwinglians. At the Diet of Augsburg (1530) Melanchthon was the leading representative of the reformation, and it was he who prepared for that diet the seventeen articles of the Evangelical faith, which are known as the "Augsburg Confession." He held conferences with Roman divines appointed to adjust differences, and afterwards mrote an Apaiogy for the Augsburg Confassion. After the Augsburg

[^7]conference further attempts were made to settle the Reformation controversy by a compromise, and Melanchthon, from his conciliatory spirit and facility of access, appeared to the defenders of the old faith the fittest of the reformers to deal with. His bistorical instinct led him ever to revert to the original unity of the church, and to regard subsequent errors as cxcrescences rather than proofs of an essentially anti-Christian system. He was weary of the rabies theotogormm, and dreamed that the evan. gelical leaven, if tolerated, would purify the church's life and doctrine. In 1537, when the Protestant divines signed the Lutheran Articles of Schmaikalden, Melanchthon appended to his signature the reservation that he would admit of a pope provided he allowed the gospel and did not claim to rule by divine right.

The year after Luther's death, when the batte of Muhlberg (1547) had given a seemingly crushing blow to the Protestant cause, an attempt was made to weld together the evangelical and the papal doctrines, which resulted in the compilation by Plug, Sidonius and Agricola of the Augsburg "Interim." This was propoted to the two parties in Germany as a provisional ground of agreement till the decision of the Council of Trent. Melanchthon, on being referred to, declared that, though the Interim was inadmissible, yet so far as matters of indifference (adiophora) were concerned it might be received. Hence arose that " adiaphoristic "controversy in connexion with which he has been misrepresented as holding among matters of indifference such cardinal doctrines as justification by faith, the number of the sacraments, as well as the dominion of the pope, feast-days, and 50 on. The fact is that Melanch thon sought, not to minimize differences, but to veil them under an intentional obscurity of expression. Thus he allowed the necessity of good works to salvation, but not in the old sense; proposed to allow the seven sacraments, but only as ritcs which had no inherent efficacy to salvation, and so on. He afterwards retracted his compliance with the adiaphora, and never really swerved from the views set forth in the Laci communes; but he regarded the surrender of more perfect for less perfect forms of truth or of expression as a painful sacrifice rendered to the weakness of erring brethren. Luther, though he had probably uttered in private certain expressions of dissatisfaction with Melanchthon, maintained unbroken friendship with him; but after Luther's death certain smaller men formed a party emphasizing the extremest points of his doctrine. ${ }^{\text {i }}$ Hence the later years of Melanchthon were occupied with controversics within the Evangelical church, and fruitiess conferences with bis Romanist adversaries. He died in his sixty-third year, on the 19th of April 1560 , and his body was laid beside that of Martin Luther in the Schlosskirche at Wittenberg.

His ready pen, clear thought and elegant style, made him the scribe of the Reformation, most public documents on that side being drawn up by him. He never attained entire independence of Luther, though he gradually modified come of his positions from those of the pure Lutherism with which he set out. His development is chiefly noteworthy in regard to these t wo leading pointo the relation of the coangelimm or doctrine of free grace (1) to frce will and moral ability, and (2) to the law and poenitentia or the good works connected with repentance. At first Luther's cardinal doctrine of grace appeared to Melanehthon inconsistent with any view of free will; and, following luther, he renounced Aristotle and philosophy in general, since " philosophers attribute everything to human power, while the arred writings represent all moral power as lost by the fall." in the first edition of the Loci (1521) he held, to the length of fataligm, the Augustinian doctrine of irresistible grace, working according to God's immutable decrees. and denied frocdom of will in matters clvil and religious alike. In the Augsburg Confension (1530), which was largely due to him, freedom is claimed for the will in mon-religious matters, and in the Loci of 1533 he calls the denial of freedom Stoicism, and holds that in justification there is a certain causality, though not worthiness, in the recipient, subordinate to the Divine causality. In ${ }^{1} 535$, combating Laurentius Valin, he did not deny the spiritual incapacity of the will per se, but held that this is strengthened by the word of God, to which it can cleave. The will co-operates with the word and the Holy Spirit. Finally, ln 1543, he says that the cause of the difference of final destiny among men hes in the
IIt must be admitted, however, that Matthias Flacius saved the Reformation.
different method of treating grace which is possible to believers as to others. Man may pray for help and reject grace. This he calls Ine will, as the power of laying hold of grace. Melanchthon's doctrine of the three concurrent causes in conversion, viz. the Holy Spirit, the word, and the human will, suggested the semiPelagian position called Syncrgism, which was held by some of his intmedinte followers.
d to the relation of grace to repentance and good works, Lucher whs disposed to make faith issell the principle of sanctif: cation. Aelanchthon, however, for whom ethics possessed a special interest, laid more stress on the law. He began to do this in 1527 in the Libelus visitatortus, which urges pastors to instruct their people in the necessity of repentance, and to bring the threatenings of the law to bear upon men in order to faith. This brought down ugnil him the opposition of the Antinomian Johannes Agricola. In the Locs of 1535 Melanchethon sought to put the fact of the co-enstence of justification and good works in the believer on a se wire basis by declaring the latter necessary to eternallife, though the believer's destiny thereto is already fully guaranteed in his justification. In the Loci of 1543 he did nof retain the doctrine of the recessity of good works in order to salvation, and to this he added, in the Leipzig Interim, "that this in no way countenances the error that eternal life is merited by the worthiness of our own works." Melanchahon was led to lay more and more stress upon the law and moral ideas; but the basis of the relation of faith and good works was never clearly brought out by him, and he at length fell back on his original position, that we have justification and inheritance of bliss in and by Christ alone, and that good works are necessary by reason of immutable Divine command.

Bibliography. - The principal works of Melanchthon, with the bulk of his correspondence, are contained in the Corpus reforma. tas"um (vole i.-xxviii.: Halle, 1834-1850), edited by Bretschneider and Bindscil, to which must be added Bindseil's Supplementa (Hitle, 1874). Melanclathon's earliest and best biographer was his fricnd Joachim Camerarius (1566), a new annotated edition of which is much needed. The best modern life is that by Georg Ellinger (Berlin, 1902): next is that of Karl Schmidt (Elberfeld, 186,1). The celebration in 1807 of the 400 h anniversary of Melanchthon's birth produced many short biographies and Festreden, among them works by J. W. Richard (New York and London, 1898); George Wilson (London, 1897); Karl Sell (Halle, 1897); Ferdinand Cohrs (Halle, 1897); Beyschlag and Harmack (r897). Richard Rothe's Festrede (1860) also is good. The most learned of modern Melanchthon scholars was probably Karl Harticlder. who wrote Philipp Melanchthon als Praeceptor Germaniae (Berlin. 1899): Melanchthoniana paedagogica (Leipzig, 1892), giving in the first named two full bibliographies, one of all works written on Melanchthon, the other of all works written by him (in chronological order). Harfelder believed that a good deal of unpublished material is still left in Cerman and foreign libraries. Thus three long unknowa letters are published in the Q uellen und Forschungen of the Konigt. Preuse Inst. Hist. at Rome, vol. ii. Two are to the Cardinal of Augeburg and one to Lazarus von Schwendi. Melanchehon was on his way to the Council of Trent as delegate of the elector of Saxony and the cardinal had offered to meet him at Dillingen. He writes "ingeminating peace," deploring that the council was not a national synod, which would have been a better means of arriving at the truth.

MELANESIA, one of the three great divisions of the oceanic isiands in the central and western Pacific. It embraces the Bismarck Archipelago, N.E. of New Guinea, the Louisjade, Solomon, Santa Cruz, New Hehrides and Loyalty islands, New Caledonia, Fiji and intervening small groups. The name (Gr. $\mu k \lambda a s$, hlack, and vioos, island) is derived from the black colour of the prevailing native race, the Papuan and its allied tribes. Many of these differ widely from the parent race, but all the Mclanesian peoples have certain common characteristics which distinguish them sharply from the inhabitants of Polynesia and Micronesia, Their civilization is lower. The Melanesians are mostly " negroid," nearly black, with crisp, curly hair elaborntely dressed; their women hold a much lower position than among the Polynesians; their institutions, social, political and religious, are simpler, their manners ruder; they have few or no traditions; cannibalism, in different degrees, is almost universal; but their artistic skill and taste, as with some of the dower African negroes, are remarkable, and they are amenable to discipline and fair treatment. Theit languages, which exhibit considerable difference among themselves, have features which mark them off clearly from the Rolynesian, notwithstanding certain fundsmental ralations with the latter.

See R. H. Codrington, The Melanestan Languages (Oxtord, 1885) and The Melonesians (Oxford, 189t): the articles Papuans and Pacific OcEAN; also those on the eeveral island-groups, \&ce.

CREAMHIIDS, a noted Greek painter of the 4th century s.c. He belonged to the school of Sicyon, which was noted for fine drawing.

MELBA [Nellie Porter Armstrong] (1859-) British operatic soprano, nde Nelle Porter Mitchell, was born at Burnley, near Melbourne, Australia, her father being a contractor, of Scottish blood. She sang at a local concert when six years old, and was given a good musical education. In 1882 she married Captain Charles Armstrong, and in 1886 went to study singing in Paris under the famous teacher, Madame Mathilde Marchesi, whose daughter, Madame Blanche Marchesi, also a famous singer, was associated with her. In 1887 she made her debbut in opera at Brussels, taking the stage-name of Madame Melba from her connexion with Melbourne. In the next year she sang the part of Lucia, which remained one of her famous roles, at Covent Garden, London; and, though critics complained of her coldness as an actress, her liquid voice and brilliant execution henceforth made her lamous as the greatest successor to Patti, In pure vocalization, on the operatic stage. She maintained this position for over twenty years, her triumphs being celebrated in every country.

See the " authorized " biography by Agees G. Murphy (1g09).
MELBOURNE, FILEAA童 LAMB, 2ND Viscount (1779-1848), English statesman, sccond son of the ist Viscount Melbourne, by his marriage with the daughter of Sir Ralph Milbanke, bart., was born on the I5th of March 1779. His father, Peniston Lamh (1748-1829), was the son of Sir Matthew Lamb, bart. (d. 1768), who made a large fortune out of the law, and married Miss Coke of Melbourne Hall; in 1770 he was made baron and in 1781 Viscount Melbourne in the Irish peerage, and in 1815 was created an English peer. After completing his course at Trinity College, Cambridge, William Lamb studied law at the university of Glasgow, and was called to the bar in 1804 . In 1805 he married Lady Caroline Ponsonby ($17^{8} 5-1828$), daughter of the 3 rd earl of Bessborough. She was, however, separated from him in 1825. Lady Caroline Lamh acquired some fame as a novelist by her romance of Glenarvon, which was puhlished anonymously in 18.6 and was afterwards (1865) re-issued under the title of The Falal Passion. On ontering parliament in 1806 the Hon. William Lamb (as Lord Melbourne then was) joined the opposition under Fox, of whom he was an ardent admirer; bul his Liberal tendencies were never decided, and he not infrequenty supported Lord Liverpool during that statesman's long tenure of office. During the short ministry of Canning in 1827 lie was chief secretary for Ireland, but he afterwards for a time adhered to the small remnant of the party who supported the duke of Wellington. The infucnce of Melbourne as a politician dates from his succeeding to the peerage in 1829. Disagreeing with the duke of Wellington on the question of parliamentary reform, he entered the ministry of Grey as home secretary in 1830. For the duties of this office at such a critical time be was deficient in insight and energy, but his political success was independent of his official capacity; and when the ministry of Grey was wrecked on the Irish question in July 1834 Melbourne was chosen to succeed him as prime minister. In November following he had to give place to a Conservative ministry under Peel; hut he resumed office in A pril 1835 , and remained prime minister till 1841. He died at Melbourne House, Derbyshire, on the 14th of November 1848.

Lord Melbourne was without the qualification of attention to details, and he never displayed those brilliant talents which often form a substitute for more solid acquirements. Though he possessed a fine and flexible voice, his manner as a speaker was ineffective, and his speeches were generally ill-erranged and destitute of oratorical point. His political advancement was due to his personal popularity. He had a thorough knowledge of the private and lndirect motives whlch influence politicians, and his genial attractive manner, easy temper and vivacious, if occasionally coarse, wit helped to conter on him asocial distinction which led many to take for granted his eminence as a statesman. His favourite dictum in polltics was, "Why not leave it alone?" His relations with women gave opportunity
for criticism though not open scandal; but the action brought againat him in 1836 hy Mr Ceorge Chapple Norton in regard to the famous Mrs Caroline Norton (q.v.) was deservedly unsuccessful. The most notable and estimable feature of his political conduct was his relation to Qucen Victoris ($q . v$.), whom he initiated into the duties of sovereign with the most delicate tact and the most paternal and conscientious care.

Melbourne was succeeded as 3rd viscount by his brother, Frederick James Lamb ($1782 \mathbf{1 - 1 8 5 3}$), who was Briiish ambassador to Vienna from 183i to 184x. On the 3rd viscount's death the titles became extinct, hut the estates passed to his sister Emily Mary ($1787-1869$), the wife of Lord Palmerston.

See W. McC. Torrens, Memoirs of Lord Melbourne (1878): Lloyd Sanders, Lord Melbourne's Papers (i889): A. Hayward's easay (from the Quarterly Review, 1878) in "Eminent Statesmen" (1880).

MELBOURER , the capital of Victoria, and the most populous city in Australia. It is situated on Hobson's Bay, a northern bend of the great harbour of Port Phillip, ia Bourke county, about $500 \mathrm{~m} . \mathrm{S} . W$. of Sydney. The suburbs extend along the shores of the bay for more than 10 m., but the part distinctively known as the "city" occupies a site about 3 m inland on the north bank of the Yarra river. The appcarance of Melbourne from the sea is hy no means picturesque. The busy shipping suburbs of Fort Melbourno and Willianstown occupy the flat alluvial land at the mouth of the Yarra. But the city ltself has a different aspect; its situation is relieved by numerous gentle hils, which show up its fne public buildings tc great advantage; its main streets are wide and well kept, and it has an air of prosperity, activity and comfort. The part especially known as the "city" occupies two hills, and along the valley bet ween them runs the thoroughfare of Elizabeth Street. Parallel to this is Swanston Street, and at right angles to these, parallel to the river, are Bourke Street, Collins Street and Flinders Street-the first being the busiest in Melbourne, the second the most fashionable with the best shops, and the third, which faces the river, given up to the maritime trade. These streets are an eighth of a mile apart, and between each is a narrower street bearing the name of the wider, with the prefix "Little." The original plan seems to have been to construct these narrow streets to give access to the great business houses which, it was foreseen, would be huilt on the frontage of the main streets. This plan, however, miscarried, for space grew so valuable that large warehouses and business eatehlishments have been erected in these lanes. Little Flinders Street, in which the great importers' warehouses are mainly situated, is locally known as " the Lane." In the centre of the city some of the office buildings are ten, twelve or even fourtees storeys high. The main streets are 99 ft . wide, and the lanes somewhat less than half that width. Round the city lies a circle of populous suburbs-to the north-east Fitzroy (pop. 31,687) and Collingwood $(32,749)$, to the east Richmond $(37,824)$, to the south-east Prahran (40,441), to the south South Melbonirne (40,619), to the south-west Port Melbourne (12,176), and to the north-west North Meibourne (18,120). All these suburbs lie within 3 m . of the general post office in Elizabeth Street; but outside them and within the 5 m . radius is another circle-to the east Kew (9469) and Hawthorne (21,430), to the southerat St Kilda (20,542) and Brighton ($10,0,47$), to the south-west Williamstown (14,052) and Footscray (18,318), to the north-west Essenden (17,426), and Flemington and Kensington (10,946), and to the north Brunswick (24,141). Numerous small suburbs fill the space between the two circles, the chief being Northcote, Preston, Camberwcll, Toorak, Caulficld, Elsternwick and Coburg. Some of these suhurbs are independent cities, others separate municipalities. In spite of the value of land, Melbourne is not a crowded city.

The Parliament House, standing on the crown of the eastern hill, is a massive square brick building with a pillared freestone façade approached hy a broad flight of steps. The interior is lavishly decorated and contains, besides the legislative chambers, a magnificent library of over 52,000 volumes. At the top of

Collins Street a building in brown freestone is occupied by the Treasury, behind which and fronting the Treasury Park another palatial building houses the government offices. A little further on is St Parrick's Roman Catholic cathedral, the seat of the archbishop of Melbourne, a building of somewhat sombre bluestone. Two striking churches face each other in Collins Street, the Scots church, a Gothic edifice with a lofty spire, and the Independent church, a fine. Saracenic building with a masaive campenile. The seat of the Anglican bishop, St Paul's cathedral, has an elegant cxterior and a wealth of elaborate workmans.jp within, but stands low and is obscured by surrounding warehouses. On the western hill are the law courts, a fine block of buildings in classic style surmounted by a central dome. In Swanston Street there is a large building where under one roof are found the public library of over 100,000 volumes, the muscum of sculpture, the art gallery, and the muscums of ethnology and technology. In connexion with the art gallery there is a travelling scholarship for art students, endowed by the state. The Exhibition Buildings are situated on a hill in Carton Gardens; they consist of a large cruciform hall surmounted by a dome and fianked by two annexes. Here on the gth of May igor the first federal parliament of the Australian commonwealth was opened by King George V. (as duke of Comwall and York). The Trades Hall at Carlton is the meeting-place of the trades-union societies of Victoria, and is the focus of much political influence. The Melbourne town hall contains a central chamber capable of accommodating 3000 people. The suburban cities and towns have each a town hall. The residence of the governor of the colony is in South Melbourne, and is surrounded by an extensive domain. The university is a picturesque mass of buildings in large grounds about a mile from the heart of the city. It comprises the university buildings proper, the medical school, the nat ural history museum, the Wilson Hall, a magnificent building in the Perpendicular style, and the three affiliated colleges. Trinity College (Anglican), Ormond College (Presbyterian) and Queen's Colfege (Wesleyan). The university, established in 1855, is undenominational, and grants degrees in the faculties of arts, law, medicine, science, civil enginecring and music; instruction in theology is left to the affiliated colleges. Meltourne has numerous state schools, and ample provision is made for secondary education by the various denominations and by private enterprise. Of theatres, the Princess and the Theatre Royal are the most important. Other public buildings include the mint, the observatory, the Victoria markets, the Melbourne bospitai, the general post office, the homocopathic hospital, the custom house and the Alfred hospital. Many of the commercial buildings are of architectural merit, notably the banks, of which the bank of Australasia, a massive edifice of the Doric order, and the Gothic Australian bank are the firiest examples.

The public gardens and parks of Melbourne are extensive. Within the city proper the Fitzroy Gardens are a network of avenues bordered with oak, elm and plane, with a "ferntree gully " in the centre; they are ornamented with casts of famous statues, and ponds, fountains and classic temples. The Treasury, Flagstaff and Carlton Gardens are of the same class. Around the city lie five great parks-Royal Park, in which are excellent zoological gardens; Yarra Park, which contains the leading cricket grounds; the Botanical Gardens, sloping down to the banks of the river; Albert Park, in which is situated a lake much used for boating; and Studley Park on the Yarra river, a favourite resort which has been left in a natural state. Besides these parks, each suburb has its public gardens, and at Flemington there is a fine race-course, on which the Melbourne cup races are run every November, an event which brings in a large influx of visitors from all parts of Australia. Melbourne has a complete tramway systom; all the chicf suburbs are connected with the city by cable trams. The tremways are controlled by a trust, representing twelve of the metropolitan municipalities. The chief monuments and statues of the city are the statue of Queen Victoria in the vestibule of the Houses of Parliament, and a colossal group commemorating the explorers Robert O'Hara Bourke (b. 1820) and William John Wilts (h. 1834), who died of
starvation in 1861 on an expedition for the crossing of Australis from south to north. There are also the statue to Sir Redmond Barry, first chancellor of the university, outside the public library, the Gordon statue in Spring Strect, a replica of that in Trafalgar Square, London, and a statue of Daniel O'Connely, outside St Patrick's cathodral.
Port Melbourne, originally called Sandridge, is about $2 \frac{1}{3} \mathrm{~m}$. distant from the city, with which it is connected by rail and tramway. It has two large piers, alongside of which vessels of almost any tonnage can lie. One of these piers is served by the railway, and here most of the great liners are berthed. Vessels drawing 22 ft., of water can ascend the river Yarra to the heart of the clty. There are 2 m . of wharves along each bank of the river, with two targe dry-docks and ship-repairing yards and foundries. Below Queen's Bridge is an expansion of the river known as the Pool, in which the largest ships using the river can turn with ease. Leading from a point opposite the docks is the Coode canal, by means of which the journcy from the city to the mouth of the river is shortened by over a mile. As a port Melbourne takes the first place in Australia as regards tonnage. It is also a great manufacturing centre, and both ciry and suburbs have their distinctive industrics. The chief are tanning, fellmongery, wool-washing, bacon-curing, flour milling, brewing, iron-founding, brick-making, soap-boiling, the manufacture of pottery, candles, cheese, cigars, snuff, jams, biscuits, jewelry, furniture, boots, clothing and leather and woollen goods.
The climate of Melbourne is exceptionally fine; occasionally hot winds blow from the north for two or three days at a time, but the proportion of days when the sky is clear and the air dry and mild is large. Snow is unknown, and the average annual rainfall is 25.58 in . The mean annual temperature is 57.3° F., corresponding to that of Washington in the United States, and to Lisbon and Messina in Europe. The city is supplied with water from the Yan Yean works, an artificial ble at the foot of the Plenty Range, nearly 19 m . distant.

The little settlement of the year 1835 , out of which Melbourne grew, at first bore the native mame of Dootigala, but it was presently renamod after Viscount Melbourne, premier of Great Britain at the time of its foundation. In June 1836 it consisted of only thirteen buildings, eight of which were turf huts. For two years after that date a constant stream of squat ters with their sheep flowed in from around Sydney and Tasmania to settle in the Port Phillip district, and by 1841 the population of the town had grown to 11,000 . The discovery of gold at Ballarat in 1852 brought another influx of population to the district, and the town grew from 39,000 to 100,000 in the course of two or three years. In 1842 Melbourne was incorporated and first sent members to the New South Wales parliament. A strong popular agitation caused the Port Phillip district to be separated from New South Wales in 1851, and a new colony was formed with the name of Victoria, Melbeurne becoming lts capital. In 1901 Melbourne became the temporary capital of the Austratian commonwealth pending the eelection of the permanent capital In New South Wales. The population of the city proper in 1901 was 68,374, and that of "greater Melbourne " was 406,079.

MYLDOURNB, a market town in the southern parliamentary division of Derbyshire, England, 8 m . S.S.E. of Derby, on the Midland railway. Pop. (1901), 3580 . It lies in an undulating district on a small southern tributary of the Trent, from which it is about 2 m . distant. The church of St Michael is a fine example of Norman work, with certain late details, having clerestoried nave, chancel and aisles, with central and two western towers. Melbourne Hall, a building of the time of William III., surrounded by formal Dutch gardens, stands in a domaln owned at an carly date by the bishops of Carlisle, whose tithe barn remains near the church. They obtained the manor in 1133. In 1311 Robert de Holland fortified a mansion here, and in 1327 this castle beionged to Henry, earl of Lancaster; but it was dismantled in 1460 , and little more than the site is now tracceble. The tithe of Viscount Melbourne was taken from ant town. There are manufactwres of silk, and boots and shocs

MELCHERS, (JULIUS) GARI ($8860-$), American artist, was born at Detroit, Michigan, on the xith of August 1860. The son of a sculptor, at seventeen he was sent to Dusseldorf to study art under von Gebhardt, and after three years went 10 Paris, where he worked at the Academie Julien and the Ecole des Beaux Arts. Attracted by the pictorial side of Holland, he settled at Egmond. His first important Dutch picture, "The Sermon," brought him honourable mention at the Paris Salon of 1886. He became a member of the National Academy of Design, New York; the Royal Academy of Berrin; Societe Nationale des Beaux Arts, Paris; International Society of Painters, Sculptors and Engravers, London, and the Secession Society, Munich; and, besides receiving a number of medals, his decorations include the Legion of Honour, France; the order of the Red Eagle, Germany; and knight of the Order of St Michael, Bavaria. Besides portraits, his chief works are: "The Supper at Emmaus," in the Krupp collection at Essen; "The Family," National Gallery, Berlin; "Mother and Child," Luxembourg; and the decoration, at the Congressional Library, Washington, "Pence and War."
MELCHLADES, or Milindes (other forms of the name being Meltiades, Melciades, Milciades and Miltides), pope from the and of July 310, to the 1ith January 314. He appears to have been an African by birth, hut of his personal history nothing is known. The toleration edicts of Galerius and of Constantine and Licinius were puhlished during his pontifcate, which was also marked by the holding of the Lateran synod in Rome (313) at which Caecilianus, bishop of Carthage, was acquitted of the charges brought against him and Donatus condemned. Melchiades was preceded and followed by Eusehius and Silvester I. respectively.
MRICHITES (ili. Royalists, from Syriac melcha, a king), the name given in the 5 th century to those Christians who adhered to the creed supported by the authority of the Byzantine emperor. The Melchites thercfore are those who accept the decrees of Ephesus and Chalcedon as distinguished from the Nestoriass and Jacobite Cburch (gq.v.). They follow the Orthodox Eastern liturgy, ceremonial and calendar, but acknowledge the papal and doctrinal authority of Rome. They number about 80,000 , are found in Syria, Palestine and Egypt, and are under the immediate rule of the patriarch of Damascus and t welve bishops.
MELCRIZEDEK (Heb. for "king of righteousness"; or, since Sedek is probably the name of a god, "Sedek is my king")," king of Salem and priest of "supreme El" (El "elyon), in the Bible. He brought forth bread and wine to Abrabam on his return from the expedition against Chedorlaomer, and blessed him in the name of the supreme God, possessor (or maker) of heaven and earth; and Abraham gave him tithes of all his booty (Gen. xiv. 18-20). Biblical tradition tells us nothing more about Mekchizedek (of. Heb. vii. 3); but the majestic figure of the king-priest, prior to the priesthood of the law, to whom even the father of'all Israel peid tithes (cf. Jacob at Belhel, Gen. xxviii. ${ }^{23}$), suggested a gigurative or typical application, first in Psalm cx. to the vicegerent of Xahweh, seated on the throne of Zion, the king of. Isract who is also priest after the order of Melchizedek, and then, after the Gospel bad ensured the Messianic interpretation of the Psalm (Matt. xiii. 42 seq.), to the kingly pricsthood of Jesus, as that idea is worked out at length in the Efiste to the Hebrews.

The theological interest which attaches to the iden of the preAaronic king-priest in these typical applications is practically independent of the histerical questions suggested by the narrative of Gen. xiv. The cpisode of Melchizedek, thowgh connected with the main natrative by the epithets given to Yahweh in Gen. xiv. 22. breaks the natural connexion of verses 17 and 21. and may perhape have come originally from a separate source. As the marrative now stands Salem must be sought in the vicinity of "the king's dale," which from 2 Sam. xviii. I8, probably, but not necessarily. lay near Jerusalem. That Salem is Jerusalem, as in Psalm Ixxvi. z,

[^8]is the ancient and common view; but even in the Isth century hec. Jerusalem was known as Uru-salim. Jerome and others have identified Salim witl one or other of the various places which bear that name, e.g. the Eaגeiر of John iii. 23, 8 m . south of Bethshean. In a genuine record of extreme antiquity the union of king and priest in one person, the worship of El as the supreme deity by a Canaanite, ${ }^{2}$ and the widespread practice of the consecration of a tithe of booty can present no difficulty; but, if the historical character of the narrative is denied, the date of the conception must be placed as late as the rise of the temporal authority of the high priests after the exilc. So far no evidence has been found in the cunciform inscriptions or elsewhere in support either of the genuineness of the episode in its present form, or of the antiquity which is attributed to it (sce further, J. Skinner, Genesis, Pp. 269 sq9.). An ancient legend identifies Mcichizedek with Shem (Palestinian Targum, Jerome on Isa. xli., Ephraem Syrus in loco).

See further the literature on Gen. xiv., and the articles Abraham, Genesis.
(W.R.S.; S. A.C.)

MELCOMBE, GEORGE BUBB DODDINGTON, Baron (i6gi1762), English politician. His father's name was Bubb, but the son took the name of Doddington on inheriting a large property by the death of an uncle of that name (1720). He was educated at Oxford. In 1715 he was returned to parliament as member for Winchelsea, and was sent as envoy extraordinary to Spain. He carried on n scandalous traffic in the five or six parliamentary votes which he controlled, his tergiversation and venality furnishing food for the political satirists and caricaturists of the day. His most estimahle political action was his defence of Admiral Byng in the House of Commons (1757). From 1722 to 1754 he sat in parliament for Bridgewater; from 1724 to 1740 was a lord of the treasury; and, in 1744, became treasurer of the navy under Henry Pelham, and, again in 1755, under Newcastle and Fox. In April 176 I he was raised to the peerage as Baron Melcombe of Melcombe Regis in Dorsetshire. He died at La Trappe, his Hammersmith house, on the 28 th of July 1762 . His wife, acknowledged only after the death of another lady to whom he had given a bond that he would marry no one else, died without issue. Ile was a wit and a friend of wits, a good scholar, and something of a Maecenas; Thomson's "Summer" was dedicated to him, Fielding addressed to him an epistle and Edward Young a satire. He was a leading spirit of the "Hell-fire" Club, whose members, called "Franciscans," from their founder Sir Francis Dashwood (d. 1781), held their revels in the ruined Cistercian ahbey of Medmenham, Bucks.

His diary, published in 1784. reveals him in his character of place-hunter and throws a curious light on the political methoda of the time.

MELEAGER (Gk. Meגearpos), in Greck legend, the son of Ocneus, king of Calydon, and Althaca. His father baving neglected to sacrifice to Artemis, she sent a wild boar to ravage the land, which was eventually slain by Meleager. A war broke out between the Calydonians and Curetes (led hy Alihaea's brothers) about the disposal of the head and skin, which Meleager awarded as a prize to Atalanta, who had inflicted the firs! wound; the brothers of Althaca lay in wait for Atalanta and robbed her of the spoils, bul were slain by Meleager. When Althaea heard this, she cursed Meleager, who withdrew, and refused to fight until the Curetes were on the point of capturing the city of Calydon. Then, yielding to his wife's entreaties, he sallied forth and defeated the enemy, but was never scen again, having been carried off by the Erinyes, who had heard his mother's curse (or he was slain by Apollo in battle). According to a later tradition, not known to Homer, the Moerae appeared to Althaca when Mcieager was seven days old, and announced that the child would only live as long as the log blazing on the hearth remained unconsumed. Althaca thereupon seized the log, extinguished the flames, and hid it in a box. But, after her brothers' death, she relighted the log, and let it burn away until Meleager died,' Then, horrified at what she had done, she banged hersclf, or died of grief. The sisters of Neleager were

2The god 'Enıoif was also Mhoenician: see Driver, Genesis. p. 165 ; Lagrange. Religions Stwitigues, Index, s.t.
? On the torch as representing the light of life, wee E. Kuhnert in Rheimisches M nstav, xlix., I894, end J. Grimm, Tememic Mythe leat (Eng, trame by J. Stallybrasis, 1880), ii. 853 .
changed by Artemis out of compassion into guinea fowls and removed to the island of Leros, where they mourned part of the year for their brother. The life and adventures of Meleager were a favourite subject in ancient literature and art. Meleager is represented as a tall, vigorous youth with curly hair, bolding a javelin or a boar's head, and accompanied by a dog.
See R. Kekule, De fabula meleagrea disseriotio (186r); Surber, Die Meleofersage (Zarich, 1880): articles on "Meleager" and "Aleleagrides" in Roscher's Lexikon der Mythologie; L Preller, Griechische Mythalogie; Apollodorus i. 8; Homer, Iliad, ix. 527; Diod Sic. iv. 34; Dio Chrysostom, Or. 67; Hyginus, Fab. 17I; Ovid, Melam. viii. 260-545- In the article Greek Art (fig. 41) the hunting of the Calydonian boar is represented on a fragment of a frieze from a heroum.

MELEDA (Serbo-Croatian, Mljet; Lat. Melita), the most southerly and easterly of the larger Adriatic islands of the Austrian province of Dalmatia. Pop. (1900), 1617. Meleda lies south of the Sabioncello promontory, from which it is divided by the Meleda Channel. Its length is 23 m .; its average breadth 2 m . It is of volcanic origin, with numerous chasms and gorges, of which the longest, the Bahinopolje, connects the north and south of the island. Port Palazzo, the priacipal harbour, on the north, is a port of call for tourist steamers. Meleda has been regarded as the Melita on which St Paul was shipwrecked, this view being first expounded, in the roth century, by Constantine Porphyrogenitus. As at Malta, a "St Paul's Bay" is still shown.
Melegnano (formerly Marignano), a town of Lombardy, Italy, in the province of Milan, ir m. S.E. of that city by the railway to Piacenza, 289 ft . above sea-level. Pop. (igor), 6782. There are remains of a castle of the Visconti. Its military importance is due to its position at the crossing of the river Lambro. It was a stronghold of Milan in ber great struggle against Lodi, and is famous for the victory of Francis I. of France over the Swiss in 1515 , known as the battle of Marignan, and for the action between the French and Austrians in 1859.
MELENDEZ VALDÉs, JUAN ($5754-18 \mathrm{I} 7$), Spanish poet, was born at Ribera del Fresio, Badajos, on the rith of March 1754. Destined by his parents for the priesthood, he graduated in law at Salamanca, where he became indoctrinated with the ideas of the French philosophical school. In 1780 with Batilo, a pasloral in the manner of Garcilaso de la Vega, he won a prize offered by the Spanish academy; dext year he was introduced to Jovellanos, through whose influence he was appointed to a professorship at Salamanca in 1783 . The pastoral scenes in Las Bodas de Camacko (1784) do not compansate for its undramatic nature, but it gained a prize from the municipality of Madrid. A volume of verses, lyrical and pastoral, published in 178_{5}, causod Melendez Vaddes to be hailed as the first Spanish poet of his time. This success induced him to resign his chair at Salamanca, and try his fortune in politics. Once more the friendship of Jovellanos obtainod for him in 1780 a judgeship at Saragossa, whence be was transferred two years later to a post in the chancery court at Valladolid. In 1797 he dedicated to Godoy an enlarged edition of his poems, the new matter consisting principally of unsuccessful imitations of Milton and Thomson; but the poet was rewarded by promotion to a high post in the treasury at Madrid. On the fall of Jovellanos in 1798 Melender Valdes was dismissed and exiled from the capital; he returned in 1808 and accepted office under Joseph Bonaparte. He had previously denounced the French usurper in his verses. He now outraged the feelings of his countrymen by the grossest llattery of his foreign master, and in 1813 he fied to Alais. Four years later he died in poverty at Montpellier. His remains were removed to Spain in 1900 . In natural talent and in acquired accomplishment Melendez Valdés was not surpassed by any contemporary Spaniard; he failed from want of character, and his profound insincerity affects his poerns. Yet he has fine moments in various veins, and his imitation of Jean Second's Basia is notable.

MELETIUS OP ANTIOCH (d. 381), Catholic bishop and saint, was born at Meitene in Lesser Armenia of wealthy and noble parents. He first appears (c. 357) as a supporter of Acacius,
bishop of Caesarea, the leader of that party in the episcopate which supported the Homoean formula by which the emperor Constantius sought to effect a compromise between the Homoeusians and the Homousians. Meletius thus makes his debut as an ecclesiastic of the court party, and as such became bishop of Sebaste in succession to Eustathius, depooed as an Homousian heretic by the synod of Melitenc. The appointment was resented by the Homoeusian clergy, and Meletius retired to Beroea. According to Socrates he attended the synod of Seleucia in the autumn of 359 , and then subscribed the Acacian formula. Early in 360 he became bishop of Antioch, in succession to Eudoxius, who had been raised to the see of Constantinople. Early in the following year he was in exile. According to an old tradition, supported by evidence drawn from Epiphanius and Chrysostom, this was due to a sermon preached before the emperor Constantius, in which he revealed Homousian views. This explanation, bowever, is rejected by Loofs; the sermon contains nothing inconsistent with the Acacian position favoured by the court party; on the other hand, there is evidence of conflicts with the clergy, quite apart from any questions of orthodaxy, which may have led to the bishop's deposition.

The successor of Meletius was Euzoeus, who had fallen with Arius under the ban of Athanasius; and Loofs explains the subita fidei mutatio which St Jetome (ann. Abr. 2376) ascribes to Meletius to the dogmatic opposition of the deposed bishop to his successor. In Antioch itself Meletius continued to have adherents, who held scparate services in the "Apostolie" church in the old town. The Meletian schism was complicated, moreover, by the presence in the city of another anti-Arian sect, stricter adherents of the Homousian formula, maintaining the tradition of the deposed bishop Eustathius and governed at this time by the presbyter Paulinus. The synod of Alexandria sent deputies to attempt an arrangement between the two anti-Arian Churches; but before they arrived Paulinus had been consecrated bishop by Lucifer of Calaris, and when Meletiusfree to return in consequence of the emperor Julian's contemptuous policy-reached the city, he found himself one of three rival bishops. Meletius was now between two stools. The orthodox Nicene party, notably Athanasius himself, held communion with Paulinus only; twice, in 365 and 371 or 372, Meletius was exiled by decree of the Arian emperor Valens. A Iurther complication was added when, in 375, Vitalius, one of Meletius's presbyters, was consecrated bishop by the beretical bishop Apollinaris of Laodicea.
Meanwhile, under the influence of his situation, Meletius had been more and more approximating to the views of the newer school of Nicene orthodoxy. Basil of Caesarea, throwing over the cause of Eustathius, championed that of Meletius who, when after the death of Valens he returned in triumph to Antioch, was hailed as the leader of Eastern orthodoxy. As such he presided, in October 379, over the great synod of Antioch, in which the dogmatic agreement of East and West was established; it was he who helped Gregory of Nazianzus to the see of Constantinople and consecrated him; it was he who presided over the second oecumenical council at Constantinople in 38 r . He died soon after the opening of the council, and the emperor Theodosius, who had recelved him with especial distinction, caused his body to be carried to Antioch and buried with the honours of a saint. The Meletian schism, however, did not ead with his death. In spite of the advice of Gregory of Nazianzus and of the Western Church, the recognition of Paulinus's sole episcopate was refused, Flavian being consecrated as Meletius's successor. The Eustathians, on the other band, elected Evagrius as bishop on Paulinns's death, and it was not till 4×5 thatFlavian succeeded in re-uniting them to the Church.

Meletius was a holy man, whose ascetic life was all the more remarkable in view of his great private wealth. He was also a man of learning and culture, end widely estecmed for his honourable, kindly and straightforward cheracter. He is venerated as a saint and confessor in both the Roman Catholic and Orthodox Eastern Churches.

See the article G. F. Looifs in Herzog-Hauck, Realencyklopidie (ed. 1897, Leipzig), xii. 552, and authorities there cited.

MELETIUS OF LYCOPOLIS (4th century), founder of the sect known after him as the "Meletians," or as the "Church of the Martyrs," in the district of Thebes in Egypt. With Peter, archbishop of Alexandria, he was thrown into prison during the persecution under Diocletian. His importance is due to his refusal to receive, at least until the persecution had ceased, those Christians who during the persecutions had renounced their faith, and then repented. This refusal led to a hreach with Peter, and other Egyptian bishops who were willing to grant ahsolution to those who were willing to do penance for their infidelity. Meletius, after regaining his freedom, held his ground and drew around him many supporters, extending his influence even so far away as Palestine. He ordained 29 bishops and encroeched upon Peter's jurisdiction. The Council of Nicaea in 325 upheld the bishops, hut Meletius was allowed to remain bishop of Lycopolis though with merely nominal authority. His death followed soon after. His followers, however, took part with the Arians in the controversy with Athanasius and existed as a separate sect till the sth century.
See Achelis in Herzog-Hauck, Realencyk. xii. (1903) 558, with the autborities there quoted, and works on Church Hispry.

MELFI, a city and episcopal sce of Basilicata, Italy, in the province of Potenza, 30 m . by rail N. of the town of that name. Melfi is picturesquely situated on the iower slopes of Monte Vulture, 1591 ft. above sen-level. Pop. (1901), 14,547. The castle was originally erected hy Robert Guiscard, but as it now stands it is mainiy the work of the Doria family, who have possessed it since the time of Charles V.; and the noble cathedral which was founded in 1153 by Robert's son and successor, Roger, has had a modern restoration (though it retains its campaniles) in consequence of the earthquake of 1851 , when the town was ruined, over one thousand of the inhabitants perishing. It is the centre of an agricultural district which produces oil and wine. In the town hall is a fine Roman sarcophagus found 6 m . W. of Venosa.

Melfi does noe seem to occupy an ancient site, and its origin is uncertain. By the Normans it was made the capital of Apulia in 1041 , and fortified. The council held by Nicholas I. in 1059, that of Urban 11. in 1089, the rebellion against Roger in 1133 and the . in 1167 , the attack by Richard, count of Acerra in 1190 , and the parliament of 1223, in which Frederick II. established the constitu* tion of the kingdom of Naples, form the principal points of interest in the annals of Melfi. In 1348 Joanna I. of Naples bestowed the city on Niccolo Acciajuol: : but it was shortly afterwards captured, after a six months' siege, by the king of Hungary, who transferred it to Conrad the Waff. In 1392 Goffredo Marzano was inade count of Melf; but Joanna II. granted the lordship to the Caracciolo family, and they retained it for one hundred and seven years till the tinte of Charles V. An obstinate resistance was offered by wie cily to lautrec de Foix in 1528 : and his entrance wilhin ins walls was followed by the massacre, it is said, of 18,000 of its citizens.

See G. de Loremzo, Venosu e la regione del Vulivere (Bergam, 1906).

MBLICBRTES, in Greek legend, the son of the Boeotian prince Athamas and Ino, daughter of Cadmus. Ino, pursued by her husband, who had been driven mad by Hera because Ino had brought up the infant Dionysus, threw herself and Melicertes into the sea from a high rock between Megara and Corinth. Both were changed into marine deities-Ino as Leucothea, Melicertes as Palacmon. The body of the latter was carried by a dolphin to the Isthmus of Corinth and deposited under a pine tree. Here it was found by his uncle Sisyphus, who had it removed to Corinth, and by command of the Nereids instituted the Isthmian games and sacrifices in his honour. There seems litile doubt that the cult of Melicertes was of foreign, probably Phoenician, origin, and introduced by Phoenician navigators on the coasts and islands of the Acgean and Mediterrancan. He is a native of Boeotia, where Phoenician influences were strong; at Tenedos he was propitiated by the sacrifice of children, which seems to point to his identity with Meikart. The premature death of the child in the Greek form of the legend is prubably an allusion to this.

The Romans identified Palaemon with Portunus (the harbour god). No satisfactory origin of the name Palaemon has bece given. It has been suggested that it nieans the "wrestler" or " struggler " (ranalu) and is an epithet of Heracles, who is often identificd with Melkart, but there does not appear to be any traditional coanexion between Heracles and Palaemon. Melicertes beiog Phoenician, Palaemon also has been explained as the $"$ burning lord" (Baal-hanan), but there seems litule in common between a god of the sea and a god of fire.
See Apollodorus iii. 4. 3i Ovill, Mciam. iv. 416-542, Fasth, vi. 485: Hyginus, Fab. 2: Pausanias i. 44, ii. if Philostratus, Jcones, ii. 16; articles by Toutain in Daremberg and Saglio's Dictionnaire des antiquilfs and by Stoll in Roscher's Lexikon der Mythologie; L. Preller. Griechische Alyihologie; R. Brown, Semitic Infuence in Iiellenic Mythology (1898).

MBLILLA, a Spanish fortified station and penal settlement on the north coast of Morocco, south of Cape Tres Forcas and 135 m . E.S.E. of Ceuta. Pop. about 9000 . The town is built on a huge rock connected with the mainland by a rocky isthmus. There is a harbour, only accessible to small vessels; the roadstead outside is safe and has deep water a mile to the east of the fortress. From the landing-place, where a mole is cut out of the rock, there is a steep ascent to the upper town, characteristicaliy Spanish in appearance. The town is walled, and the isthmus protected by a chain of small forts. A Moorish custom-house is placed on the Spanish border beyond the fort of Santa Isabel, and is the only authorized centre of trade on the Riff coast between Tetuan and the Algerian frontier. It thus forms the entrepot for the commerce of the Riff district and its hinterland. Goat skins, eggs and beeswax are the principal exports, cotton goods, tea, sugar and candles being the chief imports. For the period $1900-1905$ the annual value of the trade was about $£ 200,000$. Melilla, the first place captured by Spain on the African mainland, was seized from the Moors in 1490. The Spaniards have had much trouble with the neighbouring tribes-turbulent Riffians, hardly subject to the sultan of Morocco. The limits of the Spanish territory round the fortress were fixed by treaties with Morocco in 1859, 1860, 186! and 1804. In 1893 the Riffians besieged Melilla and 25,000 men had to be despatched against them. In 1908 two companies, under the protection of El Roghi, a chieftain then ruling the Riff region, started mining lead and iron some 15 m . from Melilla and a railway to the mines was begun. In October of that year the Riffians revolted from the Roghi and raided the mines, which remained closed until June 1909 . On the gth of July the workmen were again attacked and several of them killed. Severe fighting between the Spaniards and the tribesmen followed. The Riffians having suhmitted, the Spaniards, in 1910, restarted the mines and undertook harbour works at Mar Chica.
See Budgett Meakin, The Land of the Moors (London, 1901), ch. xix., and the authorities there cited: P. Barre, "Melilla ex les présides espagnols," Rev. frangaise (1908).

MÉLINR, FGLX JULES (1838-), French statesmab, was born at Remiremont on the aoth of May 1838. Having adopted the law as his profecsion, he was chosen a deputy in 1872 , and in 1879 he was for a short time under-secretary to the minister of the interior. In 1880 he came to the front as the leading spokesman of the party which favoured the protection of French industries, and he had a considerable share in fashioning the protectionist legislation of the years $1890-1902$. From 1883 to 1885 Meline was minister for agriculture, and in $1888-1889$ he was president of the Chamber of Deputics. In 1806 he became premier (presidcul du conscil) and minister for agriculture, offices which he vacated in 1898. At one time he edited la Republique francaise, and after his retirement from public life he wrote Le Retour a la terre et la surproduction industrialle, toul en faveur de l'agricultare (1905).

MELLNOUR, ETIENNE MARIN (1808-1875), Freach actor and sculptor, was born in Caen, the son of a volunteer of 1793. He early went to Paris and obtained work as a sculptor on the church of the Madeleine, but his passion for the stage soon led him to join a strolling company of comedians. Finally chance gave him an opportunity to show his talents, and at the Porte Saint Martin he became the popular interpreter of romantic
deama of the Alexandre Dumas type. One of his greatest successes was as Benvenuto Cellini, in which he displeyed his ability both as an actor and as a sculptor, really modelling before the eyes of the audience a statue of Hebe. He sent a number of statuettes to the various exhibitions, notably one of Gilbert Louis Duprez as William Tell. Melingue's wife, Theodorine Thiesset (1813-1886), was the actress selected by Victor Hugo to create the part of Guanhumara in Burgrapes at the Comédie Francaise, where sbe remained ten years,
See Dumas, Ure Vie d'artiste (1854).
CRLIORISM (Lat. medior, better), in philosophy, a term given to that view of the world which believes that at present the sum of good exceeds the sum of evil and that, in the future, good will continually gain upon evil. The term is said to have been invented hy George Eliot to express a theory mediating between optimism and pessimism. The pragmatic movement in philosophy which puts stress upon the duty and value of effort is naturally favourahle to the melioristic view: the best things that have been said recently in favour of it are found in books such as William James's Pragmatism.

MERISSUS OF 8AM08, Greek philosopher of the Eleatic School (q.v.), was born probably not later than 470 B.C. According to Diogenes LaErtius, ix. 24, he was not ooly a thinker, hut also a political leader in his native town, and was in command of the fleet which deieated the Athenians in 442. The same authority says he was a pupil of Parmenides and of Heraclitus, but the statement is improhahle, owing to discrepancy in dates. His works, fragments of which are preserved by Simplicius and attested by the evidence of Aristotle, are devoted to the defence of Parmenides' doctrine. They were written in Ionic and consist of long series of argument. Being, be says, is eternal. It cannot have had a beginning because it cannot have begun from not-being (cf. ax nihilo nihil), nor from being (elt rap ty oifre kai ob $\boldsymbol{\gamma}$ (vorro). It cannot suffer destruction; it is impossible for being to become not being ${ }_{t}$ and if it hecame another being, there would be no destruction. According to Simplicius (Physica, f. 22h), be differed here from Parmenides
 goes on to show that eternal being must also be unlimited in magnitude, and, thereiore, one and unchangeahle. Any change whet her from internal or external source, he says, is unthinkable; the One is unvarying in quantity and in kind. There can be mo division inside this unity, for any such division implies space or void; but void is nothing, and, therefore, is not. It follows further that being is incorporeal, inasmuch as all body has size and parts. The fundamental difficulty underlying this logic is the paradox more clearly expressed by Zeno and to a large extent represented in almost all modern discussion, namely that the evidence of the senses contradicts the intellect. Abstract argument has shown that change in the unity is impossible; yet the senses tell us that hot becomes cold, hard becomes soft, the biving dies, and so on. From a comparison of Melissus with Zeno of Eiea, it appears that the spirit of dialectic was already tentatively at work, though it was not conscious of its own power. Neither Meliscus nor Zeno seems to have observed that the application of these destructive methods struck at the root not only of multiplicity hut also of the One whose existence they maintained. The weapons which they forged in the interests of Parmenides were to be used with equal effect against themselves.

See Ritter and Preller. 8f 159-166; Brandis, Commentationum eleaticarum, pt. 1.p. 185; Mullach, Aristotelis do Melisso, Xenophanc, Gorgia: Pabst, De Medissi samii fragmentis (Bonn, 1889), and historics of philosophy.

MELITO, bishop of Sardis, a Christian writer of the and century, mentioned by Eusebius (Hist. Eccl. iv. 21) along with Hegesippus, Dionysius of Corinth, Apollinaris of Hicrapolis, Irenaeus, and others, his contemporaries, as a champion of orthodoxy and upholder of apostolic tradition. Of his personal history nothing is known, and of his numerous works (which are enumerated-with quotations-by Euscbius) only a few fragments are extant. They included an A pologia addressed to

Antoninus some time between a.D. 169 and 180 , two books relating to the paschal controversy, and a work entitjed 'Exioyal (selections from the Old Testament), which contained the first Christian list of "the books of the Old Covenant." It excludes Estber, Nehemiah and the Apocrypha. The fragments bave been edited with valuable notes by Routh (Reliquiae sacroe, vol. i., 1814). These are sufficient to show that Mehto was an important figure ln Asia Minor and took much part is the paschal, Marcionite and Montanist controversies.

It aeema more than doubsful whether the Apologic of Melito "the Philosopher," discovered in a Syriac translation by Henry Tattam ($1789-1868$), and subsequently edited by W. Cureton and by Pitra-Renan, ought to be attributed to this writer and not to another of the same name. The KNels (clavis), edited by PitraRenan, is a much later Latin collection of mystical explanations of Scripture.
See A. Harnack, Texte und Untersuchungen, i. 240-278 (Leipzis. 1882); Erwin Preuschen, s.v. "Melito" in Herzog-Hauck, Realencyklopadic, xii., 1903. giving full list of works and bibliography.

MELISSHAM, a market town in the Westbury parliamentary division of Wiltshire, England, $95 \frac{1}{2} \mathrm{~m}$. W. of London hy the Great Western railway. Pop. of urhan district (1901), 2450. It lies in a valley sheltered by steep chalk hills on the east, its old-fashioned stone houses lining a single broad street, which crosses the Upper Avon hy a bridge of four arches. The church preserves some remnants of Norman work and a Perpendicular south chapel of rare beauty. Melisham possesses cloth-mills where coco-nut fibre and hair cloth are woven, flour-mills and dye-works. On the discovery of a saline spring in 1816, baths and a pump-room were opened, but although two other springs were found later, the attempt to create a fashionable health resort failed. The surrounding deer-forest was often visited by Edward I. Lacock Abbey, 3 m . distant, was founded in 123^{2} for Austin canonesses, and dissolved in 1539 . Portions of the monastic buildings remain as picturesque fragments in and near the modern mansion called Lacock Abhey.

MELLE, a town of western France, capital of an arrondissement in the department of Deux-Sèvres, on the left bank of the Beronne, 21 m . E.S.E. of Niort hy rail. Pop. (1906), 2231. Melle has two churches in the Romanesque style of Poitou, St Pierre and St Hilaire, the latter ornamented with sculptured arcading. The hospital has a richly carved doorway of the 17th century. The church of St Savinien (inth century) serves as a prison. The town has trade in farm-produce, mules and other live stock; distilling is carried on. Mclle (Mctallum) derives its name trom the lead mine worked here during the Roman occupation and in the early middie ages. At the latter period it had a mint. In later times it was a possession of the counts of Maine.

MELLITIC ACID (benzene hexacarboxylic acid), $\mathrm{C}_{8}(\mathrm{COOH})_{s}$, was first discovered in 1799 by M. H. Klaproth in the mineral honeystone, which is the aluminium salt of the acid. The acid may be prepared by warming honeystone with ammonium carbonate, boiling off the excess of the ammonium salt and adding ammonia to the solution. The precipitated alumina is filtered off, the filtrate evaporated and the ammonium salt of the acid purified by recrystallization. The ammonium salt is then converted into the lead salt by precipitation with lead acetate and the lead salt decomposed hy sulphuretted hydrogen.
The acid may also be prepared by the oxidation of pure carbon. or of hexamethyl benzene, in the cold, by alkaline potassium permanganate (F. Schulze, Ber., 1871, 4, p. Bo2; C. Friedel and J. M. Crafts, Ann. chim. phys., 1884 [6], 1, p. 470). It crystallizes in fine silky needles and is soluble in water and alcohol. It is a very stable compound, chlorine, concentrated nitric acid and hydrioric acid having no action upon it. It is decompoeed, on dry distillation, into carbon dioxide and pyromellitic acid. $\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{2}$; when distilled with lime it gives carbon dioxide and benzene. Long digestion of the acid with excess of phosphorus pertachloride results in the formation of the acid chloride. $\mathrm{C}_{\mathrm{s}}(\mathrm{COCl})_{4}$, which crystallizes in needles, melting at $190^{\circ} \mathrm{C}$. By heating the ammonium salt of the acid to $150-160^{\circ} \mathrm{C}$. as long an ammenia is evolved, a mixture of paramide (mellimide), $\mathrm{C}_{6}\left(\mathrm{CO}_{\mathrm{CO}}^{\mathrm{CO}}>\mathrm{NH}\right)$, and ammonium euchroate is obtalned. The mixture may be separated by dissolving out the ammonium cuchroate with water. Paramide is a white amorphour powder, maduble in water and alcotion.

MELLITUS (d. 624), bishop of London and archbishop of Canterbury, was sent to England by Pope Gregory the Great in 6o1. He was consecrated by St Augustine before 6o4, and a church was huilt for him in London by Aethelberht, king of Kent; this church was dedicated to St Paul, and Mellitus became first bishop of London. About ten years later the East Saxons reverted to heathenism and the bishop was driven from his see. He took refuge in Kent and then in Gaul, hut soon returned to England, and in 619 became archbishop of Canterhury in succession to Laurentius. He, died on the 24th of April 624.

MELLONI, MACEDONIO (1798-r854), Italian physicist, was horn at Parma on the inth of April 1798 . From 1824 to 1831 he was professor at Parma, but in the latter year he was compelled to escape to France, having taken part in the revolution. In 1839 he went to Naples and was soon appointed director of the Vesuvius ohservatory, a post wbich he held until 1848 . Melloni received the Rumford medal of the Royal Society in 1884 . In 1835 he was elected correspondent of the Paris Academy, and in 1839 a forcign member of the Royal Society. He died at Portici near Naples of cholera on the 11th of August 1854. Melloni's reputation as a physicist rests especially on his discoveries in radiant heat, made with the aid of the thermomultiplier or combination of thermopile and galvanometer, which, soon after the discovery of thermoelectricity by T. J. Seebeck, was employed by him jointly with L. Nobili in 1831. His experiments were especially concerned with the power of transmitting dark heat possessed by various suhstances and with the changes produced in the heat rays by passage through different materials. Substances which were comparatively transparent to heat be designated by the adjective " diathermane," the property being "diathermanerte," while for the heattint or heat-coloration produced by passage through different materials he coined the word "diathermansic." In English, however, the terms were not well understood, and "diathermancy," was generally used as the equivalent of "diathermanélé." In consequence Melloni about 1841 began to use "diathermique" in place of "diathermane," " diathermasie" in place of "diathermancite," and " thermocrose " for " diathermansie." His most important book, La thermocrose ou la coloration calorifique (vol. i., Naples, 1850), was unfinished at his death. He studied the reflection and polarization of radiant heat, the magnetism of rocks, electrostatic induction, daguerrotypy, \&c.
melodrama (a coined word from Gr. minos, music, and $\delta \rho a \mu a$, action), the name of several species of dramatic composition. As the word implies, "melodrama" is properly a dramatic mixture of musie and aetion, and was first applied to a form of dramatic musical composition in which music accompanied the spoken words and the action, but in which there was no singing. The first example of such a work has generally been taken to be the Pygmalion of J. J. Rousseau, produced in $\mathbf{1 7 7 5}$. This is the souree of romantic dramas depending on sensational incident with exaggerated appeals to conventional sentiment rather than on play of character, and in which dramatis personae follow conventional types-the villain, the hero wrongfully charged with crime, the persecuted heroine, the adventuress, \&c. At first the music was of some importance, forming practically a running accompaniment suitable to the situations-but this has gradually disappeared, and, if it remains, is used mainly to emphasize particularly strong situations, or to hring on or off the stage the various principal characters. Such plays first became popular in France at the beginning of the 19th eent ury. One of the most proific writers of melodramas at that period was R. C. G. de Pixericourt (2773^{-1844}). The titles of some of his plays give a sufficient indication of their character; e.g. Victor, ou l'enfant de la ford (1797); Carlina, ow l'enfant du mystire (i801); Le Monasière abandonne, ou la malediction paternelle (1816). Another form of melodrama came from the same source, but developed on lines which laid more emphasis on the music, and is of some importance in the history of opera. Probably the fint of this
type is to be found in Gearg Benda's Ariadne ouf Noxos (1774). The most familiar of such melodramas is Gay's Beggar's Opera. In these the dialogue is entirely spoken. In true opera the spoken dialogue was replaced by recitative. It may be noticed that the speaking of some parts of the dialogue is not sufficient to class an.opera as a " melodrama" in this sense, as is proved hy the spoken grave-digging scene, accompanied by musie, in Fidelio, and the incantation scene in Der Frefschitz. To this the English term "declamation" is usually applied; the Germans use Melodram. But see Opera.
MELODY (Gr. menubia, a choral song, from μ hor, tune. and $\varphi \mathbf{~} 0 \mathrm{~d}$, song). In musical philosophy and histoty the word " melody" must be used in a very abstract sense, as that aspect of music which is concerned only with the pitch of suecessive notes. Thus a "melodic scale" is 2 acale of a kind of music that is not based on an harmonic system; and thus we call ancient Greek music "melodic." The popular conception of melody is that of " air " or " tune," and this is 80 far from being a primitive conception that there are few instances of such melody in recorded music before the 17 th century; and even folksongs, unless they are of recent origin, deviate markedly from the criteria of tunefulness. The modern conception of melody is based on the interaction of every musical category. For us a melody is the surface of a serics of harmonies, and an unaccompanied melody so far implies harmony that if it so behaves that simple harmonies expressing clear key-relationships would be difficult to find for it, we feel it to be strange and vague. Again, we do not feel music as melodious unless its rhythm is symmetrical; and this, taken together with the harmonic rationality of modern melody, brings about an equally intimate connexion between melody on a large scale and form on a small scale. In the article on Sonata Fonms it is shown that there are gradations hetween the form of some kinds of single melody like "Barbara Allen" (see Ex. 1), and the larger dance forms of the suite, and then, again, gradations between these and the true sonata forms with their immense range of expreasion and development. Lastly, the element that appears at first sight most strictly melodic, namely, the rise and fall of the pitch, is intimately connected hy origin with the nature of the human voiec, and in later forms is enlarged fully as much hy the characteristics of instruments as by parallel developments in rhythm, harmony and form. Thus modern melody is the musical surface of rhythm; harmony, form and instrumentation; and, if we take Wagnerian Leitmotif into account, we may as well add drama to the list. In short, melody is the suriace ol music.
We may here define a few technicalities which may be said to come more definitely under the head of melody thap any other; but see also Harmony and Rhythe.
'1. A theme is a melody, not necessarily or even usually complete. except when designed for a set of tarialions (q.v.), but of sufficient independent coherence to be, so to speak, an intelligible musical sentence. Thus a fugue-subject is a theme, and the first and second subjects in sonata form are more or less complex groups of themes.
2. A figure is the smallest fragment of a theme that can be recognized when transformed or detached from its surroundings The grouping of figures into new melodies is the most obvious resource of "development" or "working-out" in the sonata-forms (see Ex. 2-7), besides being the main resource by which fugues are carried on at those moments in which the subjects and counter. subjects are not present as wholes. In 16 th-century polyphony melody consists mainhy of figures thus broken off from a canle fermo (see Contrapuntal Forms).
3. Pqlyphony is simultancous multiple melody. In r6th-century music and in fugue-writing every part is as melodious as every other. The popular cry for melody as an antidote to polyphony is thus really a curious perversion of the complaint that one may have too much of a good thing. Several well-known classical melodies are polyphonically composite, being lormed by an inaer melody appearing as it were through transparent places in the outer melody, which it thus completes. This is especially common in music for the pianoforte, where the tone of lons notes rapidily fades; and the works of Chopin are full of examples. In Bechs works for keyed instruments figures frequently have a double meaning on this principle. as, for instance, in the peculiar kind of countersubject in the 15 th lukue of the znd book of the Wohllempurites Klovier. A good familiar example of a simple melody which, as writtes by the composer, would need two voices to simg it, is thet
which beging the mecond subject of Beethoven's Waldstaty Somala (Op. 53, 角st movement, bara 35-42, where at the third ber of the melody a lower voice enters and finishes the phrase).
(a) Conjunct movement is the movement of melody along edfacent degreee of the scale. A large proportion of Beethoven's melodies are conjunct (see Ex, 3, fig. B).

4 (b) Difjuncl mooment, the opposite of conjunct, tends, though by no means alwaya, to produce arpeggio typea of melody, ite. melodies which move up and down the notes of a chord. Certain types of wuch melody are bighly characteristic of Brahms; and

Wagner, whooe melodiee are ahmost always of instrumental origin, is geoprally disiunct in diatonic melody and conjunct in chromatic (Ex. 2, fig. C, is a diajunct figure pot forming an arpegio).
For various other melodic devices, such as inversion, augmenta. tion and diminution, mee Contrapuntal Forms.

We cubjoin some muaical illuatrations showing the treatment of figures in melody as a means of symmetry (Ex. i), and development (Ex, 2-7), and (Ex, 8-13) some modern melodic tminsformations, differing from earlier methods in being immediate instcad of gradual.
(D. F. T.)

Ex, 1. "Barbara Allon" (showing the germ of binary form in the balance between A^{\prime} on the dominant and A^{2} on the tonic).

Ex. 2. Maln theme of the first movement of Beethoven's Trio in B b,Op. 97 .

Ex. 3. Figure \mathbf{A} of above developed in a now polyphonic 4-bar phrase.
Ex. 4. Further sequential developments of A.

Ex. 6. Further development of B by diminution, in combination with the trills derived from \mathbf{C}.

Ex. 7. Further development of \mathbf{B} by diminution and contrary motion

Ex. 8. Brabms, Quintet, Op. 34 .

Ex. 11. The Rheindawphter's Toy. Wagner, Das Rheingold.

Ex. 13. Walkalla.

MELON (Late Lat. melo, shortened form of Gr. μ Mioricwis, a kind of gourd; $\mu \overline{\mathrm{j}} \mathrm{hov}$, apple, and $\pi \neq \pi \omega \nu$, ripe), Cucumis melo, a polymorphic species of the order Cucurbitaceac, including numerous varieties. ${ }^{1}$ The melon is an annual trailing herb with palmately-lobed leaves, and bears tendrils by means of which it is readily trained over

Transverse section of the fruit of the melon (Cucumis melo), showing the placentas (ρl), with the seeds attached to them. The three carpels forming the pepo are separated by partitions (cl). From the centre, processes (s) go to circumference (i), ending in curved placentarics bearing the ovules. trellises, \&c. It is monoecious, on the same plant; the flowers have deeply five-lobed campanulate sorollas and three stamens. Nau lin observed that in some varicties (e.g. of Cantaloups) fertile stamens sometimes occur in the female flowers. It is a matice of south Asia " from the foot of the Himalayas to Cape Comorin," ${ }^{2}$ where it grows spontancously, but is cultivated in the temperate and warm regions of the whole world. It is variable both in diversity of faliage and habit, but much more so in the fruit, which in some varietics is no larger than en olive, while in others it rivals the gourd (Cucurbila maxima). The fruit is globular, ovoid, spindle-shaped, or serpent-like, netted or smooth-skinned, ribbed or furrowed, variously coloured externally, with white, green, or orange flesh when ripe, scented or scentiess, sweet or insipid, bitter or even nauscous, \&c. Like thegourd, the meion undergoes strange metamorphoses by crossing its. varieties, though the latter preserve their characters when alone. The offspring of all crossings are fertile. As remarkable cases of sudden changes produced by artificially crossing races, M. Naudin records that in 1850 the offs pring of the wild melons m. sauvage de l'Inde (C. melo agreslis) and m. s. d'Afrique, le pelif m. de Figari bore different fruits from their parents, the former being ten to twelve times their size, ovoid, white-skinned, more or less scented, and with reddish flesh; though another individual bore fruits no larger than a nut. The offspring of m. de Figari after being crossed bore fruits of the serpent-melon. On the other hand, the serpent-melon was made to bear ovoid and reticulated fruit.

Naudin thinks it is probable that the culture of the melon in Asia is as ancient as that of all other alimentary vegetables. The Egyptians grew it, or at least inferior races of melon, which were either indigenous or introduced from Asia. The Romans and doubtless the Greeks were familiar with it, though some forms may have been described as cucumbers. Columella seems to refer to the serpent-melon in the phrase ut coluber venire cubal flexo. Pliny describes them as pepones (xix. 23 to mx .6) and Columella as melones (xi. 2, 53). The melon began to be extensively cultivated in France in 1629 , according to Olivier de Serres. Gerard (Herball, 772) figured and described in 1597 several kinds of meions or pompions, but he has included gourds under the same name.

The origin of some of the chief modern races, such as "Cantaloups," "Dudaim," and probably the netted sorts, is due to Persia and the neighbouring Caucasian regions. The first of these was brought to Rome from Armenia in the 16th century, and supplies the chief sorts grown for the French markets; but many others are doubtiess artificial productions of west Europe.

The water-melon (Cilrulluss vulgaris) is a member of a different genus of the same order. It has been cultivated for its cool refreshing fruit since the earliest times in Egypt and the Orient, and was known before the Christian era in southern Europe and Asia.

The melon requires artificial heat to grow it to perfoction, the

[^9]rock and cantaloup varieties succeeding with a botrom heat of 70° and an atmospheric remperature of 75°, rising with sun heat to 80°, and the Persian varicties requiring a battom heat of 73°, gradually increasing to 80°, and an atmospheric temperature ranging from 75° to 80° when the fruit is swelling, as much sun heat as the plants can bear being allowed at all times. The melon grows best in rich turfy loam, somewhat heavy, with which a little well-rotted dung, especially that of pigeons or fowls, should be used, in the proportion of one-fith mixed in the compost of loam. Melons are grown on hotbeds of fermenting manure, when the soil should be about a foot in thickness, or in pits lheated either by hot water or fermenting matter, or in houses heated by hot water, in which case the soil bed should be 15 or 18 in . thick. The fermenting materials should be well prepared, and, since the heat has to be kept up by linings, it is a good plan to introduce onc or two layers of faggots in building up the bed. A mixture of dung and leaves gives a more subdued but more durable heat.
For all ordinary purposes Fcbruary is early enough for sowing the first crop, as well-davoured fruits can scarcely be looked for before May. The secds may be sown singly in 3 -in. pots in a mixture of leal-mould with a little loam, the pots being plunged in a bottom heat of 75° to 80°, and as near the glass as possible, in order that the young plants may not be drawn up. The hill or ridge of soil should be about a foot in thickness, the rest of the surface being afterwards made up nearly to the same level. If the fruiting bed is not ready when the roots have nearly filled the pots, they must be shifted inţo 4 -inch pots, for they must not get starved or pot-bound. Two or three plants are usually planted in a mound or ridge of soil placed in the centre of each light, and the rest of the surface is covered over to a similar depth as soon as the roots have made their way through the mound.
The melon lreing one of those plants which produce distinct male and female flowers, it is necessary to its fertility that both should be produced, and that the pollen of the male flower should, either naturally by insect agency, or artificially by the cultivator's manipulation, be conveyed to the stigma of the female flower: this setting of the fruir is often done by stripping a male dower of its corolla, and inverting it in the centre of the fruit-bearing flower, After the fruit has set and has grown to the size of an egg, it should be preserved from contace with the soil by placing it on a piece of tile or slate; or if grown on a trellis by a listle swinging wooden shelf, just large enough to hold it. In cither case the material used should be tilted a littie to one side, so as to permit water to drain away. Before the process of ripening commences, the roots should have a sufficient supply of moisture, so that none may be required from that time until the fruit is cut.
When the melon is grown in a house there should be a good depth of drainage over the tank or other source of bottom heat, and on this should be placed turfs, grass side downwards, below the soil, which should not be less than 15 and need not be more shan 18 in. in thickness. The compost should be made moderately firm, and only half the bed should be made up at first, the rest being added as the roots require it. The melon may also be grown in large pots, supplied with artificial manure or manure water. The stems may be trained up the trellis in the usual way, or the rafters of a pine stove may be utilized for the purpose. If the trellis is constructed in panels about the widih of the lights, it can be taken down and conveniently stowed away when not in use.
The presence of too much moisture either in the atmosphere or in the soil is apt to cause the plants to ciamp off at the neck, but the evil may be checked by applying a litite Iresh-slaked lime round the stem of the plant.
Mclons are liable to the attack of red spider, wheh are best removed by syringing with rain-water, and prevented by keeping a fairly humid at mosphere; green or black fly should also be warehed for and removed by fumigation with tobacco smoke or by " vaporizing.
The varietics of mclon are continually recciving additions, and as newer varietics spring into favour, so the older ones drop out of cultivation. A great deal depends on getting the varieties true to name. as they are very liable to get cross-fertilized by insect agency. Some of the best at present are:
Scarles-fleshed.-Blenheim Orange, Frogmore Orange, Invincible, Sutton's Scarlet, and Triumph.

White-flesked, - Ciolden Orange, Hero of Lockinge, Longleat Perfection, Royal Favourite.

Green-fleshed.-British Queen, Epicure. Exquisite, Monarch. Ringleader.
The market-gardeners round Paris and other parts of France chielly cultivate varieties of Cantaloup melon known as the Prescott hastif a chasois and Prescott fond blanc-both excellent in flavour. The plants are grown in frames on hotbeds, and only one larga fruit is allowed to mature on each plant. If secured early in the season-say in June-from 25 to 35 francs can be obtained for each fruit in the Paris markets; later fruits, however, drop down to 2 francs each, or even less when there is a glut (see). Weathers, French Marked-Gardening)

MELORIA, a rocky islet, surrounded by a shoal, almost opposite Leghorn. If was the scene of two asval battes of the
middle ages. The first, on the 3rd of May 1241, was fought between the fleet of the emperor Frederick II. Hohenstaufen, surnamed Stupor Mundi, in alliance with Pisa, against a Genoese squadron bringing a number of English, French and Spanish prelates to attend the council summoned to meet at the Lateran by Gregory IX. Three Genoese galleys were runk and twentytwo taken. Several of the prelates perished, and many were carried prisoners to the camp of the emperor. The second, fought on Sunday the 6 th of August 1284, was of higher historical importance. It was a typical medieval sea-fight, and accomplished the rain of Pise as a naval power. The long rivalry of that city and of Genoa had broken out for the last time in i 282, the immediate cause being the incompatible claims of the two cities to sovercignty over the islands of Sardinia and Corsica. The earlier conflicts of the war in 1282, 1283 and the spring of 1384, had been unfavourable to Pisa. Tbough the city was united with the Catalans and with Venice in hostility to Genoa, and though it had chosen a Venetian, Alberto Morosini, as its Podestà, it received no help from either. The Genoese, who had the larger and more efficient fleet, sent their whole power against their enemy. When the Gengese appeared off Meloria the Pisans were lying in the river Arno at the mouth of which lay Porto Pisano the port of the city. The Pisan fleet represented the whole power of the city, and carried members of every family of mark and most of the great officers of state. The Genoese, desiring to draw their enemy out to battle, and to make the action decisive, arranged their fleet in two lines abreast. The Girst was composed according to Agostino Giustiniani of fiftyeight galleys, and eight panfilt, a class of light galleys of eastern origin named after the province of Pamphylia. Uberto Doria, the Genoese admiral, was stationed in the centre and in advance of his line. To the right were the galleys of the Spinola famlly, and of four of the eight "companies" into which Genoa was divided-Castello, Piazzalunga, Macagnana and Son Lorenzo. To the left were the galleys of the Dorias, and of the other four companies, Porta, Soziglia, Porta Nuova and II Borgo. The second line of twenty galleys, under the command of Benedetto Giacaria (or Zaccharie), was placed so far behind the first that the Pisans could not see whether it was made up of war-vesscls or of small craft meant to act as tenders to the others. Yet it was near enough to strike in and decide the battle when the action had begun. The Pisans, commanded by the Podesta Morosini and his lieutenants Ugolino della Gherardescha and Andreotto Saraceno, came out in a single body. It is said that while the archbishop was biessing the fleet the silver cross of his archlepiscopal staff fell off, but that the omen was disregarded by the irreverence of the Pisans, who declared that if they had the wind they could do without divine help. They advanced in line abreast to meet the first line of the Genoese, fighting according to the medieval custom to ram and board. The victory was decided for Genoa by the squadron of Giacaria which fell on the flank of the Pisans. Their fleet was ncarly annihilated, the Podesta was taken, and Ugolino fled with a few vessels. As Pisa was also attacked hy Florence and Lucca it could never recover the disaster. Two years later Genoa took Porto Pisano, and filled up the harbour. The count Ugolino was afterwards starved to death with several of his sons and grandsons in the manner made familiar by the 3 and canto of Dante's Infono.
See Amali della republica di Genova, by Agostino Giustiniani (ed. Canepa, Genoa, 1854).
(D. H.)

MEIOS (mod. Milo), an island of the Aegean Sea (Cyclades group), at the S.W. corner of the archipelago, 75 m . due E. from the coast of Laconia. From E. to W. it measures about 14 m. , from N. to S .8 m ., and its area is estimated at $52 \mathrm{sq} . \mathrm{m}$. The greater portion is rugged and hilly, culminating in Mount Elias in the west (2538 ft .). Like the rest of the cluster, the island is of volcanic origin, with tuff, trachyte and obsidian among its ordinary rocka. The natural barbour, which, with a depth diminishing from 70 to 30 fathoms, strikes in from the northwest so as to cut the island into two fairly equal portions, with an isthmus not more than $\mathrm{I} \% \mathrm{~m}$. broad, is the hollow of the principal crater. In one of the caves on the south coast the heat is
still great, and on the castern shore of the harbour there are hot sulphurous springs. Sulphur is found in abundance on the top of Mount Kalamo and elsewhere. In ancient times the alum of Melos was reckoned next to that of Egypt (Pliny uxxv. 15 [52]), and millstones, salt (from a marsh at Lhe east end of the harbour), and gypsum are still exported. The Melian earth ($\hat{\eta}$ Mintas) was employed as a pigment by ancient artists. Orange, olive, cypress and arbutus trees grow throughout the island, which, however, is too dry to have any profusion of vegetation. The vine, the cotton plant and barley are the main objects of cultivation. Pop. (1907), 4864 (commune), 12,774 (province).

The harbour town is Adamanta; from this there is an ascent to the platcau above the harbour, on which are situated Plaka, the chief town, and Kastro, rising on a hill above it, and other villages. The ancient town of Melos was nearer to the entrance of the harbour than Adamanta, and occupied the slope between the village of Trypete and the landing-place at Klima. Here is a theatre of Romar date and some remains of town walls and othet buildings, one with a fine mosaic excavated by the British school at Athens in $\mathbf{x 8 9 6}$. Numerous fine works of art have been found on this site, notably the Aphrodite of Melos in the Louvre, the Ascleplus in the British Muscum, and the Poseidon and an archaic Apollo In Athens. The position of Melos, between Greece and Crete, and its possession of obsidian, made it an Important centre of early Aegean civilization. At this time the chief settlement was at the place now called Pbylakopi, on the north-east coast. Here the excavations of the British school cleared many houscs, including a palace of "Mycenaean" type; there is also a town wall. Part of the sitc has been washed away by the sca. The antiquities found were of three main periods, all preceding the Mycenean age of Greece. Much pottery was found, including examples of a peculiar style, with decorative designs, mostly floral, and also considerable deposits of obsidjan. There are some traditions of a Phoenician occupation of Melos. In historical times the island was occupied by Dorians from Laconia. In the 6Lh century it again produced a remarkable series of vases, of large size, with mythological subjects and orientalizing ornamentation (see Greex Art, ing.9), and aiso a series of terra-cotta reliefs.

Though Mclos inhabitants sent a contingent to the Greck fleet at Salamis, it held aloof from the Attic league, and sought to remain neutral during the Peloponnesian War. But in 416 s.c. the Athenians, having attacked the island and compelled the Melians to surrender, slew all the men capable of bearing arms, made slaves of the women and children, and introduced 500 Athenian colonists. Lysander restored the island to its Dorian possessors, but it never recovered its former prosperity, There were many Jewish settlers in Melos in the beginning of the Christian era, and Christianity was early introduced. During the "Frankish" period the island formed part of the duchy of Naxos, except for the few years (1341-1383) when it was a separate lordship under Marco Saaudo and his daughter.

Antimelas or Antimilo, 51 m. north-west of Milo, is an uninhabited mass of trachyte, often called Eremomilo or Desert Melos. Kimolos, or Argeniera, less than I m. to the north-east, was famous in antiquity for its. figs and fuller's earth (K μ unia $\gamma \tilde{\eta})$, and contained a considerable city, the remains of which cover the cliff of St Andrews. Polinas, Polybos or Polivo (anc. Polyacgos) lies rather more than a mile south-east of Kimolos. It was the subject of dispute between the Melians and Kimolians. It has long been almost uninhabited.

See Leycester, "The Volcanic Group of Milo, Anti-Milo, Ac..," in Jour. Roy. Gcog. Soc. (1852); Tournefort, Voyage; Leake, Northerm Greece, iii.; Prokesch von Osten, Denkwirdigkeiten, \&c.; Bursian, Geog. von Griechenland, ii.; Joxirn. Hell. Stud. xvi., xvii., xviii.; Exccerations at Phylakopi; Inscr. graec. xii. iii. 197 sq9.: on coins found in 1909, see Jameson in Rev. Nwis. 1909, 188 sqq . (E. Gr.)
MBLOZZO DA PORLi (c. 1438-1494), Italian painter. the first who practised foreshortening with much success, was born at Forli about 1438 ; he came, it is supposed, of a wealthy family named Ambrosi. In all probability, Melozzo studied painting under Piero de' Franceschi, of Borgo St Sepolcro; he seems also to have been well acquainted with Giovanni Sadti, the father of

Raphael. It has been said that he became a journeyman and colour-grinder to some of the best masters, in order to prosecute bis studies; this lacks confirmation. Only three works are extant which can safely be assigned to Melozzo: those in the Louvre, the National Gallery, London, and the Barberini Palace, Rome, are disputable. (1) He painted in 1472 the vault of the chief chapel in the church of the Apostoli in Rome, his subject being the "Ascension of Christ "; the figure of Christ is so boldly and effectively foreshortened that it seems to "burst through the vaulting "; this fresco was taken down in 1711, and the figure of Christ is now in the Quirinal Palace, not worthy of special admiration save in its perspective quality; while some of the other portions, almost Raphaelesque in merit, are in the sacristy of St Peter's. (2) Between 1475 and 1480 he executed a Iresco, now transferred to canvas, and placed in the Vatican picturegallery, representing the appointment of Platina hy Pope Sirtus IV. as librarian of the restored Vatican library. (3) In the Collegio at Forli is a fresco by Melozzo, termed the " Pestapepe," or Pepper-grinder, originally painted as a grocer's sign; it is an energetic specimen of rather coarse realism, now much damaged. Mclozzo also painted the cupola of the Capuchin church at Forli, destroyed in 1651 ; and it has been said that he executed at Urhino some of the portraits of great men (Plato, Dante, Sixtus IV., \&c.) which are now divided between the Barberini Palace and the Campana collection in Paris; this, however, is doubtiul, and it is even questionable whether Melozzo was ever at Urbino. In Rome he was one of the original members of the academy of St Luke, founded hy Sixtus IV. He returned to Forli, probably towards 1480 , and died in November 1494. He contrihuted sensibly to the progress of pictorial art; and, without being remarkable as a colourist, gave well graded lights, with general care and finish, and fine dignified figures. His works bear a certain resemblance to those of his contemporary Mantegna. Marco Palmezzano was his pupil; and the signature " Marcus de Melotius " on some of Palmezzano's works, along with the general affinity of style, has led to their being ascribed to Melozzo, who has hence been incorrectly called " Marco Melozzo."

MELROSE, a city of Middiesex county, Massachusetts, U.S.A., about 7 m . N. of Boston. Pop. (1800), 8519 ; (1900), 12,962 , of whom 2924 were foreign-born and 130 were negroes; (1910 census) 15,715 . It is served by the Boston $\$$ Maine railroad, and by inter-urban electric railways. The city covers $4.8 \mathrm{sq} . \mathrm{m}$. of broken, hilly country, in which is a part of the state park of Middlesex Fells; it includes the villages of Melrose, Meirose Highlands, Wyoming and Fells. In 1905 the total factory product was valued at $\$ 9,450,929$ (an increase of $\mathbf{1 7 6 . 6 \%}$ over the value of the factory product in 1900). The principal products are rubber shoes (at the village of Fells), skirts (at the village of Wyoming), and leather and silverware (at Melrose Highlands). The water supply of Melrose, like that of Stoneham and of Medford, is derived from the metropolitan reservoir called Spot Pond in Stopeham, immediately west of Melrose. The city was the home of Samucf Adams Drake (1833-1905), American historian, whose Histary of Middlesex Counly (Boston, 1880; vol. 2, "Melrose," by E. H. Goss) should be consulted; and of William Frederick Pooie (1821-1894), the librarian and the originator of Indexes of periodical literature. Melrose was settled about I633, and was a part of Charlestown until 1649, and of Malden until 1850. The eastern part of Stoneham was annexed to it in 1853 . In 1899 it was chartered as a city; the charter came into effect in 1900. The name is said to be due to a resemblance of the scenery to that of Melrose, Scotland.

MELROSE, a police burgh of Roxburghshirf, Scotland. Pop. (1001), 2195. It lies on the right bank of the Tweed, $37 \frac{\mathrm{~m}}{\mathrm{~m}}$. S.E. of Edinburgh, and 19 m . N.W. of Jedburgh, via St Boswells and Roxhurgh, by the North British railway. The name-which Bede (730) wrote Maiiros and Simeon of Durham (1130) Melros-is derived from the Celtic maol ros, " bare moor," and the town figures in Sir Walter Scott's Abbot and Menastery as "Kennaquhair." In consequence of the beauty of its situation between the Eildons and the Tweed, the literary and bistorical associations of the district, and the famous ruin of

Melrose Abbey, the town hes become residential and a holiday resort. There is a hydropathic establishment on Skirmish Hill, the name commemorating the faction fight on tbe 25 Lh of July 1526, in which the Scotts deieated the Douglases and Kers. Trade is almost wholly agricultural. The main streets run from the angles of the triangular market-place, in which stands the market cross, dated 1642, but probably much older. Across the river are Gattonside, with numerous orchards, and Allerly, the home of Sir David Brewster from 1827 till his death in 1868.

The original Columban monastery was founded in the 7 th century at Old Melrose, about $2 \frac{1}{3} \mathrm{~m}$. 10 the east, in the loop of a great bend of the Tweed. It was colonized from Lindisfarne, Eata, a disciple of Aidan, being the first ahbot (651), and Boisil and Cuthbert being priors bere. It was burned by Kenneth Macalpine in 839 during the wars between Scot and Saxon, and, though rehuilt, was deserted in the middle of the 1 ith century. The ehapel, dedicated to St Cuthbert, continued for a period to attract many pilgrims, but this usage gradually declined and the building was finally destroyed by English invaders. Meanwhile in 1136 David I. and founded an abbey dedicated to the Virgin, a litele higher up the Tweed, tbe first Cistercian settlement in Scotland, with monks from Rievaulx in Yorkshire. Lying in the direct road from England, the ahbey was frequently assautted and in 1322 was destroyed by Edward II. Rebuilt, largely hy means of a gift of Robert Bruce, it was nearly burned down in 1385 by Richard II. Erected once more, it was reduced to ruin by the earl of Hertford (afterwards the Protector Somerset) in 1545 . Later the Reformers dismanticd much of what was lelt. The adaptation of part of the nave to the purposes of a parish church and the use of the building as a quarry did further damage. The ruins, however, now the property of the duke of Buccleuch, are carciully preserved. Of the conventual huildings apart from the church nothing has survived but a fragment of the cloister with a richly-carved round-headed doorway and some fine arcading. The abbey, cruciform, is in the Decorated and Perpendicular styles, with pronounced Frenchinfluence, due probably to the master mason John Morow, or Morreau, wbo, according to an inscription on the south transept wall, was born in Paris. The south front is still beautiful. The west front and a large portion of the north half of the nave and aisle have perished, hut the remains include the rest of the nave, the two transepts, the chancel and choir, the two western piers of the tower and the sculptured roof of the cast end. From east to west it measured 258 ft ., the nave is 69 ft . wide and the width of the transepts from north to south is $115 \frac{1}{\mathbf{t}} \mathrm{t}$. The nave had an aisle on each side, the north noticeahly the narrower, the south furnished with eight chapels, one in each bay. Both transepts containcd an eastern aisle, and the chancel a square chapel at its west end on each side. Over the south transept aisle, which was the chapel of St Bridget, is the clerestory passage, which ran all round the church. The choir extended westwards for three bays beyond the tower and terminated in a stone rood-screen. Sir Walter Scott has immortalized the east window, in The Lay of the Last Minsled, but the south window with its flowing tracery is even finer. In the carving of windows, aisles, cloister, capitals, bosses and doorheads no design is repeated. The heart of Robert Bruce was buried at the high altar, and in the chancel are the tombs of Sir William Dougias, the Knight of Liddesdale ($1300-$ r353), James 2nd ear of Douglas ($1358-1388$), the victor of Otterburn; Alexander II.; and Michael Scot "the Wizard" (1175-1234)-though some authoritles say that this is the tomb of Sir Brian Layton, who fell in the battle of Ancrum Moor (1 544). At the door leading from the north transept to the sacristy is the grave of Joanna (d. 123^{8}), queen of Alexander IL

The muniments of the abbacy, prescrved in the archives of the earl of Morton, were edited by Commo Innes for the Bannatyne Club and pubilished in 1837 under the title of Liber sancte Marie do Mdros. Among the documents is one of the earliest specianens of the Scots dialect. The Chronica do Mailros, preserved among the Cotton MSS.. was printed at Oxford in 1684 by William Fulman and by the Bannatyne Club in 1835 under the editorship of John Stevenson.

CHTON MOWBRAY, a market town ia the Molton parliamentary division of Leicestershire, England, pleasantly situated in a fertile vale, at the confluence of the Wreake and the Eye. Pop. of urban district (1901), 7454. It is 105 m . N.N.W. from London by the Midland railway, and is eerved by a joint branch of the London \& North Western and Great Northern railways. The church of St Mary, a fine cruciform structure, Early English and later, with a lofty and richly ormamented central tower, was enlarged in the reign of Elizabeth. Meiton is the centre of a celebrated bunting district, in connexion with which there are large stables in the town. It is known for its pork pies, and has a trade in Stilton cheese. There are breweries and tanneriea and an important cattle market. There are blast furnaces in the neighbouring parish of Asfordby for the smelting of the abundant supply of iron ore in the district. During the Civil War Melton was in February 1644 the scene of a defeat of the parliamentary forces by the royalists. It is the birthplace of John Healey the orator (1698-1759).

MELUN, a town of northern France, capital of the department of Seinc-et-Marne, situated north of the forest of Fontainebleau, 28 m. S.S.E. of Paris by sail. Pop. (1906), ir,219. The town is divided into threc parts by the Seine. The principal portion lies on the slope of a hill on the right bank; on the left banis is the most modern quarter, while the old Roman town occupies an island in the river. On the island stands the Romanesque church of Notre-Dame (ith and 12 th centuries), formerly part of a nunnery, the site of which is occupied by a prison. The other public buildings are on the right bank of the river. Of these, the most striking is the church of St Aspais, an irreguiarly shaped structure of the 15 th and 16 th centuries, on the apse of which may be seen a modern medallion in bronze, the work of the sculptor H. Chapu, representing Joan of Arc as the liberator of Melun. The botei de-ville (1847)-in the construction of which an old mansion and turret have been utilised-and the oower of St Bartholomew of tho 10 th and 18th centuries are also of interest. In the courtyard of the former here is a monument to Jacques Amyot, the translator of Plutarch, who was born at Melun in 1513. Among the rich estates in the neighbourhood the most remarkable is the magnificent chatcau of Vaux-leVicomte, which beionged to Nicholas Fouquet, intendant of finances under Louis XIV. Melun is a market for grain and farm produce, and its industries include brewing, tanning, distilling, sawing and the manufacture of agricultural implements, clogs, fur garments, lime, cement and plaster.

In Cacsar's Gallic wars Melun (Melodumum) was taken by his licutenant Labienus, in order to lacilitate the attack of Lutetia by the right bank of the Seine. It was pillaged by the Normans, and afterwards became the favourite residence of the first kings of the race of Capet; Robert and Philip I. both died bere. In 1359 Melun was given up by Jeanne of Navarre to her brother. Charley the Bad, but was retaken by the dauphin Charles and Bertrand Dugueaclin. In 1420 it made an heroic defence against Henry V. of England and his ally the duke of Burgundy. Ten years later the people of Melum, with the help of Joan of Arc, drove out the English. It was occupied by the League in 1589, and retaken by Henry IV. in the following year.

MEROSNE, the tutelary fairy of the house of Lusignan, was the eldest daughter of the fairy Pressine, to avenge whose wrongs she shut up ber father in a mountain in Northumberland. For this she was condemned to be metamorphosed every Saturday into a woman-serpent-that is, to be a serpent from the hipse downwards. She might, however, be eventually saved from this punishment if she could find a husband who would never see her on a Saturday. Such a busband was found in Raymond, nephew of the count of Poitiers, who became rich and powerful through the machinations of bis wife. She huilt the castle of Lusignan and many otber of the family fortresecs. When at length ber husband gave way to his curiosity, andsaw her taking the bath of purification on a Saturday she flew from the castle in the form of a serpent. Thenceforward the death of a member of the house of Lusignan was heralded by the cries of the fairy serpent. "Pousser des cris de Melusine" is still a popular saying.

This history is related at length, with the adventures of

Melusine's numerous progeny, by Jean d'Arras, in his Chromique de io princosse, written in 1387 at the desire of John, duke of Berry, for the amusement of the duke and of his sister Marie of France, duchess of Bar. It is one of the most charming of the old prose romances in manner and st yle, and is natural in spite of the free use of the marveilous. An attempt has been made by Jules Baudot in Les Priscesses Yolande a les ducs de Bar (Paris, 1000) to make it a romand cle and to identify the personages. Mélusine, Mellasine or Merlusise is, however, simply the spirit of the fountain of Lusignan, and the local Poitevin myth is attached to the origin of the noble house. The etymology of the word has been variously and fancifully given. Some writers have supposed Merlusine to be a corruption of mere Lucine (mater Lucina), the deity invoked in child-birth. She bas been identified with Mélisende, widow of a king of Jerusalem, and with Mervant, wife of Geofiroi de Lusignan.
The Mdxaine of Jean d'Arras was printed by Adam Steinschaber at Geneva in 1478, and was reprinted many times in the 15 th and 16th centuries. It has been translated into Spanish. English, German and Flemish. Modern editions are by J. C. Brunet (Paris, 1854), and by E. Lecesne for the Acaderny of Arras (Arras, 1888). The English trasslation was edited (rom a unique MS. in the Britisb Mumeum by A. K. Donald for the E.E.T.S. (1895). The tale was versified in the 14th century by a poet called Couldrette. whose poem was published in 1854 by Francisque Michel. See further J. C. Dunton, Hist. of Ficlion, i1. 491-493 (new ed., 1888); S. Baring. Could, Cwriozs M(yths of the Middle Ages, pp. 870 seq. (new ed., 1881) ; and J. C. Brunet, Manuel du libraire (vol. iiis., 1862, s.v. Jean d'Arras).

MELVILLB, ANDREW (1545-1622), Scottish scholan theologian and religious roformer, was the youngest son of Richard Melville (brother to Melville of Dysart), proprictor of Baldovy near Montroec, at which place Andrew was born on the ist of August 1545. His father fell at the battle of. Pintie (1547), fighting in the van of the Scottinh army, and, his wife having died soon after, the orphan was cared for by his eldest brother Richard (1522-1575). At an cariy age Melville began to show a taste for learning, and his brother did everything in his power to give him the best education. The rudiments of Latin he obtained at the grammar school of Montrose, after leaving which he learned Greek for two years under Pierre de Marsilliers, a Frenchman whom John Erskine of Dun had induced to settle at Montrose; and such was Meivilla's proficiency that on gaing to the university of St Andrews he excited the astonishment of the professors by using the Greek text of Aristotle, which no one else there understood. On completing his course, Meiville left St Andrews with the reputation of "the best poet, philosopher, and Grecian of any young master in the land." He then, in 1564 , being nineteen years of age, set out for France to perfect his education at the university of Paris. He there applied himself to Oriental Languages, but also attended the last course of lecturss delivered by Turnebus in the Greek chair, as well as those of Peter Ramus, whose philosophical method and plan of teaching he afterwards introduced into the univeraitien of Scotlend. From Paris be proceeded to Poltiers (1560) to study civil law, and though only twent y-one he was apparently at once rande a regent in the college of St Marceon. After a residence of three years, however, political troubles compelled him to leave France. and he went to Geneva, where be was welcomed by Theodore Beza, at whose instigation be was appointed to the chair of humanity in the acadcmy of Geneva. In addition to his teaching. however, he also applied himself to studies in Oriental literature. and in particular acquired from Cornelius Bertram, one of his brother professors, a knowledge of Syriac. While he resided at Gencva the massacre of St Bartholomew in 1572 drove an immense number of Protestant refugees to that city, including several of the most distinguished French men of letters of the time. Among these were several men learned in civil law at.d political science, and their societ y increased Melville's knowledge of the world and enlarged his ideas of civil and ecelealastical liberty. In 1574 Melville returned to Scoiland, and almost immediately reccived the appointment of principal of Glasgow University, which had fallen Into an almost ruinous state, the college having been shut and the students dispersed. Melville,
however, set himself to establisb a good educational system. He entarged the curriculum at the college, and established chairs in languages, science, philosophy and divinity, which were confirmed by charter in 1577. His fame spread through the kingdom, and students flocked from all parts of Scotland and even beyond, till the class-rooms could not contain those who came for admission. He assisted in the reconstruction of Aberdeen University in 1575, and in order that he might do for St Andrews whet he had done for Glangow, he was appointed principal of St Mary's College, St Andrews, in 1580 . His duties there comprehended the teaching, not only of theology, but of the Hebrew, Chaldee, Syriac and Rabbinleal languages. The abolity of his lectures was universaliy acknowledged, and be created a taste for the study of Greek literature. The reforms, however, which his new modes of teacbing involved, and cven some of his new doctrines, such as the non-infallibility of Arjstotle, brought him into collision with other teachers in the university. He was moderator of the General Assembly in 1582, and took part in the organization of the Church and the Presbyterian method. Troubles arose from the attempts of the court to force a system of Episcopacy upon the Church of Scotland (see ScotLand, Churci of , and Melville prosecuted one of the "tulchan" bishops (Robert Montgomery, d. 1609). In consequence of this he was summoned before the Privy Council in February 1584, and had to flee into England in order to escape an absurd-charge of treason which threatened imprisonment and not improbably his life. After an absence of twenty months be returned to Scotland in November 1585, and in March 1586 resumed his lectures in St Andrews, where he continued for twenty years; he became rector of the university in 1590 . During the whole time he protected the liberties of the Scottlsh Church agalnst ah encroachments of the government. That in the main he and his coadjutors were fighting for the constitutionally guaranteed rights of the Churcb is admitted by all candid inquirers (see in particular The History of England from 1603 to I6I6, by S. R. Gardiner, vol. i. chap. ix.). The chief charge against Melville is that his fervour often led him to forget the reverence due to an "anointed monarch." Of this, however, it is not easy to judge. Manners at that time were rougher than at present. When the king acted in an arbitrary and ulegal manner he needed the reminder that though be was king over men he was only "God's silly vassal." Melville's rudeness (if it is to be called so) was the outhurst of just indignation from a man zealous for the purity of religion and regardiess of consequences to himself. In 1599 he was deprived of the rectorship, but was made dean of the faculty of theology. The close of Melville's carcer in Scotland was at length brought about by James in characteristic fashion. In 1606 Melville and seven other clergymen of the Church of Scotland were summoned to London in order "that his majesty might treat with them of such things as would tend to settle the peace of the Cburch." The contention of the whole of these faithful men was that the only way to accomplish that purpose was a free Assembly. Melville delivered his opinion to that effect in two long speeches with his accustomed freedom, and, having shortly afterwards written a sarcastic Latin epigram on some of tbe ritual practised in the chapel of Hampton Court, and some eavesdropper having conveyed the lines to the king, he was committed to the tower, and detained there for four years. On regaining his liberty, and being refused permission to return to his own country, he was invited to fill a professor's chair in the university of Sedan, and there he spent the last eleven years of his life. He died at Sedanin 1622, at the age of sevent y-seven.

See McCries, Andrew Meloulte (ed. 1819); Andrew Lang, History of Scolland (1902).
(D. Mn.)

MBLVILLB, ARTHUR (8858 -1004), British painter, was born in Scotland, in a village of Haddingtonshire. He took up painting at an early age, and though he attended a night-school and studied afterwards in Paris and Grez, he learnt more from practice and personal obeervation than from schooi training. The remarkable colour-sense which is so notable a feature of his work, whether in oils or in water-colour, came to him during his
travels in Persia, Egypt and India. Melville, though comparatively littlo known during lis lifetime, was one of the most powerful influences in contemporary art, especially in his broad decorative treatment with water-colour. Though his vivid impressions of colour and movement are apparently recorded with feverish haste, they are the result of careful delibcration and selection. He was at his best in his water-colours of Eastern life and colour and his Venetian scenes, but he also painted several striking portraits in oils and a powerful colossal composition of "The Return from the Crucifixion" which remained unfinished at his death in 1904. At the Victoria and Albert Museum is one of his water-colours, " The Littie Bull-Fight-Bravo, Toro! "and another, "An Oriental Goatherd," is in the Weimar Museum. But the majority of his pictures have been absorbed by private collectors.
A comprehensive memorial exhibition of Melville's works was held at the Royal Institute Galleries in London in 1906.
gelville, henry dundas, 15 ST Viscount (1742-1811), British statesman, fourth son of Robert Dundas (1685-1753), lord president of the Scottish court of session, was born at Edinburgh in ${ }^{1742}$, and was educated at the high school and university there. Becoming a member of the faculty of advocates in 1763, he soon acquired a leading position at the bar; and he had the advantage of the success of his half-brother Robert ($1713-1787$), who had become lord president of the court of session in 1760 . He became solicitor-general to Scotland in 1766; but after his appointment as lord-advocate in 1775 , he gradually relinquished his legal practice to devote his attention more exclusively to public business. In 1774 be was returned to parliament for Midlothian, and joined the party of Lord Nortb; and not withstanding his provincial dialect and ungraceful manner, he soon distinguished bimself by bis clear and argumentative speeches. After holding subordinate offices under the marquess of Lansdowne and Pitt, he entered the cabinet in r79r as home secretary. From 1794 to 1801 be was secretary at war under Pitt, who conceived for him a special friendship. In 1802 he was elevated to the peerage as Viscount Melville and Bawon Dunira. Under Pitt in 1804 he again entered office as first lord of the admiralty, when he introduced numerous improvements in the details of the department. Suspicion had arisen, however, as to the financial management of the admiralty, of which Dundas had been treasurer between 1782 and 1800 ; in 1802 a commission of inquiry was appolnted, which reported in 1805. The result was the impeachment of Lord Melville in 1806, on the finitiative of Samuel Whitbread, for the misappropriation of public money; and though it ended in an acquittal, and nothing more than formal negiigence lay against him, he never again beld office. An earldom was offered in 1809 but declined; and be died on the 28th of May 18ir.
His son Roaert, 2nd Viscount Melville (1771-1851), filled various polltical offices and was first lord of the admiralty from 1812 to 1827 and from 1828 to 1830 ; his name is perpetuated by that of Melville Sound, because of his interest in Arctic exploration. His eldest son, Henry Dundas, 3rd Viscount ($1801-1876$), a general in the army, played a distinguished part in the second Sikb War.
See Hon. J. W. Fortescue, History of the British Arkig, vol. tv. (1907).

CELVILLE, HERMAN (18ig-189r), American author, was bora in New York City on the ist of August 1819. He shipped as a cabin-boy at the age of eighteen, thus being enabled to make his first visit to England, and at iwenty-t wo sailed for a long whaling cruise in the Pacific. After a year and a half he deserted his ship at the Marquesas Idlands, on account of the cruelty of the captain; was captured by cannibals on the island of Nukahive, and detained, without hardship, four months; was rescued by the crew of an Australian vessel, which he joined, and two years later reached New York. Thereafter, with the exception of a passenger voyage around the world In 1860, Meiville remained in the United States, devoting himself to literature-though for a considerable period (1866-1885) be held a post in the New Yort custom-house-and being perhaps Hawhorne's most intimate
friend among the literary men of America. His writings are numerous, and of varying merit; his verse, patriotic and other, is forgotten; and his works of fiction and of trevel are of irreguiar erecution. Newertheless, few authors have been enabled so freely to introduce romantic personal experiences into their books: in his finst work, Typee: A Poep af Potmesian Life, or Four Monihs' Residence in a Valley of the Marquesas (1846), he described his escape from the cannibals; while in Omoo, a Narrative of Adventures in the Soulh Seas (1847), While Jacket, or The World in a Man-of-War (1850), and especially Moby Dick, or The Whate (1851), he portrayed seafaring life and character with vigour and originality, and from a personal knowledge equal to that of Cooper, Marryat or Clark Russell. But these records of adventure were followed by other tales so turgid, eccentric, opinionative, and loosely written as to seem the work of another author. Melvilie was the product of a period in American literature when the fiction written by writers below Irving, Poe and Hawthorne was measured by humble artistic standards. He died in New York on the 28th of September 1891.

MEVILHB, JAMES (1556 -1614), Scottish reformer, nephew of Andrew Melville (q.o.), was born on the 16th of July 1556. He was educated at Montrose and St Leonard's College, St Andrews. In 1574 be proceeded to the university of Glasgow, of which his uncle was principal, and within a year became one of the regents. When his uncle was appointed, in 1580 , principal of the New (later, St Mary's) College, St Andrews, he was transferred to the chair of Oriental languages there. For three and a half years be lectured in the university, chiefly on Hebrew, but he had to flee to Berwick in May 1584 (a few months aiter his uncle's exile) to escape the at tacks of his ecclesiastical enemy, Bishop Adamson. After a short stay there and at Newcastle-on-Tyne, and again at Berwick, he proceerled to London, where he joined some of the leaders of the Scottish Presbyterian party. The taking of Stirling Castle in 1585 having changed the political and ecclesiastical positions in the north, he returned to Scotland in November of that year, and was restored to his office at St Andrews. From 1586 to his death he took an active part in Church controversy. In 1589 he was moderator of the General Assembly and on several occasions represented his party in conferences with the court. Despite his antagonism to James's episcopal schemes, he appears to have won the king's respect. He answered, with bis uncle, a royal summons to London in 1606 for the discussion of Church policy. The uncompromising at titude of the kinsmen, though it was made the excuse for sending the elder to the Tower, brought no further punishment to James than easy detention within ten miles of Newcastle-onTyne. During his residence there it was made clear to him by the king's agents that he would receive high reward if he supported the royal plans. In 1613 negotiations were begun for his return to Scotland, but his health was broken, and he died at Berwick in January 1614.
Melville has left ample materials for the history of his time from the Prestyterian standpoint. in (a) oorrespondence with his uncle Andrew Melville (MS. in the library of the university of Edinburgh), and (b) a diary (MS. in the Advocates' Library, Edinburgh). The Latter is written in a vigorous, fresh style, and is especially direct in its descriptions of contemporaries. His sketch of John Knox at St Andrews is one of his best passages.
Andrews is one or his best passages of verse he compares unfavourably with his uncle. All his pieces, with the exception of a "libellus supplex" to King James, are written in Scots. He translated a portion of the Zodiccus rifae of Palingenius, and adapted some passages from Sealiger under the title of Description of the Spainyarts nolurall. His Spiritual Propine of a Pastour la his People (1598), The Black Bastill, a lamentation for the kirk (1614), Thrie may keip Counsell, five Twa be away. The Beliefc of the Singing Soul. Davt's Tragique Fall, and a number of Sonnets show no originality and Indifferent technical ability.
The Diary was printed by the Bannatyne Club in 1829, and by the Wodrow Society in 8842 . Large portions of it are incorpor: ated in David Calderwood's (1575-1650) History of the Kirk of Scotland (first printed in 1678). For the life and times, see Thomas M^{\prime} Crie's Life of Andreso Mcloille.

MELVILLE, SIR JAMES (1535-1617), Scottish diplomatist and memoir writer, was the third son of Sir John Melville, laird of Reith in the county of Fife, who was executed for treeson in
1548. One of his brothers was Robert, 1st Baron Melville of Monimail (1527-16a1). James Melville in 1549 went to France to become page to Mary Queen of Scots. Serving on the French side at the bettle of St Quentin in 1557 Melville was wounded and taken prisoner. He subsequently carried out a number of diplomatic missions for Henry II. of France. On Mary's return to Scotland in 1561 she gave Melville a pension and an appaintment in her household, and she employed him as special emissary to reconcile Queen Elizabeth to her marriage with Darnley. After the murder of Darnley in February 1567 , Melville joined Lord Herries in boldly warning Mary of the danger and disgrace of her projected marriage with Bothwell, and was only saved from the latter's vengeance in consequence by the courageons resolution of the queen. During the troubled times following Mary's imprisoament and abdication Melville conducted several diplomatic missions of importance, and won the confidence of James VI. when the king took the government into his own hands. Having been adopted as his heir by the reformer Henry Balnaves, he inherited from him, at his death in 1579 , the estate of Halhill in Fife; and he retired thither in 1603, refusing the request of James to accompany him to London on his accession to the English throne. At Halhill Melville wrote the Memoirs of my oun Life, a valuable authority for the history of the period, first published by his grandson, George Scott, in 1683. Sir James Melville died at Halhill on the 13 th of November 1617. By his wife, Christina Boswell, he had one son and two daughters; the elder of these, Elizabeth, who married John Colville, de jure 3rd Baron Colville of Culross, has been identified with the authoress of a poem published in 1603, entitied Ane Godlie Dreame.
See the Memeirs mentioned above. of which the most modern edition is that prepared by T. Thompson for the Bannatyne Club (Edinburgh, 1827).
MELVILL VAN CARNBEB, PIETRR, BaRON ($1816-1856$), Dutch geographer, was born at the Hague on the soth of May 1816. He traced his descent from an old Scottish family, originally, it is said, of Hungarian extraction. Destined for the navy, In which his grandfather Pieter Melvill van Carnbee (1743-1810) had been admiral, he imbibed a taste for hydrography and cartography as a student in the college of Medemblik, and he showed his capacity as a surveyor on his first voyage to the Dutch Indies (1835). In 1839 he was again in the East, and was attached to the hydrographical bureau at Batavia. With the assistance of documents collected by the old East India Company, he completed a map of Jave in five sheets, accompanied by sailing directions (Amsterdam, 1842). He remained in the East till 1845 collecting materials for a chart of the waters between Sumatra and Borneo (two sheets, 1845 and 1846). On his return to Holland he was attached to the naval department with the charge of studying the history of the hydrography of the Dutch East Indics. He also undertook, in connexion with P. F. von Siebold, the publication of the Monitewr des Indes, a valuahle series of scientific papers, mainly from inis own pen, on the foreign possessions of Holland, which was continued for three years. In 1850 Melvill returned to India as lieutenant of the first class and adjutant to Vice-Admiral van den Bosch; and after the premature death of this commander he was again appointed keeper of the charts at Batavia. In 1853 he obtained exemption from active naval service that he might devote himself to a general athas of the Dutch Indies. But in 1856 he fell a victim to climate, dying at Batavia on the 24th of October. In spite of delays in engraving, twent y-five shects of the atlas were already finished, but it was not till 1862 that the whole plan, embracirg sixty sheets, was completed by Lieut.-Colonel W. F. Versteeg. In 1843 Melvill received the decoration of the Netherlands Lion, in 1849 that of the Legion of Honour.
MEMBRANELLE, an organ in Ciliate Infusoria (q.o.), a flattencd assemblage of adherent cilia, like the plates of Ctenophora (q.v.): such are arranged in a series in the adoral wreath of the Heterothrichaceae Oligotrichaceae and Hypotrichaceae and constime ute the posterior girdle of Peritricha.
mentis, a town of Germany, in the kingdom of Prussia, the most northerly town of the German empire, ot m . by rail N.E. of Konigsberg, at the mouth of the Dange, and on tbe bank of a sound, called the Memeler Tief, which connects the Kurische Haff with the Baltic. Pop. (rgos), 20,687. On tbe side next the sea the town is defended by a citadel and other fortifications, and the entrance to the harbour is protected by a lighthouse. Memel has been largely rebuilt since a destructive fire in 1854 . It possesses iron-foundries, shlpbuilding yards, hreweries, distilleries, and manufactories of chemicals, soap and amber wares. By far the most important interest of the town, however, is its transit trade in timber and the-grain and other agricuitural products of Lithuania, and also herrings and other kinds of fish. The timber is brought by river from the forests of Russia, and is prepared for export in numerous aaw-mills. The annual value of timber exported is above $£ 1,000,000$. A Prussian national memorial was unveiled here in the presence of the emperor William II. in September 1907.

Memel was founded in 1252 by Poppo von Osterna, grand master of the Teutonic order, and was at first called New Dortmund and alterwards Memelburg. It soon acquired a considerable trade, and joined the Hanseatic League. During the 13th, 14th and 15th centuries it was repeatedly burned by its hostile neighbours. the Lithuanians and Poles, and in the 17th century it remained for some time in the possession of Sweden. In 1757 , and again in 8813 , it was oceupied by Ruscian troops. After the battle of Jona, King Frederick Willia m III. retired to Mermel; and here, in 1807, a treaty was concluded between England and Prussia. The poet Simon Dach was a native of Memel.
Sce J. Sembritzki, Geschichte det kowiglich preusrischen Seo- und Handelssladt Memel (Memel, 1900); and Memal in 19 Jahrhundert (Memel, 1902).

Membl, or Nieneen, a river of Russia and Prussia, rising in the middle of the Russian government of Minsk at an altitude of 580 ft . and flowing generally west as far as Grodno. Thence it runs north to Kovno, separating Poland from Russia, and at Kovno it turns west again, still dividing Poland from Russia, until it enters the Prussian province of East Prussia, through wbich it flows west and north-west past Tilsit for a distance of 70 m . and finally enters the Kurisches Hafl by several arms. Of these, those principally used for navigation are the Russ, and its chief branch the Atmat. The Russ is connected with the outiet of the Kurisches Haff at Memel by a canal, while another canal links the Gilge arm southward with the Pregel. Consider: able quantities of timber are floated down the Memel, and large amounts of corn shipped down it and its navigable tributary the Viliya. The lowiands of Tiloit are protected against inurdation by dikes. Total length of the river, 490 m ; area of its basin, 34.950 sq. m . It is navigable for large vestels as far as Grodno.
See H. Keller, Memel. Pregel and Weichselstrom (2 vols., Berlin. r900): and Schickert. Wasserwegt und Deichuveste in der Mamedmiederung (Königsberg, 1901).

MEMLINC, HANS (c. r430-1494), Flemish painter, whose art gave lustre to Bruges in the period of its political and commercial decline. Though much has been written respecting the rise and lall of the school which made this city famous, it remains a moot question whether that school ever truly existed. Like Rome or Naples, Bruges absorbed the talents which were formed and developed in humbler centres. Jan Van Eyck first gained repute at Ghent and the Hague before he acquired a domicile elsewhere, and Memlinc, we have reason to think, was a skilled artlst before he settied at Bruges. The annals of the city are silent as to the birth and education of a painter whose name was inaccurately spelt hy different authors, and whose identity was lost under the various appellations of Hans and Hausse, or Hemling. Meming, and Meminc. But W. H. J. Weale mentions a contemporary document discovered in 1889, according to which Memlinc "drew his origin from the ecclesiastical principality of Ms yence," and died at Bruges on the IIth of August 1494. He probahly served his apprenticeship at Mayence or Cologne, and later worked under Rogier van der Weyden. He did not come to Brages until about 1467, and certainly not as a wounded fugitive from the field of Nancy. The story is fiction, as is also
the report that he was sheltered and cured by the Hospitallers at Bruges, and, to show his gratitude, refused payment for a picture he had painted. Memlinc did indeed paint for the Hospitallers, but he painted not one but many pictures, and he did so in 1479 and 2480 , being probably known to his patrons of St John by many masterpieces even before the battle of Nancy.

Meminc is only connected with military operations in a mediate and distant sense. His name appears on a list of subscribers to the loan which was raised by Maximilian of Austria to push bostilities against France in the year 1480. Io 1477, when he is falsely said to have fallen, and when Charles the Bold was killed, he was under contract to furnish an altarpiece for the gildchapel of the booksellers of Bruges; and this altarpiece, now preserved, under the name of the "Seven Griefs of Mary," in the gallery of Turin, is one of the fine creations of his riper age, and not inferior in any way to those of 1479 in the hospital of St John, which for their part are hardly less interesting as illustrative of the master's power than the "Last Judgment" in the cathedral of Danzig. Critical opinion has been unanimous in assigning the altarpiece of Danzig to Memlinc; and by this it affirms that Memlinc was a resident and a skilled artist at Bruges in 1473; for there is no doubt that the "Last Judgment" was painted and sold to a merchant at Bruges, who shipped it there on board of a vessel bound to the Mediterranean, which was captured by a Danzig privateer in that very year. But, in order that Memlinc's repute should be so fair as to make his pictures purchasabie, as this had been, by an agent of the Medici at Bruges, it is incumbent on us to acknowiedge that be had furnished sufficient proofs hefore that time of the skill which excited the wonder of such highly cultivated patrons:

It is characteristic that the oldest allusions to pictures connected with Memlinc's name are those which point to relations with the Burgundian court. The inventories of Margaret of Austria, drawn up in 1524, allude to a triptych of the "God of Pity " by Rogier van der Weyden, of which the wings containing angels were by " Master Hans." But this entry is less important as affording testimony in favour of the preservation of Memlinc's work than as- showing his connexion with an older Flemish crattsman. For ages Rogier van der Weyden was acknowiedged as an artist of the school of Bruges, until records of undisputed authenticity demonstrated that be was bred at Tournai and settied at Brussels. Nothing seems more natural than the conjunction of his name with that of Memlinc as the suthor of an altarpiece, since, though Memlinc's youth remains obscure, it is clear from the style of his manhood that he was taught in the painting-room of Van der Weyden. Nor is it beyond the limits of probahility that it was. Van der Weyden who received commissions at a distance from Bruscels, and first took his pupil to Bruges, wbere he afterwards dwell. The cleares: evidence of the connexion of the two masters is that afforded by pictures, particularly an altarpiece, which has alternately been assigned to each of them, and which may possibly be due to their joint labours. In this altarpiece, which is a triptych ordered for a patron of the house of Sírza, we find the style of Van der Weyden in the central panel of the Crucifixion, and that of Memlinc in the episodes on the wings. Yet the whole piece was assigned to the former in the Zambeccari collection at Bologna, whilst it was attributed to the latter at the Middleton sale in London in 1872 . At first, we may think, a closer resemblance might be traced between the two artists than that disclosed in later works of Memlinc, but the delicate organization of the younger painter, perhape also a milder appreciation of the duties of a Christian artlst, may have led Memlinc to realise a sweet and perfect ideal, without losing, on that account, the feeling of his master. He certainly exchanged tbe asceticism of Van der Weyden for a sentiment of less energetic concentration. He softened his teacher's asperities and bitter hardness of expression.

In the oldest form in which Meminc's atyle is displayed, or rather in that example which represents the Baptist in the gallery of Munich. we are supposed to contemplate an effort of the year 1470. The finish of this piece is scarcely surpmared. though the anbject is more important, by that of the "Lak Judgment" of Danzig

Bat the latter is more interssting than the former, because it tells how Memlinc, long alter Rogier's death and his own settiement at Bruges, preserved the traditions of sacred art which had been applied in the first part of the century by Rogier van der Weyden to the " Last Judgment" of Beaune. All that Memlinc did was to purge his master's manner of excessive stringency, and add to his other qualities a velvet softness of pigment, a delicate transparence of colours, and yielding grace of siender forms. That such a beautiful work as the "Last Judgment" of Danzig should have been bought for the Italian market is not surprising when we recollect that picture-fanciers in that country were familiar with the beauties of Memlinc's compositions, as shown in the preference given to them by such purchasers as Cardinal Grimari and Cardinal Bembo at Venice, and the head of the house of Medici at Florence. But Meminc's reputation was not confined to Italy or Flanders. The "Madonna and Saints " which paseed out of the Duchatel collection into the gallery of the Louvre, the "Virgin and Child "painted for Sir John Donne and now at Chatsworth, and other noble specimens in English and Continental private houses, show that his work was as widely known and appreciated as it could be in the state of civilization of the 16 th century. It was perhaps not their sole attraction that they gave the most tender and delicate possible impersonations of the "Mother of Christ "that could suit the taste of that age in any European country. But the portraits of the donors, with which they were mostly combined, were more characteristic, and probably more remarkable as likeneses, than any that Memlinc's contemporaries could produce. Nor is it anreasonable to think that his success as a portrait painter, which is manifested in isolated busts as well as in altarpieces, was of a kind to react with effect on the Venctian school, which undoubtedly was affected by the partiality of Antonello da Messina for trans-Alpine types studied in Flanders in Memlinc's time. The portraits of Sir John Donne and his wife and children in the Chatsworth altarpiece are not less remarkable as models of drawing and finish than as refined presentations of persons of distinction; nor is any difference in this respect to be lound in the splendid groups of lather, mother, and children which fill the noble alcarpiece of the Louvre. As single portraits, the busts of Burgomaster Mored and his wife in the museum of Brussels, and their daughiter the "Sibyl Zambetha" (according to the added description) in the hospital at Bruges, are the finest and most interesting of specimens. The "Seven Griefs of Mary" in the gailery of Turin, to which we may add the "Seven Joys of Mary" in the Pinakothek of Munich, are illustrations of the habit which clung to the art of Flanders of representing a cycle of sabjects on the different planes of a single picture, where a wide expanse of ground is covered with incidents from the Passion in the form common to the action of sacred plays.

The masterpiece of Memlinc's later years, a shrine containing relics of St Ursula In the museum of the hospltal of Bruges, is fairly supposed to have been ordered and finished in 1480. The delicacy of funsh in its miniature figures, the variety of its landscapes and costume, the marvellous patience with which its details are given, are all matters of enjoyment to the spectator. Therc is later work of the master in the "St Christopher and Saints" of 1484 in the academy, or the Newenhoven "Madonma " In the hoapital of Bruges, or a large "Crucifuxion," with scenes from the Passion, of 149 I in the cathedral of Labeck. But as we near the close of Memlinc's career we observe that his practice has become larger than he can compass alone; and, as usual in such cases, the labour of disciples is substituted lor his own. The registera of the painters' corporation at Bruges give the names of two apprenticea who eerved their time with Memlinc and paid dues on admission to the gild in 1480 and 1486 . These subordinates remained obscure.

The trustees of his will appeared before the court of wards at Bruges on the 10th of December 1495, and we gather from records of that date and place that Merninc left behind eeveral children and a considerable property.

Autitorities.-A. Michiels, Memitinc: sa die at ses oweruges (Verviers, 1881): T. Gaedertx, Hans Memling und dessen Allarschrein im Dom zu Lubeck (Leipzig, 1883); Jules du Jardin, L'Ecole de Bruges.
 Kimmerer, Hemling (Leipaig, 18q9); W. H. Y. Wcale, Hans Memlinc (London, 1901), Hans Membinc: Biography (Bruges, 1901).
(J. A. C.; P. G. K.)

TEICINGEA, 2 town of Germany, in the kingdom of Bavaria, on the Ach, a tributary of the Iller, $35 \mathrm{~m} . \mathrm{S} . \mathrm{W}$. of Augsburg on thé railway to Ulm. Pop. (1905), 11,618. It is partly surrounded with walls, and has some interesting old gates and houses. It contains the fine Gothic church of St Martin, which contains 67 beautifully carved choir-stalls, and a town hall dating from about 1580. Its industrial products are yarn, calico, woollen goods, thread. A considerable trade is carried on in hops, which are extensively cultivated in the neighbourhood, and in cattle, wool, leather and grain.

Memmingen, first mentioned in a document of 1010 , belonged originally to the Guelf family, and later to the Hohenstaufens. In 1286 it became a free city of the empire, a position which it main.
tained down to 180a, when it was allotted to Bavaria. In 1331 it was a member of the league of Swabian towns; in 1530 it was one of the four towns which presented the Confessio Tetrapolilana to the emperor Ferdinand l.; and a few years later it joined the league of Schmalkalden. During the Thirty Years' War it was alternately occupied by the Swedes and the Imperialists. In May 1800 the French gained a victory over the Austrians near Mernmingen.

See Dobel, Memmingen im Reformationserilatlen, (Augsburg. 1877-1878), and Clauss, Memmingen Chronik, 1826-1893 (Memmingen, 1894).

1IITIUS, GAIUS (incorrectly called Gemellus; "The Twin "), Roman orator and poet, tribune of the people (66 B.c.), friend of Lucretius and Catulins. At first a strong supporter of Pompey, he quarrelled with him, and went over to Caesar, whom he had previously attacked. In 54, as candidate for the consulship, he lost Caesar's support by revealing a scandalous transaction in which he and his fellow candidate had been implicated (Cic. Ad Au. iv. $\mathbf{1 5}^{-18}$). Being subsequently condemned for illegal practices at the election, he withdrew to Athens, and afterwards to Mytilene. He died about the gear 49. He is remembered chiefly because it was to him that Lucretius addressed the De rerum natura, perhaps with. thẹ ides of making him a convert to the doctrincs of Epicurus. It appears from Cicero (Ad Fam. xiii. 1) that he possessed an estate on which were the ruins of Epicurus' house, and that be had determined to build on the site a bouse for himself. According to Ovid (Trist. ii. 433) he was the author of erotic poems. He possessed considerable oratorical abilities, but his contempt for Latin letters and preference for Greck models impaired his efficiency as an advocate (Cic. Brut. 70).

Another Garus Memmrus, tribune in 111 B.c., attacked the aristocrats on a charge of corrupt relations with Jugurtha. Memmius gubsequently stood for the consulship in 99, but was slain in a riot stirred up by his rival the praetor Glaucia. Sallust describes him is an orator, but Cicero (De oratore, ii. 59,70) had a poor opinion of bim.

MEANON, in Greek mythology, son of Tithonus and Eos (Dawn), king of the Aethiopians. Although mentioned in Hesiod and the Odyssey, he is cather a post-Homeric bero. Alter the death of Hector be went to assist his uncle Priam against the Greeks. He performed prodigies of valour, but was slnin by Achilles, after he had himself killed Antilochus, the son of Nestor and the friend of Achilles. His mother, Eos, -removed his body from the field of battle, and it was said that Zeus, moved by her tears, bestowed immortality upon him. According to another account, Memnon was engaged in single combat with Ajax Telamonius, when Achilles slew him before his warriors had time to come to his aid (Dictys Cretensis iv. 6; Quintus Smyrnaeus li.; Pindar, Pythio, vi. 31). His mother wept for him every morning, and the carly dew-drops were said to be her tears. His companions were changed into birds, colled Memnonides, which came every year to fight and lament over bis grave, which was variously locatcd (Ovid, Metam. xiit. 576-622; Pausanias x. 31). The story of Memnon was the subject of the lost Aethiopis of Arctinus of Miletus; the chief source from whith our knowledge of him is derived is the second book of the Posthomerica of Quintus Smyrnaeus (itself probably an adaptation of the works of Arctinus and Lesches), where bis exploits and death are described at length. As an Aethiopian, Memnon was described as black, but was noted for his beauty. The fight between Achilles and Memnon was often represented by Greek artists, as on the chest of Cypselus, and more than one Greek play was written bearing his name as a title. In later times the tendency was to regard Memnon as a real historical figure. Fie was said to have built the royal citadel of Susa, called after him the Memnonion, and to have been sent by Teutamus, king of Assyria, to the assistance of his vassal Priam (Diod. Sic. ii. 22). In Egypt, the name of Memnon was connected with the colossal statues of Amenophis (Amenhotep) III. near Thebes, two of which still remain. The more northerly of these was partly destroyed by an earthquake (27 B.c.) and the upper part thrown down. A curious phenomenon then occurred. Every morning, when the rays of the rising sun touched the statue, it gave forth musical sounds, life the
moaning noise or the sharp twang of a harp-string. This was supposed to be the voice of Men.aon responding to the greeting of his mother Eos. After the restoration of the statue by Septimius Severus (A.D. 170) the sounds ceased. The sound, which has been heard by modern travellers, is generally attributed to the passage of the air through the pores of the stone, chiefly due to the change of temperature at sunrise. Others have held that it was a device of the priests. Strabo (xvii. 8'6), the first to mention the sound, declares that he bimself beard it, and Pausinias (i. 42,3) says " one would compare the sound most nearly to the broken chord of a harp or a lute" (Juvenal xv. 5, with Mayor's note; Tacitus, Asnals, ii. 61).
The supporters of the solar theory look upoa Memnon as the son of the dawn, who, though he might vanish from sight for a time, could not be destroyed: hence the immortality bestowed upon him by Zeus. He comes from the east, that is, 2he land of the rising sun. On early Greek vases he is represented as borne through the air; this is the sun making his way to his place of departure in the west. Both Susa and Egyptian Thebes, where there was a Memnonion or cemple in honour of the hero, were centres of sun-worship.
"Eos. the mother of Mernnon, is so transparently the morning, that her child must rise again as surely as the sun reappears to run lis daily course across the heavens! (G. W. Cox, My Mology and Folklare, p. 267).
Sce J. A. Letronne, La Slatue vocale de Memnon (1833); C; R. Lepsius, Briefc ous Agyplen (1852); "The Voice of Memnon", in Edinburgh Review (July 1886); article by R. Holland in Roscher's Lexikon der mythologie.
MEMNON OF RHODES, brother of Mentor (q.v.), with whom he entered the services of the rebellious satrap Artahazus of Phrygin, who married his sister. Meator after the conquest of Egypt rose high in the favour of the king, and Memnon, wbo had taken refuge with Artabazus at the Maccdonian court, became a zealous adberent of the Persian king; he assisted Mentor in subduing the rebellious satraps and dynasts in Asia Minor, and succeeded him as general of the Persian troops. In the pseudo-Aristotelian Occonomica, ii. 28, stories are told of his methods of obtaining money and evading his obligations; thus he extorted a large sum of money from the conquered inhabitants of Lampsacus and cheated his soidiers out of a part of their pay. He owned a large territory in eastern Troas (Arrian i. 17, 8; Strabo xiii. 587). He gained some successes against Philip II. of Macedon in 336 (Diod. xvil. 6; Polyaen. V. 44, 4, 5) and commanded the Persian army against Alexander's invasion. Convinced that it was impossible to meet Alexander in a pitched battle, his plan was to lay waste the country and retire into the interior, meanwhile organizing resistance on sea (where the Persians were far superior to the Macedonians) and carrying the war into Grecce. But his advice was overridden hy the Persian satraps, who forced him to fight at the Granicus. After his defeat he tricd to organize the maritime wer and occupied the Greek islands, hut in the heginning of 333 be fell ill and died (Arrian ii. 1, 1).
(Ed. M.)
MRMORANDUN OF ASSOCIATION, in English company law, a document subscribed to by seven or more persons associated for any lawful purpose, by subscrihing to which, and otherwise complying with the requisitions of the Companies Acts in respect of registration, they may form themselves into an incorporated company, with or without limited liability (sce Corpany).
mehorial day (or Decoration Day), a holidey observed in the northern states of the United States on the 3oth of May, in honour of soldiers killed in the American Civil War, and especially for the decoration of their graves with flags and flowers. Before the close of the Civil War the 30th of May was thus celebrated in several of the southern states; in the North there was no fixed day commonly celebrated until r868, when (on the 5 th of May) Commander-in-Chief John A. Logan, of the Grand Army of the Republic, issued a general order designating the 3oth of May 1868 "for the purpose of strewing with flowers or otherwise decorating the graves of comrades who died in defense of their country during the late rebelion '"; Logan did this "with the hope that it will be kept up from year to year." In 1882 the Grand Army urged that the "proper designation of May 30 is Mcmorial Day "-not Decoration Day. Rhode Island
made it a legal holiday in 1874, Vermont in 1876, and New Hampshire in 1877; and by 1910 it was a legal holiday in all the states and territories save Alabama, Alaska, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina and Texas. In Virginia the zoth of May is observed as a Confederate Memorial Day. The zrd of June (the bithday of Jefferson Davis) is observed as Confederate Memorial Day in Louisiana and Tennessee; the 26th of April in Atabama, Florida, Georgia and Mississippi; and the roth of May in North Carolina and South Carolina.

MEMPHIS, the capital of Egypt through most of its carly history, now represented hy the rubbish mounds at Bedreshen on the W. bank of the Nile 14 m . S. of Cairo. As the chief seat of the worship of Ptah, the artisan god (Hephacstus), Mempbis must have existed from a very remote time. But its great ness probably began with Menes (q.0.), who united the kingdoms of Upper and Lower Egypt, and is said to have secured the site for his capital near the border of the two lands by diverting the course of the river eastward. Memphis was the chief city of the rst nome of Lower Egypt; in its early days it was known as "the white walls" or the " white wall," a name which clung to its citadel down to Herodotus's day. The residence here of Pepi I. of the VIth Dynasty, as well as his pyramid in the necropolis, was named $M n$-nfr, and this gradually became the usual designation of the whole city, hecoming Menfi, Membi in late Egyptian, i.e. Memphis. It was also called Hakeptah, "Residence of the $k a$ of Ptah," and this name furnishes a possible origin for that of Egypt (Airumpos). Vaxious dynasties had their ancestral seats elsewhere and individual kings built their palaces and pyramids at some distance up or down the valley, but Memphis must have been generally the centre of the government and the largest city in Egypt until the New Empire (Dyns. XVIII.-XX.), when Thebes took the lead. In the succeeding period it regained its ancient position. The government of the Persian satrap was seated in Memphis. After the conquest of Alexander the city quickly lost its supremacy to his new foundstion, and although it remained the greatest native centre, its population was less than that of Alexandria. In the time of Strabo (xvil. 807) It was the second city of Egypt, inferior only to Alexandria, and with a mixed population like the latter. Memphis was still important though declining at the time of the Moslem conquest. Its final fall was due to the rise of the Arabic city of Fostat on the right bank of the Nile almost opposite the northern end of the old capital; and its ruins, so far as they still lay above ground, gradually disappeared, being used as a quarry for the new city, and afterwards for Cairo. The remains of " Menf" were still imposing late in the 12 th century, when they were described hy 'Abdallatif. Now the ruins of the city, the great temple of Ptah, the dwelling of Apis, and the palaces of the kings, are traceable only by a few stones among the palm trees and fields and heaps of rubbish. But the necropolis has been to a great extent protected by the accumulations of blown sand. Pyramids of the Old and Middle kingdoms form a chain 20 m . long upon the edge of the valley from Giza to Dahshur. At Saqqara, opposite Memphis itself, the sicppyramid of Zoser of the IIIrd Dynasty, several pyramids of the Vth and VIth Dynasties, and innumerahle mastaba-tombs of the Old Kingdom, are crowded together in the cemetery. Later tombs are piled upon and cut through the old ones. One of the chicf monuments is the Serapeum or sepulchre of the Apis bulls, discovered by Marictte in 1851. From 1905 J. E. Quihell was charged by the Service des Antiquites solely with the excavations in this vast necropolis. His principal discovery has been the extensive remains of the Coptic monastery of St Jeremias, with remarkable sculpiures and frescoes. Flinders Petrie began the systematic exploration of the ruins of Bedreshen, and in three seisons cleared up much of the topography of the ancient city, identifying the mound of the citadel and palace, a foreign quarter, \&c. Among his finds not the least interesting is a large series of terra-catia heads representing the characteristic features of the foreigners who thronged the bazan of Mimphis, They date from the Persian rule down to
the Ptolemaic period and are evidently modelled by Greek workmen. In the Old Testament Memphis is mentioned under the names of Mopb (Hos. ix. 6) and Nopb (Isa. xix. 13; Jer. ii 16; Ezek. xcx. 13, 16).
See J. de Morgan, Carte de la necropole memphite (Cairo, 1897): Baedeiker's Eyypl: J. En Quibell. Excauations of Saqqaza (a vols. Cairo. 1908-1909): W M. Flinders Petrie, Memphts I and The Palace of Apries (Memphis 11.) (London, 1909).
(F. LL. G.)

MRIPHIS, a port of entry and the largest city of Tennessee, U.S.A., and the count y-seat of Shelby county, on the Mississippi river, in the S.W. corner of the state. Pop. (1800), 22,023; (1870), 40.226; (1880), 33.592; (1890), 64,405, (1900), 102,320, of whom 5110 were forcign-born and 49,910 were negroes; (1gro census) 131,105 . It is served by the Chicago, Rock Island \& Pacific, the St Louis \& San Francisco, the Illivois Central, the Southern, the Louisville \& Nashville the Nashville, Chattanooga \& St Louis, the St Louis South-Western, the St Louis. Iron Mountain \& Sout hern and the Yazoo \& Mississippi Valley railways, and by steamboats on the Mississippi. The river is spanned here by a cantilever railway bridge 1895 ft . long, completed in 1892 . The city is finely situated on the fourth Chickasaw Bluffs, more than 40 ft . above high water; the streets are broad, well paved and pleasantly shaded, and a broad levee overlooks the river. In Court Square, in the heart of the city, are many fine old trees and a bust of President Andrew Jackson. In 1909 the city had about 1000 acres of parks and $t i \frac{1}{2} \mathrm{~m}$. of parkways. besides two race-courses. Overton Park has beautiful playgrounds and a good zoological collection. Five miles from Memphis is a National Cemetery. Among the prominent buildings are the United States Government building, the county Court house, Cotton Exchange, Business Men's Club, Goodwyn Institute, containing an auditorium and the public library, the Cossett Free Library, Grand Opera House, Lyceum Theatre, Auditorium, Gayoso Hote, Memphis Evening Scimitar building, the Union and Planters' Bank and Trust Company building, Equitable building, Memphis Trust building, Tennessee Trust building, the Bank of Commerce, Woman's building (containiag offices for business women), Masonic Temple, Odd Fellows' building and the Commercial Appcal building. Among educational institutions are the College of Christian Brothers (Roman Catholic, opened in 1871), Memphis Hospital Medical College, College of Pbysicians and Surgeons, Hannibal Medical College for negroes and Le Moyne Normal Institute, also for negroes. Memphis is the see of a Protestant Episcopal bishopric. The city is supplied with water from more than eighty artesian wells, having an average depth of about 400 ft .
Owing to its situation at the head of deep water navigation oa the Mississippi, Memphis bas become a leading commercial city of the southern states; its trade in cotton, lumber, groceries, mules and horses is especially large. The city also manufactures large quantities of cotton-seed oil and cake, lumber, flour and grist-mill products, foundry and machine-shop products, confectionery, carriages and wagons, paints, furniture, bricks, cigars, tac. The Illinois Central and the St Louis \& San Francisco railways have workshops bere. The total value of the city's manufactures increased from $\$ 13,244,538$ in 1800 to $\$ 17,923,059$ ($\$ 14,233,483$ being factory product) in $\mathbf{~ g o o n , ~ a n d ~ t o ~} \$ 21,346,817$ (factory product) in 1905 , an increase of 50% over the value of the factory product in 1900.

Chickasaw Bluffs were named from the Chickasam Indians, tho were in possession when white men first came to the vicinity. Late in the ryth century the French built a fort on the site of Memphis, and during most of the 18th century this site was held either by the French or the Spanish. In 1797 it passed into the possession of the United States. By a treaty of the rith of October 1818, negotiated by General Andrew Jackson and General Isaac Shelby, the Chickasaws ceded all their claims east of the Mississippi, and eariy in 1819 Memphis was laid out in accordance with an agreemeat entered into by John Overton ($1766-1833$), Andrew Jackson and Jarnes Winchester (17521826), the proprietors of the land. Its name was suggested from the similarity of its situation on the Mississippi to that of
the Egyptian city on the Nile. Memphis wes incorporated as a town in 1827, and in 1849 was chartered as a city. Near Memphis, on the 6th of June 1862, a Union fleet of 9 vessets and 68 guns. under Commander Charles Henry Davis (1807-77). defeated a Confederate fleet of 8 vesscla and 28 guns under Commander J. E. Montgomery after a contest of little more than one hour, three of the Confederate vessels being destroyed and four of them captured, and from this victory until the close of the war the city was in possession of the Union forces. In August 1864, however, a Confederate force under General N. B. Forrest raided it and captured several hundred prisoners. The decrease of population between 1870 and 1880 was due to the ravages of yellow fever in 1873,1878 and 1879 . The epideraic of 1873 resulted in over two thousand deaths, and that of 1878 in a total of 5150 , of whom 4250 were whites and 900 negroes. At the return of the fever in 1879 better care and strict quarantine arrangements prevailed, but there were 497 deaths. During the epidemics of 1878 and ≤ 879 fully two-thirds of the population fled from the city, many of whom died of the fever at other places, and a still larger number did not return. For three months during each year husiness was suspended, and all ingress or egress except for the most necessary purposes was forbidden. The city was left almost bankrupt, and as a means of relief the legislature of the state in January 1879 repealed the cit y's charter, and, assuming exclusive control of its taxation and finances, constituted it simply a " taxing district," placing its government in the hands of a " legislative council." This anomalous proceeding was declared constitutional by the supreme court of Tennessee. Subsequently the streets were cleansed and repaved, an improved sewer system was put in operation, and the water supply was obtained from artesian wells. In r891 a new city charter was obtained, and in 1907 the "Houston plan" (see Houston, Texas) was adopted for Meraphis hy the state legislature. The act, however, was declared unconstitutional by the state supreme court, on the ground that it would force elected officers out of office before the expiration of their constitutional terms; snd in 1909 a new charter on the Houston plan mas adopted by the legislature, to become effective on the 1st of January 1910 , providing for a government by five commissioners, each having charge of a separate department.

See J. M. Keating, History of tho City of Momphis and Shedby Courty. Tennessee (Syracuse, 1888); James Phelan, History of Tennessee (Boston, 1889).
MRNA, JUAN DE (141 1-1456), Spanish poet, was born at Cordova in 1411. In his twenty-fourtb year be matriculated at the univeraity of Salamanca, and studied later at Rome. His scholarship obtained for him the post of Latin secretary at the court of Castille; subsequently be became bistoriographer to John II. and magistrate at Cordova. According to the Epicedio of Valerio Francisco Romero, Mena died from natural ceuses in 1456; popular tradition, however, ascribes his death to a fall from his mule. Though nominally the king's chronicler, Mens had no share in the Cronica de Don Jman II.; the statement that be wrote the first act of the Celestina (q.s.) is rejected; but three authentic specimens of his cumbrous prose exist in the commentary to his dull poem entitled La Coromacion or Calamacileos, in the Iltade en romance (an abridged version of Homer), and in the unpublished Memorias de algmos linajes antiguas e nobles de Castilla. He is conjectured to be the author of the satirical Coplas de la pavaderd; but, apart from the fact that these verses are ascribed by Argote de Molina to Iñigo Ortiz de Zúniga, they are instinct with a tart humour of which Mena was destitute His principal work is his allegorical poem, El Laberituo de Forluna, dedicated to John IL; in the oldest manuscripts it consists of 297 stanzas, but three more stanzas were added to it later, and hence the alternative, popalar title of Las Tramiculas. The Laberinto is modelled on Dante, and further contains reminiscences of the Roman de la rase, as well as episodes borrowed from Virgil and Lucan. It is marred by excessive emphasis and pedantic diction, and the arte mayor measure in which it is written is monotonous; but many octaves are of such excelience that the ande mayor metre continued in lashion for nearly a
century. The poem, as a whole, is tedious; yet its dignified expression of patriotic spirit has won the admiration of Spaniards from Cervantes' time to our own.

A critical edition of the Laberinto has been issued by R. FoulcheDelbosc (Macon, 1904).

MENA, PEDRO DE (d. 1693), Spanish sculptor, was born in Adra. He was a pupil of his father as well as of Alonzo Cano. His first conspicuous success was achieved in work for the convent El Angel at Granada, including Ggures of St Joseph, St Antony of Padua, St Diego, St Pedro Meíntara, St Franciscus and Santa Clara. In 1658 he signed a contract for sculptura! work on the choir stalls of the cathedral at Malaga-this work extending over four years. Other works are, statucs of the Madonna and child and of St Joseph in Madrid, the polychromatic figures in the church of St Isodoro, the Magdalena and the Gertrudis in the church of St Martin (Madrid), the crucifixion in the Nuestra Seniora de Gracia (Madrid), the statuette of St Francis of Assisi in Toledo, and of St Joseph in the St Nicholas church in Murcia. Between 1673 and 1679 Mena worked at Cordova. About 1680 he was in Granada, where he executed a half-length Madonna and child (seated) for St Dominicos. Mens died in Malaga in 1693. He and Mora (q.v.) may be regarded as artistic descendants of Montafles and Alonzo Cano, but in technical skill and the expression of religious motive his statues are unsurpassed, in the sculpture of Spain. His feeling for the nude was remarkable. Like his immediate predecessors he excelled in the portrayal of contemplative figures and scenes; Mena's drawing of Santiago leaping upon his charger is good, and the carving admirable, but the necessary movement for so spirited an action is lacking.
See B. Haendcke, Sludien zur Geschichle der spantschen Plastik (Straseburg, 1900).
menabrea, lUIGI federico, Marquis of Valdora (i8og1896), Italian general and statesman, was born at Cbambery on the 4 th of September 1809 . He was educated at the university of Turin, where he qualified as an engineer and became a doctor of mathematics. As an officer of engincers he replaced Cavaur in 2832 at the fortress of Bardo. He then became professor of mechanics and construction at the military academy and at the university of Turin. King Charles Albert sent him in 1848 on diplomatic missions to secure the adhesion of Modena and Parma to Sardinia. He entered the Piedmontese parliament, and was attached successively to the Ministries of War and Foreign Affairs. He belonged to the right centre, and until the events of 1859 he believed in the possibility of a compromise between the Vatican and the state. He was major-general and commander-in-chief of the engineers in the Lombard campaign of 1859. He superintended the sicge works against Peschiera, was prescnt at Palestro and Solferino, and repaired the fortifications of some of the northern fortresses. In 1860 he became lieutenantgeneral and conducted the sicge of Gaeta. He was appointed senator and received the title of count. Entering the Ricasoli cabinet of 1861 as minister of marine, he held the portiollo of public works until r864 in the succeeding Farini and Minghetti cabinets. After the war of $\mathbf{1 8 6 6}$ be was chosen as Italian plenipotentiary for the negotiation of the treaty of Prague and for the transfer of Venetia to Italy. In October 1867 he succeeded Rattazzi in the premiership, and wes called upon to deal with the difficult situation created by Garibaldi's invasion of the Papal States and by the catastrophe of Mentana. Menabrea disavowed Garibaldi and instituted judicial proceedings against him; but in negotiations with the French government he protested against the retention of the temporal power by the pope and insisted on the Italkan right of interference in Rome. He was in the secret of the direct negotiations between Victor Emanuel and Napoleon III. in June 1869, and refused to entertain the idea of a French alliance unless Italy were allowed to occupy the Papal States, and, on occasion, Rome itself. On the eve of the assembly of the Decumenical Council at Rome Menabrea reserved to the Italian government its right in respect of any measures directed against Italian institutions. He withdreve from seminary students in $\mathbf{1 8 6 9}$ the exemption from mili-
tary service which they had hitherto enjoyed. Throughout his term of office he was supported by the finance minister Count Cambray Digny, who forced through parliament the grist tax proposed by Quintino Sella, though in an altered form from the earlier proposal. After a series of changes in the cabinet, and many crises, Menabrea resigned in December 1869 on the election of a new chamber in which he did not command a majority. He was made marquis of Valdora in 1875 . His successor in the premiership, Giovanni Lanza, in order to remove him from his influential position as aide-de-camp to the king, sent him to London as ambassador, where he remained until in 1882 he replaced General Cialdini at the Paris Embassy. Ten years later he withdrew from public life, and died at Saint Capin on the 24th of May 1806 .

MENAGE, GILLES ($1613-1692$), French scholar, son of Guillaume Menage, king's advocate at Angers, was born in that city on the 1 sth of August 1613. A tenacious memory and an early enthusiasm for learning carried him speedily through his literary and professional studies, and he practised at the bar at Angers as early as 1632 . In the same year he pleaded several causes before the parlement of Paris, hut illness induced him to abandon the legal profession for the church. He became prior of Montdidier without taking holy orders, and lived for some years in the household of Cardinal de Retz (then coadjutor to the archbishop of Paris), where he had leisure for literary pursuits. Some time after 1648 he quarrelled with his patron and withdrew to a house in the cloister of Notre-Dame, where he gathered round him on Wednesday evenings those literary assemblies which be called "Mercuriales." Chapelain, Pellisson, Conrart, Sarrazin and Du Bos were among the habituts. He was admitted to the Delia Cruscan Academy of Florence, but his caustic sarcasm led to his exclusion from the French Academy. Menage made many enemics and suffered under the satire of Boileau and of Molière. Molic̀re immortalized him as the pedant- Vadius in Les Femmes savantes, a portrait Ménage pretended to ignore. He died in Paris on the 23rd of July 1692.

Of his works the following may be mentioned: Poemata laling, gallica, graeca, et italica (1656); Origini della hingua italiava (1669): Dictionnaire etymologique (1650 and 1670); Observalions sur la langue française (1672-1676), and Anli-Baillei (1690).

MEMAGERIE, a collection of wild animals kept for show or exhibition. The word is particularly applied to travelling exhibitions of wild animals, attached to a circus or other show, "zoological gardens "(g.v.) being the term generally applied to large stationary and permanent exhibitions, arranged on a scientific system. The French menageric (from menage, O. Fr. mesnage, Lat. mansionalicum, mansio, house, cf. "manage") originally meant the administration of a household or farm, with special reference to the live stock.

MENAHEM (Hebrew for "consoler"), a king of Israel. He was the son of Gadi (i.e. perhaps, a man of Gad), and during the disturbances at the death of Jeroboam II. seized the throne and reigned ten years (2 Kings xv, 14-18). The scene of his revolt was Tirzah, the oid seat of the kings of Israc between Jeroboam I. and Omri (which period the present closely resemhles), and it was only after perpetrating nameless cruelties at Tappuah ${ }^{1}$ on the border of Ephraim and Mannasseh that the counter revolt of Shallum, son of Jabesh (perhaps a Gileadite), was suppressed. Towards the end of his reign TiglathPileser IV. marched against north Syria, and among his tributaries mentions Menáhem ${ }^{2}$ together with Rexin of Damascus, and kings of Tyre, Gebal, sic. (c. 738 b.c.). According to the Old Testament account the Assyrian king even advanced against Israel, and only withdrew in consideration of a tribute amounting to about $\left\{_{400,000 \text {. A }}\right.$ thousand talents (i.e. ahout $3,000,000$ shekels) was raised by assessing every wealthy person at 50 shekels. The act was hardly popular, and the internal troubles which he had quelled ${ }^{1}$ Scarcely Tiphsah (2 Kings xv. 16) on the Euphrates.
T The identification of the lsraelite king with Me-ni-hi-(im)-mi of Sa-me-ri-na-ai on the Ass. inscription has been unnecemerily doubted.
broke out again at or shortly after his death. The Gileadites again conspired, and baving slain his son Pekahiah set up Pekah the son of Remaliah in his place. ${ }^{\text {. }}$. This meant a return to an anti-Assyrian policy. (See Ahaz.)
(S. A. C.)
menai straits, a channel of the Irish Sea, separating Anglesea from Carnarvonshire, N. Wales, extending 14 m . from Beaumaris to Abermenai, and varying in breadth from 200 yds. to 2 m . It is famous for the suspension and tubular bridges which cross it. The suspension bridge carries the Holyhead road from Bangor. Designs were prepared by T. Telford. It was begun in 1819; the first chain carried over in April 1825; the last in July of the same year, and the bridge opened to the public the 3 oth of January 1826. The cost was $f_{120,000}$. The length of the chains (from rock-fastenings) is 1715 ft ., and between the piers 590 ft .; the length of the roadway between the piers is 550 ft . and the total roadway length roco ft .; the height of the roadway from the spring tide high-water level is 100 ft .; the breadth of the roadway including two carriagc-ways and a footpath is 30 ft . The sixteen suspending chains are carried 60 ft . through rock. Tbeir sustaining power has been calculated at 2016 tons, while the whole weight of the suspended part of the bridge is only 489 tons. During a gale a slight oscillation is noticeable on the hridge itself and from the shore. The tubular bridge carries the London \& North Western railway. Here the channel is about 1100 ft : wide, and divided in the middle by the Britannia Rock, bare at low water. The tide generally rises 20 ft ., with great velocity. The principal measurements are: each ahutment 176 ft .; from abutment to side tower, 230 ft .; from side tower to central tower, 460 ft .; breadth of each side tower at road-level, 32 ft ; breadth of centre tower, 45 ft .5 in . The total length of the roadway is $184 \mathrm{Ift}, 5 \mathrm{ln}$. The Britannia tower measures at its base 62 by 52 f f.; with a total height of 230 ft . There are 101 ft . between the sea at high tide and the bridge roadway bottom. The limestone used is from Penmon, 4 m . from Beaumaris. Four stone lions couchant guard the approaches to the bridge. The first tube of the tubular bridge was deposited in its place on the gth of November 1849, the last on the 13th of September 1850 . The total cost was $£ 621,865$. The engineer of the tubular bridge was Robert Stephenson, who was assisted by Sir William Fairbairn and Eaton Hodgkinson.
MENAM, or Me Nam (literally the "mother water" or " main river"), a river of Siam, the chief highway of the interior, on whose yearly rise and fall depends the rice crop of Lower Siam. Rising in the Lao or Siamese Shan state of Nan, at a height of 1400 ft . upon the shoulders of the mountain mass of Doi Luang, it is first known as the Nam Ngob, after a viliage of that name. As the Nam Nan, still a mountaln stream, it flows southward through the state so named between high forested ranges, and, not withst anding the frequent rapids along its course, the natives use it in dug-outs for the transport of hill produce. From Utaradit, where it leaves the hills of the kao country, it fows southward through the plain of Lower Siam, and is navigable for flat-bottomed native craft of oonsiderable capacity. It is here known as the Nam, or Menam Pichal. Bclow Pichai the river flows through forest and swamp, the latter providing vast overfow basins for the yearly floods. Thousands of tons of fish are caught and cured here during the fall of the river after the rains. Below Pitsunalok the waters of the Menam Yom, the historic river of Siam, upon which two of its ancient capitals, Sawankalok and Sukotai, were situated, meander by more than one tortuous clayey channel to the main river, and combine to form the Nam Po. At Paknam Po the main western tributary comes in, the shallow Me Ping, the river of Raheng and Chieng Mai, bringing with it the waters of the Me Wang. As the chief duty-ztation for teak, which is floated in large quantities down all the upper branches of the river and as a place of transshipment for boats, Paknam Po is an important and growing town. From this point southwards the river winds by many channels
: The chronology in xy. 2, 23, 32, appears to confuse Pekah and Pekahiah, and the view has been held that they were originally one and the same; ci. Cheyne, Ency. Bib., col. 3643.
through the richest and most densely populated portion of Siam. About Chainat the Tachin branches off, forming the main western hranch of the Menam, and falling into the gulf at a point about ${ }^{24} \mathrm{~m}$. west of the bar of the main or Bangkok river. At Ayuthia, another of the ancient capitals of Siam, the Nam Sak flows in from the northeast, an important stream affording communication with the rich tobacco district of Pecha. bun, and draining the western slopes of the Korat escarpment.

MENANDER (342 -291 B.c.), Greck dramatist, the chief representative of the New comedy, was born at Athens. He was the son of well-to-do parents; his father Diopeithes is identified by some with the Athenian gencral and governor of the Thracian Chersonese known from the speech of Demosthenes De Chersoneso. He doubtess derived his faste for the comic drama from his uncle Alcxis (q.v.). He was the friend and associate, if not the pupil, of Theophrastus, and was on intimate terms with Demetrius of Phalerum. He also enjoyed the patronage of Ptolemy Soter, the son of Lagus, who invited him to his court. But Menander, preferring independence and the company of his mistress Glycera in his villa in the Peiraeus, refused. According to the note of a scholiast on the Ibis of Ovid, he was drowned while bathing; his countrymen built him a tomb on the road leading to Athens, where it was seen by Pausanias. A well-known statue in the Vatican, formerly thought to represent Marius, is now generally supposed to be Menander (although some distinguished archaeologists dispute this), and has been identified with his statue in the theatre at Athens, also mentioned by Pausanias.
Menander was the author of more than a hundred comedies, but only gained the prize eight times. His rival in dramatic art and also in the affections of Glycera was Philemon (q.v.), who appears to have been more popular. Menander, however, believed bimself to be the better dramatist, and, according to Aulus Gellins, used to ask Philemon: " Don't you feel ashamed whenever you gain a victory over me?" According to Caecilius of Calacte (Porphyry in Eusebius, Praep. evan. x. 3, 13) he was guilty of plagiarism, his $\Delta a \sigma \delta \delta a i \mu \omega \nu$ being taken bodily from the Oicuiorin's of Antiphanes. But, although he attained only moderate success during his lifetime, he subsequently became the favourite writer of antiquity. Copies of his plays were known to Surdas and Eustathius (roth and in th centuries), and twenty-three of them, with commentary by Psellus, were said to have been in existence at Constantinople in the 16th century. He is praised by Plutarch (Comparison of Mcnander and Aristophanes) and Quintilian (Instil. x. 1. 69), who accepted the tradition that he was the author of the speeches published under the name of the Attic orator Charisius. A great admirer and imitator of Euripides, he resembles him in his keen observation of practical life, his analysis of the emotions, and his fondness for moral maxims, many of which have become proverbial: " The property of friends is common," "Whom the gods love die young," "Evil communications corrupt good manners" (from the Thats, quoted in I Cor. xv. 33). These maxims (chicfly monostichs) were afterwards collected, and, with additions from other sources, were edited as Mevá δ pov $\gamma \boldsymbol{\gamma} \omega \mu \mu$ ноиbertexot, a kind of moral textbook for the use of schools.

Menander found many Roman imitators. The Eunuchus, Andria, Hcautontimorumenos and Adelphi of Terence (called hy Caesar "dimidiatus Menander ") were avowedly taken from Menander, but some of them appear to be adaptations and combinations of more than one play; thus, in the A ndria were combined Menander's 'Avopla and Ifepvela, in the Euruchus the Eivoix́or and $\mathrm{K} \dot{\lambda} \alpha \underline{\xi}$, while the $A d d \rho h i$ was compiled partly from Menander and partly from Diphilus. The original of Terence's Hecyra (as of the Phormio) is generaily supposed to be, not Menander, but Apollodorus of Carystus. The Bacchides and Stichus of Plautus were probably based upon Menander's Δ Is 'E E anatû and Φ (λ doe $\lambda \phi o c$, but the Poenulus does not seem to be from the Kapx ${ }^{88} 8 \nu$ oos, nor the Mostellaria from the \$a' $\sigma \mu a$, in spite of the similarity of titles. Caecilius Statius, Luscius Lavinius, Turpilius and Atilius also imitated Menander. He was further credited with the authorsbip of some epigrams of doubtful
authenticity；the letters addressed to Ptolemy Soter and the discourses in prose on various subjects mentioned by Suidas are probably spurious．

Ill the end of the 1gth century，all that was known of Menander were the fragments collected by A．Meineke（1855）／and T．Kock， Comicorum alticorum fragmenta，iii．（1888）．They consist of some 1650 verses or parts．of verses，in addition to a eonsiderable number of words quoted expressly as from Meriander．by the old lexico－ graphers．From 1897 to 1907 papyri were discovered in different parts of Egypt，containing fragments of considerable length， amounting to some 1400 lincs．In 1897，about eighty lines of the「eapybs；in 1809，fifty lines of the Wepuetpoping；in 1903，one hundred lines（half in a very mutilated condition）from the Kb入af； in 1906，two hundred lines lrom the middle of the Mepuetponem， the part previously discovered containing the dinouement；five hundred lines from the＇Exitpixores，generally well preserved； sixty－thrce lines（the prologue，list of characters，and the first scene），（rom the－Hpor；three hundred and forty lines from the Eapla（the identification of the two last plays is not considered absolutely certain）；and twenty lines from an unknown comedy． Subsequently，part of a third copy of the Hapaeponim was found in Egypt，some one hundred and forty lines，half of which were already known，while the remainder were new（Abhandlungen der koniel．－sdchsischen Gesellschaft der Wissenschaften，Leipzig）， 1908.

It is doubtful whether these fragments，which are of sufficient length to afford a basis for the consideration of the merits of Menander as a writer of comedies．justify the great reputarion enjoyed by him in ancient times．With the exception of a scene in the Exirpinoures，which would appeal to the litigious Athenians， they contain little that is witty or humorous；there is litle variety in the characters，the situations are conventional，and the plots，not of a highly edifying character，are lacking in originality． Menander＇s chief excellences seem to be facility of hanguage，accurate portrayal of manners，and naturalness of the sentiments which he puts into the mouth of his dramatis personac．It is remarkable that the maxims，which form the chief part of the earlier collections of fragments，are few in the later．
On Menander generally see monographs by C．Benolt（1854）and G．Guizot（1855）；J．Geffcken，Studia zu Menander（ 1898 ）：H．Labke， Menander und seine Kunst（1892）；J．Denis，La Combdie grecque （1886），vol．II．；H．Weil，Eludes sup l＇antiquilt grecque（1900）．Editions of the fragments：「ewpros，by J．Nicole，with translation and notes （1898）and by B．P．Grenfell and A．S．Hunt，with revised text and
 by G．Lefebvre and M．Croiset，with introduction，notes and translation（Cairo，1907）；J．van Leeuwen，with Latin notes（2nd ed．，1908）：L．Bodin and P．Mazon，Extraits de Métrandre （Samic and Epitrepontes，1908）：E．Croiset，L＇Arbilrage，critical ed．and translation（igos）；C．Robert．Der Heue Menander（text reconstructed，1908）；Wilamowitz－Mbliendorff，＂Der Menander von Kairo＂in Newe Jahrbuichar fur das klassische Altertikm（1908）， pp．34－62；Gierman trans．by C．Robert，Ssenen aus Menander （1908）；English by Unus Multorum（1909）．See also Wilamowitz－ Mollendorfi，＂Der Landmann des Menandros＂in Neue Jahrbicher （is99），p． 513 ；C．Dziatzko，＂Der Inhalt des Georgos von Menander，＂ in Rhein．${ }^{2}$ us liv． 497 ，IV． 104 ；F．Leo，＂Der Neue Menander＂＂ in Hermes，xliii．120；E．Capps，The Plot of Menander＇s Epilere－ portes＂in Amer．Journ．of Philology（1908），p． 410 ；A．Kretschmar， potics in Amer．©urn．of Philology（1908），p．410；A．Kretschmar， Ouarterly Reviev：April，1gos）；The Times Literary Supplement （Sept．20，1907）：Apheraeum（Oct．23，1897；Aug．1， 1908 ；Oct． 24 ， 1008）；and list of articles in periodicals in Van Leeuwen＇s edition．
（J．H．F．）
MENANDER（Milinoa），a Graeco－Indian dynast．When the Gracco－Indian king Demetrius had been beaten by Eucratides of Bactria，about 160 n．c．，and the kingdom of Eucratides （g．v．）dissolved after his assassination（c． 150 b．c．），a Greck dynasty maintained itself in the Kabul Valley and the Punjab． The only two kings of this dynasty mentioned by classical authors are Apollodotus and Menander，who conquered a great part of India．Trogus Pompeius described in his forty－first book（see the prologus）＂the Indian listory of these kings， Apollodotus and Menapder，＂and Strabo，xi． 516 ，mentions from Apollodotus of Artemita，the historian of the Parthians，that Menander＂conquered more tribes than Alexander，as be crossed the Hypanis to the cast and advanced to the Isamus；he and other kings（especially Demetrius）occupied also Patalene （the district of Patala near Hyderabad on the head of the delta of the Indus）and the coast which is called the district of Saraostes （i．e．Syrastene，in mod．Gujarat，Brahman Saurashtra）and the kingdom of Sigerdis（not otherwise known）；and they extended their dominion to the Seres（ie．the Chincse）and Phryni（？）．＂ The last statement is an exaggeration，probably based upon the fact that from the mouth of the Indus trule went as far as China．

That the old coins of Apollodotus and Menander，with Greek legends，were still in currency in Barygaza（mod．Broach），the great port of Gujarat，about a．D．7o we are told by the Periplas maris Erythrati，48．We possess many of these coins，which follow the Indian standard and are artistically degenerate as compared with the earlier Graeco－Bactrian and Graeco－Indian coins，with bilingual legends（Greek and Kharoshti，see Bactran）． Apollodotus，who must have been the earlier of the two kings， bears the titles Soter，Philopator，and＂Great King＂；Menander， who must have reigned a long time，as his portrait is young on some coins and old on others，calis himself Soter and＂Just＂ （ δ ixalos）．Their ceigns may be placed about $140-80$ b．c． Menander appears in Indian traditions as Milinda；he is praised by the Buddhists，whose religion he is said to have adopted，and who in the Milindapanka or Milinda Paxiho（sce below），＂the questions of Milinda＂（Rhys Davids，Sacred Books of the East， xxxv．，xxxvi．）relate his discourses with the wise Nagasena． According to the Indians，the Greeks conquered Ayodhya and Pataliputra（Palimbothra，mod．Patna）；so the conjecture of Cunningham that the river Isamus of Strabo is the Son，the great southern fributary of the Ganges（near Patna），may be true． The Buddhists praise the power and military force，the energy and wisdom of＂Milinda＂；and a Greck tradition preserved by Plutarch（Praec．reip．ger．28，6）relates that＂when Menander， one of the Bactrian kings，died on a campaign after a mild rule， all the subject towns disputed about the bonour of his burial， till at last his ashes were divided between them in equal parts．＂ （The Buddhist tradition relates a similar story of the relics of Buddha．）Besides Apollodotus and Menander，we know from the coins a great many other Greek kings of western India， among whom two with the name of Straton are most con－ spicuous．The last of them，with degenerate coins，seems to have been Hermaeus Soter．These Greek dynasts may have maintained themselves in some part of India till about 40 a．c． But at this time the west，Kabul and the Punjab were already in the hands of a barbarous dynasty，most of whom have Iranian （Parthian）names，and who seem therefore to have been of Arsacid origin（cf．Vincent A．Smith，＂The Indo－Parthian Dynasties from about 120 b．c．to A．D． 100 ，＂in Zeitschrifl der dculschen morgenländischen Gesellschaft，1906，1x． 69 sq9．）． Among them Manes，two kings named Azes，Vonones and espe－ cially Gondaphares or Hyndophares are the most conspicuous． The latter，whose date is fixed by an inscription from the Kahul Valley dated from the year 103 of the Samvat era（ $=$ a．D．46）， is famous by the legend of St．Thomas，where he occurs as king of India under the name of Gundaphar．Soon afterwards the Mongolian Scyths（called Saka hy the Indians），who had con－ quered Bactria in 139 日．c．，invaded India and founded the great Indo－Scythian kingdom of the Kushan dynasty．（See Bactaia； and Persia：Ancienl History．）
（E．M．）
－T The Milinda Pusibu preserved in Pali，in Ceylon，Burma and Si ．as，but was probably composed originally in the extreme north－ \mathbf{w}_{r} st of India，and in a dialect spoken in that region．Neither date nor author is known；but the approximate date must have be about the 2nd century of our rra．The work is entinked
 ki g is represented as jropounding to a Budd hist Bhikshu named N asena a number of problems，puzzles or questions in religion and philosophy：and as receiving，in each case，a convincing reply． It is a matter of very little importanoe whether a tradition of some such conversations having really taken place had survived to the time when the author wrote his book．In any case he composed be h problems and answers；and his work is an historical romance． writern to discuss certain points in the faith，and to invest the di－ussion with the interest arising from the story in which it is set．This plan is earried out with great skill．An intraduction， giving the past and present lives of Milinda and Nagasena，is admir－ atly athapted to fill the reader with the ldea of the great ahility and distinction of the wo dispatants．The quegtions chosen are just thone which woull appeal most strongly to the intellectual taste of the liolia of that age．And the style of the book is very ateratiin． space，and is treated in a popular way．But the earnestness of the author is not concealed；and he occasionally rises into a very real cloquence．The work is several times quoted as authority by Buddhaghosa，who wrote about A．D．450，and is is che only work． not in the canon，which receives this honour．

The Milinda has been erfited in Pali by V. Trenckner, and traneleted into English by the present writer, with introductions in which the historical and critical points made in this article are discussed in detail. There is space here to mention only one further fact. M. Sylvain Lévy, working in collaboration with M. Specht. has thown that there are two, if not three, Chincse works, written between the 5th and 7th centurics, on the Questions of Milinda. They purport to be translations of Indian works. They are not, however, translations of the Pali text. They give, with alterations and additions, the substance of the earlier part of the Pali work; and are probably derived from a recension that may be older than the Pali.
Authoryties.-V. Trenckner, Milinda-pafho (London, 1880); Rhys Davids, Quastions of King Milinda (2 vols., Oxford, $1800-$ (A94); R. Garbe Beitrdse zur indischen Kuliwrgesckichte (Berlin, 1003. ch. 3. Der Mifinda-pafika); Milixda Praskpaya, in Sinhalesc, (Colombo, 1877); R. Morris, in the A cademy (Jan. 11, 1881): Sylvain Levy, Proceedings of the oth Internalional Congress of Orientalists (London, 1892), 1. 518-529, and Journal of the Royal A siatic Socicty (1891), p. 476.
(T. W. R.D.)

ERMANDER, of Laodicea on the Lycus, Greek rhetorician and commentator. Two incomplete treatises on epideictic (or show) speeches have been preserved under his name, but it is generally considered that they cannot be by the same author. Bursian attributes the first to Menander, whom he placed in the 4th century, and the second to an anonymous rhetorician of Alexandria Troas, who possibly lived in the time of Diocletian. Others, from the superscription of the Paris MS., assign the first to Genethlius of Petrae in Palestinc. In view of the general tradition of antiquity, that both ireatises were the work of Menander, it is possible that the author of the second was not identical with the Menander mentioned by Suldas, since the name is of frequent occurrence in later Greck literature. The first treatise, entitled $\Delta u a l p e a t s ~ \tau \hat{\omega} \nu$ emtotuktux $\hat{\omega}$, discusses the different kinds of epideictic speeches; the second, Hepl kxiouktiкйy, has special titles for each chapter.
Text in L. Spengel's Rhelores graeci, iii. 329-446, and in C. Bursian's" Der Rhetor Menandros und seine Schriften" in ABkandl. der bayer. Akad. der Wissenschaften, xvi. (1882); see also W. Nitsche. Der Rhetor M. und dis Scholien zu Demosthenes; J. E. Sandys, Hist. of Classical Scholarship (1906), i. 338; W. Christ, Gesch. der griechischen Lilleratur (1898), 550 .

MENANDER PROTECTOR (ITporikTw, i.e. one of the imperial bodyguards), Byzantine historian, was born in Constantinople in the middle of the 6 th century a.D. The little that is known of his life is contained in the account of himself quoted by Sufdas. He at first took up the study of law, but abandoned it for a life of pleasure. When his fortunes were low, the patronage accorded to literature by the emperor Maurice (582) encouraged him to try writing history. He took as his model Agathias ($q . v$.), who like him had been a jurist, and his history begins at the point where Agathins leaves off. It embraces the period from the arrival of the Cotriguri Hunni in Thrace during the reign of Juatinian in 558 down to the deat h of the emperor Tiberius in 582. Considerable fragments of the work are preserved in the excerpts of Constantine Porphyrogenitus and in Suldas. Although the style is sometimes bombastic, he is considered trustworthy and is one of the most valuabie authorities for the history of the 6th century, especially on geographical and ethnographical matters. He was an eye-witness of some of the events be describes. Like Agathias, he wrote epigrams, one of which, on a Persian magus, who became a convert to Christianity and died the death of a martyr, is preserved in the Greek anthology (Anth. Pal. i. 101).
The fragmente will be found in C. W. Muller, Fros. hist. graec. iv. 200; J. P. Migne. Patrologia graeca, cxiii., and L. Dindorf, Misiorici eroeri minores, ii.; sce also C. Krumbachen Geschichte der byzantimischen Litteralur (1897).
menangkabos, the most civilized of all the true Malays of Sumatra, inhabiting the mountains above Padang. Their district is regarded as the cradle of the Malay race, and thence began, about 1160 , those migrations which ended in the true Malays becoming the dominant race throughout the peninsula and the Malay Archipelago. The Menangkabos are said to be the original conquerors of the island, and the real form of the word is Menong-Karbaw ("victory of the buffalo "), in reference to a local legend of a fight between a Sumatran and Javanese
buffalo, ending in victory for the former. Though converts to Islam, the ancient confederate village communcs and the matriarchal system still exist. The people are divided into clans, the chiefs together forming the district council. Early in the 19th century a religious sect was founded among the Manangkabos, known as "Padris" from its zealous proselytism, or Orang puati (white men) from the converts being dressed in white. The tendency was towards asceticism, the chief tenet being the prohibition of opium, the use of which was made a capital offence. The sect brought a large portion of the interior of Sumatra under its rule, but the neighbouring tribes asked the Dutch to protect them, and this led to the Netheriands government acquiring the Menangkabo territory.

MENANT, JOACHIM (18so-1899), French magistrate and orientalist, was born at Cherbourg on the 16th of April 1820. He was educated for the law, and became vice-president of the civil tribunal of Rouen in 1878, and a member of the cour d'apped three ycars later. But he became best known by his studies on the cumeiform inscriptions. Among his works on the subject of Assyriology are: Recucil d'alphabets des ecritures cuntiformes (1860); Exposé des thiments de la grammaire assyrienne (1868); Le Syllabaire assyrien (2 vols., 1869-1873); Les Langwes perdues de la Perse el de l'Assyric (2 vols., 1885-1886); Las Pierres graptes de la H aute-A sic (a vols., 1883^{-1} 1886). He also collnborated with Julius Oppert. He was admitted to the Academy of Inscriptions in 1887, and died in Paris on the soth of August 1899.
His daughter Dsipmins (b. i850) received a prize from the Academy for her Las Parsis, histoire des communautes soroastriennes de l'Inde (1898), and was sent in 1900-1901 to British India on a scientific mission, of which she published a report in 1903.

MGNARD, LOUIS NICOLAS (1822-1901). French man of letters, was born in Paris on the 19th of October 1822. His versatile genius occupied itself in turn with chemistry, poetry, painting and history. In 1843 he published, under the pscudonym of L . de Senneville, a translation of Promelhes deliore. Turning to chemistry, be discovered collodion in 1846 , but ita value was not recognized at the time; and its application later to surgery and photography brought him no advantage. Louis Ménard was a socialist, always in advance of the reform movements of his time. After 1848 he was condemned to imprisonment for his Prologue d'wne rtoolution. He escaped to London, relurning to Paris only in 1852 . Until 1860 he occupied himself with classical studies, the fruits of which are to be seen in his Poimes (1855), Polythtisme hellenique (1863), and two academic theses, De sacra poasi graecorum and La Marale avant les philosophes (1860). The next ten years Ménard spent chiefly among the Barbizon artists, and he exhibited several pictures. He was in London at the time of the Commune, and defended it with his pen. In 1887 he became professor at the Ecole des Arts décoratifs, and in 1895 professor of universal history at the Hoiel de Ville in Paris. His Reocries d'un palen mystique (1876). which contained sonnets, philosophical dialogues and some stories, was followed in 1896 by Polmes el ricoeries d'un paien mystique. Ménard died in Paris on the 12th of Fehruary 1901.

His works include: Fisfoire des axciens peuples de l'Orient (1882); Histoire des Israthites d'oprts V extgese bibligue (1883). and Histoira des Crecs (1884-1886). There is an appreciation of Mémard in the opening chapter of Maurice Barres's Voyage de Spark.

MENASHA (an Indian word meaning " thorn " or " island "), a city of Winnebago county, Wisconsin, U.S.A., 88 m . N. of Milwankee, and 14 m . N. of Oshkosh, attractively situated at the N. extremity of Lake Winnebago at its outict into the Fox river, Pop. (1890), 4581; (1900), 5589 (1535 foreign-born); (rgo5, state census), 5960 ; (1910), 6081. Menasha is served by the Minneapolis, St Paul \& Sault Ste Maric, the Chicago, Milwaukee \& St Paul, and the Chicago \& North-Western railways, and by an inter-urban electric raitway system. Several bridges across the Fox River connect Menasha with Neenal. with which it really forms one community industrially. Doty Island. at the mouth of the river and divided about equally between the cities, is a pictureaque end popular sumaner remort.

Menasha had good water power and among its manufactures are paper and sulphite pulp, lumber, wooden-ware and cooperage products, woollen and knit goods, leather, boats and bricks. The first white man to visit the site of Menasha was probably Jean Nicolet, who seems to have come in the winter of 1634-r635 and to have found here villages of Fox and Winnebago Indians. Subsequently there were French and English trading posts here. The city was settled permanently in 1848, and was chartered in 1874.
MEBASSEH BEN ISRAEL ($c .1604-1657$), Jewish leader, was born ia Lisbon about 1604, and was brought up in Amsterdam. His family had suffered under the Inquisition, but found an asylum first in La Rochelle and later in Holland. Here Menasseh rose to eminence not only as a rabbi and an author, hut also as a printer. He established the first Hebrew press in Holland. One of his earliest works El Conciliador won immediate reputation. It was an attempt at reconciliation between apparent discrepancies in various parts of the Old Testament. Among his correspondents were Vossius, Grotius and Huet. In 1638 be decided to settle in Brazil, as bestill found it difficult to provide in Amsterdam for his wife and family, but this step was rendered unnecessary by his appointment to direct a college founded by the Pereiras.
In 1644 Menasseh met Antonio de Montetinos, who persuaded him that the North-American Indians were the descendants of the lost ten tribes of Israel. This supposed discovery gave a new impulse to Menasseh's Messianic hopes. But he was convinced that the Messianic age needed as its certain precursor the settlement of Jews in all parts of the known world. Filled with this iden, he turned his attention to England, whence the Jews had been expelled since 12go. He found much Christian support in England. During the Commonwealth the question of the readmission of the Jews was often mooted under the growing desire for religious liberty. Besides this, Messianic and other mystic hopes were current in England. In 1650 appeared an English version of the Hope of Israel, a tract which deeply impressed public opinion. Cromwell had been moved to sympathy with the Jewish cause partly by his tolerant leanings, but chiefly because he foresaw the importance for English commerce of the presence of the Jewish merchant princes, some of whom had already found their way to London. At this juncture Jews received full rights in the coiony of Surinam, which had heen English since 1650. In 1655 Menasseh arrived in London. It was during his absence that the Amsterdam Rabbis excommunicated Spinoza, a catastrophe which would probably have heen avoided had Menasseh-Spinoza's teacher-been on the spot. One of his first acts on reaching London was the issue of his Humble Addresses to the Lord Protector, but its effect was weakened by.the issue of Prynne's able but unfair Shorl Demurrer. Cromwell summoned the Whitehall Conference in December of the same year. To this conference were summoned some of the most notable statesmen, lawyers and theologians of the day. The chief practical result was the deciaration of Judges Glynne and Stecle that "there was no law which forbade the Jews' return to England." Though, thercfore, nothing was done to regularize the position of the Jews, the door was opened to their gradual return. Hence John Evelyn was able to enter in his Diary under the date Dec. 14, 1655, "Now were the Jews admitted." But the altack on the Jews by Prynne and others could not go unanswered. Menasseh replied in the finest of his works, Vindiciae judacorwas (1656). "The best tribute to its value is afforded by the fact that it has since beenfrequently reprinted in all parts of Europe when the calumnies it denounced have been revived " (L. Wolf). Among those who used in this way Menasseh's Vindicios was Moses Mendelssohn (q.v.). Soon after Menasseh left London Cromwell granted him a pension, hut he died before he could enjoy it. Death overtook him at Middleburg, as he was conveying the body of his gon Samuel home for burial.
Menasseh ben Isracl was the author of many works, but his English tracts remsin the only ones of importance. His De ecruine silas was Lranslated into Eaglinh by Pococko. and his

Conciliator by G. H. Lindo. Among his other works were a ritual compendium Tesoro dos dinim, and a treatise in Hebrew on immortality (Niskmath kayim). He was a friead of Rembrandt, who painted his portrait and engraved four etchings to illustrate his Piedra ghoriosa. . These are preserved in the British Museum.
See Graetr, History of the Jews, yol. v. ch. ii; Lucien Wolf, Menassek bex Israel's Sissiom to Olives Cromuell, with a reprint of the English pamphlets, (London, 1901); H. Adler, :' A Homage to Menasseh ben larael," in Transactions of the Jowish Hislorical Society of England, i. 25-54
(1. A.)

IENCIDS, the latinized form of Mang-taze, "Mr Mxung," or "Mang the philosopher," a Chinese moral teacher whose name stands second only to that of Confucius. His statue or spirittablet (as the case may be) has occupied, in the temples of the sage, since our inth century, a place among "the four assessors," and since A.D. 1530 his title has been "the philosopher Mang, sage of the second degree."
The Maxgs or Mang-suns had been in the time of Confucius one of the three great clans of La (all descended from the marquis Hwan, 7 I1-694 B.c.), which he had endeavoured to curb. Their power had subsequently been broken, and the branch to which Mencius belonged had settled in Tsau, a small adjacent principality, the name of which remains in Tsau hsien, 2 district of Yenchau Shan-tung. A magnificent temple to Mencius is the chief attraction of the district city. The large marble statue of Mencius in the courtyard shows much artistic skill, and gives the impression of a man strong in body and mind, thoughtful and fearless. His lineal representative lives in the city, and thousands of Mangs are to be found in the neighbourhood.

Mencius, who died in the year 289° b.c., had lived to a great age-some say to his eighty-fourth year, placing his birth in 372 日.C., and others to his ninety-seventh, placing it in 385. All that we are told of his father is that he died in the third year of the child, who was thus left to the care of his mother. Her virtues and dealings with her son were celebrated by a great writer in the ist century before our cra, and for two thousand years she has been the model mother of China.

Mencius is more than forty years old when he comes hefore us as a public character. He must have spent much time in study, investigating questions as to the fundamental principles of morals and society, and brooding over the condition of the country. The history, the poetry, the institutions and the great men of the past had received his attention. He intimates that he had been in communication with men who had been disciples of Confucius. That sage had become to him the chief of mortal men, the object of his untiring admiration; and in the doctrines which he had taught Mencius recognized the truth for want of an appreciation of which the bonds of order all round him were being relaxed, and the kingdom hastening to anarchy.

When he first comes forth from Tstu, he is accompanied by several eminent disciples. He had probably imitated Confucius in becoming the master of a school, and encouraging the resort to it of inquiring minds that he might resolve their doubts and unfold to them the right methods of government. One of his sayings is that it would be a greater delight to the superiorman to get the youth of brightest promise around him and to teach and train them than to enjoy the revenues of the kingdom. His intercourse with his followers was not so intimate as that of Confucius had been with the memhers of his selected circle; and, while he maintained his dignity among them, he was not able to secure from them the same homage and reverent admiration.'

More than a century had elapsed since the death of Confucius, and during that period the feudal kingdom of Cháu had been showing more and more of the signs of dissolution, and portentous errors that threatened to upset all social order were widely disseminated. The sentiment of loyalty to the dynasty had disappeared. Severral of the marquesses and other feudal princes of earlier times had usurped the title of king. The smaller fiefs had been abeorbed by the larger ones, or reduced to helpless dependence on them. Tsin, after greatly extending its territory.
bad broken up Into three powerful kingdoma, each about as large as England. Mencius found the nation nominally one, and with the traditions of two thousand years affrming its cssential unity, but actually divided into seven monarchies, each seeking to subdue the others under itself. The consequences were constant warfare and chronic misery.
In Confucius's time we meet with recluses who had withdrawn is diagust from the world and its turmoil; but these had now siven place to a class of men who came forth from their retirements provided with arts of war or schemes of policy which they recommended to the contending chiefs, ever reedy to change their allegiance as they were moved by whim or interest. Mencius was once asked about two of them, "Are they not really great men? Let them be angry, and all the princes are afraid. Let them live quietly, and the flames of trouhle are everywhere extinguished." He looked on them as little men, and delighted to proclaim his idea of the great man in such language as the following:-
" To dwell in love, the wide house of the world, to atand in propriety, the correct seat of the world, and to walk in righteousseps, the great path of the world; when be obtains bis desire for office, to practise his principles for the good of the people, and when that desire is disappointed, to practise them alone; to be above the power of riches and honours to make dissipated, of poverty and mean condition to make swerve from the rigbt, and of power and force to make bend-these characteristics conatitute the great man."
Most vivid are the pictures which Mencius gives of the condition of the people in consequence of the wars of the states. "The royal ordinances were violated; the multitudes were oppressed; the supplies of food and drink flowed away like water." It is not wonderful that, when the foundetions of sovernment were thus overthrown, speculations ahould have atisen that threatened to overthrow what be considered to be the foundations of truth and all social order. "A shrill-tongued berberian from the south," as Mencius called him, prochaimed the dissolution of ranks, and adrocated a return to primitive simpifity. He and his followers maintained that learning was quackery, and statesmanship craft and oppression, that prince and peasant should be on the same level, and every man do everything for himself. Another, called Yang-chat, denied the difference between virtue and vice, glory and shame. It was the same with all at death. The conclusion therefore was: "Let us eat and drink; let us gratify the ears asd eyes, get servants and maidens, beauty, music, wine; when the day is insufficient, carry it on through the night. Each one for himself." Against a third heresiarch, of a very different stamp, Mencius felt no less indignation. This was Mo T, who found the source of all the evils of the time and of all time in the want of mutual love. He taught, therefore, that men should love others as themselves; princes, the states of other princes as much as their own; children, the parents of others as much as thelr own. Mo, in his gropings, had got bold of a noble principle, but he did not apprehend it distinctly nor set it forth with discrimination. To our philosopher the doctrine appeased contrary to the Confucian orthodoxy about the five refations of society; and be attacked it without mercy and with an equal confusion of thought. "Yang's princlple," he said, "is 'each one for himself,' which does not acknowledge the claims of the sovercign. Mo's is 'to love all equally, which does not acknowledge the peculiar affection due to a father. But to acknowledge neither king nor father is to be in the state of a beast. The way of bencvolence and righteousness is stopped up."

On this ocean of lawlessness, wickedness, heresies and misery Mencius looked out from the quiet of his achool, and his spirit was stirred to attempt the rescue of the people from misrule and error. "If Heaven," he said, "wishes that the kingdom ahould enjoy tranquillity and good order, who is there besides me to bring it about?" He formed his plan, and proceeded to put it in execution. He would go about among the different kings till he should find one among them who would follow his counsels and commit to him the entire administration of his government. That obtained, he did not doubt that in a
few years there would be a kingdom so atrong and so good that all rulers would acknowledge its superiority, and the people hasten from all quarters to crown its sovereign as monarch of the whole of China. This plan was much the same as that of Confucius had been; but, with the bolder character that belonged to him, Mencius took in one respect a position from which "the master" would have shrunk. The former was always loyal to Chatu, and thought he could asave the country by a reformation; the latter saw the day of Chau was past, and the time was come for a revolution. Mencius's view wps the more correct, but be was not wiser than the sage in forecasting for the future. They could think only of a reformed dynasty or of a changed dynast y, ruling according to the model principles of a feudal constitution, which they described in glowing language. They desired a repetition of the golden age is the remote past; but soon after Mencius disappeared from the stage of Ufe there came the sovereign of Ch'in, and solved the question with fire and sword, introducing the despotic empire which has since prevailed.
The question may be asked, "How, in the execution of his plan, was Mencius, a scholar, without wealth or station, to find admission to the courts of lawless and unprincipled kings, and acquire the influence over them which he expected?" The answer can only be found by bearing in mind the position accorded from the carliest times in China to men of virtue and ability. The same written character denotes both scholars and officers. They are at the top of the social scale-the first of the four classes into which the population has always been divided. This appreciation of learning or culture has exercised a powerful influence over the government under both conditions of its existence; and out of it grew the system of making literary merit the passport to official employment. The ancient doctrine was that the scholar's privilege was from Heaven as much as the sovereign's right; the modern system is a device of the despotic rule to put itself in Heaven's place, and have the making of the scholar in its own hands. The feeling and conviction out of which the system grew prevailed in the time of Mencius. The dynastics that had successively ruled over the kingdom had owed their establishment not more to the military genius of their founders than to the wisdom and organizing ability of the learned men, the statesmen, who were their bosom friends and trusted counsellors. Why should not he become to one of the princes of his day what I Yin had been to Thang, and Thâi-kung Wang to King Wan, and the duke of Chatu to Wia and Ch'ang? But, though Mencius might be the equal of any of those worthies, he knew of no prince like Thang and the others, of noble aim and soul, who would adopt his leasons. In his eagerness be overlooked this condition of success for his enterprisc. He might meet with such a ruler as he looked for, or he might reform a bad one, and make him the coadjutor that he required. On the strength of these peradventures, and attended by several of his disciples, Mencius went for more than twenty years from one court to another, always baffled, and always ready to try again. He was received with great respect by kings and princes. He would not enter into the service of any of them, but he occasionally accepted honorary offices of distinction; and he did not scruple to roceive large gifts which enabled him to live and move about as a man of wealth. In delivering his message he was as fearless and outspoken as John Knox. He lectured great men, and ridiculed them. He unfolded the ways of the old sage kings, and pointed out the path to universal sway; but it was all in vain. He could not stir any one to honourable action. He confronted heresy with atrong arguments and exposed it with withering sarcasm; but he could work no deliverance in the earth. The last court at which we find him was that of La, probably in 310 b.c. The marquis of that state had given office to Yo-cbang, one of Mencius's disciples, and he hoped that this might be the means of a favourable hearing for himself. So it had nearly happened. On the suggestion of Yo-chang the marquis had ordered his carriage to be yoked, and was about to step into it and proceed to bring Mencius to his palace, when an unworthy
favourite stepped in and diverted him from his purpose. The disciple told his master what had occurred, reproaching the favourite for his ill-timed intervention; Mencius, however, said to him," A man's advancement or the arresting of it may seem to be effected hy others, but is really beyond their power. My not finding in the marquis of $L \mathbb{L}$ a ruler who would confide in me and put my lessons in practice is from Heaven."

Mencius accepted this incident as a final intimation to him of the will of Heaven. He had striven long against adverse circumstances, but now be bowed in submission. He withdrew from courts and the public arena. According to tradition he passed the last twenty years of his life in the society of his disciples, discoursing to them, and giving the finishing touches to the record of his conversations and opinions, which were afterwards edited by them, and constitute his works. Mencius was not so oracular, nor so self.contained, as Confucius; but his teachings have a vivacitv and sparkle all their own.

Mencius held with Confucius-and it was a doctrine which had descended to them both from the remotest antiquity- that royal government is an institution of God. An ancient sovereign had said that "Heaven, having produced the people, appointed for them rulcrs, and appointed for them teachers, who should be assisting to God.". Our philosopher, adopting this doctrine, was led by the manifest incompetency of all the rulers of his time to ask how it could be known oa what individual the appointment of Heaven had fallen. or ought to fall, and he concluded that this could be ascertained only from his personal character and his conduct of affairs. The people must find out the will of Heaven as to who should be their ruler for thembelves. There was another old say ying which delighted Mencius-". Heaven sees as the people see; Heaven heare as the people hear.". He taught accordingly that, while government is from God, the governors are from the people;-vox populi pox Dei. No claim then of a "divine right should be allowed to a sovereign if he were not exercising a rule for the good of the people. 'The people are the most important element in a nation; the altars to the spirits of the land and grain are the second; the sovereign is the lightest." Mencius was not afraid to follow this utterance to lis consequences. The monarch whose rule is injurious to the people, and who is deaf to remongrance and counsel, should be dethroned. In such a case " killing is no murder." But who is to remove the sovereign that thus ought to be removed? Mencius had three answers to this difficult queation. First, he would have the members of the royai house perform the task. Let them disown their unworthy head, and appoint some better individual of their number in his room. If they could not or would not do this, he thought, mecondly, that any high miniseter, though not allied to the royal house, might take summary measures with the sovereign, assuming that he acted purely with a view to the pubtic weal. His third and grand device was what he called "the minister of Heaven.". When the sovereiga had become a pest instead of a blessing, he believed that Heaven would raise up some one for the help of the people, some one who should so conduct himself in his original subordinate position as to draw all eyes and hearts to himself. Let him then raise the standard not of rebellion but of righteoumesst, and he could not help attaining to the highest dignity. Mencius hoped to find one among the rulera of his day who might be made iato such a minister, and he counscllod one and another to adopt measures with that object. It was in fact counselling rebellion, but he held that the house of Chau had forfeited its tite to the throne.
A good government according to his ideal must be animated by a spirit of benevolence, and ever pursue a policy of rightcousness. Its aims must be, first, to make the peopic well off, and next, to educate them. No one was fit to ocecupy the throne who could be happy while any of the people were miserable, who delighted in war, who could indulge in palaces and parks which the pooreat did not in 2 measure share with him. Game laws received bis emphatic condemnation. Taxes should be light, and all the regula. tions for agriculture and commerte of a character to promote and encourage them. The rulcs which be suggested to seccure those objects had reference to the existing condition of his country, but they are susceptible of wide applicatioa. They carry in them schemes of drainage and irrigation for land, and of frece trade for commerce. But it must be, he contended, that a aufficient and certain livelihood be secured for ail the people. Without this their minds would be unsectled, and they would proceed to every form of wild licence. They would break the laws, and the ruler would punish them-punish those whom his neglect of his own duties had plunged into poverty, of which crime wat the consequence. He would be, not their ruler, but their "trapper."
Supposing the peopie to be made well off, Mencius taught that education abould be provided for them all. He gave the marquis of Thang a programme of four kinds of educational inotitutions which he wished him to establish in his state-in the villages and the town, for the puor as well as the rich, oo that pope might be
ignorant of his duties in the various relations of society. Bue aiter all, unless the people could get foorl and clothing by their labour, he had not much faich in the power of education to make thern virtuous. Give him, however, a government fuldiling the conditions that he laid dowa, and he was confident there would Woun be a people, all contented, all virtuous. And he saw nothing 35 prevent the realization of such a a overnment. Any ruler might become, is he would " "the minister of Hearen," who was his ideal. and the influence of his ciample and administration would be all: powerful. The people would flock to bim as their parent, and help him to do justice on the foes of truth and happinem. Pulse and grain would be abunclene as water and fire, and the multitudes. well clothed, and well priwsipted, would sit under the shade of their mulberry trees, and hail (iveruler "king by the grace of Heaven."
Opinions were much divided amons his contemporariea on the subject of human naturc. Some held that the nature of man is neither good ror bad; he ma be made to do good and also to do evil. Others held that the rature of some men is good, and that of others bad; thus it is that the best of men sometimes heve bad sons, and the worst of men good sons. It was also maintainec that the nature of man is evil, and whatever good appears in it is the result of cultivation. In opposition to all these views Menclus contended that the mature of man is good. "Water," he said, " will thow indificerntly to the rast or west ; but will it flow indifferently up or down? The tendency of man's nature to goodness is like the tendency of water to fow downwarda. By striking water you may make it leap over your forehead; end by damming and leading it you may make it go up a hill. But such movements are not according to the nature of water; it is the force applicd which causes them. When men do what if not good, their nature has been dealt with in this way." With various, but equally felicitous, illustration he replied to his difterent opponents. Sometimes he may seem to express himself too strongly. but an attentive study of his writings shows that he is apeaking of our nature in its ideal, and not as it actually is-as we may ascertain, by an analysis of it, that it was intended to bc, and not as it has been niade to become.
Mencius insists on the constituents of human nature, dwelling especially on the principles of benevolence, right teoumness, propriety and wisdom or knowledge, the last including the judgment of conscience. "Thesc," said he, "are not infused into us from without. Mce have thesc furr principles just as they have their four limbs." But man lise also instincts and appetites which Beek their own gratifcartion without relerence to righteousnees or any other conerol. Hiw alet this difficulty by contending that human rature is a constio toon, in which the higher principles are designed to rulc the lowe- "Some constituents of it are noble and some ignoble, some ceat and some small. The great must mot be injured for the sm. ld sor the noble for the ignoble."
One of his most vigoras vindications of his doctrine in the following: "For the mouth to desire flavours, the eye colours, the car sounds, and the four timbs case and rest beclong to man's nature. An individual's lot may restrict him from the gratification of them; and in such a casc the superior man will not say. 'My nature demands that pleasure, and I will get it. On the other hand, there are love betwe father and son, righteousbess between ruler and minister, the rias of ecremony between host and guest. and knowledge scen in re taizing the able and virtuous, and in the sage's fulfilling the heavenly course;-these are appointed (by Heaven). But they also belong to our nature, and che superior man will not say, "The circumstances of my lot relicve me from them." When he procected from his ideal of human nature to account for the actual phenom cna of conduct, he was necessarily kess surceesoful. "There is nothing, som t " hc mid, "that a man cannot do: he only does not do it." ut why does he not do it? Against the stubborn fact Mencius tists his wing and shatters his weapons -all in vain. He mentions a few ancient worthies who, he conreived, had always been, or who had become, perfeetly viruous. Above them all he extols Condurins, taking no notice of that sage'c confession that he had not attained to conformity to his own ruie of doing to others as he would have thera do to him. No sueb ti:knowledyment about himsif ever came from Mencius. Therein he was inferior to his prediceesor: he had a subtler faculty of thusht, and a much more vivid imagination; but he did not know hirmself nor his special sulije od human nature so well.
A lew passages illustrialy of his ztyic and gencral teachings will complete all that on le said of him here. His thoughte, indeed, were seldom coniten ked like those of "the master" into aphorisms, and should be ed in their connoxion; but we have Irom him many words of "iso om thet have been as goads to millions for more than two thous

Thourh a man may last, and fathe, he may sac
ficked, yet, if he adjust his thougbts, io confer a great office on any man, it First exerciges his mind with cuffering, and his sinews and bones with toil. It exposes his boiy to hunger, subjects him to extreme th stimulates his, mind, stru thens his nature, and supplies bis "The erext man whe who does sot love his ctild-wearl"

* The sente of ahame is to a man of great importance. When one is arhamed of having been without shame, he will afterwatds not have occasion for shame.
"To nourish the heart there is nothing better than to keep the desires few. Here is a man whose desires are few; in some things he may not be able to keep his heart, but they will be few. Here is an man whose deaires are many; in some things he may be able to keep his heart, but they will be few."

Benevolence is the distinguishing characteristic of man. As embodied in his conduct, it may be called the path of duty.'
"There is an ordination for everything: and a man should recelve aubmisaively what may be correctly ascribed thereto. He who has the eorrect idea of what Heaven's ordination is will not stand benes th a totiering wall. Death sustained in the discharge of one's Itsicis may be correctly ascribed to Heaven. Death under handeuffa and fetters cannot be correctly so ascribed."

When one by force subdues men, they do not submit to him in heart. When he subdues them by virtue, in their hearts' core they are pleased, and sincerely submit.

Two translations of the works of Mencius are within the reach of-European readers: that by Stanislaus Julien, in Latin (Paris, 1824-1829); and that forming the sccond volume of Legge's Chiness Classics (Hong-Kong, 1862). The latter has been published at London (1875) without the Chinese text. See also E. Faber, The Mind of Mencius, or Political Economy founded on Moral Philosophy, translated from the German by A. B. Hutchinson (London, 1882). (J. LE.)

MENDE, 2 town of south-castern France, capital of the department of Lonere, 59 m. N.N.E. of Millau by rail. Pop. (1906), town 5246; commune 7007. Mende is picturesquely situated on the left bank of the Lot, and at the foot of the Minat cliff, which rises 1000 ft. above the town, and terminates the Cause de Mende. The town is the seat of a bishopric. Its cathedral of St Peter was founded in the tith century hy Pope Urban V., a native of the district, but the two towers, respectively 280 and a roft. high, were added by Bishop Francois de be Roverte in the early part of the r6th century. Partly destroyed during the devastation of the town hythe Protestants in 1579 and 1580 , it was rebuilt in the 17 th century, and in T874 a statue of Urban V. was erected in front of it. A Renaissance tower of the ancient citadel now serves as the belfry of the church of the Penitents, and a 14 th-century bridge crosses the Lot. The town is a convenient centre for visitors to the gorges of the Tarn. It is the seat of a prefect and a court of assizes, and has a tribunal of first instance and a chamber of commerce. The chied industry is the manufacture of serges and shalloons, Enown as Mende stufis, exported to Spain, Italy and Germany.

Mende (Mimate) grew up around the hermitage, partly excavated in the side of the Mimat cliff, to which St Privat, bishop of Jevols, retreated after the destruction of that town, and where he was subsequently slain by the Vandals, who had pursued him thither, about 408 . In the r4th century the new town became the civil, as it had previously been the ecclesfastical, capital of the Gevaudan district.

IENDETAEFF, DHITRI IVANDVICE ($1834-1907$), Russian chemist, the youngest of a family of seventeen, was born at Tobolsk, Siberia, on the 7 th of February (N.S.) 1834. After attending the gymanaium of his nativa place, he went to study natural science at St Petersburg, where he graduated in chemistry in 1856, subsequently becoming privatdozent. In 1860 he went to Heidelberg, where he started a laboratory of his own, but returning to St Petcrsburg in 1861 , he became professor of chemistry in the technological institute there in 1863, and three ycars inter succeeded to the same chair in The university. In 1890 be resigned the professorship, and in 1893 he was appointed director of the Bureau of Weights and Measures, a post whicb be occupied till his death.

Mendeléef's original work covered a wide range, from questions in applied chemistry to the most gencral problens of chemical and physical theory. His name is best known for his work on the Periodic Law. Various chemists had traced numerical sequences among the atomic weights of some of the elements and noted connexions between them and the properties of the differens substances; but it was left to him to give a full expression to the sureralisation, and to treat it not merely as a system of classifying the elements according to certan observed facts, but as a "Law of nature" which could be relied upon to predict new facts
and to disclose errors in what were supposed to be old facts Thus in $\mathbf{2 8 7 x}$ he was led hy certain gaps in his tables to assert the existence of three new elements so far unknown to the chemist, and to assign them definite properties These three he called ekaboron, ekaaluminium, and ckasilicon; and his prophecy was completely vindicated within fifteen years hy the discovery of gallium in 1871, scandium in 1879, and germanium in 1886 Again, in several cases he ventured to question the correctness of the " accepted atomic .weights," on the ground that they did not correspond with the Periodic Law, and here also he was justified by subsequent investigation. In 1902, in an "attempt at a chemical conception of the ether," he put forward the hypothesis that there are in existence two elempents of smaller atomic weight than hydrogen, and that the lighler of these is a chemically inert, exceedingly mobile, all-penetrating and all-pervading gas, which constitutes the aether. Mendeleeff also devoted much study to the nature of such "indefinite" compounds as solutions, which he looked upon as bomogeneous liquid systems of unstable dissociating compounds of the solvent with the substance dissolved, holding the opinion that they are merely an instance of ordinary definite or atomic compounds, subject to Dalton's Inws. In another department of physical chemistry be investigated the expension of liquids witb heat, and devised a formula for its expression similar to Gay-Lussac's law of the uniformity of the expansion of gases, while so far back as 1861 he anticipated T. Andrews's conception of the critical temperature of gases by defining the ahsolute boiling-point of a substance as the temperature at which cohesion and heat of vaporization become equal lo zero and the liquid changes to vapour, irrespective of the pressure and volume. Mendeleeff wrote largely on chemical topics, his most widely known book probably being The Principles of Chemistry, which was written in 1868-1870, and has gone through many subsequent editions in various languages. For his work on the Periodic Law he was awarded in 1882 , at the same time as L. Meyer, the Davy medal of the Royal Society, and in igos he received its Copley medal. He died at St Petersburg on the 2nd of February 1907.

See W. A. Tilden, "Mendeleeff Memorial Lecture," Jowr. Chom. Soc., 95, P. 2077.

MENDELIRM. To denine what some biologists call Mendelism briefly is not possibic. Within recent years there has come to biologists a, new idea of the nature of buing things, a new conception of their potentialities and of their limitations; and for this we are primarily indebted to the work of Gregor Mendel. Peasant boy, monk, and abbot of Brinn, this remarkable man at one time interested himself in the workings of heredity, and the experiments devised by him and carried out in his cloister garden are to-day the foundation of that exact knowledge of the physiological process of bercdity which biologists are rapidly extending in various directions. This extension Mendel never saw. Born in 1822 he published the account of his experiments in 1865 , but it was not until 1900 , eighteen yoars after his death, that biologists came to appreciate what he had accomplished. That year marked the simultaneous rediscovery of his work by three distinguished botanists: Hugo de Vries, C. Correns and E. Tschermak. Thenceforward Mendel's ideas lave steadily gained ground, and, as the already strong body of evidence in their favour grows, they must come to exert upon biological conceptions an influence not less than those assoclated with the name of Darwin.

Bominont and Recessine.-Mendel chose the common pea (Pisumb sativum) as a subject for experiment, and investigated the effects of crossing different varietics. In his method be differed from previous investigators in concentrating his attention on the mode of inheritance of a single pair of alternative characters at a time. Thus on crossing a tall with a dwarf and paying attention to this pair of characters alone, he found that the hyhrids (or Fi generation) were all tall and that no intermediates appeated. Accordingly be termed the tall character domimont and the dwarf character recessiec. On allowing these byhrids to fertilize themselves in the ordinary
way be obtained a further generation which on the average was composed of three talls to one dwarf. Subsequent experiment showed that the

Fig. 1. dwaris always bred true, as did also one out of every three talla; the two remaining talls behaved as theoriginal hybrids in giving three talls to one dwarf. Having regard to the characters, tallness and dwarfness, three and only three kinds of peas exist, viz. dwarfs which hreed true, talls which breed true, and talls which give a fixed proportion of talls and dwarfs. The relation betwoen these three forms may be briefly summarized in the suhjoined scheme, in which pure tall and dwarf are represented by T and D respectively, while [T] denotes the talls which do not breed true. Experiments were also made with several other pairs of characters, and the same mode of inhcritance was shown to hold good throughout.

Unil-Characters.-As Mendel clearly perceived, these definite results lead inevitably to a precise conception of the constitution of the reproductive cells, or gametcs; and to appreciate fully the change wrought in our point of view necessitates a bricf digression into the essential features of the reproductive process. A sexual process (see SEx) is almost universal among animals and plants, and consists essentially of the union of two gametes, of wbich one is produced by either parent. Every gamete contains small definite bodies known as chromosomes, and the number of these is, with few known exceptions, constant for the gametes of a given species. On the fusion of two gametes the resulting cell or zygote has therefore a double structure, for it contains an equal number of chromosomes hrought in by the paternal and by the maternal gamete -in the case of a plant by the pollen grain as well as hy the ovule. By a process of re-

Fic. 2. peated division the zygote gives rise to a plant (or an animal) whose cells apparently retain the double structure througbout. Certain of the cells of such a zygote become the germ cells and are set apart, as it were, for the formation of gametes. Histology has shown that when this occurs the cells lose the douhle structure which they had hitherto possessed, and that as the result of a process known as the reduction division gametes are formed in which the number of chromosomes is one half of that which characterizes the cells of the zygote. It is generally acknowledged that the chromosomes play an important part in the hereditary process, and $t h$ is possible that the divisions which they undergo in gametogenesis are connected with the observed inheritance of charecters. We shall refer later to the few observations which seem to connect the two sets of phenomena.

Our conception of what occurs when a cross is made between two individuals may be illustrated by the diagram which forms 6is. 2. Zygotes are here represented by aquares and gametes by circles. The dominant and recessive characters are indicated
by smail plain and black rectangles. Each zygote must contain two and each gamete but one of these unit-characters Zygotes such as the original parents which breed true to a giver character are said to be homozygous for that character, and from their nature such homozygotes must produce identical gametes. Consequently when a cross is made only one kind of zygote can be formed, viz. that containing both the dominant and recessive unit-characters. When the germ-cells of such a heterozygote split to form gametes, these, as indicated in fig. 2, will be of two sorts containing the dominant and recessive characters respectively, and will be produced in equal numbers. If we are dealing with a hermaphrodite plant such as the pea the ovules will consist of one half bearing only the dominant character and one hall hearing only the recessive character; and this will be true also of the pollen grains. Consequently each dominant ovule has an equal chance of being fertilized hy a dominant or by a recessive pollen grain, and the dominant ovules must therefore give rise to equal numbers of dominant homozygous and of heterozygous plants. Similarly the recessive ovales must give rise to equal numbers of recessive homozygotes and of hetcrozygotes. Hence of the total offspring of such a plant one quarter will be pure dominants, one quarter recessives, and one hall beteroaygotes as indicated in fig. 2. Where one character is completely dominant over the other, heterozygotes will be indistinguishable in appearance from the homozygous dominant, and the Fa generation will be composed of three plants of the dominamf form to each recessive. These are the proportions actually found by Mendel in the pees and by many other more recent observen in a number of plants and animals. The experimental facts are in accordance with the conception of unitcharacters and their cransmission from zygote to gemete in the way outlined above; and the numerical results of breeding experiments are to be regarded as proving that in the formation of gametes from the heterozygote the unit-characters are treated as unblending entities separating cleanly, or segregoling, from one another. From this it follows that any gamete can carry but one of a pair of unit-characters and must therefore be pure for that character. The principle of the segregation of characters in gametogenesis with its natural corollary, the purity of the gametes, is the essential part of Mendel's discoveries. The quite distinct phenomenon of dominance observed hy him in Pisum occurs in many other cases, but, as will appear below, is by no means universal.

IUustrations.-Mendelian inheritance in its simplest form, in. for a single pair of characters, has already been shown to occur in many species of animals and plants, and for many very diverse characters. In some cases complete dominance of one of the pair of unit-characters occurs; in others the form of heterozygote is more or less intermediate. Fresh cases are continually being recorded and the following short list can but serve to give some idea of the variety of characters in which Mendelian inheritance has boen demonstrated.

A. Dommance nearly or quite complete. (The dominant character is given first).

Tall and dwarl habit (pea, sweet pea).
Round seed and wrinkled seed (pea).
Long pollen and round pollen (sweet pea).
Starch and sugar endosperm (maize).
Hoariness and absence of hairs (stocks, Lycimis).
Beardless and bearded condition (whear).
Prickliness and smoothness of fruits (Dafura).
Palm and fern leaf (Primula).
Purple and red flowers (oweet pea, atocks, \&c.).
Fertility and sterility of anthers (sweet pea).
Susceptibility and immunity to rust (wheat).
Rose comb and single comb (fowls).
Black and white plumage (Rosecomh bantarms).
Grey and black coat colour (rabbits. mice).
Bay and chestaut cont colour (hormes).
Pigmentation and albiniem (rabbite, rate, mice).
Polled and horred condition (cattle).
Short and long "Angora "coat (rabbits).
Normal and waltaing habit (mice).
Deformed hand with but two phalanges in digits and nocral hand (тар).
B. Absence of dominance, the beteromygote bothy move or lewe intermediate in form.
Black and white splashed plumage (Andalusian fowis).
Lax and denee cerre (wheat).
Six rowed and two rowed cars (barky).
Dominance.-The meaning of this phenomenon is at present obscure, and we can make no suggestion as to why it shoald be complete in one case, partial in another, and entirely absent in a third. When found it is as a rulo definite and orderly, but there are casca known where irrogularity exista. The extra toe characteristic of certain breeds of fowls, such as Dorisings, behavas generally as a dominant character, but in certioin cases it has been ascertained that a fowl without an extra toe may yet carry the extra toe character. It is possible that in some cases dominance may be conditioned by the presence of other features, and certain crosess in sheep lend colour to the supposition that sex may be such a feature. A cross between the polled Suffolk and the borned Dorset breeds results in horned rams and polled ewes only, thougb in the P_{1} generation both sexes appoar with and without horms. At present tbe simplest bypothesis which fits the facts is that borme are dominant in the male and recesaive in the female, It is important mot to confuse cases of apparent reversal of dominance such as the above with cases in which a given visible character may be the result of two entirely different causes. One white hen may give only colour chicks by a coloured cock, whilst the same cock with another white hen, indistinguishable in appearance from the former, will give only white chickens containing a few dark ticks. There is here no reversal of dominance, but, as has been abundantly proved hy experiment, there are two entirely distinct classes of white fowls, of which one is dominent and the other recessive to colour.

The Presence and Absonce Hypothesis.- Whether the phenomenon of dominance occur or not, the unit-characteri exist in pairs, of which the members are seemingly interchangeable. In virtue of this behaviour the unit-characters forming such a pair have been termed allelomorphic to one another, and the question arises as to what is the nature of the relation between two allelomorphs. The fact that such cases of heredity as have been fully worked out can all be formulated in terms of allelomorphic pairs is suggestive, and has led to what may be called the "presence and absence" hypothesis. An allelomorphic pair represents the only two possible states of any given unit-character in its relation to the gamete, viz. its presence or its absence. When the unit-character is present the quality for whicb it stands is manifested in the zygote! when it is absent some other quality previously concealed is able to appear. When the unit-character for yellowness is present in a pea the seeds are yeilow, when it is absent the seeds are green. The green character is underlying \ln all yellow seeds, but can only appear in the absence of the unit-character for yellowness, and greenncss is allelomorphic to yellowness because it is the expression of absence of yellowness.

Dikybridism.-The instances bitherto considered are all simple cases in which the individuals crossed difiter only in one pair of unit-characters. Mendel himself worked out cases in which the parents differed in more than one allelomorphic pair, and be pointed out tbat the principles involved were capable of indefinite extension. The inhcritance of the various allelomorphic pairs is to be regarded as entirely independent. For example, when two individuals $A A$ and $a a$ are crossed the composition of the F_{2} generation must be $A A+2 A a+a a$, If we suppose that the two parents differ also in the allelomorphic pair $B-b$, the composition of the F_{2} gencration for this pair will he $B B+2 B b+b b$. Hence of the zygotes which are homozygous for $A A$ one quarter will carry also $B B$, one quarter $b b$, and one half $B b$. And similarly for the zygotes whicb carry $A a$ or $a a$. The varfous combinations possible together with the relative frequencies of their occurrence may be gatbered from fig. 3 . Of the 16 2ygotes there are:-

$$
\begin{aligned}
& 9 \text { containing } A \text { and } B \\
& A \text { but not } B
\end{aligned} \quad 3 \text { containing } B \text { but not } A
$$

In a case of dihybridism the F_{i} zygote must be heterozygous for
the two allelomorphic pairs, i.a. must be of the constitetion Ae Bb. It is obvious that such a result may be produced in two ways, eitherby the union of t wo gametes, $A b$ and $a B$, of of two gametes $A B$ and ab. In the former case each parent must be bomozygous for one dominant and one recesative character; in the latter case one parent must be bomozygous for both the dominant and the other for both recossive characters. The results of a cross involving. dihybridism may be complicated in several ways by the reaction upon one

Fig. 3. another of the unit-characters belonging to the reparate allelomorphic pairs, and it will be convenient to comaider the various pondibitites apart.
I. The simplest case is that in which the two allelomorphic pairs affect entirely distinct characters. In the pea tallness is dortinant to dwarfness and yellow seods are dominant to green. When a yellow tall is crossed with a green dwarf the F_{1} generation consists entirely of tall yellows. Precisely the same result is obtained by crossing a tall green with a dwarf yellow. In aither case all the four characters involved are visible in ove or other of the parents. Of every 16 plants produced by the tall yellow $F_{1}, 9$ are tall yellows, 3 are tall greens, 3 are dwarf yellows, and I is a dwarf green. If we denote the tall and dwarf characters by A and a, and the yellow

PEA

WALNUT

Fig. 4

The four typees of comb referred to in the text are shown hereAll the drawings were made from male birds. In the bens the combs are smaller. All four types of comb are tiable to a certaln amount of minor variation, and the walnut especially so. The presence of minute bristles on its posterior portion, however, perves at once to distinguish it from any other comb.
and green seed characters by B and b respectively, then the constitution of the F_{2} generation can be readily gathered from fig. 3.
2. When the two allelomorphic pairs affect the same structure we may get the phenomenon of novelties appearing in \mathbf{F}_{1} and F_{r}. Certain breeds of fowls have a "rose " and others a " pea" comb (fig. 4). On crossing the two a "walnut" comb results, and the offspring of such walnuts bred together consist of 9 walnuts, 3 roses, 3 peas, and 1 single comb in every 16 birds. This case may be brought into line with the scheme in fig. 3 if we consider the allelomorphic pairs concerned to
be rose (A) and absence of rose (a), and pea (B) and absence of pea (b). The zygotic constitution of a rose is therefore $A A b b$, and of a pea aaBB. A zygote containing both rose and pea is a walnut: a zygote containing neither rose nor pea is a single. The peculiar feature of such a case lies in the fact that absence of rose and absence of pea are the same thing, i.e. single; and this is doubtless owing to the fact that the characters rose and pea both affect the same structure, the comb.
3. Cases exist in which the characters due to one allelomorphic pair can only become manifest in the presence of a particutar member of the other pair. If in fig. 3 the characters due to $B-b$ can oaly manifest themselves in the presence of A, it is obvious that this can happen in twelve cases out of sixteen, but not in the remaining four, which are homozygous for ca. An example of this is to be found in the inheritance of coat colour in rabbits, rats and mice where the allelomorphic pairs concerned are wild grey colour (B) dominant to black (b) and pigmentation (A) dominant to albinism (a). Certain albinos (aaBB) crossed with blacks (A Abb) give only greys ($A a B b$), and when these are bred together they give 9 greys, 3 blacks and 4 albinos. Of the 4 albinos 3 carry the grey character and I does not, but in the absence of the pigmentation factor (A) this is not visible. The ratio $9: 3: 4$ must be regarded as a $9: 3: 3: 1$ ratio, in which the last two terms are visibly indistinguishable owing to the impossibility of telling by the eye whether an albino carries the character for grey or not.
4. The appearance of a zygotic character may depend upon the coexistence in the zygote of two unit-characters belonging to different allelomorphic pairs. If in the scheme shown in fig. 3 the manifestation of a given character depends upon the simultaneous presence of A and B, it is obvious that 9 of the 16 zygotes will present this character, whilst the remaining 7 will be without it. This is shown graphically in 6g. 5, where the 9 squares have been shaded

Fic. 5. and the 7 left plain. The sweet pea offers an example of this phenomenon. White sweet peas breed true to whiteness, but when certain strains of whites are crossed the offspring are all coloured. In the next generation (F_{2}) these F_{1} plants give rise to 9 coloured and 7 whites in every ${ }^{6} 6$ plants. Colour here is a compound character whose manifestation depends upon the co-existence of two factors in the zygote, and each of the original parents was homozygous for one of the two factors necessary to the production of colour. The ratio $9: 7$ is in reality a $9: 3: 3: x$ ratio in which, owing to special conditions, the zygotes represented by the last three terms are indistinguishable from one another by the eye.
The phenomena of dihyhridism, as illustrated by the four examples given above, have been worked out in many other cases for plants and animals. Emphasis must be laid upon the fact that, although the unit-characters belonging to two pairs may react upon one another in the zygote and affect its character, their inheritance is yet entirely independent. Neither grey nor black can appear in the rabbit unless the pigmentation factor is also present; nevertheless, gametic segregation of this pair of characters takes place in the normal way among albino rabbits, though its effects are never visible until a suitable cross is made. In cases of trihybridism the Mendelian ratio for the forms appearing in F_{8} is $27: 9: 9: 9$: $3: 3: 3: 1$, i.e. 27 showing dominance of three characters, three groups of 9 each showing dominance of two characters, three groups of 3 each showing dominance of one character, and a single individual out of 64 which is homozygous for all three recessive cbaracters. It is obvious that the sygtem can be indefinitely extended to embrace any number of allelomorphic paira.

Renersion.-Facts such as those just dealt with in connerion with certain cases of dihybridism throw an entirely new light upon the phenomenon known as reversion on crossing. This is now seen to consist in the meeting of factors which had in some way or other become separated in phylogeny. The albino rabhit when crossed with the black "reverts" to the wild grey colour, because each parent supplies one of the two factprs upon which the manifestation of the wild colour depends. So also the wild purple sweet pea may come as a reversion on crossing two whites. In such cases the reversion appears in the F_{1} generation, because the two factors upon which it depends are the dominants of their respective allelomorphic pairs. Where the reversion depends upon the simultaneous absence of two cbaracters it cannot appear until the F_{2} generation. When fowls with rose and pea combs are crosed the reversionary single comb characteristic of the wild Gallus bankiva first appears in the F_{1} generation.

Gamedic Coupling.-In certain cases the distribution of characters in heredity is complicated by the fact that particular unit-characters tend to become associated or coupled together during gametogenesis. In no case have we yet a complete explanation of the phenomenon, but in view of the important

Fic. 6.
bearing which these facts must eventually have on our ideas of the gametogenic process an illustration may be given. The case in which two white sweet peas gave a coloured on crossing has already been described, and it was seen that the production of colour was dependent upon the meeting of two factors, of which one was brought in by cach parent. If the allelomorphic pairs be denoted by $C-c$ and $R-r$, then the zygotic constitution of the two parents must have been CCrr and $c c R R$ respectively. The F_{1} plant may be cither purple or red, two characters which form an allelomorphic pair in which the former is dominant, and which may be denoted by the letters $B-b$. If B is brought in by one parent only the F_{1} plant will be heterozygous for all three allelomorphic pairs, and therefore of the constitution $C_{c} R r B b$. In the F_{2} generation the ratio of coloured to white must be $9: 7$, and of purple to red $3: 1$; and experiment has shown that this generation is composed on the average of 27 purples, 9 reds and 28 whites out of every 64 plants. The exact composition of such a family may be gathered from the accompanying table (fig. 6). So far the case is perfectly smooth, and it is only on the introduction of another character that the phenomenon of partial coupling is witnessed. Two kinds of pollen grain occur in the sweet pea. In some plants they are ohlong in shape, whilst in others they are round, the latter condition being recessive to the former. If the original white parents were homozygous for long and round respectively the F_{1} purple must be heterozygous, and in the F_{2} generation, as experiment has shown, the ratio of longs to rounds for the whole family is $3: \mathrm{x}$; But among the purples there are about twelve longa to each round, the excese of longs here being belanced by the reds, where the proportion
is I long to aboat 3.5 rounds There is partal coupling of long pollen with the parple colour and a complementary coupling of the red colour with round pollen. This result would be brought about if it were supposed that reven out of every eight purple gametes produced by the F_{1} piant carriod the long polien character, and that seven out of every eight ret gametes carried the round pollen chartucter. The facts observed fit in with the supposition that the gametes are produced in serise of sixteen, but how such result could be brought about is a question which for the present must remain open.
Sparious Allelomor phism. - Inatances of association between characters are known in which the connection is between the dominant member of one pair and the receasive of another. In many sweet peas the standerd folde over towards the wings, and the flower is aid to be hooded. This "hooding" behaves as a recessivo towards the eroct standard. Red sap colour is also recessive to purple. In families where purples and reds as well as orrect and booded standards occur it has been found, as might be expected, that eroct standards are to hooded oncs, and that purples are to reds as 3 :I. Were the case one of simple dihybridism the F_{2} generation should be composed of 9 erect purples, 3 hooded parples, 3 erect reds and I booded red in every 16. Actually it is composed of 8 erect purples, 4 hooded purples and 4 erect reds. The bood will not associate with the red, but occurs only on the purples. Cases like this are best interpreted on the asanmption that during gametogenesis there is some form of repulsion between the members of the different pairs-in the present instance botween the factor for purplo-and that for the erect standard- 30 that all the gametes which contain the purple factor are free from the factor for the erect standard. To the process involved in_tbis assumption the term spowious allalomorphism has been applied.

Sex.-On the existing evidence it is probable that the inheritance of sex runs upon the same determinate lines as that of other characters. Indeed, there occurs in the sweet pea what may be regarded as an instance of sex inheritance of the simplest kind. Most sweet peas are bermaphrodite, but some are found in which the anthers are sterike and tbe plants function only as females. This latter condition is recessive to the hermaphrodite one and segregates from it in the ordinary way. Most cases of sex inheritance, however, are complicated, and it is further possible that the phenomena may be of a different order in plants and animals. Instructive in this connexion are certain cases in which one of the characters of an allelomorphic pair may be coupled with a particular sex. The pale lacticolor variety of the currant moth (Abraxas grosswariata) is recessive to the normal form, and in familics produced by heterozygous parents one quarter of the offspring are of the variety. Though the sexcs occur in approximately equal numbers, all the lacticolor in such families are females; and the association of sex with a character exhibiting normal segregation is strongly suggestive of a similar process obtaining for sex also. Castle has worked out similar cases in other Lepidoptera and has put forward an hypothesis of sex inberitance on the basis of the Mendelian segregation of sex determinants. An ovam or spermatozoon can carry either the male or the female character, but it is essential to Caste's hypothesis that a male spermatozoon should fertilize only a female ovum and vice versa, and consequently on bis view all sygotes are heterozygous in respect of sex. Whether any such gametic selection as that postulated by Castle occurs here or ebewhere muse for the present remain unanswered. Little evidence exists for it at present, but the possibility of its occarrence should not be ignored.

More recently evidence has been brought forward by Bateson and others (3) which supports the view that the inheritance of sex is on Mendelian lines. The analysis of cases wbere there is a closer association betwcen a Mendelian character and a perticular sex bas suggested that femaleness is here dominant to maleness, and that the latter sex is homozygous while the former is heterozygous.

Chromosomess and UnilCherrantri--Breeling experiments have establisbed the conception of definite unit-characters existing in the cells of an organian: in the cell histology has demonstrated the existence of small definite bodies-the chromosomes. During ganetogonemis there takes place what many histologisas regard as a differcentiating division of the chromosomes: at the mane period occurs the segregution of the unit-charactera. is there a relation between the postulated unit-character and the visible chromooome, and if so what is this relation? The researches of E. B. Wilson and others have shown that in certaim Hemiptera the character of sex isdefinitcly aseociated with a particular ctromonome. The males of Promever possoses thirtoen chromonomes, and the qualitative division on gametogenetis resulks in the production of equal numbers of apermatosoa having six and soven chromosomes. The somatic number of chromosomes in tho female is fourteen, and consoquently all the meture ova have seven chromosomes. When a spermatomoon with seven chromosomes meets an ovum the resulting xygote has fourteen chromosomes and is a female; when a spermatocoon with six chromosomes meeta an ovum tho resulting zygote has thirteen chromosomes and is a male. In no other instunce has any much definite relation been established, and in many cases at any rate it is certnin that it could not be a simple one. The gnmetic number of chromosomes in wheat is eight, whereas the work of R. H. Biffen and others has shown that the number of unit-characters in this species is considerably greater. If therefore there exists a definite relation betwoen the two it must be supposed that a chromosome can casty more than a single unit-character. It is not impossible that fature work on gametic coupling may throw light upon the matter.

Heredity and Variation.-It has long been realized that the problems of heredity and variation are closely interwoven, and that whatever throws light upon the one may be expected to illuroinate the other. Recent as has been the rise of the study of genetics, it has, nevertheless, profoundly infuenced our views as to the nature of these phenomena. Heredity we now perceive to be a method of analyais, and the facts of heredity constitute a series of reactions which enable us to argue towards the constitution of living matter. And essential to any method of amalysis is the recognition of the individuality of the individual. Constitutional differences of a radical nature may be concealed bereath apparent identity of external form. Purple swoet peas from the same pod, indistinguishable in appearance and of identical ancestry, may yet be funda. mentally different in their constitution. From one may come purples, reds and whites, from another only purples and reds, from another purples and whites alone, whilst a fourth will breed true to purple. Any method of investigation which fails to take account of the radical differences in constitution which may underlie external similarity must necessarily be doomed to failure. Conversely, we realize to-day that individuals identical in constitution may yet have an entirely different ancestral history. From the cross between two lowls with rose and pea combs, each of irreproachable pedigree for generations, come single combs in the second generation, and these singles are precisely similar in their behaviour to singles bred from strains of unblemished ancestry. In the ancestry of the one is to be found no single over a long series of ycars, in the ancestry of the otber nothing but singles occurred. The creature of given constitution may often be built up in many ways, but once formed it will behave like others of the same constitution. The one sure test of the constitution of a living thing lies in the nature of the gametes which it carries, and it is the analysis of these gametes which forms the province of heredity.

The clear cut and definite mode of transmission of characters first revealed by Mendel leads inevitably to the conception of a definite and clear-cut basis for those characters. Upon this structural. basis, the umit-character, are grounded certain of the phenomena now termed variation. Varieties exist as such in virtue of differing in one or more unit-characters from
what is conventionally termed the type; and since these unitcharacters must from their behaviour in transmission be regarded as discontinuous in their nature, it follows that the variation must be discontinuous also. A present tendency of thought is to regard the discontinuous variation or mutation as the material upon which natural selection works, and to consider that the process of evolution takes place by definite steps. Darwin's opposition to this view rested partly upon the ides that the discontinuous variation or sport would, from the rarity of its occurrence, be unable to maintain itself against the swamping effects of intercrossing with the normal form. Mendel's work bas shown that this objection is not valid, and tbe precision of the mode of inheritance of the discontinuous variation leads us to inquire if the small or fluctuating variation can be shown to have an equally definite physiological basis before it is admitted to play any pert in the production of species. Until this has becn shown it is possible to consider the discontinuous variation as the unit in all evolutionary change, and to regard tbe.fluctuating variation as the uninherited effect of environmental accident.

The Human Aspect.-In conclusion we may briefly allude to certain practical aspects of Mendel's discovery. Increased knowledge of heredity means increased power of control over the living thing, and as we come to understand more and more the architecture of the plant or animal we realize what can and what cannot be done towards modification or improvement. The experiments of Biffen on the cereals have demonstrated what may be done with our present knowledge in establishing new, stahle and more profitable varieties of wheat and barley, and it is impossible to dnubt that as this knowledge becomes more widely disseminated it will lead to considerable improvements in the methods of breeding animals and plants.

It is not, however, in the economic field, imporiant as this may' be, that Mendel's discovery is tikely to have most meaning for us: rather it is in the new light in which man will come to view himself and his fellow creatures. To-day we are almost entirely ignorant of the unit-characters that go to make the difference between one man and another. A few disenses, such as alcaptonuria and congenital cataract, a digital malformation, and probably eye colour, are as yet the onlycases in which inheritance has been shown to run upon Mendelian lines. The complexity of the subject must render investigation at once difficult and slow; but the little that we know to-day offers the hope of a great extension in our knowledge at no very distant time. If this hope is borne out, if it is shown tbat the qualities of man, his body and his intellect, his immunities and bis diseases, even his very virtues and vices, are dependent ùpon tbe ascertainable presence or absence of definite unit-characters whose mode of transmission follows fixed laws, and if also man decides that his life shall be ordered in the light of this knowledge, it is obvious that the social system will have to undergo considerable changes.
Bibliography.-In the following short list are given the titles of papers dealing with experiments directly referred to in this article. References to most of the literature will be found in (11), and a complete list to the date of publication in (3).
(1) W. Bateson, Mended's Principles of Heradity (Cambridze, 1goz), contains translation of Mendel's paper. (2) W. Balcson, An Address on Mcndelian Herodity and its Application to Man, "Brain," pt. cxiv. (1906). (3) W. Bateson, Mendel's Principles heritance and Wheat Breedings," Journ. Agender.s Lows. vol. i. (1050) (5) W. E. Caste, "The Heredity of Scx." Bull. Mus, Comp. Zool. (Harvard, 1903); (6) L. Cuenot. "L'Héredito de la pigmentation ches les souris, Arch. Zool. Exp, (1903-1904). (7) H, de Vries, Die Musationstheorie (Leipzig, 1901-1903). (8) L. Dorcaster and C. H. Raynor, "Breeding Experiments with Lepidoptera." Proc. Zool. Soc. (London 1906). (9) C. C. Hurst. "Experimental Studies on Heredity in Rabbits. Joupn. Linns. Soc. (1905). (10) G. J. Mendel, Versuche ziber Pfanzen-Hybriden, Verh, natur. f. ver. in Brinn. Bd. IV. (1865). (11) Reports to the Eonlution Committee of the Royal Society, vols i-iif. (London, 1902-1906, experiments by W. Bateson, E. R, Saunders, R, C. Punnett, C. C., Hurst and others). (12) E. B, Wilson, "Studics in Chromosomes," vols i.-iti. Jours Exp. Zool. (1905-1906). (13) T. B, Wood, "Note on the Inherisance of 1 iorns and Face Colour in Sheep." Journ. Agr. Soc. vol. \mathbf{i}. (1905).

Menderasolin, MOARS ($1729-1786$), Jewish philosopher, was born in Dessau in 1729. His father's name whes Mendel, and he was later on surnamed Mendelssobn ($=$ son of Mende). He was the foremost Jewish figure of the 18th century, and to him is attributable the renaissance of the Houst of Iarad. With this third Moses (the other two being the Biblical lawgiver and Moses Maimonides) a new era opens in the history of the Jewish people. Mendel Dessau was a poor scribo-a writer of scrolls-and his son Moses in his boyhood developed curvature of the spine. His early education was cared for by his father and by the local rabbi, David Frinkel. The latter, besides teaching him the Bible and Talmud, introdaced to him the philosophy of Maimonides (q.v.). Frinkel received a call to Berlin in 1743. Not many months later a weakly lad knocked at one of the gates of Borlin. He was admitted after an altercation, and found a warm welcome at the hands of his former teacher. His life at this period was a struggle against crushing poverty, but his scholarly ambition was never relaxed. A refugee Pole, Zamoss, taught him mathematics, and a young Jewish physician was his tutor in Latin. He was; bowever, mainly self-taught. "He learned to spell and to philosophize at the same time" (Graesz). With his scanty earnings be bought a Latin copy of Locke's Essay concerwing the Hsman Undenstanding, and mastered it with the aid of a Latindictionary. He then made the acquaintance of Aaron Solomon Gumperz, whn taught him the elements of French and English. In 1750 he was appointed hy a wealthy sillk-merchant, Isaac Bernhard, as teacher to his children. Mendelssohn soon won the confidence of Bernhard, who made the young student successively his book-keeper and his partner.
Gumperz or Hess rendered a conspicuous service to, Mendelssobn and to the cause of enlightenment in 1754 by introducing him to Lessing. Just as the latter afterwards makes Nathan the Wise and Saladin meet over the chess-board, so did Leasing and Mendelssohn actually come together as lovers of the game. The Berin of the day-the day of Frederick the Great-was in a moral and intellectual ferment. Lessing was the great liberator of the German mind. He had already begun his work of toleration, for he had recently produced a drama (Dic Jwden, 1749), the motive of which was to prove that 2 Jow can be possessed of nobility of character. This notion was being generally ridiculed as untrue, when Lessing found in Mendelssohn the realization of his dream. Within a few months of the same age, the two became brothers in intellectual and artistic cameraderic. Mendelssohn owed his first introduction to the public to Lessing's admiration. The former had written in lucid German an attack on the national neglect of native philosophers (principally Leibnitz), and lent the manuscript to Lessing. Without consulting the author, Lessing published anonymously Mendelssohn's Philosophical Conversations (Philosophische Gesprache) in $\mathbf{1 7 5 5}$. In the same year there appeared in Danxig an anonymous satire, Pope a Mfetophysicaan (Pope cin Melophysiker), the authorship of which soon transpired. It was the joint work of Lessing and Mendelssohn. From this time Mendelssohn's career was one of ever-increasing brilliance. He became (1756-1759) the leading spirit of Nicolai's important literary undertakings, the Bibliothek and the Literaturbriefe, and ran some risk (which Frederick's good nature obviated) by somewhat freely crticizing the poems of the king of Prussia. In 1762 he married. His wife was Fromet Gugenheim, who survived him by twenty-six years. In the year following his marriage Mendelasobn won the prize offered by the Berlin Academy for an cssay on the appllication of mathematical proofs to metaphysics, although among the competitors were Abbt and Kant. In October 1763 the king grasted Mendelssohn the privilege of Protected Jew (Schutz-Jxde)which assured his right to undisturbed residence in Berlin.
As a result of his correspondence with Abbt, Mendelssohn resolved to write on the Immortality of the Soul. Materialistic views were at the time rampant and fashionable, and faith in immortality was at a low ebb. At this favourable juncture appeared the Phbdon (1767). Modelled on Plato's dialogree
of the same name, Mendelssohns work possonsed some of the charm of its Greek exemplar. What mont impresed the German world was its beauty and lucidity of atyle-features to which Mendelssohn still owes his popularity as a writer. The Phddon was an immediate success, and besides being often reprinted in German was speedily translated into nearly all the European languages, including English. The author was hailed as the "German Plato," or the "German Socrates"; royal and other aristocratic frienda showered attentions on him, and it is no exaggeration to assert with Kayserling that " no stranger who came to Berlin failed to pay his personal respects to the German Sacrates."

So far, Mendelssohn had deroted his talents to philosophy and criticism; now, however, an incident turned the current of his life in the direction of the cause of Judaism. Levater was one of the most ardent admirers of Mendelssohn. He described him as "a companionable, brilliant soul, with piercing eyes, the body of an Aesop- -m man of keen insight, exquisite taste and wide erudition . . . frank and open-hearted." Lavater was fired with the ambition to convert his friend to Christianity. In the preface to a German transiation of Bonnet's essay on Christian Evidences, Lavater publicly challenged Mendelssohn to refute Bonnet or if he could not then to "do what widom, the love of truth and honesty must bid him, what a Socrates would have done if he had read the book and found it unanswerable." This appeal produced a painful impreasion. Bonnet resented Lavater's action, but Mendelssohn was bound to reply, though opposed to religious controversy. As he put it: "Suppose there were living among my contemporaries a Confucius or a Solon, I could, according to the principles of my faith, love and admire the great man without falling into the ridiculous idea that I must convert a Solon or a Confucius."

Here we see the germs of Mendelasohn's Pragmatism, to use the now current term. He shared this with Lessing; in this case, at all events, it is probable that the latter was indebted to Mendelssohn. But before discussing this matter, we must follow out the consequences of Lavater's intrusion into Mendelssohn's affatrs. The latter resolved to devote the rest of his life to the emancipation of the Jews. Among them secular studies had been neglected, and Mendelssohn saw that be could best remedy the defect by attacking it on the religious side. A great chapter in the history of culture is filled by tbe influence of translations of the Bible. Mendelssohn added a new section to this chapter by his German translation of the Pentateuch and other parts of the Bible. This work (1783) constituted Mendelssohn the Luther of the German Jews. From it, the Jews learned the German language; from it they imbibed culture; with it tbere was born a new desire for German nationality; as a result of its popularity was inaugurated a new system of Jewish education. Some of the conservatives among the Jews opposed these innovations, but the current of progress was too strong for them. Mendelssohn was the first great champion of Jewish emancipation in the 18 th century. He it was who induced C. W. Dohm to publish in 1781 his epoch-making work, On the Cipil Amelioration of the Condition of the Jewr, a memorial which played a great part in the triumph of tolerance. Mendelseohn himself published a German translation of the Vindiciae judacorum by Menasseh ben Israel. The excitement caused by these proceedings led Mendelssohn to publish his most important contribution to the problems connected with the position of Judaism in relation to the geperal life.

This work was the Jerusalem (1783; Eng. trans. 1838 and 1852). It is a forcible plea for freedom of conscience. Kant described it as "an irrefutable book." Its basic idea is that the state had no right to interfere witb the religion of its citizens. As Kant put it, this was "the proclamation of a great reform, which, however, will be slow in manifestation and in progress, and which will affect not only your people but others as well." Mendelssohn asserted the pragmatic principle of the possible plurality of truths: that just as various nations need different constitutions-to one a monarchy, to
amother a republic, may be the most congenial to the national gening-so individuals may neod different religions. The test of religion is its effect on conduct. This is the moral of Leasing's Nathas the Wise, the hero of whicb is undoubtedly Mendelosohn. The perable of the three rings the epitome of the pragmatic position. One direct result of this pragmatism was unexpected. Having been taught that there is no absolutely true religion, Mendelssohn's own descendants-a brilliant circle, of which the musician Felix was the most noted-left the Synagogue for the Church. . But despite this, Mendelssohn's theory was found to be a strongthening bond in Judaism. For he maintained that Judaism was less a "divine need, than a pevealed life." In the first part of the roth century, the criticiam of Jewish dogmas and traditions was associated with a firm adbesion to the older Jewisb mode of living. Reason was applied to beliefs, the historic consciousness to life. Modern reform in Judaism is parting to mome extent from this conception, but it still holds good even among the liberals.

Of Mendelssohn's remaining years it must suffice to say that he progressed in fame numbering among his friends more and more of the greatest men of the age. His Morgenstunden appeared in 1785, and be died as the result of a cold contracted while carrying to his publishers in 1786 the manuscript of a vindication of his friend Leasing, who had predeceased him by five years.
Mendelssohn had six children. His sons were: Josepb (founder of the Mendetasohn banking howse, and a friend and benefactor of Alexander Humboldt), whose son Alexander (d. 1871) was the last Jewish descendent of the philosopher; Abraham (who married Leah Bartholdy and was the fatber of Fanny Hensel and 5. L. Felix Mendolssohn-Bartholdy); and Nathan (a mechanical engineer of considerable repute). His daugbters were Dorothea, Recha and Heariette, all briliantly gifted women.

Bibliog Ra phy.-Anedition of Mendelsoohn's works was pablished in 1843-1845, with a biography by his son Joseph; another edition of his Schrifien sur Philosophic, A esthelik und Apologelik, appeared (ed. Brasch) in 2 vols in 1880. For Mendelssohn's biography the chice sources are Graetz. Histary of tho Jews, vol. v., and Kayserling's M. Mendedssokn's Leben und Wirken (I897). Much interesting material on the Mendelssohn family is given in Hensel's Die Familis Mendelssohn (translated into English, 1881). Much general comment on Moses Mendelssohn appeared in the press of the world on occasion of the centenary of the birth of the composer Mendelssoln in 1909.
(I. A.)

MENDELSSOHN-BARTHOLDY, JAROR LUDWIC FELIX (1809-1847), German composer, grandson of Moses Mendelssohn (q.v.), was born in Hamburg on the grd of February 1809. In consequence of the troubles caused by the French occupation of Hamburg, Abraham Mendelssohn, his father, migrated in 18iI to Berlin, where his grandmotber Fromet, then in the twent y-fifth year of her widowhood, received the whole family into ber house, No. 7 Neue Promenade. Here Felix and hís sister Fanny received their first instruction in music from their mother, under whose care they progressed so rapidly that their exceptional talent soon became apparent. Their next teacber was Madame Bigot, who, during the temporary residence of the family in Paris in 1816, gave them valuable instruction. On their return to Berlin they took lessons in thoroughbass and composition from Zelter, in pianoforte-playing from Ludwig Berger, and in violin-playing from Henning-the care of their general education being entrusted to the father of the novelist Paul Heyse.

Felix first played in public on the 24th of October 1818, taking the pianoforte part in a trio hy Woelf. On the rith of April 1819 be entered the Berlin Singakademie as an alto, and in the following year began to compose with extraordinary rapidity. His earliest dated work is a cantata, In rikhrend feicrlichen Tonen, completed on the 13tb of January 1820. During that year alone he produced nearly sixty movements, including songs, pianoforte sonatas, a trio for piaboforte, violin and violoncello, 2 sonata for violin and pianoforte, pieces for the organ, and even a little dramatic piece in three scenes. In 1821 he wrote five symphonies for stringed instrumeats, each in three movements; motets for four voices, an
opera, in one act, called Soldotenlicbschaft; another, called Die beiden Pddagogen; part of a third, called Die wanderndon Comodionten; and an immense quantity of other music of different kinds, all showing the precocity of his genius. The original autograph copies of these early productions are preserved in the Berlin Library, where they form part of a collection which fills forty-four large volumes, all written with infinite neatness, and for the most part carefully dated-a sufficient proof that the methodical habits which distinguished his later life were formed in early childhood.

In 1821 Mendelssohn paid his first visit to Goethe, with whom he spent sixteen days at Weimar, in company with Zelter. From this year also dates his first acquaintance with Weber, who was then in Berlin superintending the production of Der Freischiliz; and from the summer of 1822 his introduction, at Cassel, to another of the greatest of his contemporaries, Ludwig Spohr. During this year his pen was even more prolific, producing, among other works, an opera, in three acts, entitled Die beiden Neffen, oder der Onkel aus Boston, and a pianoforte concerto, which be played in public at a concert given by Frau Anna Milder.

It had long been a custom with the Mendelssohn family to give musical performances on alternate Sunday mornings in their dining-room, with a small orchestra, which Felix always conducted, even when he was not tall enough to be seen without standing upon a stool. For each of these occasions he produced some new work-playing the pianoforte pieces himself, or entrusting them to Fanny, while his sister Rebecka sang, and his hrother Paul played the violoncello. In this way Die beiden Neffer was first privately performed, on the fifteenth anniversary of his birthday, the 3rd of February 1824 . Between the 3rd and the 31st of March in this year he composed his fine symphony in C minor, now known as Op. 10, and soon atterwards the quartet in B minor, Op. 3, and the (posthumous) pianoforte sestet, Op. 1ro. In this year also began his lifclong friendship with Moscheles, who, when asked to receive him as a pupil, said, "If he wishes to take a hint from me, as to anything new to him, he can easily do so; but he stands in no need of lessons."

In 1825 Abraham Mendelssohn took Felix to Paris, where. among other musicians then resident in the French capital be met the two most popular dramatic composers of the age, Rossini and Meyerbeer, and Hived on terms of intimacy with IIummel, Kalkbrenner, Rode, Baillot, Herz, and many other artists of European celebrity. On this occasion also he made his first acquaintance with Cherubini, who, though he rarely praised any one, expressed a high opinion of his talent, and recommended him to write a Kyrie, for five voices, with full orchestral accompeniments, which he himself described as "exceeding in thickness" anything he had attempted. From letters written at this period we learn that Felix's estimate of the French school of music was far from flattering; but he formed some friendships in Paris, which were renewed on later occasions. He returned to Berlin with his father in May 1825, taking leave of his Parisian friends on the rgth of the month, and interrupting his journey at Weimar for the purpose of paying a sccond visit to Goethe, to whom he dedicated his quartet in \mathbf{B} minor. On reaching home he must have worked with greater zeal than ever; for on the roth of August in this same year he completed an opera, in two acts, called Die Hochecif des Camacho, a work of considerable importance.

No ordinary boy could bave escaped uninjured from the snares attendant upon such a life as that which Mendelssonn now lived. Notwithstanding his overwheiming passion for music, his general education had been so woll cared for that he was able to hold his own, in the society of his seniors, with the grace of an accomplished man of the world. He was already recognized as a leading spirit by the artiats with whom be associated, and these artists were men of acknowledged talent and position. The temptations to egoism by which he was surrounded would have rendered most clever students intolerable. But the natural amiability of his disposition, and the
bealchy influence of his happy home-life, counteracted all tendencies towards self-assertion.

Soon after his return from Paris, Abraham Mendelseohn removed from his mother's residence to No. 3 Leipziger Surasse, a roomy, old-fashioned house, containing an excellent musicroom, and in the grounds adjoining a "Gartenhaus" capable of accommodating several hundred persons at the Sunday performances. ${ }^{1}$ In the autumn of the following year this "garden-house" witnessed a memorable private performance of the work by means of which the greatness of Mendelssohn's genius was first revealed to the outer world-the overture to Shakespeare's Midswmmer Nigh's Dream. The finished score of this famous composition is dated "Berlin, August 6, r826"its author was only seventeen and a half years old. Yet in no later work does he exhibit more originality of thought, more freshness of conception, or more perfect mastery over the details of technical construction, than in this delightful inspiration. The overture was first publicly performed at Stettin, in February 1827, under the direction of the young composer, who was at once accepted as the leader of a new and highly characteristic manifestation of the apirit of progresa. Henceforth we must speak of him, not as a student, but as a mature and experienced artist.
Meanwhile Camacho's Wedding had been submitted to Spontini, with a view to its production at the opera. The libretto, founded upon an episode in the bistory of Don Quixote, was written by Klingemann, and - Mendelssohn threw himself into the spirit of the romance with a keen perception of its peculiar humour. The work was put into rehearsal soon after the composer's return from Stettin, produced on the 2gth of April 1827, and received with great apparent enthusiasm; but a cabal was formed against it, and it nover reached a second performance. The critics abused it mercilessly; yet it exhibits merits of a very high order. The solemn passage for the tromhones, which beralds the first appearance of the knight of La Mancha, is conceived in a spirit of reverent appreciation of the idea of Cervantes, which would have done honour to a composer of lifolong experience.
Mendelssomn was annoyed at this injustice, and some time elapsed before his mind recovered its usual bright tone; but be continued to wark diligently. Among other serious undertakings, he formed a choir for the study of the choral works of Sebastian Bach, then unknown to the public; and, in spite of Zelter's opposition, he succeeded, in 1829, in inducing the Berlin Singakademie to give a public performance of the Passion according to St Mathhew, under his direction, with a chorus of hetween three and four hundred voites. The scheme succeeded beyond his warmest bopes, and proved the means of restoring to the world great compositions which had never been heard since the death of Bach. But the obstructive party were offended; and at this period Mendelssohn was far from popular among the musicians of Berlift.

In April 1829 Mendelssohn paid his first visit to London. His reception was enthusiastic He made his first appearance hefore an English audience at one of the Philharmonic Society's concerts-then held in the Argyll Rooms-on the 25th of May, conducting bis symphony in C minor from the pianoforte, to which be was led hy John Cramer. On the zoth he played Weber's Concertsuck, from memory, a proceeding at that time extremely unusual. At a concert given by Drouet, on the 24th of June, be played Beethoven's pianoforte concerto in E flat, which had never before been heard in the country; and the overture to A Midsummer Nigh's Dream was also, for the first time, presented to a London audience. On returning home from the concert, Attwood, then organist of St Paul's Cathedral, left the score of the overture in a hackney coach, whereupon Mendelssohn wrote out another, from memory, without an error. At another concert be played, with Moscheles, his still unpublished concerto in E, for two pianolortes and

[^10]orchestra. After the close of the London season he started with Klingemann on a tour through Scotland, where he was inspired with the first idea of his overture to The Isles of Fingal, returning to Berlin at the end of November. Except for an accident to his knee, which lamed him for some time, his visit was highly successful and laid the foundation of many friendships and prosperous negotiations.

The visit to England formed the first division of a great scheme of travel which his father wished him to extend to all the most important art centres in Europe. After refusing the offer of a professorship at Berlin, he started again, in May 1830, for Italy, pausing on his way at Weimar, where he spent a fortnight with Goethe, and reaching Rome, after many pleasant interruptions, on the ist of November. No excitement prevented him from devoting a certain time every day to composition; but be lost no opportunity of studying either the countless treasures which form the chief glory of the great city or the manners and customs of modern Romans. He attended, with insatiahle curiosity, the services in the Sistine Chapel; and his keen power of observation enahled him to throw much interesting light upon them. His letters on this subject, bowever, lose much of their value through his incapacity to comprehend the close relation existing between the music of Palestrina and his contemporaries and the ritual of the Roman Church. His Lutheran education kept him in ignorance even of the first principles of ordinary chanting; and it is amusing to find him describing as enormities peculiar to the papal choir customs familiar toevery village singer in England, and as closely connected with the structure of the "Anglican chant " as with that of "Gregorian music." Still, though he could not agree in all points with Baini, the greatest ecclesiastical musician then living, he shared his admiration for the Improperio, the Misercre, and the cantus planus of the Lamentatiomes and the Erullet, the musical beauty of which he could understand, apart from their ritual significance.

In passing through Munich on his return in October 1831 be composed and played his pianoforte concerto in G minor, and accepted a commission (never fulfilled) to compose an opera for the Munich theatre. Pausing for a time at Stuttgart, Frankfort and Dusseldorf he arrived in Paris in December, and passed four pleasant months in the renewal of acquaintances formed in $\mathbf{1 8 2 5}$, and in close intercourse with Llszt and Chopin. On the 19th of February 1832 the overture to A Midsummer Night's Dream was played at the conservatoire, and many of his other compositions were brought before the public; hut he did not escape disappointments with regard to some of them, especially the Reformation symphony, and the visit was hrought to a premature close in March by an attack of cholera, from which, however, he rapidly recovered.

On the 23rd of April 1832 he was again in London, where he twice played his G minor concerto at the Philharmonic concerts, gave a performance on the organ at St Paul's, and published his first book of Lieder ohne Worle. He returned to Berlin in July, and during the winter he gave public performances of his Reformation symphony, his concerto in G minor, and his Walpurgisnacht. In the following spring he paid a third visit to London for the purpose of conducting his Italian symphony, which was played for the first time, hy the Philharmonic Society, on the 13th of May 1833. On the 26th of the same month he conducted the performances at the Lower Rhine festival at Düsseldorf with such hrilliant effect that he was at once offered, and accepted, the appointment of general-music-director to the town, an office which included the management of the music in the principal churches, at the theatre, and at the rooms of two musical associations.

Before enterling upon his new duties, Mendelssohn paid a fourth visit to London, with his father, returning to Dusseldorf on the 27th of Septemher 1833. His influence produced an excellent effect upon the church music and in the concert-room; but his relations with the management of the theatre were not altogether pleasant; and it was probably this circumstance which first led bim to forsake the cultivation of the opera for
that of secred music. At Dusseldorf he first designed his famous oratorio St Pawl, in response to an application from the Cycilien-Verein at Frankfort, composed his overture to Die schone Melmsine, and planned some other works of importance. He liked his appointment, and would probably have retained it much longer had be not been invited to undertake the permanent direction of the Gewandhaus concerts at Leipzig, and thus raised to the highest position attaimable in the German musical world. To this new sphere of labour he removed in August 1835, opening the first concert at the Gewandhaus, on the 4 th of October, with his overture Die Mecresstille, \& work possessing great attractions, though by no means on a level with the Midsummer Night's Droam, The Isles of Fingal, or Molusine.
Mendelssohn's reception in Leipaig was most enthusiastic; and under their new director the Gewandhaus concerts prosperod exceedingiy. Meanwhile St Poud steadily progressed, and was first produced, with triumphant success, at the Lower Rhine festival at Dusseldorf, on the and of May 1836. On the 3rd of October it was first sung in English, at Liverpool, under the direction of Sir George Smart; and on the 16th of March 1837 Mendelssohn again directed it at Leipzig.

The next great event in Mendelssohn's life was his happy marriage, on the 28th of March 1837, to Cecile Chariotte Sophie Jeanrenaud. The boneymoon was scarcely over before he was again summoned to England to conduct St Paul, at the Birming. ham festival, on the 20th of September. During this visit he played on the organ at St Paul's and at Christ Church, Newgate Street, with an effect which exercised a lasting influence upon English orgenists. It was here also that he first contemplated the production of his second oratorio, Elijah.

Passing over the composition of the Lobsesang in 1840, a sixth visit to England in the same year, and his imauguration of a scheme for the erectlon of a monument to Sebastian Bach, we find Mendelseohn in 1841 recalled to Berlin by the king of Prussia, with the title of Kapellmeistes. Though his appointment resulted in the production of Andigore, Oedipus Colonews, Atholic, the incidental music to the Midswmmer Nigh's Dream, and other great works, it proved an endiess source of vexation, and certainly helped to shorten the composer's life. In 1842 he came to England for the seventh time, accompaniedby his wffe, conducted his Scotch symphony at the Philharmonic, again played the organ at St Peter's, Cornhill, and Christ Church, Newgate Street, and was received with honour by the queen and the prince consort. He did not, however, permit his new engagements to interfere with the direction of the Gewandhaus concetts; and in 1843 he founded in Leipzig the great conservatoire which soon became the best musical college in Europe, opening it on the 3rd of April in the huildings of the Gewandhaus. In 1844 he conducted six of the Philharmonic concerts in London, producing his new Midsummer Nighl's Dream music, and playiog Beethoven's pianoforte concerto in G with extraordinary effect. He returned to his duties at Berlin in September, hut succeeded in persuading the king to free him from his most onerous engagements.

After a brief residence in Franfort, Mendelssohn returned to Leipzig in September 1845, resuming his old dyties at the Gewandhaus, and teaching regularly in the conservatoire. Here he remained, wlth little interruptlon, during the winterintroducing his friend Jenny Lind, then at the height of her popularity, to the crltical frequenters of the Gewandhaus, and steadily working at Elijah, the first performance of which he conducted at the Birmingham festival, on the a6th of August 1846. The reception of this grent work was enthusigstic. Unhappily, the excitement attendant upon its production, added to the irritating effect of the worries at Berlin, made a serious inroad upon the composer's health. On hls return to Leipzig he worked on as usual, but it was clear that his health was seriously impaired. In 1847 he visited England for the tenth and last time, to conduct four performances of Elijah at Exeter Hall, on the 16th, 23rd, 28th and 30th of April, one at Manchester on the $20 t h$, and one at Birmingham on the $\mathbf{2 7}$ th.

But the exertion was beyond his strength. He witnessed Jenny Lind's first appearance at Her Majesty's Theatre, on the 4th of May, and left England on the gth, bittle anticipating the trial that awaited him in the tidings of the sudden death of his sister Fanny, which reached him only a few days after his arrival in Frankfort. The loss of his mother in 1842 had shaken him much, hut the suddenness with which this last intelligence was communicated broke him down. He fell to the ground insensible, and never fully recovered. In June he was so far himself again that he was able to travel, with his family, by short stages, to Interlaken, where he stayed for some time, illustrating the journey hy a series of water-colour drawings, but making no attempt at composition for many weeks. He returned to Leipzig in September, bringing with him fragments of Christus, Loraley, and some other unfinisbed works, taking no part in the concerts, and living in privacy. On the gth of October he called on Madame Frege, and asked her to sing his latest set of songs. She left the room for lights, and on her return found him in violent pain and almost insensible. He lingered for four weeks, and on the 4 th of November he passed away, in the presence of his wife, his brother, and his three friends, Moscheles, Schleinitz, and Ferdinand David. A cross marks the site of his grave, in the Alte Dreifaltigkeits Kirchhof, at Berlin.
Mendelasohn's title to a place among the great composers of the century is incontestable. His style, though differing little in technical arrangement from that of his classical predecessors, is characterized by a vein of melody peculiarly his own, and easily distinguishable by those who have studied his works, not only from the genuine effusions of contemporary writers, hut from the most successful of the servile imitations with which, even during his lifetime, the music-shops were deluged. In less judicious hands the rigid symmetry of his phrasing might, perhapa, have palled upon the ear; but under his akilful management it serves only to impart an additional charm to thoughta which derive their chici beauty from the evident spontaneity of their conception. In this, as in all other matters of a purely technical character, he regarded the accepted laws of art as the medium by which he might most certainly attain the ends dictated by the inspiration of his genius. Though caring nothing for rules, except as means for producing a good effect, he scarcely ever violated them, and was never weary of impressing their value upon the minds of his pupils. His method of counterpoint was modelled in close accordance with that practised by Sebastian Bach. This he used in combination with an clastic development of the sonata-form, similar to that engrafted by Beethoven upon the lines laid down by Haydn. The principles involved in this arrangement were strictly conservative; yet they enabled him, at the very outset of his career, to invent a new style no less original than that of Schubert on Weber, and no less remarkable as the embodiment of canons already consecrated by classical authority than as a special manifestation of individual genius. It is thus that Mendelssohn stands before us as at the same time a champion of conservatism and an apostle of progress; and it is chiefly by virtue of these two apparently incongruous though really compatible phases of his artistic character that his influence and example availed, for so many years, to hold in check the violence of reactionary opinion which injudicious partisanship afterwards fanned into revolutionary fury.
Concerning Mendelssohn's private character there have never been two opinions. As a man of the world he was more than ordinarily accomplishod-brilliant in conversation, and in his lighter moments overfowing with sparkling humour and ready pleasantry, loyal and unselish in the more serious business of life, and never weary of working for the gencra! good. As a friend he was unvaryingly kind, sympathetic and truc. His earnestness as a Christian needs do stronger testimony than that afforded by his own delincation of the character of St Paul; but it is not too much to say that his beart and life were pure as those of a litule child.
(W. S. R.)

This article has the unique value of being the record of an eminent musical scholar who was an actual pupil of Mendelssohn. Nu change of reputation can alter the value of such a record of a man whom even his contemporaries knew to be greater than his Works. Mendelssohn's aristocratic horror of self-advertisement unfited him for triumph in a period of revolution; he died, most inopportunely, when his own powers, like Handel's at the same age, were being wasted on pseudo-classical forms; the new art was not yet ripe; and in the carly Wagner-Liszt reign of terror his was the firit reputation to be assassinated. That of the too modest and gentle "Romantic" pioncer Schumann soon followed; but, as being more diffeult to explain away, and more embarrassing to irreverence and conceit, it remains a subject of controversy. Beanwhile Mendelssohn's reputation, except as the composer of a fcw inexplicably beautiful and orisinal archestral pieces, has sanished and been replaced by - pure fetion known as the "Mendelssohn tradition "of orchestral conducting. This fiction is traceable 10 some characteristic remarks made by Wagner on his experiences of English orchestral playing. remarks which, though not very good-natured, do not bear the fult construction popularly imputed to them. If Beethoven had come and conducted in England, Mendelssohn's expostulations with carcless players would have been met by references to the "Becthoven tradition "; and, if Wagner had shared Mendelssohn's reluctance to putting on record rematks likely to wound individual, prolessional and national sensibilities, it might not have been impossible that teproaches against slipshod and mechanical playing might nowadays be met by relerences to the "Wagner tradition." for Wagner also found himself compelled to concentrate his care on the main items in the overloaded English orchestral programmes, to the detriment of the rest.
Alendelbsohn's mauence on the early career of Joachina is. next to his work in the rediscovery of Bach. his greatest bequest to later musical history. Those many profound and sincere admirera to Joachim to whom the name of Mendelssohn calls up only the Widow in Elijah and the weaker Songs without Words, may find the idea strange; but there is no doubt that Joachim regarded the continuation of a true Mendelssohn tradition as identical with his own efforts to "uphold the dignity of art."
(D. F.T.)

MENDIS, CATULLE (1841 1-1909), French poet and man of letters, of Jewish extraction, was born at Bordeaux on the a2nd of May 1841. He early established himself in Paris, attaining speedy notoricty by the publication in the Revue fandoisiste (r861) of his "Ramen d'une nuit," for which he was condemned to a month's imprisonment and a fine of 500 francs. He was allied with the Parnassians from the beginning of the movement, and dispiayed extraordinary metrical skill in his first volume of poems, Philomsla (1863). In later volumes-Poésics, Ime $^{\text {mo }}$ serie (1876), which includes much of his earlier verse, "Soirs moroses," Contes epiques, Philomda, \&c; Poesies (7 vols., 1885), a new edition largely augmented; Les Polsies de Catulle Mendés (3 vols., 1892); La Grive des pignes (1895), \&c.-his critics have noted that the elegant verse is distinguished rather by dexterous imitation of different writers than by any marked originality. The versatility and fecundity of Mendès's Lalent is shown in a series of his critical and dramatic writings, and of novels and short stories, in the latter of which the continues the French tradition of the licentious conte. For the theatre he wrote: La Part du roi (1872), a one-act verse comedy; Les Frères d'armes (1873), drama, Justice (1877), in three acts, characterized by a hostile critic as a hymn in praise of suicide, the libretto of a light opera, Le Capitaine Fracasse (1878), founded on Theophile Gautier's novel, La Femme de Tabarin (1887), Medee (1898), in three acts and in verse, La Reine Fiammetic (1898), a conte dramatique in six acts and in verse, the scene of which is laid in the ltaly of the Renaissance; Le Fils de l'etoile (1904), the hero of which is Bar-Cochebas, the Synan pseudo-Messiah, for the music of C. Erlanger; Scarron (1905), Ariane (1906), for the music of Massenet; and Glatigny (rgo6) His critical work includes. Richard Wagner (1886), L'Art as thesire (3 vols., 1896-1000), a series of dramatic criticisms reprinted from newspapers; and a report addressed to the minister of public instruction and of the fine arts on Le Mourement pollique framais de 1867 d 8900 (new ed., s903), which includes a bibliographical and critical dictionary of the French poets of the 19th century. Perhaps the most famous of his novels are: Le Roi vierge (1880) in which be introduces Louis II. of Bavaria and Richard Wagner; La Maison de la vielle (2894), and Gog (1897). He married in 1866 Mlle Judith Gautier, younger daughter of the poct, (rom whom he was subsequedtly sepatated.

Oa the oth of February 1909, early in the morning, his dead body was discovered in the railway tunnol of Saint Germain. He had left Paris by the midnight train on the 7th, and it is supposed that, thinking be had arrived at the station, be had opened the door of him compartment while atill in the turnsel.
MENDICANCY (from Lat mendicus, in a condition of beggary, a word of unknown origin), a state or condition of being a beggar. the practice of obtaining a livelihood by asking alms. The word "mendicant," also found in the Frepch form "mendiant," appears to have come into use through the begging triars.
MEMDICART MOVEMENT AND ORDERS. The tacts concerming the rise of the Orders of Mendicant Friars are rekted in the articles on the several orders (Fanncrscans, Donantenns, Carmelites, Augustinuan Herumts), and in that an Monastrcrsw (5 i1), where the difference between friars and monks is explained. The purpose of this article is to characterize the movement as a whole, aad to indicate the circumstances that producod it. The moat striking phenomenon in connexion with the beginnings oi the mendicant orders is the rapidity - with which the movement spread. Within a generation of the death of the two great founders, Dominic (1221) and Francis (1226), their institutes had spread all over Europe and into Asia, and their friars could be numbered by tens of thousands. In all the great cities of Western Europe friaries were established, and in the universities theological chairs were held by Dominicans and Franciscans. And when at the middle of the century the other great mendicant orders of Carmelites and Austin Friars, and also Servites ($q .0$.) arose their propagation ahowed that the possibilities of the mendicant movement had not been exhausted by the Dominicans and Franciscans. Lesser mendicant orders sprang up in all directions-Gasquet mentions half a dozen such that found their way into Englaad (Englisk Monostic Life, p. 241)-in such numbers that the Council of Lyons in 1274 lound it necessary to suppress all except the orders already named. Moreover, besides the various orders of friars, there were the lay Tertiaries that arose and spread far and wide in connexion with the Franciscans and otber mendicants, and the similar institute of the Humiliati (see Terturies). These facts clearly show that the Mendicant Movement responded to widely spread and deeply felt needs of the time. These needs found expression not only in the Mendicant orders within the Church, but also in a number of more or less heretical and revolutionary religious sects. There was this in common among the Cathari, Waldenses, Albigenses and other beretical bodies that overran so many parts of Western Europe in the second half of the 12 th century and the beginning of the 13 th, that they all inveighed against the wealth of the clergy, and preached the practice of austere poverty and a return to the simple Life of Christ and the Apostles. Thus the sectaries no less than the Mendicant orders bear witness to the existence of spiritual needs in Western Christendom, which the Mendicant orders went a long way towards satisfying. Probably the most crying need was that of priests to minister to the great city populations, at that time growing up with such rapidity, especially in Italy. During the roth, rith and rath ceaturies the Church had been organized on the lines of the prevailing feudal system-the bishops and abbots were feudal barons, and the effects of the system were felt throughout the ranks of the lower clergy. The social fabric was built up not on the towns, but on the great landiords; and when the centre of gravity began to move, first of all in Italy, to the towns, and crowded populations began to be massed toget her in them, the parochial systems broke down under the weight of the new conditions, and the people were in a state of spiritual and moral no less than physical destitution. So, when the friars came and established themselves in the poorest localities of the towns, and brought religion to the destitute and the outcasts of society, assimilating themselves to the conditions of ble of those among whom they worked, they supplied a need with which the parochial clergy were unable to cope.
The friars responded not only to the new needs of the age, but to its new ideas-religious, intellectual, social, artistic.

It was a period of roligious revival, and of reaction against abmes that followed in the wake of the feudal system; and this religious movement was informed by a new mysticism - a mysticism that fixed its attention mainly on the humanity of Christ and found its practical expression in the imitation of His life. A now intellecuun wave was breaking over Western Europe, aymbolized by the university and the scholastic movements; and a new spirit of democratic freedom was making fitself felt in the growing commercial towns of Italy and Germany. There is no noed to labour the point that the Mendicants responded to all these noeds and interpreted them within the pale of Catholic Christianity, for the fact lies upon the surface of history. Bul a fow words are necessery on the central idea from which the Mendicants received their name-the idea of poverty. This wan St Francis's root idea, and there is no doubt-though it bas been disputed-that it was borrowed from him by St Dominic and the other Mendicant founders. St Francis did not intend that begging and alms should be the normal means of sustenance for his friars; on the contrary, he intended them to live by the work of their hands, and only to have recourse to begging when they could not earn their livelihood by workBut as the friars soon came nearly all to he priests devoted to spiritual ministrations, and the communitirs grew larger, it became increasingly difficult for them to support themselves by personal work; and so the begging came to play a greater role than had been contemplated by St Francis. But his Idea certainly was that his friars should not only practise the utmost personal poverty and simplicity in their life, but that they should have the minimum of possessions-no lands, no funded property, no fixed sources of income. The maintaining of this ideal has proved unworkable in practice. In the Dominican Order and the others that started as mendicant it has been mitigated or even abrogated. Among the Franciscans themseives it has been the occasion of endless strife, and has been kept alive only by dint of successive reforms and fresh starts, each successful for a time, but doomed always, sooner or later, to yield to the inexorable logic of facts. The Capuchins (q.v.) have made the most permanently successful effort to maintain St Francis's ideal; but even umong them mitigations have had to be admitted. In spite, however, of all mitigations the Fransiscans have neariy always presented to the world an object lesson in evangelical poverty by the poorness and simplicity of their lives and surroundings.
On the subject-matter of this article the beat thing in English is the Introductory Essay by the Capuchin Fr. Cuthbert on ${ }^{\text {a }}$ The Spirit and Genius of the Franciscan Friars," in The Friars and how they came to England (1903): see also the earlier chapiers of Emil Cebhard 's Llatic mystique ((is99).
(E. C. B.)

MENDIP HILLS, a range in the north of Somersetshire, England. Using the name in its widest application, the eastern boundary of the range may be taken to be formed by the upper valleys of the rivers Frome and Brue, and the depressioa between them. The range extends from these northwestward with a major axis of about 23 m. , while the outliers of Wavering Down and Bleadon Hill continue it towards the shore of the Bristol Cbannel. The range is generally about 6 m . in width, and its total area about $130 \mathrm{sq} . \mathrm{m}$. Its southwestern face descends to the low " moors" or marshes drained by the Axe and other streams, the small towns of Axbridge, Cheddar and Wells lying at the foot of the hills. Towards the northeast its limits are less clearly defined, for high ground, intersected by narrow vales, extends as far as the valley of the Avon, A depression, Iollowed by the road between Radstock and Wells, strikes across the range about its centre; the principal elevations lie west of this, and to the area thus defined the aame of the Mendips is sometimes restricted. The summit of the hills is a gently swelling plateau, which reaches its extreme height in the north-1068 ft . The Mendips consist principally of Carboniferous Limestone. Fine cliffs and scars occur on the flanks of the plateau, as in the gorge of Cheddar, and there is a wonderful series of caverns, the result of water action. The surface of the plateau is often broken by deep holes
("swallets") into which streams flow. Some of the caves, such as those at Cheddar, are easy of access, and attract many visitors owing to the beauty of the stalactitic formations; others, of greater extent and grandeur, have only been explored, or partly explored, with great difficulty. Some caves have yielded large quantities of animal remains (hyaenas, bears and others) together with traces of prehistoric human occupation. Among such Wookey Hole, where the river Axe issues from the foot of a cliff, may be mentioned. Lead was worked among the Mendips at a very early period. Some of the Roman workings, especially in the neighbourhood of Charterbouse-onMendip, have yielded piss of lead inscribed with the names of emperors of the 1st and and centuries A.D., togetber with an abundance of smaller objects.
See E. Bater and H. Balch, The Netherworld of Mendip (Clifton, 1907).

MRIDOZA, ANTONIO HURTADO DE ($15933^{7-1644)}$), Spanish dramatist, was born about the end of the 16th century in the province of Asturins, became page to the count de Saldafis (son of the duke de Lerma), and was recognized as a rising poot by Cervantes in the Viaja del Parmaso (16r4). He rose rapidly into favour under Philip IV., who appointed him private secretary, commissioned from him comedias pafaciegas for the royal theatre at Aranjuex, and in 1623 conferred on him the orders of Santiago and Calatrava. Most of his contemporaries and rivals paid court to "el discrefo de palacio," and Mendoza seems to have lived on the friendliest terms with all his brotherdramatists except Ruiz de Alarcón. He is said to have heen involved in the fall of Olivares, and died unexpectedly at Saragossa on the 19th of Scptember 1644. Only one of his plays, Querer por solo querer, was published with his consent; it is included in a volume (16a3) containing his semi-official account of the performances at Aranjuez in 1622 . The best edition of Mendoza's plays and verses bears the title of Obres liricas y comicas, divinas y humanas (1728). Much of his work does not rise above the level of graceful and accomplished verse; but that he had higher qualities is shown by El Maride hace mujer, a brilliant comedy of manners, which forms the chief source of Molière's Bcole des maris.

The Fieste quee so hime er Aranjues and Querer por solo querer were translated into English by Sir Richard Fanshawe, afterwards ambassador at Madrid, in a posthumous volume published in 1671.

MENDOZA, DIEGO HURTADO DE (1503-1575), Spanish novelist, poet, diplomatist and historian, a younger son of the count of Tendillas, governor of Oranada, was born in that city in 1503. The celehrated marquis of Santillana was his great-grandfather. On leaving the university of Salamanca, Mendoza abandoned his intention of taking orders, served under Charles V. in Italy, and attended lectures at the universities of Bologna, Padua and Rome. In 1537 he was sent to England to arrange a marriage between Henry VIII, and the duchess of Milan, as well as a marriage between Prince Louis of Portugal and Mary Tudor. Despite the failure of his mission, be preserved the confidence of the emperor, and in 1539 was appointed ambassador at Venice; there he patronized the Aldi, procured copies of the Greek manuscripts belonging to Cardinal Bessarion, and acquired other rare codices from the monastery of Mount Athos. The first edition of Josephus was printed (1544) from the texts in Mendozs's collection. He acted for some time as military governor of Siena, represented Spain diplomatically at the council of Trent, and in 1547 was nominated special plenipotentiary at Rome, where be remained till 1554. He was never a favourite with Philip II., and a quarrel with a courtier resulted in his banishment from court (June 1568). The remaining years of his life, which were spent at Granada, be devoted to the study of Arabic, to poctry, and to his history of the Moorish insurrection of 1568-1570. He died in 1575 . His Guerra de Gromade was published at Lisbon by Luis Tribaldos de Toledo in 1627; the delay was doubtless due to Mendoza's severe critictimn of conternporaries who survived him. In some passages the author deliberately imitates Sallust and Tacitus; his style is, on the whole, vivid and trenchant,
his information is exact, and in critical iasight he is not inferior to Mariana. The attribution to Mendoza of Lazarillo de Tormes is rejected by all competent scholars, but that he excelled in picaresque malice is proved by his indecorous verses written in the old Castilian metres and in the more elaborate measures imported from Italy. Mendoza is believed to be the author of the letters to Feliciano de Silva and to Captain Salazar, published by Antonio Paz y Melia in Sadas Espatiolas (Madrid, 1900).
See A. Senán y Alonso, D. Diego Hurlado de Mendona, apmutes biogrdfico-criticos (Granada, 1886); Calendar of Letters and Papers forcign and domestic, Henry VIII., vols. xii. and xiii.; C. Graux. Essai sut rorigine du fonds prec de l'Escurial (Paris, 1830); R. Foulché-Delbosc, "Etude ear la Guerra de Granada "in the Rowne hispanique (Paris, 1894), vol. i.

MENDOZA, PEDRO GOMZALEZ DE (1428-1495), Spanish cardinal and atatesman, was the fourth son of Infgo Lopez de Mendoza, marquess of Santillana, and dukeof Iniantado. He was born at Guadalajara in New Castile, the chief lordship of his family, on the 3rd of May 1428. The house of Mendoza claimed to descend from the lords of Llodio in Alava, and to have been settled in Old Castile, in the ritb century. One chief of the house had been greatly distinguished at the battle of the Navas do Tolosa in 1212. Another had been Admiral of Castile in the relgn of Alphonso the Wise. Peter the Cruel had endowed them with the lordships of Hita and Buitrago. The great ness of the Mendozas was completed by Pedro Gonzalez, who sacrificed his life to save King Jobn I. at the battle of Aljubarrote in 1385 . The cardinal's father, the marquis of Santillanato use the title be bore for the greater part of his life-was a poet, and was conspicuous during the troubled reign of John II. Loyalty to the Crown was the traditional and prevailing policy of the family. Pedro Gonzalex, the future cardinal, was sent into the Church mainly because he was a younger son and that be might be handsomely provided for. He had no vocation, and was an example of the worldly, political and martial prolates of the Igth century. In 145a at the age of twentyfour, he was chosen by the king Jobn II. to be bishop of Calahorra, but did not receive the pope's bull till 1454. As bishop of Calahorra he was also softor, or civil and military ruler, of the town and its dependent district. In his secular capacity he led the levies of Calahorra in the civil wars of the reign of Henry IV. He fought. for the king at the second battle of Olmedo on the 20th of August 1467, and was wounded in the arm. During these years be beceme attached to Dofia Mencia de Lemus, a Portuguese lady-in-waiting of the queen. She bore him two sons, Rodrigo, who was once selected to be the husband of Lucrezia Borgia, and Diego, who was the grandfather of the princess of Eboli of the reign of Philip II (see Perez, Antonto.) By another lady of a Valladolid family he had a third son whe afterwards emigrated to France. In 1468 be became bishop of Siguenza. In 1473 he was created cardinal, was promoted to the archbishopric of Seville and named chancellor of Castile. During the last years of the reign of King Henry IV. he was the partisan of the Princess Isabells, afterwards queen. He fought for her at the batile of Toro on the 1st of March 1476; had a prominent part in placing her on the throne; and served her indefatigably in her efforts to suppress the disorderly nobles of Castile. In 1482 he became archbishop of Toledo. During the conquest of Granada he contrihuted largely to the maintenance of the army. On the and of January 1492 he occupied the town in the name of the Catholic sovereigns. Though his life was worldly, and though he was more soldier and statesman than priest, the "Great Cardinal," as be was commonly called, did not neglect his duty as a bishop. He used his influence with the queen and also at Rome to arrange a settlement of the disputes between the Spanish sovereigns and the papacy. Though he maintained a splendid bousehold as archbishop of Toledo, and provided handsomely for his children, be devoted part of his revenue to charity, and with part he endowed the college of Santa Crux at Valladolid. His health broke down at the close of 1493 . Queen Isabelia visited and nursed him on his deathbed. It is said that he recommended her to chooce as his successor the Franciscan Jimenez de Cisneroe,
a man who had no likeness to himself save in political faculty and devotion to the authority of the Crown. He died at Guadalajarz on the irth of January 1495.
The life of the cardinal, by Salazar de Mendoza, Cronica del gran cordinal Don Pedro Gonzales de Mendosa (Toledo, 16a5), is diacursive and garrulous but valuable. See also Prescegt, Hisfory of Fardinand and lsabella.

MEmDOZA, a province of western Argentina, bounded N. by San Juan, E. by San Luis and the territory of La Pampa, S. by the territories of La Pampa and Neuquen, and W. by the republic of Chile. Area, 56,502 ac. m.; pop. (1895), 116,136; (rgo4, estimate), 159,780. The Andes form the western boundary, and a considerable part of the territory is covered by the great Cordillera, its loothills and fanking ranges. The eastern part is an arid, sandy, level plain, with extensive saline basins, having no vegetation other than coarse grasses and thickets of low, spiny mimosas and "chafiar" (Gourlicea decorticoms). The fertiie, populated districts of the province border on the Cordillera, particularly in the Dorth where numerous streams from the snow-clad summits supply water for irrigation. The secondary ranges in this part of Mendoza are the Sierra de los Paramillos, which encloses the Uspallata Valley, and the Sierra del Tunuyain, which encloses a number of populous valleys drained by the Tumuyin river and its tributaries. One of the largest of these is the Yuco Valley. Farther south the country becomes more arid and sparsely populated, and unsubdued tribes of Indians for a long time prevented ita exploration. In this region the Sierra de Payén and Sierra del Nevado (otherwise known as the Sierra Quero Matro Pellon) extend in a north-easterly direction. With the exception of the Rio Grande in the south-west part of the province, which forms the principal source of the Colorado, all the rivers of the province flow easterly and southerly into the great saline depression of western Argentina, which includes a great part of Mendoza, San Luis and La Pampa. The Andean streams rise in the higher snow-clad elevations, but their waters betome impregnated witb saline matter soon after reaching the plain, and are eventually lost in the suline marshes and lagoons of southern Mendoza and La Pampa. These Andean rivers are the Mendoza, Tunuyin, Diamante and Atuel, with their numerous tributaries, all of which discharge into the sluggish river which flows from the Huanacache lagoons, on the San Juan frontier, southward to the marshes and lagoons of La Pampa: The upper part of this brackish, swampy stream is called the Desaguadero, and the lower the Salado. It forms the eastern boundary line of the province down to the 3 th parallel. With the exception of the elevated districts of the Andes, the climate of Mendoza is hot and dry. On the plains the rainfall is insignificant, but on the slopes of the Cordillera rains are frequent and winter cold is severe. Agriculture is the principal occupation where irrigation can be used, the province having a high reputation for its raisins and wines. Alfalfa is an important product, being grown for fattening the cattle driven through the province to the Chilean markets. The mineral resources of the province are said to be good, but receive little attention. Petroleum is found is the vicin'ty of San Rafael, on the Diamante river, and it is claimed that coal exists in the same region. Although Mendoza was settled by Spanish colonists from Chile as far beck as 1559, its development has been bindered by its isolated position. This isolation was broken in 1884 by the completion of the Argentine Great Western railway to the provincial capital. Since then a railway has been built northward to San Juan, and another line was in 1908 under construction through the Andes to connect with the Chilean railway system. In addition to Mendoza, the capital of the province, the principal towns (hardiy more than villages) are Guaymallén, Maipú, San Martin, Lujan and San Rafael. The provinces of Mendoza, San Juan and San Luis, which were settied from Chile and were for a long time governed from Santiago, were at first called the province of Cuyo, and are still spoken of as the "Cuyo provinces."

MENDOZA, a city of Argentina, capital of Mendoza province, 632 m . by rail W.N.W. of Buenos Aires. Pop. (1904, estimate),

32,000. It stands on a piain near the foot of a secondary Andean range called the Sierra de los Paramilios, at an elevation of 2330 ft . The surrounding district is arid, but has been irrigated and is covesed with gardens, orchards and cultivated ficids. The city is ahout 15 m . N. of the Mendoza, or Lujan river, whose waters are utilized for irrigation and for the requirements of the city by means of a channel which leaves the main river a little above the town of Lujan and runs to the Tulumaya river and the lagoons of Huanacache. This chanacl is called El Zanjon, and is believed to have been opened by Guaymallén, the chief of the Guarpes who inhabited this district at the time of the Spanish conquest, but it is more probably natural. The city is laid out in a. regular manner with broed well-paved streets and numerous public squares. The Zanjon and another stream called the Guaymallén traverse the city, and the principal streets have water flowing through them and are shaded by poplars. Because of earthquake risks, the public buildings are neither costly nor imposing. The private residences are commonly of one storey, built with wooden frames filled in with adobas. The climate is hot, dry and enervating, notwithstanding the elevation and the proximity of the Andes. The surrounding districts produce fruit, vegetahles, alfalfa and cereals. The vineyard industry is prominent, and raisins and wine are exported. The position on the main route across the Andes into Chile, by way of the Uspallata or Cumbre pass (highest point $12,870 \mathrm{ft}$.), has given the city commercial importance. It has railway connexion with the principal cities of the republic, including the ports of Rosario, Buenos Aires and Bahia Blanca, and also with the capital of San Juan.

Mendoza was founded by Captain Pedro del Castillo, who had been sent from Santiago across the Andes in 1559 by Garcia Hurtado de Mendoza, the governor of Chile, to conquer and annex the territory extending N.E. to Tucuman. The city was named after Mendoza. It was made the capital of the province of Cuyo, and belonged to Chile down to 1776, when the province was transferred to the newly created viceroyalty of La Plata. It was the headquarters of General San Martin while he was organizing an army for the liberation oi Chile, and greatly assisted him with men and money. Under republican administration Mendoza suffered much from revolutions. Moreover, on the 20th of March 1861, the city was destroyed by an earthquake and a fire which followed. Not a building was left standing, and the loss of life was estimated at 10,000 to 12,000. The French geologist Bravard, who had predicted the catastrophe, was one of its victims. The poplars in the streets, together with some species of fruit-trees, were first planted in Mendoza by a Spaniard, Juan Cobos, in 1809, who thus became one of its greatest benefactors.

MENBDEMUS, Greek philosopher, and founder of the Eretrian school of thought, was born at Eretria about 350 and died between 278 and 275 8.c. Though of noble birth, he worked as builder and tentmaker until he was sent with a military expedition to Megara, where, according to Diogenes Laertius, be heard Plato and resolved to devote himself to philosophy. It is more likely that he heard one of Plato's followers, inasmuch as Plato died when he was only four years old, if the above dates are correet. At Megara he formed a life-long friendship with Asclepiades, with whom he toiled in the night that he might study philosophy by day. He was subsequently a pupil first of Stipo and then of Phaedo of Elis, whose school he transferred to Eretria, by which name it was afterwards known. In addition to his philosophical work, he took a leading part in the polltical affairs of his city from the time of the Diadochi until his death, and obtained a remission of the tribute to Demetrius. His friendship with Antigonus Gonatas scems to have roused suspicion as to his loyalty, and he sought safely first in the temple of Amphiaraus at Oropus, and later with Antigonus, at whose court he is said to have died of grief. Other accounts say that he starved himself to death on failing to induce Antigonus to free his native city. His philosophical views are known only in pari. Athenaeus quotes Epicrates as stating that he was a Platonist, but orber accounts credit
him with having preferred Stilpo to Plato. Diogenes Latitius (ii. 134 and 135) says that he declined to identify the Good with the Useful, and that he denied the value of the negative proposition on the ground that affirmation alone can express truth. He probably meant to imply that qualities have no existence apart from the subject to which they belong. In ethjes we learn from Plutarch (Devirt. mor. 2) and from Cicero (Acod. ii. 42) that he regarded Virtue as one, by whatever name it he called, and maintained that it is intellectual. Cicero's evidence is the less valuable in tbat he always assumed that Menedemus was a follower of the Megarians. Diogenes says that be left no writings, and the Eretrian school disappeared after a short and unobtrusive existence.
Beside the ancient sources quoted above, see H. Mallett. Histoire de I'ccole de Mtgare et des ocoles d'Elis al d'Eretrie (1845). Also the articles Megarian School; Phaedo; Stilpo.

MENELADS. in Greek legend, son of Atreus (or Pleisthenes), king of Sparta, brother of Agamemnon and husbayd of Heten. He was one of the Greeks who entered Troy concealed in the wooden horse (Virgil, Aeneid, il. 264) and recovered his wife at the sack of the city. On the voyage bomewards his fleet was scattered of Cape Malea by a storm, which drove him to Egypt. After eight years' wandering in the east, he landed on the island of Pharos, where Proteus revealed to him the means of appeasing the gods and securing his return. He reached Sparta on tbe day on whicb Orestes was holding the funeral feast over Aegistbus and Clytaemnestra. After a long and happy life in Lacedseman, Menelaus, as the son-in-law of Zeus, did not die but was translated to Elysium (Homer, Odyssey, iii. iv.). His grave and that of Helen were shown at Therapnae, where he was worshjpped as a god (Pausanias iii. 19, 9). He was represented in works of art as carrying off the body of the dead Patroclus or lifting up his hand to slay Helen.
Menelek il. (Sahala Mariem), emperor of Abyssinia, officially negus negusti (king of kings) of Ethiopia (1844-), son of Haeli Melicoth, king of Shoa, was borh in 1844, and claimed to be a direct descendant of Solomon by the queen of Sheba. On the death of his father in 1855 be was kept a prisoner at Gondar by Kassai, the governor, who had seized the throne under the title of Tbeodore III. But having succeeded in effecting his escape he was acknowledged king of Shoa, and at once attacied the usurper. These campaigns were unsuccesslul, and he turned bis arms to the west, east and south, and annexed much territory to his kingdom, still, however, maintaining his divine right to the crown of Ethiopia. After the deatb of Theodore in 1888 he continued to struggle against his successor, the emperor Johannes (better known to Europeans as King John of Abyssinia). Being again unsuccessful, he resolved to await a more propitious occasion; so, acknowledging the supremacy of Jobannes, in 1886 be married his daughter Zeodita (b. 1876) to the emperor's son, the Ras Area; he was thereupon declared heir to the empire, and on bis side acknowledged the Ras Area as his successor. Ras Area died in May 1888, and the emperor Johannes was killed in a war against the dervishes at the battle of Gallabat (Matemma) on the 1oth of March 1889. The succession now lay hetween the late emperor's natural son, the Ras Mangasha, and Menelek, but the latter was elected by 2 large majority on the 4 th of November, and consecrated shortly afterwards. Menelek bad married in 1883 Taftu (b. 1854) a princess of Tigre, a lady who bad been married four times previously and who exercised considerable influence. Menelek's clemency to Mangasha, whom he compelled to suhmit and then made viceroy of Tigre, was ill repaid by a long series of revolts. In 1889, at the time when he was claiming the throne against Mangasha, Menelek signed at Uccialli a treaty with Italy acknowledging Italian claims to the Asmara district. Finding. however, that according to tbe Italian view of one of its articles the treaty placed bis empire under Italinn domination, Menelek denounced it; and after defeating the Italians at Amba-Alagi, he compelled them to capitulate at Adowa in February 1896, and a treaty was signed recognizing the absolute independence of Abyssinia. His Freach sympathies were shown in a reported
official offer of treasure towards payment of the indemnity at the close of the Franco-Prussian War, and in February 1897 he concluded a commercial treaty with France on very favourable terms. He also gave assistance to French officers who sought to reach the upper Nile from Abyssinia, there to join forces with the Marchand Mission; and Abyssinian armies were sent Nilewards. A British mission under Sir Rennell Rodd in May 1897, however, was cordially received, and Medelek agreed to a settlement of the Somali boundaries, to keep open to British commerce the caravan route hetween Zaila and Harrar, and to prevent the transit of munitions of war to the Mahdists, whom he proclaimed enemies of Abyssinia. In the following year the Sudan was reconquered by an Anglo-Egyptian army and thereafter cordial relations between Menclek and the British authorities were established. In 1889 and subsequent years, Menelek sent forces to co-operate with the British troops engaged agninst the Somali mullab, Mahommed Abdullah. Menelek had in 1898 crusbed a rebellion by Ras Mangasha (who died in 1906) and he directed his efforts henceforth to the consolidation of his authority, and in a certain degree, to the opening up of his country to western civilization. He had granted in 1894 a concesaion for the building of a railway to his capital from the French port of Jibuti, but, alarmed by a claim made by France in 1902 to the control of the line in Abyssinian territory, be stopped for four years the extension of the railway beyond Dire Dawa. When in 1906 France, Great Britain and Italy came to an agreement on the subject, Menelek officially reiterated his full sovereign rights over the whole of his empire. In May 1909 the emperor's grandson Lij Yasu, or Jeassu, then a lad of thirteen, was married to Romanie (b. 1902), granddaughter of the negus Johannes. Two days later Yasu was publicly proclaimed at Adis Ababa as Meneiek's succestor. At that time the emperor was seriously ill and as his ill-health continned, a council of regency-from which the emperor was excluded-was formed in March 1910. (See also Abyssinia.)
MENENDEZ Y PELAY YO, MARCELMTO (1856-), Spanish scholar and critic, was born at Santander on the 3rd of November 1856. In $1871-1872$ he studied under Milíy Fontanals at the university of Barcelona, wbence he proceeded to the central university of Madrid. His academic successes had never been surpassed; a special law was passed by the Cortes to enable him to become a professor at the age of twenty-two, and three years later he was elected a member of the Spanish Academy. But before this date (1882) he was well known throughout Spain. His first volume, Estudios crificas sobre escritores montalieses (1876), had attracted little notice, and his scholarly Horacio en Esparta (I_{777}) appealed quly to students. He became famous through his Ciencia espariola (1878), a collection of polemical essays defending the national tradition against the attacks of political and religious reformers. The unbending orthodoxy of this work is, if possible, still more pronounced in the Historia de los heterodoxos espatoles ($1880-1886$), and the writer was hailed as the champion of the ultramontane party. His lectures (188i) on Calderon established his reputation as a literary critic; and his work as an historian of Spanish literature was continued in his Historia de las ideos esteticas en Esparia (1881-1891), his edition (1890-1903) of Lope de Vega, his Antologla de poctas llricos castellanas (1890-1906), and his Origenes de le novela (1905).

MENBMIUS LANATUS, AGRIPPA. Roman patrician and statesman, consul 503 B.c. On the occasion of the first secession of the people to the Sacred Mount, Agrippe, who was known to be a man of moderate views, was one of the commissioners empowered by the senate to treat with the seceders. Onthis occasion be recited the well-known fable of the belly and the members
Livy ii. 16, 33, 33: Dion. Halic. v. 44-47: v. 49-88, 96; Val. Max. iv. 4. 2.
M13ntss, the name of the founder of the ist Dynasty of historical kings of Esypt. He appears at the head of the lists not only in Herodotus and Manetho, but also in the native Turin Papyrus of Kings and the lists of Abydos, while the list
of Sakkara begins with the sixth king of the rat Dynasty, a fact which may throw some douht on the supposed foundation of Memphis by Menes. Until recently he was looked upon as semi-mythical, hut the discovery of the tombe of many kings of the ist Dynasty including probably thet of Menes himself, as well as an abundance of remains of still earlier ages in Egypt has given him a personality. He was-prohatly ruler of Upper Egypt and conquered the separate kingdom of Lower Egypt.

See EgYFT ; K. Sethe. "Menes und die Grundung von Memphis," in his Untersuchungen zucp Geschichte and Allerthumsixnde Aegyptens, iii. I2t.
(F. LL. G.)

MENGS, ANTONY RAPHAEL (1728-1779), German painter, was born in 1728 at Aussig in Bohemia, hut his father, Ismacl Mrengs, a Danish painter, estahlished himself finally at Dresden, whence in 1741 he took his son to Rome. The appointment of Mengs in 1749 as first painter to the elector of Saxony did not prevent his spending much time in Rome, where he had married in 1748, and abjured the Protestant faith, and where he became in 1754 director of the Vatican school of painting, nor did this hinder him on two occasions from obeying the call of Charles III. of Spain to Madrid. There Mengs produced some of his best work, and specially the ceiling of the banqueting-hall, the suhject of which was the Triumph of Trajan and the Temple of Glory. After the completion of this work in 1777, Mengs returned to Rome, and there he died, two years later, in poor circumstances, leaving twenty children, seven of whom were pensioned by the king of Spain. Besides numerous paintings in the Madrid gallery, the Ascension at Dresden, Perseus and Andromeda at St Petersburg, and the ceiling of the Villa Albani must be mentioned among bis chief works. In England, the duke of Northumberland possesses a Holy Family, and the colleges of All Souls and Magdalen, at Oxford, bave altar-pieces by his hand. In his writings, in Spanish, Italian and German, Mengs has put forth his eclectic theory of art, which treats of periection as attainable by a well-scherned combination of diverse excellences-Greek design, with the expression of Raphael, the chiaroscuro of Correggio, and the colour of Titian. His intimacy with Winckelmann-who constantly wrote at his dictation-has enhanced his historical importance, for be formed no scholars, and the critic must now concur in Goethe's judgment of Mengs in Winckelmann urd seix Jahrhurderl; he must deplore that so much learning should have been allied to a total want of initiative and poverty of invention. and embodied with 2 strained and artificial mannerism.

See Opers di Antonio Raffaello Mcags (Parma, 1780): Mongs Werke, ubersel:t p. G. F. Prange (1786): Zcilschrifi fur bildende Kunst (1880); Bianconi, Elagio storico di Mengs (Milan, 1780); Woermann, smael uxd Raphael Mengs (Leipzig, 1893).
mengisze, a city in the S.E. of the province of Yunnan, China. Pop. about 12,000 . It was selected by the French convention of 1886 as the seat of the overland trade hetween Tongking and Yunnan, and opened two years later. It is beautifully situated in the centre of a valley basin on a plateau 3500 ft . above sea-level. The country round is fertile and well cultivated, and the place must have been one of considerable wealth before the T'aip'ing rebellion, as the ruins of many fine temples attest. A considerable overland trade has sprung up since the opening of Mengtsze. Of the import trade Hong-Kong supplied 86%, and of the export trade 70%, Cochin-China, Tongking and Annam claiming the remainder. Tin (68%) and opium (27.8%) are the principal exports, and textiles (75%), mostly cottons, and tobacco (4%) are the clief imports. On the Tongking side this trade follows the Red River route as far as Manhao, which is distant from Mengtsze about 40 m ., though the navigation of the river is difficult. From Manhao the transit is by coolics or pack animals. Concessions have been obtained by the French government to build a line of railway from the Tongking fronticr at the town of Laokay via Mengtsze to Yunnam-fu. The climate is equable and healthy.
MENHADEN, economically one of the most important fishes of the United States, known by a great number of local names, "menhaden" and "mosshunker" being those most generally
in nee. The Indians and white settlers used it as a manure, and the name is Narragansett for "fertilizer." Its scientific name is Clupea (or Alosa) menhaden and Brevoortia syrannus. It is allied to the European species of shad and pilchard, and, like the latter, approaches the coast in immense shoals, which are found throughout the year in some part of the littoral waters between Maine and Floride, the northern shoals retiring into deeper water or to. more southern latitudes with the approach of cold weather. The average size of the menhaden is about 12 in . It is too bony and oily for a table-fish, but is used as baic for cod and mackerel. A large fleet is engaged in the fishery; and a great number of factorigs extract the oil for tanning and currying, and for adulterating other more expensive oils, and manufacture the refuse into a valuable guano.
ambial that which belongs to household or domestic service, bence, particularly, a domestic servant. The idea of such service being derogatory has made the term one of contempt. The word is derived from an obsolete meinic or meyney, the company of household servants or retainers; a Scottish form is mensie. The origin is to be found in the O.Fr. mesnie, popular Lat. mansionata, from mansio mansion. from which comes Fr. maison, bouse.

MENIBR, EMILE JOETIT ($1826-1881$), French manufacturer and politician, was born at Paris in 1826. In 1853, on the death of his father, Antoine Brutus Ménier, he became proprietor of a large drug factory, founded in 1815 by the latter at Saint Denis, Paris, and in 1825 at Noisiel-sur-Marne. Antoine Brutus Ménier had also manufactured chocolate in a small way, but. Emile Justin from the first devoted himself specially to chocolate. He purchased cocoa-growing eatates in Nicaragua and beet-fields in France, crected a sugar-mill, and equipped himself in other ways for the production of chocolate on a large scale. In 1864 he sold his interest in the drug-manufacturing husiness, and thenceforth confined himelf to chocolate, huilding up an immense trade. Menier was a keen politician, and from 1876 till his death had a seat In the French Chamber, his general views being strongly Repuhlican, while be consistently opposed protection. He was the author of several works on fiscal and economic questions, notahly L'Impot sur le caprital (1872), La Reforme fistale (1872), Economie rurala (1875), L'Avenir tcoyomigue ($1875-1878$), Allas de la production de la richesse (1878). He died at Noisiel-sur-Marne in 1881, his sons sueceeding to the business.

MENIERE'S DISEASE, a form of auditory vertigo, first described by a French physician, Emile Antoine Méniłre, in 1861. It ueually attacks persons of middle age whose hearing has been previously normal. A. Politzer gives the following as the principal causes: intense heat and exposure to the sun, rheumatism, influenzn, venereal diseases, anaemia and leukaemia. The disease presents itself in various forms, hut the most usual is the apoplectoform, due to haemorrhage into the lahyrinth, followed hy more or less complete deafness in either or hoth ears. The attack usually sets in with dizriness, noises in the cars, nausea, vomiting and ataggering gait, and the patient may suddently fall down with loss of consciousness. The seizures are usually paroxysmal, occurring at irregular Intervals of days or weeks. Between the attacks the equilihrium may he disturbed, there being marked nystagmus and unsteadiness of gait. The attacks of vertigo tend to become less frequent and may entircly pass away, but the deafness may remain permanent. The treatment is directed towards relieving the trouhlesome head symptoms by the application of cold compresses. The drug that has proved most serviceable in diminishing the dizziness is potassium iodide, administered daily for at least a month. Politzer considers that the attacks may be averted by producing rarefaction of the air in the external meatus of the ear hy means of a specially devised aspirating tube.

MBNIN (Flemsh Mf cenen), a town of Belgium in the province of West Flanders situated on the Lys 7 m . S. of Courtrai. Pop. (1904), 19,377. It manufactures linen and flannel, and in the neighbourhood are extensive tobaeco platations. It was first
fortified in 1578 , and in 1685 Vauban made it one of the strongest places on the French frontier, but the fortifications were razed in 1748 by the treaty of Aix-la-Chapelle.

MENINGITIS (from Gr. μ fincy $\boldsymbol{H}_{\text {, a membrane), a term in }}$ medicine applied to inflammation affecting the membianes of the brain (cerebral meningitis) or spinal cord (spinal meningitis) or both.

Tubercular cerebral mantingitis (or Acuto Hydrocephalus) is a disease due to inflammation of the meninges of the brain produced by the presence of a tubercle bacillus. This disease is most common in children under ten years of age, but may affect adults. The tubercular constitution is an important factor in this malady. In numerous cases it is manifestly connected with bad bygienic conditions, with insufficient or improper feeding, or with over exercise of the mental powers, all of which will doubtless more readily exert their influence where an inherited liability exists, and the same may be said regarding its occasional occurrence as one of the after consequences of certain of the diseases of childhood, especinlly measles and whooping-cough.

There are certain typical fcatures characterizing the disease in each of its stages. The premonitory symptoms are mostly such as relate to the general nutrition. A falling off in Resh and failure of strength are often observed for a considerable time before the characteristic phenomena of the disease appear. The patient, If a child, becomes listless and casily fatigued, loses appetite, and is restless at night. There is beadache alter cxertion, and the child becomes unusually irritable. These symptoms may persist during many weeks; but on the other hand such premonitory indications may be entirely wanting, and the disease be developed to alt appearance suddenly.
The onset is in most instances marked by the occurrence of vomititsg, often severe, but sometimes only slight, and there is in general obstinate constipation. In not a few, cases the first symptoms are convulsions, which; however, may in this early stage subside, and remain absent. or reappear at a later period. Headache is one of the most constant of the earlicr symptoms, and is generally intense and accompenied with sharper paroxysms, which cause the patient to scream, with a peculiar and characteristic cry. There is great intolerance of light and wound, and general nervous sensitivencss. Fever is present to a greater or less extent, the temperature ranging from 100° to 103° F.; yet the pulse is not quickened in proportion, being on the contrary rather slow, but extribiting a tendency to irregularity, aad liahle to become rapid on slight exertion. The breathing, too, is somewhat irregular. Symptoms of this character, constituting the stage of excitement, continue for a period varying from one to two weeks, when they are succeeded by the stage of depression. There is now a marked change in the symptoms, which is apt to lead to the belief that a favourable turn has taken place. The patient becomes quieter and inclines to sleep, but it will be found on careful watching that this quietness is but a condition of apathy or partial stupor into which the child has sunk. The vomating has ceased, and there is less fever; the pulse is slower, and shows a still greater tendency to irregularity thaa before, while the breathing is of markedly unequal character, being rapid and shallow at one time, and fong drawn out and sinking away at another. There is manifestly little suffering, although the peculiar cry may still be uttered, and the patient lies prostrate, occasionally rolling the head uneasily upon the pillow, or picking at the bedclothes or at his face with his fingers. He does not ask for food, but readily swaliows what is offered. The countenance is pale, but is apt to fush up suddenly for a time. The eyes present important alterations, the pupils being dilated or unequal, and scarcely responding to light. There may be double vision, or partial or complete blindncss. Squinting is common in this stage, and there may also be drooping of an eyelid, duc to paralysis of the part, and one or more limbs may be likewisc paralywed.
To this eucceeds the third or final stage, in which certain of the former symptoms recur, while others become intensified. There is generally a yeturn of the fever, the temperature rising sometimen very high. The pulse becomes feeble, rapid, and exceedingly irregular, as is also the case with the breathing. Coma is prolound, but yet the patient may still be got to swallow nourishment, though not so readily as before. Convulsions are apt to oocur, while paralysis, more or less extensive, affects portions of the body or groups of muscles. The pupils are now widely dilated, and there is generally complete blindness and often deafness. In this condition the patient': strength undergoes rapid decline, and the body becomes markediy emaciated. Death takes place cither suddenly in a fit, or more gradually from exhaustion. Shortly before death it is not uncommon for the patient, who, it may be for many days previously, lay in a state of profoand stupor, to a rake up, ask for lookl, and talk to thome around. The duration of a case varics komewhat, but in general death takes place within three weeks from the onset of the symptoms. The disease may be said to be
almost invariably fatal, yet cases presenting all the principal symptoms occasionally recover.
Much may be done in the way of prevention of this disease, and, in its earlier stages, even in the way of curc. It is most important in families where the history indicates a tuberculous or scrofulous tendency, and particularly where acute hydrocephalus has already occurred, that every eflort should be used to lortify the system and avoid the causes already alluded to as favouring the development of the disease during that period in which children are liable to suffer from it. With this view wholesome food, warm clothing, cleanliness, regularity, and the a voidance of over-exertion, physical and mental, are of the utmost consequence.
Timely use of remedics may mitigate and even occasionally remove the symptoms when they arise. The maintenance of the patient's strength by lighe nourislment and the use of sedatives to compose the nervous system are the measures most likely to be attended with success. Bromide, combined with iodide of potassium, is the medicinal agent of most value for this purpose. Should convulsions oceur. they are best treated by chloral or chloroform.
In what is known as suppurazte, or simple acute menngitis (non-tubercular), the disease arises from various causes, and the symptoms are similar to those described above.
In posterior-basic menirgilis, inflammation of the membranes investing the posterior basic spinal cord, the chief symptoms are fever, with severe pain in the back or loins shooting downwards into the limbs (which are the seat of frequent painful involuntary startings), accompanied with a feeling of tightness round the body.

The local symptoms vear relerence to the portion of the cord the membranes of which are involved. Thus when the inflammation is located in the cervical portion the muscles of the arms and chest are spasmodically contracted, and there may be difficuliy of swallowing or breathing, or embarrassed heart's action, while when the disease is seated in the lower portion, the lower limbs and the bladder and rectum are the parts affected in this way. At first there is excited sensibility (hyperaesthesia) in the parts of the surface of the body in relation with the portion of cord affected. As the disease advances these symptoms give place to those of partial loss of power in the affected muscles, and also partial anaes. thesia. These various phenomena may entircly pass away, and the patient after some weeks or months recover; or, on the other hand, they may increase, and end in permanent paralysis.
Some observers regard these forms as sporadic cases of cerebroopinal fever; and Still, William Hunter and George Nuttall have isolated an organism simitar to the diplococcus intracellularis, while Henry Koplik in New York found cases of typical posteriorbesic meningitis due to the diplococcus intracellularis.

The treatment is directed to allaying the pain and inflammatory action by opiates. Ergot is recommended by many physicians. The patient should have perfect rest in the recumbent, or better stilf in the prone, position. Cold applications to the spine may be of use, while attention to the functions of the bladder and bowels. and to the condition of the skin with the view of preventing bedsores, is all-important.
Cerebro-spinal feter or epidemic cercbro-spinal meningitis, popularly called "spotted fever," is an infectious disease occurring sporadically or in epidemics, and due to the diplococcus intracellularis discovered by Weichselbaum in 1887. This disease was not recognized until the igth century. It was first described at Geneva in 1805 and small outbreaks followed in Paris (1814), Metz and Genoa (1815), and Wcstphalia (1822), but in the United States there was a widespread epidemic, including New England and spreading as far as Kentucky and Ohio. Fresh outbreaks in Europe took place between 1837 and 1850. In 1837 it prevailed in the south of France chiefly amongst troops in gartison, and tresh outbreaks continued throughout France in 1846 with epidemics in Algiers, Italy and Sicily. In Great Britain it first showed itself in the Irish workhouses in 1846, where it was known as "the black death " or " malignant purpuric fever." Aster $\$ 866$ except for sporadic cases it disappeared from Great Britain, hut small outbreaks took place in 1885 to 1900 in Dublin. In 1905 there was an extensive epidemic in New York, followed by an outbreak in Scotland in 1906, and in Scotland and Ireland in 1907-1908. The registrargeneral's returns for 1907 give ror8 deaths in Scotland due to the discase, of which 711 were at Giasgow and 148 at Edinburgh. In the same year Belfast was visited by a severe epidemic, 495 deaths out of the total death-rate of 631 taking place in that district.

The mode of infecton is obscure, but the organisn is thought to gain access to the circulation through the mucous membrane of the nose and conjunctiva, as the organism has been isolated from the mucous membrane of the nose, not only of those suffering from the disease but from bealthy persons who bave been in contact with cazes. Cerebro-spinal lever has an undoubted tendency to follow bad sanitary conditions and to prevail in damp, sunless houses. It is a disease of temperate climates, and the outbreaks usually take place in the spring of the year. The victims are mostly chidren and young adulte, and Koplik states that few recoveries take place in chitidren under two years of age.

The onset of symptoms is sudden, as contrasted with tubercular meningitis, in which the onset is gradual. The attack comes on sharply with intense headache, rigors and vomiting. The pain soon localizes itself in the back of the neck and occiput. and may thence radiate down the spine, limbs and abdomen. The pain is soon followed by a characteriatic symptom, pamely retraction of the head. The head is drawn back and rigidly fixcd, the spine arched and the limbs drawn up, and muscular spasme may take place. There is general hyperaesthaesia, the slightest contact producing pain. More or less fever is present, but the remperature is not characteristic. The headache continues with great severity and restlessness and delirium supervene, or there may be long periods when the parient is comatose. Twitching of the limbs and general convulsions may occur and facial paralysis is frequent. Paralysis of the ocular nerves causing equint, dilatations and confractions of the pupil are common as in other varieties of meningitis,
Some of the most striking eymptoms are the rashea. These usually occur about the fourth day of illness and vary widely in character, resembling erythema, urticaria, rose spots or purpuric spots. The rashes have usually no relation to the gravity of the disease, but seyere cutaneous haemorrhages usually indicate a severe form of illness. Should the patient survive the first shock of the attack serious complications may arise; the eyes may be attacked by severe conjunctivitis, iritis or keratitis or inflammation of the decper parts may take place leading to detachment of the retina. More frequent evea is disense of the auditory apparatus, and purulent otitis media or disease of the babyrinth may lead to permanent deaincss. Serous effusion may take place into joints which are painful, red and swollen as in acute rheumatism.

Certain forms of the disense are rapidly fatal, these are known as the fulminant type, and death may take place within 12 ta 24 hours of the onset. Death usually occurs between the fifth and the eighth day, but many cascs drag on for weck with rapid and progressive emaciation, and recovery is slow. The mortality has varied in different epidemics. Hirsch's tables of forty-one epidemics give a mortality of from 25 to 75% and Koplik rates it at 48 to 90% During 1907, 623 cases of cerebro-spinat fever were notified in Belfast, and the deaths mumberod 495. During that year the disease was made notifiable in 48 Irish urban and 55 rural districts. The mortality in Dublin was 75% Osler states that in children under one year (in New York) the mortality reached 87.6%.

Ihe changes found after death from cerebro-spinal fever are an scute inflammation of the pia-arachnoid membrane both of the brain and spinal cord, with effusion of serum or pus into the ven tricular and aubarachnoid spaces. With such rapidity may the effusion become purulent that it has been found purulent in a caso Where death took place with in five hours from the apparent onset. The operation of lumbar puncture for puncture of the spinal caral betwen the lumbar vertebrae) has enabled the physician to make an accurate diagnosis by bacteriological examination of the contents of the spinal fluid. Lumbar puncture too has been found to be of eminent service in many cases, the withdrawal of from 305050 cc . of the spinal fluid serving to relieve pressure and at least temporarily ameliorate the symptoms.

Up to n few years ago it may be said that there was no effective treatment for cerebro-spinal fever but that of endeavouring to alleviate pain by the administration of opium, but with the recent introduction of serum therapy the future is full of hope. In the epidemic in New York (t905) the serum of Flexner and Jobling was used, and the most striking results were scen in young patients, the death-rate where the serum was used sinking to 46.3% as against 90% without. Like other serum treatments, to get tho best result the serum must be administered early in the disease. Of 221 patients injected during the first week of illoess the mortality was ondy 18%, while of 107 others injected after the first week of the disease the mortality was double that amount. When given eubcutaneously. as in diphtheria, the serum has little or no effect, and to obtain good results it must be injected directly into the spinal canal after the removal of a certain amount of the spinal fuid. The injections are thea continued daily as required according to the sceverity of the case. Dr Robb of Belfast reports that during the epidemic there, of 275 cases treated by ondinary meane, the death-rate was 72.3%. but in 90 cases treated with injec. tions of Flexner and Jobling's serum the death-rate was only $\mathbf{3 0 \%}$ Dr Ivy McKenzic and Dr W. B. Martin of Glasgow have published a serics of cases treated with the highly immune serum of patients who have recovered from the disease with encouraging resulten

IWIIPO8, of Gadara In Coele-Syria, Greek cynic and satirist, lived during the 3rd century a.c. According to Diogenes Lalltius (vi. 8) be was originally a slave, amassed a fortune as a money-lender, logt it, and committed suicide through grief. His works (written in a mixture of prose and verse) are all lost. He discussed serious subjects in a spirit of raillery, and especially delighted in attacking the Epleureans and Stoics. His writings exercised considerable influeace upon later literature. One of the dialogues attributed to Lucian, bis avowed imitator, who frequently mentions bim, is called Menippows. But this dialogue is regarded with suspicion, and gince the sub-ticle ("The Oracle of the Dead ${ }^{\text {" }}$) resembles that of a work ascribed to Menippus by Diogencs Laertius, it has heen auggested that it is really the work of Menippus himseif, or at any rate imitated from his N\&una by the author, whether Lucian or another. It is well known that the Menippean satires al M. Terentius Varro, the fragments of which give an idea of this kind of compasition, were called after Menippus of Gadara (see Teuffel-Schwabe, Hist. of Roman Literatwre, 165, 3).

Bibliography.-F. Ley, De oila scriptisquo Mowippt cymici (Cologne, ${ }^{1843 \text {); R. Helm. Lucion und Menipp (1906); C. Wachs- }}$ muth, Sillographorum graecorum reliquiae (1885), with an account of Menippus and similar writers. Menippus found an imitator in later times in Justus Lipsius, author of a Sotyra menippoca (1637) in which he ridiculed certain literary men of his age, especially the poet laureate; and in the authors of the famous Satye Menippee (1593; Latcsk editions by C. Marcilly, Paris, 1882 ; J. Frank, Oppeln. 1884), written against the Holy League during the reign of Henri IV.

MENIUS, JUSTU8 (1499-1558), Lutheran theologian, whose name it Latinized from Jost or Just (i.e. Jodocus) Menig, was born at Fulda, of poor but respectable parents, on the 13 th of December 1499. Entering the university of Erfurt in 1514 , he took the bachelor's degree in 1515 , the master's in 1516 . A: this time, in association with tbe keen humanists Conrad Mutian 2 Crotus Rubeanus and Eoban Hess, he was of sceptical tendency; moving to Wittenberg in $\mathbf{1 5 1 9}$, he became evangelical noder the teaching of Melanchthon and the preaching of Luther, After travel in Italy (1521-1522) he was appointed (1523) town's preacher at Wittenberg, but was soon transferred to the charge of Muhlberg, under Erfurt. Here be published his commentary on Acts (1524) and married. He resigned his charge (1525) and opened a echool at Erfurt, but the town council insisted on his resuming his mimistry, appainting him preacher in St Thomas', Erfurt. He worked in conjunction with Luther's friend, John Lange, and was opposed by the Franciscans under Cnnrad Kling. Hence he left for Gotha (1528), resumed teaching, and enjoyed the friendship of Friedrich Mfyconius. Duke John of Saxony had placed him on the commission for church visitation in Thuringia, and in 1529 appointed him pastor and superintendent at Eisenach, where for eighteen years be administered church affairs with tact, and fostered the spread of education. In 1529 be hrought out his Oeconomia christiana (a treatise in German, on the right ordering of it Christiart bousehnid) with a dedication to the duchess Sybil of Saxony and preface by Luther. His tractate, written in concert with Myconius, controverting Der Wiederidufer Lehre und Geheimniss (1530) was also prefaced by Luther. The reversion to the Roman communion of his old friend Crotus led to his mordant Responsio arrici (1532 , anon.) to the Apologia (1531) of Crotus. He took his part in the theological disputations of the sime, at Marburg (1520), the Concordia at Wittenberg (1536), the Convention at Schmalkalden (1537), the discussions at Hagenau and Worms (1540). His tractate (1542) against the permission of bigamy in the case of Philip of Hesse was not allowed to be printed (the manuscript is in the Heidelberg university library). In 1542 he removed to Mublhausen, being appointed by Duke Henry of Saxony for the ordering of the church there. On the death of Myconius (1546) he was entrusted with the oversight of Gothe, in addition to that of Eisenach; to Gotha he returned in 1547 . The remainder of his fife was not happy. He was against the Leipzig Ieterinn (1548) with its compromise on some Cathalic usages, and was involved in controversies and quarrels; with Georgius Merula, against whom he mointained the need of exorcism in
baptism; with Osiander's adherents in the matter of Justification; with his colleague, Nicholas von Amsdorf, to whom he had resigned the Eisenach superintendency; with Flacius Illyricus, and others. He lost favour with Duke John Frederic of Saxony, fell into bad bealth, was deposed (1555) from his offices, and was disappointed in his hopes of heing reinstated, after the colloquy at Eisenach (1556). He died at Leipzig on the 1rth of August 1558. He was twice married, and had several sons, of whom Eusebius held a chair of philosophy at Wittenberg, and married Melanchthon's grand-daughter, Anna Sabinus. Schmidt gives 2 full bibliography of the numerous writings of Menius, who translated several of Luther's biblical commentaries into German. His Oeconomia was reprinted in 1855.
See G. I. Schmidt, Justus Menius, der Reformator Thrinteens (1867); Wagenmann, in Allfemeine deutscke Biog. (J885); G. Kawerau, in Hauck's Realencyklopadie (1903).
(A. Go.")

MBNKEN, ADAH ISAACS (1835 - 8868), American actress, was born in New Orleans, the daughter of a Spanish Jew, her name being Dolores Adios Fuertes. Left in poverty at the age of thirteen, she made her first appearance as a dancer in her native city. She had a great success there and in other southern cities, including Havana, and she afterwards aspired to act in scrious parts. In 1856 she married John Isaacs Menken, translated Adios to Adah, and thus took the name she thereafter bore through various matrimonial ventures. In 1864 she appeared at Astley's in London as Mazeppa, a performance of an athletic dramatic type suited to her fine physique. In England and France she became intimate with many literary menSwinburne, Charles Reade, Dickens (to wham she dedicated in 1868 a volume of verse, Infelicia), Gautier and Dumas the elder. Paris saw her for a hundred nights in Les Pirates de la Savane, and she also played in Vienna and again in London. She died in Paris on the 10th of August 1868.
MBNNONITES, a body of religionists who take their name from Menno Simons (see below), the most valued exponent of their principles. They maintain a form of Christianity which, discarding the sacerdotal idea, owns no authority outside the Bible and the enlightened conscience, limits baptism to the believer, and lays stress on those precepts which vindicate the sanctity of human life and of a man's word. The place of origin of the views afterwards called Mennonite (see Baptists) was Zurich, where in 1523 a small community left the state church and (from Jan. 18, 1525) adopted the tenet of believers' haptism. Unlike other Reformers, they denied at once the Christian character of the existing church and of the civil authority, though, in common with the first Christians, it was their duty to obey all lawful requirements of an alien power. By Protestants as much as by Catholics this position was not unnaturally regarded as subversive of the established foundations of society. Hence the bitter persecutions which, when the safety of toleration was not lmagined, made martyrs of these humble folk, who simply wished to cultivate the religious life apart from the world. There was something in this ideal which answered to that medieval conception of separation from the world which had leavened all middle-class society in Europe; and the revolt from Rome had prepared many minds to accept the further idea of separation from the church, for the pursuit of holiness in a society pledged to primitive discipline. Hence the new teaching and praxis spread rapidly from Switucrland to Germany, Holland and France. White the horrors of the Munster fanaticism, which culminated in 1534, made Anabaptism a byword, and increased the severity of a persecution directed against all Baptists indiscriminately, the reaction against the fatal errors of the Minster experiment increased also the adherents of communities which dlscarded the sword; thus Menno was brought into their ranks. Each community was independent, united with others only by the bond of love. There was no hierarcby (as with the Familists), but "exhorters" chosen by the members, among them "elders" for administering baptism and the Lord's Supper; an arrangement so readily renewed that the sure way of putting down such a body was the execution of all its constituents, often by drowning, an
appropriate end, according to Zwingli's quip. The remnant of the Swiss Mennonites (not tolerated till 1710) broke in 1620 into two parties, the Uplanders (or Amish, from their leader Jacob Amen) holding against the Lowlanders that excommunication of busband or wife dissolved marriage, and that ravors and buttons were unlawful. In Holland the Mennonites have always been numerous. An offshoot from them at Rhijnsburg in 1619 , founded by the four brothers, farmers, Van der Kodde, and named Collegianten from their meetings, termed collegia (thus, as not churches, escaping the penal laws), has been compared to the Plymouth Brethren, but differed in so far as they required no conformity of religious opinion, and recognjzed no office of teacher. With them, as Martineau notes, Spinoza had "an intense fellow-fecling." Later, the exiled Socinians from Poland (1660) were in many cases received into membership. There bad previously been overtures, more than once, for union witb Mennonites on the part of Polish Socinians, who agreed with them in the rejection of oaths, the refusal to take human life, the consequent abstinence from military service and magisterial office, and in the Biblical basis of doctrine; differences of doctrinal interpretation precluded any fugion. In Hollend the Mennonites were exempted from military service in 1575 , from oatb-taking in 1585, from public office in r617. In Zeeland exemption from military service and oaths was granted in 1577 ; afterwards, as in Friesland, a heavy poll tax was the price of exemption from military service; but since 1795 they have enjoyed a legal exemption from oath-taking. In France the Mennonites of the Vosges were exempted from military service in 1793, an exemption confirmed by Napoleon, who employed them in hospital service on his campaigns. That he did not exempt tbe Dutch Mennonites is due to the fact that "they had ceased to present a united front of resistance to military claims " (Martineau); in fact they sent a large band of volunteers to Waterioo (Barclay). While in Germany the Mennonites exist in considerable numbers, more important are the German Mennonite colonies in southern Russia, brought there in 1786 by Catherine II., and freed, by the grant of complete religious liberty, from the hardships imposed by Prussian military lav. These colonies have sent many emigrants to America, where their oldest community was settled (1683) at Germantown, Pennsylvania. Their set tlement in Canada dates from 1786. Among the American Mennonites there are three sections, and a progressive party, known as New Scbool Mennonites.
S. Cramer gives (1903) the following statistics: in all, wome 250,000 members, of whom over 80.000 are in the United Statem, 70,000 in Russia. 60,000 in Holland, 20,000 in Canada, 18,000 in Germany, 1500 in Switzerland, 800 in France, and the tame number in Poiand and Galicia.
(A. Ga. ${ }^{\text { }}$)

MENNO SIMON8 ($1492-1559$), religious leader, was born in 1492 at Witmarsum in Friesland. Of his parentage (apart from his patronymic) and education nothing is known. He was not a man of learning, dor had be many books; for his knowledge of early Christian writers he was partly indebted to the Chronica or compilations of Sebastian Franck. At the age of twenty-four he entered the priesthood, becoming one of two curates under the incumbent of Pingjum, a village near his birthplace. He accused himself, with the other clergy, of lax and self-indulgent living. Doubts about transubstantiation made him uncasy; some of Luther's tracts fell in his way, and he was comforted by Luther's dictum that salvation does not depend on human dogmata. Hence he began to study the Nev Testament. The question as to the right age for baptism came up; be found this an open matter in the early church. Then the execution, in March 153 , at Leeuwarden, of the tailor Sicke Freerks, who had been rebaptized in the previous December at Emden, introduced further questions. Menno was not atisfied with the inconsistent answers which he gol from Luther, Bucer and Bullinger; he resolved to rely on Scripture alone, and from this time describes his preaching as evangelical, not sacramental. In 1332 he exchanged his curacy for a living at Witmarsum, in response to a popular call. Anabaptism of the Munster type
repelled him. His first tractate (1535 , first printed 1627) is directed agalnst the "horrible and gross blasphemy of John of Leiden "-though the genuineness of this tract has been doubted. A brother of Menno joined the insurgent followers of John Matthyszoon, and was killed at Bolsward (April 1535). Blaming the leaders by whom these poor people had been misled, Menno blamed himself for not having shown them a straight course. Accordingly on the 12 th of January 1536, be left the Roman communion. There were now among the so-called Anabaplists four parties, the lavourers of the MOnster faction, the Batenburgers, extremists, the Melchiorites and the Obbenites, For a time Menno remained aloof from both Melchior Hofman and Obbe Philipsz. Before the year was out, yielding to the praycr of six or eight persons who had freed themselves from the Munster spell, he agreed to become their minister, and was set apart (January 1537) to the eldership at Groningen, with imposition of hands by Obbe Philipsa, who is regarded as the actual founder of the Mennonite body. In fact, Obbe left the body and is stigmatized as its Demas. Menno repudiated the formation of a sect; those who had experienced the "new birth" were to him the true Christian church, which was limited by no decree of reprobation. His Christology was in the main orthodox, though he rejected terms (such as Trinity) which be could not find in Scripture, and held a Valentinian doctrine of the celestial origin of the liesh of Christ. His church discipline was drawn from the Swiss Baptists. Silent prayer was a feature of the worship; sermons were without texts. Neither baptism (by pouring on the head) nor the Lord's Supper (with the accompaniment of feet-washing) conferred grace; they were divine ordinances which reflected the believer's inward state. Marriage with outsiders was prohibited; women had no part in church government. Oatbs and the taking of life were absolutely forbidden; hence the magistracy and the army were for the Mennonite unlawful callings; but magistrates were to be obeyed in all things not prohibited by Scripture. The subsequent carcer of Menno was that of an active missioner; his changes of place, often compulsory, are difficult to trace. He was apparently much in East Frieshand till 1541 ; in North Holland, with Amsterdam as centre, from 1541 to 1543 ; again till 1545 in East Friesland (where he held a disputation at Emden with John à Lasco in January 1544); till 1547 in South Holland; next, about Lobeck; at Wismar in $1553-1554$ (he beld two disputations with Martin Micronius at Norden in February 1554); Lastly at Wistenicide, a village near Oldesloo, between Hamburg and Lübeck, where he died on the 13 th of January 1559. He had marricd one Gertrude at Groningen, and left a daughter, by whom the dates of bis birth and death were communicated to P. J. Twisch, for his Chronyk (16ig).

Menno's writings in Plattdcutsch, printed at various places, are numerous, with much sameness, and what an unfriendly critic would call wool-gathering: through them shines a chameter arpractive by the sincerity of its simple and warm ppiritualit: , the ser ret of Menno's influence. The collection of his Opens Omni/ Theolorica (Amsterdam. 1681), folio, in a Dutch version, corsprises twenty-1 hree tractates, with relerence to nine unprinted. His mala principles will be lound in his Dat Fundament des Christelycken Leers ('539:8*0). A telection (Gedenkblaker) from his writings, in a German version, in honour of the (supposed) tercentennial of his death wis editecl by 1. Mannhardt (Danzig. 1861) with an appendix from the writings of Dirk Philipss (1504-150), brother of Obbe and Menno's henchman. His writings are published in English at Elkhart. Indiana.

Since the publication of the Leven (1837) by A. M. Cramer. light has beea thrown on the period by the researchee of de Hoop Scheffier; ece Van der Aa. Biographisch woordenboek der Nederlanden (1869) R. Barclay. Inver Life of Redigious Socicties of the Commonveallh (1876) for a good account of Mennonite anticipations of Quaker views and practices; F. C. Fleischer. Menno Simons. eene Levensschets (1092): V. M. Reimann. Lemmomis Simomis quatis fuerif vita (1894); S. Cramer, in Hauck s Realencyklopedic (Igo3): a separate articte in the same. Mennonilen, by \mathbf{S}. Cramer. gives a survey of the origin and ramifications of the movement in Europe and America. (A. Co.")

MENONINEE, a city and the county-scat of Menomince county, Michigan, U.S.A., on Green Bay, at the mouth of the Menominee river, opposite Marinette, Wisconsin, at the southern extremity of the upper peninsula Pop (1890), 10,630; (1900), 12.S18. of whom 4186 were forcign-born; (1910 censun),

10,507. It is served by the Chicago \& North-Western, the Chicago, Milwaukee \& St Paul, the Wisconsin \& Michigan, and the Ann Albor tailways, and is connected by five bridges with Marinette, Wisconsin. Menominee has several parks, and harbour and dock facilities for the heaviest lake vessels. It is one of the latgest lumber centres in the United States; it has excellent water power, and there are manufactures of wire, steel, electrical appliances, mill and mining machinery, shoes, beet sugar and paper. The use of beet-pulp instead of Indian corn ensilage for dairy cows has promoted the dairying industry in the city.

A trading post was established here in r799, but settiement was not begun until 1833 . Menominee became the county-seat in 1874, was chartered as a city in $\mathbf{1 8 8 3}$, and in 1891 and in 1901 it was re-chartered; in 1903 an amendment to the charter created a municipal court. The city is named after tbe Menomince Indians, ${ }^{1}$ an Algonquian tribe formerly ranging over a considerable territory in Wisconsin and Michigan, who seem to have been first visited by whites in 1634, when Nicolet found them at the mouth of the Menomince river, and now number about 1600 , most of them being under the Green Bay school superintendency, Wisconsin. The name is the Chippewa word for wild rice, which formed part of the food of the tribe.

MENOMONIE, a city and the county-seat of Dunn county, Wisconsin, U.S.A., about 64 m . E. of St Paul, Minnesota, oa the Red Cedar river. Pop. (1890), 549r; (1900), 5655, of whom 1772 were foreign-born; (1905), 5473; (1910), 5036. It ls served by the Chicago, Milwaukee $\& \mathrm{St}$. Paul, and the Chicago, St Paul, Minneapolis \& Omaha railways. The city is widely known for its institutions, for the most part founded or supported by James Huf Stout (1848 -1910), a prominent local lumberman. Among them are the Mabel Tainter Memorial Library, the Dunn County School of Agiculture, the Dunn County Normal Training School, the Stout Institute for the training of teachers of domestic science \&e., institutions in which public school children receive physical training. The city has grain elevators, and manufactures of bricks and tiles, foundry and machine shop products, cartiages and wagons and flour. Menomonie is an important market for dairy products and livestock. Menomonie was scitled about 1846 and was chartered as a city in 1882 . The first free travelling library in the state was established here in 1896 by James Hull Stout.

MENSA and MAREA, semi-nomad pastoral tribes of Africans occupying part of the Abyssinian highlands included in the Italian colony of Eritrea, and the adjacent coast phains of the Red Sea. They have for neighbours the Habab and BeniAmer tribes, as well as Abyssinians. The Marea are found chicfly in the valley of the Khor Anseba, the Mensa dwelling farther north. These tribes claim Arab origin, tracing their descent from an uncle of the Prophet. Under Abyssinian sule they were Christians, but became Mahommedans in the 1 th century. They speak a dialect of Tigrin (Abyssinian). On the death of a Marea the head of every dependent digre or slave family must give his heirs a cow. The tribes avenge an illegitimate hirth by putting parents and child to death.

MENSHIKOV, ALEXANDER DANILOVICR, Prince (1663 ? 1729), Russian statesman, was born not eatlier than $\mathbf{i} 660$ nor later thaa 1663 . It is disputed whether his father was an ostler or a bargee. At the age of twenty he was gaining his livelihood in the streets of Moscow as a vendor of meat-pies. His handsome looks and smart sallies attracted the attention of Francois Lefort, Peter's first favourite, who took bim into his service and finally transferred him to the tsar. On the death of Lefort in 1609 , Menshikov succeeded him as prime favourite. Ignorant, brutal, grasping and corrupt as he was, he deserved the confidence of his master. He could drill a regiment, build a frigate, administer a province, and decapitate a rebel with equal facility. During the tsar's first foreign toun, Menshikov worked by his side in the dockyards of Amsterdam, and acquired a thorough knowledge of colloquial Dutch and German. He took an active

[^11]part in the Azov campaigns ($1695-06$), and superseded Ogilvie as commander-in-chicf during the retreat before Charles XII. in 1708, subsequeutly participating in the battle of Holowczyn, the reduction of Mazepa, and the.crowning victory of Poltava (June 26, 1709), where be won his marshal's baton. From 1709 to 1714 be served during the Courland, Holstein and Pomeranian campaigns, but then, as governor-general of Ingria, with almost unlimited powers, was entrusted with a leading part in the civil administration. Menshikov understood perfectly the principles on which Peter's reforms were conducted, and was the right hand of the tsar in all his gigantic undertakings. But he ahused his omnipotent position, and his depredations frequently brought him to the verge of ruin. Every time the tsar returned to Russia he received fresh accusations of peculation against " his Serene Highness." Peter's first serlous outburst of indignation (March 1711) was due to the prince's looting in Poland. On his return to Russia in 1712 , Peter discovered that Menshikov had winked at wholesale corruptions in his own governor-generalship. Peter warned him "for the last time" to change his ways. Yet, in 1715, he was implicated in the famous Solov'ey process, in the course of which it was demonstrated that he had defrauded the government of 100,000 roubles. ${ }^{1}$ He only owed his life on this occasion to a sudden illness. On his recovery Peter's fondness for his friend overcame his sense of justice. In the last year of Peter's reign fresh frauds and defalcations of Menshikov came to light, and he was obliged to appeal for protection to the empress Catherine. It was chiefly through the efforts of Menshikov and his colleague Tolstoi that, on the death of Peter, in 1725 , Catherine was raised to the throne. Menshikov was committed to the Petrine system, and be recognized that, if that system were to continue, Catherine was, at that particular time, the only possible candidate. Her name was a watchword for the progressive faction. The placing of her on the throne meant a final victory over ancient prejudices, a vindication of the new ideas of progress. During her short reign (Fehruary 1725 -May 1727), Menshikov was practically absolute. On the whole he ruled well, his difficult position serving as some restraint upon his natural inclinations. He contrived to prolong his power after Catherine's death by means of a forged will and a coup d'etat. While his colleague Tolstoi would have raised Elizabeth Petrovna to the throne, Menshikov set up the youthful Peter II., son of the tsarevich Alexius, with himself as dictator during the prince's minority. He now aimed at establishing himself definitely by martying his daugbter Mary to Peter II. But the old nobility; represented by the Doigorukis and the Golitsuins, united to overthrow him, and he was deprived of all his dignities and offices and expelled from the capital (Sept. 9, 1727). Subsequently he was deprived of his enormous wealth, and he and his whole family were banished to Berezov in Siberia, where he died on the 12 th of November 1729.

See G. V. Esipov, Biography of A. D. Menshikow (Rus.) (St. Petersburg. 1875); N. 1. Kostomarov, The History of Russia in tho biogyaphies of her great Men (Rus.), vol. ii. (St Peteraburg, 1888, \&c.); R. Nisbet Bain. The First Romanovs (London, igo5); ibid. The Pupils of Peter the Grcal, ch. 2-4 (Westminster, 1897).
(R. N. B.)

MENSHIKOV, ALEXANDER SERGEIEVICH, PRINCE (1787 1869), great-grandson of the preceding, was born on the 1 ith of September 1787 , and entered the Russian service as attache to the embassy at Vienna. He accompanied the emperor Aiexander throughout his carnpaigns against Napoleon, and retired from army service in 1823 . He then devoted bimself

- The Solov'evs were three brothers ostensibly employed by the Russian government to ship corn from Russia and sell it at Amsterdam. As a malter of fact they were at the head of a combination for selling Menshikov's corn in preference to the corn of the Russian government and the bulk of the proceeds went into Menshikov's pockets. From 1709 ta 1711 they had exported almost as much of Menshikov's corn as of that of the government, though the export of any corn from Russia, except in account of the Treasury, was a capital offence. The affair dragged on from 1713 to 1716, when Ihe examination of the Solov'evs books. and the zubsequent applicaIion of torture, revealed the fact that the Solov'evs had systematically robbed the Treasury of 675.000 roubles (1 rouble then $=55$.) and had accumulated a fortune of half a million. For full details see Nisbet Bain, The First Rowamows, pp. 327-329.
to naval matters, became an admiral in 1834, and put the Russian navy, which had fallen into decay during the reign of Alexander. on an efficient footing. At the time of the dispute as to the Holy Places he was sent on a special mission to Constantinople, and when the Crimean war broke out he was appointed com-mander-in-chief by land and sea. He commanded the Russian army at the Alma and in the field operations round Sevastopol. In March 1855 he was recalled, ostensibly and perhaps really, on account of failing health. He died on the 2nd of May 1869 at St Petersburg.

MenSURATION (Lat. mensura, a measure), the science of measurement; or, in a more limited sense, the science of numerical representation of geometrical magnitudes.

1. Scope of the Subject.-Even in the second sense, the term is a very wide one, since it comprises the measurement of angles (plane and solid), lengths, areas and volumes. The measurement of angles belongs to trigonometry, and it is convenient to regard the measurement of the lengths of straight lines (i.e. of distances between points) as belonging to geometry or trigonometry; while the measurement of curved lengths, except in certain special cases, involves the use of the integral calculus. The term " mensuration" is therefore ordinarily restricted to the measurement of areas and volumes, and of certain simple curved lengths, such as the circumference of a eircle.
2. This restriction is to a certain extent arbitrary. The staternent that, if the adjacent sides of a rectangle are represented numerically by 3 and 4 , the diagonal is represented by 5 , is as much a matter of mensuration as the statement that the area is represented by 12 . The restricton is really determined by a difference in the methods of measurement. The distance between two polnts can, at any rate in theory, be measured directly, by successive applications of the unit of measurement. But an area or a volume cannot generally be measured by successive applications of the unit of area or volume, intermediate processes are necessary, the result of which is expressed by a formula. The chief exception is in the use of liquid measure; this is of importance from the educational point of view ($\delta 12$).
3. The measurement is numerical, i.e. it is representation in terms of a unit. The process of determining the area or volume of a given figure therefore involves two separate processes; viz. the direct measurement of certain magnitudes (usually lengths) in terms of a unit, and the application of a formula for determining the area or volume from these data. Mensuration is not concerned with the first of these two processes, which forms part of the art of measurement, but oniy with the second. It might, therefore, be described as that branch of mathematics which deala with formulae for calculating the numerical measurements of curved lengths, areas and volumes, in terms of numerical data which determine these measurements.
4. It is also convenient to regard as coming under mensuration the consideration of certain derived magnitudes, such as the moment of a plane figure with regard to a stralght Hine in its plane, the calculation of which involves Iormulae which are closcly related to formulae for determining areas and volumes.
5. On the other hand, the scope of the subject, as described in \% 3 , is limited by the nature of the methods employed to obtam formulae which can be applied to actual cases. Up to a certain point, formulac of practical importance can be oblained by the use of elementary arithmetical or geometrical methods. Beyond this point, analytical methods must be adopted, and the student passes to trigonometry and the infinitesimal calculus. These investigations lead, in turn, to further formulae, which, though not obtainable by elementary methods, are nevertheless simple in themselves and of practical utility. If these are included in the description " mensuration," the subject thus consists of two heterogeneous portions-elementary menstration, comprising methods and results, and advanced mensuration, comprising certain results intended for practical application.
6. Mensuration, then, is mainly concerned with quadratureformulae and cubopure-formalac. and, to a not very clearly defined extent, with the methods of obtaining such formulae; a quadrature-formula being a formula for calculating tbe numerical
reprementation of an aret, end a cubatare-formula being a formula for calculating the numerical representation of a volume, in terms, in each case, of the numerical representations of particular data which determine the area or the volume.
7. This use of formulae for dealing with numbers, which express magnitudes in terms of units, constitutes the broad difference between mensuration and ordinary geometry, which knows nothing of units. Mensuration involves the use of geometrical theorems, but it is not concerned with prohlems of seometrical construction. The area of a rectangle, for instance, is found by calculation from the lengths of the sides, not by construction of a square of equal area. On the other hand, it is worth noticing that the words "quadrature" and "cubature" are originally due to geometrical rather than numerical considerations; the former implying the construction of a square whose area shall be equal to that of a given surface, and the latter the construction of a cube whose volume shall be equal to that of a given solid.
8. There are two main groups of subjects in which practical needs have tended to develop a separate science of mensuration. The first group comprises such subjects as land-surveying; here the measurements in the elementary stages take place in a plane, and the consideration of volumes necessarily constitutes a later stage; and the figures to be measured are mostly not movable, so that triangulation plays an important part. The second group comprises the mechanic arts, in which the bodies to be measured are solid bodies which can be handled; in these cases plane figures appear mainly as sections of a solid. In developing a system of mensuration-formulae the importance of this latter group of cases must not be overlooked.

A third group, of increasing importance, comprises cases in which curves or surfaces arise out of the application of graphic methods in engincering, physics and statistics. The general formulae applicable to these cases are largely approximative.
9. Relation to ather Subjects.-As a result of the importance both of the formulae obtained hy clementary methods and of those which have involved the previous use of analysis, there is a tendency to dissociate the former, like the latter, from the methods by which they have been obtained, and to regard mensuration as consisting of those mathematical formulae which are concerned with the measurement of geometrical magnitudes (including lengths), or, in a slighlly wider sense, as being the art of applying these formulae to specific cascs. Such a body of lormulac cannot, of course, be regarded as constituting a science; it has no power of development from within, and can only grow by accretion. It may he of extreme importance for practical purposes; but its educational value, if it is studied apart from the methods by which the formulae are obtained, is slight. Vitality can only be retained by close association with more abstract branches of mathematics.
ro. On the other hand, mensuration, in its practical aspect, is of importance for giving reality to the formulac themselves and to the principles on which they are based. This applies not only to the geometrical principles but also to the arithmetical principles, and it is therefore of importance, in the earlier stages, to keep geometry, mensuration and arithmetic In close association with one another; mensuration forming, in fact, the link between arithmetic and geometry.

It. It is in reference to the memsurement of areas and volumes that it is of special importance to illustrate geometrical truths by means of concrete cases. That the area of a parallelogram is equal to the area of a rectangle on the same base and between the same parallets, or that the volume of a cone is one-tbird that of a cylinder on the same base and of the same height, may be established by a proof which is admitted to be rigorous, or be accepted in good faith without proof, and yet fail to be a matter of conviction, even though there may be a clear conception of the relative lengths of the diagonal and the side of a square or of the relative contents of two vessels of different shapes. The failure seems (5 a) to be due to difficulty in realizing the numerical expression of an area or a solid in terms of a specified unit, while
the same dificulty does not arise in the case of linear measure or liquid measure, where the number of units can be ascertained by direct counting. The difficulty is perhaps less for volumes than for areas, on account of the close relationship between solid and fluid mensure.
12. The main object to be aimed at, therefore, in the study of elementary mensuration, is that the student should realize the posalbility of the numerical expression of areas and volumes. The following are some important points.
(i) The double aspect of an ares should be borne in mind; i.e. ares should be treated not only as length multiplied by length, but also as volume divided by thickncess. There are, indeed, certain advantages in preferring the latter to the former, and in proccoding from volumes to areas rather than from areas to volumes. While, for instance, it may be difficult to realize the equality of arem of two plots of ground of diferent shapes, it may be casy to realize the equality of the amounts of a given material that would be required to cover them to a particular depth. This method is unconsciously adopted by the teacher whoyillustrates the equality of area of two geometrica! figures by cutting them out of cardboard of unilorm thickness and weighing them.
(ii) The very eariicst stages of mensuration should be directly associated with simple arithmetical processes.
(iii) Association of solid measure with liquid measure, presenting mumerical measurement in a different aspect, should be retained by teating volumes as found from lincar dimensions with the volumes of the same bodice as found by the use of measures of capacity. Here, as usual, the British systems of measures produce a difficulty which would not arise under the metric system.
(iv) Solids of the same substance should be compared by measuring and also by weighing; the comparison being then extended to areas of uniform thickness (see (i) aboye).
(v) The idea of an average may be introduced at an early stage, methods of calculating an average being left to a later stage.
13. Classificarion.-The methods of mensuration fall for the most part under one or other of three main heads, viz arithmetical mensuration, geometrical mensuration, and analytical mensuration.
14. The most elementary stage is arithmetical mensuration, which comprises the measurement of the areas of rectangles and parallelepipeds. This may be introduced very early; square tablets being used for the mensuration of areas, and cubical blocks for the mensuration of volumes. The measure of tbe area of a rectangle is thus presented as the product of the measures of the sides, and aritbmetic and mensuration are developed concurrently. The commutative law for multiplication is directly illustrated; and subdivisions or groupings of the units lead to such formulae as $(a+a)(b+\beta)=a b+a \beta+a b+a \beta$. Association with other branches of science is maintained by such methods as those mentioned in $\$ 12$.
The use of the square bricks familiarizes the scholar with the ideas of parallel lines, of equality of lengths, and of right angles. The conception of the right angle is strengthened, by contrast, by the use of bricks in the form of a thombus.
15. The next stage is geometrical mensuration, where geometrical methods are applied to determine the areas of plane rectilinear figures and the volumes of solids with plape faces. The ordinary process involves three separate steps. The first step is the establishment of the exact equality of congruence of two geometrical figures. In the case of plane figures, the congruence is tested by an imaginary superposition of one figure on the other; but this may more simply be regarded as the superposition, on cither figure, of the image of the other figure on a contiguous plane. In the case of solid figures a more difficult geometrical abstraction is involved. The second step is the conversion of one figure into another by a process of dissection, followed by rearrangement of parts; the figure as rearranged being one whoee area or volume can be calculated by methods already established. This is the process adopled, for instance, for comparison of the area of a parallelogram with that of a rectangle on the same base and of the same helght. The third step is the arithmetical calculation of the area or volume of the rearranged figure. These last two steps may introduce magnitudes which have to be subtracted, and which therefore have to be treated as negative quantities in the arithmetica! calculation.

The difficulties to which referebce has been made in \& 11 are largely due to the abstract nature of the process involved in the second of the above steps. The difficulty should, wherever possible, be removed by making the process of dissection and rearrangement complete. This is not always done. To say, for instance, that the area of a right-angled triangle is half the area of the rectangle contained by the two sides, is not to say what the area is, but what it is the half of. The proper statement is that, if a and b are the sides, the area is equal to the area of a rectangle whose sides are a and $\ddagger b$; this being, in fact, a particular case of the proposition that the area of a trapezium is equal to the area of a rectangle whose sides are its breadth and the arithmetic mean of the lengths of the two parallel sides. This mode of statement helps to establish the idea of an average. The deduction of the formula $\} a b$, where a and b are numbers, should be regarded as a later step.

Elementary trigonometrical formulae, not involving tbe conception of an angle as generated by rotation, belong to this stage; the additional geometrical idea involved being that of the proportionality of the sides of similar triangles.
16. The third stage is analytical mensuration, the essential feature of which is that account is taken of the manner in which a figure is generated. To prevent discontinuity of results at this stage, recapitulation from an analytical point of view is desirable. The rectangle, for instance, has so far been regarded as a plane figure bounded by one pair of parallel straight lines and another pair at right angles to them, so that the conception of " rectangularity" has had reference to boundary rather than to content; analytically, the rectangle must be regarded as the figure generated by an ordinate of constant length moving parallel to itself with one extremity on a straight line perpendicular to it . This is the simplest case of generation of a plane figure by a moving ordinate; the corresponding figure for generation by rotation of a radius vector is a circle.

To regard a figure as being generated in a particular way is cssentially the same as to regard it as being made up of a number of successive elements, so that the andlytical treatment involves the ideas and the methods of the infinitesimal calculus. It is not, however, necessary that the notation of the calculus should be employed throughout.
A plane figure bounded by a continuous curve, or a solid figure bounded hy a continuous surface, may generally be most conveniently regarded as generated hy a straight line, or a plane area, moving in a fixed direction at right angles to itself, and changing as it moves. This involves the use of Cartesian co-ordinates, and leads to important general formulae, such as Simpson's formula.
The treatment of an angle as generated by rotation, the investigation of the relations between trigonometrical ratios and circular measure, the application of interpolation to trigonometrical tables, and the general use of graphical methods to represent continuous variation, all imply an analytical onlook, and must therefore be deferred to this stage.
17. There are certain special cases where the treatment is really analytical, hut where, on account of the simplicity or importance of the figures involved, the analysis does not take a prominent part.
(i) The circle. and the solid figures allied to it, are of aperia! importance. The ordinary definition of a circle is equivalent to definition as the figure gencrated by the rotation of a radius of constant length in a plane, and is thus essentially analytical. The ideas of the centre and of the constancy of the radius do not, however. enter into the elementary conception of the circle as a round figure. This, elementary conception is of the figure as already existing, rather than of its method of description: the test of circularity being the possibiliny of rotation within a surrounding figure so as to keep the two boundaries always completely in contact. In the ame way. the elementary conception of the sphere involves the idea of aphericity, which would be tested in asimilar way, and is in fact so tested, at an eariy stage by tactual perception, and at a more advanced stage by mechanical methods; the next step treing the circularity of the central mection, as rouphly teated (where the ephere is small) by visual perception. i.e in effect. by the circulerity of the crose-section of a circumecribing cylinder; and the ideas of the cenire a nd of non-cemaral sections follow later.

It xeems to follow that the consideration of the arem of a circle should precede the consideration of its perimeter, and that the
consideration of the volume of a sphere should precede the consideration of its surface-area. The proof that the area of a circle is proportional to the square of iss diameter would therefore precede the proof that the perimeter is proportional to the diameter; the former propery it the easier to grasp. since the conception of the kength of a curved line as the limit of the sum of a number of straight lengthe presents special difficulties. The ratio $f x$ would thas first appear as the ratio of the average breadth of a circle to the greatest breadth; the interpretation of \equiv as the ratio of the circumference to the diameter being a secondary one. This order follows, in fact, the historical order of development of the subjoct.
(ii) Developable surlaces, such as the cylinder and the cone, form a special class, so far as the calculation of their area is concerned. The process of unrolling is analytical, but the unrolied area can be measured by methods not applicable to other surfaces.
(iii) Solids of revolution also form a special clasm, which can be conveniently treated by the two theorems of Pappus (83).
18. The above classification relates to methods. The classification of results, i.e. of formulae, will depend on the purpose for which the collection of formulae is required, and may involve the grouping of resules oblained by very different methods. A collection of formulae relating to the circic, for instance, would comprise not only geometrical and trigonometrical formulae, but also approximate formulae, such as Huygens's rule (89), which are the result of advanced analysis.

The present article is not intended to give either a complete course of study or a complete collection of formulae, and therefore such only of the ordinary formulae are given as are required for illustrating certain general principles. For fuller discussion reference should be made to Geometry and Triconometry, as well as to the articles dealing with particular figures, such as Triangle, Circle, \&c.
19. The most important formulae are those which correspond to the use of rectangular Cartesian co-ordinates. This implies the treatment of a plane or solid figure as being wholly comprised between two parallel lines or planes, regarded by convention as being vertical; the figure being gencrated hy an ordinate or section moving at right angles to itsclf through a distance which is called the breadth of the figure. The length or area ohtained by dividing the area or the volume of the figure by its breadth is the mean ordinate (mean height) or mean section (mean sectional area) of the figure.
Quadrature-formulae or cubature-formulae may sometimes be conveniently repiaced by formulae giving the mean ordinate or mean section. In the early stages it is best to use both methods, so as to develop the idea of an average ($\$$ ra). In the present article the formulae for arca or volume will be used throughout.
20. Approximation.-The numerical result obtained by apply. ing a formula to particular data will generally not be exact. There are two kinds of causes producing want of exactness.
(i) The formula itself may not be numerically exaet. This may happen in cither of swo ways.
(a) The formula may involve numbers or ratios which cannot be expresed exactly in the prdinary notation. This is the case, for instance, with formulae which involve F or trigonometrical ration This incxactness may, however, be ignored, since the numbers or ratios in question can generally be obtained to a greater degree of accuracy than the other numbers involved in the calculation (see (ii) (b) below).
(b) The formula may oaly be approximative. The length of the arc of a circle, for instance, is known if the iength of the chord and its distance from the middle point of the arc are known; but it may be more convenient in such a case to use a formata such as Huygensz rute than to obtaia a more accurate staule by means of trigonomer rical tables.
(ii) The data may be such that an exact result is impossible.
(a) The nature of the bounding curve or surface may not be exactly known. so tbat certain asmumptions have to be made. a formula being then yeed which is edaptod to these ampuptiona The application of Simpron's rule. Cor instance, to a plane figure implies certain assumptions as to the nature of the bounding curve. Sucb a formula is approximative, in that it is known that the result of its application will only be approximately correct : it differs from an approximative formula of the kind mentioned ia (i) (b) above, in that it is adopted of necensity. not by choice.
(b) It must. however. be remembered that in all practical applica. tions of formulae the data have first to be ascertained by direct on indirect measurement; and this measurement involves a certio margin of erroc.

The two sources of error mentioned under (a) and (b) above are cosely related. Suppose, for instance, that we require the area of a circular grass-plot of measured diameter. As a matter of fact, mo grass-plot is truly circular; and it might be found that if the breadth in various directions were measured more accurately the want of circularity would reveal itself. Thus the inaccuracy in taking the measured diameter as the datum is practically of the snme order as the inaccuracy in taking the grase-plot to be circular.
(iii) In dealing with cases where actual measurements are involved, the error (i) due to inaccuracy of the formula will often be negligible in comparison with the error (ii) due to inaccuracy of the data. For this reason, formulae which will anly give approximate results are usually classed together as rules, whether the inaccuracy lies (as in the case of Huygens's rule) ia the formula itself, or (as in the case of Simpson's rule) ia its application to the data.
21. It is necessary, in applying formulae to apecific cases, not only, on the one hand, to remember that the measurements are only approximate, but also, on the other hand, to give to any ratio such as π a value which is at least more accurate than the measurements. Suppose, for instance, that in the example given in $\delta 20$ the diameter as measured is 15 ft .3 in . If we take $\mathrm{T}=3.14$ and find the area to be 26288.865 sq . in. $=182$ sq. ft. 80.865 sq. in., wie make two separate mistakes. The main mistake is in giving the result as true to a small fraction of a square inch; but, if this degree of accuracy had been possible, it would have been wrong to give π a value which is in error by more than I in 2000.

Calculations involving feet and inches are sometimes performed by means of duodecimal ariflkmetic; i,e., in effect, the tables of square meeasure and of cubic measure are amplified by the insertion of intermediate unita. For square measure-

12 square inches $=1$ superficial prime,
i2 superficial primes $=$ I square loot;
while for cubic measure-

> 12 cubie inches $=$ I solid second,
> 12 solid secoads $=1$ solid prime.
> 12 solid primes $=1$ cubic loot.

When an area has been calculated in terms of square feet, primes and square inches, the primes and square inches have to be reduced to equare inches; and similarly with the calculation of volumes. The value of π for duodecimal arithmetic is $3+1 / 12+8 / 12^{2}+$ $4 / 12^{3}+8 / 12^{4}+$. . . i so that, marking off duodecimal fractions by commas, the area in the above case is $\frac{1}{2}$ of $1,8,4,8 \times 15$. $3 \times 15,3 \mathrm{cq} . \mathrm{ft} .=182,7$, $10 \mathrm{sq} . \mathrm{ft}=182 \mathrm{sq}$. ft . 94 kq . in . (or 1821 eq. ft . approximately).

hrensuration of specific ficurgs (geometrical)

22. Armes of Plane Rectilinear Figures.-The following are exprestions for the aneas of some simple figures; the expreasions in (i) and (ii) are obtained arithmetically, while those in (iii)-(v) involve diseection and rearrangement.
(i) Square: side a. Area $=a$
(ii) Rectangle: sides a and b. Aren $=a b$.
(iii) Right-angled triangle: sides a and b, enclowing the right angle. Area $=$ lab.
(iv) Paraliclogran: two opposite sides a and ε, distance between theso h. Arca $=$ ho.
(v) Triangle: one side a, distant h from the opposite angle. Area $=3$ has
If the data for any of these figures are other than thooe given above, trigonometrical ratios will ukually be involved. If, for instance, the data for the triangle are sides a and b, enclosing an angle C, the area is $l a b \sin C$.
23. The fiqures considered in $\mathbf{\$ 2 2}$ are perticular cases of the trapetimen, which ls a quadrilateral with two paralkel sides. If these sides are a and b, at distance k from one another, the area is $k . \phi$ ($a+$ b). In the case of the triangle, fur instance, b is zero, so that the rea is tha.
The trapezium is also sometimes calied a " trapezoid," but it will be coavenient to reserve this term for a different figure (\% 24).
The acot important form of trepezium is that in which one of the two remaining oides of the figure is at right angles to the two parallel wides. The trapexium is then a right fropesixm; the two parallel sides are called the sides, the side at right angles to them the base. and the fourth side the top.

By producing the two parallel siden of any traperium (e.g. a parakellogram), and drawing a line at right angles to them. outside the Ggure, we see that it may be treated as the difference of two right trapezia.
It is. however, more simple to convert it into a single right trapezium. Let CABD (fig. i) be a trapezium, the sides CA and DB being parallel. Draw any straight line at right angles to CA and DB (produced If necessary), meeting them in M and N. Along $C A$ and DB. on the same side of MN, take MA' $=C A$, $\mathbf{N B}^{\prime}=\mathrm{DB}$; and
join $A^{\prime} B^{\prime}$, Then MA'B'N is a right traperium, whove area is equal to that of CABD; and it is related to the latter in such a way that, if any two lines parallel to AC and BD meet AB. CD, MN, $A^{\prime} B^{\prime}$, in E, G. P, E^{\prime}, and F, H, Q, F^{\prime}, respectively, the area of the piece PE' ${ }^{\prime} Q$ of the right trapezium is equal to the area of the piece GEFH of the original trapezium. The right trapezium so constructed may be called the equisalont right trapesium. In the case of a paraliclogram, the equivalent right trapesium is a rectangle; in the case of a triangle, it is a right-angled triangle.
24. If we take a series of right trapezia, such thit one side (823) of the first is equal to one side of the second, the other side of the second is equal to one side of the third, and so on, and place them with their bases in a straight line and their equal sides adjoining each other, we get a Ggure such es MIBCDEFS (fig. 2), which has two parallel sides MA and SF, a basc MS at right angles to these, and the remainder of its boundary froni A to F rextilincar, no part of the figure being outside the spure between MA (produced) and SF (produced). A

Fig. 1. figure of this kind will be called a trapezoid.
(i) If from the other angular points B, C, D, E, perpendiculars $\mathrm{BN}, \mathrm{CP}, \mathrm{DQ}, \mathrm{ER}$, are drawn to the base MS (ng. 2), the area is MN. $1(\mathrm{MA}+\mathrm{NB})+\mathrm{NP} \cdot 1(\mathrm{NB}+$ $\mathrm{PC})+\ldots+\mathrm{RS}$. $(\mathrm{RE}+\mathrm{SF})=$ (MN.MA $+\mathrm{MP} \cdot \mathrm{NB}+$ NO. $\mathrm{PC}+\ldots+\mathrm{RS} . \mathrm{SF}$). The lines MA, NB, PC, are cathed the ordingtes of the pointsA, B, C, ...from the base MS, and the portions MN.
 NP, PQ.
of the base are
the projections of the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \ldots$ on the base.
(ii) A special case is that \ln which A coincides with M, and F with S. The figure then stands on a base MS, the remainder of its boundary being a broken line from M to S . The formula then becomes

$$
\text { area }=j(M P, N B+N Q, P C+\ldots+Q S . R E)
$$

i.e. the area is half the sum of the products obtained by multiplying each ordinate by the distance between the two adjacent ordinates. it would be possible to regard this form of the figure as the genera! one; the figure considered in (i) would then represent the special case in which the two end-pieces of the broken line are at right angles to the base.
(iii) Another special case is that in which the distances MN, NP, PQ, . . . RS are all equal. If this distance is h, then area $=h\left(\frac{1}{2} \mathrm{MA}+\mathrm{NB}+\mathrm{PC}+\ldots+\frac{1}{2} \mathrm{SF}\right)$.
25. To find the area of any rectilinear figure, various methods are available.
(i) The figure may be divided into triangles. The quadrihteral. for instance, consists of two triangles, and its area is the product of half the length of one diagonal by the sum of the perpendiculars drawn to this diagonal from the other two angular points.
For figures of more than four sides this method is not usually convenient, except for such special cases as that of a regular polygon, which can be divided into triangles by radii drawn from its centre.
(ii) Suppose that two angular. points, A and E, are joined (fig. 3) so as to form a diagonal AE , and that the whole of the figure lies between lines through A and E at right angles to AE. Then the figure is (usually) the sum of two trapezoids on base AE, and its area can be calculated as in 824 . If BN, CP,

Fic. 3. DQ, FS, CT are the perpendiculars to AE from the angular points, the ordinates NB, PC. are called the offsets from the diagonal to the angular points.
The area of the polygon in fig. 3 is given by the expression
$\frac{1}{2}(\mathrm{AP} \cdot \mathrm{NB}+\mathrm{NQ} \cdot \mathrm{PC}+\mathrm{PE} \cdot \mathrm{QD}+\mathrm{ET} \cdot \mathrm{SF}+\mathrm{SA} \cdot \mathrm{TG})$. It should be noticed (a) that AP, NQ.... SA are taken in the cyclical order of the points ABC ...GA, and (b) that in fig.3, if $A N$ and NB are regarded as positive, then SF, TG, ET and SA are negative, but the products ET.SF and SA. TG are positive. Negative products will arise if in moving from A to E along the primeter of either side of the figure the projection of the moving point does not always move in the direction AE.
(iii) Take any ptraight line intersecting or not intersecting the figures and draw perpendiculars $A a$. Bb. Cc, Dd, ... Ff, Gg to this line. Then, with proper attention to signs,

$$
\text { area }-\frac{1}{1}(g b, a \mathrm{~A}+a c \cdot b \mathrm{~B}+b d, c \mathrm{C}+\ldots+f a, \varepsilon \mathrm{G})
$$

(iv) The figure may be replaced by an equivalent trapesoid, oa the system explained in 23. Take any base $\mathrm{X}^{\prime} \mathrm{X}$. and draw lines at system angles to this base through all the angular points of the figure.

Let the lines throngh B_{1}, G_{i}, C, D and F (fig. 4) cut the bonndary of the Ggure again in $B^{\prime}, C^{\prime}, C^{\prime}, D^{\prime}$ and $F^{\prime} X$ in K, L, M, N and P;

Fic. 4. the points \mathbf{A} and E being at the extremities of the figure, and the lines through them meeting the base la a and c. Then, if we take ordinates Kb. Le Mc, Nd, Pf, equal to $\mathrm{B}^{\prime} \mathrm{B}$ $G^{\prime}, C^{\prime} C, D^{\prime} D, F F^{\prime}$, the figure abgedfe will be the equivalent trapezoid, and any ordinate drawn from the base to the top of this trapezoid will be equal to the portion of this ordinate (produced) which falls
within the original figure.
26. Volumes of Soluds with Plawe Faces. \rightarrow The following are expressions for the volumes of come simple solid figures.
(i) Cube: side a. Volume $=a^{3}$.
(if) Rectangular parallelepiped: sides a, b, c. Volume $=a b c$.
(iii) Right prism. Volume $=$ length of edge x area of end.
(iv) Oblique prism. Volume $=$ height x area of end $=$ length of edge X area of cross-section; the "height " being the perpendicular distance between the two ends.

The parallelepiped is a particular case.
(v) Pyramid with rectilinear base.

Volume $=$ beight $\times\{$. area of base.
The tetrahedron is a particular case.
(vi) Wedge: parallel edges $a, b, c ;$ area of cross-wection S. Volume $=\frac{1}{1}(a+b+c) S$.

This formula holds for the peneral case in which the base is a trapezium; the wedge being thus formed by cutting a triangular prism by any two planes.
(vii) Frustum of pyramid with rectilinear base: height $h_{\text {; }}$ areas of ends (i.e. base and top) A and B. Volume $=k . ~ f(A+\sqrt{A B}+B)$.
27. The figures considered in $\$ 26$ are particular cases of the primoid (or prismatoid), which may be defined as a solid figure with two paraliel plane rectilinear ends, each of the other (i.e. the lateral) faces being a triangle with an angular point in one end of the figure and its opposite side in the other. Two adjoining faces in the same plane may together make a trapezium. More briefly, the figure may be defined as a polyhedron with two paraliel laces containing all the vertices.

If R and S are the ends of a prismoid, A and B their areas, h the perpendicular distance hetween them, and C the area of a section by a plane parallel to R and S and midway between them, the volume of the prismoid is

$$
\frac{3 h}{}(A+4 C+B)
$$

This is known as the prismoidal formula.
The formula is a deduction from a general formula, considered later (8 58), and may be verified in virious ways. The most instructive is to regard the pris noid as huilt up (by addition or subtraction) of simpler figures, wich are particular cases of it.
(i) Let R and S be the vertex and the base of a pyramid. Then $A=0, C=1 B$, and volume $-1 h B=t h(A+4 C+B)$. The tetrahedron is a particular case.
(ii) Let R be one edge of a wage with parallel ends, and S the face containing the other two adges. Then $A=O, C=\frac{1}{2} B$, and volume $=\frac{3}{3} h B=1 h(A+4 C+B)$.
(iii) Let R and S be two opposite edges of a tetrabedron. Then the tetrahedron may be regarded as the difference of a wedge with parallel ends, one of the edges being R, and a pyramid whose base is a parallelogram, one side of the parallelogram being S (see 6g. 9 . 858). Hence, by (i) and (ii), the formula holds for this figure.
(iv) For the prismoid in general let ABCD. . . be one end, and obcd...the other. Take any point P in the latter, and form trianales by joining P in cach of the sides $A B, B C, \ldots a b, b c_{1}$. of bue enwo, aw elso to ench of the edges. Then the prismoid is divided into a pyramid with vertex P and base $A B C D$. and a series of tetrahedra, such as PABa or PAab. By (i) and (iii), the

Fig. 5. formula holds for each of these figures; and therefore it holds for the prismoid as a whole.

Another method of verifying the formula is to take point Q in the mid-section, and divide up the prismoid into two pyramids
with vertex 0 and bases ABCD... and with vertex Q and bases $A B C D . .$. and hedra having Q as one vertex.
28. The Circle and Allied Figuret.-The menauration of the circle is founded on the property that the areas of different circles are proportional to the equares on their diameters. Denoting the constant ratio hy 4 t , the arca of a circle is m^{2}, where e is the radius, and $\pi=3.14159$ approximately. The exprestion 2Te for the length of the circumf(rence can be deduced by considering the limit of the area cut off from a circle of radius a by a concentric circle of radius $6-a$. when a becomes indefinitely small: thig is an elementary case of differentiation.

The lengths of arcs of the same cirche being proportional to the
angles subtended by them at the contre, wet the idea of circular measure.

Let O be the common centre of two circies, of radii a and b, and let radi encloning an angle (circular measure) cut their circum. ferences in A, B and C, D respectively (fig. 5). Then the area of $A B D C$ is

$$
\left.3 b^{2} b-\frac{3}{3} a^{2} 0=(b-a) \cdot \frac{3}{2}(b+a)\right)
$$

If we bisect $A B$ and $C D$ in P and Q respectively, and deacribe the arc $P Q$ of a circle with centre O, the length of this arc is $1(b+a) \theta$; and $b-a=A B$. Hence area $\Lambda B D C=A B X$ arc $P Q$. The figure ABDC is a eector of an annulus, which is the portion of a circle left after cutting out a concentric circle.
29. By considering the circle as the limit of a polygon, it follows that the formulae (iii) and (\mathbf{y}) of $f 26$ hold for a right circular cylinder and a right circular cone; ie.
volume of right circular cylinder $=$ length X area of base;
volume of right circular cone $=$ height $\times\{$ area of base.
These formulae also hold for any right cylinder and any cone.
30. The curved surfaces of the cylinder and of the cone are developable surfaces; ie. they can be unrolled on a plane. The curved surface of any right cylinder (whether circular or not) becomes a rectangle, and therefore its area $=$ iength X perimeter of base. The curved surface of a right circular cone becomes a sector of a circle, and its area $=\mathbf{3}$-slant height X perimeter of base. 3I. If a is the radius of a sphere, then

(i) volume of sphere $=\frac{1 \pi a^{8}}{}$;

(ii) surface of aphere $=4 \mathbf{4}^{2}=$ curved surface of circumscrihing cylinder.

The first of these is a particular case of the prismoidal formula (f 58). To obtain (i) and (ii) together, we show that the volume of a sphere is proportional to the volume of the cube whose edge is the diameter; denoting the constant ratio by 1λ, the volume of the sphere is λa^{2}, and thence, by taking two concentric spheres (cf. \& 28), the area of the surface is $3 \lambda a^{*}$. This surface may be split up into elements, each of which is equal to a corresponding element of the curved surface of the circumscribing cylinder, so that $3 \lambda a^{2}=$ curved surface of cylinder $=2 a$. $2 \pi=4 \pi \pi^{2}$. Hence $\lambda=$ i π.

The total surface of the cylinder is $4 \pi a^{2}+x^{2}+x^{2}=60^{2}$, and ite volume is $2 a . \pi \mathbb{s}^{3}=2 \pi a^{3}$. Hence
volume of sphere $=$ t volume of circumscribing cylinder;
aurface of sphere $=$ surface of circumacribing cylinder.
These latter formulae are due to Archimedes.
32. Moments and Centroids.-For every material body there is a point, fixed with regard to the body, such that the moment of the body with regard to any plane is the same as if the whole mass were collected at that point; the moment being the sum of the products of each element of mass of the body by its distance from the plane. This point is the centroid of the body.
The ideas of moment and of centroid are extended to geometrical Gigures, whether solid, superficial or linear. The momeni of a figure with regand to a plane is found by dividing the fgure into elements of volume, ares or length, multiplying each element by tre distance from the plane, and adding the products. In the case of a plane area or a plane continuous line the moment with regerd to a a raight line in the plane is the same as the moment with negand to a perpendicular plane through this line; i.e. it is the sum of the products of each element of arca or length by its distance from the straight line. The centroid of a figure is a point faxed with resend to the figure, and such that its moment with regard to any plane (or, in the case of a plane area or line, with regard to any hine in the planc) is the same as if the whole volume, area or length were concentrated at this point. The centroid is sometimes called the centre of volume, centre of area, or centre of arc. The proof of the existence of the centroid of a figure is the same as the proof of the existence of the centre of gravity of a body. (See MECRARICs.)

The moment as described above is sometimes called the first moment. The second moment, third moment, ... of a plane or solid figure are lound in the same way by multiplying each element by the square, cube,... of ity distsnce from the line or plane with regard to which the moments are being taken.
If we divide the first. second, third, moments by the total volume, area or length of the figure, we get the mean distance, mean squate of dislance, mean cube of distonce.... of the figure from the line or plane. The mean distance of a plane figure from a line in tit plane, or of any figure from a plane, is therefore the atane as the distance of the centroid of the figure from the line or plane.
We sometimes require the moments with regand to line or plane through the centroid. If N_{6} is the area of plane figure, and $N_{1}, N_{2} \ldots$ are its moments with regand to a line in ints plane, the moments M_{1}, M_{1}, \ldots with regard to a parallel line through the centroid are given by
$M_{1}-N_{1}-x N_{4}=0$,

$$
\begin{aligned}
& M_{3}=N_{3}-2 x N_{1}+2 N_{0}=N_{1}-2 N_{4} \\
& ! \\
& M_{1}-N_{1}-q x N_{4-1}+\frac{q(q-i)}{2!} x^{n} N_{4-1} \ldots+(-)=-1 q-2 N_{1}+ \\
& \text { (}- \text {) }{ }^{2} \boldsymbol{x} \mathrm{~N}_{0} \text {; }
\end{aligned}
$$

where $x=$ the distance between tho two lineam N_{3} / N_{c}. These lormulae also hoid for converting moments of a solid figure with regard to a plane iato moments with regard to a parallel plane through the centroid; x being the distance between the two planes. A line through the centroid of a plane figure (drawn in the plane of the figure) is a central line, and a plane through the centroid of a solid figure is a central plane, of the figure.

The centroid of a rectangle is its centre, ie. the point of interseccion of its diagonals. The first moment of a plane figure with regard to a line in its plane may be regarded as obtained by dividing the area into elementary strips by a series of parallel lines indefinitely close together, and concentrating the area of each strip at its centre. Similarly the first moment of a solid figure may be regarded at obtained by dividing the figure into elementary prisms by two sets of parallel planes, and concentrating the volume of each prism at its centre. This also holds for higher moments, provided that the edges of the elementary strips or prisms are parallel to the line or plane with regard to which the moments are taken.
33. Solidr and Surfaces of Resolution.-The solid or surface generated by the revolution of a plane closed figure or a plane continuous line about a straight line in its plane, not intersecting it. is a solid of repolation or sufface of rooolution, the straight Hine being its axis. The revointion need not be complete, but may be through any angle.

The section of a acolid of revolution by a plane af right angles to the axis is an a nnulus or a sector of an annuius (ig; 5), or is composed of two or more such figures. If the wolid is divided into elements by a geries of euch plames, and if h is the distance between two consecutive planes making sections such as ABDC in fig. 5, the volume of the element between these planes, when h in very small, is approximately $\& \times A B . X$ anc $P(=h . A B . O P . \theta$. The correaponding element of the revolving figure is spproximately a rectangle of area 1. AB, and OP is the distance of the middle point of eil her side of the rectangle from the axis. Hence the total volume of the solid is M. θ, where M is the sum of the quanities k. AB.OP, i.e. is the moment of the figure with regard to the axis. The volume is therefore equal to $\mathrm{S} . \bar{y} . \theta_{1}$ where S is the area of the revolving figure, and $\$$ is the distance of its centroid from the axis.
Similarly a surface of revolution can be divided by planes at right angles to the axis into elements, each of wbich is approximately a section of the surface of a right circular cone. By un rolling each such element (830) into a sector of a circular annulus, it will be found that the total area of the surface is $\mathrm{M}^{\prime} .0=\mathrm{L} .2 . \theta$, where M^{\prime} is the moment of the original curve with regard to the axis, L is the total kength of the original curve, and 8 is the distance of the centroid of the curve from the axis. These two theorems may be stated as follows:-
(i) If any plane figure revolves about an external axis in its plane, the volume of the solid generated by the revolution is equal to the product of the area of the figure and the distaace travelled by the centroid of the figure.
(ii) If any line in a plane revolycs about an external axis in the plane, the area of the curved surface generated by the revolution is equal to the product of the length of the line and the distance travelled by the centroid of the line.

These theorems were discovered by Pappus of Alexandria (c. A.D. 300), and were made generally known by Guldinus (c. A.D. 1640). They are sometimes known as Culdinus's Theorems, but sre more properly described as the Theorems of Pappus. The theorcms are of use. not only for finding the volumes or areas of solids or surfaces of revolution, but also, conversely, for finding centroids or centres of gravity. They may be applied, for instance, to finding the centroid of a semicircle or of the are of a semicircle.
34 Segneent of Parabola.-The parabola affords a simple example of the use of infinitesimals. Let $A B$ ($6 g .6$) be any arc of a parabola: and suppose we require the area of the figure bounded by this

Fig. 6. are and the chord AB.
Draw the tangents at A and B, meeting at T: draw TV prown to the axis of the parabola, nicetin: the are in C and the chord in $\mathrm{V}_{\text {; }}$ ind draw the tangent at C, meeting $A T$ and BT in G and b. Then ree Parabola) $T C=C V, A V=V B$, nd $a b$ is parallel to AB, so that $a \mathrm{C}=\mathrm{Cb}$. Hence area of triangle $A C B=$ twice area of triangle $a \mathrm{~T} b$. Repeating the process with the arcs AC and CB , and continuing the repetition indefnitely, we divide up the required area and the remainder of the triangle ATB inio corresponding elements.. each element of the former being double the corresponding elements of the latter. Hence the required area is double the arca of the remainder of the triangle, and therefore it is two thirds of the area of the triangle.
The line TCV is parallel to the axis of the parabola. If we draw a line at right angles to TCV, meeting TCV produced in M and paralleis through \mathcal{A} and B in K and \mathcal{L}, the iten of the triangle ATB ta \ddagger KL.TV $=$ KL.CV; and therefore the arsa of the figure bounded by $A K, B L, K L$ and the arc $A B$, is
$\mathbf{K L} . \boldsymbol{j}(\mathrm{AK}+\mathrm{BL})+3 \mathrm{KL}\{\mathrm{CM}-\boldsymbol{3}(\mathrm{AK}+\mathrm{BL}) \mid$ $-1 K L(A K+4 C M+B L)$.

Similariy for a corresponding figure K'L'BA outaide the parabola, the area is
$1 K^{\prime} L^{\prime}\left(K^{\prime} A+4 M^{\prime} C+L^{\prime} B\right)$.
35. The Ellipse and the Ellipsoid.-For elementary mensuration the cllipse is to be regarded as obtained by projection of the circle. and the ellipsoid by projection of the sphere. Hence the area of an ellipse whose axes are $2 c$ and $2 b$ is $\pi a b$; and the volume of an ellipsoid whose axes are $2 a, 2 b$ and $2 c$ is $3 x a b c$. The area of a strip of an elipse between two lines parallel to an axis, or the volume of the portion (frustum) of an ellipsoid between two planes parallel to a principal section, may be lound in the same way.
36. Examples of Applications:-The formulae of $\$ 24$ for the area of a trapezoid are of spectal importance in land-surveying. The measurements of a polygonal field or other area are usually taken as in $\mathbf{2 5}$ (ii); a diagonal AE is taken as the base-line, and for the poinks B, C, D. . . there are entered the distances AN, AP, $A Q_{1}$. A $^{\text {a }}$ along the base-line, and the lengths and directions of the offets $\mathrm{NB}, \mathrm{PC}, \mathrm{QD}$, \qquad The of $\$ 25$ (ii).
37. The mensuration of earthwork involves consideration of quadrilaterals whose dimensions are given by special data, and of prismoids whose sections are such quadrilaterals. In the ordinary case three of the four lateral surlaces of the prismoid are at right angles to the two ends. In special cases two of these three lateral surfaces are equally inclined to the third.
(i) In fig. 7 let base $\mathrm{BC}=20$,

Fic. 7.
and let k be the distance, measured at right sngles to BC from the middle point of $B C$ to $A D$. Also, let angle $A B C=\pi-\theta$, angle $B C D=-\phi_{1}$, angle between $B C$ and $A D=\psi$. Then (as the diference of two triangles)

$$
\operatorname{arca} \operatorname{ABCD}=\frac{(h \cot \psi+a)^{2}}{2(\cot \psi-\cot \phi)}-\frac{(h \cot \psi-a)^{2}}{2(\cot \psi+\cot \theta)} .
$$

(ii) If $\phi=\theta$, this becomes

$$
\operatorname{arca}=\frac{\tan \theta}{\tan ^{2} \theta-\tan ^{2} \psi}(h+a \tan \theta)^{2}-a^{4} \tan \theta .
$$

(iii) If $\psi=0, \infty$ that AD is parallel to BC , it becomen area $=20 h+j(\cot \theta+\cot \phi) h^{2}$.
(iv) To find the volume of a prismoidal cutting with vertical ends, and with sides equally inclined to the vertical, so that $\phi=\theta$, let the values of h, ψ for the two ends he h_{1}, ψ_{1}, and h_{2}, ψ_{2}, and write $m_{1} \equiv \frac{\cot \psi_{1}}{\cot \psi_{1}-\cot \theta}\left(a+h_{1} \cot \theta_{2}, n_{1} \equiv \frac{\cot \psi_{1}}{\cot \psi_{1}+\cot \theta}\left(a+h_{1} \cot \theta\right)\right.$. $m \equiv \frac{\cot \psi_{2}}{\cot \psi_{2}-\cot \theta}\left(a+h_{2} \cot \theta\right), n_{2} \equiv \frac{\cot \psi_{n}}{\cot \psi_{2}+\cot \theta}\left(a+h_{1} \cot \theta\right)$. Then volume of prismoid $=$ length $\times 1 \mid m_{1} n_{2}+m_{2} n_{3}+$

$$
\left\{\left(m_{1} n_{8}+m_{2} n_{1}\right)-\dot{-}_{3} a^{2}\right\} \tan \theta \text {. }
$$

mensuration or graphs

38. (A) Preliminary.-In $\$ 23$ the arca of a right trapezium has been exptessed in terms of the base and the two sides; and in $\$ 34$ the area of a somewhat similar figure, the top having been replaced by an arc of a parabola, has been expressed in terms of its base and of three lengths which may be regarded as the sides of two separate figures of which it is composed. We have now to consider the extension of formulae of this kind to other figures, and their appiication to the calculation of moments and volumes.
39. The plane figures with which we are concerned come mainly under the description of graphs of continuous variation. Let \mathbf{E} and F be two magnitudes so related that whenever F has any value (within certain limits) E has a definite corresponding value. Let x and x be the numerical expressions of the magnitudes of \mathbf{E} and F. On any line $Q X$ take a length $O N$ equal to $x G$, and from N draw NP at right angles to OX and equal to $w H$; G and H being convenient units of length. Then we may, ignoring the units G and H, speak of $O N$ and NP as being equal to x and u respectively. Let KA and LB be the positions of NP corresponding to the extreme values of x. Then the different positions of $N \mathrm{P}$ will (if x may have any value from OK to OL) trace out a figure on base KL, and extending from KA to LB; this is called the ${ }_{8 r a p h}$ of E in respect of F. The term is also sometimes applied to the line AB along which the point P moves as N moves from K to L .
To illustrate the importance of the mensuration of graphs, suppose that we require the average vaiue of u with regard to x. It may be shown that this is the same thing as the mean distance
of elements of the graph from an axis through O at right angles to OX. Its calculation therefore involves the calculation of the area and the first moment of the graph.
40. The processes which have to be performed in the mensuration of figures of this kind are in effect processess of integration; the distinction between mensuration and integration lies in the different natures of the data. If, for instance, the graph were a trapezium, the calculation of the arca would be equivalent to finding the integral, from $x=a$ to $x=b$ of an expression of the form $p x+q$. This would involve p and q; but, for our purposes, the data are the sides $p a+q$ and $p b+q$ and the base $b-a$, and the expression of the integral in terms of these data would require certain eliminations. The province of mensuration is to exprets the final result of such an climination in terms of the data, without the necessity of going through the intermediate processes.
$4{ }^{1}$. Trapezeltes and Briquetles.-A figure of the kind described in $\}_{39}$ is called a trapezette. A trapezette may therefore be defined as a plane figure bounded by two straight lines, a base at right angles to them. and a top which may be of any shape but is such that every ordinate from the base cuts it in one point and one point only; or, alternatively, it may be defined as the figure generated by an ordirtite which moves in a plane so that its foot is always on a straight base to which the ordinate is at right angles, the length of the ordinate varying in any manner as it moves. The distance between the two straight sides, i.e. between the initial and the final position of the ordinate, is the breadh of the trapezette. Any line drawn from the base, at right angles to it, and terminated by the top of the trapezette, is an ordinate of the figure. The trapezium is a particular case.
Either or both of the bounding ordinates may be zero; the top, in that case, meets the base at that extremity. Any plane figure might be converted into an equivalent traperette by an extension of the method of $\$ 25$ (iv).
41. The corresponding solid figure, in its most general form, is such as would be constructed to represent the relation of a magnitude E to two magnitudes \mathbf{F} and \mathbf{G} of which it is a function; it would stand on a plane base, and be comprised within a cylindrical boundary whose cross-section might be of any shape. We are not concerned with figures of this general kind, but only with cases in which the base is a rectangle. The figure is such as would be produced by removing a piece of a rectangular prism, and is called a briquethe. A briquette may therefore be defined as a solid figure bounded by a pair of parallel planes, another pair of parallel planes at right angles to these, a base at right angles to these four piancs (and thercfore rectangular), and a top which is a surface of any form, but such that every ordinate from the base cuts it in one point and one point only. It may be regarded as generated either by a trapezette moving in a direction nt right angles to itself and ehanging its top but keeping its breadth unaltered, or by an ordinate moving so that its foot has every possible position within a rectangular base.
42. Notation and Definilions.-The ordinate of the trapezette will be denoted by $\%$, and the abscissa of this ordinate, ie. the distance of its foot from a certain fixed point or origin 0 on the base (or the base produced), will be denoted by x, so that u is some function of x. The sides of the trapezette are the "bounding arcinates ": their abscissae being x_{0} and $x_{0}+H$, where H ia the breadth of the trapezette.
The " mid-ordinate" is the ordinate from the middle point of the base, i.e. the ordinate whose abscissa is $x_{0}+\frac{1}{2} \mathrm{H}$.
The " mean ordinate " or average ordixate is an ordinate of length b such that H is equal to the area of the trapesette. It thercfore appears as a calculated length rather than as a definite line in the figure: except that, if there is only one ordinate of this length, a line drawn through its extremity is 80 placed that the area of the trapezette lying above it is equal to a corresponding area below it and outside the trapezette. Formulae giving the area of a srapezette should in general also be expressed so as to state the value of the mean ordinate ($8812(\mathrm{v}), 15,19$).

The "median ordinate" is the ordinate which divides the arca of the trapezette into two equal portions. It arises mainly in statistica, when the ordinate of the trapezette represents the relative frequency of occurrence of the magnitude represented by the abscissa x; the magnitude of the abscissa corresponding to the median ordinate is then the "median value of x."
The "central ordinate" is the ordinate through the centroid of the trapesstte ($\mathbf{6}, 32$). The distance of this ordinate from the axis of u (i, from a line drawn through 0 parallel to the ordinates) is equal to the mean distance ($\$ 32$) of the trapezette from this axis; moments with regard to the central ordinate are therefore wometimes described in statistics as " moments about the mean.'

The data of a trapezette are usually ito breadth and cither the bounding ordinates or the mid-ordinates of a scries of minor trapezettes or strips into which it is divided by ordinates at equal distancest If there are m of these strips, and if the breadth of each is h, so that if $=m h_{1}$ it is convenient to write x in the form $x_{1}+\theta h_{\text {, and to }}$ d. note it by x_{0}, the corresponding value of u being μ_{0}. The data are then either the bounding ordinates $u_{6}, u_{21} \ldots M_{2-1}, w_{m}$ of the strips, or their mid-ordinates il, u! . . . u_{m-1}.
44. In the case of the brinuetce the position of the foot of the ordinate u is expressed by co-ordinates x, y, referred to a pair of ames
paraliel to a pair of siden of the base of the briquecte. If the lengths of these sides are H and K , the coordinates of the angles of the base-i.e. the co-ordinates of the edges of the briquette-are $\left(x_{0}, y_{0}\right),\left(x_{0}+H, y_{0}\right),\left(x_{0}, y_{0}+K\right)$, and $\left(x_{0}+H, y_{0}+K\right)$.

The briquette may usually be regarded as divided lnto a series of minor briquettes by two sets of paralled planes, the planes of each eet being at successively equal distances. If the planes of one set divide it into m slabs of thickness h_{1} and those of the other into n slabs of thickness k, s that $H=m h, K=n k$, then the values of x and of y for any ordinate may be denoted by $x_{0}+\theta h$ and $y_{0}+\phi k$, and the length of the ordinate by $\boldsymbol{\mu}$. .

The data are usually the breadths H and K and either (i) the edges of the minor briquettes, viz. $\mu_{0,0,} \mu_{0}, 1, \ldots \mu_{1,0}, \mu_{1,1} \ldots$ or (ii) the mid-ordinates of one set of parallet faces, viz. $\mu_{0,4}$ map 2.
 $u_{1, f}, u_{1, f}, \ldots u_{1,1}, \ldots$ of the minor briquettes, is the ordinates from the centres of their basea.
A plant parallel to either pair of sides of the briquette is a "principal plane." The ordinate through the centroid of the figure is the "central ordinate."
45. Ia some casca the data for a traperette or a briquette are not only certain ordinates within or on the boundary of the Ggure, but also others forming the continuation of the series outride the figure. For a trapesette, for instance, they may be $\ldots \mu_{4}, \psi_{-1}, m_{0} w_{1} \ldots$. $u_{m .} w_{m+1} u_{m+3}$ where μ_{0} denotes the mame function of x mex $x+\%$, whether of lies between the limits o and H or not. These ceses are important as enabling simpler formulae, involving central dififerences, to be used ((76).
46. The ares of the trapesette, measured from the lower bounding ordinate up to the ordinate corresponding to any value of x is come function of x. In the notation of the integral calculun, this area is equal to $\int_{x_{0}}^{x} u d x$; but the notation is inconvenient, since it implies * division into infinitesimal elements, which is not emential to the idea of an area. It is therefore better to use nome independent notation, such as A, y. It will be found convenient to denote $\phi(b)-\phi(a)$, where $\phi(x)$ is any function of x, by $[\phi(x)]_{x=b}^{x=b}$; the area of the trapezette whose bounding ordinates are u_{0} and x_{m} may then be denoted by $\left[A_{2}, x_{x=x_{0}}^{x=x_{m}}\right.$ or $\left[A_{0}, w\right]_{\theta=0}^{\theta=0}$, instead of by $\int_{x_{0}}^{x_{i m}} u d x$.

In the same way the volume of a briquette between the planes $x=x_{0,} y=y m x=a, y=b$ may be denoted by

$$
\left.\left[\mathrm{V}_{x, y}, u\right]_{y=y_{0}}^{y=b}\right]_{x=a}^{x=a} .
$$

47. The statement that the ordinate w of a trapezette ls a function of the abscissa x, or that $w-f(x)$, must be distinguished from $u-f(x)$ as tbe equation to the top of the trapezette.

In elementary geometry we deal with lines and eurves, white in mensuration we deal with areas bounded by these liness or curves. The circle, for instance, is regarded geometrically as a line described in a particular way, while from the point of view of mensuration it is a figure of a particular shape. Similarly, analytical plane geometry deals with the curve described by a point moving in a particular way, while analytical plane mensuration deals with the hgure generated by an ordinate moving, so that its length varics in a particular manner depending on its position.

In the same way, in the case of a figure in three dimensions, analyrical geometry is concerned with the form of the surface, while analytical mensuration is concerned with the figure as a whole.
48. Representation of Volume by Ares.-An important plane graph is that which represents the volume of a solid figure.
Suppose that we take a pair of parallel planes, such that the solid extends from one to the other of these planes. The section by any intermediate parallel plane will be called a "cros-section." The solid may then be regarded as generated by the cromesection moving parallel to itself and changing its shape, or its position with regard to a fixed axis to which it is always perpendicular, as it moves.
If the area of the cross-section, in every position, is known in terms of its distance from one of the bounding plancs, or from a fixed plane A parallel to them, the volume of the solid can be expressed in terms of the area of a trapezette. Let S be the area of the cross. section at distarice x from the plane \mathbf{A}. On a straight line $\mathbf{O X}$ in any plane take a point N at distance x from O, and draw an ordinate any plane take a length (e.g. the unit of measurement). If 'this is done for every poesible value of x, there will be a series of ordinntes tracing our a trapezctte with base along OX. The volume comprised bet ween the crose-section whose area is S and a consecutive cross-section at distance of from it ts ultimately 50 , when θ is indefinitely small: and the area bet ween the corresponding ordinates of the trapezetic is $(S / I) . \theta=50 / l$. Hence the volume of each element of the solid figure is to be found by multiplying the area of the corresponding element of the traperette by 1 , and therefore the total volunia is $l \times$ area of trapecette

The volume of a briquette oan be foand in thle way if the area of the section by any principal plane can be expresed in termas of the distance of this plane from a fixed plase of the alase set. The result of treating this ares as if it were the ordinate of a trapesette leads to special formulae, when the data are of the kind mentioned in 14
49. (B) Menswration of Graphs of Algebraical Punctions,-T The first class of cases to be considered comprises those cases in which m is an algebraical function (i.e. a rational integral algebracal function) of x, or of x and y. of a degree which is known.
50. The simplest case is that in which $\%$ is constant or is a linear function of x, i.e. is of the form $p x+q$. The traperette is then a right eraperium, and its area, if $m=1$, is $\left\{h\left(m_{0}+m_{i}\right)\right.$ or $h m$.
51. The next casc is that in which w is a quadratic function of x, i.e. is of the form $p x^{2}+q x+r$. The top is then a parabola whose axis is at right angles to the base; and the area can cherefore (834) be expressed in terms of the two boanding ordinates and the mid. ordinate. If we take these to be m_{1} and w_{2}, and w_{1}, so that $m=z_{i}$ we have

$$
\text { area }=\left\{H\left(m_{0}+4 m_{1}+m_{2}\right)=3 h\left(m_{0}+4 m_{1}+m_{3}\right.\right.
$$

This is Simpson's formula.
If instead of μ_{1}, μ_{1}, and u_{2}, we have four ordinates $\mu_{1} \mu_{31} \mu_{m}$ and μ_{3}, so that $m=3$, it can be shown that

area $=\mathbf{1} h\left(u_{0} \dot{+} \mathbf{3} u_{1}+3 u_{1}+w_{3}\right)$.

This is Simpson's sacond formula. It may be deduced from the formula given above. Denoting the areas of the three stripa by A. B. and C, and introducing the middie ondinate w_{1}, we can express $\mathrm{A}+\mathrm{B} ; \mathrm{B}+\mathrm{C} ; \mathrm{A}+\mathrm{B}+\mathrm{C} ;$ and B in terms of $\boldsymbol{m}_{1}, x_{10} w_{2} ; \mu_{1} ; \mathrm{m}_{1}$. $w_{3} ; u_{4}, u_{1}, u_{3} ;$ and w_{1}, u_{1}, w_{2} respectively. Thus we get two expresions for $\mathrm{A}+\mathrm{B}+\mathrm{C}$, from which we can eliminate x .

A trapezette of this kind wili be called a parabolic trapezette.
52. Simpsonis two formulae also apply if u is of the form $p x^{4}+$ $q_{x^{2}}+r x+s$. Gencrally, if the area of 2 trapezette for which u is an algebraical function of x of degree $2 n$ is given correctly by an expression which is a linear function of values of $\boldsymbol{\kappa}$ representing ordinates places symmetrically about the mid-ordinate of the trapezette (with or without this mid-ordinate), the same expression will give the area of a trapezette for which u is an algebraical function of x of degree $2 n+1$. This will be seen hy taking the mid-ordinate as the ordinate for which $x=0$, and noticing that the odd powera of x introduce positive and negative terms which balance one another when the whole area is taken into account.
53. When x is of degree 4 or 5 in x, we require at least five ordinates. If $m=4$, and the data are $u_{0}, \mu_{1}, \mu_{3}, \mu_{2}, u_{4}$, we have

$$
\text { area }=h_{1} h\left(7 m_{0}+32 u_{1}+12 m_{n}+32 z_{3}+7 m_{c}\right)
$$

For functions of highcr degrees in x the formulae become more complicated.
54. The gencral method of constructing formulae of this kind involves the use of the integral calculus and of the calculus of finite differences. The breadth of the trapezette being mh, it may be shown that its area is
where $z_{i=1} x_{j=0}^{\prime \prime \prime} x_{j=1}^{m p} \ldots$ denote the values for $x=x_{j=1}$ of the
successive differential coefficients of u with regard to x; the series continuing until the differential coeficients vanish. There are two classes of cases, according as m is even or odd; it will be con. venicnt to consider them farst for those cases in which the data are the bounding ordinates of the strips.
(i) If m is even, $4 m$ will be one of the given ordinates, and we can express $h^{2} u_{j=1}^{\prime \prime} h^{4} u_{j=\ldots}^{\prime \prime} \ldots$ in terms of w_{10} and its even central differences (gee Differences. Calculus of). Writing $m=2 p$, and grouping the coefficients of the successive differences, we shall find area $=2 p h\left\{u_{p}+\frac{p^{2}}{6} s^{2} u_{p}+\frac{3 p^{4}-5 p^{3}}{360} \delta^{4} u_{p}+\right.$

$$
\left.\frac{3 p^{6}-21 p^{4}+28 p^{2}}{15120} 8^{2} u_{p}+\ldots\right\}
$$

If μ is of degree $2 f$ or $2 f+1$ in x, we require to go up to $\delta^{2 z /} u_{p}$, so that m must be not less than $2 f$. Simpson's (first) formula. for instance, holds for $f=1$, and is obtained by taking $p=1$ and ignoring differences after $\delta^{2} u_{p}$.
(ii) If m is odd, the given ordinates are $x_{n}, \ldots m / m-1, * / m+3$. . 4m. We then have

$$
\frac{\left.3 m^{6}-147 m^{4}+18 r_{3} m^{4}-472 \xi^{2}{ }^{2671} m+\ldots\right\},}{96780}
$$

 $m=3$ and ignoring difierences after mpilio.
55. The generai formulae of $\$ 54$ (p being replaced in (i) by im) may in the same way be applied to obrain ormulae giving the aroa of the trapesette in terms of the mid-ordinates of the strips, the
 degree $2 f$ or $2 f+1$ in x. Thus we find rrom (i) that Simpron's second formula. (or the case where the top in a parabola (with axis, as before, at right angles to the base) and there are three stripe of breadth h, may be replaced by

$$
\text { area }=j h\left(3 y_{4}+2 u_{1}+3 u_{1}\right) .
$$

This might have been deduced directly from Simpson's firat formula, by a series of eliminations.
56. Hence, for the case of a parabola, we can exprems the area in terms of the bounding ordinates of two strips, but, if we use mid-ordipates we require three strips; so that, in each case, three ordinates are required. The question then arises whether, by removing the limitation an to the position of the ordinates, we can reduce their number.
Suppoes that in fifg. 6 (434) we draw ordinates $O D$ midway between KA and MC, and RE midway between MC and LB, meeting the top in D and E (6s. 8), and join DE, meeting KA, LB, and MC in H, J, and W. Then it may be shown that DE is parailel to $A B$, and that the area of the figure between chord DE and arc DE is half the sum of the areas DHA and EJB. Hence the area of the right trapexium KH $/ \mathrm{L}$ is greater than the area of the trapesette KACBL.
If wo were to take QD and RE closer to MC. the former area would be still greater. If, on the other hand, we were to take them very close to KA and LB respectively, the area of the trapezette would be the greater. There

Fic.' 8. is therefore some intermediate position such that the two areas are equal; i.e. such that the area of the traperette is represented by KL. t $\mathrm{CQD}+\mathrm{RE}$).

To find this position, let us write $Q M=M R=\theta . K M$. Thea $W C=\theta^{*} . V C, V W=\left(1-\theta^{*}\right) V C ;$
 parallelogram $A H J B=K L, V W=\left(t-\theta^{f}\right) K L . V C$.
Hence the areas of the traperette and of the traperium will be equal it

$$
1-\theta-3 . \theta=1 / \sqrt{ } 3 .
$$

This value of θ is the same for all parabolas which pasa through D and E and have their axes at right angles to KL. It follows that, by taking two ordinates in a certain position with regard to the bounding ordinates, the area of any parabolic trapezette whose top passes through their extremities can be expressed in terms of these ordinates and of the breadth of the trapezette.

The same formula will also hoid (\$ 52) for any cubic trapezette through the pointa
57. This is a particular case of a general theorem, due to Causs, that. If x is an algebraical function of x of degree $2 p$ or $2 p+1$, the enea ean be expressed in terms of $p+1$ ordinates taken in suitable positions
58. The Prismoidal Formulc. - It follows from $\$ 88$ and 51 that if V is a solid figure extending from a plane \mathbb{K} to a parallel plane L, and if the area of every cross-section parallel to these plancs is a quadratic function of the distance of the section from a fixed plane paraliel to them, Simpson"s formula may be applied to find the volume of the solid. If the areas of the two ends in the planes K and L are \mathbf{S}_{0} and S_{1}, and the area of the mid-section (i.e. the section by a plane parallel to these planes and midway between them) is S_{1}, the volume is $1 \mathrm{H}\left(\mathrm{S}_{0}+4 \mathrm{~S}_{1}+\mathrm{S}_{2}\right)$, where H is the total breadth.

This formula applies to such figures as the cone, the spleere, the ellipsoid and the prismoid. In the case of the sphere, for instance, whose radius is R , the area of the section at distance x from the centre is $\pi\left(\mathbb{R}^{2}-x^{3}\right)$, which is a quadratic function of x : the values of $S_{0} S_{11}$, and S_{n} are respectively $o_{r} \approx R^{2}$, and 0 , and the volume is therelore t. $2 \mathrm{R} .4 \pm \mathrm{R}^{2}=1 \pm \mathrm{R}^{2}$.

To show that the area of a cross-section of a prismoid is of
the form $a x^{2}+b x+c$, where x is the distance of the eection from one end, we may procced as in 827. In the case of a pyramid, of leight h, the area of the section by a plane parallel to the base and at distance x from the vertex is cicarly $x^{2} / h^{h} x$ area of base. In the case of a wedge with parallel ends the ratio x^{2} / h^{3} is r placed by x / h. For a tetrahedron, two of whowe opposite edges are

Fig. 9. $A B$ and $C D$, we require the area of the section hy a plane paraliel to AB and CD . Let the distance between the parallei planes through $A B$ and $C D$ be h, and ict a plane at distance x from the plane through AB cut the edges AC.

BC. BD, AD, in P, Q, R, S (ig. 9). Then the eection of the pyramid by thi plane is the parallelogram PQRS By drawing Ac and Ad paralie! to BC and BD, so as to meet the plane through CD in c and d, and producing QP and KS to meet. Af and Ad in q and r, we see that the ares of PQRS is $\left(x / k-x^{2} / h^{2}\right) \times$ area of cCDd; this also is a quadratic function of x. The proposition can then be established for a prismoid generally by the method of $\$ 27$ (iv).

The formula is known as the prosmondal formula.
59. Moments. -Since all points on any ordinate are at an equal distance from the axis of u_{1} it is easily shown that the first moment (with regard to this axis) of a trapezette whose ordinate is s is equal to the area of a trapezette whose ordinate is xw; and this area can be found by the methode of the preceding sections in cases where m is an algebraical function of x. The formulae can then be applied to finding the moments of certain volumes.

In the case of the parabolic trapezette, for instance, $x \mathrm{~m}$ is of degree 3 in $x_{\text {, }}$, and therefore the first moment is $1 h\left(x_{0} w_{0}+4 x_{1} w_{1}+x_{3} v_{n}\right)$. In the case, therefore, of any solid whose cross-section at distance x from one end is a quadratic function of x, the position of the crosssection through the centroid is to be found by determining the position of the centre of gravity of particles of masees proportional to S_{8}, S_{2} and $4 S_{1}$, placed at the extremities and the middle of a line drawn from one end of the solid to the other. The centroid of a hemisphere of radius R. for instance, is the same as the centroid of partieles of masses $0, \pi R^{3}$, and $4.4 \pi R^{2}$, placed at the extremitiet and the middle of its axis; ie. the centroid is at distance $1 \mathbf{R}$ from the plane face.
60. The method can be extended to finding the second, third, . . . maments of a trapezette with regard to the axis of u. If u is an algehraical [unction of x of degree not exceeding p, and if the area of a trapezette, for which the ordinate v is of degree not excoeding $p+q$, may be expresied by a formula $\lambda_{p_{0}}+y_{1} p_{1}+\ldots+\lambda_{m} p_{m}$, the qth moment of the traperette is $\lambda_{0} x_{0}{ }^{4} m_{0}+\lambda_{4} x_{1}{ }^{4} u_{1}+\ldots+\lambda_{m} x_{m}{ }^{4} u_{m}$, and the mean value of 2 is
$\left(\lambda_{0} x_{0} \mu_{\mu_{0}}+\lambda_{1} x_{1} w_{w_{1}}+\ldots+\lambda_{m} x_{m} v_{m}\right) /\left(\lambda_{0} x_{0}+\lambda_{1} x_{1}+\ldots+\lambda_{m} u_{m}\right)$.
The calculation of this last expression is simplified by noticing that we are only concerned with the mutual ratios of $\lambda_{4}, \lambda_{1}, \ldots$ and of $w_{t}, w_{1} \ldots$ not with their actual values.
61. Cubature of a Briquette.-To extend these methods to a briquette, where the ordinate to is an algebraical function of x and y_{1} the axes of x and of y being parallef to the sides of the base, we consider that the area of a section at distance x (rom the plane $x=0$ is expressed in terms of the ordinates in which it intersects the series of planes, parallel to $y=0$, through the given ordinates of the briquette ($\mathbf{3} 4$ 44); and that the area of the section is chen represented by the ordinate of a trapezette. This ordinate will be nn algebraical function of x, and we can again apply a suitable formula.

Suppose, for instance, that t is of degree not exceeding 3 in x, and of degree not exceeding 3 in y, i, that it contains terms in $x^{4} y^{3}$, $x^{3} y^{2}, x^{2} y^{3}, \& c$; and suppose that the edges parallel to which x and y are measured are of lengthe $2 h$ and $3 k$, the briquette being divided into six elements by the plane $x=x_{0}+h$ and the planes $y=y_{0}+k$, $y=y_{0}+2 k$, and that the 12 ordinates forming the edges of theye six elements are given. The areas of the sides for which $x m$ and $x=x_{0}+2 h$, and of the section by the plane $x=x_{0}+h$, may be found by Simpson's second formula; call these A_{4} and A_{2}, and A_{1}. The area of the section by a plane at distance x from the edge $x=x_{0}$ is a function of x whose degree is the same as that of w. Hence Simpson': Iormula applies, and the volume is $1 H\left(A_{0}+4 A_{1}+\right.$ A_{3}).
The process is simplified by writlng down the general formula first and then substituting the values of w. The formula, in the above case, is
 where $w^{0}{ }^{0} \phi$ deaotea the ordinate for which $x=x_{0}+\theta k, y=y+\phi h$. The result is the same asif we multiplied $1 k\left(p_{0}+3 p_{1}+3 n_{1}+\nabla_{1}\right)$ by $1 h\left(n_{1}+4 \hbar_{1}\right.$ + mis), and then replaced un, wop.... by $\mu_{0,0}, \mu_{0,4} \ldots$ The multiplication is shown in the adjoining diagram; the factors $\frac{1}{2}$ and $\frac{1}{1}$ are kept outside, so that
 by th, ik.
62. The above is a particular case of a general principle that the obtaining of a expression such as $1 h^{\left(u_{0}+4 u_{4}+u_{i}\right) \text { or }}$
 and that this operation is the um of a number of operations such as that which obtaine the or llan The volume of the briquette for which $*$ is a function of x and y is found by the operation of double integration, consisting of two succesaive operations, one being with regerd to x, and the other with regard ta y; and thene operietions may in the casen with which we are concerned) be performed in ether ordor. Starting from aay ordinate uph the result of integriting with regard to x through a distance $2 h$ is (in the example considered in $\mathbf{6 1}$) the same as the resilit of the operation $1 /\left(1+4 E+E^{n}\right)$. Where E denotes the

OF). The integration with regard to y may timilarly (in the particular example) be repleced by the operation $1 h\left(1+3^{-}+3 E^{2}+E^{3}\right)$, where E^{\prime} denotes the change of y into $y+k$. The result of performing both operations, in order to obtain the volume, is the result of the operation denoted by the product of these two expressions: and in this product the powers of E and of E^{\prime} may be dealt with according to algebraical laws.

The methods of $\$ 59$ and 60 can similarly be exteaded 10 finding the porition of the central ordinate of a briquette, or the mean $g^{\prime 3}$ distance of elements of the briquette Irom a prircipal plane.
63. (C) Mensuration of Graphs Generally.-We have next to consider the extension of the preceding methods to cases in which m is not necessarily an algebraical function of x or of x and y.

The gederal principle is that the numerical data from which a particular result is to be deduced are in general not exact, but are given only to a certain degree of accuracy. This limits the accuracy of the result; and we can therefore replace the figure by another Ggure which coincides, with it approximately, provided that the further inaccuracy so introduced is comparable with the original inaccuracies of measurement.

The relation between the inaccuracy of the data and the additional inaccuracy due to substitution of another figure is similar to the relation between the inaccuracies in mensuration of a figure which is supposed to be of a given form (8 20). The volume of a frustum of a cone, for instance, can be expressed in terms of certain magnitudes by a certain lormula; but not only will there be some error in the measurement of these magnitudes, but there is not any material figure which is an exact cone. The formula may, however, be used if the deviation from conical form is relatively less than the errors of measurement. The conditions are thus similar to those which arise in interpolation (q.v.). The data are the same in both cases. In the case of a trapezette, for instance, the data are the magnitudes of certain ordinates; the problem of interpolation is to determine the values of intermediate ordinates, while that of mensuration is to determine the area of the figure of which these are the ordinates. If, as is usually the case, the ordinate throughout each strip of the trapezette can be expressed approximately as an algebraical function of the abscissa, the application of the integral calculus gives the area of the figure.
64. There are three classes of cases to be considered. In the case of mathematical functions certain conditions of continuity are satlsfied, and the extent to which the value given by any particular formula differs from the true value may be estimated within certain limits; the main inaecuracy, in lavourable cases, being due to the fact that the numerical data are not absolutely exact. In physical and mechanical applications, where concrete measurement are involved, there is, as pointed out in the preceding section, the additional inaccuracy due to want of exactnese in the figure itsell. In the case of statistical data there is the furtber difficulty that there is no real continuity, since we are concerned with a finite number of individuals.

The proper. treatment of the deviations from mathematical accuracy, in the second and third of the above clasees of casen, is a special matter. In what lollows it will be assumed that the conditions of continuity (which imply the continuity not only of w but also of some of its differential coefficients) are eatisfied, subject in the small arrors in the valucs of x actually given; the limits of these errors being known.

65- It is only necessary to consider the trapesette and the briquette, since the cases which occur in practice can be reduced to one or other of these forms. In each case the data are the values of certain equidistant ordinates, as described in $8843-45$. The terms guad-rafmro-formula and cubaturo-formula are sometimes restricted to formulae for expressing the area of a trapeztte, or the volume of a briquette, in terms of ouch data. Thus a quadrature-formula is a formula for expressing $\left[A_{s}\right.$. m] or fudx in terms of a series of given values of u, white a cubature-formula is a formula for expreseing [$[V, y, w]$ or $\iint u d x d y$ in terms of the values of m [or certain values of x in combination with certain velues of y; these values not necesserily lying within the limits of the integrations.
66. There are two principal methods The first, which is the best known but is of hmited application, consists in replacing each successive portion of the figure by another figure whow ordinate is an algebraical function of x or of x and y, and expreasing the area or volume of this latier figure (exactly or approximately) in terms of the given ordinates. The second consists in taking a comparatively simple expression obtained in this way, and int roducing corrections which involve the values of ordinates at or near the boundaries of the figure. The various methods will be considered first for the trapezette, the exteasions to the briquette being only treated briefly.
67. The Trapesoidal Rule.-The simplest method is to replace the traperette by a series of trapezia. If the data are $\boldsymbol{m}_{0}, w_{1}, \ldots$. Wm the figure formed by joining the tops of these ordinates is a traperoid
whome ares is $h\left(\frac{1}{n}+m_{n}+w_{n}+\ldots+w_{m-1}+i n_{m}\right)$. This is whowe aren is $h\left(\frac{1}{k} m_{0}+m_{1}+m_{1}+\ldots+w_{n}+\frac{1}{2} n_{m}\right)$ This is
called the trapecoidal or chordal area, and will be denoted by C_{1}. If
 drawing the tangenta at the extremities of these ordinates; the sum of the areas of these trapezia will be $h\left(\varepsilon_{i}+w_{i}+\ldots+w_{m-1}\right)$. This it called the amgential mrea, and will be denoted by T_{1}. The
tangential area may be expressed in terms of chondal areas. If we write C_{i} for the chordal area obtained by taking ordinates at intervals $\frac{y}{}$, then $T_{1}=2 C_{i}-C_{1}$. If the trapezette, as seea from above, is everywhere convex or everywhere concave, the true area lies between C_{1} and T_{1}
68. Other Rules for Trapesettes.-The extension of this method consists in dividing the traperette into minor traperettes, each consiating of two or more stripe, and replacing eweh of theae minor trapezettes by an figure, whose ordinate is an algebraical function of x; this function being choeen so that the new figure thall coincide with the original figure 50 far as the given ordinates are concersed. This means that, if the minor trapesette comsists of k strips, w will be of degree k or $h-I$ in x, according al the data are the bounding ordinates or the mid-ordinates. If A demotes the true area of the original traperette, and B the aggregate ares of the subatituted figures, we have A AB B, where sudenotes approximate equality. The value of B is lound by the methods of $\$ 849-55$. The following are some examples.
(i) Suppose that the bounding ordinates are given, and that m is a muitiple of 2 . Then we can take the strips in pairs, and treat each pair as a parabolic trapezette. Applying Slmpson's formula to each of these, we have
$A \Omega \quad h\left(m_{1}+4 m_{1}+m_{5}\right)+1 n\left(v_{4}+4 m_{4}+m_{4}\right)+\ldots$
 This is Simpsom's rele.
(ii) Similarly, if m is a multiple of 3 , the repeated application of Simpson's second formula gives Simpson's second rule
$A \Omega 1 h \omega_{0}+3 m_{i}+3 u_{i}+2 \mu_{3}+3 u_{1}+\ldots+3 m_{m-1}+2 m_{m-0}+$ $3^{u_{m-a}}+3^{u_{m-1}}+u_{m}$.
(iii) If mid-ordinates are given, and m is a multiple of 3 , the repeated application of the Cormula of $\$ 55$ will give

$$
A \Omega_{1} k\left(3 u_{1}+2 n_{1}+3 u_{1}+3 u_{n}+\ldots+2 u_{m-1}+3 m_{m-p}\right)
$$

69. The formulae become complicated when the number of strips in each of the minor trapezettes is large. The method is then modified by replacing B by an expression which gives the areds of the substituted figures approximately. This introduces a further inaccuracy; but this latter may be negligible in comparison with the main inaccuracies already involved (cl. 80 (iii)).

Suppose, for instance, that $w=6$, and that wo consider the trapezette as a whole; the data being the bounding ordinates. Since there are seven of tbese, v will be of degree 6 in x; and we shall have (54 (i))

 \& 68 gives
$A \Omega{ }_{1}^{2} h\left(w_{0}+5 w_{1}+\omega_{1}+6 w_{2}+w_{4}+5 \mu_{2}+w_{1}\right) ;$
the expression on the right-hand side being an approximate expression for B, and differing irom it oaly by righsas. This is Weddle'; rule. If m is a multiple of 6 , we can obtain an expression for \mathbf{A} by applying the rule to each group of six strips.
70. Some of the formulae obtained by the above methods can be expressed more simply in terms of chordal or tangential areas taken in various ways. Consider, for example, Simpson's rule (568 (i)). The expression for A can be written in the form

Now, if p is any factor of ${ }^{2}$, there is a erics of equidistant ordinates $w_{0}, \mu_{p} \psi_{s y}, \ldots . w_{m, n} w_{m}$ i and the chordal area as determined by these ordinates is

$$
p h\left(1 u_{0}+x_{p}+u_{p}+\ldots:+u_{m \rightarrow}+1 u_{n}\right)
$$

which may be denoted hy C. With this notation, the area as given by Simpson's rule may be written in the form $\hat{A}_{1} C_{1}-\mathrm{C}_{4}$ or $\mathrm{C}_{1}+1\left(\mathbf{C}_{1}-\mathrm{C}_{1}\right)$. The following are some examples of formulae of this kind, in ternse of chordal areas.
(i) m a multiple of 2 (Simpeon's rule).

$$
A 』 1\left(4 C_{1}-C_{2} \Omega C_{1}+\frac{1}{1} C_{1}-C_{2}\right)
$$

(ii) m a multipie of 3 (Simpson's second,rule).

$$
A \Omega 1\left(9 C_{1}-C_{3}\right) \Omega C_{1}+1\left(C_{1}-C_{3}\right)
$$

(iii) m a multiple of 4 $A \Omega_{1}\left(G_{4} C_{1}-20 C_{1}+C_{4}\right)=C_{1}+1\left(C_{1}-C_{2}\right)-d_{s}\left(C_{1}-C_{4}\right)$.
(iv) a multiple of 6 (Weddle's rule, or its repeated application).
$A \Omega{ }_{1}^{2}\left(15 C_{1}-6 C_{1}+C_{3}\right) \Omega C_{1}+1\left(C_{1}-C_{2}\right)-\frac{1}{1}\left(C_{2}-C_{i}\right)$.
(v) an a multiple of 12 .

$$
\begin{aligned}
& A \Omega{ }_{3}{ }_{6}\left(56 C_{1}-28 C_{2}+8 C_{2}-C_{1}\right) \\
& \Omega C_{1}+1\left(C_{1}-C_{2}\right)-1\left(C_{2}-C_{2}\right)+11\left(C_{3}-C_{1}\right)
\end{aligned}
$$

There are similar formulae in terms of the tangential areas T_{1}, T_{1}, T_{2}. Thus (iij) of $\$ 68$ may be writien $A \xlongequal[1]{ }\left(9 T_{1}-T_{8}\right)$.
71. The general method of constructing the formulae of 570 for cliordai areas is that. if p, q, r, \ldots are k of the factors (including I) of m, we take

$$
A \Omega P C_{p}+\phi C_{4}+R C_{r}+\ldots
$$

where $P, Q, R_{1} \ldots$ estialy the h equations

The last $k-1$ of these equations give

Combining this with the firet equation, we obtain the values of $P, Q, R .$.
The safue method applies for tangential areas, by talcing

$$
\mathrm{A} \Omega \mathrm{PT}_{p}+\mathrm{QT}+\mathrm{RT}_{p}+\ldots
$$

provided that $p_{1} q_{1} p_{1}$. . are odd numbers.
72. The justification of the above methods lies in certain properties of the series of successive differences of w. The fundamental assumption is that eacb group of strips of the trapezete may be replaced by a figure for which differences of w. above those of a certain order, vanish (5 54). The legitimacy of this assumption, and of the further assumption which enables the arca of the new fagure to be expressed by an approximate formula instead of by an exsct formula, must be verified in every cave by referenoe to the actual differences.
73. Correction by means of Extreme Ordinafes.-The preceding methods, though apparently simple, are open to various objections in practice, such as the. (ollowing: (i) The assignment of different coefficients of different ordinates, and even the selection of ordinates for the purpose of finding $\mathrm{C}_{24} \mathrm{C}_{2}, \& c .(870)$, is troublesome. (li) This assignment of different coefficients means that different weighte are given to different ordinates; and the relative weights may not agree with the relative accuracies of measurement. (iii) Diferent formulae have to be adopted for different values of m; the method is therefore unsuitable for the construction of a table giving successive values of the area up to successive ordinates. (iv) In order to find what formula may be applied, it is necessary to take the successive differences of u; and it is then just as easy, in most cases, to use a formula which dircetly involves these differences and therefore shows the degree of accuracy of the approximation.

The alternative method, therefore, consists in taling a simple formula, such as the trapezoidal rule, and correcting it to ouit the mutual relations of the differencea.
74. To illustrate the method, suppose that we use the chardal area C_{1}, and that the trapezette is in fact parabolic. The difference between C_{1} and the true ares is made up of a series of areas bonnded by chords and arcs; this difference becoming less as we subdivide the figure into a greater number of strips.

The fact that C_{1} does not give the true area is due to the fact that in passing frim one extremity of the top of any strip to the other extremity the tangent to the trapezctte changes its direction. We have therefore in the first place to sce whether the difference can be expressed in terms of the directions of the tangents.
Let KABL (fig. 10) be one of the strips, of breadth h. Draw the tangents at Λ and B, meeting at Ti and through T draw a line parallei to $K A$ and $L B$, mecting the anc $A B$ in C and the chord $A B$ in V. Draw AD and BE perpendicular to this line, and DF and TG perpendicular to LB. Then $A D=E B=\frac{1}{2} h$. and the triangles x AVD and BVE are equal.

The area of the trapezette is less (in fig. 10) than the area of the trapezium KABL by two-thirds of the area of the triangle $A I B(834)$. This latter area is
 Hence, if the angle which the tangent at the extremity of the ordinate ψ_{0} makes with the axis of x is denoted by $\psi_{\psi_{1}}$ we have
area from

$$
u_{0} \text { to } u_{1}=\frac{1 h\left(u_{0}+w_{1}\right)-1 h^{2}\left(\tan \psi_{1}-\tan \psi_{0}\right), ~}{1 h(t a n}
$$

μ_{1} to $\omega_{1}=1 h\left(\mu_{1}+\omega_{1}\right)-1 h^{2}\left(\tan \psi_{2}-\tan \psi_{1}\right)$,
" μ_{m-1} to $\mu_{m} \frac{1}{n} \|\left(v_{m-1}+v_{m}\right)-1^{1} h^{2}\left(\tan \psi_{m}-\tan \psi_{m-1}\right)$, and thence, by summation,

$$
A=C_{t}-\Lambda^{2} x^{2}\left(\tan \psi_{m}-\tan \psi_{0}\right)
$$

This, in the notation of 8846 and 54 , may be written

$$
A=C_{t}+\left[-\sqrt{1}^{h^{2} w^{\prime}}\right]_{x=x_{0}}^{x=x_{m}}
$$

Since $h=H / m$, the iaccuracy in taking C_{i} as the area varies as $1 / \mathrm{m}^{2}$.

It might be shown in the same way that
75. The above formulae apply only to a parabolic trapesette Their gencralization is given by the Euler-Maclowrin formule
and an analogous formula (which may be obtained by substituting $\frac{1}{} h$ and C_{i} for h and C_{1} in the above and then expressing T_{1} as $\left.2 C_{1}-C_{2}\right)$

To apply these, the differential coefficients have to be expreased in terms of differences.
76 If we know not only the ordinates μ_{0}, μ_{1}, \ldots or μ_{1}, z_{1}, \ldots, but also a sufficient number of the ordinates obtained by continuing the series outside the trapezette, at both extremities, we can use central-difference formulae, which are by far the most convenient. The formulae of $\$ 75$ give

77. If we do not know values of u outside the figure, we must use ndvancing or receding differences. The formulae usually employed are

where $\Delta_{1} \Delta^{2}, \ldots$ have the usual meaning $\left(\Delta x_{0}=u_{1}-u_{c}, \Delta^{2} u_{0}=\right.$ $\left.\Delta x_{1}-\Delta \mu_{1} \ldots,\right)_{1}$ and $\Delta^{\prime}, \Delta^{n}, \ldots$ denote differences read backwards, 80 that $\Delta^{\prime} u_{m}=u_{m-1}-x_{m}, \Delta^{\prime} u_{m}=u_{m-9}-2 v_{m-1}+u_{m,} \ldots$ The calculation of the expressions in brackets may be simplified by taking the pairs in terms from the outside; i.e. by finding the successive differences of $u_{0}+u_{m,} u_{4}+u_{m-1}, \ldots$, or of $u_{1}+u_{m-1}$, $x_{1}+z_{m-1} \ldots$
An alternative method, which is in some ways preferable, is to complete the table of difierences by repeating the differences of the highest order that will be taken into account (gee Interpolation), and then to use central-difference formulae.
78. In order to find the corrections in respect of the terms shown in square brackets in the formulae of $\mathbf{8} 75$, certain ordinates other than those used for C_{1} or T_{1} are sometimes inund spocially. Parmentier's rule, for instance, assumes that in addition to $u_{i}, \psi_{1} \ldots$. . . u_{m-1}, wo know u_{0} and u_{m}; and $u_{i}-u_{0}$ and $u_{m}-u_{m-1}$ are taken to be equal to $t h u^{\prime} 0$ and $4 h u^{\prime} m$ respectively. These methods are not to be recommended except in special cases.
79 ; By replacing h in $\S 75$ by $2 h, 3 h, \ldots$ and eliminating $h^{2} u^{\prime}$, $k^{7}{ }^{7 \%}$. . . . we obtain exact formulae corresponding to the ap: proximate formuke of 870 . The following are the results (for the formulae involving chordal areas), given in terms of differential coefficienta and of central differences. They are not so convenient as the formulae of $\$ 76$, but they serve to indicate the degree of accuracy of the approxlmate formulae. The expressions in square brackets are in each case to be taken as relatiog to tbe extreme values $x=x_{0}$ and $x=x_{m 1}$ as in 5875 and 76 .

$$
={ }^{T}\left(15 C_{1}-6 C_{2}+C_{1}\right)+h-1 \text {. }
$$

(v) $A=$

$$
={ }_{2\}}\left(56 \mathrm{C}_{1}-28 \mathrm{C}_{4}+8 \mathrm{C}_{2}-\mathrm{C}_{3}\right)+h\left[-11{ }^{10}{ }^{\circ} u+\ldots\right] .
$$

The general expresion, if p, q, r, \ldots are k of the factors of m, is

$$
\begin{aligned}
& \left.(-)^{x+1} b_{m+1} h^{n+2} \frac{d^{m+1}}{d x^{m i n}}+\ldots\right]_{x=x_{m}}^{x=x_{m}} .
\end{aligned}
$$

where P.Q.R, ... have the values given by the equations in 871 , and the coefficients b_{k}, b_{k}, ... are found from the corresponding coeficients in the Eulcr-Maclaurin formula (875) by multiplying

80, Moments of a Trapesonte. - The above methods can be applied, as in 8859 and 60 , to finding the moments of a trapezette, when the
data are a series of ordinates. To find the pth moment, when $w_{0} w_{1}, w_{1}$, . . are given, we have only to find the area of a trapezette whose ordinates are $x_{0}{ }^{\prime}$ uor $^{\prime} x_{1}{ }^{\prime} m_{1}, x_{1}{ }^{2} \mu_{n_{1}}$
81. There is, however, a certain set of cases, occurring in statistics, in which the data are not a series of ordinates, but the areas $A_{4}, A_{4}, \ldots A_{m}$ of the strips bounded by the consecutive ordinates $\mu_{0}, m_{1}, \ldots m_{m}$. The determination of the moments in these cases involves special methode, which are considered in the next two sections.
82. The most simple case is that in which the trapezette tapers out in such a way that the curve focming its top has very close contact, at its extremitics, with the bave; in other words, the differential coefficients $x^{\prime}, z^{\prime \prime}, w^{\prime \prime \prime} \ldots$ are practically negligihle for $x=x_{0}$ and for $x=x_{0}$. The method adopted in these casce is to treat the areas Ay, A, ... as if they were ordinates placed at the pointe for which $x=x, x=x_{1}, \ldots$, to calculate the moments on this assumption, and then to apply certain correttions. If the first, second, . . . moments so calculated, before correction are denoted by $p_{1}, p_{3} \ldots{ }_{3}$ we have

$$
\begin{aligned}
& m=x \dot{x}_{j}+x_{j} A_{1}+\ldots+x_{m-1} A_{m-1} \\
& m_{n}=x_{1} x_{1} A_{1}+x^{4} A_{1} A_{1}+\ldots+x^{4} n_{-1} A_{n-1} \\
& a_{5} \stackrel{\vdots}{-} x_{i} A_{1} A_{1}+x_{n} n_{1} A_{1}+\ldots+x_{m-1} A_{m-1}
\end{aligned}
$$

These are called the raw moments. Then, if the true moments are denoted by $n, h_{1} . .$. their values are given by

$$
\begin{aligned}
& { }_{1} \Omega_{p_{1}} \\
& n_{n} \Omega_{\rho_{3}}-1_{2} h^{2} \rho_{0}
\end{aligned}
$$

$$
\begin{aligned}
& r_{1} \Omega_{1} p_{3}-\left\{h^{2} p_{3}+\pi_{3}^{2} h^{4} p_{1}\right. \\
& !
\end{aligned}
$$

where m (or ${ }^{\prime}$) is the total area $A+A_{1}+\ldots+A_{\text {m-i }}$; the general expression being where

The eatablishment of these formulae involves the use of the integral calculus.
The position of the central ordinate is given by $x=y_{1} / \mathrm{pos}_{\text {, }}$ and therefore is given approximately by $x-\rho_{1} / \beta_{0}$. To find the moments with regard to the central ordiaste, we must use this approximate value, and transform by means of the formulae given in 832 . This can be done either before cr after the above corrections are made. If the transformation is made first, and if the resulting raw moments with regard to the (approximate) central ordinate are $0, \pi_{5}, w_{3}, \ldots$, the true moments $\mu_{1}, \mu_{2}, \mu_{1}, \ldots$ with regard to the central ordinate are given by

$$
\begin{aligned}
& \mu_{1}=0
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{8} \Omega_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text {; }
\end{aligned}
$$

33. These remults may be extended to the calculation of an exprersion of the form $\int_{x_{0}}^{x_{i}} u \phi(x) d x$, where $\phi(x)$ is a definite function of x. and the conditions with regard to \pm are the same as in $\boldsymbol{8} \mathbf{8 2}$.
(i) If $\phi(x)$ is an explicit function of x, we have

$$
\int_{x_{0}}^{x_{m}} \psi_{\phi}(x) d x \Omega_{j} A_{i}\left(x_{2}\right)+A_{i \psi}\left(x_{1}\right)+\ldots+A_{m-i \psi}\left(x_{m-1}\right)
$$

where $\quad \forall(x)=\phi(x)-\frac{\lambda_{1}}{2} h^{\prime} \phi^{\prime \prime}(x)+\frac{\lambda_{2}}{4} h^{4} \phi^{\prime \prime}(x)-\ldots$,
the coefficients $\lambda_{1}, \lambda_{1}, \ldots$ having the values given In $\$ 82$.
(ii) If $\phi(x)$ is not given explicitly, but is tabulated for the values . . $x_{j}, x_{j} \ldots$ of x_{i} the formula of (i) applies, provided we take

The formulae can be adapted to the case in which $\phi(x)$ is tabulated for $x=x_{0} x_{1}, \ldots$
84. In cases other than those described in $8 \mathbf{8 2}$, the pth moment with regard to tbe axia of m is given by

$$
n_{p}=x x_{n} A-p S_{p-1} .
$$

where A is the total area of the original trapezette, and $S_{p,-1}$ is the area of a trapezette whose ordinaics at successive distances k, beginning and ending with the bounding ordinates, are
$\left.\left.o_{1} x_{1}\right)^{-1} A_{1}, x_{2}\right)^{p-1}\left(A_{1}+A_{1}\right)_{1} \ldots x_{n-1}^{p}\left(A_{1}+A_{1}+\ldots+A_{-1}\right)$, $x_{n}^{p-1} A_{1}$. The value of S_{p-1} has to be found by a quadrature-formula. The generalized formula is

$$
\int_{x_{0}}^{x_{m \phi}(x) d x=A_{\phi}\left(x_{m}\right)-T .}
$$

where \mathbf{T} is the area of a trapeatere whose ordimates at succemive ditancea h are $0, A_{1} \phi^{\prime}\left(x_{1}\right),\left(A_{1}+A_{1}\right) \phi^{\prime}\left(x_{2}\right) \ldots\left(A_{1}+A_{1}+\ldots+\right.$ $\left.A_{m-1}\right) \psi^{\prime}\left(x_{m-l}\right), A^{\prime}\left(x_{m}\right)$; the accents denoting the frot differential coefficient.
85. Vadame and Moments of a Briquelle-The applicmation of the methods of \$8 75-79 to calculation of the volume of a briquette leade to complicated formulac. If the conditions are such that the methods of $\$ 61$ cannot be used, of are undesirable as giving too much weight to particular ordinates, it is best to proceed ia the manner indicated at the end of 548 ; is. to find the areass of one cet of parallel sections, and treat these as the ordinates of a trapesette whowe area will be che volume of the briquette.
86. The formulae of $\$ 82$ can be extended to the case of a briquette whose top has close contact with the bace all alow its boundary: the data being the volumes of the minor briquettes formed by the planes $x=x_{n} x=x_{1}$, .. and $y=y_{n} y=y_{1}$. . . T The method of constructing the formulae is explained in $6 \mathbf{6}$. If we write

$$
S_{y, p}=\int_{x_{0}}^{x_{m}} \int_{y_{0}}^{y_{n}} x y y^{n} w d x d y
$$

 . on the asaumption that the volume of ench minor briquette
 formulae of correction by multiplying the formulae of 882 in pairs. Thus we find (e.8.)
where 0_{0} is the total volume of the briquette.
87. If the data of the briquette are, as in 886 , the volumes of the minor briquettes, but the condition as to close contact is not satiafied, we have

$$
\int_{x_{0}}^{x_{m}} \int_{y_{0}}^{y_{n} x_{n}} d x d y=\mathbf{K}+\mathbf{L}+\mathbf{R} \rightarrow x_{n} y_{n}
$$

where K=xincoth moment with regard to plane $y=0_{0}$
$\mathbf{L}=y^{i} \times$ pth moment with regard to plane $x=0$.
and R is the volume of a briquette whose ordinate at $\left(x_{r}, y_{s}\right)$ is found by multiplying by $0 Q^{x-1} y_{0} 0^{-1}$ the volume of that portion of the original briquette which lies between the planes $x=x_{0}, x=x_{r}$ $y=y_{0} y=y_{r}$. The ordinatee of this new briquette at the points of interpection of $x=x_{1}, x=x_{17} \ldots$ with $y=y_{n} y=y_{n} \ldots$ are obtained from the data by summation and maltiplication; and the ordinary mathode then apply for calculation of its volume. Either or boch of the expressions K and L will have to be calculated by means of the formuls of 884 : if this is applied to both expressions, we have a formula which may be written in a more general form

$$
\begin{aligned}
& -\int_{0}^{N}\left\{\int^{x}\{x d x d y\} \frac{d x(x, 0)}{d x} d x\right. \\
& -\int^{\bullet}\left\{\int_{0}^{\prime} u d x d y\right\} \frac{d \phi(b, y)}{d y} d y \\
& +\iint_{0}^{0}\left\{\int^{x} \int^{\mid x} x d x d y\right\} \frac{d^{2} \phi(x, y)}{2 x d y} d x d y .
\end{aligned}
$$

The ancond and third expresaions on the right-hand side represent areas of trapesettes, which can be calculated from the data; and the fourth expression represents the volume of a briquette, to be calculated in the game way as R above.
88. Casos of Failure. When the sequence of differences is not such as to enable any of the foregoing methods to be applied. it is sometirsea poesible to amplify the data by measurement of intermediate ordinates, and then apply a suitable method to the amplified series.

There is, however, a certain class of cases in which no subdivision of intervals will produce a good result: viz. cases in which the top of tho figure is, at one extremity (or one part of its boundary), at cight angles to the base. The Euler-Maclaurin formula (75) assumes that the bounding values of $w^{\prime}, w^{\prime \prime}$. . . are not infinite; this condition is not eatisfied in the case here conaidered. It is also clearly impossible to express as an algebraical function of x and y if come value of $d w / d x$ or doh $h y$ is to be infinite.

No completely matiefactory methods have been devised for dealing with there cases. One method is to construct a table for interpola-

Fro. II. tion of x in terms of u, and from this table to calculate values of x corresponding to values of th, proceeding by equal intervals: a quadrature-formula can then be applied. Suppose, for instance, that we require the area of the trapezette ABL is fig. II; the curve being et right angles to the brse AL at A. If QD it the bounding ordinate of one of the component stripe, we can calculate the area of QDBL in the ordinary way. The data for the area $A D Q$ are a series of values of w corresponding to equidifferent volues of x; If we denote by y the dietance of a point XVIII 3 *

On the arc AD from QD, we can from the series of valuet of μ construct a series of values of y corresponding to equidifferent values of a, and thus find the area of $A D Q$, treating $Q D$ as the bace. The process, however, is troublesome.
89. Enomples of Applications.-The following are eome examples of cases in which the above methods may be applied to the calculation of areas and integrals.
(i) Construction of Madiematical Tables.-Even where w is an explicit function of $x, s 0$ that f^{\prime} udr may be expressed in terms of x. it is often more convenient, for const ruction of a table of values of such an integral, to use finite-difference formulac. The formula of $\$ 70$ may (ee Differences, Calculus of) be writtea

$$
\begin{aligned}
& \int^{*} u d x=k .0 u+k\left(1_{4} 8 u-\sin \delta^{8} u+\ldots\right) .
\end{aligned}
$$

The second of these is usually the more convenient. Thus. to construct a table of values of \int^{x} udx by iatervals of h in x, we first form a table of values of $h u$ for the intermediate values of x. from this obtain a table of values of $\left(1+y^{5} b^{2}-3+15^{4}+\ldots,\right)$) for these values of x, and then construct the table of $\int^{*} u d x$ by auccesive additlons. Attention must be given to the possible accumulation of errors due to the amall errots in the values of m. Each of the above focmulac involves an arbitrary conmant; but this disappears when we atart the additions from a known value of $\int^{2} u d x$.

The process may be repeated. Thus we have
$\int^{0} \int^{s} u d x d x=\left(0+x^{j}-\operatorname{lif}_{8}^{8}+\ldots\right)^{2 \mu} x$

Here there are two arbitrary constants, which may be adjusted in various ways.

The formulse may be used for extending the accuracy of tablet, in cases where, if represents the quantity tabulated, hdv/dx or $h^{1} d^{2} / d x$ can be conveniently expressed in terms of v and x to greater degree of accuracy than it could be found from the tahle. The process practically consists in using the table as it stands for improving the first or eacond differences of and then building up the table afresh.
(ii) Life Insurance.-The use of quadrature-formulac is important in actuarial work, where the fundamental tahles are based on experience, and the formulae spplying these tables involve the use of the tabulated values and their differences.
90. The following are instances of the application of approximative formulae so the calculation of the volumes of solids.
(i) Timber M (easwre.-To find the quantity of timber in a trunk with paraliel ends, the areas of a fow eections must be calculated as accurately as posible, and a Cormula applied. As the measuremente can only be rough, the trapezoidal rule is the mont eppropriate in ordinary cases.
(ii) Garging.-To measure the volume of a cask, it may be assumed that the interior is approximately a portion of a spheroidal figure. The formula applied can then be ether Simpson's rule or a rule based on Gauss's theorem for two ordinates (556), In the latter case the twosectionsare takenat distances $\pm \frac{1}{2} \mathrm{H} / \sqrt{ } 3= \pm \cdot 2887 \mathrm{H}$ from the middle section, where H is the total internal length: and their arithmetic mean is taken to be the mean section of the cask. Allowance must of course be made for the thickness of the wood.
91. Certain approximate formulae for the length of an arc of a circle are obtained by methods similar to those of 8571 and 79. Let a be the radius of a circle, and θ (circular measure) the un. known angle subtended by an arc. Then, if we divide o into m equal parts, and L denotes the oum of the corresponding chorde, so that $L_{1}=2 m a \sin (0 / 2 m)$, the true length of the anc ia $L_{x}+\infty\left\{\frac{\phi^{2}}{3!}-\frac{\phi^{4}}{3}+\ldots\right\}$, where $\phi=0 / 2 m . \quad$ Simliariy, if L_{2} represents the sum of the chords when m (assumed even) is replaced by 17. we have an expression involving L_{2} and 2ϕ. The method of 571 then ehows that, by tatcing $\$\left(4 L_{t} \rightarrow L_{2}\right)$ as the value of the arc. wo get rid of terms in ϕ^{1}. If we tuee c_{1} to represent the chord of the whole arc, c_{2} the chord of balf the arc, and c_{1} the chord of one guarter of the arc, then corresponding to (i) and (iii) of $\$ 70$ or 379 we have $\}\left(8 c_{2}-c_{1}\right)$ and $d^{2}\left(256 c_{1}-40 c_{1}+c_{1}\right)$ as approximations to the length of the arc. The first of these is Huygens's rule.

REFERENCES.-For applications of the prismoidal formuke, see Alfred Lodge, Menswrolion for Sewior Sindenits (1895). Other works on elementary mensuration are G. T. Chivers, Elementary Mawsuration (1904): R. W. K. Edwards, Elementary Plane and Solid Mensuration (1902); William H. Jackson. Elemenlary Solid Geontetry (${ }^{(g 007 \text {) ; }}$ P. A. Lambert, Compmation and Messmration (1907). A. E. Pierpoint's Menswrotion Formalae (I902) is a handy collection. Rules for calculation of areas are also given in such works as F. Castle, Mantial of Practical Mathenatics (1goz): F. C. Clarke. Practical Mathenatics (1907); C. T. Millis, Technical Arithmetic and Geometry
(1903). For examples of mamearment of areas by geometrical construction, see G. C. Turner, Graphies applied to Arithmetic, Mensuration and Slaticis (1907). Discussions of the approximate calculation of definite integrals will be found in works on the inEinitesimal calculus; see e.g. E. Goursat, A. Course in Mathematical Analysis (Igos; trans. by E. R. Hedrick). For the methods involving finite differences, see references under Difyerences, Calculus of; and INTEAPOLATION On calculation of moments of graphs, see W. P. Elderton, Frequency-Curves and Corrclation (1906); as to the formulae of $\$ 82$, see also Biomerrika, v. 450 . For mechanical methods of calculating areas and moments dee Calculatinc Machines.
(W. F. SH.)

MENTAWI, a chain of islands in the Dutch Eest Indies, off the west coast of Sumatra, between 1° and $3^{\circ} 30^{\prime} \mathrm{S}$. There are twenty-one islands in all, of which the majority lie close to or between the four largest-Siberut, Sikaban or Sipora, North Pageh and South Pageh. The two last (also called Pagi or Poggy) are sometimes termed the Nassau Islands. The total land area is $1224 \mathrm{sq} . \mathrm{m}$. The islands are included in the administration of Padang, Sumatra. They are apparently volcanic. Coral reefs lie off the coasts and render them difficult of access. The natives in language and customs present affinities with some Polynesians, and have been beld to be a survival of the eastward immigration of people of Caucasian stock which took place before those which established the " pre-Malay"peoples (such as the Dyaks and Battas) in the Malay Archipelago. The islands produce some coco-nuts, sago, trepang and timber.
Menteith, or Monterty, a district of south Perthshire, Scotland, roughly camprising the territory between the Teith and the Forth. Formerly it was a stewartry and gave the title to an earldom. The title was first beld hy Gilchrist, a Celtic chief ennobled by Malcolm IV., and passed successively toWalter Comyn (d. 1258), to a branch of the Stewarts, and finally to tbe Grahams, becoming extinct in 1694. The lake of Menteith, situated $2 \boldsymbol{l} \mathrm{~m}$. S. of Loch Vennachar measures $1 \frac{\mathrm{~m}}{\mathrm{~m}}$. long by 1 m . hroad, and contains three islands. On Inchmehome (Gaelic, " the Isle of Rest") are the ruins of an Augustinian pribry founded in 1238 by Walter Comyn. It is Early English, with an ornate western doorway. The island was the residence of Queen Mary, when a child of five, for a few months before her departure to France in 1548 . On Inch Talla stands the ruined tower of the earls of Menteith, dating from 1428. The village of Port of Monteith (pop. of parish, 1088), on the north shore of the lake, is 34 m . north by west of the station of the same name on the North British Railway Company's Forth \& Clyde line.

MENTONE (Fr. Menton), a town in the department of the Alpes Maritimes in soutb-east France, situated on the shore of the Mediterranean, about 15 m . by rail E. of Nice. Pop. (1901), 9944. It is huilt in the form of an amphitheatre on a rocky promontory, which divides its semicircular bay into two portions. The main town is composed of two parts. Bclow, along the seashore, is' the town of hotels and foreigners, while above, and inaccessible to wheeled vehicles, is that of the native Mentonese, with steep, narrow and dark streets, clinging to the mountain side around the strong castle which was once its protection against pirates. In the old town is the church of St Michel, rebuiit in great part since an carthquake in 1887, while below, in the principal street, the Corniche road, is the monument set up in 2896 to commemorate the union (in 1860) of Mentone with France. East of the main town is the suburb of Garavan, sheltered hy cliffs, and filled with hotels. A mile and a half farther on is the Pont St Louis, which marks the frontier bet ween France and Italy, while beyond it Sir Thomas Hanbury's villa at La Murtola is soon reached, with its marvellous gardens of 250 acres. West of the main town more hotels and villas are scattered along the coast towards Cap Martin. This is a pinecovered promontory which shelters the Bay of Mentone on the west, and is crowned by a great hotel, not far from which is the villa of the ex-empress Eugenie. Facing south-east, and sheltered on the north and west by mountains, the Bay of Mentone has a delicious climate and is frequented by invalids. The mean for the year is $6 \mathrm{r}^{\circ} \mathrm{F}$, while that for the winter is 72° in the sun, and 55° lo the shade. Frost occurs on the average only once in ten ycars. Besides the charms of its climatc Mentone
offers those of an almost tropical vegetation. Lemon-trees, olivetrees and pines rise in cuccessive stages on surrounding slopes. The district produces $40,000,000$ lemons yearly, and this is its principal natural wealth. In the east bay is the harbour, constructed in 1890 . It has a depth of about 26 ft ., and is sheltered by a jetty about 400 yds. in length. The harbour is frequented by pleasure yachts and a few coasting vessela.
Mentone was probably the Lumone of the Itineraries; but no Roman remains exist. After having belonged to the counts of Ventimiglia and a noble Genoese family, it was purchased about the middle of the 14th century by the Grimaldis, lords of Monaco. During the Fifst Republic and the First Empire it belonged to France, but in 1815 it reverted to the prince of Monaco. who subjected it to such exactions that in 1848 lis inhabitants proclaimed the town (with Roquebrune on the west) independent, under the protection of Sardinia. In 1860 both Mentone and Roquebrune were purchased by France from the priace of Monaco, and added to the department of the Aipes Maritimes then formed out of the county of Nice, ceded the same ycar to France by Sardinia.

MENTOR, in Greek legend, the son of Alcimus and the faithful friend of Odysseus. During the absence of the latter, Mentor was entrusted with the care of his household and the guardianship of his son Telemachus. The word "mentor" is now used in the sense of a wise and trustworthy adviser, a meaning prohably connected with the etymology of the name, from the root mon-, seen, in Lat. monere, to advise, monitor, adviser.

The Newo English Dictionary points out that the transferred use is due less to Homer's Odyssey than to Féneion's Telemaque, in which Mentor is a somewhat prominent character.

MENTOR OP RHODES, brother of Memnon (q.v.), a Groek condoltiere who appears first in the servioe of the rebellious satrap Artabazus of Pbrygia in 363. When Artabazus had rebelled a second time and was in 353 forced to flee with Memnon into Macedonia, Mentor entered the service of the Egyptian king Nectanebus, and was sent by him with a body of Greek mercenaries to support the rebellious king Tennes (Tabnit) of Sidon against Artaxerxes III. But Tennes and Mentor betrayed the besieged town to the Persians (344 B.c.). Tennes was killed after his ureason, but Mentor gained the favour of the king. It was due largely to him that Egypt was Conquered in 343 (Diod. xvi. 45 sqq .). He now closely allied himself with the cunuch Bagoas (q.p.), the all-powerful vizier of Artaxerxes III. He was appointed general in Asia Minor, and with the belp of Artabazus and Memnon, whose pardon and recall be obtained from the king, subdued the rebels and local dynasts. The most famous among them was Hermias of Atarneus, the protector of Aristotle, who had become master of some towns of Aeolis and Troas. By treachery he made him prisoner and occupied his towns (342 B.c.); Hermias was cxecuted by order of the king (Diod. xvi. 52; Polyaen. vi. 48; pseudo-Arist. Oecon. ii. 27; Strabo xiii. 610; Didymus' commentary on Demonthenes Phil. 4, p. 6; cf. Diog. Laetr. vi. 9). Shortly afterwards Mentor died, and was succeeded by his brother Memnon. His son Thymondas commanded in the naval war against Alezander and at Issus (Arrian ii. 2, 1; 13, 2).
(ED. M.)
MENZEL, ADOLPH FRIEDRICH ERDMANN VON (r8151905), Gcrman artist, was born at Breslau on the 8th of December 1815. His father was at the head of a school for girls, and intended to educate his son as a professor; but be would not thwart his taste for art. Left an orphan in 1832, Menzel had to maintain his family. In 1833 Sachse of Berlin published his first work, an album of pen-and-ink drawings reproduced on slone, to illustrate Goethe's litule poem, "Kunstlers Erdenwallen." He executed lithographs in the same manner to illustrate Denkwilrdigkeilen aws der brandenbur gisch-prexssisehen Geschichle, pp. 834-836; "The Five Senses " and "The Prayer," as well as diplomas for various corporations and societies. From 1839 to 1842 he produced 400 drawings, reviving at the same time the technique of engraving on wood, to illustrate the Geschichte Friedrichs 'des Grossen ("History of Frederick the Great ") by Franx Kugler. He subsequently brought out Fricdrichs des Grossen Armee in ithrer Uniformirung ("The Uniforms of the Army under Frederick the Great"), Soldaten Friedricks des Gressen (" The Soldiers of Frederick the Great "); and finally, by
order of the king Frederick WHiam IV., he illustrated the works of Frederick the Great, IUwstrailionen su dew Werken Fricdrichs des Grossen (1843-1849). By these works Menzel established his claim to be considered one of the first, if not sectually the first, of the illustrators of his day in his own line. Meanwhile Menzel had set himself to study unaided the art of painting, and he s00n produced a great number and variety of pictures, always showing keen observation and honest workman-ship-subjects dealing with the life and achievements of Frederick the Great, and scones of everyday life, such as "In the Tuileries," "The Ball Supper," and "At Confession." Amang the most important of these works are "The Forge" (1875) and "The Market-place at Verona." Invited to paint "The Coronation of Willism I. at Koenigsberg," he produced an exact representation of the ceremony without regard to the traditions of official painting. Mensel died at Berlin on the gth of February 1905. In Germany he received many honours, and was the first painter to be given the order of the Black Eagle.
MEMZEL, WOLFGANG (1798-1873), German poet, critic and literary historian, was born on the aIst of June 1798, at Waldenburg in Silesia, studied at Breslau, Jena and Bonn, and after living for some time in Aarau and Heidelberg finally settled in Stuttgart, where, from 1830 to 1838 , he had a seat in the Warttemberg Diet. His first work, a clever and original volume of poems, entitled Streckverse (Heidelberg, 1823), was followed in 1824-1825 by a popular Geschichte dor Deulschen in three volumes and in 1829 and 1830 by Rubexahl and Narcissus, the dramatized fairy-stories upon which bis reputation as a poet chiefly rests. In 185 I he published the romance of Furore, a lively picture of the period of the Thirty Years' War; his other writings include Gaschichlo Europos, 1789-1815 (2 vols. Stuttgart, 1853), and histories of the German War of 1866 and of the Franco-German War of $1870-71$. From 1826 to 1848 Menzel edited a "Literaturblatt " in connexion with the Morgemblatl; in the latter year he transferred his allegiance from the Liberal to tha Conservative party, and in 1852 his "Literaturblatt" was revived in that interest. In 1866 his political sympathies again changed, and he opposed the "particularism" of the Prussian " junkers" and the anti-unionism of south Germany. He died on the a3rd of April 1873 at Stuttgart. His library of 18,000 volumes was afterwards acquired for the university of Strassburg.
CEARZELNSK, a town of eastern Russia, in the government of Ufa, 142 m . N.W. of the town of Ufa, and 10 m . from the left bank of the Kama. Pop. (1897), 7542. Ita fair is one of the most important in the southern Ural region for cattie, hides, furs, grain, tea, manufactured articles, crockery, \&c., which are sold to the annual value of $£ 500,000$. The town was founded in 1584 .

IEPRISTOPHELIES, ${ }^{1}$ in the Faust legend, the name of the evil spirit in return for whose assistance Faust signs away his soul. The origin of the conception and name of Mèphistopheles has been the subject of much iearned debate. In Dr F.arsts Hotlemzuang "Mephistophicl" is one of the seven great priaces of hell; " he stands under the planet Jupiter, his regent is named Zadkiel, an enthroned angel of the holy Jehovah . . .; his form is firstly that of a fiery bear, the other and fairer appearance is as of a little man with a black cape and a bald head." The origin of the ides of Mephistopheles in Faust's mind is thus clear. He was one of the evil demons of the seven planets, the Macskim of the ancient Akkadian religion, a conception transmitted through the Cbaldeans, the Babylonians and the Jewrish Kabbala to medieval and modern astrologers and magicians. This fact suggests a plausible theory of the origin of the name. In the ancient Mesopotamian religion the Intelligence of Jupiter was Marduk, "the lord of light," whose antithesis was accordingly conceived as the lord of darkness. Mephistopheles, then (or rather Mephostophiles, as the Faust-books spell the name) is " he who does not love light " (Gr. $\mu \boldsymbol{\gamma}, \phi \hat{\omega}_{5}, \phi\left(\lambda_{r s}\right) .{ }^{2}$
${ }^{1}$ Ia the Fawstbuch of 1587 it is spelt Miphostophiles; by Marlowe Mephistophilis; by Shakespeare (Merry Wives of Windsor, Act i.) Mephostophilus. The form Mephistopheles adopted by Goethe firsk appears in the version des Chrisllich Meinenden, c. 1712.
${ }^{2}$ Kiesewetter. p. 863 . To Schroer this derivation seems improbable, and be appears to prefer that from Hebrew Mepkis, destroyer.

To Faust himself, somnambuint and medium, Mephistopheles had-according to Kiesewetter-a real existence: he was "the objectivation of the transcendental subject of Faust," an experience familiar in dreams and, more especially, in the visions of mediums and clairvoyants. He was thus a "familiar spirit," akin to the "daemon" of Socrates; and if he was also half the devil of theology, half the kobold of old German myth, this was only because auch " objectivations" are apt to clothe themselves in forms borrowed from the common stock of ideas current at the time when the seor lives; and Faust lived in an age obsessed with the fear of the devil and by no means sceptical of the existence of kobolds. It is auggested, then, in the light of modern psychical research, that Mephistopheles, though (as the Faust-books record) invisihle to any one else, was visible enough to Faust himself and to Wagner, the famulus who shared his somnambulistic experiences. He was simply Faust's "other seli," appearing in various guises-as a bear, as a little bald man, as a monk, as an invisible presence ringing a bell-Lut aiways recognizahle an the same " familiar."
The Mephontophiles of the Faust-books and the puppet plays passed with little or no modification into literature as the Mephisiophilis of Marlowe's Faustus. Mephistophilis has the kobold qualities: he not only waits upon Faustus and provides him with sumptuous fare; he indulges in horse-play and is addicted to practical joking of a homely kind. He is, however, also the devil, as the age of the Reformation conceived him: a fallen angel who has not forgotten the splendour of his first estate, and who pictures to Faust the glories of heaven, in order to accentuate the horrors of the hell to which he triumphantly drags him. Gocthe's Mephistopheles is akogether another conception. Some of the traditional qualities are indeed preserved: the practical joke, for instance. in the scene in Auerbach's Keller shows that he has not altogether shed his character as kobold; and, like the planet-spirits of the old magic he appears alternately in animal and human shape. He is also identified with the devil; thus, in accordance with old German tradjtion, he is dressed as a nobleman (ein edler Junker), all in red, with a little cape of stiff sillk, a cock's feather in his hat, and a long pointed sword; at the witches Sabbath on the Brocken he is hailed as "t the knight with the horse's hoof," and Sybel in Auerbach's Keller is not too drunk not to notice that he limps. But his limp is the only indication that he is Lucifer fallen from heaven. He could not. like Marlowe's Mephistophilis or Milton's Satan, regretfully paint the glories of the height from which he has been hurled: for he denies the distinction beiween high and low, since "everything that comes into being deserves to be destroyed."'s He is, in short, not the devil of Christian orthodoxy, a spirit conscious of the good against which he is in revolt, but akin to the Evil Prineiple of the older dualistic systems, with their conception of the eternal antagonism between good and evil, light and darkness, creation and destruction. (See Faust.)
(W. A. P.)

MEPPEL a town in the province of Drente, Holland, $16 \frac{1}{3} \mathrm{~m}$. by rail N. by E. of Zwolle. Pop. (1903), 10,470. It is favourably situsted at the confluence of a number of canals and rivers which communicate hence with the Zuider Zee by the Meppeler Diep, and rose rapidly into prominence in the 19th century. The chief business is in butter, eggs, cattle and pigs, while bleaching, dyeing and shipbuilding are also carried on here.

MEqUINEZ (the Spanish form of the Arabic Miknasa), a city of Morocco, situated 1600 ft . above the sea, about 70 m . from the west coast and 36 m . W.S.W. of Fez, on the road to Rabat, in $33^{\circ} 56^{\prime} \mathrm{N} ., 5^{\circ} 50^{\prime} \mathrm{W}$. The town wall with its four-cornered towers is pierced by nine gates, one, the Bab Bardain, with fine tile-work. A lower wall of wider circuit protects the luxuriant gardens in the outskirts. Mequinez at a distance appears a city of palaces, but it possesses few buildings of any note except the palace and the mosque of Mulai Ismail, whicb serves as the royal burying-place. The palace, founded in 1634, was described in 182 I hy John Windus in his Journey to Mequinez (London 1825) as "about 4 m . in circumference, the whole building exceeding massy, and the walls in every part very thick; tbe outward one about a mile long and 25 ft . thick." The interior is composed of oblong court-yards surrounded by huildings and arcades. These buildings are more or less square with pyramidal roofs ornamented outside with green glazed tiles, and inside with and tophel, liar (Faust..ed. 1886, i. 25), which is certainly supported by the fact that alnost all the names of devils in the magic-booka of the ${ }^{16 t h}$ century are derived from the Hebrew.
${ }^{2}$ Alles was entisteht ist worth dass es ait Grumds geht.
richly carved and painted woodwork in Mauresque style. The walls are tiled to a height of 4 or 5 ft ., and above they are finished in plaster, whitewashed or carved into fligree work. The population numbers heing between thirty and lorty thousand. Idrisi, writing in A.D. 1100, calls the place Takarart, and describes it as an ordinary citadel, from which the town gradually developed, taking its name from the Miknasa Berbers.
IERRAN, the chicf town of the administrative district of the same name in the Austrian province of the Tirol, 20 m . by rail N.W. of Botzen on the Brenner line, while the Vintschgau railway connects it with Mals, 37 m . N.W. It is the chief town in the upper Adige valley, a region which bears the special name of the Vintschgau, and is on the high road either to Landeck and the Lower Engadine by the Reschen Scheideck Pass (4902 ft .), or more directly to the Lower Engadine by the Munster valley and the Oien Pass (7071 ft). In 1900 Meran had 9284 inhabitants (or, with the neighbouring villages of Untermais and Obermais, ${ }_{13,201}$), mainly German-speaking and Romanist. The town is picturesquely situated, at a beight of 100 ft., at the foot of the vine-clad Kuchelberg, and on the right bank of the Passer River, just above its junction with the Adige or Etsch. Meran proper consists mainly of one long narrow street, the Laubengasse, flanked by covered arcades, but the name is often used to include several adjacent villages, Untermais and Ohermais being on the left bank of the Passer, while Gratsch is on its rigbt bank tnd north-west of the main town. The most noteworthy buildings are the parish church (s 4 h to I 5 th centuries) and the old residence (15th century) of the counts of the Tirol. Meran is best known as a much-frequented resort for consumptive patients, for whom it is well suited by reason of the purity of the air and the comparative immunity of the place from wind and rain in the winter. It is also visited in spring for the whey cure and in autumn for the grape cure.
To the north-west, on the Kuchelberg, is the half-ruined castle of Tirol (2006 ft .), the original seat of the family which gave its name to the county. Meran may have been built on the site of a Roman settlement, but is first mentloned in 857. From the 12th century to about 1420 it was the capital of the ever-extending land named after it Tirol, but then had to give way to Innsbruck, while the building of the Brenner railway (1864-1867) and the rise of Botzen have decreased its commercial importance.

> (W. A. B. C.)

MERbICR (or Marbect), John (d. c. 1585), Eoglish theological writer and musician, was organist of St George's, Windsor, about 1540 . Four years later he was convicted of heresy and sentenced to the stake, but received a pardon owing to the intervention of Gardiner, bishop of Winchester, though Gardiner had himself censured Merbeck for compiling an English Concordance of the Bible. This work, the first of its kind in English, was published in 1550 with a dedication to Edward VI. In the same year Merbeck published his annotated Book of Common Prayer, intended to provide for musical uniformity in the use of the First Prayer Book of Edward VI., which was several times reprinted in the 19th century. Merbeck wrote several devotional and controversial works of a strongly Calvinistic character, and a number of his musical compositions are preserved in manuscript in the British Muscum, and at Oxford and Cambridge. He died, probabiy while still organist at Windsor, about is85. His zon, Rocer Merzecy ($1536-1605$), a noted classical scholar, was appointed public orator in the university of Oxford in 1564, and in 1565 became a canon of Christ Church and was elected provost of Oriel; he left Oxford on account of an unfortunate marriage, and took to medicine as a profession, becoming the first registrar of the College of Physicians in London, and chicf physician to Queen Elizabeth.
MRRCADIRR (d. 2200), French warrior of the 12th century, and chief of freebooters in the service of Richard I. of England. In 1183 he operated for Richard, then duke of Aquitaine, in the Limousin and tbe Angoumois, taking castles and laying waste the country. We know nothing of him during the ten years $1184-1194$, but after Richard's return from Palestine, Mercadier accompanied him everywhere, travelling and gighting by bis
side. Richard eulogized Mercadier's exploits in his letters, and gave him the estates left by Ademar de Bainac, who died without heirs about i1go. During the various wars between Richard and Philip Augustus of France, Mercadier lought successively in Berry, Normandy, Flanders and Brittany. When Richard was mortally wounded at the siege of Chalus in March 1199. Mercadier avenged him by hanging the defenders of the chateau and flaying the crossbowman who had shot the king. Mercadier then entered the service of John, and ravaged Gascony. On Easter Monday, the roth of April 1200 , he was assassinated while on a visit to Bordeaux to pay his respects to Eleanor of Aquitainc, who was bringing from Spain Blanche of Castile. His murderer was an agent of Brandin, anot her freebooter in the service of John.
See Geraud, Mercadier, in Bibliotheque de l'Ecole des Chartes, 1st scrics, 九. iii., pp. 417-443.
mercantile (or Commercial) agricies, the name given in America to organizations designed to collect, record and distribute to regular clients information relative to the standing of commercial firms. In Great Britain and some European countries trade protectivesocieties, composed of merchanis and tradesmen, are formed for the promotion of trade, and members exchange information regarding the standing of business houses. These societies had their origin in the associations formed in the middle of the 19th century for the purpose of disseminating information regarding bankruptcies, assignments and bills of sale. The mercantile agency in the United States is a much more comprehensive organization. It came into existence after the financial crisis of 8837 . Trade in the United States had become scattered over a wide territory. Communication was show, and the town merchant was without adequate information as to the standing of many business men sceking credit. Undoubtedly the severity of the collapse of 1837 was due in part to the insufficiency of this information. New York merchants, who had suffered so severely, determined to organize a headquarters where reports regarding the standing of customers could be exchanged. Lewis Tappan ($\mathrm{I} 788-1873$), founder of the Journal of Commerce ($\mathbf{1 8 2 8 \text {) and a prominent anti-slavery }}$ leader, undertook the work, and established in New York, in 1841, the Mercantile Agency, the first organization of its kind. The system has been wonderfully developed and extended since.
MBRCANTILE BYSTEM, the name given to the economic policy which developed in Europe at the close of the middie ages. The doctrine of the mercantile system, stated in its most extreme form, made wealth and money identical, and regarded it therefore as the great object of a community so to conduct its dealings with other nations as to attract to itself the largest possible share of the precious metals. Each country's interest was to export the utmost possible quantity of its own manufactures and to import as little as possible of those of other countries, receiving the difference of the two values in gold and silver. This difference is called the balance of trade, and the balance is favourable when more money is received than is paid. Governments might resort to all available expedients-prohibition of, or high duties on, the importation of foreign wares, bounties on the export of home manufactures, restrictions on the export of the precious metals-for the purpose of securing such a balance.
But this statement of the doctrine, though current in textbooks, does not represent correctly the views of all who belonged to the mercantile school. Many members of that scbool were much too clear-sighted to entertain the belief that wealth consists exclusively of gold and silver. The mercantilists may be best described, as W. G. F. Roscher remarked, not by any definite economic theorem which they held in common, but by a set of theoretic tendencies, commonly found in comblnation, though soverely prevailing in different degrees in different minds. The underlying principles may be enumerated as follows: (1) the importance of possessing a large amount of the precious metals; (2) an exaltation (a) of foreign trade over domestir, and (b) of the industry which works up materials over that which provides them; (3) the value of a dense population as an element of national strength; and (4) the employment of state action in furtberiag artificially the attainment of the ends proposed.

The discoveries in the New Werld had led to a large development of the European currencies. The old feudal coonomy, founded principally on dealings in kind, had given way before the new "money economy." and the dimeasions of the latter were everywhere expanding. Circulation was beconong more rapid, distant communications more frequent, cily life and movable property more important. The mercantilists were impressed by the fact that money is wealth sui generis, that it is at all thmes in universai demand, and that it puts into the hands of its possessor the power of acquiring allother commodities. The period, again. was marked hy the firmation of great states, with powerful governments at their head. These governments required men and money for the maintenance of permanent armies, which, especially for the religious and Italian wars, wero kept up on a great acale. Court expenses. too, were more lavish than ever before, and a larger number of civil officials was employed. The royal domains and dues were insufficient to meet these requirements, and taxation grew with the demands of the monarchies. Statesmen saw that for their own political ondm industry must flourish. But manufactures make poosible a denser population and a higher total value of exports than agriculture; they open a less limited and more promptly extensible field to enterprise. Hence they became the object of special governmental favour and patronage, whilst agriculture fell comparatively into the background. The growth of manufactures reacted on commerce, to which a new and mighty arena had boen opened by the establishment of colonies. These were then viewed simply as estates to be. worked for the advantage of the mother countries, and the aim of statesmen was to make the cobonial trade a new source of public revenue. Each nation, as a whole, working for ths own power, and the greater ones for predominance, they entered into a competitive struggle in the economic no less than in the political field, success in the former being indeed, by the rulers, regarded as instrumental to pre-eminence in the latter. A national economic interest came to exist, of which the government made itself the representative head. States became a sort of artificial hothouse for the rearing of urban industries. Production was subjected to systematic regulation, with the object of securing the goodness and cheapness of the exported articles, and so maintaining the place of the nation in forcign markets. The industrial control was exercised, in part directly by the state, but largely also through privileged corporations and trading companies. High duties on imports were resorted to, at first perhaps mainly for revenue, but afterwards in the interest of national production. Commercial treaties were a principal object of diplomacy, the end in view being to exclude the competition of other nations in foreign markets, whilst in the home market as litile room as possibic was given for the introduction of anything but raw materials from abroad. The colonies were prohibited from trading with other European nations than the parent country, to which they supplied either the precious metals or raw produce purchased with home manufactures.

That the efforts of governments for the furtherance of manufactures and commerce under the mercantile system were really effective towards that end is admitted by Adam Smith, and cannot reasonably be douhted, though doctrinaire free-traders have often denied it. Technical skiil must have been promoted by their encouragements; whilst new forms of national production were fostered by altracting workmen from other countries, and by lightening the burden of taxation on struggling industries. Communication and transport by land and sea were more rapidly improved; and the social dignity of the industrial professions was enhanced relatively to that of the classes before exciusively dominant.
The foundation of the mercantile system was at the time when it took its rise inspired by the situation of the European nations. Such a policy had been already in some degree practised in the 84th and 15 th centuries, thus preceding any formal exposition or defence of its speculative basis. At the commencement of the ibth century it began to exercise a widely extended influence. Charles V. adopted it, and his example contributed much to its predominance. Henry VIII. and Elizabeth conformed their
measures to it. The leading statise soon entered on a universal competition for manufacturing and commercial preponderance. Through almost the whoie of the $i f$ th century the prize, so far as commerce was concerned, remained in the possession of Holland, Italy having lost her former ascendancy by the opening of the new masitime routes, and Spein and Germany being depressed by protracted wars and internal dissenaions. The admiring envy of Holland felt by English politicians and economists appears in such writers as Raleigh, Mun, Child and Temple. Cromwell, by his Navigation Act, which destroyed the carrying trade of Holland and founded the English empire of the sea, and Colbert, by his whole economic policy, domestic and international, were the chief practical representatives of the mercantile system.
See C. Schmolit. The Mercentife Syutem (Eng. trans. 1896); also the articleg. Balance of Trade: Free Trade; Peotection; Physhocratic School, \&c.

MERCAPTANS (Thio-alcohols), organic chemical compounds of the type R.SH ($\mathrm{R}=\mathrm{an}$ alkyl group). The name is derived from mercurium captans, in allusion to the fact that these compounds react readily with mercuric oxide to form crystalline mercury derivatives. The mercaptans may be prepared by the action of the alkyl halides on an alcoholic solution of potassium hydrosulphide; by the reduction of the sulpho-chlorides, e.g. $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{SO}_{3} \mathrm{Cl}$ (chlorides of sulphonic acids), hy beating the salts of esters of sulphuric acid with potassium hydrosulphide, and by heating the alcohols with phosphorus pentasulphide. They are colourless liquids, which are insoluble in water and possess a characteristic offensive smell. On oxidation by nitric acid they yield sulphonic acids. They combine with aldehydea and ketones, with elimination of water and formation of mercaptals and mercaplals. (See Sulphonal.)
Melhyl marcaptan, $\mathrm{CH}_{2} \mathrm{SH}_{\text {, }}$ is a liquid which boils at $5.8^{\circ} \mathrm{C}$. (752 mm .). and forms a crystaline hydrate with water. Ethyd mercaptan, $\mathrm{C}_{3} \mathrm{H}_{4}$. SH, is a colourless liquid which boils at $36 \cdot 2^{\circ} \mathrm{C}$. It is used commercially in the preparation of uulphonal (q.e.). The mercury salt, $\mathrm{Hg}\left(\mathrm{SC}_{2} \mathrm{H}_{2}\right)_{2}$. crystaflizea from alcoohol in places. When hrated with alcohol to $190^{\circ} \mathrm{C}$. it decompones into mercury and eihyldisulphide
mercator, Gerardus flatmized form of Gerand Kremer] (1512-1594), Flemish mathematician and goographer, was born at Rupelmonde, in Flanders, on the sth of March 1512. Having stadied at Bols-le-Duc and Louvain (where be matriculated on the 20th of Augast 1530, and became licentiate in October 1532), be met Gemma Frisius, a pupil of Apian of Ingolstadt, who at the request of the emperor Charles V. had settled in Louvain. From Frisius young Kremer derived much of his inclination to cartography and scientific geography. In 1534 he founded bis geographical establishment at Louvain; in 2537 he published his earliest known map, now lost (Terrac sanclae descriptio). In 1537-1540 he executed his famous survey and map of Flanders (Exactlssima Flandrise descriptio), of which a copy exists in the Musbe Plantin, Antwerp. At the order of Charles V. Mercator made a complete set of instruments of observation for the emperor's campaigns: when these were destroyed by fire, in 2546 , another set was ordered of the same maker. In 1538 appeared Mercator's map of the world in (north and south) hemispheres, which was rediscovered in 1878 in New York, this work shows Ptolemy's influence still dominant over Mercatorian cartography. In is4i he issued the celebrated terrestrial globe, which he dedicated to Nicolas Perrenot, father of Cardinal Granvelle: this was accompanied by his Libellus de usu globi, which is said to have been presented to Charles V. In 1551 a celcstial globe followed. Mercator early began to incline towards Protestantism; in 1533 he had retired for a time from Louvain to Antwerp, partly to avoid inquiry into his religious beliefs; in 1544 he was arrested and prosecuted for heresy, but escaped serious consequences ($\mathbf{w o}$ of the forty-two arrested with him were hurnt, one beheaded, two buried alive). He now thought seriously of emigrating; and when in 1 S52 Cassander, ordered by tbe duke of Juliers, Cleves and Berg to organize a university at Duisburg, offered Mercator the chair of cosmography the offer was accepted. The organization of the
university was adjourned, and never completed in Mercator's lifetime; but he now became cosmographer to the duke and permanently settled on the German soil to which many of his ancestors and relatives had belonged. Soon after this, however, he paid a visit to Charles V. at Brussels, and presented the emperor with a cosmos, a celestial sphere enclosing a terrestrial, together with an explanatory Declaratio: this work marks an era in the observation of longitude by magnetic declination, perfected by Halley. Charles rewarded the author with the title of imperalorii domesticus (Hofralk in the epitaph at Duisburg). In 1554 Mercator published his great map of Europe in six sheets, three or four of which had already boen prett y well worked out at Louvain; a copy of this was rediscovered at Breslau in 1889. Herein, though still greatly under Ptoiemy's influence, Mercator begins to emancipate himself; thus Ptolemy's 62° for the length of the Mediterranean, reduced to 58° in the globe of 1541 , he now cuts down to 53°. On the 28th of October 1556 he observed an eclipse at Duishurg; in 1563 he surveyed Lorraine, at the request of Duke Charles, and completed a map of the same (Lolharingiae descriptio); but it is uncertain if this was ever published. In 1564 he engraved William Camden's map of the British Isles; in 1508 he brought out his Chronologia, hoc est temporum demonstratio ab inilio mundi usque ad annum domini 1568, ex eclipsibus el observationibus astronomicis. In the same year was published his memorable planisphere for use in navigation, the first map on "Mcrcator's projection," with the parallels and meridians at right angles (Now el ancta orbis terrae descriplio ad wium naviganlium accommodata). Improvements were introduced in this projection by Edward Wright in 1590 ; the more general use of it dates from about 1630, and largely came about through Dieppese support. In 1572 Mercator issued a second edition of his map of Europe; in 1578 appeared his Tabulae geographicae ad mentem Plolemaei restifutae ef emendalae; and in 1585 the first part (containing Germany, France and Belgium) of the Allas, sive cosmographicae moditationes de fabrica mundi, in which he planned to crown his work by uniting in one volume his various detailed maps, so as to form a general description of the globe In 1585 he adapted his Europe to the Allos; in 1587 , wilh the help of his son Rumold, he added to the same a worldmap (Orbis Lerraram compendiosa descriplio), followed in 1500 by a second series of detailed mapa (Italy, Slavonia, Greece and Candla). The rest of the regional and other plans in this undertaking, mostly begun by Gerard, were finished by Rumold; tbey iaclude Iceland and the Polar regions, the British Isles (dedicated to Queen Elizabeth), the Scandinavian countries (dedicated to Henr. Ranzovius), Prussia and Livonia, Russia, Lithuania, Transylvania, the Crimea, Asia, Africa and America (in the last Michael Mercator, in Asia and Africa Gerard Mercator the younger, assisted) The designs are accompanied by cosmographical and other dissertations, some of the theological views in which were condemned as heretical (see the Duisburg edition of 1594 , folio). In 1592 Mercator published, two years after his first apoplectic stroke, a Harmonio eacngeliorum. He died on the sth of December 1594, and was buried in St Saviour's church, Duisburg. Besides his famous projection, he did excellent service witb Ortelius in helping to free the geography of the 16th century from the tyranny of Ptolemy; his map and instrument work is notewortby for its delicate precision and admirable execution in detail.
See the Vita Mercaloris by Gualterus Ghymnius in the Latin editione of the Allas; Ctrard Mercalor, sa ve at ses cuares, by Dr J. van Raemdonck (St Nicolas, 1869); A. Breusing, Garhard Kremer (Duisburg. 1878), and article'"Mcrcator" in Ailgemane deutsche Biographie; Gencral Wauwermans, Histoire de l'ceole carlographique belge...au XVI.-siccle. and article "Mercator" in Biographic nationale (de Belgique), vol. xiv. (Brussela, 1897). Aho the lesser atudies of Dr J. van Raemdonck, Sur les exemplaires dos grandes cartes de Mercator; Carle de Flandre de Mercalor; Relations entro Mercator et . .. Plantin . . (St Nicolas, 1884); La G60. traphie aneienna de la Palestine: Letire de Gérard Mercator mai 22, 3567 (St N. 1884): Les Sphères terrestre ef ctleste de Mercetor. 1548... 1551 (St N., 1885); Van Oturoy, L'© de Mencator.

MERCEMARY (Lat. mercenarins, from merces, reward, gain), one who serves or acts solely for motives of personal gain, particularly a soldier who offers himself for service in any army which may hire him. The name is sometimes used as a term of reproach by nations who raise their armies hy conscription, of armies raised by voluntary entistment whose members are paid a more or leas living wage.

MERCER (through Fr, mercter, from popular Lat. mercerius, a dealer, merx, merces, merchandise), a dealer in the more costly textiles, especially in silks and velvets. The word formerly had a wider meanling. Mercery, according to W. Herbert (History of the Tweloe Great Livery Companies, 1834), "comprehended all things sold by retail by the " litte balance ' or small scales (in contradistinction to the things sold by the "beam" or in gross), and included not only toys, together with haberdashery and various other articles connected with dress, but also spices and drugs." Many of the articles in which they dealt fell later within the sphere of other trades; thus the trade in the smaller articles of dress was taken over by the haberdashers (q.0.). The trade in silk seems to have been originally in the hands of the "silkmen and throwsteres." The Mercers' Company is the first in precedence of the twelve great livery companies of the city of London, and is also the wealthiest both in trust and corporate property. The first charter was obtained in 1393, but the mercers appear to have been formed into a gild much carlier. Herbert finds the mercers as patrons of a charity a few years after 1172, and one Robert Searle, who was mayor in 1214, was a " mercer." A further charter was granted in 1424, with the right to use a common seal. The history of the company is closely connected with the anme of Richard Whittington (q.v.), and later with that of Dean Colet, who chose the company as the manager of St Paul's School. (See Livery Companies.)

YERCERIZING, the term applied to a process, discovered in 1844 by John Mercer, a Lancashire calico printer, which consists in treating cotton (and to a limited extent other plant fibres) with strong caustic sode or certain other reagents, whereby morphological and chemical changes are hrought about in the fibre. Thus, if a piece of bleached calico be immersed in caustic soda of $50^{\circ} \mathrm{Tw}$. strength (sp . gr. $1 \cdot 25$), it rapidly changes in appearance, becoming stiff and translucent, but when taken out and well washed in running water it loses these properties and appareatly reverts to its original condition. On closer examination, however, the fabric is found to have shrunk considerably both in lengtb and breadth, so as to render the texture quite different in appearance to that of the original calico; it is also considerably stronger, and if dyed in the same bath along with some of the untreated fabric is fouad to have acquired a greatly increased afinity for colouring matters. This peculiar action is not restricted to caustic soda, similar effects being obtained with sulphuric acid of $105^{\circ} \mathrm{Tw}$, nitric acid of $83^{\circ} \mathrm{Tw}$, zinc chloride solution of $145^{\circ} \mathrm{T}$ w., and other reagents. Mercer assumed that a definite compound, corresponding to the formula $\mathrm{C}_{6} \mathrm{H}_{20} \mathrm{O}_{19} \mathrm{Na}_{8} \mathrm{O}$ is formed whea the cotton is steeped in caustic soda, and that this is decomposed by subsequent washing with water into a hydrated cellulose $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{10} \cdot \mathrm{H}_{2} \mathrm{O}$, which would account for the fact that in the air-dried condition mercerized cotton retains about 5% more hygroscopic moisture than ordinary cotton. Tbis view is strengthened by the observation that whea cotton is immersed in nitric acid of $83^{\circ} \mathrm{Tw}$. it acquires similar properties to cotton treated with caustic soda. 1f, after immersion in the nitric acid, it is squeezed and thes dried (without washing) in a vacuum over burnt lime, it is found to have formed a compound which corresponds approximately to the formula $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{\mathrm{s}} \cdot \mathrm{HNO}_{1}$, which is decomposed by water into free nitric acid and a hydrated cellulose.

When viewed under the microscope, merserized cotton is seen to have undergone considerable morphological changes, inasmuch as the lumen or central cavity is much reduced in size, while tbe fibre has lost its cbaracteristic band-shaped appearance and becomes rounded.
In Nercer's time the process. which he bimself termed "sodaizing" or " fulling," never acquired any degree of com-
mexcial success, partly on account of the expense of the caustic soda required, but mainly on account of the great shrinkage (20 to 25%) which took place in the cloth. An important application of the process in calico printing for the production of permanent crimp or "crepon" effects, which was originally devised by Mercer, was revived in $1890-1891$ and is still largely practised by calico printeŕs (ace Textile Painting). Another application, also dependent upon the shrinking action of caustic soda on cotton, was patented in 1884 by Depoully, and has for its object the production of crimp effects on piece-goods consisting of wool and cotton or sik and cotton. In the manufacture of such goods cotton binding threads are introduced at definite intervals in the warp or weft, or both, and the piece is passed through cold caustic soda. washed, passed through dilute sulphuric acid, and washed again till neutral. The cotton contracts under the influence of the caustic soda, while both wool and silk remain unaffected, and the desired crimped or puckered effect is thus obtained.

By far the most important application of the mercerizing process is that by which a permanent lustre is imparted to cotion goods; this was discovered in 8889 by H. A. Lowe, who took out a patent for his process in that year, this being supplemented by a further patent in $\mathbf{1 8 9 0}$. Since Lowe's invention did not receive sufficient encouragememt, he allowed his patents to lapse and the process thus became public property. It was not until 1895, wben Messrs Thomas \& Prevost repatented Lowe's invention, that actual interest was aroused in the new product and the process became a practical success. Their patent was subsequently annulled on the ground of having been anticipated.

The production of a permanent lustre on cotton by mercerizing is in principle a very simple process, and may be effected in two ways. According to the first method, the cotton is treated in a atretched condition with strong caustic soda, and is then washed, while still siretched, in water. After the washing has been continued for a short time the tension relaxes, and it is then found that the cotton has acquired a permanent lustre or glose similnr in appearance to that of a spun silk though not so pronounced. According to the second method, which conatitutes but a alight modification of the first, the cotion is immersed in caustic soda of the strength required for mercerizing, and is then taken out. stretehed slightly beyond its original length, and then washed until the tension slackens.

Not all clasees of cotton are equally suited for being mercerized. Thus, in the case of yarns the mose brilliant lustre is always obtained on twofold or multifold yarns spun from long:stapled cotton (Egyptian or Sea Island). Single yarns made from the same quality of cotton are only slightly improved in appearance by the process, and are consequently seldom mercerized: and the tame applies to twolold yarns made from ordinary American cotcon. In piece-goods, long-stapled cotton also gives the best results, but it is not necessary that the yarn used for weaving should be twofold. In the great majority of cases, the mercerizing of cotton, whether it be in the yarn or in the piece, is done before bleaching, but sometimes it is lound preferabie to mercerize after bleaching, or even after bleaching and dyeing. The strength of the caustic soda employed in practice is generally between 55° and $60^{\circ} \mathrm{Tw}$. The temperat ure of the caustic soda has) a material influence on its action on the cotton fibre, very much stronger solutions being required to produce the same effect at elevated temperatures than at the ordinary temperature, while, on the contrary, by lowering the teraperature it is possible to obtain a good lustre with considerably weaker lyes.

Cotton yarn may be mercerized either in the hank or in the warp. and a great number of machines have been patented and constructed for the purpose. The simplest form of machine for banks consists essentially of two superposed strong steel rollers, on which the hanks are placed and spread out evenly. The upper roller, the bearings of which run in a slotted groove, is then raised by mechanical means until the hanks are taut. Caustic soda of $60^{\circ} \mathrm{Tw}$. is now applied. and the upper roller is caused to revolve dowly, the hanks acting as a belt and causing the lower roller to revolve simultancously. After about tliree minutes the caustic soda is allowed to drain off and the hanks are washed by spurt pipes until they slacken, when they are taken off and rinsed, first in dilute sulphuric acid (10 neutralize the alkali and facilitate washing), and then in water till neutral. The hanks are then bleached in the ordinary way and may be subsequently dyed, no diminution being brought about in the lustre by these operations. Colton warps are usually mercerized on a machine similar in construction zo a four bon dyeing machine (see Dveing), but with the guiding rollers and their bearings of tronger construction and the squeczers at each end of the first box with a double nip (three rollers). The first box con. tains caustic soda, the second water, the third dilute sutphuric acid, and the fourth water.

For the continuous mercerising of cotton in the piece much more complicated and expenaive machipery is required than for yarn, since it is necessary to prevent contraction in both length and breadth. The mercerizing range in most common μ te for pieces is constructed on the same principle as the stentering machine used in stretching pieces after bleaching, dyeing or printing, and consists easentially of two endless chains carried at cither end by sprocket wheels. The chains carry clips which run in slotted grooves in the horizontal frame of the machine, which is about 40 ft . in length. The clipe cloee automatically and grip the cloth on either side as it is fed on to the mechine from the mangle, in which it has been saturated with caustic soda. The etretching of the piace begins inmmediately on entering the machine, the two rows of clips being caused to diverge by setting the slotted grooves in such a manner that when the piece has travelied about one-third of the length of the machine it is stretched slightty beyond its original width. At this point the piece meete with a apray od water, which is thrown on by means of spurt pipes; and in consequence the tension slackens and the mercerizing is effected. When the piece arrives at the end of the machine the clips open automatically and releage it. Thence it passes through a box containiog dilute sulphuric acid, and then through a sccond box where washing with water is effected.
In most large works the caustic soda washings, which were formerly run to waste or were partly used up for bleaching, are evaporated down in multiple effect evaporators to $90^{\circ} \mathrm{Tw}$., and the eolution is used over agaln for merceriaing.

Cotton merocrized under temsion has not as much affinity for colouring matters as cotton mercerized without tension, and alt though the amount of hygroscopic moisture which it retains in the air-dried condition is greater than in the case of ordinary untreated cotton, it is not 00 great as that held by cocton which has been mercerized without tension. By drying cotton which has been mercerized with or without cension at temperatures above $100^{\circ} \mathrm{C}$. its affinity for colouring mateers is materially decreased.
The cause of the tust re produced by meroerizing has been variously explainod. and in some cases antagonistic views have bcen expressed on the subject. When viewed under the mieroscope by reflected light, the irregularly twisted band-shaped corton fibre is seen to exhibit a strong lustre at those points from which the light is reflected from the surface. Cotton mercerized without tension shows a similar appearance. In the yarn or piece the lustre is nor apparent, because the innumerable reflecting ourfaces disperve the light in all directions. If, however, the cotton has been merce rized under tension, being plastic whiie still containing the caustic soda, it is stretched and is set in this condition by the washing. Thus in the finished product a large proportion of the rounded fibres are laid parallel to each other, as in the case of spun silk, and the lustre inherent to the fibre becomes visible to the naked eyc.
See The Life and Labours of John Mercer, by E. A. Parnell (Long; mans Green \& Co); Die Mfercerisation der Boumbolle, by Paul Gardner (Julius Springer, Berlin): Mercorisation, by the editors of The Dyer and Calice Primier (Heywood \& Ca).

MERCHANT (O. Fr. marcheant, modern marchand; from Lat. mercarl, to trade, merx, goods, merchandlise), a treder, one who buys and sells goods for profit. The term is now usually confined to a wholesale dealer or one who trades on an extended scale with foreigh countries.

MERCIA, one of the kingdoms of Anglo-Saxon England. The original kingdom seems to have lain in the upper basin of the Trent, comprising the greater part of Derbyshire and Staffordshire, the northern parts of Warwickshire and Leicestershire, and the southern part of Nottinghamshire. The name (Merce) seems to denote men of the March, and presumably was first applied when this district bordered upon the Welsh. In later times Mercia successively absorbed all the other territories between the Humber and the Thames except East Anglia, and some districts even heyond the Thames.
The origin of the kingdom is obscure. The royal family, according to Felix, Life of St Guthlac (Anglo-Saxon version), were called Iclingas. Icel, their ancestor, may have been the founder of the kingdom, but nothing is known of him. The family, however, clalmed descent from the ancient kings of Angle (cf. Offa I. and Wermund). The first Mercian king of wbom we have any record was Cearl, who apparently relgned about the beginning of the 7 th century, and whose daughter Coenburg married Edwin; king of Deira. During Edwin's reign Mercia was subject to his supremacy, though it mhy have been governed throughout by princes of its own royal family. Its first prominent appearance in English history may be dated in the year 633, when the Mercian prince Penda joined the Welsh king Ceadwalla in overthrowing Edwin. According to the Saxon Chronicle, Penda begen to reign in 626, and fought against the

West Saxons at Cirencestet in 628. In the Mercian regnal tables, however, he is assigned a reign of only twenty-one years, which, as his death took place in 654 or 655 , would give 634 as the date of his accession, presumably on the overthrow of Edwin, or perhaps on that of Ceadwalla. During the reign of Oswald Penda clearly, reigned under the suzerainty of that king. In 642, however, Oswald was slain by Penda in a battle at a place called Maserfeld, which has not been identified with certainty. During the early part of Oswio's reign the Northumbrian kingdom was repeatedly invaded and ravaged by the Mercians, and on one occasion (before 651) Penda besieged and almost captured the Northumbrian royal castle at Bamborough. At the same time he extended his influence in other directions, and expelled Irom the throne of Wessex Coenwalh, who had diverced his sister. Indeed, at this time nearly all the English kingdoms must have acknowledged his supremacy. The kingdom of Middle Anglia, which appears to have included the counties of Northampton, Rutland, Huntingdon, and parts of Bedfordshire, Cambridgeshire, Leicestershire and Lincolnshire, was formed into a dependent principality under his son Peada. At this time also the territory corresponding to the modern counties of Cheshire, Shropshire and Herefordshire seems to have been occupied. The last of these counties is said some time later to have been under the government of another son of Penda, named Merewald. In 654 or 655 Penda again invaded Northumbria, with a huge army divided into thirty legiones, each under a royal prince, among whom were Ethelbere, king of East Anglia, and several Welsh kings. He was defeated and slain, however, by Oswio, at a river called the Winwaed. Mercia then came again under Northumbrian rule. Peada, the eldest son of Penda, was allowed to govern the part squth of the Trent, while north Mercia was put in charge of Northumbrian officials. Penda, although be did not prohibit the preaching of Christianity, had remained a heathen to the end of his life. His death was lollowed by the conversion of bis kingdon. Peada had embraced Christianity on his marriage with a daughter of Oswio, and under him the first Mercian bishopric was founded. Shortly afterwards Peada was murdered; but in 658 the Mercians rose under his younger brother Wulfhere and threw off the Northumbrian supremacy.

Wulfhere seems to have been a vigorous ruler, for he extended the power of Mercia as far as it had reached in the days of his father, and even farther. According to the Chronicie he invaded Wessex as far as Asbdown in Berkshire in the year 66t. At the same time he conquered the Isle of Wight, which he gave to Ethelwalb, king of Sussex. Between the years 661 and 665 he was deleated by the Northumbrian king Ecgirith and had to give up Lindscy. In 675 he again fought with the West Saxons under Aescwine, and shortly afterwards died. His brother Ethelred, who succeeded bim, invaded Kent in the following year, and in 679 fought a bettle on the Trent against Ecgirith, by which he recovered Lindsey. After this, however, we hear little of Mercian interference with the other kingdoms for some time; and since it is clear that during the last 15 years of the 7th century Wessex, Essex, Sussex and Kent were frequently involved in strife, it seems likely that the Mercian king had somewhat lost hold over the south of England. In 704 Etheired resigned the crows and became a monk, leaving his kingdom to Coenred, the son of Wulfhere. Coenred also abdicated five years later and went to Rome. Ceolred, the son of Ethelred, who succeeded, fought against the West Saxon king Ine in 715. On his death in the following year Ethelbald, a distant relative, came to the throne, and under him Mercian supremacy was fully restored over all the kingdorn south of the Humber. He reigned for 41 years. After his murder in 757 the Mercian throne was held for a short time hy Bearnred. He was expelled the same year by Offa, who soon restored the power of Mercia, which seems to have suffered some diminution during the later years of Ethelbeld. Offa's policy was apparently the extinction of the dependent kingdoms. In his reign the dynastics of Rent, Sussex and the Hwicce seem to have disappeared, or at all events to have given up the kingly tite. In 787 he aseocimed his son Ecafrith
with him in the kingdom, and after his death (796) Ecglrith reigned alone for a few months. On the death of Ecgirith the throne passed to Coenwulf, a descendant oi Pybba, father of Penda. In 825 Coenwulf was succeeded hy his brother Ceolwulf, who was deprived of the throne in 823 , being succeeded by Beornwulf. In 825 Beornwulf was defeated by Ecgberht, king of Wessex, and in the same year he was overthrown and slain by the East Angles. The supremacy now passed to Wessex.

In 817 Ludeca, the successor of Beornwulf, was slain in battle with five of his earls. Wiglaf, who succeeded him, was expelled two years later by Ecgberht, but regained the throne in the following year. He died, probably in 839, and was succeeded by Berhtwulf, who reigned until $\mathbf{8 5 2}_{52}$. Under these later kings Mercia seems to have extended from the Humber to the Thames, including London, though East Anglia was independent, and that part of Essex which corresponds to the modern county of that name had been annexed to Wessex after 825 . Berhtwulf was succeeded in 852 by Burgred, who married Fthelswith, daughter of Ethelwulf. His power seems to have been more or less dependent on the West Saxons. In 853, with the assistance of なthelwulf he reduced North Wales to subjection. Again in 868 he called upon the West Saxon king Fthelred for assistunce against the Danes under Lovbrok's sons, who at this time invaded Mercia after their overthrow of the Northumbrians at York. No hattle took place, and the Mercians subsequently made peace with the Danes. In 872 the Danes occupied London on their return from invading Wessex, after which a truce was again made. In 873 the Dancs cocamped at Torksey in Lincolnshire, and although another truce ensued, they advanced in the following year to Repion, and Burgred was driven from the kingdom. He went to Rome, where he remained until his death. In 874 Ceolwulf, a king's thegn or baron, was made king by the Danes, and definitely acknowicdged their overlordship. In 877, after the second invasion of Wessex, the Danes seem to have taken the castern part of Mercia into their own hands. How long Ceolwulf reigned over the western portion is unknown. About the year 884 the most important person in English Mercia was an earl, Ethelred, who accepled tbe suzerainty of Alfred, and in or before the year 887 married his daughter Ethelfacd. Ethelred and Exhelflaed appear to have had practically regal power, though they did not use the royal title. In 886 London, which had been recovered by Alfred from the Danes, was restored to Ethelred. During the invasion of 893-97 English Mercia was again repeatedly ravaged by the Danes; but in the last of these ycars, by the united efforts of Alired and Ethelred, they were at length expelled. With this exception, Watling Street, the Ouse and the Lea, continued to be the boundary between Mercia and the Danish kingdom of East Anglia down to the death of Fthelred, between 910 and 912 . The government was then carried on by Ethelllaed, who built a number of lortresses, and in conjunction with her brother, King Edward the Elder, succeeded in expelling ihe Danes from Derby and Lcicester by the year 917-18. After her death in the latter year her daughter 死fwyn was soon deprived of the government by Edward, and Mercia was definitely annexed to Wessex.

From this time onwards its existence as a separate kingdom was at an end, though during the last years of Eadwig's reign the Mercians and Northumbrians set up Eadgar as king. In the last century of the Saxon period the earls of Mercia frequently occupied a semi-royal position. The most important of these were Elfhere under Eadgar, Edward and Ethelred, Eadric Streona, under the last-mentioned king, and Leofric, under the Danish kings.

Authorities.-Bede, Historia eeclesiastica (ed. C. Plummer, Oxford. 18g6): Ang(o-Saxon Chrontcle (cul. Earle and Plummer, Oxford. 189y): W. de G. Birch, Carfularimm saxoxicum (London, 1885-1893).
(F.G.M. B.)

MERCIE, MARIUS JEAN AMTONIM (1845-). French sculptor and painter, was born in Toulouse on the 3oth of October 1845. He entered the Ecole des Beaux Arts, Paris, and studied under Falguidre and Jouffroy, and in 1868 gained the Grapd Prix
de Rome. His first great popular successen were the "Devid" and "Cloria Victis," which was shown and received the medal of honour of the Salon. The bronze was subeequently placod in the Square Montholon. "The Genius of the Arts " (1877), a r-lief, is in the Tuileries, in substitution for Barye's " Napoleon III."; a similar work for the tomb of Michelet (1879) is in the cemetery of Père la Chaise; and in the amme year Merclé produced the statue of Arago with accompanying reliefs, now erected at Perpignan. In 1882 he repeated his great patriotic success of 1874 with a group "Quand Mene!" replicas of which have been set up at Beifort and in the garden of the Tuileries. "Le Souvenir " ($\mathbf{1 8 8 5}$), a marble statue for the tomb of Mme Charles Ferry, is one of his most beautiful works. "Regret," for the tomb of Cabanel, was produced in 1892, along with "William Tell," now at Lausanne. Mercie also designed the monuments to "Meissonier" (r 8 O 5), erected in the Jardin de l'Infante in the Louvre, and "Faidherbe" (1896) at Lille, a statue of "Thiers" set up at St Germain-en-Laye, the monument to "Baudry" at Pére-ta-Chxise, and that of "Louis-Philippe and Queen Amelie" for their tomh at Dreux. His atone group of "Justice" is at the Hotel de Ville, Paris. Numerous other statues, portrait busts, and medallions came from the sculptor's hand, which gained him a medal of honour at the Paris Exhibition of 1878 and the grand prix at that of 1889 . Among the paintings exhihited by the artist are a "Venus," to which was awarded a medal in 1883, "Leda" (1884), and "Michaelangelo studying Anatomy" (1885)-his most dramatic work in this medium. Mercie was appointed professor of drawing and scolpture at the Ecole des Beaux Arts, and was elected a member of the Académie Frangaise in 1891, after being awarded the biennial prize of the institute of $\{800$ in 1887 .

MERCIER, HONORÉ (1840-1894), Canadian lawyer and statesman, was the son of Jean Baptiste Mercier, farmer, and of Maric Kimener, his wife. He was born in the village of St Athanase d'Iberville on the isth of October 1840. The family came from France, and settled in the district of Montmagny, and later removod to Iberville. Mercier entered the Jesuit College of St Mary, Montreal, at the age of fourteen, aad throughout his life retained a warm friendship for the society. He married, firstly in 1866 Leopoldine Boivis, and secondly in 187 I Virginie St Denis. On the completion of his course at St Mary's he studied law in the office of Laframboise and Papineau, in St Hyacinthe, and was admitted to the bar of the province in April 1865. At the age of twenty-two he became the editor of the Conservative Courrier de Sl Hyacinthe, and in this journal supported the policy of the Sicotte administration, which then represented the interests of Quebec, under the Act of Union (1840); but when Sicotte accepted a seat on the bench Mercier joined the Opposition, and contrihuted largely to the defeat of the Ministerial candidate. In 1864 he vigorously opposed the scheme of confederation, on the ground that it would prove fatal to the distinetive position held by the French Canadians. He resumed the editorship of the Courrier in 1866; but after a few months retired from journalism, and for the next five years devoted all his energy to his profession. At the commencement of the year 187 f the national party was organized in Quebec, and Mercier supported the candidates of the party on the platform. In August 1872 he was elected as a member of the House of Commons for the county of Rouville, and proved a vigorous opponent of Sir John A. Macdonald on the question of separate schools for New Brunswick. He was a candidate at the general elections in 1874; but retired on the eve of the contest in favour of another candidate of his own party. Mercier eatered the arena of provincial politics in May 1879 as solicitorgeneral in the Joly government, representing the county of St Hyacinthe; and on the defeat of the ministry in October he passed, with his leader, into opposition. On the retirement of M. Joly from the leadership of the Liberal party in Quebec in 1883 Mercier was chosen as his successor. Towards the close of 1885 the French-Canadian mind was greatly agitated over tbe execution of Louis Riel, leader of the north-west rebellion, and in consoquence of the attitude of Nercier on this question the

Liberal minority in the Legislative Assembly, which had been reduced to fifteea, rapidly gained atrength, until at the general elections held in October 1886 the province was carried in the Liberal interest. In Janamry 1887 Mercier was sworn in as premier and attorney-general, and from this mornent he exercised an extraordinary influence in the province. He succeeded in passiag without opponition the Jesuit Estates Act, a measure to compensate the order for the loss of property confiscated by the Crown. This act came before the Federal House for disallowance, but was carried on division. When Mercier appealed to the clectorate in 1890, his policy was endorsed, and he was able to give cfect to many important measures. Eariy in 1891 he negotiated a loan in Europe for the province, and whilst on a visit to Rome bo was created a count of the Roman Empire by Leo XIII., who three years previously had conferred upon him the rank of a commander of the order of St Gregory the Great. Of commanding presence, firm, decisive, courteous in manner, convincing in argument, and deeply attached to his native province, be had all the qualities of a popular ieader. For a few years he was the idol of the people of Quebec, and French Canada loomed large in the public eye; but towards the end of 1891 serious charges were preferred against his ministry, on the ground that subsidies voted for railways had been diverted to political use, and he was dismissed by the lieutenant-governor. At the subsequent elections held in March 1892 be was returped for the county of Bonaventure, but his party was hopelessly defeated. On the formation of a new government he was brought to trial, and deciared not guilty; his health, however, gave way, and be never regained his former influence.
See Biographic, discowrs, confetrencess, \&c., de IHon. Howort Mercier. by J.O. Pelland (Montreal, 1893).
(A. G. D.)

MRRCIER, LOtIS BEBASTIBM ($1740-18: 4$), French dramatist and miscellaneoua writer, was born in Paris on the 6 th of June 1740. He began his literary career by writing heroic epistles, but carly came to the conclusion that Boileau and Racine had ruined the French language, and that the true poet was he who wrote in prose. The most important of his miscellaneous works are L' An 2440 (1770); L'Essai sur l'arb dramatique (1773); NEologie (1801); Le Tableau de Faris (1781-1788); Le nowveaw Paris (1790); Histoire do France (1802) and Satire contre Racine et Boilsau (r8o8). He decried French tragedy as a caricature of antique and foreign customs in bombastic verse, and advocated the comodic larmoyante as understood by Diderot. To the pbilosophers be was entirely hostile. He denied that modern science had made any real advance; he even carried his conservatism so far as to maintain that the earth was a circular flat plaln around which revolved the sun. Mercier wrote some sixty dramas, among which may be mentioned Jean Hennuyer (1772); La Destruction do la ligue (1782); Jenntoal (1769); Le $J u g e$ (1774); Natalie (1775) and La Browelle du vinaigrier (1775). In politics he was a Moderate, and as a member of the Convention he voted against the death penalty for Louis XVI. During the Terror he was imprisoned, but was released after the fall of Rohespierre. He died in Paris on the 25th of April 18 I 4.
See Lkon Bechard, Sebastion Mercier, sa vic, som ewwe (Paris, 1903); R. Doumic in the Revue des deux mondes (15th July 1903).

MERCK, JOHANN HEINRICH (174r-5791), German author and critic, was born at Darmstade on the nith of April 1741, a few days after the death of his father, a chemist. He studied law at Glessen, and in 1767 was given an appointment in the paymaster's department at Darmstadt, and a year later himseif became paymaster, For a number of years he exercised considerable influence upon the literary movement in Germany; he heiped to found the Frankfurter gelehric Anzeigen in 1772, and was one of the chief contributors to Nicolai's Allgemeine Bibliothek. In 1782 he accompanied the Landgravine Karoline of Ilesse-Darmstadt to St Petersburg, and on his return was a guest of the duke Charles Augustus of Weimar in the Wartburg. Unfortunate speculations brought him intopecuniary embarrassment in 1788, and although friends, notably Goethe, were ready to come to his assistance, his losses-comhined with the death of five of his children-so preyed upon his mind that he committed
suicide on the 27th of June r79r. Merck distinguished himself mainly as a critic; his keen perception, critical perspicacity and refined taste made him a valuable guide to the young writers of the Slurm und Drang. He also wrote a number of small treatises, dealing mostly with literature and art, especially painting, and a few poems, stories, narratives and the liko; but they have not much intrinsic importance. Merck's letters are particularly interesting and instructive, and throw much light upon the literary conditions of his time.
Merck's Ausgewditits Shriften sur sehbuon Literalur and Kunst were published by A. Stahr in 1840, with a biography. See Briefe an J. H. Merck von Goethe, Herder, Wieland und andern bedoutenden Zeitgenossen (1835), Briefe on und von J. H. Merck (1838) and Briefe aus dem Freundeskreise won Goethe, Herder, Hopffer wnd Merck (1847). all edited by K. Wagner. Cf. G. Zimmermann, J. H. Merck, seine Umgebung und seine Zeit (1871).

MERCOUR, SEIGNEURS AND DUKES OF. The estate of Mercour in Auvergne, France, gave its name to a line of powerful lords, which became extinct in the 24th century, and passed by inheritance to the dauphins of Auvergne, counts of Clermont. In 1426 it passed to the Bourbons by the marriage of Jeanne de Clermont, dauphine of Auvergne, with Louis de Bourbon, count of Montpensier. It formed part of the confiscated estates of the Constable de Bourbon, and was given by Francis I. and Louise of Savoy to Antoine, duke of Lorraine, and his wife, Renee de Bourbon. Nicolas of Lorraine, son of Duke Antoine, was created duke of Mercoeur and a peer of France in 156 g . His son Philippe Emmanuel (see below) left a daughter, who married the duc de Vendome in 1609.

MERCEUR, PHILIPPE EMMANUEL DE LORRAINE, DUC dE (1558-1602), French soldier, was born on the gth of September 1558, and married Marie de Luxemburg, duchesse de Penthidvre. In 1582 he was made governor of Brittany by Henry III., who had married his sister. Mancoeur put himself at the head of the League in Brittany, and had himself prochamed protector of the Roman Catholic Church in the province in 5888. Invoking the hereditary rights of his wife, who was a descendant of the dukes of Brittany, be endeavoured to make himself independent in that province, and organized a government at Nantes, calling his son "prince and duke of Brittany." With the aid of the Spaniards he defeated the duc de Montpensier, whom Henry IV. had sent against him, at Craon in 1592, but the royal troops, reinforced by English contingents, soon recovered the advantage. The king marched against Mercour in person, and received his submission at Angers on the aoth of March 1598. Mercocur subsequently went to Hungary, where he entered the service of the emperor Rudelph II., and fought against the Turks, taking Stuhlweissenburg (Székes.Fchervar) in 1509 . Mercocur died on the igth of February 1602.
mercury (Mercurius), in Roman mythology, the god oi merchandise (merx) and merchants; later identified with the Greek Hermes. His nature is more intelligible and simple than that of any other Roman deity. In the native Italian states no trade existed till the influence of the Greek colonies on the coast introduced Greek customs and terminology. It was no doube under the rule of the Tarquins that merchants began to ply their trade. Doubtless the merchants practised their religious ceremonits from the first, but their god Mercurius was not officially recognized by the state till the year 495 s.c. Rome frequently suffered from scarcity of grain during the unsettled times that followed the expulsion of the Tarquins. Various religious innovations were made to propitfate the gods; in 496 the Greek worship of Demeter, Dionysus and Persephone was estahlished in the city, and in 495 the Greek god Hermes was introduced into Rome under the Italian name of Mercurius (Livy it. 21, 27), as protector of the grain trade, cepecially with Sicily. Preller thinks that at the same time the tmde in grain was regulated by law and a regular college or gild of merchants instituted. This college was under the protectlon of the god; Its annual festival was on the $\mathrm{r}^{\text {th }}$ (the ides) of May, on which day the temple of the god had been dedicated at the sonthern end of the Circus Maximus, near the Aventine; and the members were called mercuriales as well as mercatoras. Montmaen, however,
considers the morcurdates to be a purely local gild-the pagoni of the Circus valley. The rith of May was chosen as the feast of Mercury, obviously because Maia was the mother of Hermes, that is of Mercury; and she was worshipped along with her son by the mercuriales on this day. According to Preller, this religions foundation had a political object; it established on a legitimate and sure basis the trade between Rome and the Greek colonics of the coast, whereas formerly this trade had been exposed to the capricious interfenence of government officials. Like all horrowed religions in Rome, it must have retained the rites and the terminology of its Greek original (Festus p. 257). Mercury became the god, not only of the mercatores and of the grain trade, but of buying and selling in general; and it appears that, at least * in the streets where shops were common, little chapels and images of the god were erected. There was a spring dedicated to Mercury between his temple and the Porta Capena; every shopman drew water from this spring on the 15 th of May, and sprinkled it with a laurel twig over his head and over his goods, at the same time entreating Mercury to remove from his head and his goods the guilt of all his deceits (Ovid, Fasti, v. 673 seq.). The word mercurialis, was popularly used as equivalent to " cheat."
Roman statuettes of bronze, in which Mercury is represented, like the Greek Hermes, standing holding the caduceus or staft in the one hand and a purse in the other (an element very rare in puraly Hellenic représentations), are exceedingly common.

MERCURY, in astronomy, the smallest major planet and the nearest to the sum; its symbol is $\%$. Its proximity to the sun makes the telescopic study of its physical constitution extremely difficult. The result is that less is known on this subject than in the case of any other planet. Even the time of rotation on its axis is uncertain. J. H. Schryter inferred a period of rotation of 24 h .5 m . 30 s ., which was in seeming agreement with the obser. vations of K. L. Harding. This period was generally accepted, though Herschel had been unable to eee any changes indicating rotation. In 1882 G. Schiaparelli began a careful study of the face of the planet with 2 refractor of 8 in . aperture, subsequently replaced by one of 18 in . His unexpected conclusion was that the rotation of Mercury resembles that of the moon, in having its period equal to that of its orbital revolution. As the moon always presents the same face to the earth, so Mercury must, in this case, always present very nearly the same face to the sun. Schiaparelli also announced that the axis of rotation of the planet is nearly perpendicular to the plane of its orbit. The rotation heing uniform, while the orbital motion, owing to the great eccentricity of the orbit, is affected by a very large inequality, it would follow that there is a libration in longitude of nearly 24° on each side of the mean position. Percival Lowell in 1897 took up the question anew by combining a long series of measured diameters of the planet with drawings of its apparent surface. The seeming constancy of the surface appearance was considered to confirm the view of Schiaparelli as to the slow rotation of the planet. But there is wide room for doubt on the question.

The period of orhital revolution of Mercury is nearly 88 days, or somewhat less than three months. Consequently, the period of synodic revolution is less than four months, during which the entire round of phases is completed. When near greatest elongation Mercury shines as a star of the first magnitude, or hrighter; but in the latitudes of central and northern Europe it is 30 near the horizon soon after sunset as to be generally obscured by vapours or clouds.
The eccentricity of the orbit, $0-20$, is far greater than that of any major planet, and nearly the average of that of the minor planets. Consequently, its distance and its greatest elongetion from the sun vary widely with its position in its orbit at the time.

The mass of Mercury can be determined only from its action upon Venus; this is so small that the result is doubtful. Leverrier adopted in his tables $1: 3,000,000$ as the ratio of the mass of Mercury to that of the sun. S. Newcomb, from the action upon Veane, reduced this to one-half its emount, or $1: 6,000,000$.
G. W. Hill, basing his conchusions on the probable density of the planet, estimated the mass to be less than $1: 10,000,000$ The adoption of a mass owen as large as that of Newcomb implies a greater density than that of the earth, but it is not possible to estimate the probability that such is the case.
The most interesting phenomenon connected with Mercury is that of its occasional transit over the disk of the sun at inferior conjunction. These occur only when the planet is aear one of its nodes at the time. The earth, in its orbital revolution, passes through the line of the nodes of Mercury about the 8th of May and the roth of November of each year. It is only near one of these times that a transit can occur. The periodic times of Mercury and the earth are such that the trandits are generally repeated in a cycle of 46 years, during which 8 transits occur in May and 6 in November. The following table shows the Greenwich mean time of the middle of all the transits from 1677, the date of the firat one accurately observed, until the end of the present century.

Transits of Mercury from 1677 to 2003.

A perplexing problem is offered by the secular motion of the perihelion of Mercury. In 1845 Leverrier found that this motion, as derived from observation of the transits, was greater by 35° per century than it should be from the gravitation of all the ather planets. This conclusion has been fully confirmed by subsequent investigations, a recent discussion showing the excess of motion to be 43° per century. It follows from this either that Mercury is acted upon by some unknown masses of matter, or that the intensity of gravitation does not precisely follow Newton's law. The most satural explanation was proposed by Leverrier, who attributed the excess of motion to the action of a group of intraMercurial planets. At first this conctusion seemed to be confirmed by the lact that occasional observations of the transit of a dark object over the sun had been observed. But no such observation was ever made by an experienced astronomer, and the frequent photographs of the sun, which have been taken at the Greenwich observatory and elsewhere since 1870 , have never showa the existence of any such body. We may tberefore regard it as certain that, if a group of intra-Mercurial planets exists, its members are too small to be seen when projected on the sun's disk. During the eclipses of 2000 and 1905 the astronomers of the Harvard and Lick Observatories photographed the sky in the neighbourhood of the sun so fully that the stars down to the 7th or 8th magnitude were imprinted on the plates. Careful examination failed to show the existence of any unknown body. It follows that if the group exists the members must be so small as to be entirely invisible. But in this case tbey must be so numerous that they should be visible as a diffused illumination on the aky after sunset. Such an illumination is shown by the sodiacal bght. But such a group of bodies, if situated in the plare of the ecliptic, would produce a motion of the node of Bercury equal to that of its perihelion, while the observed motion ${ }^{1}$ Mercury grazes sun's limb.
of the node of Mercury is somewhat less than that computed from the gravitation of the known planets. The same is true of the node of Venus, which might also be affected by the same attraction. To produce the observed resule, the inclination of the ring would have to be greater than that of the orbit of either Mercury or Venus. In 1805 Neweomh showed that the observed motions, both of the perihelion of Mercury and of the nodes of Mercury and Venus, could be approximately represented by the attraction of a ring of inter-mercurial bodies having a mean inclination of 9° and the mean node in 4° longitude. He also showed that if the ring was placed between the orbits of Mercury and Venus, the inctination would be 7.5° and the longitude of the node 35°. The fact that the zodiacal light appears to be near the ecliptic, and the belief that, If it were composed of a lens of discrete particles, their nodes would tend to scatter themselves equally around the invariable plane of the solar system, led him to drop these explanations as unsatisfactory, and to prefer provisionally the hypothesis thet the sun's gravitation is not exactly as the inverse square. (See Gravitation.)

In 1896 H. H. Seeliger made a more thorough investigation than his predecessor had done of the attraction of the matter producing the zodiacal light, assuming it to be formed of a series of ellipeoide. He showed that the motions of the nodes and perihelion could be satisfactorily represented in this way. The following are the three principal elements of the hypothetical orbits as found by the two investigators:-

	Newcomb.		Seeliger.
	Intra. Mercurial Ring.	Ring between Mercury and Venus.	Zodiacal Light Matter.
Inclination, Node Mase	48°	$\begin{gathered} 7.5^{\circ} \\ 35^{\circ} \\ 1 / 37.000,000 \end{gathered}$	$\begin{gathered} 6-95^{*} \\ 1 / 2,860,000 \end{gathered}$

The demonstration by E. W. Brown that the motion of the moon's perigee is exactly accordant with the Newtonian law of gravitation, seems to preclude the possibility of any deviation from that law, and renders the bypothesis of Seeliger the most probable one in the present state of knowledge. But the question is still an open one whether the zodiacal light has an inclination of the ediptic as great as that computed by Seeliger. This is a difficult one because the action on Mercury is produced by the inner portions of the matter producing the zodiacal light. These are so near the sun that they cannot be observed, unless possibly during a total eclipse.
(5. N.)

MRRCURY (symbol Hg, atomic weight $=200$), in chemistry, a metallic element which is easily distinguished (rom all others by its being liquid at even the lowest temperatures naturally occurring in moderate climates. To this exceptional property it owes the aynonyms of quicksisser in English (with the Germans Quecksilber is the only recognized name) and of hydrargyrum (from ©isup, water, and dorupos, silver) in Graeco-Latin. This metal does not appear to have been known to the ancient Jews, nor is it mentioned by the earlier Greek writers. Theophrastus (about 300 s.c.) mentions it at prepared from cinnabar by treatment with copper and vinegar; Diosconides obtained it from the same mineral with the aid of iron, employing at the same time a primitive distillation apparatus. With the alchemista it was a substance of great consequence. Its appearance commended it as wubstance for investigation; many of its compounds, especially corrosive sublimate and calomel, were studied, and improved methods for extracting and purifying the metal were devised. Being ignorant of its susceptibility of freczing into a compact solid, they did not recognize it as a cruc metal, and yet, on the authority of Geber, they held that mercury (meaning the predominating element in this metal) enters into the composition of all metals, and is the very cause of their metalicity (see ELEMENT). When, about the beginaing of the 16th century, chemistry and scientific medicine came to merge into one, this same mysterious element of "mercury" played a great part in the theories of pathology; and the metal,
in the free as in certain combined states, came to be looked upon as a powerful medicinal agent.
Occurrence.-Mercury occurs in nature chiefly in the form of a red sulphide, HgS , called cinnabar (g.v.), which, as a rule, is accompanied by more or less of the reguline metal-the latter being probably derived from the former by some secondary reaction. The most important mercury mines in Europe are those of Almaden in Spain and of Idria in Illyria, and in America those of California and Texas. Deposits also occur in Russia, the Bavarian palatinate, in Hungary, Italy, Transylvania, Bohemia, Mexico, Peru and in some other countries.
Mercury occurs in formations of all ages from the Archean to the Quaternary, and it has been found in both sedimentary and cruptive rocks of the most varied character, e.g. conglomerates, sandstones, shalcs, limestones, quartzites, slates, serpentines, sangstalline schists, and eruptive rocks from the most acid to the most basic. It appears that nearly all known deposits occur aiong lines of continental uplift, where active shcaring of the aiong lines of continental uphift, where active shcaring ount the eruptive rocks, but generally near such formations or near active or extinct hot springs. The deposits are of many types, simple fissure veing being less usual than compound, reticulated, or linked veins. Segregations and impregnations are very common. The form of the deposit seems to depend chiefiy on the physical propertics and structure of the enclosing rocks and the nature of the fissure systems that result from their disturbance. The principal ore is systems that result from their disturbance. The principal ore is abundant; the selenide (tiemannite), chloride, and iodide are rare. Of the associated heavy minerals. pyrite (or marcasitc) is almost universal, and chalcopyrite, tetrahedrite, blende and realgar are frequent. Many deposits contain traces of gold and silver, and some deposits, as the Mercur in Utah, are more valuable for their gold than their mercury content. The usual gangue-forming minerals are quartz, dolomite, calcite, barite, fluorspar and various zcolites. Some form of bituminous matter is one of the most universal and intimate associates of cinnabar. Formerly quicksilver deposits were supposed to be formed by sublimation, but from a careful study of the California occurrences S. B. Christy was cunvinced as early as 1875 that this was unlikely, and that deposition from hot alkaline sulphide solutions was more probable. By treating the black mercuric sulphide with such solutions, hot and under pressure, he succeeded in producing artificial cinnabar and metacinnabarite. He also showed that the mineral water at the New Almaden mines, when charged with sulphydric acid and heated under presoure, was capable of effecting the same change, and that this method of production agreed better with all the facts than the sublimation theory. (See "Genesis of Cinnabar Deposits," Amer. Jour. Science, xvil. 453.) The investigations of Dr G. F. Becker on the "Quicksiiver Deposits of the Pacific "" (U.S. Geol. Surrey, Mon. xiii., 1888) estabtished the correctncss of these views beyond douht.
Production.-At one time the world's supply of mercury was almost entirely derived from the Almaden and Idrian mines; but now the greater proportion is produced in California and Texas, where cinnabar was used by the Indians as a pigment, and first turned to metallurgical purpose in 1845 by Castellero. In the United States mercury has also been found in Utah, Nevada, Oregon and Arizone. In the 16th century the Almaden and Idrian mines were practically the only producers of this metal; statistics of Almaden dating from 1564 and of Idria since 1525 are given in B. Neumann, Die Metalle (rgo4). Spain produced 1151 metric tons in 1870, and in 1889 its maximum of 1975 tons; since then it has, on the whole, been decreasing. The Austria-Hungary output steadily fincreased to about $550-600$ tons at which it appears to remain. In 1887 Russia produced 64 tons, and has steadily improved. The United States output was over 1000 tons, in 1871, and declined to $800-900$ in the period 1889-1892; it has since increased and surpassed the supply from Spain. The following table gives the production in various countries for selected years:-

	Spain.	United States.	Russia	Austria- Hungary.	Italy.	Mexico.	Total Mertic Tons).
1901	754	1031	368	558	278	128	3120
1902	1425	1208	416	556	259	191	4056
1903	914	1288	362	567	314	188	3633
1904	1020	1192	393	581	357	190^{1}	3733
1905	800	1043	318	564	370	190^{1}	3265

${ }^{1}$ Estimated.

Mercury is transported in steel bottles closed by a screw stopper; the Almaden and Idrian bottles contain 76 M ; and until the Ist of June 1904, the Californian bottles contained $76 \frac{1}{3} \mathrm{lb}$ of mercury; they now hold 75 Ht . From the smaller works the metal is sometimes sent out in sheepskin bags holding 55 lb of mercury.
Nelallurgy--Chemically speaking, the extraction of mercury from its ores is a simple matter. Metallic mercury is casily volati. lized. and separated from the gangue. at temperatures lar below redness, and cinnabar at a red heat is readily reduced to the metallic state by the action of iron or lime or atmospheric oxygen, the sulphur being eliminated, in the first case as iron sulphide, in the secondas calcium sulphide and sulphate, in the third as sulphur dioxide. A close iron retort would at first suggest itself as the proper kind of apparatus for carrying out these operations, and this idea was, at one time, acted upon in a few small establishmento-for instance, in that of Zweibrlicken in the Palatinate, where lime was used as a decomposing agent; but the method has now been discarded. In all the large works the decomposition of the cinnabar is effected by the direct exposure of the ore to the oxidizing flame of a furnace, and the mercury vapour, which gets diffused through an immense mass of combustion gases, is recovered in more or less imperfect condensers.
With the exception of the massive deposits of Almaden in Spain and a few of those in California and Idria, cinnabar occurs in forms so disseminated as to make its mining very expensive. Rude handsorting of the ores is usually practised. Wet concentration has not been suecessful, because it necessitates ore crushing and extensive slime losses of the brittle cinnabar. As a rule low-grade ores can be roasted directly with less loss and expense. At Almaden in Spain the ores average from 5 to 7% but in other parts of the world much poorer ores have to be treated. In California, in spite of the high cost of latrour, improved furnaces enable ores containing not mor than 3% to be mined and roasted at a profit.
The furnaces originally used at Almaden and Idria differ only in the condensing plant. The roasting was carried out in internally fired, vertical shaits of brickwork, and, at Almaden, the vapours were led through a scries of bottles named aludels, so arra nged that the neck of one entered the sole of the next; and at Idtia the vapours were led into large brilk work chambers lined with cement. and there condensed. The alude! furnace, which was designed in 1633 by Lopez Saavedra Barba in Huancavelica, Peru (where cinnabar was discovered in 1566), and introduced at Almaden in 1646 by Busta. mente, by whose name it is sometimes known, has now been entirely given up. The Idrian furnace was designed in 17^{87} by von Leithner; it was introduced at Almaden in 1800 by Larranaga, and used side by side with the aludel furnace. The crude mercury is purified by et raining through dense linen or chamois leather baga.
The most important improvements in the metallurgy of mercury are the introduction of furnaces for treating coame ores, and the replacement of the old discontinuous lurnaces by those which work continuously. The most successful of these continuous furnaces was a modification of Count Rumford's cnntinuous limekiln. This furnace was introduced at New Almaden by J. B. Randol, the author of many improvements ia the metallurgy of mercury. The success of the continuous coarscore furnace at New Almaden led Randol to attempt the continuous treatment of fine ores also, and the Huettner and Scott continuous fine-ore furnace, which was the result of these experiments solved the problem com: pletcly. It contains several vertical shafts in which the descending ore is retarded at will by inclined shelving, which causes it to be exposed to the flames as long as may be necessary to roast it thoroughly. The time of treatment is determined by the rapidity with which the roasted ore is withdrawn at the bottom. Several similar furnaces are in use, as the Knox and Osborne, the Livermore and the Cormak-Spirek. The fumes from the roasting furnaces are received in masonry chambers, usually provided with water-cooled pipes: from these they pass through carthen ware plpes, and finally through others of wood and glass. Not all the yield is in liquid mercury; much of it is entangled in masses of soot that cover the condenscr walls, and this is only recovered after much labour.
The conditions for effective condensation are: (I) The furnace gases should be well oxidized, to avoid the production of an excess of soot. Gas finng would meet this requirement better than the use of wood or coal. (2) The volume of permanent gases passing through the furnace should be reduced to a minimum consistently with completc oxidation. (3) The cross-section of the condensers should be sufficient to reduce the velocity of the escaping gases, and the surface large enough for cooling and for the adhesion of condensed mercury. The latter requirement is best provided for by hanging wooden aprons in the path of the cooled gases. (4) The temperature of the escaping gascs should not exceed 15° to $20^{\circ} \mathrm{C}$., but cooling below this temperature would not give any adequate return for the expense. Cooling by water is quicker, but more expensive than oy air. Water spraye. acting directly on the fumes, have not given good results. On account of the difficulty of recovering "floured " quicksilver from the water. (5) The use of an ariticial inward draught is absolutely necossary to control the operarion of the
furusces and condensera and to avōid the salivation of the workmen. (6) The condenser should be easily and quickly cleaned during the operation of the furnace. (7) Both furnaces and condensers should have inclined iron plates in their foundations to prevent the infitration of mercury. (8) There is a great need of some mubutance for the construction of quicksilver condensers which shall be strong enough to he made thin, be a good conductor of heat, and reaistant to abrasion and the siternate action of heat and cold. It should also resist the action of mercury and warm dilute sulphuric acid, and be not too expensive.
Quicksilver is best removed from the " eoot," not by preseure, but by the opposite treatment. A machine in use for this purpose at New Almaden, devised by Colovel vou Leicht, consists of an iron bowl, perforated at the bottom, in which revolves a vertical shaft carrying a propeller blade which toses the soot (mixed with wood ashes and a fittle coal oil) into the air, so that the entangled mercury in free to run out through the bottom of the bowi. The residue from which no more mercury can be extracted mechanically is returned to the roasting furnace.
The lossea of treatmeat are: (1) Furnace loss, which is easily reduced to nothing, and (2) condenser loss. which can never be zero. The latter consists of mercury lost as vapour and as mist, and ite minimum amount is determined not by the richness of the ore but by the volume of escaping gases, their velocity and temperature. The percentage of lons will be higher with a poor than a rich ore On a 3% ore the losses nced not exceed 3 or 4% ore content. On a 1% ore they will run from 5 to 10%. But in poorly arranged plants under had ranagement they may easily be douhled or even trebled. The Huettner and Scott fine-ore furnace costs with condensert in Calfornia about $\$ 30,000$, and roasta from 30 to 45 tons of ore (Irom $2 \frac{1}{2} \mathrm{in}$. to dust) in 24 hours at a cost of from $\$ 1$ to $\$ 0.62$ per ton

Purification.-Commercial mercury, as a rule, only needs to be foreed through chamois leather or allowed to run though a very fine bote to become fit for all ordinary applications: but the metal, having the power of dissolving most other metals, is very liable to get contaminated, and requires then to be purified. For this purpose many chemical methods have been proposed; the commonest consist in allowing the metal to fall in a very fine stream through a column of a mixeure of nitric acid and mercurous nitrate, or of sulphuric acid, or of potassium bichromate and sulphuric acid; the metal being subsequentiy dried and filtered through a perforated paper filter. The only really exhaustive method is distillation in a vacuum out of a glass apparatus. Many forms of apparatus have been devised to effect this. Recent researches have shown, however, that the metal so obtained is not chemically pure, there being found in the distilate traces of other metais. Absolutely pure mercury does not at ail adhere to any surface which does not consist of a metal soluble in mercury. Hence the least quantity of it, when placed on a shect of paper, forms a neatly rounded-off globutie, which retains jits form on being roiled about, and, when subdivided, breaks up into a number of equally perfect globules, which tend to coalesce When sufficiently near to each other. The presence in it of the minutest trace of lad or tin causes it to "draw tails." A very of the normal convex, form an irregular flat meniscus.

Properties.-Pure mercury is a freely flowing liquid, which does not wet objects placed in it, and has a silvery white colour and perfect metallic lustre; in very thin layers it transmits a bluish-violet light. It freezes at about $-39^{\circ} \mathrm{C}$. (Mallet gives -38.85°; Hutchins, -39.44°) with contraction, and the formation of a white, very ductile and malleable mass, easily cut with a knife, and exhibiting crystals belonging to the cubic system. When heated the metal expands very uniformly, and vaporizea at about 360°; the volatility is generally increased hy the presence of impurities; its high expansion and the wide range of temperature over which it is fluid render It especially valuable as a thermometric fluid (see Thermonetry). The vapour is colourless, and its density points to the conclusion that the molecules are monatomic. Its specific gravity at 0° is $13 \cdot 5959$, i.e. it is about half as heavy again as copper volume for volume, a quarter as heavy again as lead, and nearly twice as heavy as zinc; this property is turned to account in the construction of barometers and nir-pumps. Its specific heat is about 0.0333 (see Calorimetry); its electrical conductivity is involved in the definition of the ohm (see Conduction, Electric); and its thermal conductivity is about two thirds that of silver.

Pure mercury remains unchanged in dry air, oxygen, nitrous oxide, carbon dioxide, ammonia and some other gases at ordinary temperatures; hence its application for collecting and measuring gases. In damp air it siowly becomes coated with a film of mercurous oxide; and when heated for some time in air or oxygen it becomes tranaformed into the red mercuric oxide, which decomposes into mercury and oxygen when heated to
a higher temperature; this reaction is of great historical imporlance, since it led to the discovery of oxygen at the hands of Priestley and Scheele. The halogen elements and sulphut combine directly with the metal. Mercury is unattacked by dilute sulphuric acid; the strong acid, however, dissoives it on heating with the formation of sulphur dioxide and mercurous or mercuric sulphate according as mercury is in excess or not. Hydrochloric acid has no action. Dilute nitric acid readily artacks it, mercurous nitrate being formed in the cold with excess of mercury, mercuric nitrate with excess of acid, or with strong acid, in the warm. The metal dissolves in solutions containing chlorine or bromine, and consequently in aqua regia.

Mercury readily dissolves many metals to form a class of compounds termed amalgams, which have considerable applications In the arts.

Compounds of Mracwry.

Mercury forms two well-defined series of salts-the mercurous malts derived from the oxide $\mathrm{Hg}_{3} \mathrm{O}$, and the mercuric salto from the oxide HgO ; the existence of these salts can hardly he inseparably connected with a variable valency, i.e. that mercury is monovalent in mercurous, and divalent in mercuric compounds, for according to

Mercurous Oxide. $\mathrm{Hg}_{2} \mathrm{O}$, is an unstable dark-brown powder formed when caustic potash acts on calomel; it is decompoeed by light or on trituration into mercury and mercuric oxide Mercuric oxide, HgO, occurs in two forms: it is obtained as a bright-red crystaline powder (also known as " red precipitate," or as mercurius pracciptlatus per se) by heating the metal in air, or by calcining the nitrate. and as an orange-yellow powder by precipitating a colution of a mercuric salt with potash: the difference is probably onc of aubdivinion. The yellow form is the most reactive and is transformed into the red when heated to 400°. If the red oxide be heated it becomes black, regaining its colour on cooling, and on further beating to 630° it decomposes into mercury and oxygen. It is alightly solubie In water, to which it imparts an alkaline reaction and strongiy metallic taste. A peroxide is obtained as a brown soiid from mercury and slightly acid 30% hydrogen peroxide at low temperatures.
Mercurous and mercuric chlorides, known respectively as calomel ($q . v$.) and corrosive sublimate (q.v.), are two of the most important ralts of mercury. Mercurous bromide, $\mathbf{H g a}_{1} \mathrm{Br}_{2}$ is a yellowish-white powder, insoluble in water. Mercuric bromide, $\mathrm{Hg}_{\mathrm{Br}}^{\mathrm{E}}$, forms white Crystais; sparingly soluble in coid water, readily in hot, and prepared by the direct union nf its components. Mercurous iodide, Hgits is a yellowish-green powder obtained by beating it components to nbout 250°, or by triturating them with a litile alcohol; it is also obtained by precipitating a solution of mercurous nitrate with potassium iodide. It is blackened ty exposure to light. Mercuric iodide, HgI_{8}, exists in two crystallin: orms By mixing solutions of mercuric chloride and potassium iodide under a microncope, yellow rhombie plates are seen to be formed which are tranaformed very quickly into scariet quadratic octahedra. On heating to about 1126° the red form is transformed into the yellow modification: on cooling the reverse gradually occurs, and immediateiy if the yellow iodide be touched. Mercuric iodide is insolubble in water, but soluble in absolute alcohol: and also in potassium iodide solution, with the lormation of $\mathrm{K}_{2} \mathrm{HgI}_{4}$, which may be obtained in lemon-yeilow cryatals. A strongly alkaline solution of this salt is known as Nespler's reagent, and is specially used for determining traces of ammonia (see below). Mercuric iodide dissolves in other iodide solutions to form similas fompounds; these solutions are characterized by their exceptionally high specific gravity, and hence are employed in density determinations (sce Density). It also formemany other douhle salts. Oxidation with strong nitric acid give the iodate, $\mathrm{Hg}\left(1 \mathrm{O}_{\mathrm{a}}\right)$. An iodide, $\mathrm{Hg}_{2} \mathrm{I}_{3}$ intermediate between mercurous and mercuric iodides, Is obtained as a yellow insoluble powder by precipitating mercurous nitrate with a solution of iodine in potassium iodide. Mercurous jluoride, $\mathrm{Hg}_{2} \mathrm{~F}_{3}$, and mercuric fluoride, HgF_{2}, are unstable eubstances obtained from the corresponding oxide and hydrofluoric acid.

Mercurous Nilrate, $\mathrm{H}_{3}\left(\mathrm{NO}_{3}\right)_{3} .2 \mathrm{H}_{2} \mathrm{O}$, is obtained as a white erystalline sale soluble in water by dissolving the metal in cold dilute nitric acid; if the metal be in excess a basic salt $\mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)_{2} .2 \mathrm{HG}_{2} \mathrm{O}$. ${ }_{3} \mathrm{H}_{2} \mathrm{O}$ is obtained. Several orher basic salts are known. By adding immonia to a solution of mercurous nitrate a black precipitate of variable composition, known in pharmacy as mercurius solubilis Hahnemansi, is obtained.

Mercuric Nitrate.-By dissolving mencurnc oxide in strong nitric acid there is obtained a thick liquid which will not crystallize, and which gives on the addition of strong nitric acid a white precipitate of $2 \mathrm{H}_{4}\left(\mathrm{NO}_{3}\right)_{2}$. $\mathrm{H}_{4} \mathrm{O}$. Water decompotes it to give basice salts of variable composition. By dissolving the oxide in dilute nitric acid, the basic salt $\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$. HgO . H5O. crystallizing in needlen, is obtained

Mercurous Sulphide, $\mathrm{Hg}_{2} \mathrm{~S}_{\text {, }}$ is an unstable black powder obtained by acting with sulphuretted hydrogen, diluted with carbon dioxide on calomel at -10°. It decomposes into mercuric sulphlde and mereliry at 0°. Mereuric sulphide. Hgs, is one of the mout Important
mercury compounds; it is the principal ore, cecurring in mature as the mineral cinnabur (q, v.), and is extensively used as a pugnent, vermilion (g.v.). It is obtained as a black powder by triturating mercury with sulphur, the compound thus formed being known in pharmacy as Aelhiops mineralis, and also by precipitating a mercuric ealt with sulphuretted hydrogen. It is only slightly acted upon by nitric acid; it dissolves in aqua regia; chlorine gives a yellow compound, $2 \mathrm{HgS} . \mathrm{HgCl}_{2}$: and it dissolves in potassium sulphide solutions to form double salts of variable composition.

Mercurous $\mathrm{Su} / \mathrm{phate}, \mathrm{Hg}_{1} \mathrm{SO}_{4}$ is a white, sparingly toluble, crystalline substance obtained by adding sodium sulphate to a solution of mercurous nitrate. Mcrcurac sulphate, HgSO_{4} is a white, soluble salt obtained by dissolving mercury in hot strong sulphuric acid: on digestion with water. it decomposes into a basic salt $\mathrm{HgSO}_{4} \cdot 2 \mathrm{HgO}$ known as turbith or turpeth mineral, and into an acid salt, HgSO_{4}. $2 \mathrm{SO}_{2}$.

Mercury Phosphide, $\mathrm{Hg}_{3} \mathrm{P}_{1}$, is obtained as brilliant red, hexagonal crystals by heating mercury with phosphorus iodide to 300° and removing the mercuric iodide simultancously formed by means of potassium iodide solution. Mercurous phosphate. $\mathrm{Hg} \mathrm{PO}_{4}$ and marcuric phosphate, $\mathrm{Hg}_{2}\left(\mathrm{PO}_{4}\right)_{n}$ are ohtained as white precipitatcs by adding sodjum phosphate to solutions of mercurous and mercuric nitrates respectively.

Mercwammonism Compounds.-By the action of ammonia and ammonium salis mercury compounds yield a number of substances, many of which have long been used in medicine. By the action of dry a mmonia on calomel mercurono-ammonium chloride, $\mathrm{NH}_{2} \mathrm{HgCl}_{\text {, }}$ is obtained; aqueous ammonia on calomel gives di-mercuroso-ammonium chloride. $\mathrm{NH}_{3} \mathrm{Hg}_{3} \mathrm{Cl}$. By adding ammonia to a solution of mercuric chloride, mercurammonium chloride, known in pharmacy as "infusible white precipitate," $\mathrm{NH}_{3} \mathrm{H}_{8} \mathrm{CI}$, is obtained: "fusible white precipitate" is mercuro-diammonium chloride, $\mathrm{Hg}_{\mathrm{g}}\left(\mathrm{NH}_{3} \mathrm{Cl}\right)_{2}$, and is obtained by adding a solution of morcuric chloride to hot solutions of ammonium chloride and ammnnia so long as the precipitate first formed redisooivos; the substance separntes out on cooling. By precipitating a strongly alkaline solution of mercuric iodide in potassium iodide (Nessler s solution) there is obtained a yellow precipitate of $\mathrm{NH}_{2} \mathrm{Hg}_{2} \mathrm{OI}$; this reaction is the most delicate test for ammonia, a yellow coloration being given by minute traces. By passing dry'ammonia over precipitated mercuric oxide at 130°, a nitride NaHg_{3} is obtained. The oxide and ammonia solution gives the stable and basic mercurhydroxylamine. $\mathrm{NHg}_{2} \mathrm{OH}$. The sonstitution of these compounds has been copecially studied by K. A. Hofmann and E. C. Marburg (Zeif. Anory; Chem. 23, p. 126); these chemiste formulate "infusible precipitate", as $\mathrm{Hg}\left(\mathrm{NH}_{2}\right) \mathrm{Cl}$, "fusible precipitate " as $\mathrm{Hg}\left(\mathrm{NH}_{8} \mathrm{Cl}\right)_{2}$ Mifon's base "as (HO. Hgh:NHIOH, thue postulating three distinct types of compounds, (1) amidochlorides; (2) amines; (3) substituted ammonium derivatives.

A nalysis.- Mercury compounds, when heated in a closed tube with sodium carbonate, yicld a grey to black subtimate of metalific mercury, which readily unites to form visible globulea The metai is precipitated from solutions by digeation with bright copper-foil, a coating being formed on the copper, which becomes silvery on rubbing, and disappears when the quickuilvered copper is heated in a aublimation tube.

Solutions of mercurous galts with hydrochloric acid give a white precipitate of calomel, which becomes jet-black on treatment with ammonia. Stannous chloride. in its twofold capacity as a chloride and a reducing agent, precipitates both mercurous and mercuric solutions, at first as calomel, and on addition of an excess of reagent the precipitate becomes grey through conversion into finely-divided quicksilver. Sulphuretted hydrogen, when added very gradually to an acid mercuric solution, gives at first an almost white precipitate, which, on addition of more and mrore reagent, assumes succetrively a yellow, orange and at last jet-black colour. The black precipitate is HgS , which is identified by its great heaviness, and by being insoluble in boiling nitric and in boiling hydrochloric acid. A mixture of the two (aqua regia) dissolves it as chloride.
"Mercurous" mercury is quantitativeiy estimated by precipitating as calomel and weighing the precipitate on a tared filter at 100°. The metal may also be estimated by diatiliation ia a clowed tube with iime, the metal being collecred and weighed, or by precipitating the solution with an excess of etannous chloride. More convenient is the met hod of precipitating as sulphide hy an excess of sulphuretted hydrogen, and weighing the precipitate on a tared filter; or by meana of a Gooch crucible.

Pharmacology ased Tharafeulict

The use of mercury as a therapeutic agent is of comparatively recent date. To the Grecks and Romans its value was unknown, and the Arabian physicians only used it for skin affections. It was not till the middic of the $16 t h$ century that the special proporties of mercury were fully appreciated, but since that time the metal has continued to hold a high though fluctuating value as a medicine. At first the metal in a finely divided state or in vepour was used; but very soon lts various compounds were
found to be endowed with powers even greater than those of the metal itself, and with the discovery of new compounds the number of mercurial medicines has largely increased.

The British Pharmacopeia contains some twenty-five mercurial preparations, including those of calomel (q.v.). Onty the useful preparations will be mentioned here. Free mercury is contained in Hydrargyrum cum Creta, or "grey powder," which consists of one part of mercury to two of prepared chalk. The power of this valuable and widely used preparation varies somewhat with its age. as old specimens contain some mercuric oxide, which makes them more active. The dose is $1-5 \mathrm{gr}$., and the preparation is usually. employed for children. The Pitula Hydrargyri, or al blue pill ${ }^{\text {at. }}$ contains one part of mercury in three, and the dose is $4^{-8} \mathrm{gr}$. It is usually employed for adults. There are also five preparations of free mercury for external use. Of these the most useful is the Unguentum Hydrargyri, "or blue ointment," which containg one part of mercury in two. Weaker ointments are also prepared from the red and the yellow forms of mercuric oxide. The perchtoride of mercury or corrosive sublimate is therapeutically the most important salt of mercury. The dose is s-1 gr. It is incompatitle with alkalies, alkaline carbonates, potassium iodide, albumen and many other substances, and should therefore be prescribed alone. It is decomposed by impure water, and distilled water is therefore used in making the Liquor Hydrangyri Perchloridi, in which form it is usually prescribed. This contains half a grain of the perchloride to the fluid ounce and its dose ls $30-60$ minims. The perchloride is also compounded with lime-water to form the Lotio Hydrargyti Flava, or "yellow wash," which contains two grains of the salt to the fluid ounce. Mercuric iodide is an equally potent salt and has come into wide use of late years. It has the same dose as the perchloride and is largely prescribed in the Liquor Arsenii et Hydrargyri Iodidi, or Donovan's solution, which contains I \% of arsenious iodide and I \% of mercuric iodide, the dose being 5-20 minims. An ointment widcly used is prepared from the mercurammonium chloride (Unguen tum Hydrargyri ammoniatum) of which it containg one part in ten. It is known as " white precipitate oint ment.

In discussing the pharmacology of mercury and its compounda, it is of the first importance to observe that metallic mercury is inert as such, and that the sime miy practically be said of mercurous anlis generally: Hoth mercury itself and mercurous salts tend to be converted in the body into mercuric salte, to which the action is due. When metallic mercury is triturated or exposed to air it is partly oxidized, the first stage of its transformation to an active condition being thus reached.

Netallic mercury can be absorbed by the skin, passing in minute globules throush the ducts of the sweat-glands. The mercury contained in "blue ointment" is certainly thus abeorbed, actually citculating in the blood in a very different form. as described below. Thete is no local action on the skin. The mercuric salts, and especially the chloride and indide, are probably the most powerful of all Erobis suistpics. Uuc part of the perchloride in 300,000 will prevent the growth of anthrax bacilli, and one part in 2000-the strength commoniy employed in surgery-kills all known bacteria. The action is apparently specific and not due to the fact that per. chloride of mercury precipitates albumen, including the albuminous bodies of bacteria, for the iodide is stili more powerfut as a germicide. though it doas not coagulate alburmen. These salts cannot be employed for sterilixing metaliic instruments, which they tarniah. As these drugs are essentially poisons they must be used with the greatest care in surgical practice, and as they are particularly deleterious to the secreting structure of the kidney they must not be employed as antiseptics in diseage where renal inflammation is already present or probable. They are therefore contra-indicated for application to the throat in scarlet-fever or to the uterus in eclampsia. The stronger mercurial ointments kill cutaneous parasitcs and also possess some degree of antipruritic action, especially when the cause of the itching is somewhat obscure. Merceric salto, when in st rong solution, are caustic. It is important to observe that the volatility of metallic mercury and many of its compounds causcs their absorption by the lungs even when no such effect is intended to follow their external application. This fact expiaina the occurrence of chronic mercurial poisoning in certain trades.

Single dowes of saercury or its compounds have no action upon the mouth, the characteristic salivation being produced only alter many doses. Their typicai action on the bowel is purgative, the effect varying with the state of the mercury. So relatively inert is metallic mercury. that a pound of it has been givep without ill effects in cases of intestinaf obstruction, which it was hoped to relieve by the mere weight of the metal. Half a grain of the perchloride, on the other hand, is a highly toxic dose. The action of mercuriats on the bowel is mostly exerted on the duodenum and jejunum, though the lower part of the bowel is alightly affected. Hence $\frac{1}{2}$ dose of mercory manally meeda a maline aperient to complete its action, as in the , blue pill and black draught of former days. Mercurials do not cause, in therapeutic doses, much increase in the intestimal secretion, the action being mainiy exerted on the muscular will of the bowel. The bile is rapidly removed from the duodenum, before any mabencption can occur, and the bacterial sction whish
decomposes the bile-pigment is arrested by the antiseptic power of the drug, 10 that the excreta are of a very dark colour. The classical experiments of William Rutherford (1839-1899), of Edinburgh. thowed that calomel does not increase the amount of bile formed by the liver. Corrosive sublimate does, however, stimulate the Ever to a slight degree. The value of calomel in hepatic torpor is as an excretory, not a secretory, cholagogue, the gall-bladder being scimulated to expel its atagnant contents. In large doses mercurials somewhat diminish the secretion of bile. The greater part of the mercury administered by the mouth, in whatever form, is excreted as mercuric sulphide. Prior to this decomposition the mercury exists as a complex soluble compound with sodium, chlorine and albumen. When perchloride of mercury is injected subcutaneously the sodium chloride in the blood similarly prevente the precipitation of the albuminate of mercury, and it is therefore desirable to add a little sodium chloride to the solution for injection of mercuric chloride.
Some observers assert that mereury is a haematinic increasing, hike iron. the amount of hacmoglobin in the blood. Whilst this is doubtiful it is certain that large doses, when continued, produce marked anaemia. The excretion of the drug is accompliahed by all the secreting glands, including the breasts, if these are functioning. All the secretions of the body, except that of the peptic glands of the stomach, are stimulated, but the excretion of mereury is slow, and it is typically one of the druge that are cumulative, like arsenic and digitalia.

Mercury is largely used in affections of the alimentary canal, and has an obscure but unquestionabie value in many cases of heartdisease and arterial degencration. But its value in syphilis (see Vemereal. Diseases) faroutweighs all its other uses.
Taxicology.-Acute poisoning by mercurals usualiy occurs in the case of corrosive sublimate. There is intense gastro-iatestinai inflammation, with vomiting, frequent "rice-water" stoofs and extreme collapse. The treatment, except when the case is seen at once, is very difficuit, but white-of-cgg or other form of albumen is the antidote, forming an insoluble compound with the perchloride. Chronic poisoning (hydrargyrism or mercurialiam) is of great importance, since any indication of its symptoms must be closcly watched for'in patients who are under mercurial treatment. Usually the first symptom is slight tenderness of the teeth whilst cating, and some foetor of the breath. These symptoms become more marked and the gums become the seat of severe inflammation, being spongy, vascular and prone to bleed. The salivary plands are swollen and render, and the saliva pours from tbe mouth, and may amount to pints in the course of a day. The teeth become quite ioose and may fall ont. The symptoms are aggravated until the tongue and mouth ulcerate, the jaw-bone necroses, hacmorrhagea occur in various parts of the body, and the patient dies of anaemia, septic inflammation or exhaustion. The treatment consists. besides stopping the intake of poison and relieving the symptoms, in the administration of potaksium iodide in small, often repeated doses.
Bipliography.-For the bistory of mercury soe B. Neumann, Die Melaltle (1904); A. Rossing, Geschichle der Metalle (1901). The general chemistry is treated in detail in O. Dammer, Handbuch der anorganischen Chemie, and H. Moissan, Traide de ckimie minérate. For the metallurgy reference may be made to Carl Schnabel, Handbook of Meiallurgy, vol. ii. (1906), transhated by H. Louis.
mercy (or Merci), franz, Frelherr von, lord of Mandre and Collenburg (d. 1645), German general in the Thirty Years' War, who came of a noble family of Lorraine, was born at Longwy between 1590 and 1598 . From 1606 to 1630 he was engaged in the imperial service. By the latter year he had attained high military rank, and after distinguishing himself at the first battle of Breitenfeld (1631) he commanded a regiment of foot on the Rhine and defended Rheinfelden against the Swedes with the utmost bravery, surrendering only after enduring a five-months' siege. He now became a general officer of cavalry (General-Feldwachimeaster), and in 1635, 1636 and 1637 teok part in further campaigns on the Rhine and Doubs. In September 1638 he was made master-general of ordnance in the army of Bavaria, then the second largest army in Germany. In the next campaign he was practically commander-in-chief of the Bavarians, and at times also of an allied army of Imperialists and Bavarians. He was now considered one of the foremost soldiers in Europe, and was made general field marshal in 1643, when he won his great victory over the French marshal Rantzau at Tutulingen (Nov. 24-25), capturing the marshal and seven thousand men. In the following year Mercy opposed the French armies, now under the duke of Enghien (afterwards the great Condé) and the vicomte de Turenne. He fought, and in the end lost, the desperate batile of Freiburg, but revenged himself next year by inflicting upon Turente the defeat of Mergentheim (Marienthal). Later in 1645 , fighting once more againsi Enghien and Turenne, Mercy was killed at the hattle of Nördlingen (or

Allerheim) at the crisis of the engagement, which, even whhout Mency's guiding hand, was almost a drawn bettle. He died on the 3rd of August 1645. On the apot where he fell, Enghien eroctod a memorial, with the inscription Sla viafor, herocm calcas.

His grandnephew Clauprus Florimond, Count Mercy de Vrieses ($1666-1734$), Imperial field marshal, son of his brother Kaspar, who fell at Freiburg, was born in Lorraine, and entered the Austrian army as a volunteer in 1682 . He won his commission at the great bettle of Vienna in the following year; and during seven years of campaigning in Hungary rose to the rank of Rittmeister. A wound gustained al this time permanently injured his sight. For five years more, up to 1697, he was employed in the Italian campaigns, then he was called back to Hungary by Prince Eugine and won on the field of Zenta two grades of promotion. He displayed great daring in the first campaigns of the Spanish Succession War in Italy, twice fell into the hands of the enemy in fights at close quarters and for his conduct at the surprise of Cremona (Jan. 31 , 1702) received the emperor's thanks and the proprietary colonelcy of a newly raised cuirassier regiment. With this he took part in the Rhine campaign of 1703, and the battle of Friedlingen, and his success as an intrepid leader of raids and forays became well known to friend and foe. He was on that account selected early in 1704 to harry the elector of Bavaria's dominions. He was 3000 efterwards promoted General-Foldnochimeister, in which rank he was engaged in the battle of the Schellenberg (July 2, 1704). In the rest of the war he was often distinguished by his fiery couraga. He rose to be general of cavnlry in the course of these ten years. His resolute leadership was conspicuous at the battle of Peterwardein (1716) and he was soon afterwards made commander of the Banat of Ternesvar. At the great battle of Belgrade (1717) he led the scoond line of left wing cavalry in a brilliant and decisive charge which drove the Turks to their trenches. After the peace he resumed the administration of the Banat, which after more than iso years ol Turkish rule needed 2 humane and capable governor. But before his work was done he was once more called away to a command in the field, this time in southern Italy, where he fought the battle of Francavilla (June 20, 1719), took Messina and besieged Palermo. For eleven years more he administered the Banat, reorganizing the country as a prosperous and civilized community. In 1734 he was made a general fieid marshal in the army, but on the 29th of June was killed at the batule of Parma while personally leading his troops. He left no childien, and bis name passed to Count Argenteau, from whom came the family of Mercy-Argenteau (see below).
meRCI (adapted from Fr. merci, Lat. merces, reward), compassion, pardon, pity or forgiveness. The Latin word was used in the carly Christian ages lor the reward tbat is given in heaven to those who have shown kindness without hope of return. The French word, except in such phrases as Dicu merci, sars merci, is principally used in the sense of "thanks," and is seen in the old English expression "gramercy," i.e. grant merci. great, many thanks, which Johnson took for "grant me mercy." In the medie val Church there were seven " corporal " and seven "spiritual works of mercy" (opere misericordiac); these were (a) the giving of food to the hungry and drink to the thirsty, the clothing of the naked, the visitation of the sick and of prisoners, the receiving of strangers, and the burial of the dead; (b) the conversion of sinners, teaching of the ignorant, giving of counsel to the doubtful, forgiveness of injuries, patience under wrong, prayer for the living and for the dead. The order of the Sisters of Mercy is a religious sisterhood of the Roman Church. It is found chiefly in England and Ircland, but there are branches in the United States of Amcrica, in South America and in Australia and New Zcaland. It was founded in 1827 in Dublin by Miss Catherine McAuley (1787-1841). The object was to perform the corporal and spiritual works of mercy.

MERCY-ARGENTEAU, FLORIMOND CLAUDB, COYTE DE (1727-1794), Austrian diplomatist, son of Antoine, comte de Mercy-Argenteau, entered the diplomatic scrvice of Austria, going to Paris in the train of Prince Kaunitz. He became

Austrian minister at Turis, at St Petersburg, and in 1766 at Paris, where his frat work was to strengthen the alliance between France and Austria, which was cemented in 1770 by the marriage of the dauphin, afterwards Louis XVI., with Marie Antoinetre, daughter of the empress Maria Theresa. When four years later Louis and Marie Antoinette ascended the throne, Mercy-Argenteau became one of the most powerful personages at the French court. He was in Paris during the urbulent years which beralded the Revolution, and his powerful aid was given first to Lomenie de Brienne, and then to Necker. In 1792 be became governor-general of the Belgian provinces, which had just been roduced to obedience by Austria, and here bis ahility and experience made him a very successful ruler. Although at first in favour of moderate courses, Mercy-Argenteau supported the action of Austria in making war upon bis former ally after the outbreat of the Revolution, and In July 1794 he was appointed Austrian ambassador to Great Britain, but he died a few days after bis arrival in London.

See T. Juste, Le Comte de Mercy-Argentean (Brutsels 1863); A. von Arneth and A. Geofiroy, Correspondances secrèles de Marse Theresse apec Le comte de Mercy '(Paris 1874); and A. von Arneth and J. Flammermont, Correspondance secrèle de Mercy avec Joseph II. at Kamntz (Paris 1889-1891). Mercy-Argenteau's Correspondamres secrites de Marve Thercse has been condensed and translated into English by Lilian Smythe under the title of A Guardian of Maric Anlotnette (2 vols. London 1902).

MERE. 1. (From Lat. merus, pure, unmixed; O. Fr. mier), an adjective primarily indicating something pure and unmixed; thus "mere wine" implied pure and unadulterated wine, as " mere foily " expressed folly pure and simple. Modern usage has, bowever, given both to the adjective "mere" and the adverb " merely" a deprecatory and disparaging idea, so that expressions like " the mere truth," a " mere statement of fact," \&c., often convey the impression that they are far from being " mere" in the sense of "entire" or "absolute," but are, on the contrary, fragmentary and incomplete. The earlier idea of the word is retained in some legal phrases, especially in the phrase " mere motion," that is, of one's own initiative without help or suggestion from the outside. Another legal phrase is "mere right " (law Latin jus merum), i.e. right without possession.
2. A word which appears in various forms in several Teutonic and other languages; ci. Dutch and Ger. Mcer. From the cognate Lat. mare are derived the Romanic forms, e.g. Fr. mer, Span. mar, \&c.; the word appears also in the derivative " marsh" for "marish"; the ultimate origin has been taken to be an IndoEuropean root, meaning "to die," i.e. to lie waste; cf. Sansk. marw, desert), an arm of the sea or estuary; also the name given to lakes, pools and shallow stretches of water inland. In the Fen countries a mere signifies a marsh or a district nearly always under water.
3. (Derived from an O. Eng. source, maere, a wall or boundary; cognate with Lat. murus, a wall), landmark or boundary, also an object indicating the extent of a property without actually enclosing it. A special meaning is that of a road, which forms a dividing line between two places. A "meresman" is an official appointed by parochual authorities to ascertain the exact boundaries of a parish and to report upon the condition of the roads, bridges, waterways, \&c., within them. In the mining districts of Derbyshire a mere is a certain measurement of land in which lead-ore is found.
MEREDITH, GEORGE (1828-1909), British novelist and poet, was horn at Portsmouth, Hampshire, on the 12 th of February 1828; the parish church register records bis baptism on the oth of April. About his early life few details are recorded, but there is a good deal of quasi-autobiography, derived apparently from early associations and possibly antipathies, in some of his own novels, notably Enon Harrington and Harry Ruchmond, as to which the judicious may speculate. He had, as he used to boast, both Welsh (from his father) and Irish blood (from his mother) in his veins. His father, August us Armstrong Mereditb, was a naval outfitter at Portsmouth (mentioned as such in Marryat's Peter Simple), and his grandfather, Melchisedek Meredith, clearly suggested the "Old Mel "of Eirm

Harrington. Melchisedet was 35 swen in 1796 he was initiated as a freemason at Portsmouth, and he appears to have beed known locally as "the count," because of a romantic story as to an adventure be once had as Bath; he was churchwarden in 1801 and 1804; and some of the church plate still bears his name.

Meredith's mother died when he was three years old, and he was made a ward in chancery. He was sent to school at Neuwied on the Rhine, and remained in Germany till he was sixteen. During these impressionable years he imbibed a good deal of the German spirit; and German influence, especially through the media of poetry and music, can often be traced in the cast of his thought and sentiment, as well as in some of the intricacies of his literary style. Returning to England he was at first articled to a solicitor in London, but he bad little inclination for the law, and soon abandoned it for the more congenial sphere of letters, of which he had become an eager student. At the age of twenty-one he began to contribute poetry to the maga. sines, and be eked out a livelihood for some years by journalism, Ior the Daily News and other London papers, and for the I pswich Journal, for which he wrote leaders; a certain number of his more chargcteristic fugitive writings are collected in the memorial edition of his works (1910). In London he became one of the leading spirits in the group of young philosophical and positivistic Radicals, among whom were John (afterwards Lord) Morley, Frederic Harrison, Cotter Morison and Admiral Maxse. But during the ycars when he was producing his finest novels he was practically unknown to the public. In 1849 he married Mrs Nicholls, daughter of Thomas Love Peacock, the novelist, a widow, eight years his senior, whose husband had been accidentally drowned a few months after her first marriage (1844), and who had one child, a daughter; but their married life was broken by separation; she died in 1861, and in 1864 Meredith married Miss Vuiliamy, by whom he had a son and daughter. His second wife died in 1885 . Up to that time there is little to record in the incidents of his life; he had not been "discovered" except by an "honourable minority" of readers and critics. It must suffice to note that during the Austro-Italian War of 1866 he acted as special correspondent for the Morning Posf; and though he saw no actual fighting, he enjoyed, particularly at Venice, opportunities for a study of the Italian people which he turned 10 account in several of his novels. Towards the close of 1867, when his friend John Morley paid a visit to America, Meredith undertook in his absence the editorship of the Fortnightly Reaicw for Messrs Chapman \& Hall. They were not only the publishers of his books, but he acted for many years as their literary adviser, in which capacity he left a reputation for being not only eminently wise in bis selection of the books to be publisher, but both critical and encouraging to authors of promise whose works he found himself obliged to reject. Thomas Hardy and George Gissing were among those who expressed their grateful sense of hia assistance. He was indeed one of the last of the old school of "publishers' readers." In his early married life he lived near Weybridge, and later at Copsham between Esher and Leatherhead, while soon after his second marriage be settled at Flint Cottage, Mickleham، near Dorking, where he remained for the rest of his life.

Meredith's first appearance in print was in the character of a poet, and his first published poem "Chillian Wallah," may be found in Chambers's Journal for the 7th of July 1849 . Two years later he put forth a small volume of Paems (1851), which was at least fortunate in ellciting the praise of two judges whosc opinion was of the first importance to a beginner. Tennyson was at once struck by the individual flavour of the verse, and declared of one poem, "Love in the Valley," that he could not get the lines out of his head. Charles Kingsley's eulogy was at once more public and more particular. In Fraser's Magazine he suhjected the volume to careful consideration, praising it for richness and quaintness of tone that reminded him of Herrick, for completeness and coherence in each separate poem, and for the animating sweetness and health of the gencral atmosphere. At the same time he censured the laxity of rythm, the occasional lack of polliah, and the tendency to
overiond the description with objective details to the confusion of the principal effect. No doubt as a result of Kingsay's introduction, two poems by Meredith appeared in Fraser's Magasine shortly afterwards; but with the exception of these, and a sonnet in the Leader, he did not publish anything for the next five years. In the meanwhile he was husy upon his first essay in prose fiction. It was early in 8856 that the Shaving of Skagpat, a work of singular imagination, bumour and romance, made its appearance. Modelled upon the stories of the Arabian Nights, it catches witb wonderful ardour the magical atmospbere of Orientalism, and in this genre it remains a unique triumph in modern letters. Though unappreciated by the multitude, its genius was at once recognized by such contemporaries as George Eliot and Dante Gabriel Rosecti, the latter of whom was one of Merediah's intimate friends. For his next story it occurred to Meredith to turn his familiarity with the life and legendary tradition of the Rhinelander into a sort of imitation of the grotesquerie of the German romanticists, and in 1857 be put forth Farina, a Legend of Cologne, which sought to transfer to English sympathies the spirit of German romance in the same way that Skagpal had handled Oriental fairy-lore. The result was less successful. The plot of Farina lacks fibre, its motive is insufficient, and the diverse elements of humour, serious narrative, and romance scarcely stand in proportion to one another: But the Ordeal of Richard Feverd, which followed in 8859 , transierred Meredith at pnce to a new sphere and to the altitude of his accomplishment. With this novel Meredith deserted the realm of fancy for that of the philosophical and psychological study of human nature, and Richard Fenerel was the first, as it is perhaps the favourite, of those wonderful sludies of motive and action which placed him among the demigods of English literature. The essential theme of this fine criticism of life is the question of a boy's education. It depicts the abortive attempt of a proud and opinionated father, hide-bound by theory and precept, to bring up his son to a perfect state of manhood through a "system" which controls all his early circumstances and represses many of the natural and wholesome instincts and impulses of adolescence. The love scenes in Richard Feverd are gloriously natural and full of vitality, and the book throughout marked a revolution in the English treatment of manly passion. Those who have not read this novel In the original form, with the chapters which were afterwards omitted, have lost, bowever, the key to meny passages in the story. In the following year Meredith contributed to Once a Weck, and in 1861 published as a book the second of his novels of modern life. Enan Harrington, originally with the sub-tite "He Would be a Gentleman "-in allusiod to the hero being the son of "Old Mel," the tailorwhich contains a ricbly humorous-in its unrevised form, splendidly farcical-plot, with some magnificent studies of character. Afterwards revised, a certain amount of the farcical element was cut out, with the result that, considered as comedy, it has weak spots; but the Countess de Saldar remains a genuine creation. A year later he produced his finest volume of poems, entitled Modorn Lone, und Poems of the English Roudsidc, widk Poems and Ballads. An attack upon the dramatic poem which gives the volume its title appcared in the Spectator, and is memorable for the fact that Meredith's friend, the poet Swinburne, with one of his characteristically generous impulses, replied (Spectiolor, June 7, 1862) in a spirit of fervent eulogy. Some of the individual "sonnets" (of sixteen lines) into which Modern Love is divided are certainly wort hy of being ranked with the most subtle and most intense poetic work of the roth century.

Returning to fiction, Meredith next published Emilia in England (1864), afterwards renamed Sandra Belloni. His powerful story Rhoda Flcining (1865) followed soon afterwards. Vittoria, published in the Forthighly Revicu in 1866, and in book form in 1867, is a sequel to Emilia in England. Four years later appeared The Advertures of Harry Richmond in the pages of Cornhill ($1870-1871$). Its successor was Beanchaimp's Career (Forinighly Revicw, 1874-1875), the novel which Meredith usually described as his own favourite. Its hero's character is supposed
to have been founded upon that of Adriral Masse. Somdra Belloni, Rhoda Flewing, Vittoria and Beawchomp are all masterpieces of bis finest period, rich in incident, character and workmanship. "Tbe House on the Beach" and "The Case of General Opie and Lady Camper" (New Quarterly Magoziue, 1877) were slight but glittering exercises in comedy; the next important novel was The Egoisf (1879), which shows an increase in Meredith's twietedness of literary style and is admittedly hard to read for those who merely want a " story," but which for concentrated analysia and the real drama of the human spirit is an astounding production. In an interesting series of lectures which Meredith delivered at the London Institution in 1877 his main thesis was that a man without a sense of comedy is dead to the finer isaues of the spirit, and the conception of Sir Willoughby Patterne, the central figure of The Egoish, is an embodiment of this ides in the flesh. The Tragic Comedians (1880), the next of Meredith's novels, alighter in texture than bis others, combines the spirits of comedy and tragedy in the story of the life of Ferdinand Lassalle, the German Socialist. The appearance of Diand of the Crossways (1885), a brilliant book, full of his ripest character-drawing, though here and there tormenting the easual reader by the novelist's mannerisms of expression, marks an epoch in Meredith's carcer, since it was tho first of his stories to strike the general public. Its heroine was popularly identified with Sheridan's granddaughter, Mirs Norton, and the use made in it of the contemporary story of that ledy's communication to The Times of the cabinet secret of Peel's conversion to Free Trade had the effect of producing explicit evidence of its inaccuracy from Lord Dufferin and others. As a matter of historical fact it was Lord Aberdeen who himself gave Delane the information, but the popular acceptance of the other version of the incident gave a factitious interest to the novel.

Meanwhile furtber instalments of poems-Poems and Lyrics of the Joy of Earth (1883)-had struck anew the full, rich note of natural realism which is Meredith's chief poetic characteristic. "The Woods of Westermain," in particular, has a sense of the mysterious communion of man with nature unapproeched by any English poets asve Wordsworth and Shelley. Ballads and Poems of Tragic Life (1887) and A Reading of Earth (1888) gave further evidence of the wealth of thought and vigour of expression which Meredith hrought to the making of verse. To "the general," no doubt, Meredith's verse is prohibitive, or nearly so-for, after all, he has written some poems, like "Marin's Puzzle," "The Old Chartist," and "Juggling Jerry," which anybody can read with ease. But bis most characteristic style in verse is so concentrated that any one accustomed to "straightforward" writing, and unwilling to read with the mind rather than with the eye, must needs, to his loss, be put off. His readers, of the verse even more than of the prose, must be prepared to meet him on a common intellectual footing. When once that is granted, however, the music and magic of such poems as "Seed-time," "Hard Weather," "The Thrush in February," "The South-Wester," "The Lark Ascending," "Love in the Valley," "Melampus," "A Faith on Trial," are very real. amid all their occasional obscurities of diction.

Meredith had now completed his sixtieth year, and with his advancing years the angles of his individuality began to grow sharper, while the difficulties of his style became accentuated. The increase in mannerism was marked in One of Our Conquerors (189r), otherwise magnificent rendering of a theme fuli of both tragedy and comedy, and in the poom of "The Emply Purse" (1892). Neither Lord Ormont and His Aminta (1894) nor The Amazing Marriage (1895) reached the level of the earlier novels, though in the latter he seemed to catch an aftergiow of genius. In 1808 appeared his Odes in Cóntribution to the Song of Frewch History, consisting of one ode ("France, December $1870^{\prime \prime}$) reprinted from Ballods and Poems (1871), and three others previously unpublished, a fine example of his lofty thought, and magnificent-if often difficult-and individual diction. In igot another volume of verse, 4 Readiag
of Life, appeared. In later years too he contributed occasional poems to newspapers and reviews and similar publications, which were collected after his death (Last Poems, 1910). His comedy, The Sentimentulists, was performed on the ist of March 1910; his carly but unfinished novel, Cell and Saxon, was also posthumously published in that summer.

From the early 'nineties onward Meredith's fame had been firmly established. His owa literary contemporaries still living could join hands with the younger generation of enthusiastic admirers in insisting on a greatness of which they themselves had been unable to persuade the public. He was chosen to succeed Tennyson as president of the Authors' Socicty; on his seventicth birthday (1808) he was presented with a congratulatory address by thirty of the most prominent men of letters of the day; before he died he had been included by the king in the Order of Merit; and in various other ways his position as the chicf living English writer had come to be populariy recognized. The critics discussed him; and new editions of his books (both prose and verse), for which there had long been but scanty demand, were called for. One of the results was that Meredith, with very doubtful wisdom, recast some of his carlier novels; and in the sumptuous "authorized edition" of 1897 (published hy the firm of Constable, of whith his son, William Maxse Meredith, was a member) very large alterations are made in some of then. In fact, a reader who compares the first and last editions either of Richard Feverel or Evan Harrington will notice changes little short of revolutionary. Even in the previously current editions of 1878 onwards, published by Chapman \& Hall, Richard Feoerel had been considerably shortened as compared with the original three-volume edition; hut it was now robbed again of some of its best-known passages. It is no doubt competent to an author himself to revise his earlier published work even to the extent to which Meredith in the 1897 edition revised these novels; but certainly it is not necessary to accept his judgment when this involves the excision in old age of some of the most virile passages of books that were written in the full glow and vigour of his prime. In Constable's memorial edition (1910) of his complete works the excisions were pullished separately, and are therefore on record for those to consult who care. But the wise will read Richard Feverel and Evan Horrington in the original versions.
Meredith's litecary quality must always be considered in the light of the Celtic side of his temperament and the peculiarities of his mental equipment. His nature was intuitive rather than ratiocinative; his mental processes were abrupt and farreaching; and the suppression of connecting associations frequently gives his language, as it gave Browning's but even to a greater extent, the air of an impenetrably nebulous obscurity. This criticism applies mainly to his verse, but is also iruc of his prose in inany places, though there is much exaggeration about the difficulties of his novels. When once, however, his manner has been properly understood, it is seen to be inseparable from his method of intellection, and to add to the narrative of description both vividness of delineation and intensity of realization. The essential respect in which Meredith's method of describing action and emotion in narrative differs from that of convention is that, while the ordinary method is to relate what happens irom the point of view of the onlooker, Meredith frequently describes it from the point of emotion of the actor; and his influence in this direction has largely modified the ant of fiction. Hercin iies the secret of the peculiar brilliancy of his style, derived from his combination of the narrator with the creator, or-in its strict sense-the seer. The reader, by the transference of the interest from the audience to the slage, is transported into the very soul of the character, and made to feel as he feels and act as he acts. Moreover, Meredith's instinct for psychology is so intimate, and his sense of motive and action so true, that the interaction of character and character directly dominates the sequence of events depicted in his imaginary world, and disclases the moral idea or Eriticism of life, instead of the preconceived "moral" being merely illustrated by the plot. In building up the minds, actions,
creeds, and tragedies or comedies of his imaginary personalities amid the selected circumstances, and inspiring them with the identical motives and educational influences of life itself. Meredith spent an elaboration and profundity of thought and an originality and vigour of analysis upon his novels which in expicitness go far beyond what had previously been attempted in fiction, and which give to his works a philosophical value of no ordinary kind. Simplicity can scarcely be expected of his language, for the interplay of ideas is in itself original and complex, and their interpretation is necessarily original and complex too. But when Meredith is at his best he is only involved with the involution of his subject; the aphorisms that decorate his style are simple when the idea they convey is simple, elaborate only in its elaboration. Pregnant, vividly graphic, capable of infinite shades and gradations, his style is a much finer and subtler instrument than at first appears, and must be judged finally by what it conveys to the mind, and not by its superficial sound upon the conventional ear. It owes something to Jean Paul Riciter; something, 100 , to Carlyle, with whose methods of narrative and indebtedness to the apparatus of German metaphysics it has a good deal in common. To the novelist Richardson, too, a careful reader will find that Meredith, both in manner and matter (notably in The Egoist and in Richard Feverel), owes a good deal; in "Mrs Grandison" in Richard Fetcrel he even recalls "Sir Charles Grandison" by name; and nobody can doubit that Sir Willoughby Patterne, both in idea and often in expression, was modelled on Richardson's creation. Careful students of the early 1gth-century English novel will find curious echoes again in Meredith of Bulwer-Lyton's (Baron Lytton's) literary manner and romantic outlook.' But he was, after all, an originator, and at first suffered in estimation on that score; he wrote in his own way, and what is most characteristic in Meredith remains individual. Like ail the great masters, he has his own tone of voice, his own fashion of expressing an idea. Feeling, perception, reflection, judgment, have equal shares in determining his arehitectonic refation to a prohlem or a situation. He rings changes on the changing emotions of humanily, but every chime rings true. He is a literary artist. He takes great themes, not little ones; the characters in his fiction are personalities, human beings, neither "heroes" nor "sports"; and he does not descend to pander to lubricity or cater for the "reading public." His gallery of portraits of real human women, not dolls, would alone place him among the few creators in English literalure.

It is beyond our scope here to enter into details concerning the philosophy which represents Meredith's "criticism of life." Broadly speaking, it is a belief in the rightness and wholesomeness of Nature, when Nature-" Sacred Reality"-is lovingly and faithfully and trustfully sought and known by the pure use of reason. Man must be "obedient to Nature, not her slave." Mystical as this philosophy occasionally becomes, it is yet an inspiring one, clean, austere and practical; and it. is aiways dominated by the categorical imperative of self-knowledge and the striving after honesty of purpose and thought. A strong vein of political Radicalism runs through Meredith's creed. It is, however, a Radicalism allied to that of the French philosophes, rather than to the contemporary developments of Brilish party politics, though in later life he gave his open support to the Liberal party. In spite of his German upbringing Meredith was always strongly French in his sympathies, and his appreciation of French character at its best and at its worst is fincly shown in his Napoleon odes. In the main his politics may be summed up as a striving after liberty for reason and conscience and the constant progress of humanity-

> The cry of the conscience of life; Kect the young generotions in hail, And bequeath them no twmbled hows.

[^12]It is part of Meredith's philosophy-and this must be remembered in considering his diction-that verbal expression is itsedf a test of right thought and action. Hence is derived his passion for verbal analysis. Hence also his impulse towards and vindication of poelry-meaning still "the best words in the beat order "; and hence his own dictum, otherwise perhaps hard to undiecerning minds, that Song itself is the test by which truth may be tried. The paseage occurs in "The Emply Purse "-a poem which throughout is a careful though mannered exposition of Meredith's general views on life-

Ask of thyself: This furious Yea
Of a speech I thump to repeat,
In the cause I would have prevail,
For seed of a nourishing wheat.
Is it accepted of Song?
Does it sound to the mind through the car,
Right sober, pure sane? has it disciplined ieat?
Thou wilt find it a test severe;
Unerring whatever the theme.
Rings it for Reason a melody clear,
We have bidden old Chaos retreat,
We have called on Creation to hrar:
All forces that make us are one full stream.
Meredith is genctally ranked far less high as a poet than as a novelist. But he can only be understood and appreciated properly by those who realize that not prose (in the ordinary sense) but poetry was to him the highest form of expression, and that only in it could he fully deliver his message, as a writer who aspired to contribute something more to the common stock of ideas than could be embodied dramalically in prose fiction.

On Meredith's 80th birthday in 1908, the homage of the English fiterary world was again paid in an address of congratulation. But his heaith, which for many years had been precarious, was now failing. He died at Flint Cottage, Box Hill, Surrey, on the 18 th of May 1909. A strong feeling existed that he should be buried in Westminster Abbey, and a petition to that effect, which was approved by the prime minister, Mr Asquith, was signed by a large number of men of letters. But this was not to be. A memorial service was held in the abbey, but Meredith's own remains, after cremation, were interred at Dorking by the grave of his second wife. He had died only a brief span after his old friend Swinburne, his affection for whom had never suffered abatement, and it was felt that, with them, a great epoch in English literary history had closed. They were the last of the great Victorians; and in Meredith went the writer who had raised the creative aft of the novel, as a vehicle of character and constructive philosophy, to its highest point-a point higher indeed than most contemporary readers were prepared for. The estimate of his genius formed by " an honourable minority," who would place him in the highest class of all, hy Shakespeare, has yet to be confirmed by the wider suffrage of posterity.

A carefully compiled tibliography by John Lane was included in George Wercdith: Some Characterishics, by R. Le Gallienne (1890). This sympathetic essay in criticism was the first substantial publication addressed to that stimulation of a wider appreciation of Meredith which was carried on by several later books, perhaps the best of Wich is M. Sturge Henderson's George Merrdith: Novelist Poet, Reformer (1908); but such carlier testimenies to Meredith's importance as Justin McCarthy's, in his Ilistory of Owr Own Times, must not be forgotten. Sce also J. A. Iliammerton, George Mercdith in Anectotrs and Criticismt (!gog).

MEREJKOVSKY (or MEREZHKovSkIY), DMITRI SERGYEBVICH (r865-), Russian novelist and critic, was born at St Petersburg in 1865 . His trilogy of historical romances, collectively entitled Christ and Anfichrist, has been translated into many European languages, notably English and French. It comprises Smert Bogov (Eng. trans. "The Death of the Gods," London, 1901), the central figure in which is Julian the Apostate; Voskresenic Bogi ("The Forerunner," London, 1902), which describes the life and times of Leonardo da Vinci; and Antikhrist: Petr i Alcksyey ("Peter and Alexis," London, 1905), which is based on the tragic story of the relations between Peter the Great and his son. The influence of Sienkicwicz can be traced in many of Merejkovsky's writings, which include
critical sludies of Pliny the Younger, Caldeton, Montaigne, Ibsen, Tolstoy (Tolstoy as Mom and Artist, London, 1gon), and of Gorki and other Russian writers., Merejkovsky married Zinaida Nikolaevna, known In Russia for her poems, essays and short stories written under the pseudonym of Zinaida Hippius (or Gippius); her collected poerns (1880-1903) were published in Moscow In 1904.

MERES, FRANCIS ($\mathbf{1 5 6 5 - 1 6 4 7 \text {), English divine and author, }}$ was bom at Kirton in the Hofland division of Lincolnshire in 1565 . He was educated at Pembroke College, Cambridge, where he graduated B.A. in 1587, and M.A. in 1591 . Two years later he was incorporated M.A. of Oxiord. His kinsman, John Meres, was high sheriff of Lincolnshire in 1506, and apparently helped him in the eariy part of his career. In 1602 he became rector of Wing in Rutland, where he had a school. He died on the 2gth of January 1647. Meres readered immense service to the history of Elizabethan literature by the publication of his Palladis Tomia, Wils Treasury (1598). It was one of a series of volumes of short pithy sayings, the first of which was Politeuphuia: Wits Commonweallh (1597), compiled by John Bodenham or by Nicholas Ling, the publisher. The Polladis Tamia contained moral and critical reflections borrowed from various sources, and embraced sections on books, on philosophy, on music and painting, and a famous "Comparative Discourse of our English poets with the Greeke, Latin, and Itatian poets." This chapter enumerates the English poets from Chaucer to Meres's own day. and in each case a comparison with some classical author is Instituted. The book was issued in 1634 as a school book, and has been partially reprinted in the Ancient Crifical Essays (1815-1815) of Joseph Haslewood, Professor F. Arber's English Garmer, and Gregory Smith's Elisabelhan Crilical Essays (1904). A sermon entitled Gods Arilhmelicke (1597), and two transtations from the Spanish of Luis de Granada enlitied Granedos Devotion and the Sixners Guide (1598) complete the list of his works.

MERGANSBR, a word due to C. Gesner (Hist. animalium iii. 129) in 1555, and for fong used in English as the general name for a group of fish-eating ducks possessing great diving powers, and forming the genus Mergus of Linnaeus, now regarded by ornithologists as a sub-family, Merginae, of the fa mily A nafidae. The mergansers have a long, narrow bill, with a smali but evident hook at the tip, and the edges of both mandibles beset by numerous horny denticulations, whence in English the name of "saw-bill" is frequently applied to them. Otherwise their struct ure does not much depart from the Anatine or Fuliguline type. All the species bear a more or less developed crest or tuft on the head. Three of them, Margus merganser or castor, M. serrator, and M. albellus, are found over the northern parts of the Old World, and of these the first two also inhabit North America, which has besides a fourth species, M. cicullatks, said to have occasionally visited Britain. M. merganser, commonly known as the goosander, is the largest species, being nearly as big as the smaller gecse, and the adult male in breeding. attire is a very beautiful bird, conspicuous with his dark glossygreen head, rich salmon-coloured breast, and the upper part of the body and wings black and white. This full plumage is not assumed till the second year, and in the meantime, as well as in the post-nuptial dress, the male much resembles the femaje, having, like her, a reddish-brown head, the upper parts grey and the lower white. In this condition the bird is often known as the "dun diver." This species breeds abundantly in many parts of Scandinavia, Russia, Siberia and North America, and occasionally in Scotland. M. serrator, commonly called the red-hreasted merganser, is a somewhat smaller bird; and, while the fully-dressed male wants the delicate hue of the jower parts, he has a gorget of rulous mottled with black, below which is a patch of white feathers, broadly edged with hlack. Both these species have the hill and feet of a bright reddish-orange, while the much smaller M. albellus, known as the smew, has these parts of a lead colour, and the breeding plumage of the adult male is white, with quaint crescentic markings of black, and the flanks most beautifully vermiculated.
M. cucullatus, the hooded merganser of North America, is in size intermediate between M. albellus and M. serrator; the male is easily recognizable by his broad semicircular crest, bearing a fanshaped patch of white, and his elongated subscapulars of white edged with black. The conformation of the trachea in the male of M. merganser, \boldsymbol{M}. serrator and M. cwcullatus is very like that of the ducks of the genus Clangula, but \boldsymbol{M}. albellus has a less exaggerated development more resembling that of the ordinary Fuligula. ${ }^{1}$ From the southern hemisphere two species of Margus have been described, M. octosetaceus or brasilianss, L. P. Vieillot (N. Dict. d'Hist. naturelle, ed. 2, vol. xiv. p. 222; Gal. des oiseaux, tom. ii. p. 209, pl. 283), inhabiting South America, of which but few specimens have been obtained, having some general resemblance to M. serralor, but much more darkly coloured, and M. ausisalis, Hombron and Jacquemont (Ann. sc. naf. soologie, ser. 2, vol. xvi. p. 320 ; Voy. an Pol Sud, oiseaux, pl. 31, fig. 2), known only by the unique example in the Paris Museum procured by the French Antarctic expedition in the Auckland Islands.
Often associated with the mergansers is the genus Merganella, the so-called torrent-ducks of South America, of which six species have been described; but they possess spiny tails and have their wings armed with a spur. These with Hymenolacmus Malacarhynchus, the blue duck of New Zealand, and Salvodorina maigimensis of Waigiou are placed in the sub-family Mcrganellinoe.
(A. N.)

MEROENTHEIM, a town of Germany; in the kingdom of Wurttemberg, situated in the valley of the Tauber, $7 \mathrm{~m} . \mathrm{S}$. from Lauda by rail. Pop. (1905), 4535. It contains an Evangelical and three Roman Catholic churches, a Latin and other schools, and a magnificent castle with a natural history collection and the archives of the Teutonic order. This is now used as barracks. The industries of the town include tanning, the manufacture of agricultural machinery and wine-making. Near the town is a medicinal spring called the Karlsbad.
Mergentheim (Mariae domus) is mentioned in chronicles as carly as 1058, as the residence of the family of the counts of Hohenlohe, who early in the 13 th century assigned the greater part of their estates in and around Mergentheim to the Teutonic order. It rapidly increased in fame, and became the most important of the cleven commanderies of that society. On the secularization of the Teutonic Order in Prussia in 1525, Mergentheim became the residence of the grand master, and remained so until the final dissolution of the order in 1800 .
See Höring. Das Kartsbad bei Mergentheim (Mergentheim, 1887); and Schmitt, Garnisongeschichte der Siadt Mergenheim (Stattgart, 1895).

IERGER (Fr. merger, to sink), in law, the sinking or "drowning" of a lesser estate in a greater, when the two come together in one and the same person without any intervening estate. In order to effect a merger the two estates must vest in the same person at the same time, must be immediately expectant one on the other, and the expectant estate must be larger than the preceding estate. The term is also used for the extinguishment of any right, contract, \&c., by absorption in another, e.s. the acceptance of a higher security for a lower, or the embodying of a simple contract in a deed.

MERGUI, the couthernmost district of Lower Burma, in the Tenasserim division, bounded on the W. by the Bay of Bengal and on the E. by Siam. Area 9789 sq. m. Two principal ranges cross the district from north to south, running almost
Hybrids between, as is presumed, M. albellus and Clangula clautton, the common golden-eye, have been described and figured (Eimberk, Ises, 1831, 300 tab. iii.; Brehm, Nalurgesch. aller Vog. Deulschlands, p. $930 ;$ Naumann, Vog. Deufschlands, xii. 194. frontispicce; Kjarbolling. Jour. fár Orruhologic. 18 sz . Extraheft.
 tab. 29) under the names of Afergus anatariks. Clangula angustirustris. and Anas (Clangula) mergoides, as though they were a distinct *pecics; but the remarks of De Sclys-Longchampe (Bull. Ac. Sc. Bruxelles. 1845. pt. ii. p. 354, and 1856. pt. li. p. 21) lcave litte room for doubt as to their origin, which, when the cryptogamic habit and common range of their putative perenie, the former unknown to the author last-named, is considered, will seem to be atill more likely.
parallel to each other for a considerable distance, with the Tenasserim river winding between them till it turns south and flows through a narrow rocky gorge in the westernmost range to the sea. The whole district, from the water's edge to the loftiest mountain on the eastern boundary, may be regarded as almost unhroken forcst. The timber trees found towards the interior, and on the higher clevations, are of great size and beauty, the most valuable being teak (Tectona grandis), thes-gan (Hopea odorala), ka-gnyeng (Diplerocarpus laevis), de. The coast-line of the district, of which lies an archipelago of two hundred and seven islands, is much hroken, and for several miles inland is very little raised above sea-level, and is drained by numerous muddy tidal creeks. Southwards of Mergui town it consists chiefly of low mangrove swamps alternating with small fertile rice plains. After passing the mangrove limits, the ground to the east gradually rises till it becomes mountainous, even to the banks of the rivers, and finally culminates in the grand natural barrier dividing Burma from Siam. The four principal rivers are the Tenasserim, Le-nya, Pakchan and Palaut, the first three being navigable for a considerable distance. Coal is found on the banks of the Tenasserim and its tributaries, but is still unworked. Gold, copper, iron and manganese are also found in various parts of the district, and there are tin mines at Maliwan, upon which European methods have been tried without much profit, owing to the cost of labour.

From the notices of carly travellers it appears that Mergui, when under Siamese rule, before it passed to the Burmese. was a rich and denscly peopled country. On its occupation by the British in 1824-1825 it was found to be almost depopulated -the result of border warfare and of the crueltics exercised by the Burmese conquerors. At that time the entire inhabitants numbered only 10,000 . It had a population of 88,744 in 1901, showing an increase of $\mathbf{2 0 \%}$ in the decade and giving a density of 9 inhabitants to the $s q . m$. Mergui carries on a flourishing trade with Rangoon, Bassein and the Straits Settlements The chief exports consist of rice, rattans, torches, dried fish, areca-nuts, scsamum seeds, molasses, sca-slugs, edible birds' nests and tin. The staple imports are piece goods, tobacco, cotton, carthenware, tea and sugar. The climate is remarkably healthy, the heat due to its tropical situation being moderated by land and sea breezes. The rainfall is very heavy and usually exceeds 150 inches.

Mergui town has risen into prominence in recent years as the centre of the pearling trade in the neighbouring archipelago. The pearling grounds were practically unknown in 1890, but in the following decade they produced pearls and mother-ofpeal shell of considerable value. In igos the population was 11,987; but the census is taken at a tlme when many of the fishermen and their families are away in the islands. There is a considerable coasting trade with other Burmese ports and with the Straits Settlements.

MEROUI ARCHIPELAGO, a cluster of islands ia the Bay of Bengal, near the southern coast of Lower Burma. They are chiefly noted for their picturesque beauty, some of them rising to 3000 ft . They are only sparsely inhabited hy the island race of Selungs.

MERIAN, MATTHEW ($1593-1650$), Swiss engraver, was born in Basel, on the 25th of September 1593. The family came originally from near Delémont, but in his grandfather's time settled in Basel, where in 1553 it obtained the burghership of the city. As Matthew early showed signs of artistic tastes, he was placed (1600) under the care of Dietrich Meyer, a painter and engraver of Zürich (1572-1658). He went on to Nancy in 1613, where he already displayed considerable talents as an engraver on copper. After studying in Paris, Stuttgart (36t6) and the Low Countrics, he came to Frankfort, whero in 1618 he married the eldest daughter of J. T. de Bry, who was a publisher and bookseller as well as an engraver. Merian worked for wone time with his father-in-law in Oppenheim, but then returned to Basel, whence he came back (1624) to Frankfort 3 alter Bry's death (1623), in order to take over his business;
this remaned in his familly till i726, when, after a great fire that destroyed most of the books in stock, it came to an end. In 1035 Menan became a burgher of Frankjort, then the great centre of the book trade in Germany, and lived there till his death on the 2 and of June 1050 . Among his many worke two deserve to be specially mentioned. Tbe firat is the long series of works, each enjitled Topographia, which contained descriptions of various countries, illustrated by copper platea, largely done by Merian himself, while the accompanying text was due to Martun Zeiller ($1589-1661$), an Austrian by birth. The first volume was published in 1642 and described Switzerland with the Grisons and the Valais; it contains the first known view of the glaciers of Grindelwald. "Austria" appeared in 1649 , but the volume relating to Upper Saxony aod Bohemia (1650) was the last issued by Merian himself. "France" appeared in 1655-1656, while in 1688 the series (extending to 30 parts, in 28 vols.) came $t 0$ an end with " Italy," the volume as to Rome having appeared in 2681. The other great enterprise of Merian was the series entitled Theatrmm Europanmen, which appeared in 21 parts between 1635 and 1738 -It is a historical chronicle of events in Europe from 1617 onwards. In 1625-1630 Merian published a series of illustrations to the Bible, and in 1649 a Dance of Death. But he is best remembered by his views of towns, which have very considerable bistorical value. His best pupil, Wenceslaus Hollar (1607-1677), of Prague, settled in London (1635-1643, 1652-1677), and worthily carried on the Merian tradition.
(W. A. B. C.)

See Life, by H. Eckardt (Basel, 1887).
IfRIDA, a city of Mexico and capital of the state of Yucatan, 23 m . by rail S. of Progreso, its port on the Gulf of Mexico. Pop. ($\mathbf{x} 900$), 43,630, the Maya element being predominant. Mérida is the centre of an isolated railway system, connected with the ports of Progreso and Campeche, and having short lines radiating in all directions to Peto, Valladolid and Iramal. It stands on a broad, partly open plain near the northern barder of the peninsula, where the thin loose soil covering a limeatone foundation permits the rapld percolation and evaporation of the rainfall, and therefore supports a comparatively acanty vegetation. It is highly favourable to maguey cultivation, however, and Merida is the centre of the henequen, or sisel fibre, industry. There is an imposing roth-century cathedral facing upon the princlpal plaza, together with the government and episcopal palaces. There are also an old university, with schools of law, medicine and pharmacy, at episcopal seminary and other educational institutions. The most interesting building in the city is a Franciscan convent, dating from 1547, which covers an area of 6 acres and is surrounded by a wall 40 ft . high and 8 ft . thick. It once harboured no leas than 2000 friars, but has been allowed to fall into complete decay since the expulsion of the order in 1820 . The manufactures include straw hats, hammocks, cigars, soap, cotton fabrics, leather goods, artificial stone, and a peculiar distilled beverage called estabextwn. The exports are henequen, or sisal fibre, hides, sugar, rum, chicle and indigo-all products of the vicinity. Merida was founded in 1542 by the younger Francisco de Montejo on the site of a native city called Tihoo, or Th6, whose stone pyramids iurnished building material in abundance for the invaders. It became an episcopal see in 156 r .

MfridA (anc. Augusta Emerita, capital of Lusitania), a town of western Spain, in the province of Badajoz, on the right bank of the river Guadiana, 30 m. E. of Bedajoa. Pop.
 for bere the Madrid-Badajoz railway meets the lines from Seville, Huelva and Cficeres. No Spanish town is richer in Roman antiquities. Most af these are beyond the limits of modern Merida, which is greatly inferior in area to the ancient city. Chief among them is the Roman bridge, conatructed of granite under Trajan, or, according to some authorities, under Augustus, and restored by the Visigoths in 686 and by Philip III. in 1610 . It comprised 81 arches, 17 of which were destroyed during the siege of Badajoz (5812), and measured 2575 ft . In length. There are a few remnants of Roman
temples and of the colomed wall which ancircled the city, besidet Raman triumphal arch, commonly called the Aroo de Santiago, and a second Roman bridge, by which the soad to Salamaca was carried acrose the small river Albarreges (Albs Ragia). The Moorish alcdear or citadel was originally the chief Roman fort. From the Laso de Proserpina, or Charca de La Albuera, a hrge Roman resarvoir, 3 m . north, water was conveyed to Merida by an aqueduct, of which 37 enormous piers remain standing, with ten arches in three tiers built of brick and granite. The masaive Roman theatre is in good preservation; there are also a few vestiges of an amphitheatre and of a circus which measured 485 yds . by 120 . Other Roman remains are oxhibited in the archaeological museum, aod much Roman masonry is incorporated in the I6th century Mudejar palace of the dukes of La Roca, the palace of the counts of Los Corbos, and the convent of Santa Eulalia, which is said by tradition to mark the spot where St Eulalia was martyred (c. 300).

Augusta Emerite was founded in 25 B.c. As the capital of Lusitania it soon became one of the most splendid cities in Iberia, and was large enough to contain a garrison of 90,000 men. Under the Visigoths it continued to prosper, and was made an archbishopric. Its fortifications included five castles and eighty-four gateways; hut siter a atubborn resistance it was stormed by the Moors in 713. Its Moorish governors frequently, and sometimes auccessfully, asserted their independence, but Merida was never the capital of any large Moorish state. In 1129 its archbishopric was formally transferred to Santiago de Compostela, and in 1228, when Alphonso IX. of Leon expelled the Moors, Merida was entrusted to the order of Santiago, in whose keeping it soon sank into decadence.

MBRIDEN, a city of New Haven county, Connecticut, U.S.A., in the township of Meriden, S.W. of the centre of the state, about 18 m . N.N.E. of New Haven and about the same distance S.S.W. of Hartiord. Pop. of the township, including the city (1900), 28,695; (1910), 32,066; of the city (1900), 24,296, of whom 7215 were foreign-born; (1910), 27,265. Meriden is served by the New York, New Haven \& Hartiord railway and by an inter-urban electric line. The city is bisected by Harbor Brook, a small stream, and through the S.W. part of the township flows the Quinnipiac river. A short distance N.W. of the city, in Hubbard Park, an attractive reservation of more than 900 acres, are the Hanging Hills, three elevations (West Mountain, South Mountain and Cat-Hole Mountain) in a broken range of trap ridges, which have resisted the erosion that formed the lowlands of the Connecticut valley; they rise to a height of about 700 ft . above the sea. In their vicinity, near the boundary of Berlin township, is Merimere, one of the city's four reservoirs. Meriden is the seat of the Connecticut School for Boys (Reformatory). There are also a public lihrary ($\mathbf{1 8 9 9 \text {), a state armoury, }}$ a hospital, the Curtis Home for orphans and aged women, and a tuberculosis sanitarium supported hy the city. Meriden is one of the most important manufacturing cities of Connecticut, and in 1905 produced 59.9% of the plated ware manufactured in the state, and much sterling silver. In 1905 the factory product was valued at $\$ 13,763,548$, an increase of 17.1% over that of 1900 . Meriden was originaliy a part of the township of Wallingford, but a tract in the northern part of this townsbip was designated as Merideen by an Indian deed of 1664. It was made a separate parish under that name in 1728, but did not become a separate township until 1806 . The city was chartered in 1867.
See G. W. Perkins, Fistorical Shetches of Marden (West Meriden, 1849); C. H. S. Davis, History of Wallingford (Meriden, 1870), and C. M. Curtis and C. Bancroft Gillespie, A Cemeury of Meridem (Meriden, 1906).
.MERIDIAN, a clty and the county-reat of Lauderdale county, Mississippi, U.S.A., about 90 mm . E. of Jackson. Pop. ($\mathbf{r} 8 \mathrm{go}$), 10,624; (1900), 14.050, of whom 5787 were negroes; (1910 census), 23,288. It is served by the Southern, the Alabame Great Southarn, the Mobile \& Ohio, and the New Orloama 8. North Eastern and the Alabama \& Vicksburg (Queen \&

Crescent Roate) railways. It is the seat of the East Mississippl Insane Hospital, of the state Masonic Widows and Orphans' Home and of the Meridian Women's College (non-ectarian, opened in 1903), the Meridian Male College (opened in 1901), and, for negroes, the Lincoln School (Congregational) and Meridian Academy (Methodist Episcopal). The city is an important market for cotton grown in the surrounding country, and is the principal manufacturing city in the state. Its factory products, chiefly railway supplies and cotton products, increased in value from $\$ 1,924,465$ in 1900 to $\$ 3,267,600$ in 1905 , or 69.8% in five years. Mineral waters (especially lithia) are bottled in and near the city. Meridian was laid out in 1854 at a proposed railway crossing, and was chartered as a city in 1860. In February 1864 General William Tecumsch Sherman, with 20 army of about 20,000 , made an expedition from Vicksburg to Meridian, then an important railway centre and depot for Confederate supplies, chjefly for the purpose of making inoperative the Mobile \& Ohio and the Jackson \& Selma railways; on the 14th of the month his army entered Meridian, and within a week destroyed nearly everything in the city except the private houses, and tore up over 110 m . of track. In the "Meridian riot" of 1871 -as prominent episode of recon-struction-when one of several negroes on trial for urging moob violence had shot the preaiding judge, the whites, eapecially a party from Alabama interested in the trial, killed a number of negroes and burned a negro school. On the and of March 1906 a cyclone caused great loas of life and property.
mBRIDIAN (from the Lat. meridianus, pertaining to the south or mid-day), in general a direction toward the south or toward the position of the sun at mid-day. The terrestrial meridian of a place is the great circle drawn on the carth's surface from either pole through the place. As determined astronomically the celestial meridian is the great circle passing through the celestial pole and the zenith. The terrestrial meridian as practically determined is the circle on the eartb's surface in which the plane of the celestial meridian cuts that surface. Owing to local deviations of the plumb-line the meridian thus determined does not strictly coincide with the terrestrial meridian as ordinarily defined, but the deviation, though perceptible in mountainous regions, is so minute that it is generally ignored.

TERALIEB, PROBPER (1803-1870), Frenth novelist, archaeo logist, essayist, and in all these capacities one of the greatest masters of French style during the rgtb century, was born at Paris on the $\mathbf{2 8 t h}$ of September 1803. His grandfather, of Norman abstraction, had heen a lawyer and steward to the marechal de Broglie. His father, Jean Frangois Lbonor Mérimée ($1757-1836$), was a painter of reputc. Mtrimbe had English blood in his veins on the mother's side, and had English proclivities in many ways. He was educated for the bar, but entered the public service instead. A young man at the time of the Romantic movement, he felt its influence strongly, though his peculiar temperament prevented him from joining any of the coteries of the period. Nothing was more prominent among the romantics than the fancy, as Merimee himself puts it, for "local colour," the more unfamiliar the better. He exhihited this in an unusual way. In $\mathbf{8} 25$ be published what purported to be the dramatic works of a Spanish lady, Clara Gazul, with a preface stating circumstantially bow the supposed translator, one Joseph L'Estrange, had met the gifted poetess at Gibraltar. This was followed by a still more audacious and still more successful supercheric. In 1827 appeared a small book extitled la Guila (the anagram of Gasul), and giving itself out as translated from the Illyrian of a certain Hyacinthe Maglanovich. This book, which has greater formal merit than Clara Gassl, is said to have taken in Sir Johs Bowring, a competent Slav scholar, the Russian poet Poushkin, and some German autborities, although not only had it no originel, but, as Merimbe declares, a few words of Illyrian and a book or two of travels and topography were the author's only paterials. In the next year appeared a short dramatic romsnce, Lo Jacquarie, in which are visible Merimese's extreordinary
faculty of local and historical colour, his command of language, his grim irony, and a certain predilection for tragic and terrible subjects, which was one of his numerous points of contact with the men of the Renaissance. This in its turn was followed by a still better piece, the Chronique de Charlcs IX. (1829), which stands towards the 16th century much as the Jacquerie does towards the middle ages. All these works were to a certain extent second-hand. But they exhibited all the future literary qualities of the author save the two chiefest, his wonderfully severe and almost classical style, and his equally classical solidity and statuesqueness of construction.

He had already obtained a considerable position in the civil service, and after the revolution of July he was chef de cabinet to two different ministers. He was then appointed to the more congenial post of inspector-general of historical monuments. Merimbe was a born archaeologist, combining linguistic faculty of a very unusual kind with accurate scholarship, with remarkable historical appreciation, and with a sincere love for the arts of design and construction, in the former of which he had some practical skill. In his official capacity he published numerous reports, some of which, with other similar pieces, have been republished in his works. He also devoted himself to history proper during the latter years of the July monarchy, and published aumerous essays and works of no great length, chiefly on Spanish, Russian and ancient Romen history. He did not, bowever, neglect novel writing during this period, and numerous short tales, almost without exception masterpieces, appeared, chicfly in the Revue de Paris. The best of all, Colomba, a Corsican story of extraordinary power, appeared in 1840 . He travelled a good deal; and in one of his journeys to Spain, about the middle of Louis Philippe's reign, he made an acquaintance destined to influence his future life not a litule-that of Mme de Montijo, mother of the future empress Eugtnie. Merimbe, though in manner and language the most cynical of men, was a devoted friend, and ahortly before the accession of Napoleon III. he had occasion to show this. His friend, Libri Carucci dalla Sommaja, was accused of having atolen valuahle manuscripts and books from French libraries, and Mérimé took his part so warmly that he was actually sentenced to and undervent fine and imprisonment. He had been elected of the Academy in 1844, and also of the Academy of Inscriptions, of which he was a prominent member. Between 1840 and 1850 he wrote more tales, the chief of which were Arsine Gwillos and Carmem (1847), this last, on a Spanish subject, hardy ranking below Colomba.
The empire made a considerahle difference in Merimee's life. His sympathies were against democracy, and his habitual cynicism and his irreligious prejudices made legitimism distasteful to him. But the marriage of Napoleon III. with the daughter of Mme de Montijo at once enlisted what was always strongest with Mérinte-the sympathy of personal friendship-on the emperor's side. He was made a senator, but his most important role was that of a constant and valued private friend of both the " master and mistress of the house," as he calls the emperor and empress in his letters. He चas occasionally charged with a kind of irregular diplomacy, and once; in the matter of the emperor's Cacsay, be had to give literary asaistance to Napoleon. But for the most part be was surictly the ami de la maison. At the Tuileries, it Compiagne, at Biarritz, he was a constant though not always a very willing guest, and his influence over the emprese was very considerable and was fearlesoly exerted, though be used to call himself, in imitation of Scarron, " le bouffon de sa majeste." He found, however, time for not a few more tales, of which more will be said presently, and for correspondences, which are not the least of his literary achievements, while they have an extroordinary interest of matter. One of these consists of the letters which have been publisbed as Lettres d wne inconnwe, another of the letters addresued to Sir Anthony Panizzi, hibrarian of the British Museum. After various conjectures it seems that the incomenve just mentioned wae a certain Mlle Jenny Daqin of Boulogne. The acquaintance extended over many
years; it partook at one time of the character of love, at another of that of simple friendship, and Merimee is exhibited in the letters under the most surprisingly diverse lights, most of them more or less amiable, and all interesting. The correspondence with Panizri has somewhat less personal interest. But Merime often visited England, where he had many friends (among Whom the late Mr Ellice of Glengarry was the chief), and certain similarities of taste drew him closer to Panizzi personally, while during part of the empire the two scrved as the channel for a kind of unofficial diplomacy between the emperor and certain English statesmen. These letters are full of shrewd apergus on the state of Europe at different times. Both scries, and others since published, abound in gossip, in amusing anecdotes, in sharp literary criticism, while both contain evidences of a cynical and Rabelaisian or Swiftian humour which was very strong in Mérimée. This characteristic is said to be so prominent in a correspondence with another friend, which now lies in the library at Avignon, that there is but little chance of its ever being printed. A fourth collection of letters, of much inferior extent and interest, has been printed by Blaze de Bury under the title of Lettres d une autre inconnuce (1873), and others still by d'Haussonville (1888), and in the Revue des Deux Mondes (1896). In the latter years of his life Mérimée suffered very much from ill-health. It was necessary for him to pass all his winters at Cannes, where his constant companions were two aged English ladies, friends of his mother. The Terrible Year found him completely hroken in health and anticipating the worst for France. He lived long enough to see his fears realized, and to express his grief in some last letters, and he died at Cannes on the 23 rd of September 1870.

Mérimee's character was a peculiar and in some respocts an unfortunate one, but by no means unintelligible. Partly by temperament, partly it is said owing to some childish experience, when he discovered that he had been duped and determined never to be so again, not least owing to the example of Henri Beyle (Stendhal), who was a friend of his family, and of whom he saw much, Mérimée appears at a comparatively early age to have imposed upon himself as a duty the maintenance of en attitude of sceptical indifference and sarcastic criticism. Although a man of singularly warm and affectionate feelings, be obtainad the credit of being a cold-hearted cynic; and, though both independent and disinterested, he was ahused as a hanger-on of the imperial court. Both imputations were wholly undeserved, and indeed were prompted to a great extent by political spite or by the resentment felt by his literary equals on the other side at the cool ridicule with which he met them. But he deserved in some of the bad as well as many of the good senses of the term the name of a man of the Renaissance. He had the warm partisanship and amiability towards friends and the scorpion-like sting for his foes, he had the ardent delight in learning and especially in matters of art and belles lettres, be had the scepticism, the voluptuousness, the curious delight in the contemplation of the horrible, wbich marked the men of letters of the humanist period. Even his literary work has this Renaissance character. It is tolerably extensive, amounting to some seventeen or eighteen volumes, but its bulk is not great for a life which was not short, and which was occupied, at least nominally, in little elise. About a third of it consists of the letters already mentioned. Rather more than another third consists of the official work which has been already alluded to-reports, essays, short historical sketches, the chief of which latter is a history of Pedro the Cruel (1843), and another of the curious pretender known in Russian story as the false Demet rius (1852). Some of the literary essays, such as tbose on Beyle, on Turgueniev, \&c., where a personal element enters, are excellent. Against others and against the larger historical atetches-admirable as they are-Taine's criticism that they Want life has some force. They are, however, all marked by MErimée's admirable style, by his sound and accurate scholarship, his strong intellectual grasp of whatever he handled, his cool unprejudiced views, his marvellous faculty of designing and proportioning the treatment of his work. In purely archoeo-
loglcal matters his Descriplion das peintures de Sainh-Savin is very noteworthy. It is, however, in the remaining third of his work, consisting entirely of tales either in narrative or in dramatic forma, and especially in the former, that his full power is perceived. He translated a certain number of things (chiefly from the Russian); but his fame does not rest on these, on his already-mentioned youthful aupercheries, or on his later semi-dramatic works. There remain about a score of tales, exteading in point of composition over exactly forty years and in length from that of Colomba, the longest, which fills about one hundred and fifty pages, to that of l'Enlerement de la redoute ($\mathbf{1 8 2 9}$), which fills just half a dozen. They are unquestionably the bost things of their kind written during the century, the only nowrelles that can challenge comparison with them being the very best of Gautier, and one or two of Balzac. The motives aro sufficiently different. In Colombe and Mateo Folcone (1829), the Corsicain point of honour is drawn on; in Cormen (written apparently after reading Borrow's Spanish books), the gipsy character; in la Vewws d'Ille (1837) and Lokis (two of the finest of all), certain grisly superstitions, in the former case that known in a milder form as the ring given to Venus, in the latter a variety of the wero-wolf fancy. Arsine Guillot is a singular satire, full of sarcastic pathos, on popular morality and religion; la Chambre bleue, an 18th-century conte, worthy of C. P. J. Crebillon for grace and wit, and superior to him in delicacy; The Capture of the Redoubs just mentioned is a perfect piece of description; l 'Abbe au boin is again satirical; la Double meprise (the authorship of which was objected to Merime when he was elected of the Academy) is an exercise in analysis strongly impregnated with the spirit of Stendbal, but better written than anything of that writer's. These stories, with his letters, assure Mérimes's place in literature at the very bead of the French prose writers of the century. He had undertaken an edition of Brantome for the Bibliothèque Elaévirienne, but it was never completed.
Mérimée's' works have only been gradually published since his death. There is no uniform edition, but almost everything is ohtainable in the collections of MM. Charpentier and Calmann Levy. Most of the sets of letters above referred to from those to the first inconnue, where the introducer was Taine, have essayprefaces on Mérimbe. Maurice Tourneux's Prosper Merimben, sa bibliographee (1876) and Prosper Mérimbe, ses poriraits (1879), are useful, while Emile Faquet aad many other critics have dealt with him incidentally. But the best single book on him by far is the Mtrimetel ses amis of Augustin Filon (1894). M. F. Chambon's Correspondance indite (1897) gives little that is substantive, but supplies and corrects a good many gape or faults in carlier editions. English translations, especially of Colombs and Carmen, are numer ous. The Chronique de Charles IX. was translated by G. Saintsbury in 1889 with an introduction; and the same writer has also prefixed a much more elaborate esmay, containing a review of Merimée's entire woric, to an American tranalation.
(G. SA.)

MERIINO, the Spanish mame for a breed of sheep, and hence applied to a woollen fabric. The Spanish word is generally taken to be an adaptation to the sheep of the mame of an official (mertro) who inspected sheep pastures. This word is from the medieval latin majorinus, a steward, head official of a village, \&c., from najojor, greater.

The merino is a white short-wool sheep, the male having spiral horns, the ewes being generally hornlest. It is bred chiefly for its wool, because, though an excellent grazer and very adaptable, it matures slowly and its mutton is not of the best quality. The wool is close and wavy in staple, reaching 4 in. in length, and surpasses that of all other sheep in finencss; it is so abundant that little but the muzzle, wbich should be of an orange tint, and hoofs, are left uncovered. The best wool is produced on light sandy soils.

The merino is little known in Great Britain, the climatic moisture of which does not favour the growth of the finest wools, but It predominates in all regions where sheep are bred for their wool rather than their mutton, as in the western United States, Cape Colony, Australia, New Zealand and Argentina. In Australasia, especially in New Zealand, the merino has been crossed with Lincolns, Leicesters, Shropshires and ather breeds, with the result of improving the quality
of the mutton while sacrificing to some extent that of the wool.
The merino sheep appears to have originated in Africa, whence it was brought by tbe Moors to Spain and thence spread over Europe, especially to Austria-Hungary, Germany and France. The best-known breeds are the Rambouillet, a large merino named after the village near Paris, to which it was imported towards the end of the r8th century, and the Negretti, which stands in closer relationship to the old Spanish stock and hes shorter'wool but a more wrinkled fleece. Importations to America began abont the beginning of the ioth century. The so-called American merino, the Delaine, the Vermont and the Ramboullet, are well-known breeds in the United States.
The term " merino" is widely employed in the textile industries with very varied meanings. Originally It was restricted to denote the wool of the merino sheep reared in Spain, but owing to the superiority of the wools grown on merino theep and shipped from Botany Bay, the name as applied to wool was replaced by the term "botany." In the dress-goods and knitting trades the term "merino" still impliek an article made from the very best soft wool. The term "cashmere," however, is frequently confused with it, although cashmere goods should be made from true cashmere and not, as is often the case, from the finest botany wool. In the hosiery and remanufactured materials trades the term "merino" is applied to fibre-mixtures of cotton and wool in contradistinction to " all wool" goods.

MERIONETH (Welsh, Meirionydd), a county of North Wales, bounded N. by Carnarvon and Deabigh, E. by Denbigh and Montgomery, S.E. by Montgomery, S. by the Dovey ($D_{y f i}$) entuary, dividing it from Cardigan, and W. by Cardigan Bay. It is nearly triangular, its greatest length from N.E. to S.W. being about 45 m ., its greatest breadth about 30 m . The relief is less bold than that oi Carnarvon, but the acenery is richer and more picturesquely varied. The highest summits are the peaks of Cader Idris (q.v.) including Pen y gader (the head of the chair; 2027 ft .); Aran Fawddwy (2970 ft.); Arenig fawr (2600 ft .); Y Lethr (2475 ft), and Rhobell fawr (2313 ft.). Perhaps the finest of the valleys are those of Dy6 (Dovey) Dysyni, Tal y llyn (forehead of the bake), Maw (Mawddach), and Festiniog. The Dyfrdwy (Dee) drains Bale Lake (Llyn Tegid or Pimblemerc), which is fed by two brooks rising at the foot of the Berwyn Hills. The Dyirdwy leaves the lake at the north-east corner, near Castell Goronwy (erected 1202, hardly iraceable), flowing slowly to Corwen, after which it is rapid, and receives the tributaries Alwen, Ceiniog, Clywedog and Alun. The Dyf (Dovey) rising in a amall lake near Aran Fawddwy, passes Machynlleth, and expends into an estuary of Cardigan Bay. Rising north of the Aran, the Mawddach (Maw) runs south-west some 12 m. , being joined by rivulets. Tracth bach is formed by the Dwyryd streamiet among others. Other streams are the Whion, Eden, Cain (variously spelled). Besidea Bala and Tal y ulyn lakes, there are among the hills over fifty more, e.e. Llyn Mryngil. Among the waterialls may be mentioned Rhaiadr y glyn (cascade of the glen), near Corwen, Rhaiadr du (black), and Pistyll Cain (Cain's watesspout), some 150 ft . high.
A mountain tract of the county, 15 m . from north to south by so from east to west, stretching from the coast inland. is of the Cambrian age, composed of grits, quartzites and slates, and comprising the Merionethshire anticlinal. The central portion of this traet is occupied mainly by Harlech Grits and Menevian bede; it is bordered on the north, east and south by the Lingula. Tremadoc and Arenig beds, which are pierced by numerous dikes and intrusive masees, mostly greenstone. The andesitic rock of Rhobell. fa wr is one of the greatest igneous masocs in the whote area of the Lingula beds. The Lingula beds are quarried and mined for slate at Festiniog. and near Dolgelly gold is obtained from a quarts vein, while near Barmouth manganese has been worked. Bordering the Cambrian area are the Ordovician rocks. The Arenig beds are interstratified with and overlaid by accurmulations of volcanic ashes, felspathic traps or lava-flows, which form the rugged heights of Cader Idris, the Arans: the Arenige, Manod and Moelwyn; and theae are in turn overlaid by the Llandeilo and Bala becds. Ihe latter including the Bala limerone. Lead and copper ores have been worked near Towry.

Here and there along the eastern boundary Llandovery and Wenlock etrata are included. The structure of the Silurian tract is aynclinal: in the Berwyn mountains the Ordovician rocks again appear with associated anderitic and felsitic lavas and tuffo. West of Llangar, near Corwen, is a small paich of Carboniferous limestone. Glacial drift with boulder clay is a prominent feature in the valleys and on the mountain sides. A good deal of blown sand fringes the coast north and south of Harlech. At the Llyn Arenig Bach a deposit of kieselguhr has been found.

The climate varies much with the elevation, from bleak to genial, as at Aberdyf (Aberdovey). Grain crops cover a small area only, green crops being poor, and fruits practically mil. While the soil is generally thin, there are fertile tracts in the valleys, and there is some reclaimed land. The small, hardy ponies (known as of Llanbedr, Conway Valley) are now almost restricted to this county and Montgomeryahire. Manufactures include woollen stockings, \&c., at and near Bala, flannels at Dolgellau (Dolgelley), Towyn, and a few other places. Slate is the chief staple. The Camhrian railwey skirts the coast from Portmadoc to Aberdyfi. At Barmouth junction a branch crosses to Dolgelley, where it is joined by a branch of the Great Western railway. Bala and Festiniog are also united by the Great Western, and Festiniog is further joined with Llandudno junction by the London \& North Western railway, and with Portmadoc (Minffordd) by the narrow gauge railway, a light line, opened in 1865, running between Portmadoc and Duffws, rising 700 ft . in 13 m . The tourist traffic is a source of livelihood to many of the inhabitants. The coast is almost unnavigable, owing to aandbanks, and the only havens are Barmouth and Aberdyfi.

The area of the ancient county is $427,8 \mathrm{ro}$ acres or 670 sq. m., with a population in 1891 of 49,212 and 1901 of 49,149 . In the 19th century, however, the population nearly doubled. The ares of the administrative county is 422,018 acres, Welsh is the tongue par excellence of Merionethshire. The county returns one member to parliament, and has neither parhiamentary nor municipal borough. The urban districts are: Bala (pop. 1544), Barmouth (Ahermaw, 2214), Dolgelley (Dolgellau, 2437), Festiniog ($\mathbf{1 1}, 435$), Mallwyd (885), Towyn (3756). The shire is in the north-west circuit, and assizes are held at Dolgellau. It is partly in the diocese of St Asaph and partly in that of Bangor, and has 37 ecclesiastical parishes and districts, with parts of four others.

History and Antiquilies.-This is the only. Welsh county retaining in English its primitive British name, latinized into Meroinia, a subdivision of Brilamnio Secundo, and in the Ordovices' territory. The poet Churchyard in 1587 described tbe county as remote and difficult of access in his day, and it was never made the field of battle in Saxon, Danish or Norman times, nor indeed until close on the period of Wetsh lost of independence. There are not many remains, Celtic, Roman or medieval. Ceer Drewyn, a British fort on the Dee, is near Corwen, where Owen Gwynnedd was posted to repel Henry II. and whither Owen Glendower retired before Henry IV. The numerous cromlechs are chiefly near the cosst. The Roman via occidentalis ran through the county from south to north and was joined by a branch of Watling Street at Tomen y mur (perhaps Herivi Mons) on Sarn Helen, bot far from Castell Prysor. Tomen y mur (dedriows of the wall) and Castell Prysor have yielded Roman bricks, tiles, urns and coins. Castell y bere, an extensive ruin, and once one of Wales's largest castles, has not been inhabited since the time of Edward I. Cymmer Abbey (Y Fanmer) near Dolgellau, a Cistercian establishoment founded about 1200 , and ctiseolved hy Heary VIII., is moen perfect at the east end, with lancet window, and against the south wall there are a few Gothic pillars and arches. The architecture varies from Norman to Perpendicular. Towen y Bala, east of Bala, is supposed to be a Roman encampment. It was afterwards occupied by the Welsh, to check the Englinh lords marchers. Moel Ofirwm is near Dolgellau. Amons the county familien may be mentioned that of Hengwrt, since the Hengwr Weish MSS are famons in morth Wales and among ali Cetic scholars.

MERISTM (Gr. mplorbs. divided or diviaible), a bolanical term for tiseue which has the power of developing new.
forms of tissue, such sa the cambium from which new wood is developed.

MERIVALE, CHARLEs (t 808 -1803), English historian and dean of Ely, the second son of John Herman Merivale and Louisa Heath Drury, daughter of Dr Drury, head master of Harrow, was born on the 8th of March 1808 . His father (1779-1844) was an English barrister, and, from 1831, a commissioner is bankruptey; he collaborated with Robert Bland (1779-1825) in his Collections from the Greck Anthology, and published some excellent translations from Italian and German. Charles Merivale was at Harrow School (1818 to 1824) under Dr Butler. His chief friends were Charles Wordsworth, afterwards hishop of St Andrews, and Richard Chenevix Trench, afterwards archbishop of Duhlin. In 1824 he was offcred a writership in the Indian civil service, and went for a short time to Haileybury College, where he was distinguished for proficiency in Oriental languages. But he eventually decided against an Indian career, and went up to St John's College, Cambridge, in 1826. Among other distinctions he came out as fourth classic in 1830 , and in 8833 was elected fellow of St Jobn's. He was a member of the Apostles' Club, his fellow members including Tennyson, A. H. Hallam, Monckton Milnes, W. H. Thompson, Trench and James Spedding. He was fond of athletic exercises, had played for Harrow against Eton in 1834. and in 1829 rowed in the first inter-university boat-race, when Oxford won. Having been ordained in 1833 , he undertook college and university work successfully, and in 1839 was appointed select preacher at Whitehall. In 1848 he took the college living of Lawford, near Manningtree, in Essex; he married, in 1850 . Judith Mary Sophia, youngest daughter of George Frere. In 1863 he was appointed chaplain to the Speaker of the House of Commons, declined the professorship of modern history at Cambridge in $\mathbf{r 8 6 9}$, but in the same year accepted from Mr Gladstone the deanery of Ely, and until his death on the 27th of December 1803 devoted limself to the best interests of the cathedral. He received many honorary academical distinctions. His principal work was A History of the Romans wnder the Empire, in seven votumes, which came out between 1850 and 1862 ; but he wrote several smaller historical works, and published sermons, lectures and Latin verses. Merivale as a historian cannol be compared with Gibbon for virility, but he takes an emidently common-sense and appreciative view. The chief defect of his work, inevitable at the time it was composed, is that, drawing the materials from contemporary memoirs rather than from Inscriptions, be relies on literary gossip rather than on numismatics and epigraphy. The dean was an elegant scholar, and his rendering of the Hyperion of Keats into Latin verse (1862) has received high praise.
Sce A wlobiography of Dean Merivale, with selections from his Scee A wloaiogya phy of Dean Merivale; with sclections from his and Family Memorials, by Anna W. Merivale (1884).

MERIVALE, HERMAN ($1806-1874$), English civil servant and author, elder brother of the preceding, was born at Dawlish, Devonshire, on the 8th of November 1806. He was educated at Harrow School, and in. 1823 entered Oriel College, Oxford. In 1825 he became à scholar of Trinity College and also won the Ireland scholarship, and three years later he was clected fellow of Balliol College. He became a member of the Inner Temple and practised on the western circuit, being made in 1841 recorder of Falmouth, Helston and Penzance. From 1837 to 1842 he was professor of political economy at Oxford. In this capacity he delivered a course of lectures on the British Colonjes in which he dealt with questions of emigration, empioyment of la bour and the allotment of public lands. The reputation be secured by these lectures had much to do with his appointment in 1847 as assistant under-secretary for the colonies, and in the next year be became permanent under-secretary. In 1859 he was transferred to the permanent under-secretaryship for India, receiving the distinction of C.B. In 187° Merivale was made D.C.L. of Oxford. He died on the 8th of February 1874. Besides his Lectures on Coloniration and Colonies (1841),
he published Fistorical Simdies (1865), and comploted the Memoirs of Sir Philip Francis (1867); he wrote the second volume of the Life of Sir Henry Lawrence (1872) in continuation of Sir Herbert Edwardes's work.

A tribute to his powers as an original thinker hy his chief at the Colonial Office, Sir Edward Bulwer-Lytton, is printed with a notice of his careser which his brother contributed to the Transections (1884) of the Devonahire Association.

MERRARA, the capital of the province of Coorg, in Southern India, situated on a plateau about 4000 ft . above the sea. Pop. (190t), 6732. It consists of two quarters: the fort, containing the public offices, the old palace, and the residence of the commissioner; and the native town of Mahadevapet. Here are the headquarters of the Coorg and Mysore Rifies, a body of volunteers chiefly composed of coffee planters.

MERLN, ANTOINE CHRISTOPHE (1762-1833), French revolutionist, called " of Thionville" to distinguish him from his namesake of Douai (see below), was born at Thionville on the $13^{\text {th }}$ of September 1762 , being the son of a procureur in the bailliage of Thionville. After studying theology, he devoted himself to law, and in 1788 was an avocat at the parlement of Metz. In 1790 he was elected municipal officer of Thionville, and was sent by the department of Moselle to the Legislative Assembly. On the 23 rd of October 1791 he moved and carried the institution of a committee of surveillance, of which be became a member. It was he who proposed the law sequestrating the property of the emigres, and he took an important part in the emeute of the 20th of June 1792 and in the revolution of the roth of August of the same year. He was elected deputy to the National Convention, and pressed for the exceution of Louis XVI., but a mission to the army prevented his attendance at the trial. He displayed great bravery in the defence of Mainz. He took part in the reaction which followed the fall of Robespierre, sat in the Council of the Five Hundred under the Directory, and at the coup d'elat of the 18th Fructidor (Sept. 4, 1797) demanded the deportation of certain republican members. In 1798 he ceased to be a member of the Council of Five Hundred, and was appointed director-general of posts, being sent subsequently to organize the army of Italy. He retired into private life at the proclamation of the consulate, and lived in retirement under the consulate and the empire. He died in Paris on the 14th of September 1833 .
See J. Reynaud, Vie at correspondance de Merlin de Thionrille (Paris, 1860).

MERLIN, PHILIPPE ANTOINE, Count (1754-1838), French politician and lawyer, known as Merlin " of Douai," was born at Arleux (Nord) on the 3oth of October 1754, and was called to the Flemish bar in 1775. An indefatigable student, he collaborated in the Repertoire de jurisprudence published by J. N. Guyot, the later editions of which appeared under Merlin's superintendence, and also contributed to other important legal compilations. Elected to the states-general as deputy for Dousi, he was one of the chief of those wbo applied the principles of liberty and equality embodied in the decree of the 4 th of August 1789 to actual conditions. On behalf of the committee appointed to deal with feudal rights, he presented to the Convention reports on the seignorial rights which were subject to compersation, on hunting and fishing rights, forestry, and kindred subjects. He carried legislation for the abolition of primogeniture, secured equality of inheritance between relations of the same degree, and between men and women. His numerous reports to the Constituent Assembly were supplemented by popular exposition of current legislation in the Journal de legislation. On the dissolution of the Constituent Assembly he became judge of the criminal court at Douai. He was no advocate of violent measures; but, as deputy to the Conventlon, he voted for the death of Louis XVI., and as a member of the council of legislation he presented to the Convention on the 17 th of September 1793 the infamous law permitting the detention of suspects. He was closely allied with his namesake Merlin "of Thionville," and, after the counter-revolution which brought about the fall of Robesperre,
he became president of the Convention and a member of the Committec of P'ublic Safety. His efforts were primarily directed to the prevention of any recrudescence of the tyranny excrcised by the Jacobin Club, the commune of Paris, and the revolutionary trihunal. He persuaded the Committee of Safety to take upon itself the closing of the Jacobin Club, on the ground that it was an admiaistrative rather than a fegisiative masure. He recommended the readmission of the survivors of the Girondin party to the Convention, and drew up a law limiting the right of insurrection; he had also a considerable share in the forcign policy of the victorious republic. With Cambacérès he had been commissioned in April 1794 to report on the civil and criminal legislation of France, with the result that after eighteen months' work he produced his Rapport el projet de code des delits et des peines (10 Vendémiaire, an. IV.). Merlin's code abolished confiscation, branding and imprisonment for life, and was based chiefly on the penal code drawn up in Sepeember 1791. He was made minister of justice (Oct. 30, 1795) under the Directory, and showed excessive rigour against the emigrants. After the coup d'etat of the 18th Fructidor he became (Sept. 5.1797) one of the five directors, and was aceused of the various failures of the government. He retired into private life (June 18, 1790), and had no share in the revolution of the 18th Brumaire. Under the consulate he accepted a modest place in the court of cassation; where he soon became procureur-général. Although he had no share in drawing up the Napoleonic code, he did more than any other lawyer to fix its interpretation. He became a member of the council of state, count of the empire, and grand officer of the Legion of Honour; but having resumed his functions during the Hundred Days, he was one of those banished on the second restoration. The years of his exile were devoted to his Repertoire de jurisprudence (5 th ed., 18 vols., Paris, $\mathbf{x 8 2 7 - 1 8 2 8)}$ and to his Recueil alphabedique des questions de droil (4th ed., 8 vols., Paris, 1827-1828). At the revolution of $i 830$ he was able to return to France, when he re-entered the Institute of France, of which he had been an original member, being admitted to the Académie des Sciences Morales et Politiques. He died in Paris on the 26th of December 1838 .

His son, Antolne François Eugène Merlin (1778-1854), was a well-known general in the French army; and served through most of Napoleon's campaigns.

See M. Mignet, Porirails el nolices historiques (1852), vol. i.
MERLIN (Welsh, Myydhin), the famous bard of Welsh tradition, and enchanter of Arthurian romance. His history as related in this latter may be sumnarized as follows. The infernal powers, aghast at the blow to their influence dealt by the Incarnation, determine to counteract it, if possible, by the birth of an Antichrist, the offspring of a woman and a devil. As in the book of Job, a special family is singled out as subjects of the diabolic experiment, their property is destroyed, one after the other perishes miscrably, till one daughter, who has placed herself under the special protection of the Church, is left alone. The demon takes advantage of an unguarded moraent of despair, and Merlin is engendered. Thanks, however, to the prompt action of the mother's confessor, Blayse, in at once baptizing the child of this abnormal hirth, the mother truly protesting that she has had intercourse with no man. Merlin is claimed for Christianity, but remains dowered with demoniac powers of insight and prophecy. An infant in arms, he saves his mother's life and confounds her accusers by his knowledge of their family secrets. Meanwhile Vortigern, king of the Britons, is in despair at the failure of his efforts to build a tower in a certain spot; however high it may be reared in a day, it falls again during the night. He consults his diviners, who tell him that the foundations must be watered with the blood of a child who has never had a father; the king accordingly sends messengers through the land in search of such a prodigy. They come to the city where Merlin and his mother dwell at the moment when the boy is cast out from the companionship of the other lads on the ground that be has had no father. The messengers take him to the king, and on the way he astonishes them by certain prophecies which
are fulfilled to their knowledge. Arrived in Vortigern's presence, he at once announces that he is aware alike of the fate destined for him and of the reason, hidden from the magicians, of the fall of the tower. It is built over a lake, and beneath the waters of the lake in a subterranean cavern lie two dragons, a white and a red; when they turn over the tower falls. The lake is drained, the correctness of the statement proved, and Merlin's position as court prophet assured. Henceforward be acts as adviser to Vortigern's successors, the princes Ambrosius and Uther (subsequently Uther-Pendragon). As a monument to the Britons fallen on Salishury Plain he brings from Ircland, by magic mcans, the stones now forming Stonekenge. He aids Uther in his passion for Yguerne, wife to the duke of Cornwall, by Merlin's spells Uther assumes the form of the husband, and on the night of the duke's death Arthur is engendered. At bis birth the child is committed to Merin's care, and by him given to Antor, who brings him up as his own son. On Arthur's successful achicvement of the test of the sword in the "perron." Merlin reveals the tuth of his parentage and the fact that he is by hereditary right, as well as by divine selection, king of the Britons. During the earlier part of Arthur's reign Merlin acts as counselior; then he disappears mysteriously from the scene. According to one account he is hetrayed by a maiden, Nimue or Ninianc (a king's daughter, or a water-fairy, both figure in different versions), of whom be is enamoured, and who having beguiled from him a knowledge of magic spells, casts him into a slumber and imprisons him living in a rocky tomb. This version, with the great cry, or Brait, which the magician uttered before his death, appears to have heen the most popular. Another represents his prison as one of air; he is invisible to all, but can see and hear, and occasionally speak to passers by; thus he holds converse with Gawain. In the prose Perceval he retires voluntarily to an "Esplumeor" erected by himself, and is seen no more of man.

The curiousqersonality of Merlin is now generally recognized as being very largely due to the prolific invention of Geoffrey of Monmouth. Nennius, upon whose Historia Geoffrey enlarged and "improved," gives indeed the story of Vortigern and the tower, hut the boy's name is Ambrosius. Geolfrey calls him Merlin-Ambrosius, a clear proof that he was adapling Nennius' story. He represents the sage in his role of court diviner, his "Prophecies" being incorporated in later manuscripts of the Hisforia. Subsequently Geofrey enlarged on the theme, composing a Vila Mcrlini in which we find the magician in the role of a "possessed " wood-abider, fleeing the baunts of men, and consorting with beasts. This gave tise to the idea that there had originally been two Merlins, Merlin-Ambrosius and Merlin-Sylvester, a view now discarded by the leading scholars. The Vida was so successful that Geoffrey obtnined as reward the bishopric of St Aseph.

Welsh vernacular literature has preserved a small but interesting group of poems, strongly national and patriotic in character, which are attributed to Merlin (Myrddhin).

A few years after Gcoffrey's death Merlin's adventures were amplified into a romance, the first draft of which is attributed to Robert de Borron, and which eventually took the form of a lengthy introduction to the prose Lancelot and cyclic redaction of the Arthurian legend.

The romantic, as distinguished from legendary or historical Merlin, exists in the following forms: (a) a fragmentary pocm preserved in a unique manuseript of the Bibl. nat. (this gives no more than the introduction to the story); (b) a prose rendering of the above, of which a fair number of copies exist, gencrally found, as in the original poem, coupled with a version of the early hiatory of the Crail, known as Joseph of Arimathea, and in two cases followed by a Percecal and Mort Arius. thus forming a small cycle; (c) the Ordinary or Vulgate Merin, a very lengthy romance. of which numerous copics exist (see Dr Sommer's edition): (d) and (d) two contlnuations to the above, each represented by aingle manu-script-(d) the "Huth" Afcrlin. which was utilized by Malory for hls translation, and also formed a part of the compilation used by the Spanish and Portuguese translanors, and (e) a very curious manuscript, 337, Bithl. nat. (fonds Francais), which Paulin Patis calls the Diere Artus, containing murh matter not found deswhere-
M. La Viliemarqués " critical study " (Myrdhinn, ou 〈enchnnleur

Merlis, 186r) oannot be regarded as much more trustworthy than Geofirey himself. The story of the tower, and the Boy without a Father, has been critically examined by Dr Gaster, in a paper read before the Folk-lore hociety and subsequently published in Folk-lore (vol. xvi.). Dr Gaster cites numerous Oriental parallels to the tale, and sces in it the germ of the whole Merlin legend. Alired Nutt (Revue celfique, vol. xxvii.) has since shown that Aengus, the magician of the Irish Tualha de Damash, was .ilso of unkrown parentage, and it seems more probulit that :he Boy without a Father theme was generally associated wht dite Celtic magicians, and is the property of no one in particular. Some years ago the late Mr War I of the British Muscum drew attention to ccrtain passages in the ite of St Kentigera, relating his durigs with a " possessed " being, it dweller in the wools, named Lailosen, and pointed out the practial identity of the adventures of that pcrsonage and those assig $-d$ by Geoffrey to Merlin in the Vila the text given by $\mathbf{M r} \mathbf{W}$ ard states that some people idertilied Lailoken with Merlin (see Romania, vol. xxvii.). Ferd. Lot, in an chamination of the sources of the Vita Merlini (Annales de Bretapne, vol. xv.) has pointed out the more original character of the "filcken" tragments, and drifles that Geofirey knew the Sontish tradition and utilized it for his Vita. He also comes to the conclusion that the Welsh Murlin pooms, with the possible exception of the Dialogue between Merlin and Taliessin, ate posterior to, and inspired by, Geoffrey's work. So far the researches of seholors appear to point to the result that the legend of Merlin, as we know it. is of complex growth, eombincd from traditions of independent and widely differing origin. Mast probably there is a certain substratum of fact beneath all; there may have been, there very probably was, a bard and soothsayer of that name, and it is by no means improbable that curious stories were told of his origin. It is worth noting that Leyamon, whose translation of Waces Bru is of so much intercst, on account of the variants he introduces into the text. gives a much more favourable form of the "Birth" story: the father is a glorious and supernatural being, who appears to the mother in her dreams. Layamon lived on the Welsh border. and the possibility of his vistints boing drawn from genuine British tradition is generally reco nized. The poent relating a dialozue bocween Merin and his b ther bard, Talicssim, miny aloo derive from genuine tradition. \mathbf{F} wijuer than this we can lardly ventare to go; the probablity is that anything more told of the character and career of Merlin rests upon the imaginative powers and facuity of combination of Gcoffrey of Monmouth.

See also G. Paris and Uirich (Sociéts des onciens textes frangais, 1886) ; Morlin, ed. Wheatley (Early English Text Society, 1899); Arthour and Merlin, ed. Kölbing.
(J.L. W.)

MERLON, in architecture, the solid part of an embattled parapet between the embrasures, sometimes pierced by loopholes. The word is French, adapted from Ital. merlonc, possibly a shortened form of mergola, connected with Lat. mergae, pitchfork, or from a diminutive mocrulus, from marus (moerus), a wall
MERMAIDS and MERMEN, in the folk-lore of England and Scotland, a class of scmi-human beings who have thicir dwelling in the sea, but are capable of living on land and of entering into social relations with men and women.! They are easily identified, at least in some of their most imporlant aspects; with the Oid German Meriminni or Mcerirau, the Icelandic Hafgufa, Margygr, and Marmennill (mod. Marbendill), the Danish Hafmand or Maremind, the Irish Merrow or Merruach, the Marie-Morgan of Brittany and the Morforwyn of Wales;: and they have various points of resemblance to the vodyany or water-sprite and the rusalka or stream-fairy of Russian mythology. The typical mermaid has the head and body of a woman, usually of exceeding loveliness, but below the waist is fashioned like a fish with scales and fins. Her hair is long and beautiful, and she is often represented, like the Russian rusalka, as combing it with one hand while in the other she holds a looking-glass. For a time at least a mermaid may become to all appcarance an ordinary human being; and an Irish legend ("The Overflowing of Lough Neagb and Liban

The nane mermaid is compounded of there, a lake, and megd, a maid; but, though mere wif occurs in Beowulf, merc-maid does not appear till the Niddle English period (Chaucer. Romount of the Rose, \&c.). In Cornwall the fishermen my meryy-maids and uery-men. The connexion with the sea rather than with inland vaters appears to be of later origin. "The Alernaid of Martin Meer" (Roby's Traditions of Laneashire, vol. ii.) is an example of the older force of the word; and such " meer-women " are known to the country-folk in various parte of England (e.g. at Newport in Shropshire, where the town is some day to be drowned by the
"oman's agency) Wel Rinys,"Welsh Fairy Taics," in Y' Cymmrodor (1881, 1882).
the Mermaid," in Joyce's Old Cefric Romances) represents the temporary transformation of a human being into a mermaid.

The mermaid legends of all countries may be grouped as follows. (a) A mermaid or mermaids eisher soluntarily or wader comprelsion reveal things that are about to happen. Thus the two mermaids (merewip) Hadeburc and Sigelint, in the Nibelungenlied, disclose his future course to the hero Hagen, who, having got possession of their garments, which they had left on the shore, compels them to pay ransom in this way. According to Resenius, mermaid appeared to a peasant of Samsoce, foretold the birth of a prince, and moralized on the evils of intemperance, \&c. (Kong Frederichs den andens Kromike, Copenhagen, 1680, p. 302). (b) A mermaid imparts supernalural powers to a human being. Thus in the beautiful story of "The Old Man of Cury" (in Hunt's Popular Romances of the West of England, 2871) the old man, instead of silver and gold, obtains the power of doing good to his neighbours by breaking the spells of witchcraft, chasing away diseases, and discovering thieves. (c) A mermaid has some one under her prolection, and for zrong done 10 her usard cxocts a tarrible penalty. One of the best and most detailed examples of this class is the story of the "Mermaid's Vengeance" in Hunt's book already quoted. (d) A mermaid falls in love wilh a human being, lives with him as his lawoful wife for a time, and then, some compacl being unwillingly or intentionolly broken by him, departs to her true home in the sea. Here, if its mermaid form be accepted, the typical legend is undoubtedly that of Melusine (g.v.), which, being made the subject of a romance by. Jean d'Arras, became one of the most popular folk-books of Europe, appearing in Spanish, German, Dutch and Bohemian versions. (c) A mermaid falls in love with a man, and entices him to go to live with lier below the sea; or a merman wins the affection or capturcs the person of an earthborn maiden. This form of legend is very common, and has naturally been a favourite with poets. Macphail of Colonsay successfully rejects the allurements of the mermaid of Cortievrekin, and comes back after long years of tiial to the maid of Colonsay. ${ }^{3}$ The Danisb ballads are especially full of the theme; as "Agnete and the Merman," an antecedent of Matthew Arnold's "Forsaken Merman "; the " Deceilful Merman, or Marstig's Daughter"; and the fincly detailed story of Rosmer Hafmand (No. 49 in Grimm).
In relation to man the mermaid is usually of evil issue if not of evil intent. She has generally to be bribed or compelled to utter her prophecy or bestow her gifts, and whether as wife or paramour she brings disaster in her train. The fish-tail, which in popular fancy forms the characteristic feature of the mermaid, is really of secondary importance; for the true Teutonic mermaid -probably a remnant of the great cult of the Vanir-had no fisb-tail;' and this symbolic appendage occurs in the mythologies of so many countrics as to aftord no clue to its place of origin. The Tritons, and, in the later representations, the Sirens of classical antiquity, the Phoenician Dagon, and the Chaldaean Oannes are all well-known examples; the Ottawas and other American Indians have their man-fish and woman-fish (Janes, Traditions of the North American Indians, 1830); and the Chinese tell stories not unlike our own about the sea-women of their southern seas (Dennis, Folklorc of China, 1875).
Quasi-historical instances of the appearance or capture of mermaids are common enough, ${ }^{\text {b }}$ and serve, with the frequent use of the figure on signboards and coats of arms, to show how thoroughly the myth had taken hold of the popalar imagination."
'See Leyden's "The Mermaid," in Sir Walter Scott's Border Minstrelsy.
"Karl Blind, "New Finds in Shetlandic and Welsh Folk-Lore," in Gentleman's Magavine (1882).

- Compare the strange account of the quasi-human creatures found in the Niie given by Theophylactas, Mastorice, viii. 16, PR 299-302, of Bekker's edition.
H Sec the paper in Journ. Brit. Arch. Assoc., xxxvini., 1882. by H. S. Cuming, who points out that mermaids or mermen occur in the arms of Earls Caledon, Howth and Sandwich, Viscounts Boyne and Hood, Lord Lytrelton and Scott of Abbotsiord, as well as in those of the Ellis, Byron, Phenć, Skeffingion and other families The English heralds represent the creatures with a single tail, the French and German heralds frequently with a double one.

A mermaid captured at Bangor, on the shore of Belfast Lough, in the 6th century, was not only baptized, but admitted into some of the old calendars as a saint under the name of Murgen (Notes and Queries, Oct. 21, 1882); and Stowe (Annales, under date 1187) relates how a man-fish was kept for six months and more in the castle of Orford in Suffolk. As showing how legendary material may gather round a simple fact, the oft-told story of the sea-woman of Edam is particularly interesting. The oldest authority, Joh. Gerbrandus a Leydls, a Carmelite monk (d. I 504), tells (Annales, \&c., Frankfort, 1620) how in 1403 a wild woman came through a breach in the dike jinto Purmerlake, and, being found by some Edam milkmaids, was ultimately taken to Haarlem and lived there many years. Nobody could understand her, but she learned to spin, and was wont to adore the cross. Ocka Schariensis (Chronijk aan Friesland, Leeuw., 1597) reasons that she was not a fish because she could spin, and she was not a woman because she could live in the sea; and thus in due course she got fairly established as a genuine mermaid. Vosmaer, who has carefully investigated the matter, enumerates forty writers who have repeated the atory, and shows that the older ones speak only of a woman (see "Beschr. van de zoogen. Meermin. der stad Haarlem," in Verk. van de Holl. Maalsch. van K. en Wet., part 23, No. 1786).

The best account of the mermaid-myth is in Baring-Gould's Mydks of the Middte Agas. See also, besides works already mentioned, Pomoppidan, who in his logically credulous way collects much matter to prove the existence of mermaids; Maillet, Telliamed (Hague, 1755): Grimm, Deulsche Mythologie, I. 404, and Alldan. Heldenlieder (1811); Waldron's Description and Train's Hist. and Stat. Acc. of the Isle of Man; Folk-lore Society's Record, vol. ii.; Napier, Hist. and Trad. Tales connected with the South of Scotland; Sébillot, Traditions de la haute Bretagne (1882), and Contes des marins (1882).
IEROBAUDEs, FLAVIUS (sth century a.d.), Latin rhetorician and poet, probably a native of Baetica in Spain. He was the official daureate of Valentinian III. and Actius. Till the beginning of the igth century he was known only from the notice of him in the Chronicle (year 443) of his contemporary Idacius, where he is praised as a poet and orator, and mention is made of statues set up in his honour. In 181_{3} the base of a statue was discovered at Rome, with a long inscription belonging to the year 435 (C.I.L. vi. 1724) upon Flavius Merohavdes, celebrating his merits as warrior and poet. Ten years later, Niehuhr discovered some Latin verses on a palimpsest in the monastery of St Gall, the authorship of which was traced to Merobaudes, owing to the great similarity of the language in the prose preface to that of the inscription. Formetly the only piece known under the name of Merohaudes was a short poem (30 hexameters) De Christo, attributed to him by one MS., to Claudian by another; but Ebert is inclined to dispute the claim of Merobaudes to be considered either the author of the Dc Christo or a Christian.
The "Pancgyric" and minor poems have been edited by B. G. Niebuhr (1824); by 1. Bekker in the Bonn Corpus scriplorum hist. Byz. (1836); the "De Christo" in T. Birt's Claudian (1892), where the authorship of Merobaudes is upheld: see also A. Ebert, Geschichle der Literatur des Mittelaliers im Abendlande (1889).
MRROR, the general name (as Island of Meroe) for the region bounded on three sides hy the Nile (from Atbara to Khartum), the Atbara, atd the Blue Nile; and the special name of an ancient city on the east bank of the Nile, 877 m . from Wadi Halfa by river, and 554 by the route across the desert, near the site of which is a group of villages called Bakarawiya. The site of the city is marked by over two hundred pyramids in three groups, of which many are in ruinous condition. After these ruins had been described by several travellers, among whom F. Cailliaud (Voyage d Mérot, Paris, 1826-1828) deserves special mention, some excavations were executed on a small scale in 1834 by G. Ferlini (Cenno sugli scavi operati nella Nubia c catalogo deadi oggelli ritrobati, Bologna, 1837), who discovered (or professed to discover) various antiquities, chiefly in the form of jewelry, now in the museums of Berlin and Munich. The rivins were examinod in 1844 by C. R. Lepsius, wbo brought
many plans, sketches and copies, besides actual antiquities, to Berlin. Further excavations were carried on by E. W. Budge in the years 1902 and 1005 , the results of which are recorded in his work, The Egyptian Süddn: its History and Monuments (London, 1907). Troops were furnished by Sir Reginald Wingate, governor of the Sudan, who made paths to and between the pyramids, and sank shafts, \&c. It was found that the pyramids were regularly built over sepulchral chamhers, containing the remains of bodies either hurned or huried without being mummified. The most interesting objects found were the reliefs on the chape! walls, already described hy Lepsius, and containing the names with representations of queens and some kings, with some chapters of the Book of the Dcad; some steles with inscriptions in the Meroitic language, and some vessels of metal and earthenware. The best of the reliefs were taken down stone hy stone in 1905, and sel up partly in the British Museum and partly in the museum at Khartum. In 1910, in consequence of a report by Professor Sayce, excavations were commenced in the mounds of the town and the necropolis by J. Garstang on hehalf of the university of Liverpool, and the ruins of a palace and several temples were discovered, built by the Meroite kings. (See further Ethopia.)

Meroe was probably also an alternative name for the city of Napata, the ancient capital of Ethiopia, builr at the foot of Jebel Barkal. The site of Napata is indicated by the villages of Sanam Abu Dom on the left bank of the Nile and Old Merawi on the right bank of the river. New Merawi, 1 m . east of Sanam Abu Dom and on the same side of the river, was lounded by the Sudan government in 1905 and made the capital of the mudiria of Dongola.
(D. S. M. ${ }^{\circ}$)

MEROPE, the name of several figures in Greek mythology. The most important of them are the following: (i) The daughter of Cypsclus, .king of Arcadia, and wife of Cresphontes, ruler of Messenia. During an insurrection Cresphontes and two of his sons were murdered and the throne seized by Polyphontes, who forced Merope to marry bim. A third son, Aepytus, contrived to escape, and, subsequently returning to Messenia, put Polyphontes to death and recovered his father's kingdom (Apollodorus ii. 8, 5; Pausanias iv. 3, 6). The fortunes of Merope have furnished the subject of tragedies by Euripides (Cresphontes, not extant), Voltaire, Maffei and Matthew Arnold (2) The daughter of Atlas and wife of Sisyphus. She was one of the seven Pleiades, but remained invisihle, hiding her light for shame at having become the wife of a mortal (Apollodorus i. 9, 3; iii. 10 I; Ovid, Fasti, iv. 175).

MEROVINGIANS, the name given to the first dynasty which reigned over the kingdom of the Franks. The name is taken from Merovech, one of the first kings of the Salian Franks, who succeeded to Clodio in the middle of the 5th century, and soon became the centre of many legends. The chronicler known as Fredegarius Scholasticus relates that a queed was once sitting by the seashore, when a monster came out of the sea, and by this monster she subsequently became the mother of Merovech, hut this myth is due to an attempt to explain the hero's name, which means "the sea-born." At the great battle of Mauriac (the Catalaunian fields) in which Aetius checked the invasion of the Huns (451), tbere were present in the Roman army a number of Frankish focderati, and a later document, the Vita lupi, states that Merovech (Merovacus) was their leader. Merovech was the father of Childeric I. (457-481), and grandfather of Clovis (48i-511), under whom the Salian Franks conquered the whole of Gaul, except the kingdom of Burgundy, Provence and Septimania. The sons of Clovis divided the dominions of their father bet ween them, made themselves masters of Burgundy (532), and in addition received Provence from the Ostrogoths (535); Septimania was not taken from the Arabs till the time of Pippin, the founder of the Carolingian dynasty. From the death of Clovis to that of Dagobert (639), the Merovingian kings displayed considerable energy, both in their foreign wars and in the numerous wars against one another in which they found an outlet for their barbarian instincts. After 639, bowever, the race began tc decline, one alter another the kings succeeded to the throne
but none of them reached more than the age of twenty or twentyGive; this was the age of the "rois faindants." Heaceforth the real sovereign was the mayor of the palace. The mayors of the palace belonging to the Carolingian family were able to keep the throne vacant for long periods of time, and finally, in 75 the mayor Pippin, with the consent of the pope Zacherias, sent King Childeric III. to the monastery of St Omer, and shut up his young son Thierry in that of St Wandrille. The Merovingian race thus came to an end in the cloister.

Bibliography.- See Petigny, Eimdes sur l'spoque mirovingienne (Paris, 1851): G. Richter, Annalen des frankischen Reichs im Zeilaller der Merosoinger (Halle, 1873); F. Dahn, Die Konige der Germanen, vii. (Leiprig, 1894): by the same author. Urgeschichte der permanischen whd romanischen Volker, iii. (Berlin. 1833): W. Schultize, Deudsehe Geschichte vont der Urseit bis ex den Karolingern, ii. (St uttgart, 1896).

Herovingion Legend.-It has long been conceded that the great French national epics of the 1 Ith and 12 th centuries must have been founded on a great fund of popular poetry, and that many of the episodes of the ckansons de geste refer to historical thentis interior to the Carolingian period. Floopan' is obviously connected with the Gesta Dapoberti, and there are traces of the induence of popular songs on the Frankish herocs in Gregory of Tours and other chroniclers. See G. Kurth, Mïst. posk. des Mérovingiens (Paris, Crussels and Leipzig. 1893); A. Darmesteter, De Floovante vetustiord kallico posmale (Paris, 1877); FLoovant (Paris, 1859); ed. MM. F. Guessard and H. Michelant; P. Rajna. Delle Origine dell epopea francese (Florence, 188.4). with which cf. G. Paris in Romonia, xiii. 602 seq. ; F. Settegast. Quellenstudien ziIF gallo-pomaniscizen Epik (Leipzig, 1904); C. Voret2sch. Epische Studien (Halle, 1900); H. Groeber, Gruxdriss d. roman. Phil. (Bद. I1., iabt. i. pp. A47 seq.).
(C. Pr.)

MERRPILL, a city and the county-seat of Lincoln county, Wisconsin, U.S.A., 185 m . N.W. of Milwaukee, on both sides of the Wisconsin river. Pop. (IgIo census), 8689. It is served by the Chicago, Milwaukee \& St Paul railroad. The city is situated about 1270 ft . above the sez and has an invigorating climate. Brook trout and various kinds of game, including deer, abound in the vicinity. Grandfather Falls and the Deiles of the Prairie river are picturesque places near the city, and furnish good water-power. The principal public building is the Lincoln county court house, and the city contains the T. B. Scott free library, a fine high-school, and the Ravn hospital, a private institution. Riverside Park is maintained by a corporation, and a park along the Prairie river is owned and maintained by the city. Merrill is an important hardwood lumber market, and its priscipal industry is the manufacture of lamber and lumber products. The manufacture of paper and paper puip and of lathes is also important. In $1 g 05$ the factory products were valued at $\$ 3,260,638$. There are gramite quarries and brickyards in the vicinity. Merrill was settled in 1875, incorporated as a village in 1880, and chartered as a city in 1883.
ItBraimac, a river in the northeastem part of the United States, having its sources in the White_Mountains of New Hampshire, and fowing south into Massachusetts, and thence east and north-east into the Atlantic Ocean. With its largest branch it has an extremo length of about 183 m . The Merrimac proper is formed at Franklin, New Hampshirc, by the junction of the Pemigewasset and Winnepesaukee rivera. The former is the larger branch and rises in the White Mountains in Grafton county; the latter is the outlet of Lake Whnepesaukee. The valley of the Merrimac was formed before the glacial period and was filled with drift as the ice retreated; subsequently the high bood plain thus formed has been trenched, terraces have been formed, and at diferent places, where the new channel did not conform to the pre-glacial channel, the river has come upon buried ledges, relatively much more resistant than the drift below, and waterfalls have thus resulted. The river falls 269 ft , in a distance of 310 m . from Franklin to its mouth. The greater part of the total fall is at six points, and at each of four of these is a city which owes its importance in great measure to the water-power thus provided, Lowell and
"The name is an Indian word said to mean "swift water." In popelar usage the spelling "Merrimack" is used at places along tho river above Haverfill.

Lawrence in Massachusetts, and Manchester and Concord in New Hampshire; at Lowell there is a fall of 30 ft . (Pawtucket Falls), and at Manchester there is a fall of 55 ft . (Amoskeag Falls). The region drained hy the river is 4553 sq . m . in extent, and contains a number of lakes, which together with some artificial reservoirs serve as a storage system. On the navigable portion of the river, which extends $17 \frac{1}{} \mathrm{~m}$. above its mouth, are the cities of Newburyport, near its mouth, and Haverhill, at the head of navigation. In 1899-1908 the Federal government dredged a channel from Newburyport to Haverhill (14.5 m.) 7 ft . deep and 150 ft . wide at mean low water; vessels having a draft of 12.5 ft . could then pass over the outer bar of Newhuryport.
MERRIMAN, HENRY SETOA (d. 1903), the pen-name of Hugh Stowell Scott, English novelist. He was a member of the firm of Henry Scott \& Sons, and was for some years an underwriter at Lloyd's. His literary career began in r 889 with The Phastom Fulwre, and he made his first decided hit with his Russian story, The Sowers (1896), which was followed by many other well-constructed novels remarkable for excellence of plot and literary handling. The author was an enthusiastic traveller, many of his journeys being undertaken with his friend Staniey Weyman. He was about forty when he died at Melton, near Ipswich, on the igth of November 1903. Among his most successful books were Roden's Cormer (1898); The Isla of Unrest (1899); In Kedar's Tents (1897); The Valuet Glove (rgor); The Vwlures (1902); Barlesch of the Guard (1903); and The Lost Hope (1904).
MERRITT, WESLEY (5836) , American soldier, was born in New Yark City on the 16th of June 1836. He graduated at West Point in 1860, and was assigned to the cavalry service. He served in Utah (1861) and in the defences of Washington ($8861-62$) ; learnt the field dutics of his arm as aide (1862) to General Philip St George Cooke, who then commanded the cavalry of the Army of the Potomac; became brigadier-general, United States Volunteers, in June 1863; and in September 1863 was placed in command of a brigade of regular cavalry in the Army of the Potomac. He won great distinction in the Virginian campaigns of 1864-65 and in Sheridan's Valley campaign, being brevetted major-general of volunteers for his conduct at Winchester and Fisher's Hill, and brigadier-general of the regular army for his services at Five Forks. In the final campaign about Richmond he did such good service in command of a cavalry division that he was brevetted majorgeneral in the regular army and was promoted major-general of wolunteers. With two other Federal commissioners he arranged with the Confederate commanders for the surrender of the Army of Northern Virginia. He was mustered out of the Volunteer Service in February 1866, and in July became lieutenant-colonel of the gth cavalry in the regular army, being promoted gradually to major-general (1895). He served in the Big Horn and Xellowstone Indian campaigns (8876) and in the expedition to relicve the command of Major Thornburgh, who was killed in 1879 hy the Utes; was superintendent at West Point ($1882-57$); and commanded the military department of Missouri in 1887-95, and that of the Atlantic in 1897-98. He was assigned in May 1808 to the command of the United States forces that were sent to the Philippines, after Admiral Dewey's victory; stormed Manila on the 13th of August; and was military governor of the islands until the 3 th of Augusf, when he left Manila for Paris to join the peace commission. From 1899 until his retirement from active service in June 1900 he commanded the Department of the East.

MERSEBURG, a town of Germany, in the Prussian province of Saxony, on the river Saale, 10 m . by rail S. of Halle and 15 m . W. of Lcipzig. Pop. (1905), 20,024 It consists of a quaint and irregularly built old town, a new quarter, and two extensive suburbs, Altenburg and Neumarkt. The cathedral, which was restored in 1884-1886, has a choir, a crypt and two towers of the irth, a transept of the 13th and a late Gothic nave of the 16th century. Among its numerous monuments is one to Rudolph of Swabia, the rival of the emperor Henry IV. It contains
a great organ dating from the 17 tb century. Near the cathedral is the Gothic palace, formerly the residence of the bishops of Merseburg, and now used as public offices. The town hall and the Standchaus, where the meetings of the provincial estates were held, are also noteworthy buildings. The industries include the manufacture of machinery, paper and celluloid, and tanning and brewing.

Merseburg is one of the oidest towns in Germany. From 968 until the Reformation, it was the seat of a bishop, and in addition to being for a time the residence of the margraves of Meissen, it was a favourite residence of the German kinga during the toth, irth and 12th centuries. Fifteen dicts were held here during the middle ages, when its fairs enjoyed the importance whicb was afterwards transferred to those of Leipzig. The town suffered severely during the Peasants' War and also during the Thirty Years' War. From 1657 to 1738 it was the residence of the dukes of Saxe-Merseburg.
Sce E. Hoffmann, Historische Nachrichlen aus All.Merseburg (Merseburg, 1903).
MERSEN (MeERSSEn), TREATY OF, a treaty concluded on the 8th of August 870 at Mersen, in Holland, bet ween Charles the Bald and his half-brother, Louis the German, by which the kingdom of their nephew Lothair II. (d. 869) was divided hetween them. Charles reccived a portion of the kingdom of Lothalr afterwards called Lorrainc, extending from the mouths of the Rhine to Toul, together with the town of Besançon, the Lyonnais, the Viennais, the Vivarais, and the Uadge, i.e. the lands acquired hy Lothair II. in 863 at the death of his brother Charles of Provence; while Louis had the cities of Cologne, Trier and Metz, together with Alstace, the Escuens, and the Varais, i.c. the greater part of the diocese of Besançon. The boundary between the two realms was marked approximately by the valleys of the Meuse and Moselle and by the Jura. Great importance has been attached to the determination of this frontier by some historians, who consider that it coincided with the dividing line between the Teutonic and Romance races and languages; but nothing is known of the bases upon which the negotiations were effected, and the situation created by this treaty came to an end in 879.

MERSENNE, MARIN ($1588-1648$), French philosopher and mathematician, was born of peasant parents near Oize (Sarthe) on the 8th of September 1588, and died in Paris on the rst of September 1648. He was educated at the Jesuit College of La Fleche, where he was a fellow-pupil and friend of Descartes. In ibir he joined the Minim Friars, and devoted himself to philosophic teaching in various convent schoots. He settled eventually in Paris in 1620 at the convent of L'Annonciade. For the next four years he devoted himself entirely to philosophic and theological writing, and published Quaestiones celeberrimae in Genesim (1623); L'Impielte des deistes (1624); La VErild des sciences (1624).' These works are characterized by wide scholarship and the natrowest theological orthodoxy. His greatest service to philosophy was his enthusiastic defence of Descartes, whose agent he was in Paris and whom he visited in exile in Holland. He submitted to various eminent Parisian thinkers a manuscript copy of the Medilations; and defended its orthodoxy against numerous clerical critics. In later life, he gave up speculative thought and turned to scientific research, especially in mathematics, physics and astronomy. Of his works im this connexion the best known is L'Hamonie universelle (${ }^{\prime} 636$), dealing with the theory of music and musical instruments.

Among his other works are: Euclidis elementorum libri, \&e. (Paris 1626); Universue geometrices symopsis (1644): Les Mechanigues de Galite (Paris, 1634); Quertions inouies ou rdcreations des scomants (1634); Questions Bhoologigues, physiquas, \&ce. (1634); Nounelles dicouvertes de Galitie (1639); Cogitata physico-mathematica (1644). See Baillet, Vie de Descartes (1691): Poté, Eloge de Mersenne (1816).

MERSEY, a river in the north-west of England. It is formed by the junction of the Goyt and the Etherow a short distance below Marple in Cheshire on the first-named stream. The Goyt rises in the neighbourhood of Axe Edge, south-west of Buxton, and the Etherow in the uplands between Penistona
and Glossop, watering the narrow Longdendale in which are several reservoirs for the Manchester water supply. The Mersey thus drains a large part of the Peak district of Derbyshire and of tbe southern portion of the Pennine system. The general direction from Marple is westerly. At Stockport the river Tame joins from the north, rising in the moors to the north-east of Oldham, and the Mersey soon afterwards debouches upon the low plain to the west of Manchester, which lies on its northern tributary the Irwell. The Bollin joins from the south-east near Heatley, and the main river, passing Warrington, begins to expand into an estuary before reaching Runcorn and Widnes, which face each other across it. The estuary, widening suddenly at the junction of the Weaver from the southeast, $1 \frac{1}{4} \mathrm{~m}$. below Runcorn, is 3 m . wide off Ellesmere Port, but narrows to less than m . at Liverpool, and hardly exceeds a mile at the mouth in the Irish Sea. The fall of the Mcrsey is about 1600 ft . in all and about 300 from Marple; its length, including the Goyt, is 70 m . exclusive of lesser windings, and it drains an area of $1596 \mathrm{sq} . \mathrm{m}$. The estuary is one of the most important commercial waterways in the world. (Sec Liverpoor and Blrieniend.) The Manchester Ship Canal (q.o.) joins the estuary through Eastham Locks, skirts its southern shore up to Runcorn, and crosses the river several times. From the name of the river was taken the title of Lord Mersey in 1010 by Sir John Bigham (b. 1840), on his elevation to the peerage after serving as a judge of the high court from 1897 to 1909 and president of the divorce court $1909-1910$.
tersina, a town on the south-eastern coast of Asla Minor, and capital of a sanjak in the vilayet of Adana. Pop. about 15,000 including many Christians, Armenian, Greek and European. Its existence as a port began with the silting up of the barbour of Tarsus and Pompciopolis, cast and west, in the early middle ages; but it did not rise to importance till the Egyptian occupation of Cilicia (1832). It is now the busiest port on the south coast, being the terminus of the railway from Tarsus and Adana, by which (but still more by road) the produce of the rich "Alcian " plain comes'down. It is served by most of the Levantine steamship companies, and is the best point of departure for visitors desiring to see Tarsus, the Cilician remains, ard the finest scenery of the East Taurus. There is, however, no enclosed harbour, but only a good jetty. The making of a breakwater has long been under consideration. The anchorage in the roadstead is good, but the bay shoals for 2 long way out, and is exposed to swell from south-west and south. Mersina is an American mission centre, and the seat of a British vice-eonsul. Like all lowland Cilicia, it has a notoriously bad summer climate, and all inhabitants, who can do so, migrate to stations on the lower slopes of Taurus.
(D. G. H.)

MERHAYR TYDFIL, or Merthyr Tydvil, munigipal, county and parliamentary borough, and market-town of Glamor: ganshire, south Wales, situated in a bleak and hilly region on the river Taff, on the Glamorganshire Canal, and the Brecon and Merthyr, Great Western, Norlb Western, Taff Vale and Rhymney railways, 25 m . N.N.W. of Cardiff, $30 \mathrm{E} . \mathrm{N} . \mathrm{E}$. of Swansea, and 176 from London. Pop. (1901), 69,228. The town is said to have derived its name from the martyrdom of St Tydfil, daughter of Brychan, who was put to death by Saxons in the sth century. It is for the most part irregularly built and was formerly subject to severe epidemics due to defectiva sanitation; but it now possesses a supply of the purest water from the lesser Taff on the southern slope of the Breconshire Beacons. The town owes its early industrial prosperity to the abundant ironstone and coal of the district, and it thus became at an early date the chief seat of the iron industry in Wales. Four great ironworks were establisbed here hetween 5759 and 1782. With the earliest, that of Dowlais, the Guest family were associated, first as partners and later as sole owners from 1782 to sgor when the works were disposed to the company of Guest, Keen and Nettlefold. In 1765, Cyfart hfa was started by Anthony Bacon, and when firmly established, sold in 1794 to Richard Crawshay by whose descendsnts the works mere
carried on till the owners formed themselves in 1800 into a limited company (Crawshay Brothers Cyfarthfa Limited), the controlling interest in which has since been acquired by the Dowlais Company. The Plymouth works, started soon after Cyfarthfa, by Wilhinson and Guest, passed later into the hands of Anthony Hill from whose adescendants they were purchased in 1863. They were closed down in 1882, but the collieries belonging to thern continue to be worked on a large scale, yielding over 2000 tons of coal a day. The fourth great ironworks were those of Pen-y-darran which were carried on from 1782 to 1859. It was at Dowlais (in 1856) that Bessemer steel was first rolled into tails, but the use of puddled iron was not wholly abandoned at the works till 1882. It has now eighteen blast furnaces, and extensive collieries are also worked by the company, and large branch works were opened on the sea-board at Cardiff in 1891. Cyfarthfa was converted into steel works in 1883 . The iron ore used is mainly imported from Spain. Merthyr Vale is almost entirely dependent on coal-mining and has one of the largest collieries in south Wales (Nixon's Navigation). The population of this district more than quintupled between 188 r and 1gor.

From $: 850$ the government of the town was vested in a local board of health which in 1894 became an urban district council; by charter granted on the sth of June 1905, it was vested in a corporation consisting of a mayor, 8 aldermen and 24 councillors. It was made a county borough from the 1st of April 1908. It comprises about 17,759 acres, is divided into eight wards and besides the older town, it includes Penydarran (1 m . N.E.), Dowlais (2 m. N.E.), Plymouth ($\mathrm{m} . \mathrm{S}_{\text {. }}$) and Merthyr Vale ($5 \mathrm{~m} . \mathrm{S}$.). It has a separate commission of the peace, and in conjunction with Aberdare and Mountain Ash, has had a stipendiary magistrate since $\mathbf{1 8 2 9}$. The parliamentary borough which was created and given one member in 1832 and a second in 1867, Includes the parish of Aberdare and parts of the parishes of Llanwonno, Merthyr Tydfil and Vainor (Brecon).

There is an electric tramway (completed in 1901) from the town to Cefn and Dowlais. In 1901 about 50% of the population above three years of age spoke both Welsh and English, $7 \frac{1}{2} \%$ spoke Welsh only, and the remainder English only. Tbe ancient parish of Merthyr Tydfl has been divided into five ecclesiastical parishes (Merthyr, Cyfarthfa, Dowlais, Pentrebach, and Penydarran) and part of another parish (Treharris). These six parishes form the rural deanery of Merthyr in the archdeaconry and diocese of Llandaff, and in 1906 had nine churches and fifteen mission rooms. An inscribed stone (Artbeu) has been built into the east wall of the parish church; and two other inscribed stones removed from Abercar Farm in the greater Tafi valley now lie in the parish churchyard. The odd structure of the parish church has been entirely removed except the base of the tower. There is a Roman Catholic church in Penydarran Park and another at Dowlais. The Nonconformists, of which the chief denominations are the Baptists, Congregationalists and Methodists-Wesleyan and Calvinistic-had in 190682 chapels, 49 of which were used for Welsh services and 33 for English.
The public buildings include, besides the churches, a town hall and law courts (1898), drill hall (1866), library, market house, a county intermediate school, general hospital built in 1887 and enlarged in 1897, and an isolation lever hospital, 2 theatre (1894) and a fountain presented by Sir W. T. Lewis as 2 memorial to the pioneers of the town's industry. At Dowlais there are public baths (1900) and a free library which have been provided hy the owners of the Dowlais Works, Oddfellows' hall (1878), and a fever hospital (1869). At Thomas Towa there is a recreation ground of 16 acres, formed in 1902 . In 1908 the corporation purchased Cyfarthfa Castle (formerly the residence of the Crawshay family) with a park of 62 acres including a lake of 6 acres.

The Roman road Irom Cardiff and Gelligaer to Brocon passed through Merthyr and the remains of a supposed fort were discovered in Penydarran park in 1902. Tbree miles to 1 he north of Merthyr. on a limestone rock about 470 It . above the lesser (castern) Taff av the ruine of Morlals Catle, built about 1286 by Gilbert de Clare
on the northern limits of his lordship of Glamorgan, its erection causing a serious feud between him and de Bohun, earl of Ifereford, who claimed its site as part of the lordship of Brecknock.
(D. Ll. T.)
merula, georaius (the Latinized name of Grorgio Mirlani; c. 1430-1404), Italian humanist and classical scholar, was born at Alessandria in Piedmont. The greater part of his life was spent at Venice and Milan, where he held a professorship and continued to teach until his death. To Merula we are indebted tor the editio princeps of Plautus (1472), of the Scriptores rei rusticae, Cato, Varro, Columella, Palladius (1472) and possibly of Martial (1475). He also published commentarics on portions of Cicero (especially the De finibus), on Ausonius, Juvenal, Curtius Rufus, and other classical authors. He wrote also Bellum scodremse (1474), on account of the siege of Scodra (Scutari) by the Turks, and Anilquitates vicecomitum, the history of the Visconti, dukes of Milan, down to the dealh of Matteo the Great (1322). He violently attacked Politian (Poliziano), whose Miscellanea (a coilectlon of notes on classical authors) were declared by Merula to be either plagiarized from his own writings or, when original, to be entirely incorrect.
See monograph by F. Gabotto and Badini-Gonfalonieri (1894) with bibliography: for the quarrel with Politian see also C. Mciners Lebensbeschreionngas der berukmian Manmer (1796), ii. 158.
Mery, Mert or Majr, an oasis and town of Asia, in the Transcaspian province of Russia. The oasis is situated on the \mathbf{S}. edge of the Kara-kum desert, in $37^{\circ} 30^{\prime} \mathrm{N}$. and $62^{\circ} \mathrm{E}$. It is about 230 m . N. from Herat, and 280 S.S.E. from Khiva. Its area is about $1900 \mathrm{sq} . \mathrm{m}$. The great chain of mountains which, under the names of Paropamisus and Hindu-Kush, extends from the Caspian to the Pamirs is interrupted some 180 m . south of Merv. Through or ncar this gap flow northwards in parallet courses the rivers Heri-rud (Tejend) and Murghab, until they lose themselves in the desert of Kara-kum. Thus they make Merv a sort of watch tower over the entrance into Afghanistan on the north-west and at the same time create a stepping-stono or elope between north-east Persia and the states of. Bokhara and Samarkand. The present inhabitants of the oasis are Turkomans of the Tekke tribe. In 1897 they numbered approximately 240,000 . The oasis is irrigated by an elaborate system of canals cut from the Murghab. The country has at all times been renowned throughout the East for lis fertility. Every kind of cereal and many fruits grow in great abundance, e.g. wheat, millet, berley and melons, also rice and cotton. Silkworms are bred. The Turkomans poseess a famous broed of horses and keep camels, sheep, cattle, asses and mules. Tbey are excellent workers in silver and noted as armourers, and their carpets are superior to the Persian. They also make felts and a rough cloth of sheep's wool. The heat of summer is most oppressive. The least wind raises clouds of fine duot, which filt the air, render it so opaque as to obscure tbe noonday sun, and make respiration difficult. In winter the climate is very fine. Snow falls rarely, and when it does, it melis at once. The annual rainfall rarely exceeds 5 in., and there is often no rain from June till October. While in summer the thermometer goes up to $97^{\circ} \mathrm{F}$., in winter it descends to 19.5°. The average yearly temperature is 60°. Here is a Russian imperial domain of 436 sq. m ., artificially Irrigated by works completed in $\mathbf{1 8 9 5}$.

History.-In Hindu (the Puranas), Parsi and Arab tradition, Merv is looked upon as the ancient Paradise, the cradle of the Aryan families of mankind, and so of the human race. Under the name of Mouru this place is mentioned with Bakhdi (Bafkh) in the geograptry of the Zend-Avesta (Verdidad, ed. Spiegel, 1852-1803), which dates probably from at least 1200 B.c. Under the name of Margu it occurs in the cuneiform (Behistun) inscriptions of the Persian monarch Darius Hystaspis, where it is referred to as forming part of one of the satrapies of the ancient Persian Empire. It afterwards became a province (Margiana) of the Graeco-Syrian, Parthian and Persian kingdoms. On the Margus-t he Epardus of Arrian and now the Murghab-stood the capital of the district, Antiochia Margiana, so called alter Antiochue Soter, who rebullt the city founded by Aleanander the Great.

About the sth century, during tbe rule of the Persian Sassanian dynasty, Merv was the seat of a Christian archbishopric of the Neatorian Church. The town was occupied (A.D. 646) by the lieutenants of the caliph Othman, and was constituted the capital of Kborasan. From this city as their base the Arabs, under Kotaiba (Qotaiba) ibn Moslim, early in the 8th century brougbt under subjection Balkh, Bokhara, Ferghana and Kashgaria, and penetrated into China as far as the province of Kan-suh. In the latter part of the 8th century Merv became obnoxious to Islam as the centre of beretical prapaganda preached by Mokanna (q.v.). In 874 Arab rule in Central Asia came to an end. During their dominion Merv, like Samarkand and Bokhara, was one of the great schools of learning, and the celebrated historian Yaqut studied in its libraries. In 1040 the Seljuk Turls crossed the Oxus from the north, and having defeated Masud, sultan of Ghazni, raised Toghrul Beg, grandson of Seljuk, to the throne of Persia, founding tbe Seljukian dynasty, with its capital at Nishapur. A younger brother of Toghrul, Daud, took possession of Merv and Herat. Toghrul was succeeded by his nephew Alp Arslan (the Great Lion), who was buried at Merv. It was about this time that Merv reached the zenith of her glory. During the reign of Sultan Sanjar or Sinjar of the same house, in t be middle of the irth century, Merv was overrun by the Turkish tribes of the Ghuzz from beyond tbe Oxus. It eventually passed under the sway of the rulers of Khwarizm (Khiva).

In 1221 Merv opened its gates to Tule, son of Jenghiz Khan, cbief of the Mongols, on which occasion most of the inhabitants are said to have been butchered. From this time forward the city began to decay. In the early part of the 14th century the town was made the seat of a Christian archbishopric of the Eastern Church. On the death of the grandson of Jenghiz Khan Merv was included (1380) in the possessions of Timur-iLeng (Tamerlane), Mongol prince of Samarkand. In igos the city was occupied by the Uzhegs, who five years later were expelled by Ismail Khan, the founder of the Safawid dynasty of Persia. Merv remained in the hands of Persia until 1787 , when it was captured by the emir of Bokhara. Seven years later the Bokharians razed the city to the ground, broke down the dams, and converted the district into a waste. When Sir Alexander Burnes traversed tbe country in 1832, the Khivans were the rulers of Merv. About this time the Tekke Turkomans, then living on the Heri-rud, were forced by the Persians to migrate northward. The Khivans contested the advance of the Tekkes, but ultimately, about 1856, the latter became the sovercign power in the country, and remained so until the Russians occupied the oasis in 1883.

The ruins of Old Mery cover an area of over is sq. m . They consist of a square citadel (Bairam Ali Khan kalah), in m . in circuit, built by a son of Tamerlane and destroyed by the Bokharians, and anotber kalah or walled inclosure known as Abdullah Khan. North from these lies the old capital of the Seljuks, known as Sultan Kalah, and destroyed by the Mongols in 1219. Its most conspicuous feature is the burial mosque of Sultan Sanjar, reputedly dating from the 1ath century. East of the old Seljuk capital is Giaur Kalah, the Merv of the Nestorian era and the capital of the Arab princes North of the old Seljuk capital are the ruins of Iskender Kalah, probably to be identified with the ancient Mcry of the Seleucid dynasty.
New Mery, the present chief town of the oasis, founded in the first quarter of the toth century, is on the Transcaspian railway, 380 m . by rail south-west from Samarkand. It stands on both banks of the Murghab, 820 ft . above the Caspian. Pop. (1897), 8727, including Russians, Armenians, Turkomans, Persians and Jews. It has a meteorological obscrvatory. Corn, raw cotton, hides, wool, nuts and dried fruit are exported.
See E O'Donovan, The Mero Oasis (2 vola, London, 1882): C. Marvin, Mer (London, 1880): and H. Lansdell, The Russians at Mero and Heral (London, 1883).
(J.T. Be)

MERX, ADALBERT (1838 -1909), German theologian and orientalist, was born at Bleicherode near Nordhaveen on the and of November 1838 . He ztudied at Jena, where he became extraordinary profeasor in 186g. Subsequently be was ordinary
profeseor of philosophy at Tabingen, and in 1873 profeseor of theology at Giessen. From 1875 till his death be was professor of theology of Heidelberg. In tbe course of his researches he made several journeys in the East. Among his many works are: Grammatice syriace (1867-1870); Vocabulary of the Tigre language (1868); Das Gedicht vom Hiob (187t); Die Prophelie der Joel und ikre Ausleger (1879); Die Saodjanische Dberselsung der Hohenlieder ins Arabische (1882); Chrestomathia largumica (1888); Historic artis grammaticie apud Syros (1889); Ein samaritanisches Fragment (1893); Idee und Grundinien einer allgemeiner Geschichle der Mystik (1893). Merr devoted much of his later research to the clucidation of the Sinaitic palimpsest discovered in $\mathbf{1 8 9 2}$ by Mrs Agnes Smith Lewis (sec Bible, iv. 321 , ad fin.), the results being embodied in Die vier kanonischen Evangelien nach ikrem dllesten bekannten Texte (1897-1905). His last work was an edition of the books of Moses and Joshua. He died at Heidelberg on the 6th of August 1900.

IERYON, CHARLES ($1821-1868$), French etcher, was born in Paris in 1821. His father was an English physician, his mother a French danocr. It was to his mother's care that Méryon's childhood was confided. But she died when he was still young, and MEryon entered the French navy, and in the corvette "Le Rhin " made the voyage round the world. He was already a draughtsman, for on the coast of New Zealand he made pencil drawings which he was able to employ, years afterwards, as studies for etcbings of the landscape of chose regions. The artistic instinct developed, and, while he was yet a lieutenant, Méryon left the navy. Finding that be was colour-blind, he determined to devote himself to etching. He entered the work room of one Blery, from wbom he learnt something of technical matters, and to whom be always remained grateful. Meryon was by this time poor. It is understood that he might have had assistance from his kindred, but he was too proud to ask it. And thus he was reduced to the need of executing for the sake of daily bread much work that was mechanical and irksome. Among learners' work, done for his own advantage, are to be counted some studies after the Dutch etchers such as Zeeman and Adrian van de Velde. Having proved bimself a surprising copyist, he proceeded to labour of his own, and began that series of etchings which are the greatest embodiments of his greatest conceptions-the series called "Eaux-fortes sur Paris." These plates, executed from 18 so to 1854 , are never to be met with as a set; they were never expressly published as a set. But they none the less coastituted in Méryon's mind an harvonious series.

Besides the twenty-two etchings "sur Paris," characterized! below, Meryon did seventy-two etchings of one sort and another -ninety-four in all being catalogued in Wedmore's Mbryon and Meryon's Paris; hut these include the works of his apprenticeship and of his decline, adroit copies in which his best success was in the sinking of his own individuality, and more or less dull portraits. Yet among the seventy-two prints outside his professed series tbere are at least a dozen that will aid his fame. Three or four beautiful etchings of Paris do not belong to the series at all. Two or three etchings, again, are devoted to the illustration of Bourges, a city in which the old wooden houses were as attractive to him for their own sakes as were the stonebuilt monuments of Paris. But generally it was when Paris engaged him that he succeeded the most. He would have done more work, however-though he could hardly have done better work-if the material difficulties of his life had not pressed upera bim and shortened his days. He was a bachelor, unhappy in love, and yet, it is related, almost as constantly occupied with love as with work. The depth of his imagination and the surprising mastery which he achieved almost from the beginning is the technicalities of his craft were appreciated only by a few artists, critics and connoisseurs, and he could not sell his etchings, or could sell them only for about rod. apiece. Disappointment told upon him, and, frugal as was his way of life, poverty must have affected him. He became subject to hallucinations. Enemies, he said, waited for him at the corners of the streets; his few friends robbed him or owed him that which they would
never pay. A few years after the completion of his Paris series he was lodged in the madhouse of Charenton. Its order and care restored him for a while to heallh, and he came out and did a litue more work, but at bottom be was exhausted. In 867 he neturned to bis asylum, and died there in I868, In the middle Jears of his life, just before be was placed under confinement, be was much associsted with Bracquemond and with Flameng,silled practitioners of etching, while be was himself an undeniable genius-and the best of the portraits we have of him is that one by Bracquemond under which the sitter wrote that it represented "the combre Meryon with the grotesque visage."

There are twenty-two pieces in the Eaux-lortes sur Paris. Some of them are insignificant. That is because ten out of the twenty-two were destined as headpiece, tallpiece, or running commentary on some more important plate. But each hiss its value, and certain of the smaller pieces throw great light on the tim of the entire set. Thus, one little plate-not a picture at all -is devoted to the record of verses made by Meryon, the purpose of which is to lament the life of Paris. The misery end poverty of the town Meryon hed to illustrate, as well as its splendour. The art of MEryon is completely misconceived when his etchings are spoken of as views of Parks. They are often "views" but they are $s 0$ just $s 0$ far as in compatible with their being likewise the visions of a poet and the compositions of an artist. It mas an epic of Paris that Meryon determined to make, coloured trongly by his personal sentiment, and affocted here and there by the occurrences of the moment-in more than one casc, for instance, be buried with particular affection to etch his impression of some old-world building which was on the point of destruction. Nearly every etching in the series is an instance of technical skill, but even the technical akill is exercised most happily in those etchings which have the advantage of impressive subjects, and which the collector willingly cherishes for their mysterious suggestivencss or for their pure beputy. Of these, the Abside de Notre Dame it the general favourite; it is commonly held to be Méryon's masterpiece. Light and shade play monderfully over the great fabric of the church, seen over the spaces of the river. As a draughtsman of architecture, Meryon Fras complete; his sympathy with its verious styles was broad, apd his work on its various styles unbiased and of equal perfoc-tion-s point in which it is curious to contrast him with Turner, who, in drawing Gothic, often drew it with want of appreciation. It is evident that architecture must enter largely into any repreaentation of a city, however much such representation may be a vision, and however little a chronicle. Besides, the architectural portion even of Meryon's Labour is but indirectiy inaginative; to the imagination he hes given freer play in his dealinge with the figure, whether the people of the street or of the river or the people who, when be is most frankly or even wildly symbolical, crowd the sky. Generally speaking, his figures are, as regards dranghtsmanship, "lendscape-painter's figures." They are drawn more with an eye to grace than to academic correctness. But they are not "Landscape-painter's figures" at all when what we are concerned with is not the method of their sepresentation but the purpose of their introduction. They are seen then to be in exceptional accord witb tbe sentiment of the scene. Sometimes, as in the case of La Morgue, it is they who tell the story of the pictura. Sometimes, as in the case of L_{a} Rue des Manvais Gargons-with the two passing women bent together in secret converse-they at least suggest it. And sometimes, as in L'Arche du Pont Notre Dame, it is their expressive geature and eager action that give vitality and animation to the scenc. Dealing perfectly with architecture; and perfectly, as far as concerned his peculiar purpose, with humanity in his art, Méryon was little called upon by the character of his subjects to deal with Nature. He drew trees but badly, never representfog foliage happily, either in detail or in mass. But to render the characteristics of the city, it was necessary that he should know how to portray a certain kind of water-river-water, mostly sluggish-and a certain kind of sky-the grey ohscured and lower sky that broods over a world of roof and chimney.

This water and this sky Meryon is thotonghly mater of; be notes with observant affection their changes in all lights.

Méryon's excellent draughtsmanship, and his keen appreciation of light, shade and tone, were, of coursc, helps to his becoming a great etcher. But a living authority, himself an eminent etcher, and admiring Meryon thoroughly, has called Méryon by preference a great original engraver-so little of Méryon's wort accords with Sir Seymour Haden's view of etching. Meryon was anything but a brilliant sicetcher; and, if an artist's success in etching is to be gauged chiefly by the rapidity with which he records an impression, Meryon's success was not great. Tbere can he no doubt that his wort was laborious and deliberate, instead of swift and impulsive, and that of some other virtues of the etcher-" aelection" and "abstraction" as Hamerton has defined them-he shows smill trace. But a genius like Meryon is a law unto himself, or rather in his practice of bis art he makes the laws by which that art and he are to be judged.

It is worti witile to note the extrauthary enhancement in the value of i.ifroun's prints. Probably of in ather arist of genius, nost even of Whistler, could there be cited within the same period a rise in prices of at all the same proportion. Thus the first state of the "Stryge "-that "with the verses," selling under the hammer In 1873 for 65 , sold again under the hammer in 1905 for f100. The first state of the "Galérie de Notre Dame." selling in 1873 for f5, and at M. Wasset's sale in 1880 for fir, fetched in 1905. $652 .{ }^{2}$ A "Tour de I'horloge," which two or three years alter it was first issued sold for half a crown, in May 1903 feiched f70. A first state (Wedmore's. not of courve M. Delteil's " first state," which, like nearly all his first states. is in fact a trial proof) of the "Saint Etienne du mont." realizing about f2 at M. Burty' sale in 1876, realized f60 at a sale in May 1906. The second state of the "Morgue" (Wedmore) sold in 1905 for $£ 65$; and Wedmore's second of the " Abside." which used to sell throughout the "seventies for f4 or 55 . reached in November 1906 more than 1200 . At no perwad have even Durers or Rembrandis riven wo swifdy and ateadily.

Babliocenfay.-Philippe Burty, Gaselte des beans arts (1865); Description Calalogue of the Works of MCryon (London, 1879); Agtade Bouvenne, Nates as sompewirs swr Charles Meryon; P. G. Hamerton, Euching and Euchers (1868); F. Seymour Haden, Notes ot Elching; H. Béraldi. Les Peintres grownurs du div-nempidwe sidele; Baudelaire, Ledres de Bawdelaire (1907) ; L. Deltcil, Charlas MLryow (1907); Frederick Wedmore, MGryon and Mbryon's Paris, with a deacriptive catalogue of the artint's work (1879; and ed., 189a); and Fine Prixts (1896; and ed., 1905). (F. Wm)
[ESA (Span. mesa, from Lat. mensa, a table), in physical geography, a high table-land capped with hard rock, being the remnant of a former plateau. This type is general where strata are horizontal. In the process of denudation the hard rock acts as a flat protective cap preserving the regions between stream valleys or other places where denudation is especially active, in the form of "table-mountains" or "fortress-bills" Many examples are found in Spain, North and South Africa, the Bad Lands and Colorado regions of North America, in Arabia, India and Australia.

TESHCFERTABS, or MESHCHERS, a people inhabiting eastern Russia. Nestor regarded thom as Finns, and even now part of the Mordvinians (of Finnish origin) call themselves Meshchers. Klaproth, on the other hand, supposed they were a mixture of Finns and Turks, and the Hungarian traveller Reguli discovered that the tatarized Meshchers of the Obi closely resembled Hungarians. They formerly occupied the basin of the Oka (where the town Meshchersk, now Meshchovsk, has maintained tbeir name) and of the Surn, extending north-east to the Volga. After the conquest of the Kazan Empire by Russia, part of them migrated north-eastwards to the basins of the Kama and Byelaya, and thus the Meshehers divided into two branches. The western branch became russified, so that tbe Meshcberyats of the governments of Penza, Saratov, Ryazan and Vladimir have adopted the customs, language and religion of the conquering race; bat their ethsographical characteristics can be easily distinguished in the Russian population of the governments of Penza and Tambov. The eastern branch has taken on the customs, language and religion of Bashikirs, with whom their fusion is still more complete.

MESHED (properly Mash-had, "the place of martyrdom"), capital of the province of Khorasan in Persia, situated in a plain watered by the Kashaf-rud (Tortoise river), a tributary of tha

Hari-rud (river from Herat, which after its junction with the Kashaf is called Tejen), 460 mm . E. of Teheran (550 by roed) and 300 m . N.W. of Herat, in $36^{\circ} 17^{\prime}$ N., $59^{\circ} 36^{\prime}$ E., at an elevation of 3800 ft . Its population is about 70,000 fixed and 10,000 floating, the latter consisting of pilgrims to the shrine of Imam Reza. ${ }^{1}$

The town is of irregular shape, about 6 m . in circumference and surrounded by a mud wall flanked with towers. In the south-western corner of the enclosure stands the citadel (ark), within a wall 25 ft . high and a broad dry ditch which is 40 ft . deep in parts and can be flooded from neighbouring watercourses. The city has five gates, and from one of them, called Bala Khiaban gato (upper Khiaban), the main street (Khiaban), 25 yds. broad, runs in a north-west-soutb-east direction, forming a fine avenue planted with plane and mulberry trees and with a stream of water running down its middle. The shrine of Imam Reza is the most venerated spot in Persia, and yearly visited by more than 100,000 pilgrims. East wick thus describes it (Journal of a Diplomat's Three Years' Residence in Persia, London, 1864):-
"The quadrangle of the shrine seemed to be about 150 peces square. It was paved with large flagstones and in the centre waa a beautiful kiosk or pavilion, covered with gold and raised over the reservoir of water for ablutions. This pavilion was built by Nadir Shah. All round the northern, western and southern sides of the quadrangle ran, at some 10 ft . from the ground. a row of alcoves, similar to that in which I was sitting, and gilled with mullas in white turbans and dresses, In each of the sides was a gigantic archway, the wall being raised in a square from above the entrance. The height to the top of this square wall must have been 90 or 100 ft . The alcoves were white, seemingly of stone or plaster; but the archways were covered with blue varnish or blue tiles, with benutiful inscriptions in white and gold. Over the western archway was a white cage for the muazcin, and outside it was a gigantic minaret 120 ft . higb. and as thick as the Duke of York's column in London. The beauty of this minaret cannot be exagper. ated. It had an exquisitely carved capital, and above that a light pillar, seemingly 10 ft . high; and this and the shaft below the capital, or about 20 ft ., were covered with gold. All this part of the mosque (shrine) was built by Shah Abbas. In the centre of the eastern side of the quadrangle two gigantic doors were thrown open to admit the people into the adytum or inner mosque (shrine) where is the marble tomb of Imam Reza, aurrounded by a silver railing with knobs of gold. There was a fight of steps ascending to these doors, and beyond were two smaller doors encrusted with jewelsthe rubies were particularly fine. The inner mosque would contain 3000 persons. Over it rose a dome entirely covered with gold, with two minareta at the sides, likewise gilt all over. On the right of the Imam's tomb is that of Abbas Mirza, grandfather of the reigning Shah. ${ }^{2}$ Near him several other princes and chiefs of note are buried. Beyond the golden dome, in striking and beautiful contrast with it, was a smaller dome of bright blue. Here begins the mosque of Gauhar Shad. ${ }^{2}$ The quadrangle is larger than that α Shah Abbas; and at the eastern side is an immense blue dome. out of wbich quantities of grass were growing, the place being too sacred to be disturbed. In front of the dome rose two lofty minarets covered with blue tiles. In the boulevard of the Bala Khiaban is a kitchen supported by the revenues of the shrine, where 800 percons are fed daily."

The buildings of the shrine together with a space extending to about one hundred yards beyond the gates of the shrine on each side is sanctuary (bast). Within it are many shops and lodgings, and criminals, even murderers, may live there in safety. The only other notable buildings in the place are some colleges (medresseh), the oldest being the M. Do-dar, i.e. "college of two doors," built in 1439 by Shah Rukh, and some fine caravanserais, two dating from 1680.
'Abul Hnsaan Ali, al Rexif, commonly known as Imam Reas, the eighth imam of the Shiites, a son of Mush al Kazim, the seventh imam, was the leader from whom the party of the Alids (Shiites) had such hopes under the caliphate of Mamen. Gold coins (dinars) of this caliph nre extant on which al Rexa's name appears with the title of heir-appareat. The imam died in March 819 in the village Sanabad near Tus, come miles north-west of Meshed. To the Shites he is a martyr, being believed to have been poisoned hy Mamün.
${ }^{2}$ This refers to Nasr-ud-din (d. 1896), grandfather of Shan Mahommed Ali (1907).
${ }^{2}$ Cauhar Shád was the wife of Shah Rukh (1404-1447), and was murdered by that monarch's successor Abu Said. August I, 1457. Her mosque was built in 1418 .

Without the pilgrims who come to visit it, Meshed would be a poor place, but lying on the eastern confines of Persia, close to Afghanistan. Russian Central Asia and Transcaspia, at the point where a number of trade routes converge, it is very important politically, and the British and Russian governments have maintained consulates-general there since 1889 . Meshed had formerly a great transit trade to Central Asia, of European manufactures, mostly Manchester goods, which came by way of Trebizond, Tabriz and Teheran; and of Indian goods and produce, mostly muslins and Indian and green teas, which came by way of Bander Abbasi. With the opening of the Russian railway from the Caspian to Merv, Bokhara and Samarkand in 1886-1887, Russian manufacturers were enabled to compete in Central Asia with their western rivals, and the value of European manufactures passing Meshed in transit was much reduced. Ia 1894 the Russian government enforced new customs regulations, by which a heavy duty is levied on Anglo-Indian manufactures and produce, excepting pepper, ginger and drugs, imported into Russian Asia by way of Persia; and the importation of green teas is allogether prohibited except by way of Bxtum, Baku, Uzunada and the Transcaspian railway. Since then the transit trade has been practically nil. In 1890 General Maclean, the British consul-general, reported that there were 650 sill; 40 carpet and 320 shawl looms at work. The carpet-looms at work now number several hundreds, while looms of silk and shawl number less than half what they did in 1890 .
Meshed has telegraph (since 1876) and post (since 1879) offices, and the Imperial Bank of Persia opened a branch here in 1891. The climate is temperate and healthy. The coldest month is Januery, with a mean temperature of about $32^{\circ} \mathrm{F}$., while the hottest month is July, with a mean of 78°. The highest temperature recorded in a period of six years was 91°, the lowest 15°. The mean annual rainfall during nine years ($1899-1907$) was nearly 91 in , about one-eighth of it being represented by snow.
(A. H.-S.)

IEsGHREBIYA (drinking places), the Arabic term given to the projecting oriel windows ia Cairo, enclosed with latticework, through which a good view of the street can be obtained by the occupants without being seen; the term was derived from the small semicircular bows, in which porous whterbottles are placed to cool by evaporation in the air.
MESIER, FRIEDRICH (or Franz) ANFION (1733-18i5), Austrian doctor, from whose name the word "Mesmerism "was coined (see Hypnorism), was born at Weil, near the point at which the Rhine leaves the Lake of Constance, on the 23 rd of May 1733. He studied medicine at Vienna under the eminent masters of that day, Van Swieten and De Haen, took a degree, and commenced practice. Interested in ast rology, be imagined that the stars exerted an influence on beings living on the earth. He identified the supposed force first with electricity, and then with magnetism; and it was but a short step to suppose that stroking diseased bodies with magnets might effect a core. He published his first work (De planetarum infuxu) in 1766. Ten years later, on meeting with J. J. Gassner in Switzerland, be observed that the priest effected cures by manipulation alone. This Ied Mesmer to discard the magnets, and to suppose that some kizd of occult force resided in himself by which be could influence others. He held that this force permeated the universe, and more especially affected the nervous systems of men. He removed to Paris in $\mathbf{1 7 7 8}$, and in a short time the French capital was thrown into a state of great excitement by the marvelloos effects of mesmerism. Mesmer soon made many converts; controversies arose; he excited the indignation of the medical faculty of Paris, who stigmatized him as a charlatan; still the people crowded to him. He refused an offer of 20,000 francs from the government for the disclosure of his secret, but it is asserted that be really told all he knew privately to any one for 100 louis. He received private rewards of large sums of money. His consulting apartments were dimly lighted and hung with mirrors; strains of soft music occasionally broke the profound silence; and the patients sat round a kind of vat in which various chemical ingredients were concocted. Holding each others'
hands, or joined by cords, the patients sat in expectancy, and then Mesmer, clothod in the dress of a magician, glided amongat them, affecting this one by a touch, another by a look, and making "passes" with his band towards a third. Nervous badies became hysterical or fainted; some men became convulsed, or were seized with palpitations of the heart or other bodily disturbances. The government appointed a comminsion of physiciass and members of the Academy of Sciences to investitete these phenomena; Franklln and Baillic were members of uhis cosamission, and drew up an claborate report admitting many of the facts, but contening Mesmer's theory that there was an agent called animal magnetism, and attributing the effects to physiological causes. Mesmer himself was undoubtedly a mystic; and, alabough the excitement of the time led him to indulge in mummery and sensational effects, he was bonest in the belief that the pbenomena produced were real, and called for further investigation. For a time, bowever, animal magpelism fell into disrepute; it became a syucem of dowaright jugglery, and Mesmer himself was denounced as a shallow mpiric and impostor. He withdrew from Paris, and died at Meersburg in Switzertand on the sth of March 1815. He left canay disciples, the most distinguished of whom was the marquis do Puynegar.
Iessigaer (or Le Mesagner), micolas (1658-1714), French diplomatist, belonged to a wealthy merchant family. He gave up a commercial career for the hw, however, and became advocate before the parlement of Roven. In 1700 he was sent as deputy of Rouen to the council of commerce which was established in Paris for the extension of French trade. Here he made his mark, and was chosen to go on three missione to Spain, between the years 1704 and 1705 , to negotiste financal arrangements. In August 1711 he whe sent on a secret mission to London to detach England from the alliance against France. and succeeded in socuring the adoption of eight articles which formed the base of the later Treaty of Utrecht. As a reward for hris still he was made one of the three French plenipotentianes sent to Utrecht in January 1712, and had the honour of signing the treaty the next year. As he had used much of his own large fortune to keep up his state as ambasseador, he was granted a pension by the grateful king of France. His portrait by Hyacinthe Rigaud is in the gallery of Versailles.
MESAE (an Anglo-French legal form of the O. Fr. meien, mod. moyen, mean, Med. Lat. medianus, in the middle. ci. "mean"), middle or intermediate, an adjective used in several legal phrases. A mesne lord is one who has tenants holding under him, while himself bolding of a superior lord. Mesne process was such process as intervened hetween the beginning and end of a suit (see Procrss). Mesne profits are profits derived from land whilst in wrongful possession, and may be chaimed in damages for trespass either in a separate action or joined with 2 n action for the recovery of the land. The plantiff must prove that he has re-entered into possession, his tite during the period for which he claims, the fact that the defendant has been in possession during that period, and the amount of the mesne profits. The amouat recovered as mesne profits need not be limited to the rental value of the land, but may include a sum to cover such items as deterioration or reasonable costs of getting possession, \&c.
mesocriphalic, a term applied by anthropologists to those skulls which exhibat a cephalic index intermediate between the dolichocephalic and hrachycephalic crania (see Crantoxetry). Taking the longer diameter of a skull, i.e. the one from front to back, as 100 , mesocephalic skulls are those of which the transverse diameter varies between 75 to 80 .
Mesomedes of Crete, Greek lyric poet, who lived during the and century A.D. He was a freedman of the emperor Hadrian, on whose favourite Antinous he is said to have written a panegyric. Two epigrams by him in the Greek anthology (Anthol. pal. xiv. 63. xvi. 323) and a hymn to Nemesis are extant. The bymn is of special interest as preserving the ancient musical notation written over the text. Two other hymns-to the muse Calliope and to the sun-formerly
aseigned to Dlonysius of Alecandria, have also been attribnted to him.
See J. F. Bellermann, Die Hymmen des Dionysius wnd Mesomedes (1840); C. de Jan, Musici scríprores zroeci (1899); S. Reinach in Reve des undes grecques, ix (1896); Suldas, 3.0.

Mesingo Rolarion, RALtO DE (1803-1882), Spanish prose-writer, was born at Madrid on the 19th of July 1803 , and at an early age became interested in the history and topography of his native city. His Mawwal do Madrid (183I) was published when literature was at a low ebb in Spain; but the author's curious rescarches and direct style charmed the public, and next year, in a review entitled Carhas espaholas, under the pseudonym of "El Curioso pariante," he began a series of articles on the social life of the captal which were subsequently collected and called Panaremac matrilemse (1835-1836). Mesonero Romanos was elected to the Spanish Academy in 1838 and, though he continued to write, had somewhat outlived his fame when he issued his pleasing autobiography, Memorias de wa sefentor, nalural y recino de Madrid (x880). He died at Madrid on the 3oth of April 188a, shortly after the publication of his Obras completas (8 vols., 4to, 188 I).

MESOPOTAMIL (Meootoraula, sc. X6pa or Eupla, from méos, middle, тотан反s, river), one of the Greek renderings of the earlier Semitic names for the river-country that stretches eastward from northern maritime Syria. The earliest Name. appearance of a Semitic name of this kind is in the last paragraph of the hiograpby of Ahmose of el-Kab, the aged oflicer of Tethmosis (Thutmose) L. As early therefore as the late 16 tb century b.c. the name Naharin ($N^{\prime} k^{\prime}$ 'ryn') was in use. That the name was connected with nakor (a river) was plain to some of the Egyptian scribes, who wrote the word with determinative for " water" in addition to that for " country,"

The scribes show no suspicion, however, of the name's being anything but a singular. ${ }^{2}$ Is it possible that a consciousness that the word was not a plural can have survived eill the carly Christian centuries, when the Targum of Onqelos (Onkelos) rendered Nahazaim by "the river Euphrates" (Pethor of Aram which is on the Euphrotes D Deut. xxiii. 4 [5])? The Naharin or Naharen of the Egyptian texts appears some five gencrations later in the Canaanitic of the Amama letters in the form Nabrim(a), which would seem therefore to be the pronunciation then prevalent in Phoenicia (Gebal) and Palestine (Jerusalem). About the same time Naharin ($\mathrm{N}-\mathrm{h}-\mathrm{ry}-\mathrm{n}$) is given as the northern boundary of Egypt's domain (year 30 of Amenbotep or Amenophis 1II.), over against Kush in the south (tomb of Khamhet: Breasted. Anc. Rec. ii. 350).
The origin of the name is suggested by the Euphrates being called "the water of Naharin."-on the Karnak stefe more fully "the water of the Great Bend (phr wor) of Naharin (N-h-r-n)" (Breasted, Anc. Rec. ii. 263), or on the Constantinople obclisk simply "the Great Bend of Naharin" (loc. che note d). The precise meaning of phr wr is not certain. When Breasted renders "Great Bend "of the Euphrates he is probably thinking of the great sweep round between Birejik-Zeugma and Rakka-Nicephortum. W. M. Muller, on the other hand, rendering Kreislauf, explains it of the Euphrates water system as a whole, thought of as encompassing Naharin. The Sea of the Great Bend would seem to be the sea fed by the north-to-south waters of Naharin, just as the Mediserrancan, fed by the south-to-north waters of the Nile, is called the Great Circle ($3 \pi \mathrm{~mm}$).

For many centuries after Amenophis IV. the name cannot be found. The next occurrence is in Hebrew (Gen. xxiv. $10=\mathrm{J}$) where the district from which a wife for Isaac is brought is called Aram-Naharaim. The diphthongal pronunciation of the termination com is probably a much later development. We should probably read something like Aram-Naharim. The meaning is the Naharim portion of the Aramaic speaking domain. ${ }^{2}$ Proliably the author thought primarily of the district of Harran. ${ }^{3}$ Some generations later Aram-Naharim is used of the district including Pethor, a town on the west bank of the Euphrates' (Deut. xxiif
The threefold n after Nohar in a stcle of Persian or Greek times (healing of Bentresh) is probably only the determinative for ""water," a fourth n being accidentally omitted (Breasted, Ancient Records. iiti. 8434).
${ }^{2}$ Cf. Aram-Damascus, which means, the Damascus portion of the Aramaic domain: and har-Ephraim. which means, the Ephraim portion of the (Israelitish) highlands-EV" Mount Ephraim
'Halevy's suggestion that we are to look towards the Hauran, and think of the rivers of Damascus, has not met with fovour.

- Padan-Aram (Rev. Vers. bet ter Paddan-Aram), Gen; xxy, 20, \&c. rendered by the Septuagint "Mesopotamia of Syria," is obscurc. Paddan has been connected phonetically with Painn, west of tbe Euphrates, and explained by others as a synonym for Morran.
. The Syriac version of the Old Testament (znd cent. A.D. ?) Nahrin is a plural. This may or may not imply the belief that by the substitution of the normal feminine plural (for the supposed masculine) in the alternative form Beth Nahrawhtha (e.g. Wright.
Chrom, Joshua Styl. §8 49. 50). Bëth is probably the Syriac equivalent of the Assyrian Bit as in Bit-Adini (see below, 83 viii.), as is shown by such names as Bēth "Arbāyē," "district of Arabians," Beth Armayē, "district of Aramaeans." The Parapolamie of Strabo xvi. 2 I1, would be a suitable Greek equivalent. Mesopotarnia seeme to imply the view that belh is the preposition "amid," which has the same form," but need not imply the meaning "between," that is, the idea that there were precisely two rivers. There is evidetce of the use of this form as carly as the Septuagint translation of the Pentateuch (3rd cent. b.c.). It is natural to suppose it was adopted by the Grecks who accompanied Alexander's expedition. Xenophon does not use it.

As early as the time of Ephraem (d. A.D. 373) the use of the Syriac Gkairthe," island," had come in. and over a century earlier Philontratus reported (Life of A pollonius, i. 20) that the Arabs designated Mesopotamia as an island. ${ }^{2}$ This term in the form al-Gazifa became, and still is, the usual Arabic name.

The absence of any equivalent names in Babylonian or Assyrian documents is noteworthy, ${ }^{\text {a }}$ especially as the Babylonians spoke of the "Sea-Country" (matt Tamtim). The name was not distinctive enough from the point of view of Babylonia, which belonged to the same water system. Tiglath-pileser I. (Octagon Prism, $6,40,42$ seq.) sums up the resules of the military operations of his first five years as reachiag from the Lower Zab Riviera to the Euphrates Riviera (ebirlan Puratti, well rendered "Parapotamia" by Winckler ') and (Hatte-land; but this is obviously not a proper name in the same sense as Naliarin. ${ }^{3}$ That probably originated in the maritime district of Syria.

Whilst the names we have mentioned are derived from physical geography, there are related sames the meaning and origin of which are not so clear. Tethmosis (III. is mid, in a tomb which contains a picture of "the chief of Kheta," to have "overthrown contains a pints of My-tn" (Breasted, Anc. Rec. ii. 8773), which lands are mentioned also in bis hymn of victory (Breasted, Ame. Ree. are mentioned amso in his hymin of victory (receives tribute from the "chiefs of My-tn ${ }^{\text {² }}$ (Breasted. Anc. Rec. ii. \& 804). In the bilingual Hittite inscription of Tarqudimme the land is called "the land of the city of Metan." just as in the Hittite documents the Hittite country in Aria Minor is called "the land of the city of Khatti." Mctan is clearly the same as Mitanni, over against Khatti, mentioned e.g. by Tiglath-pileger I. (vi. 63), which is the same as Mitanni, everal letters from which are in the Amarna collection. Since a Mitanni princess of thesc letters is called in Egyptian scarabs a princess of Naharin, it is clear that Mitanni and Naharin are more or less equivalent, whilst in the Amarra ietters even Tushratta, the king of Mitanni, seems to use in the same way the name Khanigaibat. A shorter form of this name is Khani, which it is difficult not to connect with Khana, the capital of which at one time nas Tirga, on the Euphrates, below the Khidiur (sec \& 4). The slowiy accumulating data have not yet made it possible to determine precisely the probably varying relations of these various names.
The great astrological wark uses a term of still wider signification, Subertu, eventually Suri (written Su. EDiN; see especially Winckler's discussion in Or. Lil,-Zeif, 1907). This represented one of the four quarters of the world in the early Babylonian view, the other three being Akkad (i.e. Bobylonia) in the "north," Elam in the "south," and Amurru in the "west." It appears to have denoted the territory above Babylonia stretching from Anshan in the southeagt north-westwards. across the Tigris-Euphrates district. indefinitely towards Asia Minor. At an early time it seems to have formed along with Anshan a distinct kingdom.

Strabo (xvi. 746) makes the south limit of Mesopotamia the Median wall; Pliny (v. 24 \$21) seems to extend it to the Persian Extert. Gulf, The Latin term naturally varied-in meaning with the changing extent of Roman authority, For example, under Trajan Mesopotamia reached the gulf and was bounded by Assyria and Armenia. In modern times it is often
${ }^{1}$ There may be further evidence of the prevalence of the interpretation "amid" if the difficult baindih alhrawiths of Cureton, Anc. Syr. Doc. p. 112, 1, 21, is correctly rendered in Payne Smith, Thesaurus Syr. 469, "Mesopotamia," and if we may.assume a reading Nakrawdith for Athrowbitha.
${ }^{2}$ Compare the use of the adjective, Ephr. Op. Gr. ii. 403 (cl. B. O. i. 145, 168, 169), and the noun, B. O. ii. 108, 109.

- Mesopotamian personal rames like Na-ha-ra-a-in occur (cf. Johns, Deeds and Docmments, iii. 127); but these may be connected with a divine name Nachor.
${ }^{-}$Auszug vorderas. Gesch. 34; on the meaning see All-orient. Forsch. iii. 349.
${ }_{6}$ It вcems worth considering, however, whether ebir nari (see Johns, Assyr. Doomsday Book, 69; Winckler, Ali-or. Forsch. 212; Hommel, Anc. Heb. Trad.. index) is not in origin practically a
used for the whole Euphrates-Tigris country. That would provide a useful name for an important geographical unit, but is too misleading. In view of historical and geographical facts there is much to be said for applying the name Mesopotamia to the country drained by the Khabur, the Belikh, and the part of the Euphrates connected therewith. It would thus include the country lying between Babylonia on the south and the Armenian Taurus highlands on the north, the maritime Syrian district on the west, and Assyria proper on the east. That is practically the sense in which it is treated in this article." We may begin, however, with the definition of Jcaira by the Arabic geographers, who take it as representing the central part of the Euphrates-Tigris system, the part, namely, lying between the alluvial plains in the south and the mountainous country in the north. Measured on the Euphrates, this would be from the place where the river, having bored its way through the rocks, issues on to the high plain a little above Samsat (Samosata) only 1500 ft . above the sea, to somewhere about Hit ($\mathrm{Is}=\mathrm{Id}$), where, probably less than 150 ft . above the sea, it begins to make its way through the alluvial deposits of the last few millenniums. In these 750 m . it has desceaded less than 1400 ft . Measured on the Tigris Mesopotamia would stretch from somewhere between Jeziret-ibn-Omar and Mosul to somewhere below Tekrit.
In the tract defined, physical changes unconnected with civilization have been slight as compared with those in Babylonia; the two great rivers, having cut themselves deep channels, could not shift their courses far.
i. Nalural Divisions.-The stretch from Samsity and Jeziret-ibn"Omar to the alluvial plain seems to divide itself naturally into three parallel belts, highland watersked district, un-
dulating plains and steppe. (1) The Taurus foothill Geography. barricr that shuts of the east to west course of the Euphrates and Tigris culminates centrally in the rugged volcanic Karaja-Dāgh (6070 ft .) which blocks the gap between the two rivers, continued eastwards by the mountainous district of Tur-Abdin (the modern capital Midyst is at a height of 3500 ft .) and westwards by the elevated tract that sends down southwards the promontory of J. Tektek (c. 1950 (f.). (2) At the line where this east to west wall ends begins the sea of undulating plains where there is enough rain for abundant wheat and barley. (3) From the alluvial flats upwards toward these undulating plains is an extensive stretch of steppe land almost destitute of rain. Not far above the transition from the barren steppe is a second mountain wall ($125 . \mathrm{m}$. between extremities) roughly parallel with the first, consisting of the Sinjar chain (about 3000 it., limestone, 50 m . long. 7 m . broad). continued westwards after a marshy break by the volcanic Tell Kökab (basalt, about 1300 ft .), and then the 'Abd al- Aziz range (limesione), veering upwards towards its western end as if to meet the Tektek promontory from the north.
ii. Drainage.- The water system is thus determined. West of Tektek drains into the Belikh, east of Tektek into the Khåbür. All this drainage, collected into two rivers, the Betikh and the Khäbür, is towards the left bank of the Euphrates, for the Mesopotamian watershed seems to be only some is m . or less from the Tigris until, south of the Sínjar range, it lies farther west, and tha Tharthür river is possible. The Belikh'(Balich, Bilechas Bediecos'), a stream some 30 ft . wide, has its main source some 50 m . north in the Ain Khaln ar-Rabmăn, but receives also the waters of tha united Nahr al-Kite (in its upper course formerly the Daisăn. Enioros) from Edessa and Koppru Dägh, and the Jullảb from Tektek Dägh about as much fariher north. The Khăbür (Chabur, Chabōras ${ }^{1}$), $80-100 \mathrm{ft}$. wide, belore its last 40 m . reach in a south. west direction, has a 70 mm . reach due north and south from Tell Kökab (about i 300 ft .), near which are united the Jaghjagh (earlier, Hirmes, 20 ft. in width), which has come 50 m . From Nasibin in the north-east, bringing with it the waters of the many streams from the Tür 'Abdin highlands; the north ${ }^{\circ} \mathrm{A}$ wij, which at certain scasons brings much water due south from Mardin, and the main strean of the Khabbür, which has come 60 m . From Ras al-'Ain in the north west, after flowing 50 m . by way of Wêrānshahr from Karaja Dãg in the north. The Tharthar (Assyrian TarLar, in Tukulti-Ninib II: inscription) begins in the Sinjar range and runs southwards, to lose itsclf in the desert a litele above the latitude of Mil. So it was two generations before Ahab (Annales de Tukulti Ninip. V. Scheil, 1909). The Arabian geographers represent the Tharthår al connected at its upper end (by a canal?) with the Khabür systems

[^13]8i. Characler of Surface. ${ }^{1-}$ (1) The tract between the Belikh and the Euphrates is in its middle section exceedingly fertile, as is implied in the name Anshemusit, and according to \mathbf{v}. Oppenheim (2. d. Gesellsch. f. Erdkunde, 36, 1901, p. 80) the same is true of the mouthern portion also. The plain extending from Urfa to a dozen miles below Harran has a rich red-brown humus derived from the Nimrud Disht cast of Edessa. (2) The roiling plains north of the -Abd al "Aziz Sinjar mountain wall are intersected by the many ereams of the Khãbūr system (the Arab geographer Mustauli opeaks of 300 feeders), which under favourable political and adminigrative conditions would produce a marked fertlity. At Nasibin (Nisibis) rice is cultivated with success. (3) The country south of the mountain range is steppe land, imperfectly known, and of lictle use except for nomadic tribes, apart from the banks of the rivers (on which eee Euphrates. Trgris). It consists mainly of grey dreary flats covered with selenite: and a lit tle below the surface, gypsum. Bitumen is found at Hit, whence perhaps its name (Babylonian Id in Tukulti Ninib II.'s inscription referred to above), and near the Tigris. ${ }^{2}$
v. Climatc. ${ }^{2}$-Mesopotamia combines strong contrasts of climate,

and

is a connecting link between the mountain region of western
Asia and the desert of Arabia. At Der ez-Zor. for example, the heat is intense. (1) In the steppe, during the sandstorms which frequently blow from the West Arabian desert the temperature may rise to $122^{\circ} \mathrm{F}$. On the other hand, in winter the warm curtents coming in from the Persian Gulf being met to a large extent by northerly currents from the snow-covered tracts of Armenia. are condensed down on to the plain and discharge moisture enough to cover, the gravel steppes with spring herbage. (2) In the higher plains, in mid winter, since the high temperature air from the gulf 5 drawn up the valleys of the Euphrates and the Tigris there may be, e.g. at Mossul, a "damp mildness." In spring the grass on the rolling plains is soon parched. So when the hot sandstorms blow in the lover steppe the scorching heat is carried right up to the foot of the mountains. On the other hand. since the spurs of the Taurus bring the winter cold a long way south, and the cold increases from west to east as we leave the mild coast of the Mediterranean far down into the Mesopotamian plain the influence of the snowcovered ridges can be felt, and in the higher parts of the plain snow and ice are not infrequent; and although there is no point of sufficient altitude to retain snow for long, the temperature may fall as low as $14^{\circ} \mathrm{F}$., especially if the cold north winds are blowing.

The cycle of vegetation begins in November. The first winter sains clothe the plain with verdure, and by the beginning of the year various bulbous plants are in bloom. The full summer development is reached in June. By the end of August everything is burnt up: August and September are the low-water months in the rivers. March to May the time of good.
v. Flora.'-(I) Botanical lists have been published by von Oppenheim (Vom Mitchmear zum Persischen Golf, ii. 373-388) of a collection made in 1803 containing 43 entrics for Mesopotamia, and by E. Herzfeld (Herbaraufnahmen aus Kal'at Serkdif-Assup, in Beikeft II. zur Or. Lil.-Zeil, 1908. pp. 29-37) of a collection made in 1903-1905 in the neighbourhood of Assur. containing 181 entries. (2) The following are among the more important products of the central zone of Mesopotamia: wheat, barley, rice (e.f. at Sarūj, the Khäbür), millet, sesemum (for oil, instead of olive). dura (Hoccus sorghum and H. bicolor); lentils, peas, beans, vetches; cotton, hemp. fiower, tobacco; Medicago sativa (for horses); cucumber, melons, wrater-melons, figs (those of Sinjar famed for sweetness), dates (below, 'Ana and Tekrit); a few timber trecs; plane and white poplar (by streams), willow and sumach (by the Euphrates). The sides of Karaja-Dagh, J. "Abd el-Aziz and Sinjar, are wooded, but not now the neighbourhood of Nisibis, (3) In the steppe the Fegetation is that which prevails in similar soll from Central Asia to Algeria: but many of the arborescent plants that grow in the rockier and more irregular plateaux of western Assia, and especially of Persia, have been reported as missing. Endless masses of tall weeds, belonging to a few species, cover the face of the countrylarge Cruciferae. Cynareae and Umbelliferae--also large quantities of liquorice (Clycyrfiza glabra and echimala) and Lagynychium and the white cars of the Imperata. In autumn the withered weeds are torn up by the wind and driven immense distances.
vi. Fauna. ${ }^{\text {B }}$-The following abound: wild swine, hyaena, jackal, chectah, fox: gazelle (in herds), antelope species (in the steppe) jectoa, mole, porcupine, and especially the cnmmon European rat (in the descrt); bat, long haired descrt hare. The following are wolf, among others a variety of black wolf (Canis lycaon), said to be found in the plains; lion, said to roam as far as the Khābur. On the Euphrates are the following: vulture, owl, raven, \&c.. also the falcon (Tinnanculus alaudarixs), trained to hunt. Among pame birds are: wild duck and goose. partridge, francolin, some Chinds of dove, and in the steppe the buzzard. The ostrich seems anmost to have disappeared. Large tortoises abound, and, in the 'Ain el-'Arüs pool. fresh-water turtles and carp. Of domestic

${ }^{1}$ Ritter, Erdkunde, xi. 493-498.
 - See Geog. Journ. |x. 528-532 (with map).

${ }^{3}$ Ritter, xi. 498-499. ${ }^{4}$ Ibid., xi. 499-502. "Ibid., xi. 502-580.
animals in the steppe the first place belongs to the camel; next come goat and sheep (not the ordinary fat-tailed variety): the common buffalo is often kept by the Arabs and the Turkomans on the Euphrates and the Tigris; on the Euphrates is found the Indian zebu.
vii. Towns." -The towns that have survived are on the rivers. Such are Samsảt (see Samosata), Ralka (Nicephorium) above the mouth of the Belikh, Dēr ez-Zör, a rising town on the right bank, where there is (since 1897) a stone bridge, 'Ana (on an island; see Ana). Hit (Is, Bab. /d), on the Euphrates; Jezirct ibn 'Omar, Mósul (q.v.). Tekrit, on the Tigris; Edessa (q.v.), Harran (q.v.). on confluents of the Belikh; Vëränshehr (Tela). Rass al- 'Ain (Rhesaena), Mardin (half-way up the mountain wall), and Nasibin (Assyr. Nasibina, Nisibis), on confluents of the Khâbür; Sinjâr (Singara) on the Tharthôr. Villages are more numerous than has often been supposed. Von Oppenheim counted in the district west of Edessa and Barrân, in a ssretch of two days' march, 300 flourishing villages.

At one time, however, Mesopotamia was teeming with fife. The lines of the rivers are marked at frequent intervals by the ruins of flourishing towns of Assyrian, Roman and Caliphate times. Such are Birejik, Jerß̌bless. Tell Ahmar, Kōl 'at en-Najm, Balis, Karkisiyă (Qarqisiya, Circesium), on the Euphrates; Kuyunjils, Nimrud on the Tigris; Khossibaid on a small tributary: 'Arban, Tell Khalaf, on the Khabuur. The interesting oasis town el-Hadr (Hatra) is near the Tharthalr. Excavation has hardly begun. The country is covered with countless mounds (ellis), each of which marks the site of a town. The documents from the ancient Tirqa said to have been found at Ishâra, a few milcs belowKarkisiyå, are referred to below (§ 4). At Anaz ($=$ Dūr of Tiglathpileser (V.) was found in rgor a slab (Pognon, Inscript. sém. de la Syric. Plate xxvi. No. 59) With a bas-relicf and an inseription of the governor of Dür. MushezzibShamash. ${ }^{7}$. The stcle referred to below (87 , end) as being probably' Nabonidus's was found in 1906 some 15-20' W. of Eski-Hartana, a little nearer to it than to Hmeira, which is west of Eski-Harrann, an hour and a half north-east of the ruins of Harrin. Parte of Mesopotamia have probably always harboured wandering tribes. Exactly how far the intervening lands beyond reach of the streama have done so it is difficult to make out. Fraser (Short Cut io India, p. 134) insists that in the undulating plains the direct rainfall is quite sufficient for agricultural purposce
viii. Political Divisions.- On the whole the natural lie of the country has been reflected in the political divisions, which have of course varied in detail. We only mention some of those most often occurring. In the pre-Persian period. besides those referred to elsewhere, we may cite Kashyari (Tur 'Abdin), Guzanu (Gozan of 2 Kings xvii. 6; in the Khābür dlstrict). Bit Adini (Ostoene), Kummukh (north-west corner and beyond): in the Roman period, Osroene (q.v.), Mysdonia (in the east), and in Syriac usage Bẽth 'Arbayye (between Nisibis and Mósul): in the Arab period, Diarbekı (TOr 'Abdin), Diatr Rebi'a (Mygdonia), Diär Mudar (Osroenc).
ix. Roods.--The routes of communication have probably changed little in the last 5000 years. It has not yet been proved that Edessa is an ancient city (see Edessa: 8) but it probably was, and its neighbour Hartin, the tower of which can be seen from it, bears a name which seems to indicate its position as a highway centre. (I) An obvious scries of foutes followed the course of the rivers: from Thapsacus (Dibse) down the Euphrates, from Jexirel ibn "Ornar down the Tigris. from Circesium up the Khabur. The Euphrates was crossed at Bircjik (Til Barsip?), or Jerablus (Car. chemish?), or Tell Abmar (unidentified), or Thapsacus. ${ }^{10}$ (2) Probably the modern route from Samosata eastwards behind the Karaja Dägh to Diarbekr was also well known. The same is doubtless true of the route from Osrocae by Ras al- Ain and Nasibin and that by Verānshehr and Märdín to the Tigris. About other cross-roads, such as those from Harrin to Tell Shaddada on the lower Khäbür, or from 'Āna by al-Hader to Mospul it is difficult to say.

Functionally, Mesopotamia is the domain that lies between Babylonia and the related trans-Tigris districts on the one hand, and the west Asian districts of Maritime Syrin and Historya Asia Minor on the other. Its position has given it a Earliast long, complicated and exciting bistory The great \boldsymbol{T} mes. rivers, in later times theoretically regarded as its boundaries, have never really been barriers (cf. e.g. Winckler, Allorient. Forschungen, iii. 348), whence the vagueness of the geographical terminology in all times. Its position, along with its character, has prevented it often or long, if ever, playing a really independent part.
Who the earliest inhabitants of Mesopotamia in appraximately historical times were is not yet clear. It is possible that its

- Ritter, Erckumde, xi. 279-492.

'For the interpretation cl. Or. Lit.-Zeit. xi. 242-244.
B On the interpretation see P. Dhorme. Rev. Bibl. (Jan., 1go8).
: Ritter, Erdkunde, xi. 265-278.
${ }^{10}$ On these and other crossing places, see Ritter, Erdkunde, x. 5-1004.
connexion with the north, and Asia Minor, goes back to a very early date. It may be that some of the early north Babyionian kingdoms, such as Kish, extended control thither. The earliest Bahylonian monarch of whose presence in Mesopotamia there is positive evidence is Lugalzaggist (before 2500 B.c.), who claims, with the help of En-lil, to have led bis countless bost victorious to the Mediterranean. His empire, if be founded one, was before long eclipsed, however, by the rising power of the Semites. Excavation in Mesopolamia may in time cast some light on the questions whether the Semites really reached' Bahylonia by way of Mesopotamia,' when, and whom they found there, and whether they partly setuled there hy the way. Whether Sharru-GI, Manishtusu and Remush (often called Uru-musb) really preceded, and to some extent anticipated, "Sargon" i.e. Shargani-sharri, as L. W. King now ${ }^{2}$ plausibly argues, is not certain; nor whether the 32 kings who revolted and were conquered by Manishtusu, as we now learn, were by the Mediterranean, as Winckler argued, or by the Persian Gulf, as King holds. That Sargon was or became supreme in Mesopotamia cannot be douhted, since there is contemporary evidence that he conquered Amurru. The three versions of the proceedings of Sargon (Sharru-GI-NA) in Suri leave us in doubt what really happened. As he must have asserted himself in Mesopotamia before he advanced into the maritime district (and perbaps beyond: see Sarcon), what is referred to in the Omens and the Chronicle 26,472 may be, as Winckler argued (Or. Lil.-Zeif, 1907, col: 206), an immigration of new elements into Suri-in that case perhaps one of the early representatives of the "Hittite" group. According to the Omens text Sargon seems to have settled colonies in Suri, and suggestions of an anticipation of the later Assyrian policy of transportation have been found by King (op. cif.) under the rulers of this time, and there are evidences of lively intercommunication. Mesopotamia certainly felt the Sumero-Babylonian civilization early. It was from the special type of cuneiform-developed there, apparently, that the later Assyrian forms were derived (Winckler, Allorient. Forsch. i. 86 seq.). What the " revolt of all lands" ascribed to the later part of Sargon's reign means is not yet clear; but he or his son quickly suppressed it. Mesopotamia would naturally share in the wide trade relations of the time, probably reaching as far as Egypt. The importance of Harrān was doubtless due not only to its fame as a seat of the Moon-god Sin, honoured also west of the Euphrates, and to its political position, but also to its trade relations. Contemporary records of sales of slaves from Amurtu are known.

When the Semitic settlers of the age of Sargon, whom it is now common with some justice to call Akkadians (see Sumer), had become thoroughly merged in the population, there appeared a new immigrant element, the Amurrü, whose advance as far as Babylonia is to be traced in the troubled history of the postGudean period, out of the confusion of which there ultimately emerged the Khammurabi dynasty. That the Amurri passed through Mesopotamia, and that some remained, seems most probable. Their god Dagan had a temple at Tirqa (near 'Ishara, a little below Circesium), the capital of Khana (several kings of which we now know by name), probably taking the place of an earlier deity. At Tirqa they had month names of a peculiar type. It is not improhable that the incorporation of this Mesopotamian lingdom with Bebylon was the work of Khammurabi himself.

Not quite so successful eventually was the similar enterprise farther north at Asshur [or Assur (q.o.)] on the east margin of Mesopotamia, alchough we do not know the immediate outcone of the struggle between Asshur and the Girst Babylonian king, Sumu-abi. Possibiy the rulers of Bahylon had a freer hand in a cily that they apparently raisad to a domimant position than the Semitic rulers of Asshur, who seem to have sweceeded to men of the stock which we have hitherto called Mitanni, if we may judge
' On the thoory that it was climatic changes in Arabia that drove the Senrites to seek new homes along the route mentioned above, see L. W. King. History of Sumer and Akkad (1910), which appeared after this article was writien.
${ }^{1}$ See the preceding note.
from the names of Ushpia who, according to Shalmaneser I. and Esarhaddon, built the temple, and Kikia who, according to Ashur-rem-nisheshu, built the city wall.' The considerable number of such names already found in First Dynasty records seems to show that people of this race were to be found at home as far south as Babylonia. Whether they were really called Shubarl, as Ungnad suggests. we may know later.

When Khammurabi's fifth successor saw the fall of the Amorite dynasty in consequence of an inroad of "Hittites," these may have been Mesopotamian Shubari-Mitanni, but they may, as Ungnad suggests, represent rather an-

Altimo cestors of the Hittites of later times. It is difficult in any case not to connect with this catastrophe the carrying away to Khani of the Marduk statue afterwards recovered by Agum, one of the earlier kings of the Kassite dynasty. Whether Hittites were still resident at Khana we do not know. The earlier Kassite kings of Bahylon still maintained the Amorlte clairo to "the four quarters: " but it is improbable that there was much force behind the claim, although we have a document from Khana dated under Kashtiliash. It is just as uncertain how long Asshur remained under the Babylonian suzerainty of which there is evidence in the time of Khammurabi, and what the relation of Asshur to western Mesopotamia was under the early kings whose names have lately been recovered. All these matters will no doubt be cleared up when more of the many vells of Mesopotamia are excavated. Only two have been touched: 'Arban on the Khabar, where remains of a palace of uncertain date, among other things an XVIII. dynasty scarab, were found by Layard in 1851, and Tell Khalaf, where the confuents join, and remains of the palace of a certain Kapar, son of Hanpan of "Hittite" affinities but uncertain date, were found by von Oppenheim in 1809. A long inscription of a certain Shamshi-Adad [Samsi-Hadad], extracts from which are quoted by Delitesch (Miff. d. Deulsch Or.Gesellschoff No. 21 p. 50), unfortunately cannot be dated exactly, or with certainty even approximately; but if Delitzsch and Ed. Meyer are right, it belongs to a time not many generations after Agum recovered the Marduk statue. Shamshi-Adad's claims extend over the land between the Tigris and the Euphrates, and he says that he erected memorials of himself on the shore of the Great Sea.
The mystery of the Hyksos has not yet been solved; but it is not impossible that they had relations with Mesopotamia. After they had been driven out of Egypt (q.0.), when Abmose, the officer of Tethmosis (Thutmose) I., mentions Nabarin (late 16tb century), he does not say anything about the inhabitants. He seems to imply, however, that there was more than one state. The first mention of Mltanni, as we saw, is under Tethmosis III., who clearly crossed the Euphrates. It is at least possible that common enmity to Mitanni led to a treaty with Aseyria (under Ashur-nadin-akhe). ${ }^{*}$ Victorious expeditions into Naharia are claimed for Amenophis II., Tethmosis IV. and Amenophis III. The Egyptian references are too contemptuous to name the rulers; but Shaushatar may have begun his reign during the lifetime of Tethmosis III., and from cuneiform sources we know the names of six otber Mitanni rulers. As they all bear Aryan names, and in some of their treaties appear Aryan deities (Indra, Varuse, Mithre, \&c.), it is clear that Mesopotamia had now a further new element in its population, bearing apparently the name Kharri.' Many of the dynasts in North Syria and Palestine in the time of Tushtatta bear mames of the same type. The most natural explanation is that Aryans had made their way into the bighlands east of Assyria, and thence bands had penetrated into Mesopotamia, peacefully or otherwise, and then, like the Turks in the days of the Caliphate, founded dyoasties. The language of the Mitanni state, however, was deither Aryan dor Semitic, and may very well be that of the mysterious "Hittite" bieroglyphie inscriptions (see HIrIItEs). Mitanni was one of the great powers, alongside of Egypt and Babylonia, able to send to Ebypt the Ninevite 'Ishtar; and at this time as much as at any

[^14]other, we must think of common political refations binding the districts east and west of the Euphrates. The king mentioned above (Shaushatar) conquered Asshur (Assur), and Assyria remained subordinate to Mitanni till near the middle of the 14th ceatury, when, on the death of Tushratta, it overthrew Mitanni with the help of Alshe, a north Mesopotamian state, the allies dividing the territory between them. The Hittite king's interference restored the Mitannite state as a protectorate, but with a smaller territory, probably in the north-west, where it may have sarvived long.

Assyria was now free, and Ashor-uballit [Assur-yuballidh acc. to Saycel knew how to make use of his opportunities, and, in the words of his great grandson, " broke up the forces of the widespread Shubari " (AKA, p. 7, L 32 seq.). Knowing what we know of the colonizing power of the Assyrians, we may assume that among the "Mitanni" and other elements in the Mesopotamian population there would now be an increase of people of "Astyrian" origin. On the tangled politics of this period, especially Mesopotamia's relations with the north-west, the Boghaz-Keui documents may be expected to throw a great deal of light. We know already a little more of the chequered bistory of the Amorites in the Naharin district, beset by great powers on three sides. When Mitanni fell Babylon no doubt adhered to its older claims on Mesopotamia; but the Kassite kings could do bitle to contest the advance of Assyria, although several rectifications of the boundary between their spheres are reported.

Mitanni's fall, however, had opened the way for others also. Hence when Ashur-uballit's grandson, Arik-den-ili (written Aracosomans. PU.DI.ili), carried on the work of enforcing Assyria's claim to the heirship of Mitanni, he is described as conquering the warriors ${ }^{2}$ (?) of the AkHame and the Sutl. The references to these people, who practically make their first appearance in the Amarna correspondence, show that they were unsottled bands who took advantage of the boosening of authority to introduce themselves into various parts of the country, in this case Mesopotamia. Gradually settlements were made, the names of many of which are given hy the various Assyrian kings who had at one time or another to assert or reassert supremacy over them-such as Chindanu, Laqe, Suhi along the South Euphrates boundary of Mesopotamia, and various disuricts bearing names compounded with Bit $=$ settlement (see above), such as Bit-Adini (nearly equal the later Osroene; see Edessa), or Bit-Zamani in the north near Diarbekr. The specific name Aramacan first appears in the annals of Tigiath-pileser I., undess we identily the Arimi of Shalmaneser I. in Tur 'Abdin with the Aramu;' but the name may probably with finess be applied to a very large number of the communities mentioned from time to time. Their position in Mesopotamia must have been very like that of the Shamratar af the present time (see ad fr.). As they gradually adopted settled life in various parts of the country the use of Aramaic spreed more and more (see below, \% Persians ').

Meanwhile Mesopotamia continued to be crossed and recrossed by the endless marches of the Assyrian kings (such as

neturies

 Enpis. Adad-nirari, Shalmaneser I. and his son), building and rehuriding the Assyrian empire (see Babylonia and Assyria), and eventually pushing their conquests towards Asfa Minor at the expense of the Hittite domain. II, on the fall of the Kassites, Nebuchadrezar I. estahlished more direct relations between Mesopotamia and Babylon, his work was presently undone by the vigorous campaigns of Tiglath-pileser 1., who seems to have even won Egypt's sanction of his suecession to the Hirtite claims. The newly recovered (1 1909) tablet of Tukulti-Ninib, the grandfather of Shamaneser II., is interesting from its account of an expedition down the course of the Tharthar to Hit = Id (river and town now first mentioned in cuneiform sources) and up the Euphrates to the Khibor district.[^15]Now that Mesopotamia had passed out of the hands of Babylon, all that the later kings could do was to encourage local Mesopotamian rulers in their desire for independence (Nabuapluiddin). These were convinced that Assyria was master, but refused their tribute when they thought they dared. To thoroughiy overpower the troublesome Bit-Adini (see above, 8. 3, viii.), which had naturally been aided by the states west of the Euphrates, Shalmaneser II. (860-825) settled Assyrians in their midst. Harrin was one of the few places that remained on his side during the great insurrection that darkened his last days. Similarly the province of Guzanu (Heb. Gozan; 「au̧aüřs), on the Kahbar, held with the capital Asshur in the insurrection that occurred in 763 (the year of the eciipse), when evidently some one (an Adad-nirari ?) wore the crown, at least for a time. Harran was clearly closely associated with Asshur in the rights and institutions that were the subject of so much party struggle in the new Assyrian empire that began with Tiglath-pileser IV. (see Babylonia and Assyria). When the policy of transporting people from one part of the empire to another was developed, new elements were introduced into Mesopotamia, amongst them Israelites, of whom perhaps traces have been found in the neighbourhood of Harrin at Kannu'.4 These new elements may have been more organically attached to the Assyrian state as such than the older inhabitants, to whom the affairs of state at Nineveh would be of little interest. On the conditions at Harran some light is thrown by the census partly preserved in Ashurbanipal's library. The governors of several Mesopotamian cities, such as Nasibin, Amid, took their turn as eponyms; but this would not have much significance for the people. Hence even the fall of Nineveh ($607 \mathrm{~B} . \mathrm{c}$.), apart from what such cities \ln Mesopotamia as hald hy lts last kings suffered through the invasion, first perhaps of Nabopolassar, who in 600 B.c. claims to be lord of Shubara, and then of the Medes, would be a matter of comparative indifference; tribute paid to Babylon was just as hard to find as if it were going to Nineveh. Necho did not succeed, like his great XVIIIth dynasty predecessor, in crossing the Euphrates. He was defeated by Nehuchadrezzar at Carchemish (60 s.c.), and Mesopotamia was confirmed to Babylon. Its troubles hegan again shortly after Nehuchadrezzar's death; the Medes seized Mesopotamia and besieged Harran. Before long, however, the overthrow of Astyages by Cyrus cleared Mesopotamia, and Nabonidus (Nabu-naid) was ahle, drawing on the resources of the whole of Syria for the purpose, to restore the famous temple of Sin at Harran, where a few years later he erected in memory of his mother, who seems to have been a priestess there, the stele published in 2907 by Pognon.

The fragmentary nature of the records does not enable us to follow the steps by which Cyrus became master of Mesopotamia, in which he probably met with little or no resistance. How much of Mesopotamia was involved in the revolt of what the Persian inscription calls Assyria (Athur) is not clear. Nor does it appear with certainty to which of the twenty satrapies into which, according to Herodotus, the Persian empire was divided, Mesopotamia belonged; probably it was included in "Abar nahdra. The fact is, we have no information from native squrces. The probability is that conditions remained very much what they had been; except that the policy of transportation was not continued. The satraps and other high officials would naturally be of Persian extraction; hut local affairs were probably managed in the old way. and there was no important shift of population. The large Aramaic infusion had by this time been merged in the general body of the people. These settlers doubtless infuenced the "Assyrian " language;" hut gradually, especially in the west, their own language more
15. Schiffer, Keilimschiftiche Spuren der in der moeiten Hdiflo des 8. Jahithuderts bon den Assyrern mach Mesopotamien deportierten Samarker (10 Stamme) (1g07); C. H. W. Johns in Proc. Soc. Bib. Arch. (March, May, 1908).
"C. H. W. Johns, An Assyrian Doomsday Boot (1901).

- For the history from the time of Herodotus onwards, set Ritter. Endkunde, x 6-284.
'M. Streck, Kilio, vi 222 zeq.
and more prevailed. Although Aramaic inscriptions of the Assyrian period, like those of Zanjirli or that of King 2KR of Hamath, have not been found in Mesopotamia, already in the time of Shalmanescr II. mention is made of an Aramaean letter (Harper, Ass. Bab. Lelters, No. 872, ohv. 1 10), and Aramaic notes on cunciform documents begin to appear. Weights with Aramaic inscriptions (the oldest from the reign of Shalmaneser IV., 727-22) were found at Calab. By the Achaemenian period Aramaic had become the international language, and was adopted officially.
How Mesopotamia was affected by the passing of Persian armies on their way to suppress revolts in Syria or Egypi, or to conquer Greece, we do not know; on the whole it probably enjoyed unwonted peace. The expedition of Cyrus the Younger, with which Xenophon has made us so lamilar, only skirted the left bank of the Euphrates. The route followed by Alexander, though he also crossed at Thapsacus, took him unresisted across the northern parts; but the poor people of Mesopotamia suffered from the measures taken by their satrap Mazaeus to impede Alexander's progress. In spite of this, where Cyrus failed Alexander succeeded.

What would have happened had Alexander lived we can only guess. Under the Seleucids Babylon was moved across the nellonasm. plain to Seleucia; but before. long the central authority was transferred to the other side of Mesopotamia, Antioch or elsewhere-a fateful move. It is improbable that cuneiform and the Babylonion language continued to be used in Mesopotamia during the Hellenistic period, as it did in Babylonia, where it was certainly written as late as the last century b.c.;' and may have been a learned language till the second Christian century.' Unfortunately there are no native documents from the pre-Christian Hellenistic period. That the Hellenizing process went as far as it did in Syria is unlikely; and even there Aramaic remained the language of the people, even in the towns (cf. Edessa). Still, Greek influence was considerable. This would be mainly in the towns, the growth ol which was quite a feature of the Macedonian rule in Mesopotamia (Pliny, vi. 30, $\delta 117$). ${ }^{2}$ This is seen in the Greek names which now appear: such are Seleucia opposite Samosãta, Apamea ($=$ Birejik) opposite Zeugma, Hierapolis ($=$ Membij), Europos, Nicatoris, Amphipolis ($=$ Thapsacus, or near it), Nicephorium (er-Ralka,) Zenodotium (stormed by Crassus), all on or by the Euphrates; Edessa (g.v.) on the upper waters of the Belikh, Ichoae (perhaps Khnes, above the junction of the Qaramuch with the Belikh). These are all in the Osrocne district; but Naşibin became an Antioch, and as its district was known as Mygdonia (from Macedon) there were doubtless many other Greek settiements. To a less extent the same influences would be at work in towns called even by Western writers by their real names, such as Batnae, Carrhae (Charran), Rhesaena.

Mesopotamia naturally had its share of suffering in the struggles that disturbed the time, when Eumenes or Selcucus traversed it or wintered there. It was invaded and temporarily annexed in 245 by Ptolemy III. Euergetes in his rapid expedition to beyond the Tigris. When Molon revolted on the accession of the youthful Antiochus III. (224 B.c.) he entered Mesopotamia from the south. Antiochus skirted the northern highlands by way of Naşbin. How lar the natives of Mesopotamia shared the desire of the Greek settlers (Joseph. Antig. xiii. 5, 11, \& $184^{-186)}$ to help Demetrius II. Nicator in checking the aggressions of the rising power of Parthia under Mithradates I. we do not know. It was in Mesopotamia that a large part of the army of Antiochus VII. Sidetes was destroyed in 130 b.c., and the Syrian kings did not again seriously attempt to assert their rule beyond the Euphrates. When Phraates 11. turned the Scythians against himself, however, even Mesopotamia suffered from the plunderers (Joh. Antioch, in Maller iv. 561). The immigration of Arabs
${ }^{1}$ Probably the latest cunciform document of certain date is a contract of 68 s.c. (cf. Klio, vi. 223 n. 3).
' See G. J. F. Guthrod, Zeilsck. f. A ssyr. vi. 26-33; d. M. Streck. Klio, vi. 223 n . 1.
${ }^{2}$ See E. R. Bevan, House of Selewcus, i. 219-222, and references given there.
must have been going on for long. About this time they even founded a dynasty in Aramacan Osroene (see Edessa).

Under Mitbradates II. Mesopotamia was a definite part of the Parthian empire, of which the Euphrates became the western boundary; but in 92 B.c. on that river his ambassedor met Sulla, though the long duel did not begin immediately.

It was perhaps a Parthian governor of Mesopotamia that was called in to belp Strato of Beroea against Demerrius III.; but before long Mesopotamia (especially the district of Nisibis) was attached to the growing dominions of Armenia under its ambitious king Tigranes, perhaps with the consent of Sinatruces (Sanatruces). The lost territory, however, was recovered by Phraates III., and Mesopotamia was guaranteed to Parthia by the treatics of Lucullus and Pompey (66 B.e.). It was traversed, however, several times by Roman tnoops crossing from Armenia to Syria, and Parthiais declaration of war against Armenia involved it with Rome. Gabinius crossed the Euphrates (54); but the command was assumed by Crassus, who, though be scized lchnae, \&c., and Raqqa (Rakka), fell near Carrlae (53), and the Parthian dominion was confirmed. The tragedy of the ides of March saved Mesopatamia and the East from a great campaign by Julius Caesan and it was at the hands of Ventidius Bassus, and wesi of the Euphrates, at Gindarus (north east of Antioch), that the Parthians received the check that put an end to any real rivalry with Rome. Mesopotamia narrowly escaped being the gcene of the struggle when Antonius in 36 finally decided to make his disastrous attempt against Phraates IV. hy way of Armeniz. In A.D. 36, Tiridates found support in his attempt to secure the throne of Artabanus 111. in Mesopatamia, and it was there that he saw his army melt away. The affairs of Armenia continued to be the source of friction between Parthia and Rome, and Nisibibis changed hands several times. The expedition againast Rome of Vologazeses 1. (q.v.) of A.D. 62 reached no further wistwards than Nisibis, and in 66 a peaceable arrangement was come to. Of the half-century that preceded Trajan's great oricntal undertaking not much is known. When in 115 Trajan entered Mesopotamia from the north no serious resistance was offered, and it became a province as far as Singara. The woods at Nisibis, the headquarters, provided material for the boats with which in 116 he crosserl the Tigris. Hatra, an interesting fortress which seems to have been Aramaean, fell, and the army advanced to Hit, where it found the fleet that was subsequently transferred to the Tigris. For the revolt that occurred while Trajan was on the Persian Gulf, in which the Jews had an important hand, Nisibis and Edessa stiffered capture and destruction. Hatra successfully withstood siege, however, and Hadrian abandoned Mesopotamia, setting the boundary at ihe Euphrates. Again for half a century there is not much to relate. Then, when Vologaeses, yielding to his growing discontent, took advantage of the death of Antoninus to invade Armenia the Romans were victorious (164) and after the storming of places such as Nicephorium. Edessa, Nisibis, western Mesopotamia was once more Roman as far as the Khäbür, Carrhae becoming a free city and Osroene a dependeacy.

By this time Christianity had secured a foothold, perhaps first among the Jews (see EoEssi), and we enter upon the earliest period from which documents in the Edessan dialect of Aramaic, known as Syriac, have been preserved. Unfortunately they contain practically nothing that is not of Christian origin. On the death of Aurelius Hatra aided Niger against Septimius Severus in 194; Osroene rose against Rome, and Nişbis was besieged and other Roman places taken; but Septimius Severus appeared in person (295), and from Nisibis as headquarters subdued the whole country, of which he made Nisi bis metropolis, raising it to the rank of a colony, the Sinjar district, where Arabs from Yemen had settled, being incorporated. On his retiring everything was undone, only Nişibis holding out; but on his reappearance in 198 the Parthians withdrew. Again the Euphrates bore a Roman fleet. Hatra, however, was besieged twice in vain. Peace then prevailed till Carcalla's unprovoked attack on Parthia in 216, after he had reduced Osroenc to a province. On his assassination near Carrhae (217), Macrinus was defeated at Nişbis and had to purchase peace, though be retained Roman Mesopotamia, reinstating the princely house in Osroene.

The power of Ardashir, the Sassanian, however, was already rising, and the Parthian Artabanus died in batcle in 214 (or 227); and Ardashir proposed to prove himsell the successor of the Achaemenidae. Hatra resisted the first Persian attuck as it

- The earliest inscription in Syriac yet hown dates from A-d. 77, and was found at Serria (opposite Kalat en-Najm) by voa Oppenheim.
had resisted Rome: bat Mesopotamia was overrun, Nişibis and Cerrhae being taken (233). It was immediately, indeed, recovered by Alexander Severus, and retained, whatever

Smanatias Aurten was the precise success of the war; but Nipibis and Carrhae were retaken by the Persians in the reiga of Maximin. Under Gordian III. in 242 Mesopotamia was entered by a great Roman army which recovered Carrhae and Nisibis, and defeated the Persians at Rhessena; hut when Gordian, after a difficult march down the Khiber, was murdered at Zaitha below Circesium, Philip the Arabian (244) made the best terms be could with Shapur I. Whatever they were, the Romen garrisons seem not to have been really withdrawn. A rest for Mesopotamia seems to have followed; but in 258 Shapur, tempted by the troubles in the Roman empire, overran the country taking Nispbis and Carrhae, and investing Edessa, and when Valerian invaded Mesopotamia he was eventually made prisoner, by Edessa (260). After Shapur's cruel victories in Syria, however, be was defeated by Odaenathus, who relieved Edessa, and Mesopotamia became for ten years practically part of an Arabian Empire (see Palayra), as it was to be four centuries later. In consequence of the revolt of Zenobia Mesopotamia was lost to Rome, and the Euphrates became the frontier. Aurelian overthrew the Palmyran rule; but he was assassinated before he could carry out his intended expedition-against Persia, Probus was assassinated before be was able to do anything (or much), and although Carus easily overran Mesopotamia, which became Roman again, and even took Ctesiphon, the Romans retreated on his death (283-4). The next incident is the defeal of Galerius, between Carrhae and Callinicus, where he had entered Mesopotamia (about 296), in the war provoked by Narses in consequence of his relations with Armenis. When it was retrieved by a signal victory, Diocletion advanced to Nispbia and thence dictated terms of peace by which Mesopotamia to the Tigris was definitely ceded to Rome (298).
One result of the connexion with Rome was, naturally, that Mesopotamia carae within the range of the Decian, and later the Diocletian persecutions (see Eorssa: \& Sasanian Period). At the Nicenc Council there were bishops from Nisibis (Jacob), Rhesaena, Macedonopolis (on the Euphrates, west of Edessa), and Persia (Harnack, Mission and Expansion of Christiasily, ii. 146; see generally 842 -1 52).

After a forty years' peace the struggie was resumed by Sbapur II. Nişhis thrice endured unsuecessful siege (338,346 , 350), although meanwhile Constantine had suffered defeat at Singara (348). Then Mesopotamia enjoyed two short rests (separated by a sharp struggle) while the rivals were engaged elsewhere, when in 363 Julian (q.v.) made his disastrous attempt, and Jovian bought peace at the price, among other things, of Singara and Nissbis-i.e. practically all eastern Mesopotamia.
The surrender of Nisibis, which had been in the possession of Rome for so many generations, caused consternation among the Christians, and Ephraetn (g.v.) moved to Edessa, where his "school of the Persians" soon became famous (see Edessa). In the war of 425 . in which the north-east of Mesopotamia was chiefly concemed, the Romans failed to take Nistbis, and it became a natural rallying point for the Nestorians after the decision of Ephesus (431). Matters were still more complicated when the Western Christians of Edessa found themselves unahie to accept the ruling of Chalcedon against Monophysitism in 45t (see Monopiystres), and there came to be three parties: Nestorians (q.v.), Jacobites (see J^cobrir Chuscr) and Mclchites (q.e.).
In the begianing of the 6th century there was another severe struggle in Mesopotamia, which found an anonymous Syriac historian (see Edessa), and in infringement of agreement the Romans strongly fortified Dara against Nisībis. The Persian invasion of Syria under Kavadh I. (q.v.) was driven back by Beltsarfus; but the latter was defeated in his pursuit at Rakka (531). The peace begun by Chosroes I. (532) was not long kept, and Roman Mesopotamia, except the pagan Harrån, suffered severely (540), Edessa undergoing a trying siege (544). The fifty years' peace also (562) wis short lived; the Romans
again failed in an attempt to recover Nissbis (573), whilst Chosroes' siege of Dars was successful. Mesopotamia naturally suffered during the time of confusion that preceded and followed the accession of Chosroes II., and the Romans recovered their old fronticr (59t).
With the accession of Phocas (602) began the great war which shook the two kingdoms. The loss of Edessa, where Narses revolted, was temporary; but the Roman fortress of Dara fell after nine months' sicge (c. 605); Harran. Rass al-'Ain and Edessa followed in 607 , many of the Christian inhabitants being transported to the Far East, and Chosroes carried the victorious arms of Persia far into the Roman Emplre. Finally Heraclius turned the tide, and Kavadh II. restored the conquests of his predecessor. The Syrian Christians, however, found that they had only exchanged the domination of a Zoroastrian monarch for an unsympathetic ecclesiastlcal despotism. In the confusion that followed, when men of letters had to live and work in exile, Nisshis set up for a time (63 t-632) a grandson of Chosroes II. Finslly all agreed on Yazdegerd III.; but, while Chosroes II. and Heractius had been at death grips with each other a gteat invasion had been preparing in Arabia.

The Arab tribes in Mesopotamia were Christian, and Heraciius at Edessa hoped for their support; but Karklsiya and Hit succumbed (636), and then Tekrit; and Heraclius retired to Samosata. When in 638 he made another attempt, it is said at the entreaty of the Mesopotamian Christians, Arab forces appeared before Rakka, Edessa, Nasibin and other places, and all Mesopotamia was soon in the bands of the Arabs. Henceforth it looked to Damascus and to Kufa and Başra, instead of to Constantinopic or Ctesiphon. The new regime brought welcome relief to the Christian part of the population, for the Arabs took no note of their orthodoxies or heterodoxies (Moawiya is said to have rebuilt the dome of the great church at Edessa after an earthquake in 678 .) Fortunately for Mesopotamia the seats of the factions which immediately broke the peace of Islam were eisewhere; but it could not escape the fate of its geographical position.
The men of Rakka were compelled to help 'Ali. after his march acenss Mesopotamia from near Mossul, inn getting a bridge made at R ${ }^{2} k \mathrm{~m}^{2}$ to convey his men to Sifint. Not long afterwards there was a new excirement In Moawiya's incursion across to the 'Tigris. The discontent under Yazid 111. was keen in Mesopotamia, where Merwan in fact got a footing, and when the troubles increased after he became caliph he abandoned Damascus in 〔avour of his seat at Harrân. His son was besieged by Dabhank and his Kharijites and Salfarids in Nasibin; but a fierce battle at Mardin ended in Mcrwan's favour (745). The crueltics that accompanied the overthrow of the Omayyad dynasty excitod a revolt. Which spread to Mesopotannia, and Hasrān had to undergo a sicge by one of Merwan's gencrals. It was next besieged by al-Mansưr's brother; but the battle between the brothers was fought at Nassibin. It was decisive, but chere were further risings, involving Mesopotamia. ${ }^{\text {b }}$

An incuitable effect of the reign of Istann had been that the kindred language of the Arabs gradually killed the vernaculay Syriac of Mesopotamia (see Edessa) as the aiten Greek and Persian had shown no tendency to do, and the classical period (4th to 8 th centuries) of the oniy Mesopotamian literature we know, such as it is, useful hut uninviting, came to an end (see Syriac Literature). This naturaily encouraged grammatical study. Among the Aramaic-speaking people the revolution which displaced the Arabian court of Damascus in favour of a cosmopolitan world centred at the Babylonian seat of the civilizations dealt with in the preceding paragraphs neturally gave an impulse to the wider schoiarship. Translations were made from Greek, as, e.g. by Thảbit b. Qurra of Harran (d. goi), and from Pahlavi.
Mansar built a castlc at Rafiga opposite Rakka to controf the country round, and his soo Haron al-Rashid actuaily resided during moost of his reign, not at Bagdad but at Ralka. Where two generations later al-Bottini of Harran was making the astronomical obervations on which his tables were based (see Albatronius) Abu Qurra. bishop of Harrin. and acquaintance of the ealiph Ma'minn. who was one of the earlier Aramacan Christians to use Arabic. has been thought to have contributed to the influences TFor this and following section see furthes Callpbate and Psrsia: fistory.
that developed the Mu'tazilite (Motazilite) sect. Nasibin was the scene of another revolt (793) under a Kharrijile leader. Harun's son Motasim displeased the people by creating a bodyguard of Turks, and therefore transferred his seat to Sumarel. This put the caliphs fatally at the mercy of their guards.

Mesopotamia fell partly under the power of Ahmad ibn Tulan of Egypt and his son; but before the end of the 9th century the Dectlae of Hamdanids, descendants of the Arab tribe of Tisctib, Decllae of were in possession of Mardin, and in 919 one of ting Nasir ad-Daula and Saif ad-Daula ruled over Nesopotamia and North Syria respectively. Meanhwile the caliph Mottagi appeared as a fugitive at Mōsul. Nasibin, Ralka (944). The Hamdanids were followed by the "Oqaylids, who had their seats at various places. such as Mósul, Nasibin, Rakka, Harrin, between 996 and 1096. By 1055 the Seljüks had taken the caliph under their ciange. They arrived at Jerusalem in 1076, the first crusaders reached Mia in 1097, and Bit Adini became the countship of Edessa (q.i.). The power of the Seljüss quickly disintegrated. The son of a slave of the third Seljük sultan, Zangi, governor of "1rük, made himself gradually (Mosul, Sinjür, Jezira, Barran) master of Mesopolamia (1128), capturing Edessa in 144 . Mesopotamia fell to one of his sons, Sail ad-Din, and branches sprang up at Sinjảr and Jezira. To the same period belong other Atübeg dynasties; Bugtiginids at Harrinn, Tekrit, \&c.; Ortokids at Edessa, "Ana, \&c, with Mandin as their headquarters. By 1185-1186 Saladin had made Egypt supreme over all these principalities, thus achieving what the XVIIIth and XIXth Egyptian dynastics had attempted in vain. Mesopotamia remained in the hands of the Ayyübite lamily till the appearance of the Mongols. The petty principalities were unable to unite to resist the terrible attack, and Jeaira, Edessa, Nasibin. Maridin, \&c., fell in 1259-60. The leading men of dlarran emigrated into Syria, the rest were carried into slavery, and the ancient town was laid in ruins. It was the Mamlük rulers of Egypt that chocked the death-bringing flood. Near Bira was the scenc of one of their victories (in 1273), and their authority extended to Karbisiya. The Ortokid dynasty survived the Mongol inundation, and it was in the 1 , 4 th century that its laureate Safiy ad-Din al-Uilli flourished. From the Mongol invasions of the I3th century western Asia has never recovered. Then, before the next century was out, came the invasion of Timur ($1393-94$). The Ortokids were followed by the Karakuyunli. In 1502 Mesopotamia passed for a cime into the hands of the Satawid shah, Ishmael; but in 1516 it came under the Osmanli Turks, to whom it has belonged ever since. The inroad of the Persians in the 17 th century was confined to the south.
Since Mesopotamia finally came into the power of the Ottoman sultans considerable changes in the population have occurred.

Nomed

 About that time parts of a confederation of tribes which had taken the name of Shammar from a mountain in their neighbourhood, moved northwards from Central Arabia in search of better pasture, \&c. Successfully displacing their forerunners, they made themselves at. home in the Syrian steppe-until their possession was in turn disputed by a later emigrant from Arabia, for whom they finally made room by moving on into Mesopotamia, over which they spread, driving beforc'them their predecessors the Tai (whose name the Mesopotamian Aramseans had adopted as a designation for Arab in general), partly north of the Sinjar, partly over the Tigris. Others they forced to abandon the nomadic life, and settle by the Khabur (e.g. the Jebur) or the Euphrates. These adjustments, it is supposed, had been effected by 1700.in 1831 *Ali, a newly appointed Turkish governor of Bagdzd, induced Suing the chiel of the Jerhi, the more imporsant division of the Shammar, to help him to dislodge his predecessor. Dalad, who would not vacate his position, but then refused them the promised payment. To defend himself from the enraged Shammar Alf summoned the "Anaza from across the Euphrates. Having also succeeded in detaching part of the Shammar under Shlösh, he told the Anaza he no longer needed their help. In the futile attempt of the three parties to dislodge the "Anaza Shlosh lost his life; but with the help of the Zubeid the other two suceeeded, and Sufing was now supreme "King of the Steppe," levying blackmail as he pleased. Other methods of disposing of him having failed, the Porte made hi amhew a rival sheikh; but he basely assassinated him. Sufug then suitered the same late himself at the hands of the pasha, but hes since become a hero. Two of his suns. became involved in a quarcel with the government, in consequeace ef which for years all Mesopotamia was in danger, till the viuus was put to death in 1868, and Ferbin, the cldest son. a peaceable man who had been marle pasha, became supreme. One of Sufig's widows had fled to her Tai kindred in Central Arabia with her youngest son Faris: but when he grew up she brought him back in the weventies, and the immediately attracted a great following. He kept to the far north of Mesopotamia to avoid his trother Ferbin; but
finally half-sedentary tribes on the Khabour and the Belikh became tributary to him, and a more or less active warfare sprang up berween the brothers, which ended in a partition of Mesoporamia.

Ferban and the South Shammar claimed the steppe south-cast of a line from Mosul to Maydin (just below Karkisiya), and Faris and the North Shammar the north-west. Since Ferhañ's death the Porte has favoured one after another of his many sons, hoping to keep the South Shammar disunited, especially as they are more than the others. The Shammar have been in undisputed mastery from Urfa to the neighbourhood of Bagdad. practically all tribes paying thutwea to them, and even the towns, till the government garrisoned them. Some 60 of these more or less nomadic communities, of one or two thousand tents (or houses) each, representing a population of several hundred thousunds are described by Oppenheim. Each has its recognized camping ground, usually one for summer and another for winter. Most of them are Arab and Mahommedan. Some are Christian and some are not Arab: viz. Kurds, Turkomans or Circassians. For some years the Porte has been applying steady pressure on the nomads to induce them to settle, by increasing the number of military pests, by introducing Circassinn colonies, as at Ras al-"Ain, sometfmes by forcible settlement. More land is thus being brought under cultivation, the disturbing elements are being slowly brought under control, and life and property are becoming more secure.

Security is what the country chiefly needs. Hence its primary interest in the railway scheme, with a view to agricultural development and perhaps the growth of cotton; Sir W. Willoocks' irrigation schemes had Prowe not up to 1910 affected "Mesopotamia " directly. THeen Apparently the real problom is one of population adequate to effect the improvements demanded. The new regime introduced in 1908 seems to justify a hopeful attitude. Apart from the disturbing effects of rocent events in Persia, an exposition of present conditions would show progress. Exact statistics are not evailabie because the vilayet of Mósul (35, 1308q. m., 351,200pop.) takes in on the east territory with which we are not concerned, and omits the Osroene district, which gees with Aleppo. Urfa is a town of 55,000; M6sul, 6r,000, Bagd Moşul for 1908 were (in thousands of pounds stering): United Kingdom 195, India 42, other countries 52, parts of Turkey 218; the imports: United Kingdom 56, India 16, other countries 35, parts of Turkey 24. The language is in most parts Arabic; but Turkish is spoken in Birejil and Urfa, Kurdish and Armenian south of Diarbekr, and some Syriac in Tar 'Abdin. There are Christian missionary institutions of European origin in various places, such as Urfa, Mindin, Mosul. An interesting survival of cariy faiths is to be found in the Yeasdis of the Sinjur district.

AuThoniries-Land and Pcople: full relerences to Greek, Latin, Arabic and other triters are piven in Ritter. Erdkunde x. 6-284 92 1-1149: xi. 247-510, 660-762; for the conditions since the Arab ce:nquest. Guy le Strange, Lands of the Eastern Caliphate (Igos). chictly pp. 86-114. is especially useful. Of recent works the tollowink are valuable: E. Sachau, Reise in Syrien u. Mesopotamien (i883); M. v. Opperheim, Vom Millelmeer zum Persisehew Golf, vol, if (1889). We may mention further D. G. Hogarth, The Nearer East (igoa). pcussim; K. Regling, "Zur historischen Ceographie des mesopotamischen Parallelograms" (Surug district), in Klio, 1. 443-476; M. Sykes, "Journcys in North Mesopotamia " in Geog. Journal. xax. 237-2 $44,384-395$; "The Western Bend of the Euphrates," op.cil xuxiv. 61-65 (plans of two castles): D. Fraser, Shore Cud to India (1909): W. Kurt, "Beurteilung der Aussichten auf eine Wiederbelebung der Kultur der Euphrat. und Tigrisniedenung," in Deulsche geographische Blatter, $\pi x x i .147-179$ (igo8); E.- Pears, "The Bagdad Railway," in Contemp. Rew., Igos, 570-591; K Baedeker Palestime and Syria (1906), pp. 89-412. The anneal Consular Reports most ncarly bearing on Mesopotamia are thoee for Aleppo, Mossul, Bagdid and Basra.

Maps-The following descrve special mention: v. Oppenheim, op. cis., a most valuable large scalc folding map in pockers of volumes; Sachau op. cit.: M. Sykes, Geog Jompm. xxx. opp. p. 356, and xcriv. Opp. P. $120 ; 1 \operatorname{logarth}, ~ o p, ~ c i l .: ~ o r o g r a p h i c, ~ \& c . ~$

Excopalions al Arban: A. H. Lavard. Nineveh and Babylon (18.49 1851). pp. 230-242; at Tell Khalaf: M. v. Oppenheim, Der Tell Malaf (1908), in the Der alle Oriemt weries (see an account by I. L. Myres in Amalts of Archocology and Anihropology. it. 139-144: at Asshur: Sendschriften der dewisck. or. Gesellsch., and W. Xadrae,

Der Anm Adad Tempel (1909). See also D. G. Hogarth. "Carchemesh and its Neighbourhood " (\mathcal{A} neals, \&cc. ii. 165-184), and W. Andrac's Die Ruincm mon Hatra (1908):

History.-Early period: besides the histories of Babylonia and Assyria see Winckler, various essays in his Allor. Forschungen, "Vorlaufige Nachrichten uber die Ausgrabungen in Boghar-koi im Sommer. 1907 :" in Mitleilungen der Deulsch. Orient. Gesellachaft. No. 35, and "Suri" in Orienkel. Lut.2eif, x. 28i-299. 345-357. 401-4t2, 643i O. Weber, the notes to Knudizon's Dre El-A marna fafela: A. Ungnad, Untersuchungen ru den . . . Urkunden ans Dibat (1909), pp. 8-21; P. Schnabel. Simdsen sur bebt-assyrischem Chromologie (1908): A. Sande, Die Aramder (1902) in the Der Alte Orient series; M. Sereck, "Ober die Altente Geachichse der Aramher" in Klio, vi. 185-225. For the later periods see PER5LA: History: Hellenism; Rome History: Parthia:Syriac Literature; CaliPhate and authorities shere given.
(H. W. H.)

MESOXALIC ACID (dioxymalonic acid), $\left(\mathrm{HO}_{2} \mathrm{C}\right)_{2} \mathrm{C}(\mathrm{OH})_{2}$ or $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{4}$. is obtained by hydrolysis of alloxan with baryta waler (J. v. Liebig, A nn., 1838,26, p. 298), by warming caffuric acid with lead acetate solution (E. Fischer, Ann., 1882, 215. p. 283), or from giycerin diacetate and concentrated nitrie acid in the cold (E. Șeclig. Ber., 1891, 24, p. 3471). It crystallizes in deliquescent prisms and melts with partial decomposition at $\mathrm{t} 19-120^{\circ} \mathrm{C}$. It behaves as a ketonic acid, being reduced in aqueous solution by sodium amalgam to tartronic acid, and also combining with phenylhydrazine and hydroxylamine. It reduces ammoniacal silver solutions. When heated with urea to $100^{\circ} \mathrm{C}$. it forms allantoin. By continued boiling of its aqueous solution it is decomposed into carbon dioxide and glyoxylic acid, $\mathrm{C}_{1} \mathrm{H}_{4} \mathrm{O}_{4}$.

Mesozoa. Van Beneden' gave this name to a small group of minute and parasitic animals which be regarded as intermediate betweer. the

(Prom Cambridgr Natmral Fitery, vol. иi. "Worms, ©re" by permiasion of Macmillin it Co. Lud Aftr Cenable)
Fic. 1.-Dicyemennes dedones Wag. from the kidney of Eledore moschata.
A. Full-grown Rhombogen with infusoriform embryos (emb).
g. Part of endoderm cell where formation of the embryos is activety proceeding. n.ect. Nucleus ol ectoderm cell.
n. end. Nucleus of endoderm celi.
p. "Calotte."
8. Developing infusoriform embryo.
C. One fully developed.
D. "Calotte" of nine celle Protoros and the Metazoa. The Mesozoa comprise two classes: (1) the Rhombozod, whicb are found only in the kidneys of Cephalopods, and (2) the Orthonectidd, which infest specimens of Ophiurids, Polychaets, Nemertines, Turbellaria and possibly otber groups.

Class I. Rrombozon (E.vanBeneden).-These animals consist of a central cell from which certain reproductive cells arise, enclosed in a single layer of flattened and for the mose pert ciliated cells: some of them are modified at the anterior end and form the polar cap. The Rhombozoa comprises twoorders: (a) Dicyemida, ciliated vermiform creatures whose polar cap has 8 or 9 cells arranged in two rows (Dicyema, Koll., Dicyomennea. Whitm.): (b)Heveracyemida, non-ciliated animals with no polar cap. but whose anterior ectodermal cells contain relringent bodies and may be produced into wart-like processes (Conocyema, v.Ben. in Oclopus oulgaris: Microcyema in Sepia of cinalis). Unfike the Dicyemida, which are fixed in the renal cells of their hoot by their polar cap, the Heterocymid? are frce. The numbler of ectoderm cells apart from the polar cap is few, some fourteen to twenty-two,

The central cell is formed by the layer of the firse two blastomeres, and remains quicscent until surrounded by the micromeres of products of division of the smaller blastomere. It then divides uncqually, and of the two cells thus formed the larger repeats the process. Each of the two small cells are now called primary germ cells." and they enter into and lie inside the large central cell. The primary germ cells divide until there are eight of them all Iying within the axial cell. At this stage the future of the parasie may sake one of two directions. Following cone path. the animal (now called a "Nematogen ") gives rise by the segmentation of its primary germ cells to vermiform larvac which, though smaller, are but replicas of the parent form. Following the other path, the animal (now termed a" Rhombogen ") gives origin to a number of "infusoriform larvac." several of these arising from each primary germ-cell. The vermiform larvae leave their Nemalogen parens and awimming shrough the renal fluid afrach themselves to The renal cells. They never leave their host. and die in sea-water. The infusorilorm larvae have a very complicated strucrure; they escape from the Rhombogen, and, unlike the vermiform larvae they can live in sea-water. They possibly serve to infeet new hoxts. Some authorifies look upon these infusoriform larvae as males, and consider that they fertilize some of the Nematogens,

Fig. 2-Rhopalura giardii Metochn. from Amphisre squamala.
8. Full grown male.

8i. Flattened form of female.
母2. Cylindrical female.
which then give rise to males again, whereas the females which produce the vermiform embryos arise from unfertilized vermiform larvae. After the infusoriform larvae have left the pareni's body, the Rhombogen takes to producing vermiform offspring. and thus becomes a secondary Nematogen. Thus, if the above views bo correct, a Rhombogen is a protandrous hermaphrodite.
E. Nerescheimer has recently described under the name of Lohmanella catenata an organism parasitic in Fritillaria which shows marked affinities with the Rhombozoa. The genus Haplozoon of which two species have been found in the worms Travisia and Clymene by Dogiel is clasped as a new group of Mesozoa.

Class II. Orthonectida (A. Giard). -The Orthonectida contain animals with a central mass of eggs destined to form male and female reproductive cells surrounded by a single layer of ciliated ectoderm cells arranged in regular rings which contain varying aumbers of rows of cells. Muscular fibrils occur between the outer and inner cells. The sexes are separate and unlike, and there art swo kinds of females, cylind rical and flat. There are but two genera, Rhopaiura and Slaecharthrum. the latter found in a Polychaet. The male R. giardii lives in the body-cavity of $A \mathrm{~m}$ phisura squamata, has six rings of ectodermal cells all ciliated except the second, whowe cells contain refringent granulce. The ectoderm encloses the testis, a mass of celis which have arisen from a single axial celt in the embryo. The female differs from the male in appearance, and in size it is larger. It oceurs in two forms: (1) The cyllindrical with 8 (or 0) rows of ectoderm cells; here as in the male the second ring is devoid of cilia. (2) The fat lemales are broader, uniformily cijlated, and have not rings of ectoderm cells. The central mass of cells forms
ova which are free in the cylindrical forms; they leave the mother chrough the dehiscing of the cells of the non-ciliated ring, are fertilized and develop parthenogenetically into lemalea both fat and cylindrical.
R. pelsenceri and S. giardi are said to be hermaphrodite. The parasites first make their appearance in host in the form of a plasmodium comparable with the sporocyst of a Trematode. By the eggregation of nuclei and some of the surrounding protoplasm, perm cells arise which develop into ciliated larvae and ultimately into males and females which only discharge their spermatozoa and ova when they reach sea-water. The product of the consequent fertilization is unknowa; presumably it infects new hosts, entering them in the form of a nucleated plasmodium.

The original idea that in the Khombozoa and Orthonectith we had animals intermediate between the Protozoa and Metazoa 1: no longer widely held. The modern view is that the simplicity of their structure is secondary and not primary, and is correllused with their parasitic habit of life. They are probably derived fan some Platyhelminthine ancestor and perhaps corne nearer to he Trematoda than to any other group.

Literature.-E. van Beneder, Bull. Ac. Belqique (2), (1876) ui. 85. 116; (1876), xlii. 35; also Arch. Biol. (1882), iii. 197; C. O. Whitman, Mb. Stat. Neapel. (1883), iv. 1; W. M. Wheeler, Z of. Ans., (1899), xxii. 169: A. Giard, Jour. anal. plyysiol. (1879), xv. 449: Owarl. Joup. Micr. Sci.. (1880), xx. 225: St Joseph, Bull. Soc. 2ool. France (1896), xxi. 58; Caullery and Mcsnil, C. R. ac, sci. (1899), cxxviii. 457 and 516; C. Jtrlin, Arch. Biol. (I882), iii. I; E. Nerescheimer, Zeilschr. woiss. Zool. (tgo4), Ixxvi. 137: V. A. Dogiel, Trav. sac. imp. natur. St Pètersbourg (1907), xxvili. 28, and Zool. Anz. (1906), xxx. 895.
(A. E. S.)
the period of time between the Palaeozoic and Cainowic eras; it is synonymous with the older and less satisfactory term "Secondary" as applied to the major divisions of geological time and with the "Flozgebirge" of the Wernerian school. This era is subdivided into a lower, Triassic, a middle, Jurassic, and an upper, Cretaceous period or epoch. The duration of the Mesozoic era was not more than one fourth of that of the Palaeozoic era, measured by the thickness of strata formed during these periods. It was an era marked by peaceful conditions in the earth's crust and by a general freedom from volcanic activity. The sediments as a whole are charactrrized by the prevalence of limestones as compared with those of the preceding era; they are seldom much altered or disturbed except in the younger mountain regions. Mammals, represented by small marsupials, and primitive forms of birds and bony fishes make their first appearance in rocks of Mesozoic age. Saurian reptiles played an exiremely prominent part; ammonites and belemnites lived in extraordinary variety in the scas along with the echinoids and pelecypods, which had to a great extent supplanted the cripoids and brachiopods of the preceding periods. The first clear indications of monocotyledonous and dicotyledonous angiosperms made their appearance, while Cycads and Conifers constituted the bulk of the land flora.

IESQUITE, or Honey Loctst, in botany, a tree, native of the southern United States and extending southwards through Mexico and the Andean region to Chile and the Argentine Republic. It is known botanically as Prosopis julifiora, and belongs to the natural order Leguminosac (suborder Mimoseac). It reaches 40 or 50 ft . in height with a trunk usually not more than 6 to 12 in . in diameter, and divided a short distance above the ground into numerous irregular crooked branches forming a loose straggling head. The remarkable development of its main root in relation to water-supply renders it most valuable as a dry-country plant; the root descends to a great depth in search of water, and does not branch or decrease much in diameter till this is reached. It can thus flourish where no other woody plant ean exist, and its presence and condition afford almost certain indications of the depth of the water-level. When the plant attains the size of a tree, water will be lound within 40 or so ft . of the surface; when it grows as a bush, between 50 of 60 ft .: while, when the roots bave to descend below 60 ft ., the stems are only 2 or 3 ft . high. These woody roots supply valuable fuel in regions where no wood of fuel value is produced above ground. The leaves are compound, the main axis bearing two or sometimes four secondary axes on which are borne a number of pairs of narrow buntish leaflete. The minute greenish-white fragrant flowers are densely crowded
on slender cylindrical spikes from if to 4 in . long; the jons narrow pods are constricted between the seeds, of which they contain from ten to thirty surrounded by a thick spongy layer of sweet pulp. The wood is heavy, hard and close-grained, but not very strong; it is almost indestructible in contact with soil, and is largely used for fence-posts and railway lies. The ripe pods supply the Mexicans and Indians with a nutritious lood; and a gum resembling gum arabic exudes from the stem.

An allied specics Prosopis pubescens, a small iree or tall shrub, mative of the arid regions of the soath-western United States, is known as the screw-bcan or screw-pod mesquite from the lact that the pods are twisted into a dense screw-like spiral; they are used for fodder and are sweet and nufritious, but smaller and less viluable than thoee of the mesquite.

For a fuller account of these trees see Charles Spraguc Sargent, Siluc of Nerth Americe, iii. p. 99 (1893).

TESS (an adaptation of O. Fr. mes, mod. meds; Ital. messo; derived from the Late Lat. wisswm, past participle of willere " to send or place in position"), a service of meat, a dish sent to table. The termis also used of the persons who are in the habit of eating their meals together, and thus particularly of the parties into which a ship's company or a regiment is divided. either according to their rank, or for convenience in catering. Originglly, a mess in this sense was a group of four persons situing at one table and helped from the same dishes. In the Inns of Court, London, the oliginal number is preserved, fout benchers of four students dining together.

In early times the word mess was applied to food of a more or leas liguid character, ts soup, porridge, broth, \&cc. It is probably in allusion to the aloppy mature of ecmi-liquid messes of food that a mess has come also to mean a state of disorder, confusion and discomfort. Skeat takes the word in this sense to be a variment of "mash." originally to mix up.

MPSSAGB (a word occurring in alightly different forms in several languages, e.g. Fr. nessage, Span mensaje, Itel. messegio; adapted from the Low Lat. missaficum, from mitlere), a communication either verbal, written or printed, sent from one person to another. Message is the term generally applied to the official communications addressed by the beads of states to their legislatures at the opening of the session or at other times. These also, though written, are borne and dclivered by special metsengers and have the force of a face to face speech. The sessional and other messages to Congress of the president of the United States of Amcrica are printed state documents. Washington and John Adams delivered them in person but the practice was discontinued by Jefferson.
" Messenger" is of the same denivation; the earlier form of the word was neessager (cf. passenger, scavenger). In ordinary language the word means one who is charged with the delivery of a message. In Scottish lav a messenger-at-arms is an official appointed hy Lyon-King-at-Arms to execute summonses and letters of diligence connected with the Court of Sessions and Court of Justiciary (see Warr: \& Scotland). Technically the term "messenger" is given to an endless rope or chain, passing from the capstan to the cable so that the latter may be hatuled in when the messenger is wound round the capstan; also to a similar contrivance for hauling in a dredge.

MESSAGER, ANDRE CHARLES PROSPER (1853-), French musician, was born at Montlupon on the 30th of December 1853; he studied at Paris, and in 1874 became organist at St Sulpice. He was for some time a pupil of Saint-Saens. In 1876 he won the gold medal of the Societe des Compositeurs with a symphony. In 1880 he was appointed music director at Ste Marie-des-Batignolles. In 1883 he completed Firmin Bernicat's comic opera Francois des bes blews; and in 1885 produced his own operettas, La Fawnette dis temple and Le Bearnaise, the laticr being performed in London in 1886. His ballet Les Dencr pigeons was produced at the Paris Opera in 1886. But it was the production of his comic opers La Basoche in 1800 at the Opera Comique (English version in London the following year) that established his repucation: and subuequently this was iscrensed by such tuneftul and tasteful Hith
oparas as Madame Chrysardheme (1893), Mirette (2894), Les Petiter Michus (1897), and Veronigue (1898), the latter of which had 1 great success in London. Besides conducting for some years at the Opéra Comique in Paris, Messager's services were also secured in London in $1 g 01$ and later years as one of the directors of the Covent Garden opera.
messalla CORVINOS, HaRCUS VALERIUS (64 b.c.-a.d. 8), Roman general, author and patron of literature and art. He was educated partly at Athens, together with Horace and the younger Cicero. In early life he became attached to republican principles, which he never abandoned, altbough he avoided offending Augustus by too open an expression of them. He moved that the title of pater patriae should be bestowed upon Augustus, and yet resigied the appointment of pracfect of the city after six days' tenure of offce, because it was opposed to his ideas of constitutionalism. In 43 B.c. he was proscribed, bat managed to escape to the camp of Brutus and Cassius. After the battle of Philippi (42) be went over to Antony, but subsequendy transferred his support to Octavian. In 31 Messalla was appointed consul in place of Antony, and took part in the battle of Actium. He subsequently held commands in the Easi, and suppressed the revolted Aquitanians; for this latter feat he celebrated a triumph in 27.

Messalla restored the road between Tusculum and Abs, and many handsome buildings were due to his initiative. His influence on literature, which he encouraged after the manner of Maecenas, was considerable, and the group of literary persons whom he gathered round him-including Tibullus, Lygdamus and the poet Sulpicia-has been called "the Messalla circlc." With Horace and Tibullus he was on intimate terms, and Ovid expresses his gratitude to him as tbe first to notice and encourage his work. The two panegyrics by unknown anthors (one printed among the poems of Tibullus as iv. 1, the other included in the Catalepton, the collection of small poems attributed to Virgil) indicate the esteem in which he was held. Messalla was himself the author of various works, all of which are lost. They included Memoirs of the civil wars after the death of Cacsar, meed by Suetonius and Plutarch; bucolic poems in Greek; Leanslations of Greek speeches; occasional satirical and crotic verses; essays on the minutiee of grammar. As an orator, be followed Cicero instead of the Atticlaing school, but his style was affected and artificial. Later critics considered him superior to Cicero, and Tiberius adopted him as a model. Late in life be wrote a work on the great Roman families, wrongly identified with an extant poem De progenic Awgusti Cacsaris bearing the name of Messalla, but really a 15 th-century production.
Monographs by L. Wiese (Berlin, 1829), J. M. Valeton (Grongingen, 1874). L. Fontaine (Versailles, 1878); H. Schulz De 24. V. ectate (1886): "Messalla in Aquitania " by J. P. Postgate in Classical Review, March 1903: W. Y. Sellar, Romon Poets of the Augustan Age Horace and the Elegiac Poels (Oxford, 1892), pp. 113 and 221 to 258; the spurious poem ed. by R. Mecenate (1820).

Two other members of this distinguished family of the Valerian geas may be mentioned:-

1. Marcus Valerius Messalla, father of the preceding. conssul in 53 B.c. He was twice accused of illegal practices in connexion with the elections; on the first occasion he was acquitted, in spite of his obvious guilt, through the eloquence of his uncle Quintus Hortensius; on the second he was condemned. He took the side of Ceesar in the civil war. Nothing appears to be known of his later history. He was augur for fifty-five years and wrote a work on the science of divination.

Cigero, Ad Fam. vi. 18, viii. 4, ad Allicum, iv. 16; Dio Cassius xi. 17, 45; Bellam africanion, 28; Macrobios, Saturnalia, i. 9, 14: Ausus Gellius xili. 14,3 .
2. Manios Valerius Maximus Corvinus Messalla, consul 263 日.c. In this year, with his colleague Manios Otacilius (or Octacilius) Crassus, he gained a bribiant victory over the Carthaginians and Syracusans; the honour of a trfumph was decreed to him alone. His relief of Messama obtained him the cognomen Messalla, which remained in the family for nearly 800 ycars. To commemorate his Sicilian victory, he caused it to be pictorially represented on the wall of the Curia Hostilia,
the first example of an historical fresco at Rome. He is said also to have brought the first sun-dial from Catane to Rome, where it was set up on a column in the forum.
Polybius i. 16; Diod. Sic. xxiii. 4: Zonares viii 9; Pliny, Nal Hist., vii. 60, xuxv. 4 (7).

MESSALLINA, VALERIA, the third wife of the Roman emperor Claudius (q.v.). She was notorious for her profligacy, avarice and ambition, and exercised a complete ascendancy over her weak-minded husband, with the help of his all-powerful freedmen. During the absence of Claudius from the city, Messallina forced a handsome youth named Gaius Silius to divorce his wife and go through a regular form of marriage with her. The freedman Narcissus, warned by the fale of another freedman Polybius, who had been put to death by Mescallina, informed Claudius of what had taken place, and persuaded him to consent to the removal of his wife. She was executed in the gardens of Lucullus, which she had obtained on the death of Valerius Asiaticus, who through her machinations had been condemned on a charge of treason. She was only twenty-six years of age. By Claudius she was the mother of the unfortunate Britannicus, and of Octavia, wife of Nero.
See Tacitus, Anmols, xi. r-38; Dio. Cassius 1x. 14-31; Juvenal vi. 1i5-135, x 333, xiv. 331; Suetonius, Claudius; Merivale, Hisf, of the Romans under the Empzre ch. So; A. Stahr, "Agrippina" in Bulder aus dem Allerthume, iv. (1865).
MESSAPI, an ancient tribe which inhabited, in historical times, the south-eastern peninsula or " heed " of Italy, known variously in ancient times as Calabria, Messapia and lapygia. Their chicf towns were Uzentum, Rudiae, Brundisium and Uria. They are mentioned (Herod. vii. 170) as having inflicted a serious defeat on the Greeks of Tarentum in 473 日.c. Herodotus adds a tradition which links them to the Cretan subjects of "King Minos." Their language is preserved for us in a scanty group of perhaps fifty inscriptions of which ondy a few contain more than proper names, and in a few glosses in ancient writers collected by Mommsen (Unteritalische Dialekte, p. 70). Unluckily very few originals of the inscriptions are now in existence, though some few remain in the museum at Taranto. The only satisfactory transcripts are those given by (r) Mommsen (loc. cil) and by (2) I. P. Droop in the Anwual of the British School af Athens (1905-1906), xii. 137, who includes, for purposes of comparison, as the reader should be warned, some specimens of the unfortunately numerous class of forged inscriptions. A large number of the inscriptions collected by Gamurriai in the appendices to Fabretti's Corpus inscriplionum ifolicarsm are forgeries, and the text of the rest is negligently reported. It is therefore safest to rely on the texts collected by Mommsen, cumbered thougb they are by the various readings given to him by various authorities. In spite, however, of these difficulties some facts of considerable importance bave been established.

The inscriptions, so far as it is safe to judge from the copies of the older finds and from Droop's facsimiles of the newer, are all in the Tarentine-Ionic alphabet (with [for on and for h). For limits of date $400-150$ B.c. may be regarded as approximatcly probable; the two most important inscriptions-those of Bindisi and Vaste-may perhaps be assigned provisionally to the 3rd century b.c.
Mommsen's first attempt at dealing with the inscriptions and the language attained sotid, if not very numerous, results, chief of which were the genitival character of the endings-aini and $i h i$; and the conjunctional value of inoi (loc. cil. 79-84 sqq.). Since that time (1850) very little progress has been made. There is, in fact, only one attempt known to the present writer to which the student can be referred as proceeding upon thoroughly scientific lines, that of Professor Alf Torp in Imdogermanische Forschturgen ($\mathbf{2 8 9 5}$). v., 195, which deals fully with the two inscriptions just mentioned, and practically sums up all that is either certain or probable in the conjectures of his prodecessors. Hardly more than a few words can be said to have been separated and translated with certainty-kalalores (masc. gen. sing.) " of a berald " (written upon a herald's staff which was once in the Naples Museum); aran (ace. sing. fem.) "arable
land "; maxses, "greater" (neat. acc. sing.), the first two syllables of the Latin maiestas; while tepise (3rd sing- morist indic.) " placed " or "offered '; and forms corresponding to the article (1 s - $=$ Greek rd) seem also reasonably probable.

Some phonetic characteristics of the dialect may be regarded as quite certain, (1) the change of the oniginal short δ to d (as in the last syllable of the genitive kalatoras); (2) of final $-m$ to $-n$ (as in aran); (3) of -ni--ii-si- respectively to $-n n--40$ - and - 5 s as in dasohonnes "Dasonius," dazohonnihi "Dasonii "; dazettes, gen. dazetfihi "Dazetius, Dazetii," from the shorter stem dazet-; Vallasso for Vallasio (a derivative from the shorter name Valla); (4) the loss of final d (as in lepise), and probably of final t (as in -des, perhaps meaning "set," from the root of Gr. $\boldsymbol{t}\left(\begin{array}{l}\text { m }\end{array}\right)$); (5) the change of original d / s to d (anda $=G r$. zyoa and $b h$ to b (beran = Lat. ferant); (6)-au-before (at least some) consonants becomes -d- (Bdsta, earlier β aû̃ra). (7) Very great interest attaches to the form penkaheh-which Torp very prohably Identifes with the Oscan stem pompaio-which is a derivative of the Indo-European numeral *penque " 5 ."
If this last identification be correct it would show that in Messapian (just as in Venetic and Ligurian) the original velars were retained as gutturals and not converted into labials. The change of o to a is exceedingly interesting as being a phenomenon associated with the northern branches of Indo-European such as Gothic, Albanian and Lithuanian, and not appearing in any other southern dialect hitherto known. The Greek 'Aфpobira appears in the form Aprodita (dat. sing., fem.). The use of double consonants which has been already pointed out in the Messapian inscriptions has been very aculely connected hy Deecke with the tradition that the same practice was introduced at Rome hy the poet Ennius who came from the Messapian town Rudiae (Festus, P. 293 M!).
It should be added that the proper names in the inscriptions show the regular Italic system of gentile nomen preceded by a personal praenomen; and that some inscriptions show the interesting feature which appears in the Tables of Heraclea of a crest or coat of arms, such as a triangle or an anchor, peculiar to particular families. The same reappears in the Iovilae (q.v.) of Capua and Cumae.

For further information the student inust be referred to the sources already mentioned and further to W. Deecke in a series of articles in the Rheintisches Mruseum, xervi. 576 sqq-; xucvii. 373 sq9.; xl. 138 sqq. ; xlii. 226 sqq.; S. Bugke, Bezzenbergers Beilräge, vol. i8. A newly discovered inscription has been published by L. Ceci Nolizie degli Scavi (1908), p. 86; and one or two others are recorded by Professor Viola, ibid. 1884, P. 128 sqq. and in Giornale degii Scasi di Pompei, vol. 4 (1878), pp. 70 sqq. The place-names of the district are collected by R.S.Conway, The Fialic Dialects, P. 31 ; for the Tarentine-lonic alphabet see ibid. ii., 46 .
For a discussion of the important ethnological question of the origin of the Messapians see W. Helbig, Hermes, xi. 257: \mathbf{P}. Kretschmer, Einleitung in die Geschiche der griechisehen Spr. he,
 (Festschriff fur H. Kiepert, pp. 179-188). Reference shoule a so be made to the discussion of their relation to the Vencti by C. Fuuli in Die Veneter, P. 483 sqq., especially p. 437 ; and also in P. S. Conway, Italic Dialcels, i. 15 .
(R. S.

MESSENE, an ancient Greek city, the capital of Messenia, founded by Epaminondas in 369 a.c., after the battle of Leuctra and the first Theban invasion of the Peloponnese. The town was built by the combined Theban and Argive armies and the exiled Messenians who had been invited to return and found a state which should be independent of Spartan rule. The site was chosen by Epaminondas and lay on the western slope of the mountain which dominates the Messenian plain and culminates in the two peaks of Ithome and Eua. The former of these (2630 ft .) served as the acropolis, and was included within the same system of fortifications as the lower city. Messene remained a place of some importance under the Romans, but we hear nothing of it in medieval times and now the hamlet of Mavromati pccupies a small part of the site.

Pausanias has left us a description of the city (iv. 31-33), its chief temples and statues, its springs, its market-place and gymnasium, its place of sacrifice (iepooivorb), the tomb of the bero Aristomenes (q.o.) and the temple of Zeus Ithomatas on.the
summit of the acropolis with a statue by the famous Argive sculptor Ageladas, originally made for the Messcnian helots who had settled at Naupactus at the close of the third Messenian War. But what chiefly excited his wonder was the strength of its fortifications, which excelled all those of the Greek world. Of the wall, some $5 \frac{1}{2}$. in extent, considerable portions yet remain, especially on the north and north-west, and almost the entire circuit can still be traced, affording the finest extant example of Greek fortification. The wall is flanked by towers about 3 r ft . high set at irregular intervals: these have two storeys with loopholes in the lower and windows in the upper, and are entered by doors on a level with the top of the wall which is reached by flights of steps. Of the gates only two can be located, the eastern or Laconian, situated on the eastern side of the saddle uniting Ithome and Eua, and the northern or Arcadian gate. Of the former but little remains: the lateer, however, is excellently preserved and consists of a circular court about 20 yds. in diameter with inner and outer gates, the latter flanked by square towers some in yds, apart. The lintel of the inner gate was formed by a single stone 88 ft . 8 in . in length, and the masonry of the circular court is of astonishing beauty and accuracy. The other buildings which can be identified are the theatre, the stadium, the council chamber or Bouleuterion, and the propylaeum of the market, while on the shoulder of the mountain are the foundations of a small temple, prohably that of Art emis La phria.
See E. Curius Pelopennesos, ii. 138 sqq; ; W. M. Leake, Trasels in The Mavea, i. 366 aqq; J. G. Frazer. Pausanias's Description of Gresce. ili. 429 sq9.: W. G. Clark, Peloponngse, 232 sq9.; A. Blovet. Exped. scient. de Morke: Archilecture, 1. 37-42, Phates 38-47: E. P. Boblaye, Recherches zeogr. sur les ruines de la Morte, 107 sqq.: C . Burainn, Geograpkie don Griachewland, ii. 165 sqq.
(M. N.T.)

Meserenia (Gr. Meootim or Meoompla), the S.W. district of the Peloponnese, bounded on the E. by Mit Taygetus, on the N. by the river Neda and the Arcadian Mountains, on the S. and W. by the sea. Its area is some 825,000 acres, considerably less than that of Shropshire or Wiltshire. Historically and economically its most important part is the great plain, consisting of two distinct portions, watered by the river Pamisus (mod. Pirnatza) and its affluents. This is the most fertile tract in Greece, and at the present day produces oranges, citrons, almonds, figs, grapes and olives in great abundance and of excellent quality. The plain is bounded on the north by the Nomian Mountains (mod. Teressi, 5210 ft .) and their westerly extension, on the west by the mountains of Cyparissia (4000 ft .), a southern continuation of which forms the south.west peninsola of the Morea, attaining its greatest height in Mt Mathia (mod. Lykddimo 3160 ft .). Of the south coast of this peninsula lie the three Oenussae islands and the islet of Theganussa (Venctik). In spite of its iong coast-line, Messenia has no good harbours except the Bay of Pylos (Navarino), and has never played an important part in Greek naval history.
The earliest inhabitants of Messenia are said to have been Pclasgians and Leleges ($q q .0$.), of whom the latuer had their capital at Andania. Then came an Acolo-Minyan immigration, which apparently extended to Messenia, though the Pylos of Nestor almost certainly lay in Triphylia, and not at the site which in historic times bore that name. In the Homeric poems eastern Messenia is represented as under the rule of Menelaus of Sparta, while the western coast is under the Neleids of Pylos, but after Menelaus's death the Messenian fronticr was pushed eastwards as far as Tag̈getus. A body of Dorians under Cresphontes invaded the country from Arcadia, and, taking as their capital Stenyclarus in the northern plain, extended first their suzerainty and then their rule over the whole district. The' task apparentiy proved an eqsy one, and the Dorians blending with the previous inhabitants produced a singie Messenian race with a strong national feeling. But the fertility of the soil, the warm and genial climate, the mingling of races and the absence of opposition, combined to render the Messenians no match for their hardy and warlike neighbours of Sperta. Wiar bsoke out-in consequence, it was said, of the murder of the Spartan king Teleclus by the Messenians-which, in apite of
the heroiam of King Euphaes and his successor Aristodemus (q.v.) ended in the subjection of Messenia to Sparta (c. 720 B.c.). Two generations later the Messenians revolted and under the leadership of Aristomenes (g.v.) kept the Spartans at bay for some seventeen years ($648-631$ B.c., according to Grote): but the stronghoid of Ira (Eira) fell after a siege of eleven years, and those Messenians who did not leave the country were reduced to the condition of belots. The next revolt broke out in 464 , when a severe earthquake destroyed Sparta and caused great loss of life; the insurgents defended themselves for some years on the rock-citadel of Ithome, as they had done in the first war; but eventually they had to leave the Peloponnese and were settled by the Athenians at Naupactus in the territory of the Locri Ozolae. After the hattic of Leuctra (371 b.c.) Epaminondas invited the exiled Messenians scattered in Italy, Sicily, Alrica and elsewhere to return to their country: the city of Messene (9.s.) was founded in 369 to be the capital of the country and, like Megalopolis in Arcadia, a powerful check on Sparta. Other towns too were founded or rehuilt at this time, though a great part of the land still remained very sparsely peopled. But though independent Messenia never became really powerful or able to stand without external support. After the fall of the Theban power, to which it had owed its coundation, it became an ally of Philip II. of Macedon and took no part in the battle of Chaeroncia (338 B.c.). Subsequently it joined the Achaesn League, and we find Messenian troops fighting along with the Achaeans and Antigonus Doson at Sellasia in 222 B.c. Philip V. sent Demetrius of Pharos to seize Messene, but the attempt failed and cost the life of Demetrius; soon afterwards the Spartan tyrant Nabis succeeded in taking the city, but was forced to retire by the timeiy arrival of tho Philo pocmen and the Megalopolitans. A waf afterwards broke out with the Achaean League, during which Philopoemen was captured and put to death by the Messenians (183 B.c.), but Lycortas took the city in the following year, and it again joined the Achacan League, though much weakened hy the loss of Abia, Thuria and Pherae, which broke loose from it and entered the Leagus as independent members (see Achazan Lingue). In 146 B.C. the Messenians, together with the other states of Greece, were brought directly under Roman sway by L. Mummius. For centuries there had been a dispute between Messenis and Sparta about the possession of the Ager Denthcliates on the western slope of Taygetus: after various decisiong by Philip of Macedon, Antigonus, Mummius, Caesar, Aatony, Augustus and others, the question was seltled in an 25 by Tiberius and the Senate in favour of the Messenians (Tac, Anr. iv. 43).

In the middle ages Meseenia shared the fortuncs of the rest of the Peloponnesc. It was overran by Slavic hordes, who have left their traces in many village names, and was one of the chief battlefields of the various powers-Byzantines, Franks, Venetiansiand Turks - who struggled for the possession of the Morea Striking reminders of these conflicts are afforded by the extant ruins of the medieval strongholds of Kalamata, Coron (anc. Asine, mod. Korone), Modon (Melhone) and Pylos. At the present dey Messenia forms a department with its capital at Kalamata, and a population numbering (according to the consus of 1907), 127,991.
Sie W. M. Leake, Traxels in the Moren (London, 1830). i. 324 sq9-; E. Curtius, Peloponnesos (Gorha, 1852), u. 121 sq9: C. Burssan, Geographic pon GriechenLand (Leipzig. 1868), ii. 155 s9q.: E. P Boblaye, Recherches geographaques sur les ruines de la Morle (Paris. 1835), مo3 sq9.: Strabo vifi. 358 sq9.: Pausamias iv. and the commentary in J. G. Fraver. Pamantes's Description of Greate. vol. iii.; and articles by W. Kolbe. Aihensecke Mitledungen (1904). 364 s99 and M. N. Tod. Journod of LIcllenic Studies. xxv. $32 \mathrm{sqq}$. . Physical features: A. Pbilippson. Der Pelopannes (Berlin, 1892). 340-381. Inscriptions: Inscriptomes graecar, v.i: Le Bas-Foucart, Yoyage erchalologique: Inscr,ptioxs. Nos. 291-326 A: Coltiz-Bechtel. Sammmuge der griech. Dıakhtınschryflen. iii. 2, Nos. 4037-4692.
(M. N.T.)

Eressian (Dan. x. 25, 26), and Messias (John i. 41; iv. 25), transcriptions (the first form modified by reference to the etymology) of the Greek Meacias, (Mecias, Mcotios), which in
turn represents the Aramaic wrwp (mdshind), answering to the Hebrew 0 a magical power was ascribed to the anointing oil (cf.Frazer, Colden Bough, and ed., ii. 364 sqq.). The king was thereby rendered sacrosanct (1 Sam. xxiv. 6 sqq.; 2 Sam. i. 14 sqq.; iv. 9 sqq.), and he was considered to be endowed with a special virtue. Thus whosoever curses the king is stoned as though God Himself had been cursed (2 Sam. xix, 22). In ancient Egyptian cultus the priest, after be has solemnly saluted the gods, begins the daily toilet of the god, which consists in sprinkling his image, clothing it with coloured cloths, and anointing it with oil (Erman, Die aegyptische Religion, p. 49). In the magical texts of Bahylonia a similar virtue was attached to oil: "bright oil, pure oil, resplendent oil that bestows magnificence on the Gods \because the oil for the conjuration ($5 i p / 4$) of Marduk" (Tallquist, Makla series, tablet vii. col. 1, 31 sqq.; cf. Gressmann, Der Ursprung der israelitisch-judischen Eschalologie, p. 258, sqq.). We have, in Schrader's K.I.B. v. letter 37 (p. 98), evidence from the Tell el-Amarna tablets that the anointing of kings was practised in Egypt or Syria in 1450 B.c. (c.) in a letter addressed to the Egyptian king by Ramman-nirari of Nubaši. On the intimate relation which in primitive times subsisted between the sorcerer and the king see the citation from Frazer's Eorly History of Kingship, p. 127, in the article Paiest, and cf. p. 29: "Classical evidence points to the contclusion that in prehistoric ages . . . the various tribes or cities were ruled by kings who discharged priestly duties" (p.31). Thus the early kings of Assyris were priests of Assur (Asur), the tutelary deity of Assyria. Tiglath-Pileser I. (c. II00 b.c.) calls his predecessors, Samši-Ramman and Ismi-Dagan, iljakku (po-le-si) of the God Assur (Prism-inse. coi. vii. 62, 63). Later kings, e.g. Shalmaneser II. (Nimrud-obelisk, line 15 , monolith, line 11) and Assur-bani-pal (Rassam cyl. col. vii. 94) call themselves by the more definite title of Jangy of Assur. The Hebrew word with the articie prefixed occurs in the Old Testament only in the phrase " the anointed priest " (Lev. iv. 3, 5, 16; vi. 22 (15)), but "Yahweh's anointed " is a common title of the king of Isracl, applied in the historical books to Saul and David, in Lam. iv. 20 to Zedekiah, and in Isa. xlv. I extended to Cyrus. In the Psaims corresponding phrases (My, Thy, His anointed) ${ }^{\text {2 }}$ occur nine times, to which may be added the lyrical passages 1 Sam. ii. 10, Ha5. iii. 13.

In the present attitude of literary criticlsm it would be most difficult to assert, as Robertson Smith did in the gth edition of this work, that "in the intention of the writers it li.e. the term messiah or " anointed "l refers to the king then on the throne." Nor would most recent critics agree with Professor Driver (L.O.T., 8 thed. p. 385) in considering Pss'ii. and lxxii. as " presumably pre-exilic." C. Buchanan Gray (J.Q.R., July 1895, p. 658 sqq.) draws a parallel between the " king" in the Psalms and the "servant" in Deutero-lsaiah or Yahweh's "Son" (in Hos. xi. 1, \&c.) which is applied to Isracl either actual or idealized. It would be possible so to interpret "king" or "anointed" in some Psalms, c.f. ixi., lxiii. and lxxxiv., but hardly in Pss. ii., Ixxii. and lxxxix., where the Messianic reference is strongly personal. ${ }^{\text {s }}$ In the Psalms the ideal aspect of the kingship, its religious importance as the expression and organ of Yabweh's sovereignty, is prominent. When the Psalter became a liturgical book the historiral kingship had gone by. and the idea alone remained, no longer as the interpretation of a present political fact but as part of Israel's religious inheritance. It was impossibie, however, to think that a true idca had become obsolete merely because it found no expression on earth for the time being: Israel looked again for an a nointed king to whom the words of the sacred hymons should apply with a force
${ }^{1}$ The transcription is as in Teacolip readip for wes, Onomastica, ed. Lag. pp. 247. ${ }^{281}$, Baa. β ii. 3 . For the termination -as for mn, see Lagarde, Psolt. Memph.,p. vif.
${ }^{2}$ The plural is found in Ps_{s}. cv. 15, of the patriarchs as consecrated persons.
${ }^{3}$ in Ps. Ixxoiv. 9 [Lo] it is disputed whether the anointed one is the king. the priest, or the nation as a whole. The second view is perhaps the best.
never realized in the imperfect kingship of the past. Thus the Psalms were necessarily viewed as prophetic; and meantime, in accordance with the common Hebrew representation of ideal things as existing in heaven, the true king remains hidden with God. The steps by which this result was reached must, however, be considered in detail.

The hope of the advent of an ideal king was only one feature of that larger hope of the salvation of Israel from all evils, which was constantly held forth by all the prophets, from the time when the seers of the 8 th century b.c. proclaimed that the true conception of Yahweh's relation to His people could become a practical reality only through a great deliverance following a sifting judgment of the most terrible kind. The idea of a judgment so severe as to render possible an entire breach with the guilty past is common to all the prophets, but is expressed in a great variety of forms and images. As a rule the prophets directly connect the final restoration with the removal of the sins of their own age; to Isaiah the last troubles are those of Assyrian invasion, to Jeremiah the restoration follows on the exile to Babylon, to Daniel on the overthrow of the Greck monarchy. But all agree in giving the central place to the realization of a real effective kingship of Yahweh; in fact the conception of the religious subject as the nation of Isracl, with a national organization under Yahweh as king, is common to the whole Old Testament, and connects prophecy proper with the so-called Messianic psalms and similar passages which speak of the religious relations of the Hebrew commonwealth, the religious meaning of national institutions, and so necessarily contain ideal elements reaching beyond the empirical present. All such passages are frequently called Messianic; but the term is more properly reserved as the specific designation of one particular branch of the Hebrew hope of salvation, which, becoming prominent in post-canonical Judaism, used the name of the Messiah as a technical term (which it never is in the Old Testament), and exercised a great influence on New Testament thought-the term "the Christ " (δ xploror) being itself nothing more than the translation of "the Messiah."

In the period of the Hebrew monarchy the thought that Yahweh is the divine king of Israel was associated with the conception that the human king reigns by right only if he reigns by commission or " unction" from Him. Such was the theory of the kingship in Ephraim as well as in Judah (Deut. xxxiii.; 2 Kings ix. 6), till in the decadence of the nort hern state Amos (ix. 11) foretold' the redintegration of the Davidic kingdom, and Hosea (iii. 5 ; viii. 4) expressly associated a similar prediction with the condemnation of the kingship of Ephraim as illegitimate. So the great Judaean prophets of the 8th century connect the salvation of Isracl with the rise of a Davidic king, full of Yahweh's Spirit, in whom all the energies of Yahweh's transcendental kingshipare as it were incarnate (Isa.ix. 6 seq.; xi. iscq.; Micah v.). This conception, however, is not one of the constant elements of prophecy; other prophecies of Isaiah look for the decisive Interposition of Yahweh in the crisis of history without a kingly deliverer. Jeremiah again speaks of the future David or righteous aprout of David's stem (xuiii. 5 seq.; xxx. 9) and Ezekicl uses similar language (xxxiv., xxxvii.); but that such passages do not necessariiy mean more than that the Davidic dynasty shall be continued in the time of restoration under worthy princes seems clear from the way in which Ezekiel speaks of the prince in chs. xlv., xlvi. As yct we have no fixed doctrine of a personal Messiah, but only material from which such a doctrine might be drawn. The religious view of the kingship is still essentially the same as in a Sam. vii., where
${ }^{2}$ Most recent critics regard Amos ix. 9-15 as a later addition, and the same view is held by Nowack, Harper and others respecting Hos. iti. 5, though on krounds which seem questionable. Isa. ix. 1-7, xi. 1 sq9. are held by Hackmann, Cheync. Marti. and other crities to be post-exilian. Duhm and others hold that they are genuine. It may be admitied that lsa. xt. I seq. might be held 10 be contemporary with lisa. Iv. 3. 4, and to refer to Zerubbabel. Cf. Haszai ii. 21-23, compoeed zeventeen years afterwarde. Mic.v. 1-8 can with difficulty be regarded as genuine.
the endless duration of the Davidic dynasty is set forth as part of Yahweh's plan.

There are other parts of the Old Testament-notably I Sam viii., xii. (belonging to the later stratum)-in which the very existence of a human tingship is represented as a departure from the theocratic ideal, and after the exile, when the monarchy had come to an end, we find pictures of the latter days in which its restoration has no place. Such is the great prophecy of Isa. xl.-xiviii., in which Cyrus is the anointed of Yabweh. So too there is no allusion to a human kingship in Joel or in Malachi; the old forms of the Hebrew state were broken, and religions hopes expressed themselves in other shapes. In the book of Daniel it is collective Israel that, under the symbol of a " son of man," receives the kingdom (vii. r3, 18, 22, 27).

Meantime, however, the decay and ultimate silence of the living prophetic word concurred with prolonged political servitude to produce an important change in Hebrew religion. To the prophets the kingship of Yahweh was not a mere ideal, but an actual reality. Its full manifestation indeed, to the eye of sense and to the unbelieving world, lay in the future; but true faith found a present stay in the sovereignty of Yabweh, daily exhibited in providence and interpreted to each generation by the voice of the prophets. And, while Yahweh's kingship was a living and present fact, it refused to be formulated in fixed invariable shape.

But when the prophets were succeeded by the scribes, the interpreters of the written word, and the yoke of foreign oppressors rested on the land, Yahweh's kingship, which presupposed a living nation, found not even the most inadequate expression in daily political life. Yahweh was still the lawgiver of Israel, but His law was written in a book, and He was not present to administer it. He was still the hope of Israel, but the hope $t 00$ was only to be read in books, and these were interpreted of a future which was no longer the ideal development of forces already at work, but wholly new and supematural. The present was a blank, in which religious duty was summed up in patient obedience to the law and penitent submission to the Divine chastisements. The scribes were mainly busied with the law; but no religion can subsist on mere law; and the systematization of the prophetic hopes, and of those more ideal parts of the other sacred literature which, because ideal and dissevered from the present, were now set on one line with the prophecies, went on side by side with the systematization of the law, by means of a harmonistic exegesis, which sought to gather up every prophetic image in one grand panorama of the issue of Isracl's and the world's history. The beginnings of this process can probably be traced within the canon itself, in the book of Joel and the last chapters of Zechariah; ${ }^{3}$ and, if this be so, we see from Zech. ix. that the picture of the ideal king claimed a place in such constructions. The full development of the method belongs, however, to the post-canonical literature, and was naturally much less regular and rapid than the growth of the legal traditions of the scribes. It was in crises of national anguish that men turned most eagerty to the prophecies, and sought to construe their teachings as a promise of speedy deliverance (see Apocalyptic Literatuez). But these books, however infiuential, had no public authority, and when the yoke of oppression was lightened but a little their enthusiasm lost much of its contagious power. It is not therefore safo to measure the general growth of eschatological doctrine by the apocalyplic books, of which Daniel alone attained a canonical position. In the Apocrypha eschatology has a relatively small place; but there is enough to show that the hope of Isracl was never forgotten. and that the imagery of the prophets was accepted with a literalness not contemplated by the prophets themselves.

It was, however, only very gradually that the figure and name of the Messiah acquirod the prominence which they have in
${ }^{2}$ The hopes which Fagsai and Zechariah connect with the mame of Zerubbabel, a doscendant of David, hardly form an exception to this taternent. There may even be a relerence to himin lan. Iv. 3 , 4
"See Stade's articles "Deuterozacharja." Z.f. A. T. -liche Wiss., 1881-1882. CI. Dan. ix. 2 for the use of the older prophecic: in the solution of new problems of faith.

Heter Jewishdoctrine of the last things and in the offictal exegesis of the Targums. In the very developed eschatology of Daniel they are, as we have seen, altogether wanting, and in the Apocryptis, both before and after the Maccabean revival, the everlasting throne of David's house is a mere historical reminiscence (Ecclus. xlvii. Ir; 1 Macc. ii. 57). So long as the wars of independence occupied the Palestinian Jews, and the Hasmonaean sovereignty promised a measure of independence and felicity under the law, the hope that connected itself with the House of David was not likely to rise to fresh life, especially as a considerable proportion of the not very numerous passeges of Scripture which speak of the ideal king might with a little straining be applied to the rising star of the new dymasty (c. I Macc. xiv. 4-15). It is only in Alexandria, where the Jews were still subject to the yoke of the Gentile, that at this time (6. 140 B.c.) we find the oldest Sibylline verses (iii. 652 seq.) proclaiming tbe approach of the rigbteous king whom God shall raise up from the East (Isa. xli. 2.) The name Messiah is still lacking, and the central point of the prophecy is not the reign of the deliverer but the subjection of all naplions to the law and the temple. ${ }^{1}$
With the growing weak ness and corruption of the Hasmonsean princes, and the alienation of a large part of the nation from their cause, the hope of a better kingship begins to appear in Judaca also; at first darkiy shadowed forth in the Book of Enoch (chap. xc.), where the white steer, the future leader of God's herd after the deliverance from the heathen, stands in a certain conerast to the actual dynasty (the borned lambs); and then much more clearly, and for the first time with use of the name Messiah, in the Psaller of Solomon, the chief document of the protest of Pharisaism against its enemies the latet Hasmonacans. The truggle between the Pharisees and Sadducees, bet ween the party of the scribes and the aristocracy, was a struggle for mastery between a secularized hierarchy whose whole interests were those of their own selifish politics, and a party to which God and the exact fuifilment of the law according to the scribes were all in all. This doctrine had grown up under Persian and Grecian rule, and no government that possessed or aimed at political independence could possibly show constant deference to the punctilios of the schoolmen. The Pharisees themselves could pot hut see that their principles were politically impotent; the most scrupulous observance of the Sabbath, for example -and this was the culminating point of legality-could not thrust back the heathen. Thus the party of the scribes, when they came into conflict with an active political power, which at the same time ctaimed to represent the theocratic interests of Larael, were compelled to lay fresh stress on the doctrive that the true deliverance of Israel must come from God.
But now the Jews were a nation once more, and national ideas came to the front. In the Hasmonacan sovereignty these ideas took a political form, and the result was the secularization of the kingdom of God for the sake of a harsh and rapaciona aristocracy. The nation threw itself on the side of the Pharisees; not in the spirit of pumetilious legalism, but with the ardour of a national enthusiasm deceived in its dearest bopes, and tùrning for help from the delusive kingship of the Hasmonaeans to the true kingship of Yabweh, and to His vicegerent the king of David's house. It is in this connexion that the doctrine and name of the Messiah appear in the Psoller of Solomon. The eternal kingship of the House of David, so long forgotten, is seized on as the proof that the Hasmonseans have no divine right.
"Thou, Lord, art our king for ever and ever. . . Thou didst choose David as king over lisrael, and swarest unto him concerning hio seed for ever that his kingship should never fail before Thee. And for our sins sinners (the flasmonaeans) bave risen up over us, taling with force the kingdom which Thou didst not promise to them. profaning the throne of David in their pride. But Thou, O Lord, will cast them down and root out their seed from the band, When a man not of our race (Pampey) ripes up againk them. -.. Behoti, O Lord, and raise up their king the Son ol David at the time that Thou hast appointed, to reign over Israel Thy vervant; and gird bim with strength to crush unjust rulers; to cleanse Jerusalem from the heet ben that tread it under foot, to cast out sinners from Thy
${ }^{1}$ In $5 i b y l$ inii. 775,
iaheritasce: to break the pride of sinners and all their totrength as potter's vesorls with a rod of iron ($\mathrm{Pg} . \mathrm{ii} .9$): to destroy the lawless nations with the word of his mouth (Ias. xi. 4); to gather a holy nation and lead them in righteousness. . . He shall divide them by tribes in the tand, and no stranger and forcigner shall dwell with them: be shall judge the nations in wisdom and righteousness. The beathen nations shall eerve under his yoke; be thall glorify the Lord belore all the carth, and cleanse Jerusalem in holiness, as in the beginning. From the ends of the earth all nations shall come to eee his glory and bring the weary mons of Zion as gifts (Iea. Ix. 3 weq.); to see the glory of the Lord with which God hath crowned him, for he is over them a righteous king taught of God. In his days there shall be no unrighteousness in their midst; for they are all holy and their king the anointed of the Lord (xpeords cipmos, mistranslation of mer neo).-Psalf. Sol. xvit.

This conception is traced in lines too firm to be those of a first essay; it had doubtless grown up as an integral part of the religious protest against the Hasmonaeans. And while the polemical motive is obvious, and the argument from prophecy against the legitimacy of a non-Davidic dynasty is quite in the manner of the scribes, the spirit of theocratic fervour whicb inspires the picture of the Messiah is hroader and deeper than their narrow legalism. In a word, the Jewish doctrine of tbe Mesciah marks the fugion of Pharisaism with the national religious feeling of the Msccabean revival. This national feeling, claiming a leader against the Romans as well as deliverance from the Sadducee aristocracy, again sets the idea of the kingship rather than that of resurrection end individual retribution in the central place. Henceforward the doctrine of the Messiah is the centre of popular bope and the object of theological culture. The New Testument is the best evidence of its influence on the masses (see eapecially Mitt. 20. 9); and the exegesis of the Targums, which in its beginnings douhtless reaches back before the time of Christ, shows bow it was fostered by the Rabbins and preached in the synagogues. Its diffusion far beyond Palestine, and in circles least accessible to such ideas, is proved by the fact that Philo himself (De procm. \& poen. \& 6) gives a Messianic interpretation of Num. dxiv. 27 (LXX). It must not indeed be supposed that the doctrine was as yet the undisputed part of Hebrew faith which it became when the fall of the state and the antithesis to Christianity threw all Jewich thought into the lines of the Pharisees. It has, for example, no place in the Assumption of Moser or the Book of Jubilices. But, as the fatal struggle with Rome became more and more imminent, the eschatological hopes which increasingly absorbed the Hebrew mind all group themselves round the person of the Messiah. In the later parts of the Book of Enoch (the "symbols" of chap. xlv, seq.) the judgment day of the Messiah (identified with Daniel's "Son of Man ") stands in the forefront of the eschatological picture. Josephus (B. J. vi. 5, 4) testifies that the belief in the immediate appearance of the Messianic king gave the chief impulse to the war that ended in the destruction of the Jewish state; after the fall of the temple the last apocalypses (Boruch, 4 Erra) still loudly proclaim the near victory of the God-sent king; and Bar Cochebas, the leader of the revolt against Hadrian, was actually greeted as the Messiah by Rabbi Aqiba (cf. Iuke xxi. 8). These hopes were again quenched in blood; the political idea of the Messinh, the restorer of the Jcwish state; still finds utterance in the daily prayer of every Jew (the Shemone Eirc), and is enshrined in the system of Rabbinicat theology; but its historical significance was buried in the ruins of Jerusalem. ${ }^{*}$

The Targurnic passages that speak of the Messiah are registercd by Buxiorf, Lex. Chald., s.o.
${ }^{2}$ False Messiahs have continued from time to tume to appear among the Jews. Such was Sermus of Syria (c. 720 A.D.). Soon after, Messianic hopes were active at the time of the fal of the Omayyads, and lod to a serious rising under Aby 'fsa of lspaharf, who called himsclf forerunner of the Messiah. The false Messinh David Alrui (Alroy) appeared among the warlike Jews in Azerbijan in the middle of the 12th century. The Messianic claims of Abraharh Abulafia of Saragossa (born I24o) had a cabalistic basis, and the same studies encouraged the wildest hopes at a later time. This Abarbancl calculated the coming of the Messiah for 1503 A.D.; the year 1500 was in many places observed as a preparatory season of penance: and throughout the 16 th century the Jeys were much penance: and more then one false Messiah appeart. See also Sabbatai, Sebl.

But this proof that the true kingdom of Cod could not be realized in an earthly state, under the limitations of national particularism, was not the final refutation of the Old Testament hope. Amidst the-last convulsions of political Judaism a new spiritual conception of the kingdom of God, of salvation, and of the Saviour of Cod's anointing, had shaped itself through the preaching, the death, and the resurrection of Jesus of Nazareth. As applied to Jesus the name of Messiah lost all its political and national significance. Between the Messiah of the Jews and the Son of Man who came to give His life a ransom for many there was on the surface little resemblance; and from their standpoint the Pharisees reasoned that the marks of the Messiah were conspicuously absent from this Christ. But when we look at the deeper side of the Messianic conception.in the Psaller of Solomon, at the heartfelt longing for a leader in the way of righteousness and acceptance with God which underlies the aspirations after political deliverance, we see that it was in no mere spirit of accommodation to prevailing language that Jesus did not disdain the name in which all the hopes of the Old Testament were gathered up.

Messianic Parallels.-Within the limits of this article It it impossible to attempt any exteoded survey of parallels to Hebrew Messianic conceptions drawn from other relighons. One interesting analogy communicated by Profcssor Rapson, may, however, be cited from the Bhafavad-athe, iv. 5-8, in which Krishna saya:-
5 " Many are the births that have paseed of me and of thee Arjuna.
All these I know: thou knowent then not, O conqueror of thy foes.
6 Unborn, of imperishable soul, the Lord of all creatures,
Taking upon me mine own nature, I arise by my own power.
7 For whensoever, 0 son of Bharata, there is decay of righteous-
And a rising up of unrighteousness, then I create myself,
8 For the protecting of the good and for the destroying of evil-doers.
And for the eatablishing of righteouancss I arise from age to age."
"Somewhat similar are the avatars of Vishnu, who becomes incarnate in a portion of his essence on ten occasions to deliver mankind from certain great dangern Krishna himself is usaally regarded as one of these avatars." This we may consider as one of the striking parallels which meet us in other religions to that " hope of the advent of an ideal king which was one of the features of that larger hope of the salvation of Israel from all evits, the realization of perfect reconciliation with Jehovah and the felicity of the righteous in Him," to which reference was made in an early portion of this article and which constitutes the essential meaning of Messiah. ship. The form in which the Indian conception presents itself in the above quoted lines is more closely analogous amid many differences to the later and apocalyptic type of the Messianic idea as it appears in Judaism.
The interesting, parallels between the Babylonian Marduk (Merodach) god of light and Christ as a world saviour are ingeniously set forth by Zimmern in K.A.T., 3 rd ed., pp. 376-391, but the total impression which they leave is vague.

It would carry us too far to consider in this place the details of the Jewish conception of the Messiah and the Messianic times as they appear in the later apocalypses or in Talmudic theology. See for the former the excellent summary of Schivere, Geschichte des judischen Volkes im Zestaluer Jesu Ckristi, 3rd ed., vol. it. pp. 497556. See also Weber, Judische Theologio, ch, xxiii. For the whole subject see also Drummond, The Jewish Messiak, and Kuenen, Religion of Israel, ch. xii. For the Messianic bopes of the Pharisees and the Psolter of Solomon see especially Wellhausen, Pharisdep und Sadduciep (Greifswald, 1874). In its ultimate form the Messianic hope of the Jews is the centre of the whole eschatology. embracing the doctrine of the last troubles of lsrael (called by the Rabbins the "birth pangs of the Messiah"), the appearing of the anointed king, the anniblation of the hostile enemy, the return of the dispersed of Israch, the glory and world-sovereignty of the elect, the new world, the resurrection of the dead and the last judgment. But even the 6nal form of Jewish theology shows much vacillation as to these details, especially as regards their sequence and mutual relation, thus betraying the inadequacy of the harmonistic method by which they were derived from the Ond Testament and the stormy excilement in which the Messianic idea was developed. It is. for example, an open question among the Rabbins whether the days of the Messiah belong to the old or to
 embraces all men or only the righreous, whethes it precedes or follows the Messianic age. Compare Miflenntum.

We must also pass over the very important questions that arise as to the gradual extrication of the New Testament idea of the

Chrive from the elementa of Jewish political doctrise which had $s 0$ strong a hold of many of the first disciples-the relation, for example, of the New Testament. Apocalypec to contemporary Jewish thought. A word, however, is necessary as to the Rablinical doctrine of the Messiah who suffers and dies for Israel, the Messiah son of Joseph or son of Ephraim, who in lewish theology is diatinguished from and subordinate to the vistorious mon of David. The developed form of this idea is almost certainly a product of the polemic with Chisisianity, in which te Rabbins were hard pressed by argunients from passages (espreially Isa. liiii.) which their own exegesis admitted to be Messin ic, though it did not accept the Christian inferences as to the atoning death α the Messianic king. That the Jews in the tint of Christ believed in a suffering and atoning Messiah is, to say he least, unproved and highly improbable. See, besides the books above cited, De Wette, Opuscula ; Wansche, Die Leden des Messias 1870).

See the articles on "" Messiah "' in Hastinys's D. B. (together with Fnir weather's art.," Developnent of Doctrine" 'in extra vol., Pp. 295$301)$ in Ency. Bibl. Also P.R.E. 3rd ed., as w Il as Hastings's Bict. of Clirist and the Gospels, should be consulted. Comp. Edersheim, Lifo and Times of Jesus the Messich, and ed. is 160-179, i. 434 sq9.: \mathbf{W}^{10-741}; Stanton, The Jewish and the Civistian Messiath (1886): Wendt, Tcaching of Jesus, i. 60-84, 176-111, ii. 122-1 39; Holtzmann, N. T. Theologie (1897), pp. 81-85. 14-304: Baldensperger. Das Selbstheowsstseim Jesw; Wel hausen, Imael. w. jud. Ceschichte (1895), pp. 198-204; Charles's Book of Enoch and Apocalypse of
 lw its, 2nd ed., pp. 245-277; Volz, Judische Eschatologie don Denied bis Akiba, pp. 55-68, 213-237: Dalman, Der leidende w. sterbende Messias; Gressmann, Ursprung dos israclitisch-jüdisechon Eschatologic, pp. 250-345. A fuller aurvey of literature will be found in Schürer. op. cif, p. 496 sq9.
(W. R.S.; O.C.W.)

Mrssina, a city of Sicily, 7 m . S.S.W. of the prompntory of Faro (anc. Promontorium Pelormm), which forms the northeastern angle of the island, the capital of the province of Messine and the seat of an archbishop. Pop. (1850), 97,074; (1881), 126,497; (1901), 149,778; (1905), 158,812. The site of the town curves round the harbour, between it and the strongly fortified hills of Antennamare, the highest point of which is 3707 ft . The straits, which take their name from the town, are bere about 31 m . wide, and only a little over 2 m . at the promontory of Faro. The numerous earthquakes from which the city had suffered, notably that in 1783, had left it few remains of antiquity. But it was a flourishing and beautiful city wben in 1908 one of the most disastrous earthquakes ever recorded destroyed it totally. The earthquake occurred early in the morning of December 28, and so far as Messina was concerned the da mage was done chicfly by the shock and by the fires which broke out afterwards; the seismic wave which followed was comparatively innocuous. But it did vast damage elsewhere along the strait, notably at Reggio, Calebria, which was also totally destroyed. Many other smaller towns suffered both in Sicily and in Calabria; the loss of life was appalling and the distress widespread, in spite of the prompt assistance rendered by Italian naval and military forces and by the crews of British, Russian and German warships and other vessels, and the contribution of funds for relief woiks from cvery part of the world. The immediate seismic focus appeared to be in the straits, but Dr E. Suess pointed out that it was surrounded by a curved line of earth-fracture, following an arc drawn from a centre in the Lipari Islands, from Catanzaro to Etna, and so westward; within this are he held tbat the crust of the earth is gradually sinking, and is in an unstable condition. According to an official estimate the earthquake caused the loss of 77,283 lives.' (See also Earthquake.)

The fagades of buildings at Messina in great part withstood the earthquake, but even when they did so the remainder of the buildings was destroyed. The cathedral, which was completely wrecked, was begun in 1098 and finished by Roger II. It had a fine Gothic facade : the interior had mosaics in the apses dating from 1330, and the nave contained 26 granite columns, said to have been brougbt from a temple of Poseidon near Faro, and had a fine wooden roof of 1260 . The rest of the edifice was in the baroque style; the high altar (containing the supposed letter of the Virgin Mary to the people of Messina), richly decorated with marhles, lapis lazuli, \&c., was begun in 1628 and completed in 1726. The importance of Messina was almost entirely due to its
${ }^{1}$ See S. Franchi, " Il Terremoto . . . a Mesina . . ." in Boll. R. Comit teoiotine "'illo? , 4th series, val. z. (1909).
harbour, a circular basin open on the north only, formed by a strip of land curving round like a sickle, from which it took its
 equivalent of the Greek $\delta \rho$ enapov, ${ }^{1}$ according to Thucydides, vi. 4).

Zancle was first founded, no doubt on the site of an earlier settlement, by pirates from Cumae, and again more regularly settled, after an unknown interval, by settlers from Cumae under Perieres, and from Chalcis under Crataemenes, in the first quarter of the 8th century b.c. Mylae must have been occupied as an outpost very soon, afterwards, but the first regular colony of Zancle was Himera, founded in 648 s.c. After the capture of Miletus by the Persians in 494 B.c. Skythes, king of Zancle, invited the Ionians to come and settle at Kahn 'AxTh, then in the occupation of the Siccls (the modern Marina di Caronia, 25 m . east of Cefalu); but at the invitation of Anaxilas of Regium the Samians proceeded instead to the latter place. About 488 s.c. Anaxilas and the Samians occupied Zancle in the absence of Skythes, and it was then that the name was changed to Messene, as the existence of coins of the Samian type, bearing the new name, proves. About 480, however, Anaxilas thoroughly established his authority at Messene, and the types of coinage introduced by him persevere down to about 396 в.c., ${ }^{2}$ when Anaxilas himself zealously supported his son-in-law Terillus in inviting the Carthaginians' invasion of 480 b.c. In 426 the Athenians gained the alliance of Zancle, but soon lost it again, and failed to obtain it in 415 .

Messina fell into the hands of the Carthaginians during their wars with Dionysius the elder of Syracuse (397 B.c.). The Carthaginians destroyed the city, but Dionysius recaptured and rebuilt it. Daring the next fifty years Messina changed masters several times, till Timokeon finally expelled the Carthaginians in 343 s.c. In the wars between Aguthocles of Syracuse and Carthage, Messina took the side of the Carthaginians. After Agathocles' death, his mercenaries, the Mamertines, treacherously seized the town about 282 B.c. and held it. They came to war with Hiero II. of Syracuse and appealed for help to Rome, which was granted, and this led to a collision between Rome and Carthage, which ended in the First Punic War. Messina was almost at once taken hy Rome. At the close of the war, in 241 B.C., Messina became a free and allied city (civitas foederata), and obtained Ruman citizenship before the rest of Sicily, probably from Caesar himedif. During the civil wars which followed the death of Caesar, Messina held with Sextus Pompeius; and in 35 b.c. it was sacked by Octavian's troops. After Octavian's prociamation as emperor he founded a colony here; and Messina continued to flourish as a trading port. In the division of the Roman empire it belonged to the emperors of the East; and in A.D. 547 Belisarius collected his fleet here before crossing into Calabria. The Saracens took the city in A.D. 831 ; and in ro6r it was the first permanent conquest made in Sicily by the Normans. In 1100 Richard I. of England, with his crusaders, passed six months in Messina. He quarrelled with Tancred, the last of the Hzuteville dynasty, and sacked the town. In 1194 the city, with the rest of Sicily, passed to the house of Hohenstaufen under the emperor Henry VI., who died there in 1197; and after the fall of the Hohenstaufen was contended for by Peter I., king of Aragon, end Charles I., count of Anjou. At the time of the Sicilian Vespers (1282), which drove the French out of Sicily, Messina bravely defended itself against Charles of Anjou, and repulsed his attack. Peter I., through his commander Ruggiero di Loria, defeated the French of the Faro; and from 1282 to 1713 Messina remained a posesssion of the Spanish royal house. In 1571 the fleet fitted out by the Holy League against the Turk assembled at Messina, and in the same year its coramander, Don John of Austria, celebrated a triumph in the city for his victory at Lepanto. Don John's statue stands in the Piazza dell' Annuziata. For one hundred years, thanks to the favours and

[^16]the concessions of Charles V., Mesoina enjoyed great prosperity. But the internal quarrels between the Merli, or aristocratic faction, and the Malvezai, or democratic faction, fomented as they were by the Spaniards, helped to ruin the city (1671-1678). The Messinians suspected the Spanish court of a desire to destroy the ancient senatorial constitution of the city, and sent to France to ask the aid of Louis XIV. in their resistance. Louis despatched a fleet into Sicilian waters, and the French occupied the city. The Spaniards replied by appealing to Holland, who sent a fleet under Ruyter into the Mediterrancan. In 1676 tbe French admiral, Abraham Duquesne, defeated the combined fleet of Spain and Holland; but, notwithstanding this victory, the French suddenly abandoned Messina in 1678, and the Spanish occupied the town once more. The senate was suppressed, and Messina lost its privileges. This was fatal to the importance of the city. In 1743 the plague carried of 40,000 inhabitants. The city was partially destroyed by earthquake in 1783 . During the revolution of 1848 against the Bourbons of Naples, Messina was bombarded for three consecutive days. In 1854 the deaths from cholera numbered about 15,000 . Garibaldi landed in Sicily in 1860, and Messina was the last city in the island taken from the Bourbons and made a part of united Italy under Victor Emmanuel.
Mexsina was the birthplace of Dicacarchus, the historian (c. 322 B.c.); Aristocles, the Peripatetic; Euhemerus, the rationalist (c. 316 B.c.); Stefano Protonotario, Mazeeo di Riceo and Tommaso di Sasso, poets of the court of Frederick II. (A.D. 1250); and Antonello da Messina, the painter ($1447^{-1499 \text {), of whose works one is }}$ preserved in the muscum. During the Isth century the grammarian, Constantinc Lascaris, taught In Messina; and Bessarion was for a time archimandrite there.
(T. As.)

MESBUAGE (from Anglo-French mestage, prohably a corruption of mdsuage, merrage, popular Lat. mansionaticum, from mansio, whence mod. Fr. maison, from manere, to dwell), in law, a term equivalent to a dwelling-house, and including outbuildings, orchard, curtilage or court-yard and garden. At one time " messuage" is supposed to have had a more extensive meaning than that comprised in the word "house," but such distinction, if it ever existed, no longer survives.

MESTIZO (adopled from the Spanish, the Portuguese form being mestico, from Lat. miscere, to mix), a tern originally meaning a half-breed, one of whose parents was Spanish, and now used occasionally of any half-breed, but especially to denote persons of mixed Spanish (or Portuguese) and American Indian blood. The offspring of such half-breeds are also called mestizoes. The feminine form is mestiza.

MESUREUR, GUSTAVE BMIL RUGİNE (1847-), French politician, was born at Marcq-en-Baroeul (Nord) on the 2nd of April 1847. He worked as a designer in Paris, and became prominent as a member of the municipal council of Paris, rousing much angry discussion by a proposal to rename the Parisian streets which bore saints' names. In 1887 he became president of the council. The same year he entered the Chamber of Deputies, taking his place with the extreme left. He joined the L. Bourgeois ministry of 1895-1896 as minister of commerce, industry, post and telegraphs, was vice-president of the Chamber from 1898 to 1902, and presided over the Budget Commission of 1899, 1901 and 1002 . He was defeated at the polls in 1902, but became director of the Assistance Publique. His wife, Amelie de Wailly (b. 1853), is well known as a writer of light verse and of some charming children's books.

META, the Latin word for the goal which formed the turningpoint for the chariot races in the Roman circus. The metae consisted of three conical pillars resting on a single podium. None have been preserved, but they are shown on coins, gems and terra-cotta bas-reliefs.

METABOLIC DISBASES. All disease is primarily due to alterations (Gr. $\mu e r a \beta o \lambda \eta$, change), quantitative or qualitative, in the chemical changes in the protoplasm of some or all of the tissues of the body. But while in some pathological states these modifications lead to structural changes, in others they do not produce gross lesions, and these latter conditions are commonly classified as Functional Diseases. When such
functional disturbances affect the general nutrition of the body they have been termed Metabolic Diseases (Stoffuechselkrankheilen). It is impossible to draw a hard and fast line between functional and organic disease, since the one passes gradually into the other, as is well seen in gout. Nor is it always easy to decide how far the conditions are due merely to quantitative alterations in the metabolism and how far to actual qualitative changes, for it is highly probahle that many of the apparently qualitative alterations sre really quantitative disturbances in one part of the protoplasmic mechanism, leading to an apparent qualitative change in the total result of the activity.

Obcsity.-It is as fat that the surplus food absorbed is stored in the body; but the power of storing fat varies enormously in different individuals, and in some it may be considered pathological. The reasons of this are very imperfectly understood. One undoubted cause of obesity is taking a supply of food in excess of the energy requirements of the individual. Tbe amount of food may be absolutely large, or large relatively to the muscular energy evolved in mechanical work or in heat-production; but in either case, when fat begins to be deposited, the muscular activity of the body tends to diminish and the loss of heat from the surface is reduced; and thus the energy requirements become less, and a smaller diet is sufficient to yield the surplus for further storage of fat. Fat is formed from carbobydrates, and possibly indirectly from proteids (see NOTRIIION). Individuals probably vary in their mode of dealing with these substances, some having the tendency to convert them to fat, some to burn them of at once. Carl von Noorden, bowever, who has studied the metabolism in cases of obesity, finds no marked departure from the normal. It may be that in some persons there is a very perfect absorption of food, but so far no scientific evidence for this view is forthcoming. In all cases the fat stored is available as a source of energy, and this circumrance is taken advantage of in the various fat "cures," which consist in giving a diet containing enough proteids to cover the requirements of the body, with a supply of fats and carbohydrates insufficient to meet the energy requirements of the individual. This is illustrated by the dietaries of some of the best known of these "cures":-

	In Grms. per Diem:			
	Proteid.	Fat.	Carbohydrates.	Catories.
Banting's cure	172	8	81	1112
Oertel's,	156-170	25-45	75-120	1180-1608
Ebstein's "	102	85	47	1401

In a normal individual in moderate muscular activity about 3000 Calories per diem are required (see Dieterics), and therefore under the diets of these "cures," especially when accompanied by a proper amount of muscular exercise, the fats stored in the body are rapidly used up.

Diabetes, as distinguished from transitory glycosuria, is produced by a diminution in the power of the tissues to use sugar, which thus accumulates in the blood and escapes in the urine. One great source of energy being unavailable, the tissues have to use more fats and more proteids to procure the necessary energy, and hence, unless these are supplied in very large quantities, there is a tendency to emaciation.

The power of storing and using sugar in the tissues is strictly limited, and varies considerably in healt by individuals. Normally, when about 200 grms . of glucose are taken at one time, some of it appears in the urine within one hour. In some individuals the taking of even 100 grims. leads to a transient glycosuria, while others can take 250 grms or more and use it all. But even in the same healthy individual the power of using sugar varies at different times and in different conditions, muscular exercise markedly increasing the combustion. Again, some sugars are more readily used than others, and therefore have a less tendency to appear in the urine when taken in the food. Milk-sugar and laevulose appear in the urine more readily than glucose. This power of using sugar possessed by an individual may depend to a
small extent on the capacity of the liver to store as glycogen any excess of carbohydrates absorbed from the food, and some slight cases of transient glycosuria may be accounted for by a diminution of this capacity. But the typical form of diabetes cannot be thus explained. It has been maintained that increased production of sugar is a cause of some cases of the disease, and this view has been supported by Claude Bernard's classical experiment of producing glycosuria by puncturing the floor of the fourth ventricle in the brain of the rabbit. But after such puncture the glycosuria occurs only when glycogen is present in the liver. It is transient and has nothing to do with true diabetes. The fact that various toxic substances, e.8. carbon monoxide, produce glycosuria has been used as an argument in support of this view, but they too seem to act by causing a conversion of glycogen to glucose, and are effective only when the liver is charged with the former substance. At one time it was thought that the occurrence of glycosuria under the administration of phloridzin proved that diabetes is due to a poison. But the fact that, while sugar appears abundantly in the urine under phloridzin, it is not increased in the blood, shows that the drug acts not by diminishing the power of the tissues to use sugar, but by increasing the excretion of sugar through the kidneys and thus causing its loss to the body. Hence the tissues have to fall back upon the proteids, and an increased excretion of nitrogen is produced. This, however, is a totally different condition from diabetes.

Anything which produces a marked diminution in the normally limited power of the tissues to use augar will cause the discase in a lighter or graver form. As age advances the activity of the various metabolic processes may diminish irregularly in certain individuals, and it is possible that the loss of the power of using sugar may be sooner impaired in some than in others, and thus diabotes be produced. But Minkowski and von Mering have demonstrated, by experiments upon animals, that pathological changes in the pancreas have probably a causal relationshìp with the disease. They found that excision of that organ in dogs, \&c., produced all the symptoms of diabetes-the appearances of sugar in the urine, its increased amount in the blood, the rapid breaking-down of proteids, and the resulting emaciation and asoturia. At the same time the absorption from the intestine of proteids, fats and carbohydrates was diminished. How this pancreatic diabetes is produced has not been explained. It has been suggested that the pancreas forms an internal secretion which stimulates the utilization of sugar in the tinsues. Though in a certain number of cases of diabetes disease of the pancreas has been found, other cases are recorded where grave disease of that organ has not produced this condition. But the apparent extent of a lesion is often no measure of the depth to which the functions of the stracture in which it is situated are altered, and it is very possible that the functions of the pancreas may in many cases be profoundly modified without our methods of research being able to detect the change. The pancreas consists of two parts, the secreting structure and the epithelial islets, and one or other of these may be more specially invoived, and thas alteration in digestion and absorption on the one hand, and changes in the utilization of carcohydrates on the other, may be separately produced. The subcutaneous injection of large doses of extracts of the supra-renal bodies caases glycosuria and an increase of sugar in the blood, but the relationship of this condition to diabetes has not yet been investigated.

The disease may be divided into two forms:-

1. Slught Cases.- The individual can use small quantities of exgar, but the taking of larger amounts camee glycosuria. Supposing that the energy requirements of an individual ave met by a diet of -

then if only 100 grms of giucome can be ured, the energy value of 300 grms, i.e. 1230 Calories, muss be supplied from proteide and fats. To yield this, 300 grms. of proteids or 132 grms of fats would be required. If these are not forthcoming in the diet, they must
be aupplied from the tisnses, and the fndividual will become emacisted; hence a diabetic on an ordinary diet is badly nouriehod, and bence the huge appetite characteristic of the disease.
2. Grave Cases.-From the products of the splitting of proteids sugar can be formed, probably in the liver, and in the more serious form of the divease, even when carbohydrates are excluded from the food, a greater or lemeer quantity of the sugar thus formed escapes consumption and may be excreted. Theoretically, 100 grms of proteid can yicld 123.6 grms . of glucose, i.e. I grm. of nitrogen will be set free for each 7.5 grms of glucose formed. In the urine of grave cases of diabetes on a proteid diet, the proportion of nitrogen to sugar is about i to 2. This may mean that the theoretically poesible amount of sugar is not yielded, or that some of the sugar formed is used in the economy. Both hypotheses may be correct, but the latter is supported by the fact that even in grave cases the decomposition of proteid may be diminished by givang sugar, and that in muscular exerciee the proportion of sugar may fall.

In the course of the disease the amount of sugar which the tissues can use varies from day to day. It is in the utilization of glucosethe normal sugar of the body-that the tissucs chiefly fail. Many diabetics are able to use laevalowe, or the inulin from which it is derived, nod lactose (milk-Eugar) to a certain extent. It has, bowever, been observed that under the administration of these sugars the excretion of glucose may be increased, the tissues. apparently by using the foreign sugar, allowing part of the glucose which they would have coasumed to escape.

The increased decomposition of proteid, rendered necessary to supply the energy not forthcoming in the sugar, leads to the appearance of a large quantity of nitrogen in the urine-asoturia-and it also leads to the formation of various acids. Sulphuric acid and ploophoric acid are formed by oxidation of the sulphur and phosphorus in the proteid molecule. Organic acids of the lower fatty acid seriea β oxybutyric and aceto-acetic acid with their derivative acetone also appear in the course of diabetes. They are in part formed from the disintegration of proteids and in part from fats, an the result of a modified metabolism incuced by the withdrawal of carbohydrates. To neutralize. them ammonia is developed and hertee the proportion of ammonia in the urine is increased. By the development of these various acids the alkalinity of the blood is diminished. The development of these acids in large quantities is aseociated with extensive decomposition of proteid, and is sometimes indicative of the onset of a comatose condition, which seems to be due rather to an acid intoxication than to the special toxic action of any particular acid.

Myrpedama.-The thyroid gland forms a material which has the power of increasing the metabolism of proteids and of fats; and when the thyroid is removed, a condition of sluggish metaholism, with low temperature and a return of the connective tissues to an emhryonic condition, supervenes, accompanied by the appearance of depression of the mental functions and by other nervous symptoms. The disease myxoedema, which was first described hy Sir William Gull in 1873, was shown by Ord in 1878 to be due to degenerative changes in the thyroid gland. It affects both sexes, but chiefly females, and is characterized hy a peculiar pufty appearance of the face and hands, shedding of the hair, a low temperature, and mental hebetude. The symptoms are similar to those produced by removal of the thyroid, and are indicative of a condition of diminished activity of metabolism. The nervous symptoms may be in part due to some alteration in the metabolism, leading to the formation of toxic substances. The administration of thyroid gland extract causes all the symptoms to disappear.
Crefinism may now be defined as myzoedema in the infant, and it has been definitely proved to be associated with nondevelopment or degeneration of the thyroid gland. The characters of the disease are all due to diminished metabolism, leading to retarded development, and the treatment which has proved of service, at least in some sporadic cases, is the administration of various thyroid preparations.

Exophthalmic Gottre-Grapes's Disease or Basedow's Disease.This disease chiefly affects young women, and is characterized by three main symptoms: increased rate and force of the heart's action, protrusion of the eyebalis, and enlargement of the thyroid gland. The patient is nervous, often sleepless, and generally becomes emaciated and suffers from silight fehrile attacks. The incressed action of the heart is the most constant symptom, and the ealargement of the thyroid gland may not be manifest. Various theories as to the pathology of the condition have been advanced, hut in the light of our knowledge of the physio$\log y$ of the thyroid the most probable explanation is an increased functional activity of that gland or of changes in the parthyroids.

Gout has often been divided into the typical and atypical forms. The first is undouhtedly a clinical and pathological entity, hut the second, though containing cases of less severe forms of true gout, is largely constituted of imperfectly diagnosed morhid conditions. The accumulation of urate of soda in the tissues in gout formerly led physicians to believe in a causal relationship between an increased formation of that substance and the onset of the disease. Sir A. Garrod's investigations, however, seemed to indicate that diminished excretion rather than increased production is the cause of the condition. He found an accumulation of uric acid in the blood and a diminution in its amount in the urine during the attack. That uric acid is increased in tbe blood is undoubted, but the changes described by Garrod in the urine, and considered hy him as indicative of diminished excretion and retention, are rendered of less value hy the imperfections of the analytic method employed. More recent work with better methods has thrown still further douht upon the existence of such a relationship, and points rather to the accumulation of uric acid being, bike the other symptoms of the condition, a result of some unknown modification in the metabolism, and a purely secondary phenomenon. The important fact that in leucaemia (von Jaksch), in lead-poisoning (Garrod), and in other pathological conditions, uric acid may beincreasedin the hlood and in the urine without any gouty symptoms supervening, is one of the strongest arguments against the older views. That the gouty inflammation is not caused by the deposit of urate of soda, seems to be indicated hy the occurrence of cases in which there is no such deposition. The source of the uric acid which is so widely deposited in the gouty is largely the phosphorus containing nucleins of the food and tissues. These in their decomposition yieid a series of di-ureides, the purin bodies, of which uric acid is one. Their excretion is increased when substances rich in nuclein, e.g. sweethreads, \&c., are administered. While uric acid itself has not been demonstrated to have any injurious action, the closely allied adenin has been found to produce toxic symptoms. After the discovery of this source of uric acid, physiologists for a time inclined to regard it as the only mode of production. But it must he remembered that in hirds uric acid is formed from the ammonia compounds coming from the intestine and muscles, just as urea is formed from the same substance in mammals. Uric acid is a di-ureide-a body composed of two urea molecules linked by acrylic acid-an unsaturated propionic acid. It is therefore bighly probable that in many conditions the conversion of ammonia compounds to urea is not complete, and that a certain amount of uric acid is formed apart from the decomposition of nucleins

Sir William Roberts has adduced evidence to show that uric acid circulates in the blood in a freely soluhle combination or quadurate-that is, a compound in which one molecule of an acid salt BHO is linked to a molecule of the acid $\mathrm{BHO} \mathrm{H}_{2} \mathrm{U}$. These compounds are said to be readily decomposed and the hi-urates formed, wbich are at first gelatinous but become crystalline. The deposition of urate of soda in joints, \&e., has heen ascribed to this change. Francis Tunniclife, however, has puhlished the results of certain investigations whicb throw doubt upon this explanation. The most recent investigations on the melabolism of the gouty have shown that there is undoubtedly a slowing in the rate of elimination of uric acid and also of the total nitrogen of the urine with occasional sudden increases sometimes connected with a gouty paroxysm, sometimes independent of it. Whether this is due to the action of some toxin developed in the body or is caused by a constitutional renal inadequacy is difficult to decide. Certain it is these renal diseases often develop in the course of gout.

Rhewmatism--Rheumatic fever was formerly regarded as due to some disturbance in the metabolism, but it is now known to be a specific micro-organismal disease. The whole clinical picture is that of an infective fever, and it is closely related to gonorrhoeal rheumatism and to certain types of pyaemia. A number of independens observers have succeeded in isolating from cases of rbeumatic fever a diplococcus which produces similar
symptoms in the rabbit to those which characterize the disease in man.

Excluding the peculiar changes in the joints which occur in rheumatoid arthritis and in Charcol's disease, and which are almost certainly primary affections of the nervous system, it is found that a large number of individuals suffer from pain in the joints, in the muscles, and in the fibrous tissues, chiefly on exposure to cold and damp or after indiscretions of diet. This so-called chronic rhcumatism appears to be a totally distinct condition from rheumatic fever; and although its pathology is not determined, it looks as if it were due either to a diminished climination or an increased production of some toxic substance or substances, but so far we have no evidence as to their nature.

Rickels is undoubtedly a manifestation of a profound alteration of the metabolism in childhood, but how far it is an idiopathic condition and how far a result of the action of toxins introduced from without is not yet definitely known. Kassowitz long ago showed that the bone changes are similar to those whicb can be produced in animals by chronic phosphorus poisoning, and that they are really irritative in nature. Spillmann, in his work Le Rachitisme, discusses the evidence as regards the action of various conditions, and comes to the conclusion that there is no evidence that it is due to a mere primary disturbance of the metabolism, or to excessive production of lactic acid, or to any specific micro-organismal poisoning. But he adduces evidence, perbaps not very convincing, that in the disease there is a specific intoxication derived from the alimentary canal and provoking inilammatory lesions in the bones.
See generally Carl von Noorden, Melabolisme aed Practical Medicine (1907).
(D. N. P.)

METABOLISM (from Gr. $\mu e r a \beta o \lambda \eta$, change), the biological term for the process of chemical change in a living cell (see Puysiulocy).

METAL (through Fr. from Lat. melallum, mine, quarry, adapted from Gr. μ^{\prime} rad 10ν, in the same sense, probably connected witb $\mu \in \tau a \lambda \lambda a ̂ y, ~ t o ~ s e a r c h ~ a f t e r, ~ e x p l o r e, ~ \mu e r a ̀, ~ a f t e r, ~$ addos, other). Originally applied to gold, silver, copper, iron, tin, Icad and bronzc, i.c. substances having high specific gravity, malleability, opacity, and especially a peculiar lustre, the term "metal" became generic for all substances with these properties. In modern chemistry, however, the metals are a division of the elements, the members of which may or may not possess all these characters. The progress of science has, in fact, been accompanied by the discovery of some 70 elements, which may be arranged in order of their "metallic" properties as above indicated, and it is found that while the end members of the scale are most distinctly metallic (or non-metallic), certain central members, e.g. arsenic, may be placed in either division, their properties approximating to both metallic and non-metallic. One chemical differentia utilizes the fact that metals always form at least one basic oxide which yiclds salts with acids, while nonmetals usually form acidic oxides, i.e. oxides which yicld acids with water. This definition, however, is highly artificial and objectionable on principle, because when we speak of metals we think, not of their chemical relations, but of a certain sum of mechanical and physical propertics which unites them all into one natural family.

All metals, when exposed in an inert atmosphere to a sufficient temperature, assume the form of liquids, which all present the following characteristic propertics. They are (at least practically) non-transparent; they reflect light in a peculiar manner, producing what is called " metalic lustre." When kept in non-metalic vessels they take the shape of a convex meniscus. These liquids, when exposed to higher tempcratures, some sooner than others, pass into vapours. What these vapours are like is not known in many cases, since, as a rule, they can be produced only at very high temperatures, precitiding the use of transparent vessels. Silver vapour is blue, potassium vapour is green, many others (mercury vapour, for instance) are colouriess. The liquid metals, when cooled down sufficiently. some at lower, others at higher, temperatures freeze into compact solids, endowed with the (relative) non-transparency and the lustre of their liquida. These
frozen metals in general form compact masses consisting of aggregates of crystals belonging to the regular or rhombic or (more rarely) the quadratic system. Compared with nonmetallic solids, they in general are good conductors of heat and of electricity. But their most characteristic, though not perhaps their most general, property is that they combine in themselves the apparently incompatible properties of elasticity and rigidity on the one hand and plasticity on the other. To this remarkable combination of properties more than to any thing else the ordinary metals owe their wide application in the mechanical arts. In former times a high specific gravity used to be quoted as one of the characters of the genus; but this no longer holds, since we now know a series of metals lighter than water.

Non-Transparency.-This, in the case of even the solid metals, is perhaps only a very low degree of transparency. In regard to gold this has been proved to be so; gold leaf, or thin films of gold produced chemically on glass plates, transmit light with a green colour. On the other hand, infinitely thin films of silver which can be produced chemically on glass surfaces are absolutely opaque. Very thin films of liquid mercury, according to Melsens, transmit light with a violet-blue colour; also thin-films of copper are said to be translucent.
Colour.-Gold is yellow; copper is red; silver, tin, and some others are pure white; the majority are greyish.

Refiection of Light.-Polished metallic surfaces, like those of other solids, divide any incident ray into two parts, of which one is refracted while the other is reflected-with this difierence, however, that the former is completely absorbed, and that the latter, in regard to polarization, is quite differently afiected. The following values are due to Rubens and Hagen (Amm. der Phys., 1900, p. 352); they express the percentage of incident light reflected. The superiority of silver is obvious.

Name of Metal.	Violet.	Yellow.	Red.
	$\lambda=450$	$\lambda=550$	$\lambda=650^{\circ}$
Silver .	90.6		
Platinum Nickel	55.8	61.1 62.6	66.3
Nickel : ${ }_{\text {Steel }}$:	58.5 58.6	62.6 59.4	65.9 60.1
Gold : :	36.8	59.4 74.7	88.2
Copper ${ }^{\text {Glass backed }}$ with iver	${ }^{48 \cdot 8}$	-59-5	${ }_{89}^{89} 80$
Glass backed with siver Glass backed with mercury	79-3-85-7	82-88	$83-89$ 71.5

Crystalline Form and Structure.-Most (perhaps all) metals are capable of crystallization. The crystals belong to the following systems: regular system-silver, gold, palladium, mercury, copper, tron, lead; quadratic system-tin, potassium; shombic system-antimony, bismuth, tellurium, zinc, magnesium. Perhaps all metals are crystalline, only the degree of visibility of the crystalline arrangement is very different in different metals, and even in the same metal varies according to the slowness of solidification and other circumstances.
Antimony, bismuth and zinc exhibit a very distinct cryutalline structure a bar-shaped ingot readily breaks, and the erystal faces are distinctly visible on the fracture. Tin also is crystalline: a thin bar. when bent, "creaks" audibly from the sliding of the crystal faces over one another; but the bar is not easily broken, and exhibits an apparently non-crystalline fracture.-Class I.
Gold. silver, copper, lead. aluminium, cadmium, iron (pure), nickel and cobalt are practically amorphous, the crystals (where they exist) being so closely packed as to produce a virtually homogeneous mass.-Class 11.
The great contrast in apparent structure between cooled ingote of Class I. and of Class II. appears to be owing chiefly to the fact that. while the latter crystallize in the regular system, metals of Class I. form rhombic or quadratic crystals. Regular crystals expand equally in all directions; rhombic and quadratic expand differently in different directions. Hence, supposing the crystala immediately after their formation to be in absolute contact with one another all round, then, in the case of Class II., such contact will be maintained on cooling, while in the case of Class 1 . the contraction along a given straight line will in general thave diflerent values in any two neighbouring crystals, and the eryutale consequently become slightly derached from one another. The crystalline structure which exists on both sides becomes visible only in the metals of the first class, and only there manifests itself as brittleness.

Closely related to the structure of metals is their degree of "plasticity" (susceptibility of being constrained into new forms without breach of continuity). This term of course includes as special cases the qualities of "malleability" (capability of being flattened out under the hammer) and "ductility " (capability of being drawn into wire); but these two special qualities do not always go parallel to each other, for this reason amongst others-that ductility in a higher degree than malleability is determined by the tenacity of a metal. Heace tin and lead, though very malleable, are little ductile. The quality of plasticity is developed to very different degrees in difierent metals, and even in the same species it depends on temperature, and may be modified by mechanical or physical operations.

A bar of zinc, for instance, as ohtained by casting, is very brittle: but when heated to 100° or $150^{\circ} \mathrm{C}$. it becomes sufficiently plastic to be rolled into the thinnest sheet or to be drawn into wire. Such sheet or wire then remains Gexible after cooling, the originally only loosely cohering crystals having got intertwisted and forced into absolute contact with one another-an explanation supported by the fact that rolled zinc has a somewhat higher specific gravity $(7 \cdot 2)$ than the original ingot ($6 \cdot 9$). The same metal, when heated to $205^{\circ} \mathrm{C}$., becomes so brittic that it can be powdered in a mortar. Pure iron. copper, silver and other metals are easily drawn into wire, or rolled into sheet, or flattened under the bammer. But all these operations render the metals harder, and detract from their plasticity. Their original softriess can be restored to them by " annealing," i.e. by heating them to redness and then quenching them in cold water. In the case of iron, however, this applies only if the metal is periectly pure. If it contains a few parts of carbon per thousand. the annealing process, instead of softening the metal. gives it a "temper," meaning a bigher degree of hardness and clasticity (see below).

What we have called plasticity must not be confused with the notion of "softness," which means the degree of facility with which the plasticity of a metal can be discounted. Thus lead is far softer than silver, and yet the latter is by far the more plastic of the two. The famous experiments of H. E. Tresca show that the plasticity of certain metals at least goes consider-ably-farther than had before been supposed.

He operated with lead, copper, silver, iron and some other metals. Round disks made of these substances were placed in a closely fitting cylindrical cavity drilled in a block of stecl, the cavity having a circular aperture of two or four centimetres below. By an hydraulic press a pressure of 100,000 kilos was made to act upon the disks, when the metal was seen to "flow" out of the hole like a viscid liquid. In spite of the immense rearrangement of parts there was no breach of continuity. What came out below was a compact cylinder with a rounded bottom, consisting of so many layers superimposed upon one another. Parallel experiments with layers of dough or sand plus some connecting material proved that the particles in all cepes moved along the same tracks as would be followed by a flowing cylinder of liquid. Of the better known metals potassium and sodium are the softest; they can be kneaded between the fingers like wax. After these follow first thallium and then-lead, the latter being the softest of the metals used in the arts. Among these the softness decreases in about the following order: lead, pure silver, pure gold, tin, copper, aluminium, platinum, pure iron. As liquidity might be looked upon as the re pius ulira of softness, this is the right phace for stating that, while most metals, when heated up to their melting points, pass pretty abruptly from the solid to the liquid state, platinum and iron first assume, and throughout a long range of temperatures retain, a condition of viscous semi-solidity which enables two pieces of them to be "welded" together by preasure into one continuous mass.

According to Prechtl, the ordinary metals, in regard to the degree of facility or perfection with which they can be hammered flat on the anvil, rolled out into sheet, or dravn into wire, form the following descending series:-

Hawmering.	Rolling into Shed	Drowing into Wire.
Lead.	Gold.	Platioum.
Tin.	Siver.	Siver.
Gold.	Copper.	Iron.
Zinc.	Tin.	Coper.
Silver.	Lead.	Gold.
Copper.	Zinc.	Zinc.
Platiurn.	Platinum.	Tin.
lron.	Iron.	Lead.

To give an idea of what can be done in this wray, it may be stated that gold can be beaten out toleaf of the thickness of $\frac{1}{3} 0 \mathrm{~mm}$.; and that platinum, hy judicious work, can be drawn into wire vetos mm. thick.

By the " hardness " of a metal wo mean the resistance which it offers to the file or engraver's tool Taking it in this sense, it does not necessarily measure, e.g. the resistance of a metal to abrasion by friction. Thus, for instance, 10% aluminium bronee is scratched by an ordinary steel knife-blade, yet the sets of needles used for perforating postage stamps last longer if mado of aluminium bronze than if made of steel.

Elasticity.-All metals are elastic to this extent that a change of form, brought about by stresses not exceeding certain limit values, will disappear on the stress being removed. Strains exceeding the " limit of elasticity" result in permanent deformation or (if sufficiently great) in rupturc. Referring the reader to the article Elasticity for the theoretical and to the Strength of Materials for the practical aspects of this subject, we pive here a table of the' modulus of elasticity, E (column 2), for millimetre and kilogramme. Hence 1000/E is the elongation in millimetres per metre length per kilo. Column 3 shows the charge causing a permanent elongation of 0.05 mm . per metre, which, for practical purposes. Wertheim takes as giving the limit of elasticity; column 4 gives the breaking strain. These values may vary within certain limits for different specimens.

Name of Metal.	E	For Wire of isq. mm. Section, Weight (in Kilos) causing	
		Permanent Elongation of $10 \frac{1}{6} 0$.	Breakage.
Lead, drawn	1,803	0.25	$2 \cdot 1$
"" annealed .	1,727	0.20	
Tin, drawn. . . .	4,148 1,700	0.45 0.20	$2 \cdot 45$
Cädmium annealed	1,700 7,070	$0 \cdot 20$	$2 \cdot 24$
Gold, drawn	8,131	13.5	27
ci" annealed . .	5,585	3.0	10
Silver, drawn . . .	7.357	11.3	29
Zinc, pure, cast in mould.	7,140 9,021	2.6	16
2inc, pordinary, drawn.	8,735	0.75	13
Palliadium, drawn.	11,759	18	13
C"\# annealed.	9.709	under 5	27
Copper, drawn. . .	12,449		40
Platinum wire medium	10,519	under 3	30
thickness, drawn . .	17,004	26	34
Platinum, annealed . .	15.518	14	23
Iron, drawn	20,869		61
	20,794	under 5	47
Nickel, drawn	23,950		1 $\times 61$
Aluminium	7,200 10,700		
Brass (ZnCu_{4}) ${ }^{\text {bronze }}$ - .	10,700 8,543		
German silver ($\mathrm{Zn}_{4} \mathrm{Cu}_{\mathrm{u}_{3} \mathrm{Ni}}{ }_{5}$)	10,788		

Specific Gravily,-This varies in metals from -594 (lithinm) to 22.48 (osmium), and in one and the same species is a function of temperature and of previous physical and mechanical treatment. It has in general one value for the powdery metal as obtained by reduction of the oxide in hydrogen below the melting point of the metal, another for the metal in the state which it assumes spontaneously on freezing, and this latter value, in general, is modified by hammering, rolling, drawing, \&c. These mechanical operations do not necessarily add to the density; stamping, it is true, does so necessarily, but rolling or drawing occasionally causes a diminution of the density. Thus, for instance, chemically pure iron in the ingot has the specific gravity 7.844 ; when it is rolled out into thin sheet. the value falls to $7 \cdot 6$; when drawn into thin wire, to 7.75 . The following table gives the specific gravities of many metals. Where special statements are not made, the numbers hold for the ordinary temperature $\left(15^{\circ}\right.$ to 17° or $20^{\circ} \mathrm{C}$.), referred to water of the same temperature as a standard, and to hold for the natural frozen metal.

Name of Metal.	Specitce Grevity.
Barium	3.75 4.15
Zirconium ${ }^{\text {a }}$,	4.15
Yanadium, powder Gallium	5.5
Laathanum : ! :	6.163
Cerium .	6.68
Antimony	6.62
Chromium	${ }_{6}^{6-90}$
" rolled out	$7 \cdot 2$
Mangancese.	$7 \cdot 39$
Tin, cast	${ }_{7.178} 7.29 .299$
Indium . . . ${ }^{\text {a }}$	$7 \cdot 42$
Iron, chemically pure, ingot thin sheet . . .	7.844 7.6
" wrought, high quality	7.8 to 7.9
Nickel, ingot	8.279 8.666
Cädmium, ingot	8.546
Cobalt hammered	${ }_{8}^{8.667}$
Molybdenum, containing 4 to 5% of carbon	8.6
Copper, native	8.94
", wire or thin sheet	
") Wire or thin sheet	$\begin{aligned} & 8.94 \text { to } 8.95 \\ & 8.945 \end{aligned}$
Blamuth . P.	9.823 at $12{ }^{*}$
Silver, cast . stamped	$10.4 \text { to } 10.5$ $10 \cdot 57$
Lead, very slowly frozen	11.254
Peit quickly frozen in cold water	11.363
Palladium . .	11.4 at $22.5{ }^{\circ}$
$\underset{\text { Thallium }}{\text { Rhodium }}$:	
Ruthenium	12.26 at 0°
Mercury, liquid	$\begin{aligned} & 13.595 \text { at } 0^{\circ} \\ & 14.39 \text { below }-40^{\circ} \end{aligned}$
Tungsten, compact, by H_{3} from chloride vapour	16.54
\% as reduced by hydrogen, powder	19.13
$\underset{\text { Uranium }}{\text { Gold ingot }}$.	18.7
Gold, ingot " itamped	$\begin{aligned} & 19.265 \text { at } 13^{\circ} \\ & 19.3 \text { to } 19.34 \end{aligned}$
n powder, precipitated by ferrous sul. phate	19.55 to 19.72
Platinum, pure .	21.50
Iridium.	22.2
Osmium .	23-477

Thermal Properries.-The specific heats of most metals have been determined. The general result is that, conformably with Dulong and Petit's law, the "atomic heats " all come to very nearly the same value (of about 6.4); i.e. atomic weight by specific heat $=6.4$ Thus we have for silver by theory $6 \cdot 4 / 108=0593$, and by experiment 0570 for 10° to $100^{\circ} \mathrm{C}$.
The expansion by heat varies greatly. The following table gives the linear expansions from 0° to $100^{\circ} \mathrm{C}$. according to Fizeau (Comples rendss, Ixviii. 1125), the leagth at 0° being taken as unity.

Name of Metal.	Expansion 0° to 100°.
Platinum, cast.	-000 907
Gold, cast ${ }^{\text {Silver, cast }}$ -	-001 451
Copper, native, from Lake Superior	. 0019308
- ${ }^{\prime \prime}$ artificial ${ }^{\text {a }}$	-001 869
Iron, soit, as ured for electromagnets ". reduced by hydrogen and compressed	$\begin{gathered} .001 \quad 228 \\ .001 \\ 208 \end{gathered}$
Cäst steel, English annealed . . .	-011 110
Bismuth, in the direction of the axis	-001 642
" meant angles to axis	-601 239
Tin," of Malacca, compressed powder	$\begin{array}{r} -001374 \\ -002 \\ \hline 069 \end{array}$
Lead, cast	-002 948
Zine, distilled, compressed powder	.002 905
Cadmium, distilled, compressed powder	-003 102
Aluminium, cast -	-002 336
Brase (71.5% copper, $\mathbf{3 8} .5 \%$ zinc) .0.	-001 879
Bronxe (86.3\% copper, 9.7% tin, $4 \cdot 0 \%$ zinc)	-001 802

The coeficient of expersion is constant for much metals only as cryatallise in the regular symem; the otheres expand diferently in the directions of the different ases. To eliminate this source of
uncertainty these metals were employed as compressed powders. The cubical expansion of mercury from 0° to $100^{\circ} \mathrm{C}$. is -018is3 - grby (Regnault) (See Thermonetry.)

Fusibility and Volatility.-The fusibility in different metals in very different, as shown by the following table, which, besides ineluding all the fusing points (in degrees C.) of metals which have been determined numerically, indicates those of a selection of other metals by the positions assigned to them in the table.

Name of Metal.	Melting Point.	Boiling Point.
Mercury Caesium S	-38.8 $26-27$	357.3
Gallium	$30 \cdot 1$	
Rubidium	38.5	
Potassium	62.5	719-731
Sodivm Indiumm	155	
Lithium	180.0	
Tin	231.9	1450-1600
Bismuth	269-2	1090-1450
Thallium	290	
Cadmum	$320 \cdot 7$	${ }^{780}$
Lead.	327.7	1450-1600
Inac ipient redtheat	419 525	929-954
Antimony -	629.5	
Magnesium -	$632 \cdot 6$	about 1100
Aluminium	655	
Cherry red heat.	700	
Cancium Lanum : : : :	780 810	
Barium .	850	
Silver	962	
Gold .	1064	
$\begin{aligned} & \text { Copper hat } \\ & \text { Yellow heal }\end{aligned} \quad: \quad . \quad: \quad$.	1082 1100	2100
Iron .	1300-1400	
Nickel	1427	
Cobalt	1800 (7)	
Dasrling rwhic head	1500-1600	
$\underset{\text { Palladium }}{\text { Platinum }}$:	1500	
$\underset{\text { Phodium }}{\text { Platinum }}$: . . . : :	$\begin{aligned} & 1760 \\ & \text { above Pt. } \end{aligned}$	
Iridium . . .	$\because 2200$	
Ruthenium		
$\left.\begin{array}{l}\text { Tantalum } \\ \text { Osmium }\end{array} . \quad . \quad . \quad . \quad . \quad.\right\}$	In electric furnace	

For practical purposes the volatility of metals may be mated as follows:-

1. Distillable below reaness: mercury.
2. Distillable at red heats: cadmium, alkali metals, xinc, mag. nesium.
3. Volatilized more or less readily when heated beyond their fusing points in open crucibles: antimony (very readily), lead bismuth, tin, silver.
4. Barely so: gold, (copper).
5. Practically non-volatile: (copper). iron, nickel, cobalt, aluminium; also lithium, barium, strontium and calcium.
In the oxyhydrogen flame silver boils, forming a blue vapour, while platinum volatilizes slowly, and osmium, though infusible. very readily
Latent Hecils of Liquefaction-Of these we know little. The following numbers are duc to Person-ice, it may be stated, being 80.

Name of Metal.	Latent Heat.	Name of Metal.	Latent Heat.
Mercury Lead Bismuth	$\begin{aligned} & 2.82 \\ & 5.37 \\ & 12.4 \\ & \hline \end{aligned}$	Cadmium Silver Zinc	$\begin{aligned} & 13 \cdot 6 \\ & 21 \cdot 1 \\ & 28 \cdot 1 \end{aligned}$

The latent heat of vaporization of mercury was found by Marignac to be 103 to 106.

Conductioify.-Conductivity, whether thermic or electric, is very differently developed in different metals: and, as an exact knowledge of these conductivities is of great importance, much attention has been given to their numerical determination (see CONDOCTIOX, Electric; and Conduction of Heat).
The following table gives the electric conductivities of a number of metals as determined by Matthicsen, and the relative internal thermal conductivities of (nominally) the same metals as determined by Wiedemann and Frant. with rods about 5 mm . thick, of which one end was kept at $100^{\circ} \mathrm{C}$., the rest of the rod in a "vacuum" (of 5 mm . tension) at $12^{\circ} \mathrm{C}$. Matthiesen's results. except in the two cases noted, are from his memoir in Pogs. Ann., 1858, ciil. 428

Name of Mctal.	Relative Conductivities.	
	Electric.	Thermuc
Copper, commercial, No. 3. ". 2 . Nomemically pure, hard drewn		
Copper. Gold, pure	552.21 .8	-748
- absclutely pure	-73 3^{1}	
Brass		- 25
Tin, pure .	115 $\quad 21.0$	-154
Pianoforte wire	-144 , 20.4	
Iron rod		- 101
Steel		- 103
Lead, pure	-0777 . 17.3	-079
Platinum	-105. 20.7	-094
German silver	.0767 ., 88.7	-073
Bismuth	-0119 „13.8	
Aluminium	-196 . 196	
Mercury	.0163 . 22.8	
Silver, pure	1.000 .. 0	$1 \cdot 000$

Magnetic Properics.-Iron, nickel and cobalt are the only metals which are attracted by the magnet and can become magnets themselves. But in regard to their power of retaining their magnetism mone of them comes at all up to the compound metal steel. See MagNETISM.

Chemical Changes. - Metals may unite chemically both with metals and with non-metals. The compounds formed in the first case, which may be either definite chemical compounds or solid solutions, are discussed under Alloys; in this place only combinations with non-metals are discussed, it being premised that the free metal takes part in the reaction.
Metallic Substances Produced by the Union of Metals urith Small Proportions of Non-Metallic Elements.
Hydrogen, as was shown by Graham, is capable of uniting with or being occluded by certain metals, notably with palladium ($q . v$.), into metal-like compounds.
Oxygen.-Mercury and copper and some other metals are capable of dissolving their own oxides. Mercury, by doing so, becomes viscid and unfit for its ordinary applications. Copper, when pure to start with, suffers considerable deterioration in plasticity. But the presence of moderate proportions of euprous oxide has been found to correct the evil influence of small contaminations by arsenic, antimony, lead and ather foreign metals. Commercial coppers sometimes owe their good qualities to this compensating influence.
Arseric combines readily with all metals into true arsenides, which Latter, in general, are soluble in the metal itself. The presence in a metal of even small proportions of arsenide generally leads to considerable deterioration in mechanical qualities.
Phosphorus. - The remark just made might be said to hold for phosphorus were it not for the existence of what is called "phos-phorus-bronze," an alloy of copper with phosphorus (i.e. its own phosphide), which possesses valuable propertics. Accordiry to Abel, the most lavourable effect is produced by from 1 to $\mathrm{I}_{\frac{1}{2}}^{8 /}$ of phosphorus. Such an alloy can be cast like ordinary bronze, but excels the latter in handoess, elasticity, toughness and tensile Etrength.
Carbon.-Most motals when molten are capable of dissolving at least small proportions of carbon, which, in general, leads to a deterioration in metallicity, except in the case of iron, which by the addition of small percentages of carbon gains in elasticity and tensile strength with little loss of plasticity (sce IROs).
Silicon, so far as we know, behaves to metals pretty much like carbon, but our knowledge of facts is limited. What is known as cast iron is essentially an alloy of iron proper with 2 to 6% of carbon and more or less of silicon (see Iron). Alloys of copper and silicon were prepared by Deville in 1863. The alloy with 12% of silicon is white, hard and brittle. When diluted down to 4.8% it assumes the colour and fusibility of bronze, but, unlike it, is tenacious and ductile like iron.

> Action of the More Ordinary Chemical Agents on Simple Metals.

The metals to be referred to are always understood to be given In the compact (Irozen) condition, and that, wherever metals are enurnerated as being similarly attacked, the degree of readiness in the action is indicated by the order in which the several members are named-the more readily changed metal always standing first.
Waser, at ordinary or slighrly elevated temperatures, is decomposed more or less readily, with evolution of hydrogen gas and formation of a basic hydrate, by (1) potassium (formation of KlfO), chium (NaHO), lithium (LiOH), barium, strontium, calcium ($\mathrm{BaH}_{3} \mathrm{O}_{2}$, \&cc.): (2) magnesium, zinc, manganese ($\mathrm{MgO}_{2} \mathrm{H}_{4}$, \&.c.). ${ }^{3}$ Published in 1860 , and declared by Natthiesen to be more exact
than the old numbers.

In the case of group I the action is more or less violent, and the hydroxides formed are soluble in water and very strongly basic: metals of group 2 are only slowly attacked, with formation of relatively feebly basic and less soluble hydroxides. Disregarding the rarer clements, the metals not named so lar may be said to be proof against the action of pure water in the absence of free oxygen (air).

By the joint action of water and air, thallium, lead, bismuth are oxidized, with formation of more or less sparingly sclpble hydroxides (ThHO, $\mathrm{PbH}_{3} \mathrm{O}_{4}, \mathrm{BiH}_{3} \mathrm{O}_{3}$), which, in the presence of carbonic acid, pass into still less soluble basic carbonates. Iron, when exposed to moisture and air. "rusts"; but this process never takes place in the absence of air, and it is questionable whether it ever sets 14 in the absence of carbonic acid (see RUST).

Copper, in the present connexion, is intermediate between iron and the following group of metals.

Mercury, if pure, and all the "noble" metals (silver, gold, platinum and platinum-metals), are absolutely proof against water cven in the presence of oxygen and carbonic acid.

The metals grouped together above, under : and 2, act on steam pretty much as they do on liquid water. Of the rest, the following are readily oxidized by steam at a red heat, with formation of hydrogen gas-zinc, irop, cadmium, cobalt, nickel. tin. Bismuth is similarly attacked, but slowly, at a white heat. Aluminium is barely affected even at a white heat, if it is pure; the ordinary impure metal is liable to be very readily oxidized.

Agueous Sulphuric or Hydrochloric Acid readily dissolves groupe 1 and 2 , with evolution of hydrogen and formation of chlorides or sulphates. The same holds for the following group (A): Imanganese, zinc, magnesium) iron, aluminium, cobalt, nickel, cadmium. Tin dissolves readily in strong hot hydrochloric acid as $\mathbf{S n C l}_{3}$; aqueous sulphuric acid does not act on it appreciably in the cold; at 150° it attacks it more or less quickly, according to the strength of the acid, with evolution of sulphuretted hydrogen or, when the acid is stronger, of sulphurous acid gas and deposition of sulphur (Calvert and Johnson). A group (B), comprising copper, is, substantially, attacked only in the presence of oxygen or air. Lead, in eufficiently dilute acid, or in stronger acid if not too hot, remains unchanged. A group (C) may be formed of mercury, silver, gold and platimum, which are not touched by either aqueous acid in any circumstanees.
Hot (concentrated) sulphuric acid does not attack gold, platinum and platinum-metals generally; all other metals (including silver) are converted into sulphates, with evolution of sulphur dioxide. In the case of iron, ferric sulphate, $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3+}$ is produced; tin yields a somewhat indefinite sulphate of its oxide SnO_{2}.
Nitric Acid (Aqueous)-Gold, platinum, iridium and rhodium only are proof against the action of this powerful oxidizer. Tin and antimony (also arsenic) are converted by it (ultimately) into hydrates of their highest oxides $\mathrm{SnO}_{2}, \mathrm{Sb}_{5} \mathrm{O}_{5}\left(\mathrm{As}_{5} \mathrm{O}_{8}\right)$-the oxides of tin and antimony being insoluble in water and in the acid itself. All other metals, including palladium, are dissolved as nitrates, the oxidizing part of the reagent bcing generally reduced to oxides of ritrogen. Iron, zine, cadmium, also tin under certain conditions, reduce the dilute acid, partially at least, to nitrous oxide, $\mathrm{N}_{3} \mathrm{O}_{6}$ or ammonium nitrate, $\mathrm{NH}_{4} \mathrm{NO}_{5}$.

Aqua Regia, a mixture of nitric and hydrochloric acids, converts all metals (even gold, the "king of metals," whence the name) into chlorides, except only rhodium, iridium and ruthenium, which, when pure, are not attacked.

Caustic Alkalis.-- Of metals not decomposing liquid pure water, only a few dissolve in aqueous caustic potash or soda, with evolution of hydrogen. The most important of these are aluminium and zinc, which are converted into aluminate, $\mathrm{Al}(\mathrm{OK}, \mathrm{Na})_{2}$, and zincate, $\mathrm{Zn}(\mathrm{OK}, \mathrm{Na})_{3}$, respectively. But of the rest the majority, when treated with boiling sufficiently strong alkali, are attackod at least superficially; of ordinary metals only gold, platinum, and silver are perfectly proof against the reagents under consideration, and these accordingly are used preferably for the construction of vessels intended for anajytical operations involving the use of aqueous caustic alkalis. For commercial purposes iron is universally employed and works well; but it is not available analytically, because a superficial oxidation of the empty part of the vessel (by the water and air) cannot be prevented. Basins made of pure malleable nickel are free from this drawhack; they work as well as platinum, and rather better than silver ones do. There is hardly a single metal which holds out against the alkalis themselves when in the state of Gery fusion: even platinum is most viofently attacked. In chemical laboratories fusions with caustic alkalis are always effected in veseels made of gold or silver, these metals holding out fairly well even in the presence of air. Gold is the vetter of the two. Iron, which stands so well against aqueous alkalis, is most violently attacked by the fused reagents. Yet tons of caustic soda are fused daily in chemical works in iron pots without thereby suffering contamination, which seems to show that (cican) iron, like gold and silver, is attacked only by the joint action of fused alkali and air, the influence of the latter being of course minimized in large-scale operations.

Orygen or Air.-The noble metals (from silver upwards) do not combine directly with oxygen given as oxygen gas $\left(\mathrm{O}_{3}\right)$, although, like silver, they may absorb this gas largely when in the fused condition, and may not be proof against ozone, O_{4}. Mercury, within
a certain range of temperatures situated close to its boiling point combines slowly with oxygen into the red oxide, which, however breaks up again at higher temperatures. All other metals, when heated in oxygen or air, are converted, more or less readily, into stable oxides. Potassium, for example, yields peroxide, $\mathrm{K}_{4} \mathrm{O}_{3}$ or $\mathrm{K}_{2} \mathrm{O}_{4}$; sodium gives $\mathrm{Na}_{2} \mathrm{O}_{3}$; the barium-group metals, as well at magresium. cadmium, zinc. lead, copper, are converted into their monoxides MoD. Bismuth and antimony give (the latter very' readsly) sesquioxide ($\mathrm{Bi}_{2} \mathrm{O}_{4}$ and $\mathrm{Sb}_{3} \mathrm{O}_{2}$, the latter being capable passing into $\mathrm{Sb}_{3} \mathrm{O}_{4}$). Aluminium, when pure and kept out of coniat with siliceous matter, is only oxidized at a white heat, and then vers, sowly, into alumina, $\mathrm{Al}_{2} \mathrm{O}_{2}$. Tin, at high temperatures, passis slowly into oxide, SnO_{2}
Sulphur.-Amongst the better known metals, pold and aluminium are the only ones which, when heated with sulphur or in sulphu vapour remain unchanged, All the rest, under these circumstances, are converted into sulphides. The metals of the alkalis and alkaline carths, also magnesium, burn in sulphur vapour as they do in oxygen. Of the heavy metals, copper is the one which exhibits by far th: greatest avidity for sulphur, its subsulphade $\mathrm{Cu}{ }_{2} \mathrm{~S}$ being the stables: of all heavy metallic sulphides in opposition to dry reactions.
Chlorine.-All metals, when treated with chlorine gas at the propet temperatures, pass into chlorides. In some cases the chlorine in taken up in two instalments, a lower chloride being produced furs to pass utimately into a higher chloride. Iron, for instance, it converted first into FeCl_{3}, ultimately into FeCl_{3}, which practical means a mixture of the two chlorides, or pure FcCl , as a final product Of the several products, the chlorides of gold and platinum (AuCis and $\left.\mathrm{PeCl}{ }_{3}\right)$ are the only ones which when heated beyond their temperature of formation dissociate into metal and chlorine. The ult mate chlorination product of copper, CuCl_{2}, when heated to rednex, decomposes into the lower chloride, CuCl, and chlorine. All 11 , rest, when heated by themselves, volatilize, some at lower, others at higher temperatures.

Of the several individual chlorides, the following are liquids es solids, volatile enough to be distilled from glass vessels: AsCl., $\mathrm{SbCl}_{2}, \mathrm{SnCl}_{4}, \mathrm{BiCl}_{3}, \mathrm{HgCl}_{8}$, the chlorides of arsenic, antimony, ting bismuth, mercury respectively. The following are rcadily volatilized in a current of chlorine, at a red heat: $\mathrm{AlCl}_{3}, \mathrm{CrCl}_{3}, \mathrm{FeCl}_{3}$, the chlorides of aluminium, chromium, iron. The following, though volatile at higher temperatures, are not volalilized at dull redness: $\mathrm{KCl}, \mathrm{NaCl}, \mathrm{LiCl}, \mathrm{NiCl}_{2}, \mathrm{CoCl}_{3}, \mathrm{MnCl}_{2}, \mathrm{ZnCl}_{2}, \mathrm{MgCl}_{2}, \mathrm{PbCl}, \mathrm{AgCl}_{2}$, the chlorides of potassium, sodium, lithiun, nickel, cobalt, manganese, zinc, magnesium, lead, silver. Somewhat less volatile than the last-named group are the chlorides $\left(\mathrm{MCl}_{3}\right)$ of barium, strontium and calcium.

Metallic chlorides, as a class, are readily soluble in water. The following are the most important exceptions: silver chloride. AgCl , and mercurous chloride, HgCl , are absolutely insoluble; lead choride, PbCl, and cuprous chloride, CuCl , are very sparingly soluble in water. The chlorides $\mathrm{AsCl}_{2}, \mathrm{SbCl}_{2}, \mathrm{BiCl}_{2}$, are at once decomposed by (liguid) water, with formation of oxide $\left(\mathrm{As}_{2} \mathrm{O}_{3}\right)$ or oxychlonides ($\mathrm{SbOCl}, \mathrm{BiOCl}$) and hydrochloric acid. The chlorides $\mathrm{MgCl}_{2}, \mathrm{AlCl}$, $\mathrm{CrCl}_{3}, \mathrm{FeCl}_{2}$, suffer a similar decomposition when evaporated with water in the heat. The same holds in a limited sense for ZnCl_{3} $\mathrm{CoCl}_{2}, \mathrm{NiCl}_{2}$, and even CaCl_{2}. All chlorides, except those of silver and mercury (and, of course, those of gold and platinum). are oxidized by steam at high temperatures, with elimination of hydro chloric acid.

For the characters of metals as chemical elements see the specis 1 articles on the different metals

See generally A. Rossing Geschichte der Metolle (1gor); B. Neumann, Die Metaile (1904); also treatises on chemistry.

METALLOGRAPHY. - The examination of metals and allays by the aid of the microscope has assumed much importance in comparatively recent years, and it might at first be considered to be a natural development of the use of the microscope in determining the constitution of rocks, a study to which the name petrography has been given. It would appear, however, that it is an cxtcnsion of the study of the structure of meteoric irons. There can he no question thal in the main it was originated b_{y} Dr H. C. Sorby, who in 1864 gave the Brisish Association an account of his work. Following the work of Sorby came that of I'rolessor A. Martens of Charlottenburg presenting many features of originality. F. Osmond has obtained results in conncxion with iron and steel which are of the highest interest A list of the more important papers by these and other workcis will be found in the appended bibbography.

Preparation of the Specimen.- Experience alane can enable the operator to determine what portion of a mass of metal or allet will afford a trustworthy sample of the whole. In studying serics of binary alloys it has been found advantageous in certain cascs to obtain one section which will show in a general way the variation in structure from one end of the series to the othet.

This has been effect ed by pouring the lighter constituent carefully on the surface of the heavier constituent, and allowing solidifica. tion to take place. A section through the culot so obtained will show a gradation in structure from pure metal on one side to pure metal on the other. A thin slice of metal is usually cut by means of a hack-saw driven by mechanism. The thickness of the piece should not be less than f in. and in order that it may be firmly held between the fingers it should not be less than i in. square. The pretiminary stages of polishing are effected by emery paper placed preferably on wooden disks capable of being revolved at a high rate of speed. The finest grade of emery paper that can be obtained is used towards the end of the operation. Before use the finer papers should be rubbed with a hard steel surface to remove any coarse particles. The completion of the operation of polishing is generally effected on wet cloth or parchment covered with a small amount of carefully washed jeweller's rouge. Various mechanical appliances are employed to minimize the labour and time required for the polishing. Tbese usually consist of a series of interchangeable revolving disks, each of which is covered with emery paper, cloth or parchment, according to the particular stage of polishing for which it is required. In the case of britte alloys and of alloys having a very soft constituent, which during polishing tends to spread over and obliterate the harder constituents, polishing is in many cases altoget her a voided by casting the alloy on the surface of glass or mica. In this way, witb a little care, a perfect surface is ohtained, and it is only necessary to develop tbe structure by suitable etching. In adopting this method, however, instances have occurred in which the removal of the cast suriace has shown a structure differing considerably from the original.

Polishing in Bas-Relief.-If the polishing be completed with fine rouge on a shoet of wet parchment, placed upon a comparatively soft base such as a piece of deal, certain soft constituents of an alloy may often be eroded in such a manner as to leave the hardest portions in relicf. For the later stages of polishing H. L. Le Chatelier recommends the use of alumina obtained by the calcination of ammonium alum; and for the final polish of soft metals, chromium oxide.
Although in some cases a pattern becomes visible after polishing, yet more frequently a mirror-like surface is produced in whicb no pattern can be detected, or if there is a pattern it is blurred, as it seen through a veil or mist. This is due to a thin layer of metal which has been dragged, or smeared, uniformly over the whole surface by the friction of the polishing process. Such a surface layer is formed in all cases of polishing, and the peculiar lustre of burnished silver or steel is probably due to this layer. But to the metallographist it is an inconvenience, as it conceals scratches left by imperfect polishing, and also hides the pattern. It is therefore desirable to conduct the polishing so as to make this layer as thin as possible: it is claimed for alumina that it can be so used as to produce a much thinner surface layer than that due to tbe employment of rouge. The surface layer is very readily removed by appropriate liquid reagents, and, the true surface of the metal having been laid bare, the etching reagent acts differently on the individual substances in the alloy and the pattern can thus be emphasized to any required extent. Osmond divides etching reagents into three classes-acids, halogens and salts. As regards acids, water containing from 2 to 10% of bydrochromic acid is useful. It is made by mixing 10 grams of potassium bichromate with to grams of sulphuric acid in 100 grams of water. The use of nitric acid requires much experience. It is frequently employed in the examination of steels, Sir W. C. Roberts-Austen preferred a 1% solution in alcohol, but many workers use concentrated acid, and effect the etching by allowing a stream of wiater to dilute the film of acid left on the surface of the specimen after dipping it. Of the halogens, iodine is the most useful. A solvtion in alcohol is applied, so that a single drop covers half a square inch of suriace. The specimen is then washed with alcohol, and dried with a piece of fine linen or chamois leather. Tincture of iodine also affords a means of identifying lead in certain alloys by the formation of a yellow iodide of lead, while the vapour of iodine has in certain cases been
med to tint the constituents. Thin coloured films may often be produced hy the oxidation of the specimen when heated in air. This, as a means of developing the structure, in the case of the copper alloys is specially useful. Tinted crystals may thus he distinguished from the investing layer caused hy the presence of a minute quantity of another constituent. The temper colours produced by heating iron or steel in air are well known. Carhide of iron is less oxidizahle than the iron with which it is intimately associated, and it assumes a hrown tint, while the imon has reached the hlue stage. These coloured films may he fixed by covering with thin films of gelatine.

In some cases the alloy may be attacked electrolytically by exposing it for a few minutes to a weak electric current in a bath of very dilute sulphuric acid. Certain organic bodies give very satisfactory results. The Japanese, for instance, produce most remarkable effects hy simple reagents of which an infusion of certain forms of grass is a not unimportant constituent. In the case of iron and steel a freshly prepared infusion of liquorice root has been found to be most useful for colouring certain comstituents of steel. Osmond, who was the first to use this reagent, insisted that it should be freshly prepared and always used under identical conditions as regards age and concentration. His method of applying it was to rub the specimen on parchment moistened with it, but he has subsequently modified this "polish attack " by substituting a 2% solation of ammonium nitrate for the liquorice infusion. In each case a small quantity of freshly precipitated calcium sulphate is used on the parchment to assist the polishing.

Appliances used in Micragraphy. -The method of using the microscope in connexion with a camera for photographic purposes will now be considered. Every micrographer has his own views as
should be an achromatic one, as colour effects cause trouhle in photographing the ohjects. For lower powers the Lieberkuhn parabolic illuminator is useful. Certain groups of alloys show better under ohlique illumination, which may be effected hy the aid of a good condensing lens, the angle of incidence being limited by the distance of the ohject from the objective in the case of high magnification. As regards objectives, the most useful are the Zeiss $2 \mathrm{~mm} ., 4 \mathrm{~mm}$. and 24 mm ; two other uscful objectives for low powers being 35 mm . and 70 mm ., both of which are projecting objectives. A projecting eyc-piece, preferably of low power, should be employed with all but the two latter ohjectives. The immersion lens, the Zeiss 2 mm ., is used with specially thickened cedar oil, and if the distance from the objective to the plate is 7 feet, magnifications of over 2000 diameters can easily be obtained. As regards sensitized plates, excellent results have been obtained with Lumic̀re plates sensitive to yellow and green. The various brands of "process" plates are very serviceable where the contrasts on the specimen are not great. Some reproductions of photo-micrographs of metals and alloys will be found in the plate accompanying the article Alloys.

AUthorities.-M. C. Sorby, "On Microscopical Photographs of Various Kinds of lron and Stect," Brit. Assoc. Report (1864), pt. ii. p. 189: "Microscopical Structure of Iron and Stcel," Journ, Irnn and Steel Inst. (1887), p. 255; A. Martens, " Dic mikroskopische Untersuchung der Metalle," Claser's Annalen (1892), kxx. 201; H. Wedding " Das Gefüge der Schienenköpfe", Shahb und Eisen (May 15, 1892), xii. 47^{8}; F. Osmond, "Sur la metallographie microscopique." Rapport prisenté à la commission des nethodes d'essai des malériaux de construction le 10 fearier 1892 ; et ii., $7-17$ (Paris, 1895) : "Microscopic Metallography." Traus. A mer. Insf. Mining Eng. xxii. 243: J. E. Stead, "Merhods of preparing Specimens for Microscopic Examination," Journ. Iron and Sted Insto (1894), pt. i.p. 292):
W. C. Roberts-Aus ten and F. Osmond, "On the Structure of Mctals, its, Orisin and Causes," Phil. Trans. Roy. Soc. lindixiit ${ }^{41} 7_{1}^{-432 ;}$ and Bull. de la Soc. d'encouragement pour lindustric naLionale, 5° strie, i. ${ }^{1}{ }^{136}$ (Aott ${ }^{1896 \text {); }}$ G. Charpy," Microscopic Study of Me-
Micrographic Apparatus,
to the form of an installation to be adopted, and it will therefore be well to give an illustration of a definite apparatus which has been found to give satisfactory results. It consists of a microscope A with a firm base placed in a horizontal position. The microscope can be connected by a tube B with the expanded camera CC, at the end of which is the usual frame to receive the photographic plate. A practised observer can focus on a plate of clear glass by the aid of a subsidiary low-power microscope Lens. If a semi-transparent plate is employed it should be as fine as possible. The surface of the table is cut in such a way near H that the observer who is seated may conveniently examine the ohject on the stage of the microscope, the portion B turning aside for this purpose. The subsequent focusing is effected by a rod, FFF, and gearing attached to the fine adjustment of the microscope, GAi flap J when raised forms the support of the lamp used for illumination. As an illuminant an arc light has many advantages, as the exposure of the plate used will seldom exceed 10 seconds. The flament of a Nernst lamp can be used as the source of light; though not so brilliant as the arc it possesses the great advantage of perfect immobility. For the best results, especially with high powers, the source of light must be small, so that its image can be focussed on to the surface of the object; this advantage is possessed hy both of these illuminants. Next in value comes the acet ylene flame, and an incandescent lamp or a gas lamp with a mantle will give good results, but with much longer exposure. Actual illumination is best effected by a Beck vertical illuminator or a Zeiss prism. It is necessary that the lens used for concentrating the light on tbe illuminator
de la soc. d"encouragement pour lindustrie nationt th (hirch. 1897); A. Sauveur, "Constitution of Stcel," Terhnology (ivartarty (June, i8gB); Metallographist, vol. i. No. 3; " Metallography aphlied to Foundry \mathbf{W},rk," The lron and Steel Magazine, vol. ix. No. 6, and vol. x. No. I: J. E. Stead, "Crystalline Siructure of Iron and Stecl," Journ. Iron and Stcel Inst. (1898), i. 145; "Practical Metallography," Proc. Cleveland Inst. of Engineers (Feb. 26, 1900); Ewing and Rosenhain, "Crystalline Siructure of Metals." Phil. Traus. Roy. Soc. exciii. 353 and cxcy. 279:F. Osmond, "Crystallography of Iron," Annoles des Mines (January 1900); Le Chatelier. To Technology of Metallography," Metallagrophist, vol. iv. No. 1 ; Contrihntion a Cétude des allages. Socirté d'encouragement poup Pindustrie rationale (1901): Smeation. "Nipes on the Etching of Sted cersions," Iran end Sted Mogaz

IETALLURGY, the art of extracting metals from their ores; the term being customarily restricted to commercial as opposed to laboratory methods. It is convenient to treat electrical processes of extraction as forming the subjects of Electrochèmistry and Electrometallurgy (qq.o.). The following table enumerates in the order of their importance the metals which our subject at present is understood to include; the second column gives the chemical characters of the ores utilized, italics indicating those of subordinate importance. The term " oxide "includes carbonate, hydrate, and, when marked with*, silicate.

Metal.
Character of Ores.
Iron
Copper
Silver
Gold
Lead
Lead
Tin

Oxides, swiphide.
Complex sulphides, atso oxides, metal.
Sulphide and reguline metal, chloride.
Reguline metal.
Seguine meta basic carbonate، sulphose, the Sulphide, oxide.*
Oxide.

General Sequence of Operations.-Occasionally, but rarely, metallic ores occur as practically pure compact masses, from which the accompanying matrix or "gangue" can be detached by hand and hammer. In most cases the "ore" (see Mineral Deposits; Veins), as it comes out of the mine or quarry, is simply a mixture of ore proper and gangue, in which the latter not unfrequently predominates. Hence it is generally necessary to purify the ore before the liberation of the metal is attempted. Most metallic ores are specifically heavier than the accompanying impurities and their purification is generally effected by reducing the crude ore to a fine enough powder to detach the metallic from the earthy part, and then washing away the latter by a current of water, as far as possible (see Ope-dressing).

The majority of ores being chemical compounds, the extraction of their metals demands cbemical treatment. The chemical operations involved may be classified as follows:-

1. Fiery Operations.-The ore, gencrally with some "flux," Is exposed to the action of fire. The fire in most cases has a chemical, in addition to its physical, function. Moreover the furnace ($g . v$. .) is designed so as to facilitate the action of the heat and furnace gases in the desired dircetion. It is intended either to burn away certain components of the ore-in which case it must be so regulated as to contain a sufficient excess of unburned oxygen; or it is meant to deoxidize ("reduce") the ore, when the draught must be restricted so as to keep the ore constanily wrapped up in combustible flame gases (carbon monoxide, hydrogen, marsh-gas, \& (c.). The majority of the chemical operations of metallurgy fall into this category, and in these processes other metal-reducing agents than those naturally contained in the fire (or blast) are only exceptionally employed.
2. A malgamation.-The ore by itself (if it is a reguline one), or with certain reagents (if it is not), is worked up with mercury so that the metal is obtained as an amalgam, which can be separated mechanically from the dross. The purified amalgan is distilled, when the mercury is recovered as a distillate while the metal remains.
3. Wet Processes.-Strictly spenking, certain amalgamation methods fall under this head; but, in its ordinary acceptance, the term refers to processes in which the metal is extracted either from the natural ore, or from the ore after roasting or other preliminary treatment, by an acid or salt solution, and from this tolution precipitated-generally. in the reguline form-by some suitable reagent.

Few methods of met al extraction at once yield a pure product. What as a rule is obtained is a more or less impure metal, which requires to be "refined" to become fit for the market.

Chemical Operations.-Amalgamation and wet-way proceseses bave limited applications, being practically confined to copper, gold and silver. We therefore here conine ourselves, in the main, to pyro-chemical operations.

The method to be adopted for the extraction of a metal from its ore is determined chicfly, though not entirely, by the nature of the non-metalic component with which the metal is combined. The simplest case is that of the reguline ores where there is no nonmetallic element. The important case is that of gold.

Oxides, Hydrates, Carbonoles and Silicates.-All iron and tin ores proper fall under this heading, which, besides, comprises certain ores of copper, of lead and of xinc. The first step consists in subjecting the crude ore to a roasting or calcining process, the object of which ia to remove the water and carbon dioxide, and burn away, to some extent at least, the sulphur, arsenic or organic matter. The residue consists of an impure oxide of the respective metal, which in all cases is reduced by treatment with fuel at a high temperature. Should the metal bo prevent as a silicate, lime must he added in the smelting to remove the silica and liberate the oxide.

The temperature required for the reduction of cinc lies above the boiling point of the metal; hence the mixture of ore and reducing agent (charcoal is generally used) muat be heated in a retort combined with condensing apparatus. In all the other cases the reduction is effected in the fire itself, a tower shaped blast furnace being preTerably used. The furnace is charged with aliernate layers of fuel and ore (or rntber ore and flux, below), and the whole kindled
from below. The metallic oxide, partly by the direct action of the carton with which it is in contact. but principally by that of the carbon monoxide produced in the lower strata from the oxygen of the blast and the hot carbon there, is reduced to the metallic state; the metal fuses and runs down, with the slag, to the bottom of the furnace, whence both are withdrawn by openiag plug-holes.
Sulphides.-Iron, copper, lead, zinc, mercury, silycr and antimony very frequently present themselves in this state of combination, as components of a family of ores which may be divided into fwo sections: (I) such as substantially consist of simple sulphides, as iron pyrites (FeS). galeno (PbS), zinc blende (ZnS), cinnabar (HgS); and (2) complex sulphides, such as the various kinds of sulphureous copper ores (all substantially compounds or mixtures of sulphides of copper and iron); bournonite, a complex sulphide of lead, antimony and copper; rothgitigerz, sulphide of uilver, antimony and arsenic; fahlerz, sulphides of arsenic and antimony, combined with sulphides of copper, silver, iron, zinc, mercury, silver; and mixtures of theee and other sulphides with one another.

In treating a sulphureous ore, the first step as a rule is to subject it to oxidation by roasting it in a reverberatory or other furnace. which leads to the burning away of at least part of the arsenic and part of the sulphur. The effect on the several individual metallic sulphides (supposing only one of these to be present) is as follows:-

1. Those of silver ($\mathrm{A}_{\mathrm{g}} \mathrm{S}$) and mercury ($\mathrm{H}_{\mathrm{g}} \mathrm{S}$) yield sulphur dioxide gas and metal; in the case of silver, sulphate is formed at low temperatures. Metallic mercury, in the circumstances, goes of as a vapour, which is collected and condensed ; silver remains as a regulus, but pure sulphide of silver is hardly ever worked.
2. Sulphides of iron and zinc yield the oxides $\mathrm{Fe}_{2} \mathrm{O}$, and ZnO as final products, some basic mulphate being formed at the cartier stages, especially in the case of zinc. The oxides can be reduced by carbon.
3. The sulphides of lead and copper yield, the former a mixture of oxide and normal sulphate, the latter one of oxide and basic sulphate. Sulphate of lead is stable at a red heat; sulphate of copper breaks up. into oxide, sulphur dioxide and oxygen. In practice, neither oxidation process is ever pushed to the end; it is stopped as soon as the mixture of roasting-product and unchanged sulphide contains oxygen and sulphur in the ratio of $\mathrm{O}_{3}: \mathrm{S}$. The access of air is then stopped and the whole heated to a higher temperature. when the whole of the sulphur and oxygen is eliminated. This method is largely utilized in the smelting of lead from galena and of copper from copper pyrites.
4. Sulphide of antimony, when rossted in air, is converted into a kind of alloy of sulphide and oxide; the same holds for iron, only its oxysulphide is quite readily converted into the pure oxide FeyOs by further roasting. Oxysulphide of antimony, by suitable processes can be reduced to metal, but these processes are rarely used, because the same end is far more easily obtained by "precipitation," ie. withdrawing the sulphur by fusion with metallic iron, forming metallic antimony and sulphide of iron. Both products fuse, but readily part, because fused antimony is far heavier than fused sulphide of iron. A precisely similar method is used occasionally for the reduction of lead from galena. Sulphide of lead, when fused together with metallic iron in the proportion of $2 \mathrm{Fe}: 1 \mathrm{PbS}$ yields a regulus ($=1 \mathrm{~Pb}$) and a " mat "FeS, which, however, on couling. decomposes into the ordinary sulphide FeS, and finely divided iron. What we bave been explaining are special cases of a more general metallurgic proposition: Any one of the metals, copper, iron, tin, zinc, lead, silver, antimony, arsenic, in general, is capable of desulpburizing (at least partially) any of the others that follows it in the series just given, and it does so the more readily and completely the greater the number of intervening terms. Hence, supposing a complete mixture of these metals to be melted down under circumstances admitting of only a partial sulphuration of the whole, the copper has the best chance of peasing into the "mat," while the arsenic is the first to be eliminated as such, or, in the presence of oxidants, as oxide.
Arsenides.-Although arsenides are amongst the commonest impurities of ores generally, ores consisting essentially of arsenides are comparatively rare. The most important are certain double arsenides of cobalt and nickel, which in practice are always contaminated with the arsendes or other compounds of foreign metala, such as iron, manganese, \&c. The general mode of working these ores is as lollows. The ore is first roasted by itseff, when a part of the argenic goes off as such and as oxide, while a complex of lower arsenides remains. This residue is now subjected to careful oxidizing fusion in the presence of some solvent for metallic bases. The effect is that the several metals are oxidized away and pass into the slag (as silicates) in the fellowing order-manganese, mon, cobalt, nickel; and at any stage the as yet unoxidized residue of arsenide assumes the form of a lused regulus, which sinks down through the slag as $\&$ " speis." (This term has the same meaning in reference to arsenides as " mat" has in regard to sulphides.) By stopping the process at the right moment, we can produce a specis which contains only cobalt and nickel, and if at this stage abo the flux is renewed we can further produce a speis which contains only nickel and a slag which substantially is one of cobalt only. The composition of the apeises generally varics from AsMe $1 / 2$ to AsMe., where "Me" means one atomic weight of anetal in toto. wo that in general

cobalt is utilisad as a blue pigment called " smalt "; the rickel-epeis is worked up for metal.

Msmor Reagents.-Besides the oxidizing and redocing agents present in the fire, and the "fuxes" idded for the production of dags, various minor reagents may be noticed. Mctailic iron an a desulphurizer has already been referred to.

Oxide of lead, PbO (litharge), is largely used as an oxidizing agent. At a red heat, when it melts, it readily attacks all metals, excepr silver and gold. the general result being the formation of a mixed cocide and of a mixed regulus, a distribution, in other words, of both the Icsd and the metal acted on between slag and regulus. More important is its action on metalific sulphides, which, in gencral, results in the formation of three things besides sulphur dioxide, viz. a mixed oxide slag including the excess of litharge, a regulus of lead (which may include bisinuth and other more readily reducible metals). and, if the litharge is not sufficient for a complete oxidation, a " mat "comprising the more readily sulphurizable metals. Oxide of lead, being a most powerful solvent for metallic oxides generally, is also largefy used for the separation of silver or gold from bese metallic oxides.

Metallic lead is to metals generally what oxide of fead is to metallic oxides. It accordingly is available as a solvent for taking up small particles of metal diffused throughout a mass of elag, and uniting them into one regulus. This leads us to the process of "cupellation." which serves for the extraction of gold (g.s.; see also Assiying) and silver from their alloys with base metals.
flaxes.-All ores are contaminated with more or less gangue, which in general consists of infusible matter, and if left unheeded in the reduction of the metallic part of the ore would retain more or less of the metal disseminated through it, or at best foul the furnace. To avoid this, the ore as it goes into the furnace is mixed with" fluxes" so sclected as to convert the gangue into a fusible "slag." which readily runs down through the fuel with the regulus and separates from the latter. The quality and proportion of fux should, if possible, be so chosen that the formation of the slag sets in only after the metai has been roduced and molten; or else part of the basic oxide of the metal to be extracted may be dissolved by the slag and its reduction thus be prevented or retarded. Slags are not a necessary evil; if an ore were free from gongue we should add gangue and fux from without to produce a slag, because one of its functions is to form a layer on the regulus which protects it against the further action of the blast or furnace gases. Fluxes may be arranged under the three heads of (I) fluor-spar, (a) basic fluxes and (3) acid lluxes.

Eluor-spar fuscs up at a red hoat with silica, sulphates of calcium and barium, and a lew other infusible substances into homogeneous mases. It shows litele tendency to dissolve basic oxides, such as lime. \&e. One part of fuor-spar liquefies about half a part of silica, four parts of calcium sulphate and one and a half parts of barium sulphate. Upon these facts its extremely wide application in metallurgy is founded. Carbonate of soda (or potash) is 1he most puwerful basic flue it dissolves silica and all silicates into fusible glasses. On the other hand, borax may be taken as a type for the zeid fluxes. At a red heat, when it forms a viscid fluid, it readily dissolves alt basic oxides into fusible complex borates. Now the gangue of an ore in general cousists cither of some basic material such as carbonate of fime (or magnesia), ferric oxide, alumina, \&e., or of silica (quartz) or some more or less acid silicate, or clse of a mixture of the two classes of bodies. So any kind of gangue might be liquefied by means of borax or by means of alkaline carbonate: but neither of the two is used otherwise than for assaying; what the metal-amelter does is to add to a basic gangue the proportion of silica, and to ant acid ore the proportion of lime, or, indirectly, of ferrous or perhaps manganous oxide, which it may need for the formation of a slag of the proper qualities. The slag must poesess the proper degree of saturation. In other words, taking $\mathrm{SiO}_{2}+$ nMeO (where MeO means an equivalent of base) as a formula for the potential slag, n must have the proper value. If n is too small, i.e. If the slag is too acid, it may dissoive part of the metal to be recovered; if n is too great, fie, the stag too basio, it may refuse to dissolve, for instance, the ferrous oxide which is meant to go into it, and this oxide witi then be reduced, and its metal firon in our example) contaminate the regulus. In reference to the problem under discussion, it is worth noting that oxides of lead and copper are more readily reduced to metals than oxide of iron $\mathrm{Fe}_{2} \mathrm{O}_{2}$ is to FeO. the batter more readily to FeO than FeO itself to metal, and FeO more readily to metal than manganous oxide is. Oxide of calcium (lime) is not reducible at all. The order of basi ity in the oxides (their readiness to go into the slag) is precisciy the reverse.

Most slags being, as we have seen, complex silicates, it is a most important problem of scientifie metallurgy to determine the relations in this class of bodies between chemical composition on the one band and fusibifity and solvent power for certain oxides (CaO. FeO, $\mathrm{Fex}_{4}, \mathrm{Al}_{2} \mathrm{O}_{2}, \mathrm{SiO}_{2}$, \&c.) on the other. Their gencral composition may be expressed as $n\left(\mathrm{MO}_{2}+2 \mathrm{SiO}_{3}\right)+\mathrm{m}\left(\mathrm{fe}^{\mathrm{fe}}\right.$ or BI$\left.) \mathrm{O}+2 \mathrm{SiO}_{4}\right]$
 mode of classifying and naming composition in silicates is metallurgicil: scientific chemists designate Ctass 1. as orthosilicates, Class If. as metasilicates, Class III. as aesquisilicates. In the formulae M

It should be possible to represent each quality of a silicate as a function of $x, n / m$, and of the nature of the individual bases that make up the MO and (fe or al) O respectively. Our actual knowledge falis far short of this posibility. The problem, in fact, is very difficult, the more so as it is complicated by the existence of aluminates, compounds such as $\mathrm{Al}_{1} \mathrm{O}_{\mathrm{s}} .3 \mathrm{CaO}$, in whieh the alumina plays the part of acid, and the occasional existence of compounds of fuorides and sificates in certain slags. The formation of slags, or, what comes to the same thing, of metallic silicates, was especially studied by Percy, Smith, Bischot, Platezer and others, and in more recent timea by Vogt, Doelter, and at the Ceophysical laboratory of the Carnegie Institution, Washington.

Bibliograpily. -W. Roberts-Austen, Introduction to the Study of Metallwey; J. A. Phillips and H. Bauerman, Elements of Melallurgy (1885); and L. Babu, Metallurgie gentrale (Paris, 1906), deal with the principles of metallurgy. A standard work treating the metal. lurgy of various metals is Cart Schnabel, IIasdbuch der Melallhuitenkunde, i. (Igor), H. (rg04), Eng. trans. by H. Louis, i. (1905), ii. (1907).

HEPALFORK. Among the many stages in the development of primeval man, none can have been of greater moment in his struggle for existence than the discovery of the metals, and the means of working them. The names generally given to the three prehistoric periods of man's life on the carth-the Stone, the Bronve and the Iron age-imply the vast importance of the progressive steps from the fint knife to the hronte celt, and lastly to the keen-edged elastic iron weapon or tool.

The metals chiefly used in the arts have been gold, silver, copper and tin (the last two generally mixed, forming an alloy called hronze), iron and lead (see the separate articles on these metals). Their peculiarities have naturally marked out each of them for special uses and methods of treatment. The durability and the extraordinary ductility and pliancy of gold, its power of being subdivided, drawn out or flattened into wire or leaf of almost infinite fineness, have led to its being used for works where great minuteness and delicacy of execution were required; while its beauty and rarity have, for the most part, limited its use to ohjects of adornment and luxury, as distinct from those of utility. In a lesser degree most of the qualities of goid are shared by silver, and consequently the treatment of these two metals has always been very similar, though the greater ahundance of the latter metal has allowed it to be used on a larger scale and for a greater variet y of purposes. The great fluidity of bronze when melted, the slightness of its contraction on solidifying, together with its density and hardness, make it especially suitable for casting, and allow of its taking the impress of the mould with extreme sharpness and delicacy. In the form of plate it can be tempered and annealed till its elasticity and toughness are much increased, and it can then be formed into almost any shape under the hammer and punch. By other methods of treat ment, known to the ancient Egyptians, Greeks and others, hut now forgotten, it could be hardened and formed into knife and razor edges of the utmost kecnness. In many specimens of ancient bronze, small quantities of silver, lead and zine have been found, but their presence is probably accidental. In modern times hrass has been much used, chiefly for the sake of its cheapncss as compared with bronze. In beauty, durability and delicacy of surface it is very inferior to bronze, and, though of some commercial importance, has been of but little use in the production of works of art. To some extent copper was used in an almost pure state during medieval times, especially from the tath to the 15 th century, mainly for ohjects of ecclesiastical use, such as pyxes, monstrances, reliquaries and croziers, partly on account of its softness under the tool, and also because it was slightly easier to apply ename! and gilding to pure copper than to bronze (sce fig. 1). In the medieval period it was used to some extent in the shape of thin sheeting for reofs, as at St Mark's, Venice; while during the 16 th and 17th centuries it was largely employed for ornamental domestle vessels of various sorts.

Iron. ${ }^{2}$-The abundance in which iron is found in so many places, its great strength, its remarkabie ductiiity and malleability in a red-hot state, and the ease with which two heated surfaces of

Fig. 1.-Monstrance of Copper Gilt ltalian work of the 15 th century. iron can be welded together under the hammer combine to make it specially suitable for works on a large scale wbere strength with lightness are required -things such as screens. window-grills, ornamental hinges and the like. In its hot plastic state iron can be formed and modelled under the hammer to almost any degree of refinement, while its great strengtb allows it to be beaten out into leaves and ornaments of almost paperlike thinness and delicacy. With repeated bammering, drawing out and anncaling, it gains much in strength and toughness, and the addition of a very minute quantity of carbon converts it into steel, less tough, hut of tbe keenest hardness. The large employment of cast iron is comparatively modern, in England at icast only dating from the 16 th century; it is not, however, incapable of artistic treatment if due regard be paid to the necessities of casting, and if no attempt is made to imitate the fine-drawn lightness to which wrougbt iron so readily lends itself. At the best, however, it is not generally suited for the finest work, as the great contraction of iron in passing from the fluid to the solid state renders the cast somewhat hlunt and spiritless.

Among the Assyrians, Egyptians and Greeks the use of iron, eitber cast or wrougbt, was very limited, bronze being the favourite metal almost for all purposes. The dificulty of smeiting the ore was probably one reason for this, as well as the now forgoten skill which enabled bronxe to be tempered to a steel-like edge. It had, bowever, its value, of which a proof occurs in Homer (Il. xxiii.), where a mass of iron is mentioned as being one of the prizes at the funeral games of Patroclus.

Mehods of Manipulation in MetalWork.-Gold, silver and bronze may be treated in varieus ways, the chief of which are (1) casting in a mould, and (2) treatment hy hammering and punching (Fr. repowsse).

The first of these, casting is chiefly adapted for bronze, or
${ }^{2}$ Analyses of the iron of prehistoric weapons have brought to light the interesting fact that many of these carliest specimens of iron manufacture contain a considerable percentage of nickel. This special alloy does not occur in any known iron ores. but is invariably found in meteoric iron. It thus appears that iron was manufactured from meteorolites which had falien to the earth in an almost pure sactallic state, possibly long before prehistoric man bad leamt how to dig for and smelt iron in any of che forms of ore which are found on this planet.
in the case of the more precious metals only if they are used on a very small scale. The reason of this is that a repousse relief is of much thinner substance tban if tbe same design were cast, even by the most skilful metal-worker, and so a large surface may be produced witb a very small expenditure of valuable metal. Casting is prohably the most primitive metbod of metal-work. This has passed through three stages, the first being represented by solid castings, such as are most celts and other implements of the prehistoric time, the mould was formed of clay, sand or stone, and the fluid metal was poured in till the hollow was full. The next stage was, in the case of bronze, to introduce an iron core, probably to save needless expenditure of the more valuable metal. The British Museum possesses an interesting Eiruscan or Archaic Italian example of this primitive device. It is a bronze statuette from Sessa on the Volturno, about 2 it. high, of a female standing, robed in a close-fitting cbiton. The presence of the iron core has been made visibie by the splitting of the figure, owing to the unequal contraction of the two metals. The forearms, which are extended, have been cast separately and soldered or brazed on to the elhows. The third and last stage in the progress of the art of casting was the employment of a core, generally of clay, round which the metal was cast in a mere skin, only thick enough for strength, without waste of metal. The Greeks and Romans attained to the greatest possible skill in this process. Their exact method is not certainly known, but it appears probable that they were acquainted with the process now called d cire perduc-the same as that employed by the great Italian artists in bronze. Cellini, the great Florentine artist of the 16th century, has described it fuily in his Tralloto della Scullura. If a statue was to be cast, the figure was first roughly modelled in elay-only rather smaller in all its dimensions than the future bronere; all over this a skin of wax was laid, and worked by the sculptor with modelling toois to tbe required form and finish. A mixture of pounded brick, clay and ashes was then ground finely in water to tbe consistence of cream, and suceessive coats of this mixture were then applied with a hrush, till a second skin was formed all over the wax, fitting closely into every line and depression of the modelling. Soft clay was then carefully laid on to strengthen the mould, in considerable thickncss, till the whole statue appeared like a shapeless mass of clay, round whicb iron hoops were bound to hold it all together. The whole was then thoroughly dried, and placed in a hot oven, which baked the clay, both of the core and the outside mould, and melted the wax, which was allowed to ran out from small holes made for the purpose. Thus a hollow was left, corresponding to the skin of wax hetween the core and the mould, the relative positions of which were preserved by various small rods of bronze, which had previously been driven tbrough from the outer mould to the rough core. The mould was now ready, and melted brouze was poured in till the whole space between the core and tbe outer mould was full. After slowly cooling, the outcr mould was broken away from outside the statue and the inner core as much as possible broken up and raked out through a bole in the foot or some other part of the statue. The projecting rods of hronze were then cut away, and the whole finished by rubbing down and polishing over any roughness or defective places. The most skilfu! sculptors, however, had but little of this after-touching to do, the final modelling and even polish which they had put upon the wax being faithfully reproduced in the bronze casting. The further enrichment of the object by enamels and inlay of other metals was practised at a very early period hy Assyrian, Egyptian and Greck metal-workers, as well as by the artists of Persia and medieval Europe.

The second chief process, that of hammered work (Gr. oфupinaros; Fr. repousse), was probably adopted for bronze-work on a large scale before the art of forming large castings was discovered. In the most primitive method thin plates of bronze were hammered over a wooden core, rudely cut into the required sbape, the core serving the double purpose of giving shape to and strengtbening the thin metal. A further development in the art of hammered work consisted in laying the metal plate on a saft
and elastic bed of cement made of pitch and pounded brick. The design was then beaten into relief from the back with hammers and punches, the pitch bed yielding to the protuberances which were thus formed, and serving to prevent the punch from breaking the metal into holes. The pitch was then melted away from the front of the embossed relief, and applied in a similar way to the back, so that the modelling could be completed on the face of the relief, the final touches being given by the graver. This process was chicfly applied by medieval artists to the precious metals, hut by the Assyrians, Greeks and other carly nations it was largely used for bronze. The great gates of Shalmaneser II., 858-823 B.C., from Balawat, now in the British Museum, are a remarkable example of this sort of work on a large scale, though

Fic. 2.-One of the Siris Bronzes.
the treatment of the reliefs is minute and delicate. The "Siris hronzes," in the same museum, are a most astonishing example of the skill attained by Greek artists in this repousst work (see Brönsted's Bronzes of Siris, 1836). They are a pair of shoulderpieces from a suit of bronze armour, and each has in very high relief a combat between a Greck warrior and an Amazon. No work of art in metal has probably ever surpassed these little figures for beauty, vigour and expression, while the skill with which the artist has beaten these high reliefs out of a flat plate of metal appears almost miraculous. The heads of the figures are nearly detached from the ground, their substance is little thicker than paper, and yet in no place has the metal been broken through hy the punch. They are probably of the school of Praxiteles, and date from the $4^{\text {th }}$ century b.c. (see fig. 2).

Copper and tin have been but litte used separately. Copper in its pure state may be worked by the same methods as bronze, but it is inferior to it in hardesss, strength and beauty of surface. Tin is too weak and britite a metal to be employed alone for any but small objects. Some considerable number of tin drinkingrups and bowls of the Cellic period have been found in Cornwall

In the neighbourhood of the celebrated tin and copper mines, which have been worked from a very early period. The use of lead has been more extended. In sheets it forms the best of all coverings for roofs and even spires. In the Roman and medieval periods it was largely used for coffins, which were often richly ornamented with cast work in relief. Though fusible at a very low temperature, and very soft, it has great power of resisting decay from damp or exposure. Its most important use in an artistic form has been in the shape of baptismal fonts, chiefly between the inth and the $14 t \mathrm{~h}$ centuries. The superior beauty of colour and durability of old specimens of lead is owing to the natural presence of a small proportion of silver. Modern smelters carefully extract this silver from the lead ore, thereby greatly impairing the durability and beauty of the metal.

As in almost all the arts, the ancient Egyptians cxcelled in their metal-work, especially in the use of bronze and the precious metals. These were worked by casting and hammering, and ornamented by inlay, gilding and enamels with the greatest possihle skill. From Egypt perhaps was derived the early skill of the Hebrews. Further instruction in the art of metal-working came prohahly to the Jews from the neighbouring country of Tyre. The description of the great gold lions of Solomon's throne, and the laver of cast bronze supported on figures of oxen, shows that the artificers of that time had overcome the difficulties of metal-working and founding on a large scalc. The Assyrians Were perhaps the most remarkable of all ancient nations for the colossal size and splendour of their works in metal; whole circuit walls of great cities, such as Ecbatana, are said to have been covered with metal plates, gilt or silvered. Herodotus, Athenaetis and other Greek and Roman writers have recorded the enormous numher of colossal statues and other works of art for which Bahylon and Nineveh were so famed. The numerous objects of bronze and other metals brought to light by the excavations in the Tigris and Euphrates valleys. though mostly on a small scale, bear witness to the great skill and artistic power of the people who produced them; while the discovery of some hronze statuettes, shown by inscriptions on them to be not later than 2200 B.C., proves how early was the development of this branch of art among the people of Assyria.

The Metal-W ork of Greece.-The early history of metal-working in Greece is ext remely obscure, and archacologists are divided in opinion even on so important a question as the relative use of bronze and iron in the Homeric age. The evidence of Mycenaean remains, as compared witb the literary evidence of Homer, is both inadequate and inconclusive (see Aegean Civilization; Greex Art; Aens and Armour, Ancient; Plate; \&c.). The poems of Homer are full of descriptions of elahorate works in hronze, gold and silver, which, even when full allowance is made for poetic fancy, show clearly enough very advanced skill in the working and ornamenting of these metals. Homer's description of the shield of Achilles, made of bronze, enriched with hands of figure reliefs in gold, silver and tin, could hardly have been written by a man who had not some personal acquaintance with works in metal of a very elaborate kind. Again, the accuracy of his descriptions of brazen houses-such as that of Alcinous, Od, vii. 81-is borne witness to by Pausanias's mention of the bronze temple of Athena Xadxiousos in Sparta, and the hronze chamber dedicated to Myron in 648 b.c., as well as by the discovery of the stains and bronze nails, which show that the whole interior of the so-called treasury of Atreus at Mycenae was once covered with a lining of bronze plates. Of the two chief methods of working hronze, gold and silver, it is prohable that the hammer process was first practised, at least for stat ues, among the Greeks, who themselves attributed the invention of the art of hollow casting to Theodorus and Rhoecus, bot h Samian sculptors, about the middle of the 6th century b.c. Pausanias specially mentions that one of the oldest statues he had ever seen was a large figure of Zeus in Sparta, made of bammered bronze plates riveted together. With increased skill in large castings, and the dis. covery of the use of cores, hy which the fluid bronze was poured into a mere skin-like cavity, hammered or repoussé work was only used in the case of small objects in which lightocss was
desirable, or for the precious metals in order to avoid large expenditure of metal. The colossal statues of ivory and gold by Pheidias were the most notable examples of this use of gold, especially his statue of Athera in the Parthenon, and the one of Zeus at Olympia. The nude parts, such as face and hands, were of ivory, while the armour and drapery were of beaten gold. The comparatively small weight of gold used by Pheidias is vary remarkable when the great size of the statues is considered.

A graphic representation of the workshop of a Greek sculptor in bronze is given on a fictile vase in the Berlin Museum (see Gerhard's Trinkschalen, plates xii., xiii.). One man is raking out the fire in a high furnace, while another behind is blowing the bellows. Two others are smoothing the surface of a statue with scraping tools, formed like a strigil. A fourth is beating the arm of an unfinished figure, the head of which lies at the workman's feet. Perhaps the most important of early Greek works in cast bronze, both ftom its size and great historical interest, is the bronze pillar (now in the Hippodrome at Constantinopie) which was erected to commemorate the victory of the allied Greek states over the Persians at Platace in 479 b.c. (see Newton's Travels in the Levant). It is in the form of three serpents twisted together, and before the heads were broken off was at least 20 ft . high. It is cast hollow, all in one piece, and has the names of the allied statcs engraved on the lower part of the coils. Its size and the beauty of its surface show great technical skill in the founder's art. On it once stood the gold tripod dedicated to Apollo as a tenth of the spoils. It is described by both Herodolus and Pausanias.
Marble was comparatively but little used by the earlier Greek sculptors, and even Myron, a rather older man than Pheidias,

Fic. 3.-Boss from the Milanese Candelabrum.
seems to have executed nearly all his most important statues in spetal. Additional richness was given to Greek bronze-work by gold or silver inlay on lips, eyes and borders of the dress; one remarkable statuette in the British Museum has eyes inlaid with diamonds and fret-work inlay in silver on the border of the chiton. The mirrors of the Greeks are among the most important specimens of their artistic metal-work. These are bronze disks, one side polished to serve as a reflector, and the back ornamented with engraved outline drawings, often of great beauty (see Gerhard, Eiruskische Spiegel, 1845-1867). In metal-work, as in other arts, the Romans were pupils and imitators of the Greeks. Owing to the growth of the spirit of laxury, a considerable demand arose for magnificent articles of gold and silver plate. The finest specimens of these that still exist are the very beautiful set of silver plate found buried near Hildesheim in 1869, now in the Berlin Museum. They consist of drinking vessels, bowis, vases, ladles and other objects of silver, parcel-gilt, and exquisitely decorated with figures in relief, both cast and repousse. There are clectrotypes of thete in the Victoria and Albert Museum. When the seat of the empire was changed, Byzaptim became the chief centre for the production of artixtic metal-work. From Byzantium the special skill in this art was tramemitted in the
oth and roth centuries to the Rhenish provinces of Cermany and to Italy, and thence to the whole of western Europe; in this way the 18 ch century smith wbo wrought the Hampton Court iron gates was the heir to the mechanical skill of the ancient metalworkers of Pboenicia and Greece. In that period of extreme degradation into which all the higher arts fell after the destruction of the Roman Empire, though true feeling for beauty and knowledge of the subtleties of the human form remained for centuries almost dormant, yet at Byzantium at least there still survived great technical skill and power in the production of all sorts of metal-work. In the age of Justinian (first half of the 6th century) the great church of St Sophia at Constantinople was adorned with an almost incredible amount of wealth and aplendour in the form of screens, altars, candlesticks and other ecclesiastical furnit ure made of massive gold and silver.
Melal-Work in Ilaly.-It was therefore to Byzantium that Italy turned for metal-workers, and especially for goldsmiths, when, in the 6th to the 8th centuries, the basilica of St Peter's in Rome was enriched with masses of gold and silver for decorations and fittings, the gifts of many donors from Belisarius to Leo III., the mere catalogue of which reads like a tale from the Arabian Nights. The gorgeous Pala d'oro, still in St Mark's at Venice, a gold retahle covcred with delicate relicfs and enriched with enamels and jewels, was the work of Byzantipe artists during the sith century. This work was in progress for more than a hundred years, and was set in its place in 1106 A.D., thougt still unfinished (see Bellomo, Pola d'oro di St Marco, 1847). It was, however, especially for the production of bromze doors for churches, ornamented with panels of cast work in bigh relief, that Italy obtained the services of Byzantine workmen (see Garrucci, Arte cristiana, 1872-1882). One artist, niamed Staurachios, produced many works of this class, some of which still exist, such as the bronve doors of the cathedral at Amalf, dated 1066 a.d. Probably by the same artist, though his name was spelled differently, were the bronze doors of San Paoto fuori le Mura, Rome, careful drawings of which exist, though the originals were destroyed in the fire of 1824 . Other important examples exist at Ravelio (1197), Salerno (1099), Amalf (i062), Atrani (1087); and doors at Monreale in Sicily and at Trani, signed by an artist named Barisanos (end of the 12th century); the reliefs on these last are remarkable for expression and dignity, in spite of their carly rudeness of modelling and ignorance of the human figure. Most of these works in bronze were enriched with fine lines inlaid in silver, and in some cases with a kind of niello or enamel. The technical skill of these Byzantine metal-workers was soon acquired by native Italian artists, who produced many important works in bronze similar in style and execution to those of the Byzantine Greeks. Such, for ezample, are the bronze doors of San Zenone at Verona (unlike the others, of repousse not cast work); those of the Duomo of Pisa, cast in 1180 hy Bonannus, and of the Duomo of Troia, the last made in the beginning of the 12th century by Oderisius of Benevento. Another artist, named Rager of Amalf, worked in the same way; and in the year 1219 the brothers Hubertus and Petrus of Piacenza cast the bronze door for one of the side chapels in San Giovanni in Laterano. One of the most important early specimens of metal-work is the gold and silver altar of Sant' Ambrogio in Milan. In character of work and design it resembles the Venice Pala d'Oro, but is still earlier in date, being a gift to the church from Arclubishop Angilbert II. in 835 A.D. (see Du Sommerard, and D'Agincourt, Moyen Age). It is signed wolvinivs magister phaber; nothing is known of the artist, but he probably belonged to the semiByzantine school of the Rhine provinces; according to Dr Rock be was an Anglo-Saxon goldsmith. It is a very sumptuous work, the front of the altar being entirely of gold, with repousst relicfs and cloisonne enamels; the back and ends are of silver, with gold ornaments. On the front are figures of Christ and the twelve apostles; the ends and back have reliefs illustrating the life of St Ambrose.

The most lmportant existing work of art in metal of the rigth century is the great candelabrum now in Milan Cathedral. It is of gilt bronse, more than 14 ft . high; it had seven branches for

Cast Bronze Gates, Adelphi Bank, Liverpool.
Designed by W. D. Caröe, the figures by Stirling Lee, executed by Starkie Gardner and Co.

Rain-Water Head, in Lead, for the Victoria Law Courts, Birmingham. Designed by Aston Webb and Ingres Bell, and executed by Dent and Hellier.

Covered Bridge of Iron, Sheathed in Cast Lead, Grand Hotel, London. Designed by William Woodward, and executed by Starkie Gardner and Co.
candles, and its upright stem is supported on four winged dragons. For delicate and spirited execution, together with refined gracefulness of design, it is unsurpassed by any similar work of art. Every one of the numerous little figures with which it is adomed is worthy of study for the beauty and expression of the face, and the dignified arrangement of the drapery (see fig. 3). The semiconventional open scroll-work of branches and fruit which wind axound and frame each figure or group is devised with the most perfect taste and richness of fancy, while each minute part of this great piece of metal-work is finished with all the care that could have been bestowed on the smallest article of gold jewellery. Though something in the grotesque dragons of the base recalls the Byzantine school, yet the beauty of the figures and the keen feeling for graceful curves and folds in the drapery point to a native Italian as being the artist who produced this wonderful work of art. There is a cast in the Victoria and Albert Museum.

Fic. 4.-Silver Repousse Reliefs from the Pistoia Retable. During the 13th and 14th centuries in Italy the widespread influence of Niccolz Pisano and his school cncouraged the sculptor to use marble rather than bronze for his work. At this period wrought iron came into general use in the form of screens for chapels and tombs, and grills for windows. These are mostly of great beauty, and show remarkable skill in the use of the hammer, as well as power in adapting the design to the requirements of the material. Among the finest examples of this sort of work are the screens round the tombs of the Scala family at Verona, 1350-1375.-a sort of network of light cusped quatrefoils, each filled up with a small ladder (scala) in allusion to the name of the lamily. The most elaborate specimen of this wrought work is the acreen to the Rinuccini chapel in Santa Croce, Florence, of 1371, in which moulded pillars and window-like tracery have been wrought and modelled by the hammer with extraordinary skill (see Wyatt, Metal-Worh of Middle Ages). Of about the same date are the almost equally magnificent screens in Sta Trinita, Florence, and at Siena across the chapel in the Palazzo Pubblico. The main part of most of these screens is filled im with quatrefoils, and at the top is an open fricze formed of plate iron pierced, repousst, and enriched with engraving. In the 14th century great quantities of objects for ecciesiastical use were

XVIII 4*
produced in Italy. The silver altar of the Florence baptintery was begun in the first half of the 14th century, and not completed till after 1477 (sec Gas. des beamr-ants, Jan. 1883). The greatest artists in metal laboured on it in succession, among them Orcagna, Ghiberti, Verrocehio, Ant. Pollaiuolo and many others. It has elaborate reliefs in repoussé work, cast canopies and minute statucttes, with the further enrichment of transiucent coloured enamels. The silver altar and retable of Pistoia Cathedral (see fig. 4), and the great ahrine at Orvieto, are works of the same class, and of equal importance.

Whole volumes might be devoted to the magnificent works in bronze produced by the Florentine artists of this century, works such as the baptistery gates by Ghiberti, the statues of Verrocchio, Donatello and many others, the bronze screen in Prato cathedral by Simone, brother of Donatello, in 1444-1461, and the screen and bronze ornaments of the tomb of Piero and Giovanni dei Medici in San Lorenzo, Florence, by Verrocchio, in 1472. At the latter part of the isth century and the beginning of the 16 th the Pollaiuoli, Ricci and other artists devoted much labour and artistic skill to the production of candlesticks and smaller objects of bronze, such as doar-knockers, many of which are works of the greatcst beauty. The candlesticks in the Certosa near Pavia, and in the cathedrals of Venice and Padua, are the finest examples of these. Niccold Grossi, who worked in wrought iron under the patronage of Lorenzo dei Medici, produced some wonderiul specimens of metal-work, such as the candlesticks, lanterns, and rings fixed at intervals round the outside of the great palaces (see fig. 5). The Strozzi palace in Florence and the Palazzo del Magnifico at Siena have fine specimens of these - the former of wrought iron, the latter in

Fig. 5.-Wrought-iron Candle Pricket; late isth-century. Florentide work. cast bronze. Al Venice fine work in metal, such as salvers andvases, was being produced, of almost Oriental design, and in some cases the work of resident Arab artificers. In the 16th century Benvenuto Cellini was supreme for skill in the production of enamelled jewellery, plate and even larger works of sculpture (see Plon's Ben. Cellini, 1882), and Giovanii de Bologna in the latter part of the same century inherited to some extent the skill and artistic power of tbe great $\mathbf{r g t h}$-century artists.
Spain.-From a very early period the metal-workers of Spain have been distinguished for their skill, especially in the use of the precious metals. A very remarkable set of specimens of goldsmith's work of the 7th century are the eleven votive crowns, two crosses and other objects found in 1858 at Guarrazar, and now preserved at Madrid and in Paris in the Cluny Museum (see Du Sommerard, Musce de Cluny, 1852). Magnifcent works in silver, such as shrines, altar crosses and church vessels of all kinds, were produced in Spain from the 14th to the i6th century-especially a number of sumptuous tabernasles (custodia) for the host, magnificent examples of which still exist in the cathedrals of Toledo and Seville. The bronze and wrought-iron screens-rious, mostly of the 1 gth and 16th centuries-to be found in almost every important church in Spain are very fine examples of metal-work. They generally have moulded rails or balusters, and rich friczes of pierced and repousse work, the whole being often thickly plated with gilver. The common use of metal for pulpits is a peculiarity
of Spain; they are sometimes of bronze, as the pairs in Burgos and Toledo cathedrals, or in wrought iron, like those at Zamora and in the church of San Gil, Burgos. The great candelabrum or tenebrarium in Seville Cathedral is the finest specimen of 16th-century metal-work in Spain; it was mainly the work of Bart. Morel in 1562. It is of cast bronze enriched with delicate scroll-work foliage, and with numbers of well-modelled statuettes. Especially in the art of metal-work Spain was much influenced in the $15^{\text {th }}$ and 16 th centuries by both Italy and Germany, so that numberless Spanish objects produced at that time owe little or nothing to native designers. At an earlier period Arab and Moorish influence is no less apparent.

Fic. 6.-Part of the " Eleanor Grill."
England.-In Saxon times the English metal-workers, especially of the precious metals, possessed great skill, and appear to have produced shrines, altar-frontals, retables and other ecclesiastical furniture of considerable size and magnificence. Dunstan, archbishop of Canterbury (925-988), like Bernward, bishop of Hildesheim a few years later, and St Eloi of France three centuries earlier, was himself a skilful worker in all kinds of metal. The description of the gold and silver retable given to the high altar of Ely by Abbot Theodwin in the inth century, shows it to have been a large and elaborate piece of work decorated with many reliefs and figures in the round. In 1241 Henry III. gave the order for the great gold shrine to contain the bones of Edward the Confessor. It was the work of members of the Otho family, among whom the goldsmith's and coiner's crafts appear to have been long hereditary. Countless other imporant works in the precious metals adormed every abbey and cathedral church in the kingdom. In the 13th cernury the English workers in wrought iron were especially skilful. The grill over the tomb of Queen Eleanor at Westminster, hy Thomas de Leghton, made about 1294, is a remarkable cxample of skill in welding and modelling with the hammer (see fig. 6). The rich and graceful iron hinges, made often for small and out-of-the-way country churches, are a large and important class in the list of English wroughtiron work. Those on the refectory door of Merton College, Oxford, are a beautiful and well-preserved example dating from the 14 th century. More mechanical in execution, though still very tich in effect, is that sort of iron tracery work produced by cutting out patterns in plate, and superimposing one plate over the other, so as to give richness of effect by the shadows
produced by these varying planes. The screen by Henry V.'s tomb at Westminster is a good early specimen of this kind of work. The screen to Bishop West's chapel at Ely, and that round Edward VI.'s tomb at Windsor, both made towards the end of the $\mathbf{1 5 t h}$ century, are the most magnificent English examples of wrought iron; and much wrought-iron work of great beauty was produced at the beginning of the 18 th century, especially under the superintendence of Sir Christopher Wren (see Ebbetts, Iron Work of 17 th and 18 ih Centuries, 1880). Large flowing leaves of acanthus and other plants were beaten out with wonderful spirit and beauty of curve. The gates from Hampton Court are the finest examples of this class of work (see fig. 7).

From an early period bronze and latten (a variety of brass) were much used in England for the smaller objects both of ccelesiastical and domestic use, but except for tombs and lecterns were but little used on a large scale till the i6th century. The full-length recumbent effigies of Henry III. and Queen Eleanor at Westminster, cast in bronze by the "cire perdue" process, and thickly gilt, are equal, if not superior, in artistic beauty $t 0$ any sculptor's work of the same period (end of the isth century) that was produced in Italy or elsewhere. These

Fig. 7.-Part of one of the Flampton Court Gatea.
effigies arc the work of an Englishman named William Torel. The gates to HInry VII's chapel, and the screen round his tomb at West minster (see fig. 8), are very elaborate and beautiful examples of "latten" work, showing the greatest technical skill in the founder's art. In latten also were produced the numerous monumental brasses of which a large number still exist in England (see Brasses, Monumental).

In addition to its chief use as a roof covering, lead was sometimes used in England for making fonts, generally tub-shaped, with figures cast in relief. Many examples exist: e.g. at Tidenham, Gloucestershire; Warborough and Dorchester Oron; Chirton, Wilta; and other places.

Cermany.-Unilike England, Germany in the roth and 1 rth centurics produced large and elabotate works in cast bronee, especially doors for churches, much resembling the contemporary doors made in Italy under Byzantine influence. Bernward, bishop of Hildesheim, 992-1022, was especially skilled in thit

Fig. 8.-Part of Henry Vifi's Bronze Screen.
work, and was much influenced in design by a visit to Rome in the suite of Otho III. The bronze column with winding reliefs now at Hildesheim was the result of his study of Trajan's column, and the bronze door which he made for his own cathedral shows classical influence, especially in the composition of the drapery of the figures in the panels. The bronze doors of Augshurg (1047-1072) are similar in style. The hronze tomb of Rudolph of Swabia in Merseburg Cathedral (1080) is another fine work of the same school. The production of works in gold and silver was also carried on vigorously in Germany. The shrine of the three kings at Cologne is the finest surviving example. At a later time Augsburg and Nuremberg were the chief centres for the production of a.tistic works in the
various metals. Hersaann Vischer, in the 1 gth century, and his son and grandsons were very remarkable as bronve founders. The font at Wittenberg, decorated with reliefs of the apostles, was the work of the elder Vischer, while Peter and his son produced, among other important works, the shrine of St Sebald at Nuremberg, a work of great finish and of astonishing richness of fancy in its design. The tomb of Maximilian 1., and the statues round it, at Innsbruck, begun in 152 I , are perhape the most meritorious German work of this class in the r6th century, and show considerable Itatian influence. In wrought iron the German smiths, especially during the igth century, greatly excelled. Almost peculiar to Germany is the use of wrought iron for grave-crosses and sepulchral monuments, of which the Nuremberg and other cemeteries contain fine examples. Many elaborate well-canopies were made in wrought iron, and gave

Fic. 9.-Brass Vase, pierced and gilt; 17th century Persian work
full play to the fancy and iavention of the smith. The celebrated 1 sth-century example over the well at Antwerp, attributed to Quintin Matsys, is the finest of these.

France. -From the time of the Romans the city of Limoges has been celebrated for all sorts of metal-work, and especially for brass enriched with enamel. In the 13th and 14th centuries many life-size sepulchral effigies were made of beaten copper or bronze, and ornamented by various-coloured " cbamplevé" enamels. The beauty of these effigies led to their being imported into England; most are now destroyed, but a fine specimen still exists at Westminster on the tomb of William de Valence (r296). In the ornamental iron-work for doors the French smiths were pre-eminent for the richness of design and skilful treatment of their metal. Probably no examples surpass those on the west doors of Notre Dame in Paris-unhappily much falsified by restoration. The crockets and finials on the fieches of Amiens and Rheims are beautiful specimens of a highly ornamental treatment of cast lead, for which France was especially celebrated. In most respects, however, the development of
the various kinds of metal-working went through much the same stages as in England.

Portia and Damascus.-The metal-workers of the East, especially in brass and steel, were renowned for their skill even in the time of Tbeophilus, the monkish writer on the subject in the 13 th century. But it was during the reign of Shah Abbas 1 . (d. 1628) that the greatest amount of skill both in design and execution was reached by the Persian workmen. Delicate pierced vessels of gilt brass, enriched hy tooling and inlay of gold and silver, were among the chief specialies of the Persians (see fig. 9). A process called by Europeans "damascening" (from Damascus, the chief seat of the expott) was used to produce very delicate and rich surface ornament. A pattern was incised with a graver in iron or steel, and then gold wire was beated into the sunk lines, the whole surface being then snoothed and polished. In the time of Cellini this process was copied in Italy, and largely used, especially for the decoration of weapons and armour. The repoussé process both for brass and silver was much used by Oriental workers, and even now fine works of this class are produced in the East, old designs still being adhered to.
(J. H. M.)

Modern Art Metal-Work.-The term "art metal-work" is applied to those works in metal in which beauty of form or decorative effect is the first consideration, irrespective of whet her the object is intended for use or is merely ornamental; and it embraces any article from a Birmingham brass bedstead to works of the highest artistic merit. The term, as definitely distinguishing one branch of metal-prorking from another, is objected to by many on the ground that no such prefix was required in the hest periods of art, and that allied crafts continue to do without it to the present day. Indeed, as long as metalworking remained a handicraft-in other words, until the introduction of steam machinery-every article, however bumble its purpose, seems to have been endowed with some traditional beauty of form. The robust, florid and distinctly Roman rendering of the classic, which followed the refined and attenuated treatment associated with the architecture of the brothers Adam, who died in 1792 and 1794, is the last development in England which can be regarded as a national style. The massively moulded ormolu stair balustrade of Northumberland House, now at 49 Prince's Gate; the candelabra at Windsor and Buckingham Palace, produced in Birmingham hy the firm of Messenger; the cast-iron railings with javelin beads and lictors' fasces, the tripods, Corinthian column standard lamps and candelahra, boat-shaped oil lamps and tent-shaped lustres with classic mountings, are examples of the metal-work of a style which, outside the eccentric Brighton Pavilion and excursions into Gothic and Elizabethan, was universally accepted in the United Kingdom from the days of the Regency until after the accession of Victoria. Except perhaps the silversmiths, no one was conscious of being engaged in "art metal-working," yet the average is neither vulgar nor in bad taste, and the larger works are both dignified and suited to their architectural surroundings.

The introduction of gas as an illuminant, about 1816, at once induced a large demand and a novel description of metal fitting; and the craft fell under the control of a new commercial class, intent on breaking with past traditions, and utilizing steam power, electro-deposition, and every mechanical and scientific invention tending to economize metal or labour. But when all artistic perception in Great Britain appeared lost in admiration of the triumphs of machinery and the expansion of trade, a new infuence in art matters, that of the prince consort, began to make itself felt. The Great Exbihition, state-aided schools of design, the South Kensington Museum, and the cstablishment of a Science and Art Department under Government, were among the results of the important art revival which he inaugurated. He is credited with having himself designed candelabra and other objects in metal, and he directly encouraged the production of the sumptuous treatise on metal-work by Dighy Wyatt, which laid the foundations of the revival. To this work, and that of Owen Jones, can be traced the origin of the
eclecticism which has laid all past styles of art under contribution. The Gothic revival also helped the recognition of art, without very direculy affecting the movement. It was valuable in teaching how to work within definite limitations, but without slavish copying; it also emancipated a considerable body of craftsmen from the tyranny of manufacturers whose sole idea was that machine-work should supersede handicraft. Its greatest efforts were the metal chancel-screens designed by Sir G. G. Scott, that for Hereford Cathedral having been exhibited in 1862. It does not appear that the influence either of Owen Jones or Digby Wyatt on metal-working extended beyond bringing the variety and beauty of past styles to the direct notice of designers. Neither can the London silversmiths, though they employed the best talent available, particularly in the decade following the Great Exhibition of 1851 , be credited with murh influencing the art metal revival. They were rivalled by Elkington of Birmingham, who secured the permanent assistance of at least one fine artist, More! Ladeuil, the producer of the Elcho Challenge Shield. Perhaps the first actual designer to make a lasting impression on the crafts was Thomas Jeckyll, some of whose work, including gates for Sandringham, was exhibited in 1862. Infinitely greater as a designer was Alfred Stevens, whose influence on English craftsmen might be regarded as almost comparable to that of Michelangelo on that of bis Italian contemporaries. Stevens's designs certainly directly raised the standard of production in several metal-working firms by whom he was employed; whilst in the Wellington Memorial in St Paul's Cathedral, and in Dorchester House, his work is seen unfettered by commercial considerations. Omitting many whose occasional designs have had little influence on the development of the metai crafts, we come to Alfred Gilbert, whose influence for a time was scarcely less than that of Stevens himself. Mcnumental works, such as his statue of Queen Victoria at Winchester and his work at Windsor, may be handed down as his greatest achievements, but judged as art metal-work, his smaller productions, such as the centrepiece presented by the army and navy to Queen Victoria on her Jubilee, have been more important.
The charming bronze statuettes of Onslow Ford, the most representative of which are in the Tate Galiery; the work of George Frampton, as seen in the Mitchell Memorial; and the beautiful bas-reliefs of W . Stirling Lee, examples of which are the bronze gates of the Adelphi Bank at Liverpool, have all contrihuted, especially when applied to architectural decoration; to a high standard of excellence. Painters also have frequently designed and modelled for metal-work, for example, Lord Leighton, who produced hronze statucttes of most refined character; and Sir L. Alma-Tadema, who designed the grilles for his studio and entrance hall; but none so conspicuously as Professor F. von Herkomer, who, whether working in gold and enamel, iron, or his favourite alloy, pewter, infuses a freshness into his designs and methods which displays an unusual mastery over materials.
The gift of reproducing effects of nature or art by brush or chisel is not necessarily accompanied by power to design; but a noteworthy exponent of the dual faculty is G. C. Haité, whose designs are widely applied.
It is chieny to architecture that metal-work owes its permanent artistic improvement. In England buildings of Norman Shaw and Ernest George demanded quiet and harmonious metalwork; and the custom of these architects of superintending and designing every detail, even for interiors, created the supply. The work of every worthy architect raises the standard of the crafts; but beyond others Messers Ashbee, Lethaby and Wilson have taken an active personal interest in schools of metalwork. The technical schools have also been of immense service in creating a class of self-respecting craftsmen, whose wages enable them to regard their work as worthy occupation abounding in interest. Home industries such as the metal-working round Keswick (founded in 1884 by Canon and Mrs Rawnsicy), executed during hours of idleness by field labourers and railway porters, educate the passer.by as well as the worker.

British architects and artints who design for the principal decorating firms are to-day as conversant with the Renaissance and sucteeding styles of France and Italy as medieval revivalists were familiar with the Gothic styles with which they made us so well acquainted. Metal-work more or less based upon every kind of past style is produced in vast quantities, and in some cases so skilful are the workers that modern forgeries and reproductions are almost beyond the power of experts to detect. This large class of designers and craftamen, to wbom a thorough knowledge of the history of design is a necessity, follows and develops traditional lines. The new art school, on the contrary, breaks wholly with tradition, unless unconsciously influenced by the Japanese, and awards the highest place to originality in design. It is not to be expected that an art-revival following on, and in possession of, all the results of a period of unprecedented activity in scientific research should proceed with the same restraint as heretofore; but the unfettered activity, and the general encouragement to abandon the traditions of art, have no exact parallel in the past, and may yet prove a danger. It is perhaps the very rapidity of the movement that is tikely to rotard its progress, and to fail to carry with it the wealthy clients and the decorators they employ, or perhaps even to increase the disposition to cling to the reproductions of the styles of the 17 th and 18th centurics. The multiplication of art periodicals, lectures, books, photographs, meetings of societies and gilds, museums, schools of arts and crafts, polytechnics, scholarships, facilities for travel, exhibitions, even those of the Royal Academy, to which objects of applied art are now admitted, not only encourages many persons to become workers and designers in the applied arts, bat exposes everything to the plagiarist, who travesties the freshest idea before it has well left the handa of its otiginator. Thus the inspirations of genius, appropriated by those who imperfectly appreciate their subtle beauty and quality, become hackneyed and tose thelr charm and intcrest. The keen desire to be unconventional in applied art has spread from Great Britain and the United States to Germany, Austria and other countries, but without well-defined first principles, or limitations. It secms agreed in a general way that the completed work in metal is to be wholly the conception and, as far as possibie, the actual handiwork of the designer: casting by the cire-perdue process, left practically untouched from the mould, and embossing, being the two most favoured processes. The female figure is largely made use of, and rich and harmonious colours are sought, the glitter of metal being invariably subdeed by deadening its lustre, or hy patinas and oxides. Gilding, stains and lacquers, electro-plating, chasing, "matting," frosting, burnishing, mechanically produced mouldings and enrichments, and the other processes esteemed in the roth century, are disused and avoided. New contrasts are formed by the juxtaposition of differently toned metals; or these with an inlay of haliotis shell, introduced hy Alfred Gilbert; or of coloured wax, favoured hy Onslow Ford; or enamelling, perfected by Prolessor von Herkomer; or stained ivory, pearis, or semi-precious stones. The quality of the surface left by the skilled artist or artisan is more regarded than symmetry of design, or even than correct modelling. Frequently only the important parts in a design are carefully finished and the rest merely sketched: the mode of working, whether by model-ling-tools or hammer, being always left apparent.

The newer kinds of art metal-work have, until recently, reached the purchaser direct from the producer's workshop; bat they may now also be seen in the shops of silversmiths, jewellers, and general dealers; who are thus helping to transfer production from large commercial manufactories to smaller ateliers under axtistic control. The production of the larger boresehold accessories, such as bedsteads, fenders, gas and efectric fittings, clocks, \&c., has hardly as yet come under the influence of the art movement. The services rendered by Mr W. A. S. Benson of Chiswick, who commenced about 1886 to revolutionise the production of sheet-brass and copper utensils, cannot be passed over. The average ecclesiastical
metal-wort has rather receded than progressed in merit, except when designed by architects and executed under their supervision. Though the demand for good domestic wrought-iron work has enormously increased, sdaptations from the beautiful work of the 17 th and 18 th centuries have been found so suited to their architectucal surroundings, that new departures have been relatively uncommon. Of such the gates for Sandringham, by Jeckyll; for Crewe Hall, by Charies Barry; and for the Victoria and Albert Museum, by Gamble, are the carliest and best known. Of the vast number designed upon traditional lines may be cited those for Lambton Castle, Welbeck, Eaton Hall, Twickenham, Clieveden, and the Astor Estate Office on the Victoria Embankment. Cast iron, brought to perfection by the Coalbrookdale Company about 1860, but now little estecmed, owing to the poverty of design which so often counterfeits smiths' work, presents great opportunities to founders possessing taste or willing to submit to artistic control. A very large field is also opening for cast-lead work, whether associated with architecture, as in the leaden covered-way over Northumberiand Street, in London (see Plate), and the fine rain-water heads of the Birmingham Law Courts (see Plate), or with the revival of the use of metal statuary and vases in gardens. The subdued colour and soft contours of pewter render it once more a favoured material, peculiarly adapted to the methods of the art revival, and perhape destined to supersede electro-plate for bousehold purposes. In silver-wort the proportion of new art designs exhibited hy dealers and others is still relatively small; but jewellers, except when setting pure brilliants and pearls, are becoming more inclined to make their jewels of finely modelled gold and enamel enriched with precious and semi-precious stones, than of gems merely held together by wholly subordinate settings.

On the continent of Europe, France was the first to recognize the merits of lis bygone designers and craftsmen, and even antecedent to the Exhibition of 1851, when art in Great Britain was dormant, it was possible to obtain in Paris faithful reproductions of the finest ormolu work of the r8th century. At the same time a most active production of modern designs was proceeding, stimulated by rewards, with the result that the supply of clocks, lamps, candelabra, statuettes, and ouher ornaments in bronse and zine to the rest of Europe became a monopoly of Paris for nearly half a century. In all connected with their own homes the French adhere to their traditions far more than other nations, and the attempt at originality in the introduction of metal-work into the scheme of decoration of a room is almost unknown. In the domain of bronse and imitation bronze statuary the originality of the French is absolutely unrivalled. And not only in bronze, but in Paris jewellery, enamels, silver, pewter and iron work a cultured refinement is apparent, beside which other productions, even the most finished, appear crude. The French artist attains his ideal, and it is difficult to imagine, from his standpoint, that the metal-work of the present can be surpassed. The best English metal-worker, on the contrary, is probably not often quite satisfied with the resnits he attains, perbaps because in Great Britain the pursuit of art has for centuries been fitful and individual, while in France art traditions are hereditary. The metal-wort of Belgium is based at present entirely on that of France, without attaining the same standard, unjess designed for ecclesiastical uses. In Holland these crafts have not progressed. Italian metal-workers are mainly employed in reproduction; but traditions linger in some remote parts, while the sporadic appearance of craftsmen of a high order is evidence that the ancient artistic spirit is not wholly extinct. Similarly, the surprising damascening by Messrs Zuluaga of Madrid in the monument to General Prim, and that of Alvarez of Toledo, give hope that the Spanish craftsman only needs to be properly directed. German and Austrian workers had for years shown more energy than originality, but they have recently cmbraced the newest English developments and carried them to extremes of exaggeration. For really fresh and progressive indigenous art we may perhaps have, in the near future, 10 turn to America
and to Rusaia, where, having little artiotic past to refer to, designers and craftsmen display unequalled individuality and force. It is from the Far East, however, that the most serious rivalry may be anticipated. The metal-work of China and Japan, so pleasantly nalve and inexpensive, thougb becoming undesirably modified as to design through contact with European buyers, is losing none of its matchless technique, which indeed in Japan is still being developed. In any history of the art revival the infuence of sucb firms as Barbedienne and Christofie in Paris and Tiffany in New York cannot be ignored.
(J. S. G.)

Industrial Metal-Work.

The malleability and ductility of metale lie at the besis of the work of the gold- and silver-tmiths at one extreme, and of the boiler-maker at the other. Sheet metals can be made to assume almost any shape under the hammer, or by presoure, provided they are subjected to annealing to restore the property of malleability. The most awkward shapes, involving evcessive extensions of metal, are produced by drawing processes between dies of iron and sted in power presses. All the common domestic utensils in timned and enamelled ware, and all the ordinary patterns of the silversmiths, are similariy done. Frequent annealings are pecessary to prevent fracture of the metal; but with these and the obwervance of certain other precautions of a practical character the degree of extension possible is enormous. Another illustration of the maileability of metal is afforded by metal apinning. A sheet of metal met revolving at a high speed in a lathe is bent over into cup-shaped forms, with numerous mouldings, by a blunt hardened tool. A great deal of work is done in this way, though this sphere has also been invaded by the draw presses, whose output would seen incredible to those not familiar with the work. Objects that do not require annealing are produced by dozens per minute, and all the movements of feeding and stamping and removal are often automatic. The ductility of metals and alloys is utilized in wire and tube-drawing through dies on long benchen. This work also requires frequent annealing, for otherwise the wires or tubes would rupture. Even hard steel is treated in this way to form tubes for the highest hydraulic and steam pressures.
Platers' Work (eee Bollex) is dintinguished from work in sheet metals by the lact that plates have considerable thickness, whith sheets have not. Plates range in thickness from $\{$ in to 2 in., but for most purposes they do not go boyond $\frac{7}{3} \mathrm{in}$. or \& in. Over these thicknesses they are used chiefly for the largest naarine boilern. Armour plates which are several inches in thickness do not come in this group, being a special article of manufacture. Sheets are of thicknesses of less tha! $\frac{1}{\circ} \mathrm{in}$. This distinction of thickness is of importance in its bearing on workshop practice. A thin sheet requires a very different kind of treatment from a thick plate. Not only is more powerful machinery required for the latter, but in bending it allowance has to be made for the difference in radius of outer and inner layers, which increases with increase of thickness, Short, sharp bends which are readily made in thin sheets cannot be done in thick plates, as the metal would be stressed too much in the outer layers. The methods of union also differ, riveting being adopted for thick plates, and soldering or bazzing generally for thin.

Coppersmiths" Woph is an important section of sheet-metal working. It is divided into two great departments: the domestic utensil side, on which the brazier's craft is exercised; and the engineering side. which is concerned in some engine-work, locomotive and marine, and in the manufacture of brewers' utensils. The methods of the first are allied to those of the tinman, those of the second to the methods of the plater. Tinsmiths' work resembles the lighter part of the work of the coppersmith. There is no essential difference in dealing with tin (i.c. sheets of iron or steel coated with tin) and copper of the same thickness. Hence the craft of tinmen and braziers is carried on by the same individuals. There are, however, differences of treatment in detail, because copper is more malleable and softer than tin plate. The geometry of sheet-metal work and of platers' and boiler-makers' work is identical up to a certain stage. The divergence appears when plates are substituted for sheets. A thin sheet has for all practical purposes no thickness-that is, the geometrical pattern marked on it will develop the object required after it is bent. Nearly all patterns are the developments of the envelopes of geometrical solids of regular or irregular outlines, few of plane faces; when they are made up of combinations of plane faces, or of faces curved in one plane only, there is no difference in dealing with thin sheers or thick plates. But when curving occurs in different planes as right or other angles (hollowing), the ratal has to be drawn or extended on the outside, and important diemences arise. A typical form is the hemisphere. from which many modifed forms are derived. The production of this is always a tedious task. It involves details of "wrinkling ", and "razing." if done by hand-work in copper. In thick plates it is not attempted by hand. but pressing is done bet ween dies, or segments of the sphere are prepared separately and riveted together. In tin it is effe teed by stamping. In all work done is thick plates the dimensions marled out must have reference to the final shape of the aricle. Generally
the dimensions are taken as in the middle of the plate, but they may be on the inside or outside according to circumstances. But in any case the thickness must enter into the calculations, whereas in thin abeets no account is taken of thicknesa
Raised Work.-All the works in theet metal that are bent in one plane only are easily made. The whapes of all polygonal and all cylindrical and conical forms are obtained by simple developmentthat is, the envelopments of these bodics are marked out on a flat plane, and when cut, are bent or folded to give the required envelopes Only common geometrical problems are involved in the case of sheets of sensible thicknesa, and allowances are made for thicknem. But in thowe forms where curving must take place in different directions the layers or fibres of metal are made to giide over one another, extension taking place in some layera but not in otherm, and this goes on without producing much reduction in the thickness. This is only powible with malleable and ductile metals and alloya As a general rule it is restricted to metals which are not cast, for, with some alyght exceptions, it is impoasible to produce relative movements of the layers in cast iron, steel or cast brase. But most rolled metals and alloys can be 90 treated, copper being, the best for the purpom. The methods emptoyed are 'raising "' by the hammer, and preasing in dick. But the nevmity of the treatment would tear the materal asunder if rearrangement of the particles were not obtained by frequent annealing (g.v.).
If an object has to be beaten into concave form from a flat thin aheet, the outer portions must be hammered until they occopy smalier dumensions than on the flat theet. If a circular diak is wrought into a hemizphere and the attempt is made to harmer tho edges round, crumpling must occur. This in fact is the first operation, termed wrinkling, the edge showing a series of flutes These flutes have to be obliterated by another series of hammerings termed raxing. The result is that the object anumes a smooth concave and convex shape, without the thicknese of the metal becomiag reduced.

Cast Work.-The metals and alloys which are neither malleable nor ductile can only be worked into required shapes by melting and casting in moulds Abundance of remains which dete from the Neolithic period teatify to the high antiquity of this class of work, and also to the great skill which the ancient founders had acquired. Statue-founding is a highly specinlized department of metal-work, in which the artists of the middle ages excelled. Two methods have been employed, the cire-perduc, or wax process (sec above), and the present, or all and method. In the latter the artist provides a model in plaster from which the founder takes a mould within an encircling box. This mould must obviously be made in scores of Little separate sections (false cores or drawbacks) to permit of their removal from the model without causing fracture of the eand These are subsequently replaced piece by piece in the encirding frame, and a core made within it, leaving a space of $\frac{1}{\frac{1}{2}}$ in. or thereabouts into which the metal is poured. The advantage of this process is that the artist'e model is not destroyed as in the cive-perdue, and if a "waster" resulta, a second mould can be taken. A larye statue occupies from one to three montha in the moulding.

The extreme tenuity of objects which are hammered, drawn or rolled cannot for obvions reasons be attained by casting. Casting also is complicated by the shrinkage which occurs in cooling down from the molten state, and in sorpe alloys by the formation of eutectics, and the liquation of some constituenta. The temperature of pouring is now known to be of more importance than was farmerly suspected. The after-treatment of castings by annealing exercises great influence on results in malleable cast iron and stel.
There are many metals and alloys which are maileable gind ductile, and aleo readily fused and cast. This is the case with gold, ailver. copper, tin, lead and others, and especially with low carbon steel. which is first cast as an ingot, then annealed and rolled into plates as well as the thinnest meets. The ancient wootz, and the producta of the native furnaces of Africe are first cast, then hammered out thm. Many of the patent bronzea are by slight variations in the proportions of the constituents made suitable for casting. for forging, and for rolling into sheets. But in all the great modern manu facturing processes it is true that metals and alloys, though of the same name, have a different composition scconding as they are intended for caveing on the one hand, or for forging, rodling and drawing on the other. Wrought or malleable iron has less of carbon and other elements in its composition than has cast iron Steel intended for castings has slightly more carbon and other elements than the cart-steel ingot intended for rolling into plater. So aloo with the numenous bronzes, the phouphor, the dela, the aluminium and other alloys of copper; each is made in several grades to render it suitable for different kinds of treatment.
There are no materials used in manufacture of which the craftsman is able to vary the composition and phymical qualities so extensively as the metals and their alloys. Much light has been thrown on facte which have long been known in a practical way, by the labours of the Alloys Research Committee of the Institution of Mechanical Engineers (England). These. ocgether with independent researches into the heat treatment of seel and iron, have opened up many unsolved problems fraught with deepest interest and importance.

- One of the mont difficult problems with which the metal-worker

Who handles constructional forms has to deal is the mantenance of a due relation between abolute serength and a useful degree of elasticity: Unly after many failures has the fact been grasped that a very high degree of strength is inconsistent with a trustworthy degree of elasticity. The reasons were not understood until the researches of Wohler demonstrated the difference between the effectin of merely dead loada and of live loads, and between repections of zress of one kind only, and the vastly more dentructive effecte of both kinds alternating.

The texture of merals and alloys is related to the character of the operations which can be done upon ther. Broadly the malleable and ductile mectils and alloys show a fibrous character when ruptured, the fusible ones a crystalline fracture. The differeace is ween both in the workcabop and in the specimens ruptured in teating-machines. A piece of wrought iron, or mild steel or copper, if torn asunder ahows long lustrous fibres, resembling a bundle of threade in appearance. X piece of cast iron, or retel or bronse, shows oa rupture a granalar, crywalline surfiace dertitute of nay fibre. The ductile metals and alloye also extend froin 10 10 30% with reduction of arta before they fracture, the crystalline ones smap shortly without warning. In some instances, however, the method of application of atreas exercises an influence. Wrought iron and mild ated may be made to abow a short and crystalline fracture by a audden application of stress, while if drawn asunder dowly they dovelop the sillk, Gibrous appearance. The men who deaign and work in metals have to take account of these vital differences and charactoristics, and must he careful not to apply treatment sui.able to one tind to another of a dissimilar character. Toola, appliances and methods have littie in comamon. Between the wort of the mith, the sheet-metal worber and the founder, there is a great gulf. An artistic taste will recognize the essential differences, and not endeavour, apart from question of strength, to graft a denign witable for one on another. It is bad taste to imitate the tracery of the ductile wrought iron in cas. 1 usigns, the foliations of ancient wrought-iron grilles and screens in heavy cast iron. Severe simplicity is also mont in harmony with comstructional designs in plated work, where stresser occur in straight lines. From this point of view the lattioe-girder bridge is an ideal design in gteel.
One of the most valuable characteristice of the iron alloys is their capacity for hardening, which they owe in the main to the presence of certain cmall percentages of carbon relatively to minute quantities of other elements: manganesc, tungsten, nickel and others of less importanoe. The capacity for hardening is an invaluable property not only in regard to curting-tools, but also in prolonging the life of parts aubjected to severe friction. Great advances have been made in the urilization of this property as a result of the growth of the precision grinding-machines, which are able to correct the inaccuracies of hardened work as effectually as those of soft materials. It is utilized in the spindles of machinetools, in the balls and sollers for high-apeed bearings, stides, pivots and such like.
Ifehods of Union.-The methods of union of worls in metal are extremely varied. An adventage in casting is that the most complicated shapes are made in one piece. But all other complicated forms have to be united by other means-as wefding, woldering, riveting or bolting. The two first-named are trustworthy, but are evidently unsuitable for the greater portion of engineers' work, for which riveting and bolting are the methods adopted. Even the simple elements of rivets and boits have produced immense developments since the days when bolts were made by hand, boles cored or hand-drilled, a and rivets formed and closed by band labour. Nut- and bolt-making machinery, both for forging and screw cutting, operates automatically, and drilling machinery is highly specialized. Hand-riveting on large contracts has been wholly displaced by power-riveting machines. The methods of union adopted are not allowed to impair the semgth of structures, which is calculated on the weakest sections through the rivet or bolt holes. Hence much ingenuity is exercised in order to obrain the strongest joint which is consistent with security of union. This is the explanation of all the varied forms of riveted joints, which 10 casual observers often appear to be of a fanciful character.

Prolection of Surfaces.-The protection and coloration of metals and alloys includes a large number of industries. The engineer uses paints for his iron and steel. A small a mount of work is treated by the Bower-Barf and allied processes by which a coating of magnetic oxide is left on the metal. Hot tar-Angus Smith's process-is used for water-pipes. Boiled linseed-oil is employed as a non-corrosive coating preceding the application of the lead and iron oxide paints. In steam boilers artificial galvanic couples are of ten set up by the suspension of rine plates in the boiler, so that the corrosion of the zinc may preserve the steel boiler plates from waste. Various artificial protective coatings are applied to the plates of steel ships. Bright surfaces are protected with cill or with lacquer. The ornamental bronzes and brasses are generally lacquered, though in engineers' machinery they are as a rule not protected with any coating. For ornamental work lacquering divides favour with colouring sometimes done with coloured lacquers, but often with chemical colourings, of which the copper and iron salts are the chief basis
(I. G. H.)

Litexatupe-Prehistoric: Worsaze, Nordiske Oldsager i Kjoben. havn (1854): Perrin, Euxde prethistorique-Age du bronze (1870). Classical: Layard, Ninereh and Babylon (1853); Pliny, Nalural History, bk. xxxiv. : Brondsted, Den Fikoromiske Cisto (1847); Gerhard, various monographs (1843-1867); Muller, Elrusker, \&C., tind other works: Ciampi, Dell' Antica toreudica (18!5): Von Bibra, Die Bronsen und Kupfer-Legirurgen der alfen und allesten Volher (1869); C. Bischoff, Das Kupjer in der vorchristlichen Zen! (1865) Medieval, \&e.: Digby Wyatt, Metal-Work of the Middle Ages (1849); Shaw, Ornamental Metal-Work (1836): Drury Fortnum, S.R.M. Handbook of Bronzes (1877); King, Orfevreric el outrages en métal du moyen dge (1852-1854); Hefner-Alteneck, Serrurefie diu moyen dge (1869): Viollet-le-duc, Dich. du motidier, "Serruserie ' and "Orfèvrerie." (1558 \&c.) ; Lacroix, Trésop de S. Denis, and d'An du moyen Age (various dates); Karch, Die Räthselbilder on der droncethüre 24 Augsburg (I86g): Krug, Entwuipfe fur Gold-, Sabberfind Branze-A fbeiter: Linas, Orftorerie merovingicnne (1864), and Drfeverse du XIIIm siècie (1856); Bordeaux, Serrureric du moycn ©, (1858): Didron, Manuel des cavres de bronze et d'orfeorerie du moyen fige (1859): Du Sommerard, Arts au moyen age (1838-1846), and Mrisée de Cluny (1852); Rico y Sinobas, Trabujos de melales (1871): Bock, Die Goidschmiedckunss des Miuclallers (1855), and Kloinadien des heib.apomisehen Rezehes; Jouy. Les penmes al kes joyaux (1865): Texier, Dictionnaire d'orfarerie (1857); Virgil Solis, Designs for Gold. and Silversmiths (1512), (facsimile reproduction. 1862): Molinjer, Les Bronzes de le Renoissance (1886). Servant, Les bronses d'art (1880); Wilhelm Bode, ILahan Bronse Stafwettes of the Renaissance (Eing. trans. by W. Grétor, first 2 vols., 1909). Practical Treatises: Theophilus, Diversarum arfsum schedula (12th cent.). (see Quellemschriften fur Ḱpnstgeschichse. VIL., Vienna 1877); Cellini. Trallati dell oreficeria e della sculuuri (ed. Milanesi. Florence, 1856); Vasari. Tre afli del disegmo, pt. ii. (Milancsi's ed., 1882); Garnier. Manuel du ciseleur (1859); Haas, Der Melallarbeiler (1902).
METAMERISM (Gr. μ éá, after, μ ípos, a part), a technical term used in natural science. In chemistry it denotes the existence of different substances containing the same elements in the same proportions and having the same molecular weight; it is a form of isomerism.
In zoology, metamerism is the repetition of parts in an organized body, a phenomenon which is, as E. Haeckel, W. Bateson and others have recognized, only a special case of a tendency to repetition of structural units or parts. which finds one expression in hilateral symmetry. It occurs in almost cvery group of the animal kingdom, bat is most conspicuous in segmented vorms, arthropods and vertchrates. In certain worms (the (cstoidea and some Planarians) metameric segmentation is ccompanied by the scparation of the completed metameres one by one from the older (anterior) extremity of the chain (strobilation), but it by no means follows that metameric segmentation has a necessary origin in such completion and separation of the "meres." On the contrary, metamerism seems to arise from a property of organisms which is sometimes more (eumerogenesis) and sometimes less (dysmerogenesis) fully exhibited, and in some groups not exhibited at all. The most complete and, at the same time, simplest instances of metameric segmentation are to be seen in the larger Chactopods, where some hundreds of segments succeed one another-each practically indistinguishable in structure from the seginent in front or from that behind; muscles, right and left appendage or parapodium, colour-pattern of the skin. gut, blood-vessels, codom, ocphridia, nerve-ganglion and nerves are precisely alike in neighbouring segments. The segment which is least like the others is the first, for that carries the mouth and a lobe projecting beyond it-the prostomium. If (as sometimes happens) any of the hinder segments completes itself by developing a prosomium, the chain breaks at that point and the segment which bas developed a prostomium becomes the first or head-bearing 3 gment of a new individual. Compare such an instance of netameric segmentation with that presented hy one of the bigher Arthropods-c.g. the crayfish. Here the somitcs are bot so clearly marked in the tegumentary structures; neverthehiss, by examining the indications given by the paired parapodia, find that there are twenty-one somites present-a limited finite number which is also the precise number found in all higher Crustacea.
We canstate as a First Law' of metamerism or somite formation
'The word "Law " is used in this summary merely as a conwement beading for the statement of a meore or desc general proposition.
that it is either indefinite in regard to number of metarneres or somites produced, or is definite. Animals in the first case we call anomomeristic; those in the second case, nomomeristic. The nomomeristic condition is a higher development, a epecialization, of the anomomeristic condition.

The Second Law, or generalization, as to metamerism which must be noted is that the meres or somites (excepting the first with its prostomium) may be all practically alike or may differ from one another greatly by modification of the various constituent parts of the mere or somite. Metamerized animals are either homoeomeric or heteromeric. The reference of the variation in the form of the essential parts contained in a "metamere" or "somite" introduces us to the necessity of general term for these constituent or subordinate parts; they may be called "meromes" (utpos). The meromes present in a metamere or somite differ in different annolate or segmented animals according to the general organization of the group to which the animal belongs. Aw a matter of convenience we distinguish in the Arthropod as meromes, first, the tegumentary chitinized plates called terga, placed on the dorsal aspect of the comites; second, the similar sternal plates In Chaetopods we should taike next to these the masses of circular and logitudinal muscular fibres of the body-wall and the dorso-ventral muscles. The later form the third sort of merome present in the Arthropods. The fourth kind of merome is constituted by the parapodia or appendages; the fifth by the coelomic pouches and their ducts and eaternal apertures (coelomo-ducts), whether renal or genital. The sixth by the blood-vessels of the somite; the seventh by the bit of alimentary tract which traverses it; and the eighth by the neuromere (nerve ganglion pair, commissures, connectives and nerve branches).

The TuIRD LAFW of metamerism is that heteromerism may operate in such a way as to produce definite regions of lice modification of the somites and their appendages, differing in their modification from that observed in regions before and behind them. It is convenient to have a special word for such regions of like meres; and we call cach a tagma (ravıa, a regiment). The word "tagmosis" is applicable to the formation of such regions. In the Chaetopods tagmosis always occurs to a small extent so as to lorm the head. In some Chaetopods, such as Choetopterus and the sedentary forms, there is mariked tagmosis, giving rise to three or even more tagmata. In Arthropods, besides the head, we find very frequently other tagmata developed. But it is to be noted that in the higher members of each great class or line of descent, the tagmosis becomes definite and characteristic just as do the total number of meres or somites, whilst in the lower grades of each great class we find what may be regarded as varying examples of tentative tagmosis. The terms nomotagmic and anomotagmic are applicable with the same kind of implication as the terms nomomeristic and anomomeristic.

The Fourti Law of metamerism (auto-heterosis of the meromes) is that the meromes of a somite or series of somates may be separatciy and dissimilarly affected by hereromerism. It is common enough for small changes only to occur in the inner visceral meromes whilet the appendages and terga or sterna wre largely changed in form. But of equal importance is the independent " heterosis " of these visceral meromes without any corresponding heterosis of the body wall. As instances, we may cite the gizzards of various earthworms and the special locaiization of renal, genttal and gastric meromes, with obliteration elsewhere, in a few somites in Arthropods.

The FIFTH LAW, relating also to the independence of the meromes as compared with the whole somite, is the law of autorhythmus of the meromes. Metamerism does not always manifest itself in the formation of complete new segments; but one merome may be repeated so as to suggest several metameres, whilst the remaining meromes are, 80 to speak, out of harmony with it and exhibit no ricpetition. Thus in the hinder comites of the body of A pus the Crustacean we find a series of segments corresponding apparently each to a complete single somite, but when the appendages are examined we find that they have multiplied without relation to the other meromes of a comute. we find that the somites carry from two to seven pairs of appendages, increasing in number as we pass backwards from the genital segroent. The appendages are autorhythmic meromes in this case. They take on a quasi-independent metamerian and are produced in numbers which have 30 relation to the numbers of the body-rings, muscles and neuromeres. This possibility of the independent metameric multiplication of a single merome must have great importance in the case of dislocated meromes, and no doubt has application to some of the metameric phenomena of Vertebrates.

The Sixth Law is the law of disiocation of meromes. This is a very important and striking phenomenon. A merome, such as a pair of appendages (Arancae) or a neuromere or a muscular mass (frquent), may (by either a gradual or sudden process, we cannot elways dy which) quit the meramere to which it belongs, and in which it originated, and pase by actual physical transference to another metamere. Frequently this new position is at a distance of several metameres from that to which the wandering merome belongs in origin. The movement is more usual from behind forward than in the reverse direction: but this, probably. has no profound segnificance and depends simply on the fact that. as a rule, the bead must be the chief region of development on account of it consaining the wence crgans and the mouth.

In the Vertebrata the independence of the meromes is more fully developed than in other metamerized animals. Not only do we get auto-heterosis of the meromes on a most extensive scale, but the dislocation of single meromes and of whole series (tagmata) of meromes is a common phenomenon. Thus, in fishes the pelvic fins may travel forwards to a thoracic and even jugal position in front of the pectoral 6 ins; the branchiomeromes loee all relation to the position of the meromes of muscular, sketctal, coelomic and nervous nature, and the heart and its vessels may move backwards from their original metameres in higher Vertebrates carrying nerve-loops with them.

The SEVENTH LAN of metamerism is one which has been pointed out to the writer by E.S. Goodrich. It may be called the law of "tranalation of heterosis." Whilst actual physica! transierence of the substance of meromes undeniably takes place in such a caee as the persage of the pelvic fins of some fishes to the front of the pectorals, and in the case of the backward movement of the opipthosomatic appendages of spiders yet the more frequem mode in which an alteration in the position of a specialized organ in the ecries or scale of metameres calces place is not by migration of the actual material organ from somite to somite, but by transintion of the qualify or morphogenetic peculiarity from somite to somite accompanied by correlative change in all the somites of the serien The phenomenon may be compared to the transpoeition of a piece of music to a higher or lower key. It is thus that the lateral fins of fishes move up and down the scale of vertebral somites; and thus that whole regions (tagmata), such as thoee indicated by the mame cervical, thoracic, lumbar and macral, are translated (accompanied by terminal increase or decrease in the total number of somites) 80 as to occupy differing numerical positions ia clowely alfied forms (cf. the varying number of cervical somites in allied Reptiles and Birds).

What. in this rapid enumeration, we will venture to call the EIGHTA LAW of metamerism is the law of homoeosis, as it is termed by W. Bateson. Homoeosis is the making of a merome into the likencss of one belonging to another metamere, and is the opposite of the process of " heterosis "-already mentioned. We cite this law here because the result of its operation is to sinmulate the occurrence of dislocation of meromes and has to be carefuliy distinguished from that process. A merome can, and does in individual cases of abnormality, assume the form and character of the corresponding merome of a distant somite. Thus the antenna of an insect hee been found to be replaced by a perfectly well-formed walking legAfter destruction of the eye-stalk of a shrimp a new growth appears, having the form of an antenna. Other cases are frequent in Cruatscea, as individual abnormalities. They prove the existence in the mechanism of metamerized animaln, of ptructural conditions which are capable of giving these resulta. What thowe structural cotditions are is a matter for separate inquiry, which we cannot even touch here.

We now come to the questions of the production of naw somites or the addition of new somites to the series, and the converse problem of the auppression of somites, whote or partial. We state as the NINTH LAW of metamerism "t that new eomites or metameres are added to a chain consiating of two or more somites by growth and gradual elaboration- what is called "budding '-of the anterior border of the hindermost somite. This hindermost somite is therefore different from all the ocher tomites and is called the 'telson.' However long or short or heteromerized the chain may be, new metameres or somites are only produced at the anterior border of the telson, except in the Vertebrata.". That is the general law. But amongst some groups of metmoerized animals partina exceptions to it oocer. It it probably aboolutely true for the Arthropoda from lowest to highest. It is not 80 certain that it is true for the Chaetopoda, and would need modification in statement to meet the capes of fissiparous multiplication occurring among Syllids and Naidids. In the Vertebrata, where tagmosis and heterosis of meromes and dislocation of merones and tagmata are, so to speak, racupant, new formation of metameres (at any rate as represented by important meromes) takes place at more than one point in the chrin. Such points are found where two highly diverse ${ }^{4}$ tagmata" abut on one another. It is possible, though the evidence at present is entirely against the supposition, that at such points in Arthropoda new somites may be formed. Such new comites are said to be "intercalated." The question of the intercalation of vertebrae in the Vertebrata has reccived some attention. In must be rememuered that a vertebra even taken with its mumcular, vascular and neural accessories is only a partial metamere-a merome-and that, so far as complete metameres are concerned, the Vertebrata do conform to the same law as the Arthropods. Intercalation of meromes, branchial. vertebral and dermal (fin-surpports) seems to have taken place in Vertebrata in the fishes, while in higher groups intercalation of vertebrae in large series has been accepted as the only possible explanation of the structural facts established by the comparison of allied groups. The fucidation of this matter forms a very important part of the work lying to tha hand of the investigator of vertebrate anatomy, and it is possible that the application of Coodrich's law (the seventh of our list) mary throw new light on the matter.

In regard to the diminution in the number of somites in the
course of the historical development of thove various groups of metamerized animals, which have undoubtedly sprung from ancestors with more numerous somites than they themeives posesses, it appears that we may formulate the following laws as the testh, eleventh. twellth and thirteenth laws of metamerism.

The TENTH Law is that individual somites tend to atrophy and Gnatly disappear as distinct structures, most readily at the anterror and the posterior ends of the series constututing an ammal body. This is very generally exhibited in the bead of Arthropoda, where, bowever, the operation of the law is langely moditied by fusion (sce below). With regard to the posterior end of the body, the atrophy of segments does not. as a rule, affect the telson itself so much as the somites in front of it and its power of producing new somites. Sometimes, however, the telson is very munute and nonchitunized (Hexapoda).
The Eleventi Law may be stated thus: any somite in the serics which is the anterior or posterior somite of a tagma may become atrophied. reduced in size or partally aborted by the suppression of some of its meromes; and finally, such a somite may disappear and leave no obvous trace in the adult structure of its presence in ancestral forms. This is called the excalation of a somite. Frequently, however, such "excalated" somites are obvious in the embryo or leave some merome (e.g. neuromere. muscle or chitin-plate) which can be detected by minute observation (microscopic) as evidence of their former existence. The comite of the maxillipede (ithird post-oral appendage) of Apus coxcriformis is a grod example of a somite on its way to excatition. The third prac-oral and the praemaxillary somites of Hexapod insects are instances where the only traces of the vanished somite are furnished by the microscopic study of early embryos. The praegenital somite of the Arachnida is an example of a somite which is preserved in some members of the group and partially or entircly excalated in other cascs, sometimes with fusion of its remnants to neuhbouring somites
The TwELFTII Law of metamerism might very well be placed in logical order as the first. It is the law of lipemerism, and asserts that just as the metameric condition is produced by a change in the bodies of the descendants of unises mental ancestors, so hughly metamerzed forms-i.e. strongly segmented forms with specialized regions of differentiated metamerce-may gradually lose their metamerised structure and become apparently and practically unisegmental animals. The change here contemplated is not the atrophy of terminal segments one by one so as to neduce the sixe of the a nimal and leave it fnally as a single somite. On the contrary. no lows of sixe or of high organization is necessary. But one by one, and gradually, the metameric grouping of the bodily structures disappears. The cuticle ceases to be thickened in rings-the muscles of the body-wall overrun their somite boundaries. Internal epta dissppear. The merve-ganglin concentrate or else become diflused equally along the cords; one pair of renal coetomoducts and one pair ol genital coelomoducts grow to large size and remain -the rest disappear. The appendages atrophy or become limited to one or two pairs which are widcly dislocated from their ancestral position. The animal ceases to present any indication of metaweric repetition of parts in its entire structure. Degrees in this process are frequently to be recognized. We certainly can aboerve such a change in the posterior region of some Arthropods, such as the hermit-crabs and the spiders. Admitting that the Echiurids are descended from Chaetopoda, such a change has taken place in them. amounting to little short of complete lipomerism, though not absolutely complete.
Recent suggestions as to the origin of the Mollusca involve the supposition that such an effacement of once well-marced metamerism has occurred in them. leaving its traces only in a few uructures such as the multiple gill-plumes and shell-shields of the Chitons and the duplicated renal sacs of Nautilus.
A further matter of importance in this connexion is that when the old metameres have been effaced a new secondary segmentation may arise, as in the jointed vorm-like body of the degenerate Acarid. Demodex jolliculorum.
Such secondary annulation of the soft body calls to mind the meondary annulation of the metameres of leeches and some earthvorms. Space does not permit of more than an allusion to this zubject; but it is worth while noting that the secondary annuli marking the somites of leeches and Limbricidae in definite number and character are perhape comparable to the redundant pais of appendages on the hinder somites of Apws, and are in both cases examples of independent repetition of tegumentary meromeswort of ineffect ual attempt to subdivide the somite which only prevails on the more-rcadily susceptible meromes of the integument.
The last law of metamerism which we shall attempt to forrsulate bere, as the Thirteenth, relates to the fusion or bleading of neighs bouring somites. Fusion of adjacent somites has often been erronoously interpreted in the study of Arthropoda. There are. in fact. very varying degrees of lusion which need to be carefully diekinpuished. The following generalization may be formulated. "The homologous meromes of two or more adjacent somites tend to fuse rith one another by a blending of their substance. Very generally. but not invariably, the fused meromes are found as distinct separated
seructures in the embryo of the a nimal, in which they unite as a
later stage of growth." The fusion of meighbounng meromes is often prereded by more or less extensive atrophy of the somites concerned. and by arrest of development in the individual ontogeny. Thus. a case of fusion of partially atrophied somites may simulate the appearance of incipient merogenesis or formation of new somites, and, vice versa, incipient merogenesis may be musinterpreted as a case of fusion of once separate and fully-formed somites.
A very complete fusion of somites is that seen on the head of Atthropoda. The head or prosoma of Arthropoda is a tagma consisting of one, two. or three prosthomeres or somites in front of the mouth and of one. two, three, up to five or six opisthomeres. The cephalic tagma or prosoma may thus be more or less sharply divided into two subtagmata, the prae-oral and the post-oral.
(E. R. L.)

METAMORPHISI (Gr. $\mu e \tau d$, change of, and $\mu \rho \rho \phi \dot{\eta}$, shape), in pelrology, the alteration of rocks in their structural or mineral characters by which they are transformed into new types. In the bistory of rock masses changes of many kinds are inevitable. Loose sands, clays and heaps of shells are gradually converted into sandstones, shales and limestones by the action of percolating water and the pressure of over-lying accumulations. All rocks exposed at the earth's surface or traversed hy waters circulating through the earth's crust, undergo changes in their component minerals due to weathering and the chemical action of the atmosphere and of rain. These processes of cementation and decomposition, though not unlike those of metamorphism, are not regarded as essentially the same. They are considered, so to speak, normal episodes in the history of rocks to which all are subject. When rocks, however, are exposed to the heat of intrusive masses (granite, \&c.) or have been compressed, folded, crushed, and more or less completely recrystallized, they assume new characters so different from their original ones that they are ascribed to a quite distinct class, namely, the metamorphic rocks.
The transformation is always gradual, so that in suitable districts every stage can be followed from an unaltercd or nearly unaltered sedimentary or igneous rock to a perfectly metamorphic one. The transition may be slow or rapid, and the abundance of intermediate forms renders it impossible to lay down any hard and fast lines of distinction. A black shale with fossils may in two or three feet pass into a splintery hornfels; a sandstone or grit becomes a sheared grit, a granulitic gneiss, and a completely recrystallized gneiss sometimes within a few bundred yards; in a thoroughly metamorphic bornhlendeschist or chlorite-schist small kernels sometimes occur which can easily be recognized as little modified dolerites or diabases. Still, the metamorphic rocks as a class have many well-defined cbaracteristics, and in perfectly typical development cover enormous areas of the earth's surface and must be, in the aggregate, of vast thickness. A great number of them are recognizably of igneous origin; others are equally certainly sedimentary. Hence some writers have suggested that they are not entitled to rank as a separate class, but only as states or conditions of other rocks. It is generally agreed, however, that when the primitive structures and the original minerals of sedimentary or igneous rocks are so transformed as to be no longer easily recognizable the rock should be included in the metamorphic class.

Only rarely, however, does metamorphism produce much difference in the chemical composition of the rocks affected. Sandstones become quartzites and quartz schists, limestones are converted into marbles, granite passes into gneiss, and so on, without their bulk composition being greally modified. From all that we know it seems established that however great the heat and pressure to which metamorphic rocks have been exposed they have very rarely been melted or reduced to the liquid state. Hence there has been no opportunity for intermixture by solution or diffusion; the changes, including the growth of crystals of new-formed minerals, have gone on in the solid rocks. The chemical molecules already present have aggregated into new combinations and have built up new minerals without travelling for more than infinitesimal distances from the places they occupied in the original rock. Exceptions to this occur, but they are so few that they do not
invalidate the general rule. Thin bands of limestone, for example, may be followed for miles in belts of mica-schist or gneiss, never losing their identity by blending with the rocks on either side of them. By tracing out zones such as these it is often possible to unravel the highly complicated stratigraphy of metamorphic regions where the rocks have been greatly folded and displaced. Another important consequence of the persistence of the chemical individuality of metamorphosed rocks is that very often an analysis indicates in the clearest possible fashion what was the original nature of the rock mass. Sandstones, limestones, ironstones, shales, granites, dolerites and serpentines may be totally changed in structure and very completely also in mineral composition, but their chemical characters are practically indelible. Confusion arises sometimes from the fact that two rocks of different origin may have much the same composition, e.g. a felspathic sandstone may closely approach a granite, or an impure dolomite may simulate a basic igneous rock. Individual specimens, consequently, cannot always be relegated with perfect certainty to sediments or igneous rocks; but in dealing with a complex containing a variety of types the geologist is rarely long in doubt as to their original nature.

Two distinct kinds of metamorphism are recognized, namely contact or thermal metamorphism, and folding or regional metamorphism. The former is associated with intrusive masses of molten igneous rock which were injected at a very high temperature and produced extensive changes in the surrounding rocks. The second occurs in districts where earth folding and the movements attendant on the formation of mountain ranges have flexured and crushed the strata, probably at the same time considerably raising their temperature. Although these processes are very different in their origin, and in the great majority of cases produce quite different effects on the rocks they involve, there are instances in which the results are closcly comparable. A sandstone may be converted into quartzite and a limestone into marble by either kind of metamorphism. It is best, however, to describe them as phenomena esscntially different from one another.

Contact Metamorphism (ihermo-melamorphism).-Any kind of rock-igneous or sedimentary-which has come in contact with an igneous molten magma is likely to show alteration of this type. The extent and intensity of the changes depend principally on two factors: (t) the nature of the rock concerned, and (2) the magnitude of the igneous mass. It is to be expected that a great intrusion of granite will produce more extensive effects of this kind than a marrow dike a few inches or a few fect broad. At the edges of such dikes only a slight induration may be noticeable in the country rock, or there may be recrystallization with formation of new minerals for a few inches. Rarely does the alteration extend beyond this. Shales are baked and hardened, sandstones are rendered more compact or occasionally are partly fused, limest ones may be converted into marble containing garnet, wollastonite, augite or other calc-silicates. A great granite boss, which may be ten or twenty miles broad, is of ten surrounded by a wide aureole of contact alteration. This may be a few hundred yards broad or a couple of miles; in rare cases the breadth of the aurcoic is only a few yards. These variations may have structural causcs; thus when the aureole is narrow the junction of granite with country rock may be vertical; when the aurcole is broad the granite may be a flat-topped mass which dips at low angles outwards on each side. When a broad aureole accompanies a vertical junction we may suppose that molten rock has flowed upwards along this boundary line for a prolonged period. and has gradually raised the rocks to a very high temperature, even at some distance away from the contace. Where the alteration is slight and local there is usualty something in the composition of the rocks or in their crystalline state to account for this.

No less important is the nature of the rocks involved. Where a granite intrudes into a surcession of various types of sedinentary and igneous rocks the differences in their behaviour are often very marked. Sandstones alter less readily than ahaies or slates. and timestones, especially if they be marly or argillaceous, are often full of now mincrals, when purer shales on each side of them are not visibly affected. Schists and gneisses, being already highly erystalline, are very resistant to thermal alteration, and may show it only for a few inches where they are in actual contact with the granite, or in minute fragments which have been broken off and surrounded by the invading magma. Igneous rocks, since they consiat of minerals which have formed at very high temperatures, may show no change whatever. If thry are decompoed, bowever,
their secondary products, including those which fill veins and smygdalondal cavities. are often entirely reerystallized in new combinations. Instances of this will be given later.

The intensity of the alteration depends very greatly on the proximity to the intrusive rock. A typical aureole surrounding a granite boss, for example, consists of rocks in all stages of altera: tion, the most affected being nearest the granite, while as we travel outwards we pass over zones of successively dimintshing nuetamorphism. Around the granites of Cornwall, the Lake Disirict and Ireland there are tracts of altered slate which show these stages very well. The first sign of metamorphism is a slight increase in hardness and glossiness, making the slate a little brighter and more brittle. This is due to the formation of mica in small erysalline plates mostly parallel to the cleavage of the rock. Nearer the granite a faint spotting is visible on broken surfaces of the slates. ard this becomes more pronounced as we enter the middle part of the aureole. These spotted slates, in Cornwall for instance, of en occupy a zone a mile in breadth. They are tess fissile than the unaltered slates and have rounded or elliptical spots about a quarter of an inch across. The spots are usually darker than the body of the slate, though sometimes paler. Angular, branched, lenticular and thomboidal spots sometimes occur. Under the microscope these rocks consist mainly of brown mica, quart 2 and organic matters. iron oxides, \&c.: the spots may be due to aggregation of biotite or of quartz, but often differ little in composition from the surrounding rock. Their dark colour is due to abundance of iron oxides or graphite, with chlorite and biotite. Still closer to the granite a development of crystals takes place in the slates: the commonest are andalusite, chiastolite (with cross-shaped dark enclosures), cordierite, staurolite and garnet. At the same time the minerals formerly enumerated crystallize in larger individuals (biotite, quarta. iron oxides, \&c.), so that the rock becomes rather more coarse-grained. At this stage the fissility and cleavage structures of the slate tend to be obliterated, and the rocks are dark, lustrous (from the abundance of mica), hard and splintery. To this type the name hornfels is given. The innermost zones of the aureole consist mainly of hornfelses, and where there are slate fragments enclosed in the granite they usually show these characters in their most pronounced form.

The nature of the new minerals produced depends principally. of course, on the chernical composition of the rocks affected. In pure sandstones only quartz is formed, and pure timestones merely recrystallize as marbles. Argillaceous rocks are characterized by abundance of alumina; hence, when thermally altered, they may contain corundum, or silicates of alumina such as sillimanite, kyanite, andalusite and chiastolite. Most rock masses, however, are far from pure and hence the variety of minerals which may arise in them from contact alteration is very grat. Argillaceous hmestones, for example, very frequently contain garnet, vesuvianite. wollastonite, diopside, tremolite, sphene, epidote and feldspar; that is to say. minerals in which lime is present along with silica, alumina, magnesta and other substances. Calcareous sandstones yield augite, garnct, sphene, epidote; argillaceous sandstones are characterized rather by biotite, sllimanite and spinel.

In each case the materials already present in the rock have united to form new mineral combinations. Crystallization has been stimulated by the rise of temperature, aided, no doubt, by moisture. Water vapour, even at comparatively low temperatures when the pressure is considerable, is a powerful mineralizing agent and greatly facilitates crystallization. Often the rocks acquire ultimately a pseudoporphyritic or porphyro-blastic structure, as they contain large or conspicuous crystals scattered through a finer grained ground-mass; not only these porphyritic ingredients but the toody of the rock shows increased crystallization, for contact alteration as a rule makes rocks more coarse-grained than before.

In rare instances fusion may take place, but this must be exceptional, as the finest otiginal structures are often very perfectly preserved by rocks which have been in great measure recrystallized. Finely laminated argillaceous andstones, for example, may pass into cordierite-or andalusite-hornfelses showing a mineral banding which corresponds exactly with the original lamination. For this reason the newly developed minerals are not frequently of good crystalline form. When weativered out of the rock they have mostly rough. imperfect faces, but exceptions to this occur in garnet staurolite. tourmaline and a few others which of ten produce good crystals even in these adverse circumstances.

It is only true in a general way that the rocks which are thermally altered experience no change in their chemical composition. The new miserals which are substituted for the origiral ones are such as are stable ht high temperatures. Many of the silicates which form a large part of sedimentary rocks contain combined water: examples are chlorite, kaolin and clay. The water, or part of it. is expelled, forming silicates with ititle or no water, e.g. biotite, felspar. andalusite. Carbonic acid may be retained or driven out; in a siliceous imestone the silica tends to combine with the lime producing calc-silicates by replacing the carbonic acid. In a pure limestone the carbonate merely recrystallizes as marble. This lose of volatile ingredients must occasion a diminution in the bulk of the sedimentary mass involved: in cooling there witl be contraction, and fosures are produced which may be filled with igneous dikes or wirh
veins deposited by ascending hot waters. Hence contact aureoles are common sites lor mineral deposits of economic value.

In some aurcoles the sediments or schists have their bedding and foliation planes wedged apart by the intrusive force of the granite, and are permeated by igneous raaterial invading them along these fissures. In this way a melange is produced of sedimentary rock with threads and veinlets of igncous nature, and to some extent a blending of the two rocks takes place, though usually each preserves its identity however intimately mixed. In microscopic sections veins of granite not more than a tenth of aa inch in width may be traced, sharply distinct from the slate or schist they penetrate. Cases. bowever, are described in which the rocks of the aureole have been felspathized or filled with new felspar derived from the granite; this, however is not common. Shales are often converted, when in contact with diabase, into pale-coloured, finty-looking rocks known as adinoles. These are exceptionally rich in albite and contain as much as 10% of soda, an a mount which is not met with in unaitered shales. It seems probable that alkalis have been transferred from the isneous rock to the sedimentary, perhaps through the medium of the vapours exhaled. The breadith of the adinole belt is as a rule only a few inches or a foot or two.

I he vapours given off by intrusive igneous masses may contain substances which combine with the ingredients of the wurroundiag rocks and thus modify their compooition. Boron, fluorine and phosphorus are the principal efements which are tranaferred in this way, and minerals such as tourmaline, copaz and mica are the characteristic products in quartsose or argillaceous rocks; while apatite, fluorspar, axinite. datolite and chondrodite are commonest in limestones. This is a form of pneumatolytic action (see PNEUMatOLYSIS).

Extreme cases of the mutual interaction of the intrusive rock Fith the masces invaded by it are provided by the fragments enciosed in the molten magma (known as remoliths). These are often sounded and eroded. an if softened or partly fused and dissolved. Similar changes are found in the rocks of the aureole for a few feet or yards where in actual contact with the granite. This belt of indurated hornfelses of ten weathers much more slowly than the igneous rock, and stands out as a prominent, sharp-edged ridge running round the granite margin.

Where sediments are dissolved in igneous rock we may expect to find modifications in the chemical composition and in the minerats produced on crystallization of the magma. Some granites, for erample, which contain many rounded, partly dissolved enclosures of slate are themselves full of corundum, andalusite, cordicrite and other minerals, which appear to indicate the effect of absorbed shate material. Much discussion has taken place as to the importance of such processes in modifying the facies preaented by igneous rocks. Granites are alleged to have absorbed impure limestones and thus to be changed to diorites (Pyrenees). At the contact of the two rocks a narrow zone of diorite intervenes between the granite and the limestonc. In this case an acid rock has become basic (or intermediate) in character: similarly, basic rocks-such as gabbro-are said to become granitic where they have melced down large quantities of felspathic quartzite. On the other side it is argued that as precisely the same modifications of the igneous rocks are known to occur where these explanations cannot possibly hold good-e.g. vones of diorite at the contact of granite with quartzite or micaschist -they are really due to chemical segregation or differentiation in the magma and not to any admixture with foreign material.

Such modlfications in the igneous rock at its contacts are often aid to be endomorphic, while those which take place in the aureole or country rocles are exomorphic. The endomorphic changes are not always strictly of the nature of contact alteration. The commonest are the presence of a fine-grained, sometimes glassy, chilied edge due to rapid solidification from sudden cooting of the magma. The fone-grained marginal facies is often porphyritic, while the interior of the mass is granular or eugranitic. There is often a tendency to the development of special minerals in the edge of intrusive masses. Some of these arise probably from aboorption of country rock. e-c. cordierite, andalusite, iron oxides (in granite). At the same time thete may be a great abundance of angular or rounded enclosures, so that the marginal rock is brecciform. Where granje penetrates gabbro the fragments of the latter are sometimes pelted down and digested in the granite till only the crystals of their augite or diallage are teft (Skye). Granite margins are not always more basic than the average of the mass: they may be exceedingly rich in quartz and at the same time very coarse-grained or pegmatitic. This seems to arise from the production of fissures at the contact after the granite has to a large extent solidified. In these fissurcs the pegmatites are laid down by escaping vapours. Merasomatic changes are especially common also in this situation, and have often formed very valuable mineral deposits along igneous contacts. There also pneumatolytic processer of ten concentrete theis attack: schorl-rock, preisen. topaz-rock and china-stone (or Laolinized granite) are characteristic products, and the active vapours often transiorm the sediments around, forming schorlschist, calc-silicate rocks and sericite-schists.

Regional Melamorphism.-The second kind of metamorphisra is known as" rogional" hecause it is not confined to narrow areas

Metamorphic rocks of this kind oftea cover a large part of a contiment (e.e. the centre of Africa or Scandinavia and Finland). Whatever the causcs be which produced it, they must have been of widespread operation and connected either with great geophysical processes or with definite stages of the earth's development. Where such rocks occur there is generally much evidence of earih movement accompanied by erushing and folding. They are very characteristic of the central axes of great mountain chains, especially When these have been denuded and their deeper cores exposed. Moot geologists believe that this connexion is causal, holding that the contraction of the outer layers of the earth's crust, due to shrinkage of a nearly rigid shell upon a cooling and contracting interior, has bent and folded the rocks, and at the same time has crushed and largely recrystallized them. According to this view regional metamorphison is the result of pressure and folding; hence the name dymamo-metamorphism is frequently applied to it.

A great number of observatinns collected in all regions of the globe may he adduced in support of this hypothesis, forming a mass of evidence so strong is to be almost overwhelming. The structural features which prove that there has been great folding in these rocks are accompanied by microacopic and lithological characters which demonstrate that extensive crushing has taken place. Through progressive stages a slate with fossils may be traced into a phyllite, which becomes a mica-schist, or, in places, a micaceous gneiss. At first the fossils are distorted or torn apart, but they disappenr as crystallization adyances Limestones under great pressure flow almost like plastic masses, losing their fossils and becoming crystalline. Grits, quartzites and granites show the effects of crushing in the puiverization of their minerals and the breaking down of their original clastic or igneous texturcs, fine slablby mylonites ($q .5$.) and granulites being produced. Moreover, the degree of metamorphism ia the rock can of ten be shown to correspond closely to the extent to which it has been folded and crushed.

Another argument in favour of dymamo-metamorphism, which has been urged with much insistence by the extreme supporters of thewe theorics, is the retention of original chemical characters in the metamorphic rocks. Some of them bear unmistakably the stamp of sedimentary origin, e.g. the limestoncs and marbles, quartzites, graphite-schists and aluminous mica-schists. Others have the normal composition of granites, diorites, gabbros and other types of plutonic igneous rocks. This leads to the inference that these were originally normal sediments and intrusives or lavas, and that their present erystalline state and foliated structure are the result of agencies which operated on them subsequently to their formation. Where the degree of metamorphism is not too high. and the folding and dislocation not too complex, the andstones, shales and limestones may be mapped out, and igneous boases, ditess and sills, with their contact aureoles, veins, pegmatites and segregations convincingly delineated on the maps. This shows that a whole complex or terrane, consisting of diverse petrological types of normal sediments and igneous rocks, may be converted by metamorphism into a great series of gneisses and schists. Although recrystallization has been complete, the original rock masses still retain cheir identity in their new state.

The metamorphism in a rock series may be of nearly uniform intensity over a large area; the sediments, for example, may have all their clastic and organic structures effaced, and in the igneous rocks the porphyritic, ophitic, graphic and other textures may have completely disappeared. This, however, is not always the case, especially when the metamorphism is not of very intense degree. Parts of the rock may retain original structures, while others are typical crystalline sebists and greisses. Kernels, lumps or phacoids of massive rock are often found embedded in schists, and it is clear upon inspection that the phacoids represent the original state of the rock. white the schist is the effect of metamorphism. At other times a rock mass, such as an intrusive sill, Is schistose at its edges and surrounded by schistose sediments. while near its centre it is almost entirely massive. The hard igneous rock has proved more rigid than the soft and plastic sediments: in folding. the latter have yielded to the stresses, and internal movement has produced foliation. The crystalline rock of the intrusive sheet has been strong enough to withstand the pressures and has folded like a rigid mass. At the junctions the effect of differential movement is shown by the presence of a belt of rock which often has a most pronounced schistosity. Some intrusive dikes show foliation especiatly marked along their edges; or they may be traversed by planes of movement, running obliquely or directly across them, and characterized by the development of very marked schistosity. Exceedingly sudden transitions between normal igneous rocks and schists or gneisses have been described in sheared dikes. A normal dolerite, with ophitic structure and abundant aupite, has been shown to pass in a few feet or inches into an epidiorite, where hornblende has replaced the primary augite, and lastly into a perfectly typical hornblende-schist, completely recrystallized with development of epidote. green hornblende, sphene and other minerals of metamorphic facies from the original constituents of the dolerite. These phenomena are regarded as establishing that the rock had consolidated as a normal dolerite before the processes which caused the metamorphism began to act: that these processes resulted in internal movement in the rock
mass along certain narrow belta; and that recrystallization was set up along with the development of schistose structure. The operating cause cannot have been anything but pressure, especially as the foliated-rocks occur not infrequently in lines of dislocation and shear; in other cases the foliated types are at the margins of the dike, and the transition from massive igneous rock to metamorphic echist may take place within the space of one inch. The best examples of phenomena of this order are those described by J. J. H. Teall from Scourie in the north-west of Scotland.

Where rocks of any kind are traversed by powerful dislocations or thrusts they often present a schistose facies in the immediate vicinity of the planes of movement. In the Highlands of Scotland great thrusts occur, along which the rocks are displaced for distances which may be as much as ten miles; and immediately adjoining these thrust-planes very perfect foliation is induced in all kinds of rocks, sedimentary, igneous or metarnorphic, which have been involved in the movements. The minute structure of these rocks is gemerally of the mylonitic, granulitic or finely crusbed type. Ia the same way the serpentine of the Lizard in Cornwall passes into fine talcose and tremolitic schists along narrow zones of displacement. Many other examples of this might be cited from regions where folding and crushing have taken place on a large scale. As rule almost without exception, the folintion thus produced is parallel to the direction of movement in the rock macers
In the mineral transformations which accompany metamorphism the operation of pressure is no less clearly indicated. There are, for example, three minerals which consist of silicate of alumina, viz. andalusite, sillimanite and kyanite. The last of these has the highest specific gravity. In andalusite-bearing rock which have been sheared, with production of foliation, we sometimes Gad pseudomorphs of kyanite after andalusite, retaining the characteristic form of the original mincral. Compression, it scems reasonable to suppose, would produce that one of the three crystalline silicates of alumina which has its molecules most closely packed, and consequently the highest specific gravity. This explains the conversion of andalusite into kyanite. The principle that substances tend to assume that mineral form which has the least molocular volume is of wide application among metamorphic rocks. It has been calculated, for example, that when olivine and anorthite felspar are replaced by garnet (a change which takes place not infrequently when basic igneous rocks are metamorphosed) the molscular volume of the mineral aggregate diminishes from 145 to 12 t or about 17% On the other band, when garnet is fused it recrystallizes as a mixture of olivine and anorthite. This has led to the gencralization that all minerals formed by the crystallization of a fusd msgma at high temperatures have a lange molecular volum, while those which are produced in rocks at temperatures below their fusion points and under great pressures have smaller molectuar volumes. Locwinson Lessing pointed out that some minerals have a greater molecular volume than the oxides which enter into their composition; in other minerals the reverse holds good. The former group are, on the whole, characteristic of igncous rocks and products of contact alteration, both of which classes have been formed at high temperatures (e.g. wollastonite, spincl, nepheline, leucite and andalusite). The minerals of the second group are often of common occurrence in metamorphic schists and gneisses (e. staurolite, kyanite, hornblende, talc, epidote and garnet). Altbough there are exceptions to this rule, there can he no doubt that it expreases a gencralization which is of great value in the study of mineral paragenesis.
The mineral changes are usually not of so simple a kind as those above enumerated. Mutual interaction takes place between adjacent components of the rocks. Titaniferous iron oxides, for example, obtain silica and lime from such mincrais as augite or lime felspar and sphene results. Felspar often breaks up into epidote, quartz and albite: the epidote obtains its iron from adjacent crystals of augite or hornblende. Equations can be writtea to show the transformation of one rock to another; thus, diabase (labradorite, augite, ilmenite) may be converted into amphibolite (acid plagioclase, hormblende. garnct, sphene and quarta). In this case. the molecular volumes are for diabase 671 and for amphibolite 635.6, indicating a diminution on metamorphism. Many striking illustrations of this principle have been adduced. Caution. however, is required in applying it to concrete cases; if it wat always strictly correct the metamorphic rocks should have higher specific gravities than their represcntatives among sediments and igneous rocks. Very frequently this is not the case., and there must be some counteracting process at work. We find this antagonistic principle in the tendency for the minerals of metamorphic rocka to contaia water of ponbination, ef, epidote, muscovite, chlorite, bornblende, talc. This indicates that they were formed at comparatlvely low tomperatures

We arrive then by many independent lines of reasoning (stratigraphical. microscopical, chemical and mineralogical evidence being abundantly available) at the conclusion that pressure acting oa sedimentary and igneous rocks at temperalures below their fusion points has been able to change them into metamorphic rocks. This is the theory of dynamo-mctamorphism, which has won acceptance from the majority of geologists wha lave made the petrology of
metamorphic rocks their epecial otudy. It has still, however, many incisive critics, and in recent years dissent hat on the whole gained strength.
One of the principal objections is that by these procesoes it is possible to destroy original structures and to break down the minerals of which a rock consigts, but not to induce crystallization and build up rock structures of a new type. It is pointed out that in many regions the rocks though intensely folded are not highly metamorphic; in other places immense dislocations can be proved to exist, yet the rocks are only alightly altered or are converted into fine-grained mylonites and not into typical schists and gneises. Conversely, it is angued, there are many districts where metamorphism is very intense, yet evidence of folding and pressure is only slight. It seems clear that another factor muat be taken into account, and in all probability that factor is the action of water in rocks at a comparatively high temperature. All rock masses contain interstitial water, and many also consiat of minerals in some of which water exists in combination. Hence all metamorphism must be regarded as taking place in presence of water. It is almost equaliy certain that metamorphism must be accompanied by a tise of temperature in ncarly every casc--in fact it if difficult to imagine such a procest going on without considerable heat. Now heated water (or water vapour) is most potent mineralizer. Crystals of quartx, for example, have been produced in glass tubes containing a little water, heated in a furnace to a temperature of about $300^{\circ} \mathrm{C}$.

The heat required lor the more Intense stages of metamorphima may be derived from more than one source. Most regions of gneis and schists contain igneous rocks in the form of great intrusive masses. These rocks themselves are frequently gneissoee, and the possibility must not be overloaked that they were injected into the older rocks at a time when foding was going on. The metamorphism would then be partly of the contact type and partly the effect of pressure and movement, "pressure-contact-metamorphism." The vapours already present would be augmented by those given out from the igneous rock, and intenseiy crystallime. foliated mamea, often containing mincrals found in contact eones (andalusite, cordierite, sillimanite, staurolite, (Acs), would be produced. Cases, are now known where it is in every way probable that the metamorphism is the result of a combinstion of causes of this order. Some of the Alpine schists which surround the central granite gneisess have been referred to this group.

Heat nust also have been produced by the crushing of the rock components. In many metamorphic rocks we find hard minerals poasessing little cleavage (such as quartz) reduced to an exceedingty hine state of division, and it is clear that the stressee which have acted on regions of metamorphic rocks are often 00 powerful that all the nincrals may have been completely shattered. The interstitial movement of the particles must also have generated beat There are no experimental dats to enable us to say what rise of temperature may have been produced in this way, but we cannot doubt that it was considerable. If the crushing was slow the heat generated may have been conducted away to the surface almost as fast as it was produced. If the belt of crushing was narrow, heat would rapidly pass away into the colder noclos beyond. This may explain why in some rocks there has been much grinding down bet little crystallization. The heat aleo may be absorted in promoting chemical combinations of the endothermal type, but it is not likely that much was used up in this way. With rising temperature the rocks would becoms more plastic and fold more readity. Then if the crushing and folding ceased, a long period would follow in which the temperature gradually feth. Tbe minerals would crystallize in larger grains after the well-known law that the larger particles tend to grow at the expense of the smaller omes, and fisely granulitic aggregaten would be replaced by anosaics of coarser etructure. If there has been a considerable rise of tempratare we mifthe expect analogies in structure and constitution between the folded nocks and those which come from a contact aureole; this has in fact been noted by many geologists.

Another factor which must bive been of importance is the depth below the surface at which the rocics lay at the time when they were folded. In the deeper zones the presaures murt have been greater, and the escape of the heat generated must have been less rapid The uppermost members of a complex which was undergoing folding are under the lowest pressures, are at the lowest temperatares and probably also contain most moistore. Hence minerals such as epidote, chlorite, albite, ecricite and carbonates, which are often produced by weathering alone, might be expected to prevail. In the deepest zones the temperature and pressure are high from the Grst and are increased by folding : much minerals as biotite, augite, garnet, felspar, silimanite, kyanite and stayrolite might be produced under there conditions. The earth's crust pright in thil way be divided into bathymetric zones, each of which wat characterized hy distinctive types of mineral paragenesis. Some geologiste ascribe the greatest importance to this conception; they extablish two or three types of metamorphism, each of which belongs, in their opinion, to a definite horizon. This is to some extent a resuscitation of the old idoa, oow discarded, that the Auchean rocks are sediments of a peculiar lind formed only in the heated watera of the primal globed
pe typical goeisees which may nesemble igneous mocks; the schists of later origin cxlibit a progressive transition to normal sedimenta. Without adnuitting that it is possible to classify metamorphic rocks according to the depth at which they were situated when metamorphosed, we may admit that there is much reason to believe that the more intense stages of alteration characterize as a rule the rock masses which were oldest or most deeply situated duriog the epoch of Iolding.

While rocks near the surface which are under comparatively slight pressures yield to strees by fracturing, it is conceivable that at greater depths the minerals would become plastic and suffer deformation without rupture. For this zone of "flowage," as he terms it, van Hise estimates a depth of not more than 12 kilometres, depending on many lactors such as the strength of the rocks and nature of the minerals concerned, the temperature, amount of moisture and rapidity of the deformation. Between it and the zone of Iracture, which lies above, a gradual transition must take place. Doelter, on the other hand. Lelieves that the depth at which plastic fiow begins must be at least 35 kilometres; it is difficult to imagine that rocks which have been so proloundly buried can now be exposed at eny part of the earth's surface.

In the attempt to explain the existence of large masses of metamorphic rocks which are perfectly foliated, but at the same time coarsely crystalline, and show no grinding down of their components, as mighe be expected on the hypothesis of pure dynamo-metamorphism, F. Becke brought into prominence another principle which may prove to be widely applicable. Although known as Riecke's law, it was advanced many years ago by Sorby. It cnuncites that when minerals are subjected to unilateral pressure (acting in a definite direction and not like hydrostatic pressure, equally in all directions) they tend to be dissolved on those sides which lace the pressure, while the sides which are not compressed tend to grew by additional deposit. Minerals having platy or rod-like forms will thus be produced, all having a parallet orientation, and the rock rill be schistose, with foliation corresponding in direction to the extension of the mineral plates, and perpendicular to the stresses which were in action. The solvents which dissolve the mineral on one side and deposit it on the other side are the interstitial moisture and vapours present in the rock. By this means schists and gneisses will be produced, which are perfectly foliated yet have their ninerals homogencous and uncrushed. Experimental data are at present manting to show how far this principle is operative and what are its limits, but as a supplementary contribution to the theory of dynamometamorphism it may prove to be of greet importance. This has been described as the development of ". schistosity by crystalliza. tion."

More Interesting etill are E. Weinscheak's theories, of prespurecrystallization and picto-crystallization (pressure-contact action). He adduces evidence to show that many gncisset are igncous rocks which were foliated from the first, and a large body of observations in many European countries confirms his statement. In his opinion plutonic rocks erystallizing under certain conditions of pressure mecestarily assume a banded structure, and contain minerals wbich gre not identical with those of igneous rocks but with the coroponents of schists and gneisses. In the surrounding rocks there is contact alteration but not of the ordinary type as the recrystallized products also have a banding or folintion owing to the pressure acting on them during mecamorphism. Bonney urged the hypothesis that many peintes are merely plutonic igneous rocks which exhibit a flow banding and an imperfect idiomorphism of their minerals owing to their having been injected in a hall-solid state; the component crystals by mutual attrition nssume rounded or lenticular forms. Undoubtedly there is much truth in these kypotheses, yet in both cases they aeem to necessitate the presence of extraordinary earthpressures such as accompany mountain building. We know that beat greatly tncreases the plasticity of rocks. Assuming that intrusfons take place during an epoch of earth movement, we may be certain that as solidification goes on the pressures will force the reck forward, and the structures will be very different from those atoumed hy a rock which has crystallized in a condition of rest.

Lastly, there are many geologists who hold that certain kinds of greiss are due to the injection of platoric igneous rocks as masass of all sizes into sedimentary schists forming a molange. The igncous mock veins the sediment in every direction; the wins are often exceedingly thin and nearly parallel or branch again and again. In this w^{-}a banding or folintion is sct un, and the mixed rock has the appearance of a gneiss, In the sediment, intensely heated, new aninerals are aet up. The igneous rock digests or absorbs the materials which it penetrates; and it is often impossible to say what in igneous and what is sedimentary. Acid intrusions may in this way break up and partly asslmilate older basic rocks. Very good ecimples of this process are known, and they may be much more common than is at prement suspected. Conditions which favour enimilation at great depths are the enormous pressures and the high temperature of the carth's crust; the igneous rocks may also be much above their consolidation points. It is quite reasonable to believe that at deep levels absorption of sediments by jgreous masses poee on extensively, while in higher zones there is litcle or mone of this action
(J. S. F.)

MBAADORPROAns, a term used in zoology in different senses by different authors, and sometimes in different senses by the same autbor. E. Korschelt and K. Heider, in their work on the development of the Invertebrata, usually apply it to the whole of the larval development. For instance, in their account of the Bryozoa, they say (p. 18, part 2, of the English eranslation): "The metamorphosis of a Bryozoan larva comprises - more or less protracted iree-swimming stage during which no perceptible advance is made in the development of the larva, and the subsequent somewhat complicated changes which bring about its transformation into the first primary zooid of the young Bryozoan colony." Throughout their account of the Crustacea they use the word in the same sense, i.c. as applied to the whole of the changes which the larva undergoes in passing into the adult. On the other hand, in their account of Mollusca they seem to restrict the term to the final change by which the larva passes into the adult form (op. cil., part 4, p. 14). F. Balfour in his great worl on Comparative Embryology seems to linit the word to a sudden change in the larval history. For instance, he says: "The chief point of interest in tbe above development is the fact of the primitive nauplius form becoming gradually converted without any special metamorphosis into the adult condition" (Comparative Embryology, 1885, i. 463). "By the free Cypris stage into which the larva next passes a very complete metamorphosis has been effected" (op. cil. j. 490). "The change undergone by the Tadpole in its passage into the Frog is so considerable as to deserve the name of a metamorphosis" (op. cit. ii. 137). Finally and most decisively he says in his general account of hrvae: "In the larval type [of development] they are born at an carlier stage of development, in a condition differing to a greater or less extent from the adult, and reach the adult state cither by a series of small steps or by a more or less considerable metamorphosis " (op. cil. ii. 360). Here the term will be used in the sense of the last quotations from Balfour and will be regarded as applicable only to those cases of sudden and marked changt which frequently occur at the end of the larval period and sometimes at more or less frequent intervals during its course (Crustaces).

Some anthors (see H. G. Bronn, Thierreich. "Myriapoda," Bd. 5n Abth. 2. p. 113) have applicd the term " metamorphosis" only to those cases of larval development in which the young leaves the egr with provisional organs which are lost in the later developroent. Sucb authors apply the term. "anamorphosis " to cases in which the just-batched young is without provisional organs but differs from the adult in size, and in the number of segments and joists, \&c. Such writers apply the term "epimorpbosis" when there is merely an acquisition of sesual menturity and increase in size after birth or hatching.
The essential feature of metamorphosis is the sudden bursting into function of new organs, whether these organs suddenly arise or have been gradually formed, without becoming functional in preceding larval stages. Another feature of it is the disappearance of organs which have been of use to the larva but which are not required at all or are not required in the same form in the new environment. The term is only used in connexion with larval development and is not applied to the sudden changes, due to a change of environment (e.g. the passage of the mammalian embryo from the oviduct into the uterus). Which sometimes occur in embryos. Neither is it used in connexion with the sudden changes of conditions which occur at the birth or hatching of an embryo, although, especially in the case of birth, this cvent is frequently accompanied by profound morphological alteration.

The most familiar examples of metamorphosis are the abrupt changes which occur at the end of the larval history of the frog and of many insects. In both these cases there is a sudden and grent change of environment; there is a sudden demand for new organs which would have been quite useless in the old environment, and organs which were of use in the old environment and are of no use in the new have to be eliminated. The two examples we have chosen have the advantage of showing us the two methods by which the crisis in the life-history is met.

In the frog (ig. i) the structural changes which obtain full fruition at the metamorphosis take place gradually during the previous tadpole life. They relate mainly to the alterations of the respiratory organs and vascular system which are required for the purely terrestrial life of the frog, and to the appearance of the paired limbs. The changes in the respiratory and vascular

Ater Leuckart and Nitsche's Wandiafeln, by permission of T G. Flaber \& Ca
Fig. 1.-Drawings illustrating the metamorphosis of the frog (Ranc Lemporaria).

A, Side view of an advanced tadpole with well-developed posterior limbs; the anterior limbs are present but bidden beneath the operculum.

B, Ventral view of the same with operculum removed showing the anterior timbs in silu; the ventral body wall has also been removed and the heart (h) and intestine exposed. (br) Gills: ($K L$) spiracle.
C. A frog after the metamorphosis but belore the absorption of the tail.
organs are led up to in the tadpole, which during the greater part of its aquatic life is a truly amphibious animal, breathing by lungs as well as by gills; but a sudden change occurs in these organs at the metamorphosis. The limbs which were slowly formed during tadpole life-the posterior pait visibly, the anterior under cover of the operculum (fig. $1, B$)-are of no use to the tadpole and must constitute a pure burden to it. The principal events of the metamorphosis are the sudden appearance of the anterior limbs, and the complete closure of the gill aperture (fig. t, C). The appearance of the antcrior limbs and the acquisition of functional importance by both pairs enable the frog to leave the water and pass on to the land to lead its terrestrial life. The other larval organs, such as the gills and the tail, gradually shrink in size and ultimately vanish. In the case of the gills this shrinkage had begun before the metamorphosis, but the tail shows no sign of diminution until the frog is ready to pass on to the land.

The distinguishing feature of this type of metamorphosis If that the anlmal is burdened for a certain period, both before and after, with organs which are useless to it. In the next type, which is exemplified by the metabolous Insecta, this occurs to a much smaller extent, although the changes of hahitat and the corresponding changes of structure are more remarkable. In insecta the change is usually from a terrestrial or aquatic habitat to an acrial one. The larva of a butterfly is a worm-like organism which creeps on and voraciously devours the folinge of certain plants (fig. 2, C). During its life it undergoes much growth, but no lmportant change in structure. When it leaves the egg
it is adapted to live and feed on a partıcular species of plant, on or near which the eggs are deposited by the parent butterty. It has powerlul biting jaws by which it procures its vegetable food. The adult, on the other hand, is a winged creature which also lives on plants but in quite a different way to the larva (fig. 2, A). It flies from plant to plant and obtains its lood by sucking the juices of flowers and other parts. The power. ful mandibles of the larva have disappeared and in their place we find a suctorial proboscis formed by the first maxillae [fig. 2, A (4)].

Bet ween the larva and the adult insect there is interposed a resting stage, the so-called pupa (fig. 2, B), during which no food is taken, but very important changes of structure occur. These changes consist of two processes: (I) histolysis, by which most of the larval organs are destroyed by the action of phagocytes; and (2) histogenesis, by which the corresponding organs of the imago are developed from the imaginal disks. The imaginal disks appear to arise in the embryo in which they develop, some of them from the epiblast and some from the hypoblast. They persist practically unchanged through larval life and become active as centres of growth in the pupa. The pupal stage in such a metamorphosis may be compared to a second embryonic stage in which the organs of the adult assume their final shape. In this kind of metamorphosis the larval organs are entirely got rid of in the pupal stage, during which the insect is as a rule incapable of locomotion and takes no food; and the new formation of organs-especially those of locomotion and alimentation-which is necessitated by the totally different habits of the larva and mature insect, is also sccomplished at the same period, largely, no doubt, at the expense of the material afforded by the disrupted larval organs. . The larva itself. does not form any of these organs and carry them about during its active life, though it does possess the very minute centres of growth known as the imaginal disks which burst into activity after the larval life is over. It must not be supposed that in all insects in which the serunl animal has a different habitat from the young form, there is a metamorphosis of the kind just described. In the may-flies and dragon-fies, in which the larva is aquatic, the change is prepared for some time before the actual metamorphosis, the organs which are necessary for the aerial existence being gradually acquired during larval life. In such cases, the metamorphosis belongs to our first type and consists of the act by which the organs previously and gradually acquired suddenly become functional. We have now considered in detail two typical cascs of metamorphosis. In the first the change is gradually led up to and the larva is burdened, in its later stages at least; with organs which are of no use to it and only become functional at the metamorphosis. In tbe other, the change is not led up to. It is sudden, and a kind of second embryonic period is established
to enable the important and far-reaching transformation to be accomplished. It is clear that the two kinds of metamorphosis

 E. Ifler C. Claus, Cimerswh, xar Erforminarg Crublaceen-Syucms.

Fig. 3--Drawings showing various stages in the larval bistory of Penacus.
A. Nauplius larva, dorsal view, showing the three pairs of appendages and the simple median eye.
B. Protozoaea larva, dorsal view, the rudiments of the paired eyea are visible through the cuticle, by which the rudiments of the maxillae are still covered.
C, Older Protozoaea, dorsal vicw; the six posterior thoracic ecgments are distinct, but the five abdominal segments are still hidden beneath the skin.
D, Zoaca larva, ventral view, with the rudiments of the thoracic limbs and the appendages of the sixth abdominal segment.
E, Mysis stage. side view; the thoracic and abdominal appendages have been developed.
(1) first anterna;
(2) second \cdots.
(3) mandible:
(4) first maxilla;
(5) second
(6) first maxiliped;
7 second
(8) thind
(9) thorex;
(10) abdomen;
(i1) liver;
(12) frontal sense oryan, just behind which are the compound eyen;
(ai) to (a6) the six abdominal appendages.
only differ in deqree and that no line can be drawn between tbem.

In the Crustacea, as has already been pointed out, many authors apply the term metamorphosis to the whole larval development, which consists of a series of changes leading to the adult form. But this is in our opinion an incorrect use of the word. The typical larval development of a Crustacean consists of $亠$ series of small metamorphoses. At each moult new organs which have been developed since the preceding moult become manifest and some of them functional. For instance, the prawn Penoeus leaves the egg as a nauplius larva (fig. 3, A). It issues from the first moult as a metanauplius which has a forked tail, a beginning of the cephalo-tboracic shield, and a large helmet-shaped upper lip. It also possesses stump-like rudiments of the maxillae and two anterior pairs of maxillipeds. After the next moult it is known as a protozoaca (fig. 3, B), in which a cephalo-thoracic shield is well developed, the posterior part of the body is prolonged into a tail, in the anterior part of which the thoracic segments are obscurely indicated, and the four pairs of stump-like rudiments have become functional appendages [fig. 3, B (4), (5), (6), (7)]. This passes into a later protozoaea stage (C) in which the rudiments of the compound eyes and of the ahdominal segments are visible beneath the cuticle and in which certain functional changes (jointing, \&c.) have appeared in the limbs. This is succeeded hy the zoaca stage (fig. 3, D), characterized by the stalked and functional condition of the eyes, the increased size of the abdominal segments, and the appearance of appendages on the sixth of them, the increase of size in the third pair of maxillipeds (8) which had appeared as small rudiments in the preceding stage, and the appearance of the five pairs of posterior thoracic limbs as small biramous appendages. The zoaea stage is followed by the mysis stage (fig. $3, \mathrm{E}$) in which the thoracic feet are hiramous, as in M ysis. From this the adult form proceeds. The transformation is more gradual than would be gathered from this short description, because moults

After Spence Bate th Annols and Magazim of Net. Hitiory, vol. 8, and serien 18 st.

Fig. 4-Nauplius of Balonus. balanoides.
A. As just hatched;

B, After the first moult.
(i) first pair of nauplius appendages;
(2) second \quad in
(3) third "
(4) upper lip;
"
(5) frontal sense organ.
occur during the later stages from each of which the larva comes with some slight transformation.

In the life-history of a typical Cirripede there may be said to be two distinct metamorphoses, with gradual developmental stages taking place hetween them. The animal is hatched as a nauplius. This undergoes a scries of moults during which incrēase in size and slight changes in form occur (fig. 4, A, B). At the last of them several organs characteristic of the second
or Cypris stage are discernible (fig. 5 (5), (6)] beneath the cuticle. When this is moulted the free-swimming cypris larva is liberated with its six pairs of biramous thoracic legs, its bivalve shell, and its paired compound eyes (fig. 6). This is the first metamorphosis. After a certain period of free life the Cypris larva attaches itself by its anterior antennae to some foreign object and enters upon the pupal stage (fig. 7). During this the larva takes no food and ceases to move, and undergoes important changes of structure and form beneath the larval cuticle, which invests it like a pupal case. These changes lead to the

attainment of the adult form and structure. When they are completed the cuticle, including the shell-valves, is cast off and the young cirriped emerges. This is the second and final metamorphosis, which resembles in its main features the metamorphosis of the metabolous Insecta.

Metamorphosis occurs in most groups of the animal kingdom. It is generally found in attached organisms, for these nearly always have free-swimming larvae and the met morphosis occurs when the change of habit is effected. For the details of the process the reader is reierred to systematic works on zoology. Here only the most striking instances of it can be mentioncd. It occurs in a remarkable form in some sponges, in which at the metamorphosis the larval epidermis, whicb acts as a locomotive organ, is said to become transformed into the collared flagellated cells of the calual system, the adult epidermis bcing a new formation. It occurs in the Polyzoa, and is, in some of these, characterized by an almost complcte disruption of the larval organs assd a subsequeat new formation of the organs of the adult. The metamorphosis in such cases belongs to our second type, the new organs being new formations at the metamorphosis and not developed from rudiments which make their appearance in the earlier larval history. In Phoronis the metamorphosis of the larva (Actinotrocha), which occurs on fixation, is gradually led up to, but the mode of destruction of some of the larval organs is peculiar; the brain and sense organs of the larva pass into the stomach and are digested. In the Tunicata, in which fixation of the free larva is effected by the head, as in Cirripedia and some, if not all, Polyzoa, the metamorphosis occurs entirely after fixation as a rapid series of developmental changes which occur ad hoc and are not prepared for by preceding changes. In Amphioxus there is no metamorphosis though the larval changes are most remarkable and extensive, but the larval life is a long one and the development very gradual, the new organs coming into function as soon as they are formed.

In most Mollusca there is also a prolonged and important larval life, marked by very int eresting stages of structure (trochosphere, veliger, \&c.). but it is not usual to speak of a metamorphosis for the changes are gradual, each organ developing with great rapidity and coming into function at once. In certain forms, however, a metamorphosis occurs, e.p. in the glochidium larva of Arodonia, which embeds itself in the skin of a fish and there metamorphoses into the adult.
In the Echinodermata there is a particular stage in the larval history, when the ciliary locomotive apparatus breaks up and is absorbed and the animal takes to jts creeping adule life. This metamorphosis is gradually precedent larval development by changes (Alter J. Maller.)
Fig. 8.- A ventral view of a blpinnaria carrying the body of the young star-fish.
prepared for in the which ultimately lead to the complete establishment of the ädult wadial symmetry. The metamorphosis beloags therefore to our firat
type, but it is remarkable for the heavy burden of adult structures which the larva, in its later stages at least, carries about (fig. 8). The adult body is, in the main, fashioned out of the larval body, and it takes over most of the organs of the latter; but as a rule the adult mounh, oesophagus and anus are new formations, and the central nervous system of the larva when present shares the fate of the larval locomotory apparatus. In Asteroids and Crinoids the metamorphosis is accompanied by fixation to foreign objects, the fixation being effected as in Cirripedes by the preoral lobe.
In the Vertebrata a metamorphosis occurs in the lamprey and the Amphibia. The metamorphosis of the lamprey is peculiar. It lives for three or four years as a sexless larva, known as the ammocoete. It then quite rapidly (in three or four days) undergoes a series of changes and becomes converted into the adult. The metamorphosis affects the alimentary canal, the eyes, the respiratory apparatus and other organs, and especially the reproductive organs, which become mature. The adult lives for a few months only, spawning soon after the metamorphosis. This metamorphosis belongs to our second type, but there does not appear to be any resting stage during the few days in which it is effected. In the Amphibia the metamorphosis is fairly excmplified by that of the frog. In many fishes there is a considcrable larval development, but this is perfectly gradual and there does not appear to be anything of the nature of a metamorphosis.
In most cases of metamorphosis those organs of the larva, which are found also in the adult, persist through the transformation, undergoing merely the ordinary modifications of development. But it sometimes happens that such organs are completely destroyed and rebuilt during the metamorphosig. This is conspicuously the case in the metabolous Insecta, in some of which all the internal organs undergo disruption and are reformed. It happens also in those nemertine worms which develop by a larva; in these the larval epidermis is cast off, a new one having been formed. It is possible that the same phenomenon cocurs in sponges. In most Echinoderms a similar phenomenon is observed with regard to the oesophagus and the mouth and anus. The probable explanation of this remarkable phenomenon would appear to be that in certain cases the larval organs become so highly specialized in connexion with the larval life that they are unable to undergo (urther change; new formation is therefore necessary. The phenomenon is one of considerable interest. for it is found in the case of the blastopore, in cases in which there is no metamorphosis, sometimes even in embryonic development. There can be little doubt that the mouth and anus are both genetically connected with the earlier blastopore and that the blastopore is homologous in most animals; and yet how seldom does the blastopore become transformed into the adult openings and how various is its fate. The hypothesis suggested above applies completely to this behaviour of the blastopore; that is to say, it is suggested that the primitive mouth or blastopore becomes, or has become in some vanished harval history, so highly specialized in connexion with larval needs that it is unable to give rise to both mouth and anus, aad in some cases to either. (A.SE. ${ }^{-}$)

 to carry over), a figure of speech, which consists in the transference to one object of an attribute or name which strictly and literally is not applicable to it, but only figuratively and hy analogy. It is thus in essence an emphatic comparison, which if expressed formally is a " simile" (Lat. similis, like); thus it is a metaphorical expression to speak of a ship ploughing her way through the waves, but a simile when it takes the form of "the ship, like a plough, moves" \&c. The "simple" metaphor, such as the instance given, becomes the "continued" metaphor when the analogy or similitude is worked out in a series of phrases and expressions based on the primary metaphor; it is in such "continued metaphors" that the solecism of " mixed " metaphors is likely to occur.metaphysics, or Metaphysic (from Gr. meth, after, фuoud, things of nature, фhots, i.c. the natural universe), the accepted name of one of the four great departments of phllosophy ($q .8$.). The term was first applied to one of the treatises of Aristotle on the basis of the arrangement of the Aristotelian canon made by Andronicus of Rhodes, in which it was placed "after the
 term was used not in the modern sense of above or transcending nature (a sense which $\mu \epsilon \tau \dot{d}$ cannot bear), hut simply to convey the idea that the treatise so-called comes "after" the physical treatises. ${ }^{1}$ It is therefore nothing more than a literary accident that tbe term has been applied to that department or discipline of philosopby which deals with first principles. Aristotle himself described the subject matter of the treatise as "First
${ }^{2}$ On the true order of the Aristotelian treatises see Ararothe.

Philosophy" or "Theology," which deals with being as being
 robre indpxovra кef' airb). From this phrase is derived the later term "Ontology" (q.v.). The misapprehension of the significance of merd led to various mistaken uses of the term "metaphynics," a.g. for that which is concerned with the supernatural, not only by the schoolmen but even as late as 17th-century English writers, and within narrower limits the term has been dangerously ambiguous even in the bands of modern philosophers (soe below). In the widest sense it may thelude both the "first philosophy" of Arstotle, and the theory of knowledge (in what sense can there be true knowledge?), i.e. both ontology and epistemology (q.a.), and this is perhaps the most convenient use of the term; Kant, on the other hand, would represent metaphysics as being " nothing more than the Inventory of all that is given us by pure reason, systematically arranged" (i.e. epistemology). The earliest "metaphysicians" concerned themselves with the nature of being (ontology). reeking for the unity which they postulated behind the multiplicity of phenomena (see Ionian School or Philosophy and articles on the separate thinkers); later thinkers tended to inquire rather into the nature of knowledge as the necossary pre-requisite of ontological investigation. The extent to which these two attitudes have been combined or separated is discussed in the ensuing article which deals with the various schools of modern metaphysics in relation to the principles of the Aristocelian "first pbilosophy."
(X)
1.-The Science of Being

Side by side with psychology, the science of mind, and with logic, the science of reasoning, metaphysics is tending gradually to reassert its ancient Aristotclian position as the scicnce of being in general. Not long ago, in England at all events, metaphysics was merged in psychology. But with the decline of dogmatic belief and the spread of religious douht-as the apecial sciences also grow more general, and the natural sciences become more speculative about matter and force, evolution and teleology-men begin to wonder again about the nature and origin of things, just as it was the decay of polytheism in Greek religion and his own discoveries in natural science which impelled Aristotle to metaphysical questions. There is, however, a certain difference in the way of approaching things. Aristotle emphasized being as being, without always sufficientiy asking whether the things whose existence be asserted are really knowable. We, on the contrary, mainly through the influence of Descartes, rather ask what are the things we know, and therefore, some more and some iess, come to corinect ontology with epistemology, and in consequence come to treat metaphysics in relation to psychology and logic, from which epistemoiogy is an offishoot.
To this pressing question then-What is the world as we know It?-three kinds of definite answers are returned: those of materialism, idealism and realism, according to the emphasis laid by metaphysicians on body, on mind, or on both. Mcta. physical materialism is the view that everything known is body or matter; but while according to ancient materialists soul is only another body, according to modern materialists mind without soul is only an attribute or function of body. Melaphysical idealism is the view that everything known is mind, or some mental state or other, which some idealists suppose to require e substantial soul, others not, while all agree that body has no different being apart from mind. Madaphysical realism is the intermediate view that everything known is either body or soul, meither of which alone exhausts the universe of being. Aristotle, the founder of metaphysics as a distinct science, was also the founder of metaphysical realism, and still remains its main authority. His view was that all things are substances, in the sense of distinct individuals, each of which bas a being of its
${ }^{1}$ The article is supplemented by e.g. Iderlish: Pragyatisn: Relativity or KNowteder, while scparato disuusions of ancient and medieval philosophers will be found in biographical articles and articles on the chiel philooophical echooth, afe Scmol Astucisem; Neorlatonisy.
own difierent from any other, whereas an attribute has only the being of its substance (Mel. Z 1-3; Post. An. i. 4); that bodies in nature are obviously natural substances, and as obviously not the only kind of substance; and that there is supernatural substance, e.g. God, who is an eternal, perfect, living being, thinking, but without matter, and therefore not a body.

At the present day realism is despised on the ground that its differentiation of body and soul, natural and supernatural, ignores the unity of being. Indeed, in order to oppose this unity of being to the realistic duality, both materialists and idealis:s describe themseives as monists, and call realists dualists by way of disparagement. But we cannot classify metaphysics by the antithesis of monism and dualism without making confusion worse confounded. Not to mention that it has led to another variety, calling itself pluralism, it confuses materialism and idealism. Extremes meet; and those who believe only in body and those who believe only in mind, have an equal right to the equivocal term "monist." Moreover, there is no real opposition between monism and dualism, for there can very well be one kind of being, without being all body or all soul; and as a matter of fact, Aristotelian realism is both a monism of substance and a dualism of body and soul.
It is in any case unfair to decide questions by disparaging terms, and to argue as il the whole choice were bet ween materialistic or idealistic monism, leaving realism out of court. In this case it would also bide the truth of things, which requires two different kinds of substance, body and soul. The strength of materialism consists in recognizing nature without explaining it a way, its weakness in its utter inability to explain consciousness either in its nature or in its origin. On the other hand, it is the virtue of idealism to emphasize the fact of consciousness, but its vice to exaggerate it, with the consequence of resorting to every kind of paradox to deny the obvious and get rid of bodies. There are in reality two species of substances, or entirely distinct things, those which are impenetrably resisting, and those which are conscious substances; and it is impossible to reduce bodies and souls to one another, because resistance is incompatible with the attributes of spirit, and consciousness inexplicable by the attributes of body. So far true metaphysics is a dualism of body and soul. But this very dualism is also monism: both bodies and souls are substances, as Aristotle said; and we can go farther than Aristotle. Men are apt to dwell too much on the co-existence and too little on the inclusiveness of substances. The fact is that many substances are often in one; e.g. many bodies in the onebody, and both body and soul in the one substance, of man. So far true metaphysics is a monism of substance, in the sense that all things are substances and that all substances, however different, are members of one substance, the whole universe of hody and spirit. In this case metaphysics generally will have to recognize three monisms, a materialistic monism of body, an idealistic monism of soul, and a realistic monism of substance, which is also a dualism of substances. But a term so equivocal, leading to an antithesis 50 misleading as that between monism and dualism, can never represent the real difference between metaphysical schools. We shall return, then, to the clearer and more authoritative division, and proceed to discuss materialism, idealism and realism in their order.

2.-Materlalism

1. Materialism Proper.-Materialism in its modern sense is the view that all we know is body, of which mind is an attribute or function. Several causes, beginning towards the end of the i8th century, gradually led up to the materialism of Moleschott, Vogt and Bachner, which flourished in the middle of the 19th century. The first cause was the rapid progress of natural science, e.g. the chemistry of Lavoisier, the zoology of Lamarck, the astronomy of Laplace and the geology of Lyell. These advances in natural science, which pointed to a unity and gradual evolution in nature, were accompanied by a growth in commerce, manufactures and industrialism; the same kind of spirit showed itself in the revolutionary upheaval of 1848 , and in the materialisule publicatioas which immediately followed, white these
publications have reacted on the industrial socialism of our own time. Meanwhile, philosophic forces to counteract materialism were weak. Realism was at a low ebh. Idealism was receding for the moment. Hegelianism bad made itself unpopular, and its confusion of God, nature and man had led to differences within the school itself (see Hegel).

These causes, scientific, industrial and philosophical, led to the domination of materialism in the middle of the 19 th century in Germany, or rather to its revival; for in its main position, that matter and motion are everything and eternal, it was a repetition of the materialism of the 18th century in France. Thus Karl Christoph Vogt (q.v.) repeated the saying of the French physician Cabanis, "The brain is determined to thought as the stomach is to digestion, or the liver to the secretion of bile," in the form," Thought stands in the same relation to the hrain as the bile to the liver or the urine to the kidneys." But the new materialism was not mere repctition. J. Moleschott (1822-1893) made a diligent use of the science of his day in his Kreislauf des Lebens (1852). Starting from Lavoisier's discoveries, he held that life is metabolism, a perpetual circulation Mobechoort of matter from the inorganic to the organic world, the hypothesis of vital force. Aristote had imputed to all living beings a soul, though to plants only in the sense of a vegetative, not a sensitive, activity, and in Moleschott's time many scientific men still accepted some sort of vital principle, not exactly soul, yet over and above bodily forces in organisms. Moleschott, like Lotze, not only resisted the whole hypothesis of a vital principle, hut also, on the basis of Lavoisier's discovery that respiration is combustion, argued that the heat so produced is the only force developed in the organism, and that matter thercfore rules man. He put the whole materialistic view of the world into the following form: Without matter no force, without force no matter. L. Büchner (q.o.) himself said that he owed to Moleschott the first impulse to composing his important gectoon work Kraft und Stoff (1855), which became a kind of to Lyell's view of the evolution of the earth's irom Moleschott to Darwin's theory of natural selection and environment, he reached the gencral inference that, not God but evolution of matter, is the cause of the order of the world; that life is a combination of matter which in favourable circumstances is spontaneously generated; that there is no vital principle, because alt forces, non-vital and vital, are movements; that movement and evolution proceed from life to consciousness; that it is foolish for man to believe that the earth was made for him, in the face of the difficulties he encounters in inhabiting it; that there is no God, no final cause, no immortality, no freedom, no substance of the soul; and that mind, like light or heat, electricity or magnetism, or any other physical fact, is a movement of matter. Sometimes he spoke of mind as an effect of matter; but, though his expressions may be carcless, nothing is to be made of the difference, for be called it movement and effect Indifferently in the same context. His definitely expressed view was that psychical activity is "nothing but a radiation through the cells of the grey substance of the brain of a motion set up by external stimuli."
E. Haeckel belongs to a slightly later time than the materialists hitherto mentioned. His book Die Wellerthsel (Eng. trans.

wacelol

J. MCabe, The Riddle of the Universe) identifies with the substance will boly. Slang like persors they the indestructibility of matter, Haeckel makes more tban of matter and energy in one universal law of substance, which, on the ground that body is subject to eternal transformation, is also the universal law of crolution. His strong point consists in inferring the fact of evolution of some sort from the consideration of the evidence of comparative anatomy, palaeontology and embryolagy. On the strength of the consilience of arguments for evolution in the organic world, he carries back the process In the whole world, until he comes to a cosmology which recalls the rash hypotheses of the Presocratics.

He supposes that all organisaras have developed from the simple cell, and that this hasi its origin by spontancous, generation, to explain which he propounds the " carbon-theory," that protoplaeni comes from inorganic carbonatea. He not only agrees with Laplece and Lyell about the evolution of the solar system, but also supposen that the affinities, pointed out by Lothar Meyer and Mendeleeff. between groups of chemical elements prove an evolation of those edements from a primisive matter (prosky') consisting of homogencous atoms. These, thowever, are not ultimate enough for him ; he thinke chat everything. ponderable and imponderable or ether, is evolved from a primitive substance, which condenses first into centres of condensation (pyknotoms), and then into masses, which when they exceed the mean consistency become ponderables, and when they fall below it become imponderablea. Here be stops; according to him substance is eternal and eternally subject to the law of substance; and God is the eternal force or energy of substance. What, then. is the origin of mind or soul? Haeckel answers that it has no origin. becaure seasation is an inpertomt property of all subseacece. He supposes that cesthesis and tropesss, as rudimentary menaztion and will, are the very causes of condensation: that they belong to pyknatoms, to ponderables and imponderables, to chemical atoms and molecules. Hence, when he returns to organisms, it does not surprise us that he assigns to ova and apermatomoe cell-ouls, to the impregaated ovum germ-souh, to plants tiasue-souls, to animals nerve-souls; or that he regards man's body and soul as born together in the improçnated ovum. and gradually evolved from the bodica and souls of lower animali. It appears to his imagination that the affity of two atoms of hydrogen to one of oxygen, the attraction of the apermatozoon to the ovum, and the elective affinity of a pair of lovers are all alike due to sensation and will.

But has Haeckel solved the problems of mind? When he applies sensation and will to nature, and through plants to the lowest animals, he considers their sensation and will to be rudimentary and unconscious. Consciousness, according to his own admission, is not found even in all a nimals, allhough it is present not only in the highest vertobrates-men, mammals birds-but also in ants, spiders, the higher crabs and molluscs He holds indeed that, in accordance with the law of substance, consciousness must be evolved from unconsciousness with the development of sense organs and a central nervous organ. At the same time he admits, firstly, that to mark the barrier between unconscious and conscious is difficult; secondly, that it is impossible to trace the first beginning of consciousness in the lower animals; and, thirdly, that " however certain we are of the fact of this natural evolution of consciousness, we are, unfortunately, not yet in a position to enter more deeply into the question" (Riddle of the Universe, 191). Thus in presence of the problem which is the crux of materialism, the origin of consciousness, he first propounds a gratuitous hypothesis that everything has mind, and then gives up the origin of conscious mind after all. He is certain, however, that the law of substance somehow proves that conscious soul is a mere function of brain, that soul is a function of all substances, and that God is the force or energy, or soul or spirit, of nature. He, in fact, returns to at cient hylozoism (q.v.), which has tended to revive from time to time in the history of thought. He believes that mind and soul are inherent attributes of all bodies. Curiously enough, he supposes that by making mind a universal attribute of matter he has made his philosophy not materialism, but monism. It is really both: monistic, because it reduces substance to one kind; materialistic, because it identifies that one kind of substance with body or matter, and reduces mind to an attributc or matter. It makes no difference to attribute mlad to all matter, so long as it is attributed as an attribute. It is at least as materialistic to say that unconscious mind is an attribute of nature as to say that conscious mind is an attribute of brain; and this is the position of Haeckel. Materialists seem to dread the word " materialism." Buchner also entreats us "to abandon the word 'materialism,' to which (It is not clear why) a certain scientific odium attaches, and substitute 'manism' for it " (Last Words on Materialism, 273). His reason, however, is different: it is that a philosophy, not of matter as snch, but of the unlty of force and matter, is not materialism. But if a philosophy makes force an attribute of matter only, as his does, it will recognize nothing but matter poscessing force, and will therefore be materialism as well as menism, and in short materiat istic monime. The point is that neither Buichner nor Haeckel could on their mamptions recognize any force hat force of
body, or eny mind but mind of body, or any distinct thing or substance except body. This is materialism.
2. Materialistic Tendencies.-Besides these direct instances of materialism, there are phitiosophers to whom the scientific tendencies of the age have given a materialistic tendency. In Germany, for example, Eugen Dohring (q.0.) was a realist, whose intention is to prove against Kant a knowledge of the thing in itself by at tributing time, space and categories generally to the real work. But, under the influence of Trendelenburg's attempt to reconcile thought and being by assigning motion to both, his Wirklichkeilsphilosophic, in a similar effort after a unity of being. lands him in the contention that matter is absolute being, the support of all reality underlying all bodily and mental states. So Avenarius (q.s.) was no materialist, but only an empiricist anxious to reclaim man's natural view of the world from philosophic incrustations, yet when his Empiriokriticismus ends in nothing but environment, nervous systen, and statements dependon on them, without soul, though within experience, he comes near to materialism, as Wundt has remarked. In France, again, poditivism fe not materialism, but rather the refonal to frame a metaphysical theory. Comte tells us that man firte gets over theoiogy, then over metaphyilics, and finally rests in positivism. Yet in getting over theology he ceases to believe in God, and in getting over metaptyrics he coases to believe in soul. As Paul Janet truly remarked, positivism contains aa unconscions metaphysics in rejecting final causes and an frmaterial soul. Now, when in surrendering theology and metaphysics we have also to surrender Cood and the soul, we are not free from materialism. Postivism, however, shelters itself behlad the vague word "phenomena." Lasily, in England we have not only an infuence of positivism, bat also, what is more important, the synthetic phisiosophy of Herbert Spencer. The

Speacer:

point of this phyowophy for not materialsm, but reallsm. The author himself says that it is transfigured realism-which is realism in seserting objective existence as seperate from subjective existence, bat anti-realism in denying that objective existence is to be known. In his Primeiples of Prychotogy he twice quotes his point that " what we are conscious of as properties of matter, even down to lts weight and resistace, are but subjective affections produced by objective agencies which are unknown and unknowable." This then is his transfigured reallsm, which, as far as what is known goes, is idealism, but as far as what exists goes, realism-of a sort. His First Principles, his book on metaphysics, is founded on this same point, that what we know is phenomens produced by an mknown noumenal power. He himself identifies phenomenon, appearance, effect or impression produced on consciousness through any of the senses. He divides phenomena into impressions and ideas, vivid and faint, object and subject, non-ego and ego, outer and inner, physical and psychical, matter and spirit; all of which are expressions of the same antithesis among phenomena. He holds that all the time, space, motion, matter known to us are phenomena; and that force, the ultimate of vitimates, ks , as known to us, a phenomenon, "an affection of consciousness." If so, then all we know is these phenomona, affections of consciousness, subjective affections, but produced by an unknown power. So far as this main point of transfigured realism is steadily maintained, it is a compound of idealism and reahism, but not materialism. But it is not maintained, on tbe side either of phenomena or of noumena; and hence its tendency to materialism.

In the first place, the term "phenomenon" is ambiguous, sometimes mearing a conscious affection and sometimes any fact whatever. Spencer scts himself to find the laws of all phenomena. He finds that throughout the universe there is an unceasing redistribution of matter and motion, and that this redistribution constitutes evolution when there is a predominant integration of matter and dissipation of motion, and corstitutes dispolution where there is a predominant absorption of motion and disintegration of matter. He muppoees that evolution is primarily integretiom, from the incoherent to the cobereot, exemplified in the solar nebula evoiving into the solar system; secondly differentiation, from the more bonogeneotas to the more hererogencous, exemplified by the olemp syst evolving into different botives: thirdly determing
cion, from the indefinite to the definite, exemplitied by the
solar system with different bodies evolving into an order. He supposes that this evolution does not remain cosmic, but becomes organic. In accordance with Lamarck's hypothesis, he supposes an evolution of organisms by hereditary adaptation to the environment (which he considers necessary to natural selection). and even the possibility of an evolution of life, which, according to him, is the contiauous adjustment of internal to external relations. Next, he supposes that mind obeys the same law of evolution, and exemplifies integration by generalization, differentiation by the development of the five senses, and determination by the development of the order of consciousness. He hoids that we pass without break from the phenomena of bodily life to the phenomena of mental life, that consciousness arises in the course of the living being's adaptation to its environment, and that there is a continuous evolution from reflex action through instinct and memory up to reason. He throws out the brilliant suggestion that the experi. ence of the race is in a sense inherited by the individual: which is true in the sense that animal organisms become hereditarily better adapted to perform mental operations, though no proof that any clements of knowledge become a priori.
Now, Spencer has clearly, though unconsciously. changed the meaning of the term "phenomenon". Irom subjective affection of consciousness to any fact of nature, in regarding all zhis evolution. cosmic, organic, mental, social and ethical, as an evolution of phenomena. The greater part of the process is a change in the facts of nature before consciousness; and in all that part, at all events, the phenomena evolved must mean physical facts which are not conscious affections, but, as they develop, are causes which gradually produce life and consciousness. Moreover, evolution is defined universally as an "integration of matter and dissipation of motion," and yet mental, social and moral developments are also called evolution, so that, in accordance with the definition, they a re also integrations of matter and disaipations of motion. It is true that the author did not sce that he was passing from transfigured realism into materialism. He thinks that he is always speaking of phenomena in the sense of sabjective affections; and in spite of his definition. he half unconsciounly changes the meaning of evolution from a change in matter and motion, first into a change in states of coneciousness, then to a change in social institutions, and finally into a change in moral motives. He also admits himself that mental evolution exemplifies integration of matter and dissipation of motion only indirectly. But bere he becomes bopelesely inconsistent, because he had already said, in defining it, that "evolution is an integration of matter and concomitant dissipation of motion" (First Primciples, 8145). However, with all the author's disclaimers, the general effect left on the reader's mind is that throughout the universe there is an unceasing change of matter and moxion, that evolution is always such a change, that it begins with phenomena in the sense of physical facts, gradually issues in life and consciousness, and ends with phenomena in the sense of subjective affections of consciousnese.

In the woond place, havieg declared the noumenal power, which causes phemomena or conmeious affections, to be unknowable? and having left anybody who pleased to make il a god and an object of religion, he proceeds to describe it as if it were known force, and known in two respects as persistent and as resistant force. He supposes that the law of evolution is deducible from the law of persistent force, and includes in force what is now called energy. Then having discussed force as something thoroughly material, and laying special emphasis on resistance, he tells us that the force of which we assert persistence is that Absolute Force of which we are indefinitely conscious as the necessary correlate of the lorce we know "' (First Principles, f 6a). Similarly, both in First Principles and in the Principles of Psychology, he assigns to us, in addition to our definite consciousness of our subjective affections, an indefinite consciousness of something out of consciousness, of something which resists, of objective existence. Thus it turns out that the objective agency, the nonmenal power, the absolute force, declared unknown and unknowable, is known after all to exist, persist, resist and cause our subjective affections or phenomena, yet not to think or to will. Such a noumenon looks very like body or matter. Lastly, when a theory of the world supposes a noumenal power, a resistent and persistent force, which results in an evolution, defined as an integration of matter and a dissipation of motion, which having resuited in inorganic nature and organic nature, further results without break in consciousness, reason, society and morals, then such a theory will be const rued as materialistically as that of Haeckel by the reader, whatever the intention of the author.
it may be urged in reply that the synthetic philosophy could be made consistent by transferring the knowable resistance and persistence of the unknowable noumenon to knowable phenomena on the one hand, and on the other hand by maintaining that all phenomena from the original nebula to the rise of consciousness are only. "impressions produced on consciousness through any of the senses," after all. But in that case what will become of Spencer's theory of evolution? It will have asserted the evolution of man and his consciousness out of the phenomena of his consciousness. The truth is that his theory of evolution can be carried through the wholo process without a break, only by giving the synthetic philosophy a materialistic interpretation, and by adhering consistently to

Spencer's own materialistic definition of evolution; otherwise there will be a break at least between life and mind. If everything knowable is an example of evolution, and evolution is by definition a transformation of matter and motion, then everything knowable is an example of a transformation of matter and motion. As an exponent of universal evolution Haeckel is more consistent than Spencer.

Huxley (1825-1895) developed views very like thoge of Spencer, and similarly materialistic without being materialism, because inconsis Hathog. tent. He regarded everything known as evolved from matter, and reduced consciousness to a mere collateral product ("epiphenomenon") of cerebral operations without any power of influencing them. Matter, according to him, impresses the afferent nervous system, this the brain, this the efferent nervous system, while consciousness remains a mere spectator. "In man, as in brutes," said he: " there is no proof that any state of consciousness is the cause of change in the nature of the matter of the organism "; so that "we are conscious automata." But, in spite of these materialistic tendencies, he followed Hume in reducing matter and everything knowable to phenomena of consciousness; and, supposing that nothing is knowable beyond phenomena, coneloded that we can neither affirm nor deny, that anything exists beyond, but ought to take up an attitude which the ancient sceptics called Aphasia, but he dubbed by the new name of Agnosticism. Thus Huxley first reduced consciousness to a product of matter, and then matter to a phenomenon of consciousness. By combining materialism with idealiam he made consciousness a product of itself. Tyndall (1820Tyader $\mathbf{1 8 9 3}$), again. came still nearer to materialism, and yet avoided it in his Belfast address (i874), while admitting that matter as understood by Democritus is insufficient, because atoms without sensation cannot be imagined to produce sengation. be contended, nevertheless, that rimeter properly understood is "the promise and potency of all terrestrial life" In thus endowing all matter with sensation like Hacckel he was not avoiding materialism. But in the very same addreas, as well as on other occa. sions, he did not identify mind with matter, but regarded them as concomitant.
All these materialistic tendencies seem to have one explanation. They emanate from scientific writers who rightly try to rise from science to metapbysics, but, as Bacon says, build a universal philosophy on a few experiments. The stady of evolutlon, without considering how many conditions are required for "the integration of matter and the dissipation of motion" to begin, and the undoubted discoveries which have resulted from the study of inorganic and organic evolution, have led men to expect too much from this one law of Nature. This tendency especially prevails in biology, which is so far off the general principles of natural philcsophy that its votaries are often ignorant of the real nature of body as matter and force. The close dependency of all mental operations on brain also tempts them to the conclusion that brain is not only an organ, but the whole organ of conscious mind' It appears also that Darwin, having extended his theory of evolution as far as the rational and moral nature of man, in the Descent of Mar, ended in his Aulobiography by declaring his attitude to first and final causes to be that of an agnostic. Not that he was a materialist, and shortly before his death, in a conversation with Büchner, he maintained his agnosticism against his opponent's atheism. Still, his agnosticism meant that, though he did not assert that there is no God, he did assert that we cannot know whether there is or is not. To the evolutionary biologist brain is apt to appear to be the crowning object of knowledge. On the other hand, scientific men, such as Herschel, Maxwell and Stokes, who approach nature from mathematics and mechanics, and therefore from the universal laws of motion, have the oppocite tendency, because they perceive that nature is not its own explanation. In order to exert force, or at all events that force of reciprocal pressure which we best understand, and on which, in impact, the third law of motion was founded, there are always at least two bodies, enduring, triply extended, mobile, each inert, mutually impenetrable or resistent, different yet similar; and in order to have produced any effect but equilibrium, some bodies must at some time have differed cither in mass or in velocity, otherwise forces would only have neutralized one another. Why do bodies exist, with all these conditions, so similar yet different-that is, in so harmonious an order? Natural science has no answcr: natural theology has an answer. This essence of bodies, this resemblance in difference, this prevailing
' Cf. H. Maudealey, Lessons of Materialisw (1879).
order of Nature, is the deepest proof of God; and it cannot be the result of evolution, because it is the condition of natural force, and therefore of natural evolution. A second argument for God is the prevailing goodness or adaptation of Nature to the ends of conscious beings, which might conceivably be explained by Lamarckian evolution, but has not yet been so explained, and if it were, would not be inconsistent with a divine design in evolution. Further, the very existence of conscions beings is the best proof of the distinct or substantial being of the soul existing in man with body, in God as pure spirit. It seems hopeless to expect that natural science, even with the aid of evolution, can explain by mere body the origin and nature of this fact of consciousneas. If so, materialism is not the whole truth of metaphysics.

3.-The Rise of Metaphysical Idealisy

3. Deseartes to Leibnits--Metaphyaical arises from paychological idealism, and always retaios more or less of an epistemological character. Psychological idealism assumes without proof that we perceive nothing but mental objects, and metaphysical idealism draws the logical but hypothetical conclusion that all we can know from these mental objects of sense is mental objects of knowledec. But at first this logical conciusion was not drawn. Descartes, the founder of psychological idealism, having proceeded from the conscious fact, cogito ergo awm to the non sogminer that I am a soul, and all a soul can perceive is its ideas, nevertheless went on to the further illogical pewarwe. conclusion that from these mental ideas I can (by the
grace of God) infer things which are ertended substances or bodies, as well as thinking subatances or souls. He was a psychological idealist and a metaphysical realist. This illogicality could not last Even the Cartesian school, as it came more and more to feel the difficulty of explaining the interaction of body and mind, and, indeed, any efficient causation whatever, gradually teaded to the hypothesis that the real cause is God, who, on the occasion of changes in body, causes corresponding changes in mind, and vice verst. This occessionalism is not idealiem, but its emphasis on the will of God gave it an idealiatic tendency. Thereupon Spinoza advanced a pantheism which supposed that bodies and souls are not, as Descartes thought, different substances, but merely attributes-the one the extension and the other the thought of one substance, Nature or Cod. Taking the Aristotelian theory that a substance is a thing in itself, bot in Aristotle'a sense of apy individual existing differently from anything else, but in the novel meaning of something existing alone, be concluded, logically enough from this mere misunderstanding, that there can be only one subatance, and that, as no finite body or soul can exist alone, everything finite is merely a mode of one of the attributes of the one infinite substance which alone can exist by itself. Spinoxism, bowever, though it tramples down the barrier between body and sonl, is not y yot metaphysical idealism, becnuse it does not reduce extension to thought, but only says that the same substance is at once extended and thinking-a position more akin to materialism. At the same time Spinosa maintained a parallelism bet ween extension and thinking so close as to say that the order of ideas is tbe same as the order of things, so that any mode of extension and the idea of it are the same thing expressed in two ways, under the attribute of extension and wnder the attribute of thought (see H. H. Joachim's Study of the Eukics of Spinasa, 1901, p. 72). It remained, however, for Schelling to convert this parailelism into identity by identifying motion with the intelligence of God, and so to transform the pantheism of Spinoza into pantheistic idealism Leibnits, again, having become equally dissatisfied with Cartesianism, Spinoxism and the Epicurean realism of Gassendi, in the latter part of his life came still nearer than Spinoza to metaphysical idealism in his monadology, or half-Pythagorean, half-Brunistic analysis of bodies into monads, or urits, or simple subatances, indivisible and unextended, but endowed with perception and appetite.

He gradually fell under the dominion of two falec amomptionat On the one hand, eseentially a mathematicina, he supposed thas
unity is indivisibility, whereas everythis knowre to be one is merely undivided or individual, and that there must be simple becrise there are compound substances, although composition only; repuires mimpler or relatively simple elements. On the other hand, under the influence of the mechanics of his day, which had hardly distinguished between inertia, or the inability of a body to change itsilf, and resistance or the ability of bodies to oppose one another, he concluded that, as inertia is passive, so is resistance, and refused to recognize that in collision the mutual resistance of moving bodies is a force, or active power, of changing their movements in oplosite directions. From these two arbitrary hypotheses about corporeal motion, that it requires indivisibly simple elements, and that it offers only passive resistanoc, he concluded that behind bodics liucre must be units, or monads, which would be at once substantial, cimple, indivisible and active. He further supposed that the monade are " incorporeal automata,": not interacting like bodieh, but each perceiving what was passing in the other, and acting in consequence by appetite, or self-acting. Such mentally endowed substances might be called souls; but, as he distinguished between perception and apperception or consciousness, and considered that perceptions are often unconscious, he preferred to divide monads into thconscious entelechies of ioorganic todies, sentient souls of animila, and rational souls, or spirits, of noen; while he further concluiled that all these are derivative mooads created by God, the monad of monade, All derivative monads, lic allowed, are accompanied by bodies, which, bowever, are compo:ed of other monads dominated by a centrat monad. Further, h: explained the old Cartesian difficulty of the relation of body and mind by transforming the Spinozistic parallelism of extension and thought into a paralliclism between the motions of bodies and the perceptions of therr monade; motions always proceeding from motions, and perceptions from perceptions; bodies acting according to efficient causes, and soule according to final causes by appetition, and as if one influenced the other without actually doing mo. Finally, he explained the conen:aitance of these two series, an well ats that between the perceptima of different monads by aupposing a pre-cstablished harmov ondained by the primitive monad, Cod.
Up to this point, then, Leibnitz opened one of the curef avenues to metaphysical idcalism, the resolution of the material into the immaterial, the analysis of bodies into mental elements. His theory of bodies involved an idealistic analysis nelther into bodity atoms nor into mathematical units, but into mentally endowed simple substances. There remainod, however, his theory of the nature of bodies; and hero be hesitated between two alternatives. According to one alternative which consistently flowed from the psychological idealism of Descartes, as well as from his own monadism, be suggested that bodies are real phenomena; phenomena, because they are agyregates of mooads, which derive their unity only from appearing together to our perceptions; real phenomena well founded, becausc they result from real monads. In support of this view, he said that bodies are not substances, though substantiate; that their apparent motion and resistance are results of the passions of their monads; that their primary matter is nothing hut passive power of their monads; that the series of efficient causes between them is mercly phenomenal. According to this alternative, then, there is nothing but mental monads and mental phenomena; and Leibnitz is a metaphysical idealist. According to the other alternative, bowever, be suggested that at least organic bodies are compound or corporeal substances, which are not phenomena; but something realizing or rather substantializing phenomena, and not mere aggregales of moneds, hut something substantial beyond their monads, because an organic body, though composed of monads, has a real unity (xmio realis). From this point of view he believed that the real unity of a body is a sinculum substantiale, which gives it its real continuity and is the principle of its actions; that its primary matter is its own principle of resistance; and that it has not only this pessive, but also an active, power of its own. He suggested that this theory of the substantial unity of a body might explain transubstantiation, by supposing that, while the monads and phenomena of bread remain, the vinculum substentiale of the body of Cbrist in substituted. He feared also whether we can explain the mystery of the Incarnation, and other things, unless real bonds or unions are added to monads and phenomena. According to this altermative, these organic bodies are compound or corporeal substances, between monads and phenomena: and Leibnitz is a metaphysical realist. He was held to this belief in the sabetanulality of bodies by his Christianity, by. the influence of

Aristeto, of scholasticiam and of Cartesianism, as well as hy his own mechanics. But the strange thing is that at the very end of his life and at the very same time, in 1714-1716, he was writing the idealistic alternative to Remond de Montmort and Dangicourt, and the realistic alternative to Father des Bosses. He must have died in doubt. We cannot, therefore, agree with many recent ldealists who regard Leibnitz as one of themselves, though it is true that, when stripped of its realism, his metaphysics easily passed into the metaphysical ideallsms of Lotre and of Fechner. It is true, also, that on its idealistic side the philosophy of Leihnitz is the source of many current views of panpsychism, of psychophysical parallelism as well as of the phenomenalism of bodies, and of the analysis of bodies into mental elements.
2. Lacke to Hume.-Meanwhile in England, Locke, though differing from Descartes about the origin of ideas, followed him in the illogical combination of peychological idealism with metaphysical reahism. He thought that we perceive nothing but ideas both of primary and of secondary qualities, and yet that somehow we are able to infer that, while our ideas of secondary quatitics are bot, those of primary qualities are, like the real qualities of external things. Beskeley saw the inconsistency of this position, and, in asserting that all we perceive and all we know is nothing but ideas in " mind, spirit, sonl, or myself," hat the merit of having made, as Paulsen remarks, "epistemological idealism the basis of metaphysical idealism." According to him, a body such as the sun is my idee, your idea, ideas of other minds, and always an iden of Cod's mind; and when we have sensible ideas of the sun, what causes them to arise in our different minds is no single physical substance, the sun, but the will of God's spirit. Hume saw that in making all the objects of perception ideas Berkeley had given as little reason for inferring aubstantial souls as subatantial bodies. He therefore concluded thet all we know from the data of paychological idealism is impressions or sensations, ideas, and associations of ideas, making us believe without proof in substances and causes, together with " a certain unknown, inexplicable something as the cause of our preceptions." We have here, in this sceptical idealism, the source of the characteristically English form of idealism still to be read in the writings of Mill and Spencer, and still the starting-point of more recent works, such as Pearson's Grommor of Science and James's Principlas of Psychology.
3. Kant and Fichte-LLastly, in Germany, partly influenced hy Leibmite and partly roased by Hume, Kant claborated his transcendental or critical idealism, which if not, as he thought, the prolegomena to all future metaphysics, is still the starting-point of most metaphysical idealists. Kem Kantism consists of four main positions, which it will be well to lay out, as follows:-
a. Ae to the origin of knowledge, Kant's position is that sense, outer and inner, affected by things in themselves, receives mert sensations or sensible ideas (Vorstellungen) as the matter which sense itself places in the a priori forms of space and time; that thereupon understanding, by means of the synthetic unity of apperception,
i think "-an act of spontaneity beyond sense. in all consciouspesa one and the same, and combining all my ideas as mipe in one universal consciousness-and under a prion categories, or fundamental notions, such as substance and attributc, cause and effect, \&c. unites groupe of sensations or sensible ideas into objects and events, cef. a houec, one ball moving another; and that, accordiagly, perception and experience, requiring both sense and understandiag. are partly a posteriori and partly a priori, and constitute a knowledge of objects which, being sensations combined by synthetic unity under a priori forms, are more than mere sensa. tions but less than things in themselves. This firat position is psycholoxical idcalism in a new form and supported by new reasons; for, if experience derives its matter from mental sensations and its form from mental synthesis of sensations, it can apprehend nothing but mental objects of sense, which, according to Kant, are sensible idens having no existrice outside our thought, not things in themselves; or phenomena, not noxmesta.
b. As to the known world, Kant's position was the logical deduction that from such phenomena of expericnce all we can know by logical reason is similar phenomena of actual or possible experience: and therefore that the known world, whether bodily or mental, is not Cartestan world of bodies and souls, nor a Splnoxistic world of oae aubatmoce, por a Leibnitzian world of monadic mibtancen
created by God, but a world of gensations, such as Hume auppoed, only combined, not by association, but by synthetic understanding into phenomenal objects of experience, which are phenomenal substances and causes-a world of phenomena not noumena. This second position is a new form of metaphysical idealism, containing the supposition, which lies at the foundation of later German philosophy, that since understanding shapes the objects out of sensations, and since nature, as we know it, consists of such objects, " understanding, though it does not make, shapes nature," as well as our knowledge. Known mature is a mental construction in part, according to Kant.
c. As to existence, Kant's position is the wholly illogical one that though all known things are phenomena, there are things in themselves, or noumena; things which are said to cause eensations of outer gense and to receive sensations of inner sense, though they are beyond the category of causality which is defined as one of the notions uniting phenomena; and things which are assumed to exist and have these causal attributes, though declared unknowable by any logical use of reason, because logical reason is limited by the mental matter and form of experience to phenomena; and all this according to Kant himself. This third pooition ine relic of ancient metaphyacal realism; although it must be remembered that Kant does not go to the length of Descartes and Locke, who aupposed that from mere ideas we could know bodies and souls, but supgests that beneath the phenomena of outer and inner sense the thing in itself may not be heterogeneous (ungleichaytig). In thin form we shall find the thing in itself revived by A. Richl.
d. As to the use of reason beyond knowledge, Kant's position is that, in spite of its logical inability to transcend phenomena, reason in ite pure, or a priori use, contains necessary a priori " ideals' (Ideen), and practical reason, in order to account for moral responsibility, frames postulates of the existence of things in themsedves, or noumena, corpesponding to these "ideals": postulates of a real free-will to practise morality, of a real immortality of soul to perfect it, and of a real God to crown it with happineas.

The fourth position is the coping-tone of Kant's metaphysics. It is quite inconsistent with its foundation and structure. Kant first deduced that from the experience of mental phenomens all logical use of reason is limited to mental phenomena, and then maintained that to explain moral responsibility practical reason postulates the existence of real noumena. But what is a postulate of practical reason to explain moral responsibility except a logical usc of reason? Nevertheless, in his own mind Kant's whole speculative and practical philosophy was meant to form one system. In the preface to the second edition of the Kritik he says that it was necessary to limit speculative reason to a knowledge of phenomena, in order to allow practical reason to proceed from morality to the assumption of God, freedom, and immortality, existing beyond phenomena: "Ich musste also das Wissen aufheben, um zum Glaubex Platz zu machen." He forgot that he had also limited all logical use of reason, and therefore of practical reason, to phenomena, and therehy undermined the rationality not only of knowledge, hut also of faith.

Fichte now set himself in the Wissenschafushekre (1794) to make transcendental idealism into a system of metaphysical idealFlehtr. ism without Kant's inconsistencies and relics of realism. His point was that there are no things in themselves different from minds or acting on them; that man is no product of things; nor does his thinking arise from passive sensations caused by things; nor is the end of his existence attainable in a world of things; but that he is the absolute free activity constructing his own world, which is nnly his own determination, bis self-imposed limit, and means to his duty which allies him with God. In order to prove this novel conclusion he started afreah from the Cartesian "I think" in the Kantian form of the synthetic unity of apperception acting by a priori categories; but instead of allowing, with all previous metaphysicians, that the Ego passively receives sensations from something different, and not contenting himself with Kant's view that the Ego, by synthetically combining the matter of sensations with a priori forms, partially constructs objects, and therefore Nature as we know it, he boldly asserted that the Ego, in its synthetic unity, entirely constructs things; that its act of spontaneity is not mere synthesis of passive sensations, but construction of sensations into an object within itself; and that therefore understanding makes as well as shapes Nature.

This construction, or self-determination, is what Fichte called positing (seters). According to him, the Ego posits furst itedr
(ihesis) ; secondly, the non-Ego, the other, opposite to itself (antithesis); and, tbirdly, this non-Ego within itsel! (syathesis), so that all reality is in consciousness. But, he added, as the Ego is not Conscious of this self-determining activity, but forgets itself, the non-Ego seems to be something independent, a foreign limit, a thing in itself, or per se. Hence it is the office of the theory of knowLdge to show that the Ego posits the thing per se as only existing for itself, a noumenon in the sense of a product of its own thinking. Further, according to Fichte, on the one hand the Ego posits itself as determined through the non-Ego-no object, no subjoct; this is the principal fact abour theoretical reason; on the other hand. the Ego posits itself as determining the non-Ego-no subject, no object; this is the principal fact about practical reason. Hence he united theoretical and practical reason, which Kant had separated, and both with will, which Kant had distinguished; for he held that the Ego, in positing the non-Ego, posits both its own limit and its own means to the end, duty, by its activity of thinking which requires will. The conclusion of his epistenology is that we start With ourselves positing subjective sensations-e.g. sweet, red-and rofer them as accidents to matter in space, which, though nyental, is objective, because its production is grounded on a law of all reason. The metaphysics resulting from this epistenology is that the socalled thing in isself is not a cause of our sensations, but a product of one's own thinking, a deternaination of the Ego, a thing known to the Ego which constructs it. Fichee thus transformed the trancendental idealism of Kant by identifying the thing with the object. and by interpreting noumenon, not in Kant's sense of something which speculative reason conceives and practical reason postulates to exist in accordance with the idea, but in the new meaning of a thought, a product of reason. This change led to another: Kant had said that the synthettc unity "I think" is in all consciousness one and the same, meaning that I am always present to all ryy ideas. Fichte transformed this unity of the conscious self into a unity of all conscious selves, or a common consciousness; and this change enabled him to explain the unity of anything produced by the Ego by contending that it is not the different objects of different thinkers, but the one object of a pure Ego or consciousness common to them all. According to Kant, the objective is valid for all consciousnesen; according to Fichte it is valid for one consciousness. Here he wat for the first time grappling with a fundamental difficulty in metaphysical idealism which is absent from realism, namely, the difficulty of explaining the identity of a thing, c.g. the sun. As long as even the meagre realism of the Kantian thing in itsclf is maintained, the taccount of there being one sun is simply that one thine ceuses tifferent phenomena in different minds. But as soon as the thing i_{n} itself is converted into something mental, metaphysical idealites tnust either say that there are as many suns as minds, or that there is one mind and therefore one sun. The former was the alternative of Berkeley, the latter of Fichte.

Thus the complete metaphysical idealism of Fichte's Wissenschaflslehreformed out of the incomplete metaphysical idualime of Fant's Kritik, is the theory on its epistemological side that the Ego posits the non-Ego as a thing in itself, and yet as only a thing existing for it as its own noumenon, and on its metaphysical side that in consequence all reality is the Ego and its own determinations, which pre objective, or valid for all, as determinations, not of you or of me, but of the consciousness common to all of us, the pure or abeolute E.go. Lastly, Fichte called this system realism, in so far as it posits the thing in itself as another thing; idealism, in so far as it posits it as a noumenon which is a product of ifsown thinking; and on the whole real idealism or ideal realism.

God does not seem to find much place in the Wissenschaftslehre, where mankind is the absolute and nature nankind's product. and where God neither could be an absolute Ego which posits objects in the non-Ego to infinity without ever completing the proccss, nor could be even known to exist apart from the moral order which is man's destination. Hence in his Philosophical Jommal in 1798 Fichte prefaced a sceptical cssay of Forberg by an easay of his own, in which he used the famous words, "The liviag moral order is God; we need no other God, and can compretiend no other." Having, however, in consequence, lost his profersorthip nt Jena, he gradually altered his views, until at length he docided that God is not mere moral order, but also reseon and will, yet without consciousness and personality; that not mankind but God is the absolute; that we are only its direct manifostations, free but finite spirits destined by God to posit in ourselves Sature as the material of duty, but blessed when we relapse into the absolute; that Nature, therefore, is the direct manifes tation of man, and only the indirect manifestation of God; and finally, that being is the divine idea or life, which is the reality behind appearances. In this extension of metaphysical idealism the was influenced by his disciple, Schelling. Nevertheleen, he refused to go as far as Schelling, and could not bring himself to idenify either man or nature with Absolute Cood. He wanted to believe in the absoliste without sacrificing personality and freedom. God determines man, and man determines Nature: this is the final outcome of Fichte's pure idealism.

Fichte completed the process from psychological and epistemoogical to metaphysical idealism, which it bas been neceseary $t 0$
recall from its beginnings in France, England and Germany, in order to understand modern idealism. The assertion of absolute substance by Spinoza incited Schelling and Hegel. The analysis of bodies into immaterial elements by Leibnitz incited Lotze. The Spinozistic parallelism of extension and thought, and the Leibnitaian parallelism of bodily motion and mental action, incited Schelling and Fechner. Berkeley and Hume produced the English idealism of Mill and Spencer, with their successors, and occasioned the German idealism of Kant. Kant's a priori syathesis of sensations into experience lies at the root of all German idcalism. But Fichte was the most fertile of all. He carried metaphysical idealism to its height, by not only resolving the bodily into the mental, but also elevating the action of mind into absolute mental construction; not inferring things in themselves beyond, but originating things from within, mind itself. By changing the meaning of "noumenon" from the thing apprehended (vooiparoy) to the thought (viqua), and in the hypothesis of a common consciousness, he started the view that a thing is not yours or my thought, but a common thought of all mankind, and led to the wider view of Schelling and Hegel that the world is an absolute thought of infinite mind. In making the essence of mindactivity and construction, in destroying the separation of theoretical and practical reason, in asserting that mind thinks things as means to ends of the will, he prepared the way for Schopenhauer and other voluntarists. In making the essence of the Absolute not mere reason, but will, action and life, he anticipated Lotze. In reducing the thing in itself to a thought he projected the neo-Kantism of Lange and Coben. In the doctrine-no object, no subject-no subject, no object-that is, in the utter identification of things with objects of subjects, he anticipated not only Schelling and Hegel, but also Schuppe and Wundt with their congeners. In expanding Kant's act of synthesis till it absorbed the inner sense and the innermost soul, he started the modern paradox that soul is not substance, hut subject or activity, a paradox which has been gradually handed down from Schelling and Hegel to Fechner, and from Fechner to Paulsen and Wundt. Meanwhile, through holding with Kant that man is not God, but a free spirit, whose destiny it is to use his intelligence as a means to his duty, he is still the resort of many who vindicate man's independence, freedom, conscience, and power of using nature for his moral purposes, e.g. of Eucken and Mansterberg (gq.o.). Kant and Fichte together became the most potent philosophic influences on European thought in the roth century, because their emphasis was on man. They made man believe in himscif and his mission. They fostered liberty and reform, and even radicalism. They almost avenged man on the astronomers, who had shown that the world is not made for earth, and therefore not for man. Kant half asserted, and Fichte wholly, that Nature is man's own construction. The Krilik and the Wissenschafistehrs belonged to the revolutionary epoch of the "Rights of Man," and produced as great a revolution in thought as the French Revolution did in fact. Instead of the old belief that God made the world for man, philosophers began to fall into the pleasing dream, I am everything, and everything is I-and even I am God.

4.-Noumenal Idealtsy in Germany

Noumenal idealism is the metaphysics of those who suppose that all known things are indeed mental, but not all are phenomenal in the Kantian sense, because a noumenon is knowable so long as by a noumenon we mean some mental being or other which we somehow can discover beyond phenomena. The noumenal idealists of Germany assumed, like all psychological idealista, the unproved hypothesis that there is no sense of body, but there is a sense of sensations; and they usually accepted Kant's point, that to get from such sensations to knowledge there is a synthesis contributing mental elements beyond the mental deta of sense. They saw also the logic of Kant's deduction, that all we can know from such mental data and mental categories must also be mental. This was the starting-point of their metaphysical idealism. But they disagreed with Kant, and agreed with Fichte about things in themselves or noumena, and
contended that the mental thinge we know are not mere phenomena of sense, but noumena, precisely because noumena are as mental as phenomena, and therefore can be known from similar data: this was the central point of their noumenal idealism. They rightly revolted against the inconsistencies of Kant's third and fourth positions about the existence of unknown but postulated things in themselves, hidden from theoretical, but revealed to practical, reason. In a way they returned to the wider opinions of Aristotle, which had come down to Descartes and Locke, that reason in going beyond sense knows more things than phenomena; yet they would not hear of external bodies, or of bodies at all. No realists, they came nearer to Spinozistic pantheism and to Leibnitrian monadism, but only on their idealistic side; for they would not allow that extension and body are different from thinking and mind. Their real founder was Fichte, on account of his definite reduction of the noumenal to a mental world. This was indeed the very point-the knowability of a noumenal mental world. At the same time it soon appeared that they could not agree among themselves when they came to ask what it is, but in attempting to define it seem to have gone through the whole gamut of mind. Schelling and Hegel thought it was infinite reason; Schopenhauer, unconscious will; Hartmann, unconscious intelligence and will; Lotze, the activity or life of the divine spirit; Fechner, followed by Paulsen, a wortd of spiritual actualities comprised in the one spiritual actuality, God, in whom we live and move and have our being.
r. Of these noumenal idealisms the earliest in time and the nearest to Fichte's philosophy was the panlogism, begun by Schelfing (1775-1854), completed by his disciple Hegel ($1770-1831$), and then modified by the master himself. Starting from Fichte's " Wissenschaftslehre," Schelling accepted the whole process of mental construction, and the deduction that noumena are knowable products of universal reason, the Absolute Ego. But from the first be was bolder than Fichte, and had no doubt that the Absolute is God. God, as he thought, is universal reason, and Nature a product of universal reason, a direct manifestation, not of man, but of God. How is this Absolute known? According to Schelling it is known by intellectual intuition. Kant had attributed to God, in distinction from man's understanding, an intelectual intuition of things. Fichte had attributed to man an inteilectual intuition of hirnself as the Absolute Ego. Schelling attributes to man an intellectual intuition of the Absolute God; and as there is, according to him, but one universal reason, the common intelligence of God and man, this intellectual intuition at once gives man an immediate knowledge of God, and Identifies man with God himself.
On Schelling's idealistic pantheism, or the hypothesis that there is nothing but one absolute reason identifying the opposites of subjectivity and objectivity, Hegel based his panlogism. But, while be fully recognized his anos indebtedness to his master, be differed from him profoundly in one fundamental respect. He rightly objected that the system was wanting in logical proof. He rightly, therefore, rejected the supposed intellectual intuition of the Absolute. He rightly contended that, if we are to know anything heyond sense, we must know it by a process of logical reason. But, unfortunately, he did not mean the logical inferences described in the Organon and the Nooum organum. He meant a new "speculative" method, dialectic, founded on an assumption which he had already learnt from Schelling, namely, that things which are different but similar can have the same attribute, and therefore be also the same. With this powerful instrument of dialectic in hand, be attempted to show how absolute reason differentiates itself inte subjective and objective, ideal and real, and yet is the identity of both-an identity of opposites, as Schelling had soid. By the same dialectic Hegel was able to justify the gradual transformation of transcendental into noumenal ideal ism by Fichte and Schelling. If things different but similar have the same attributes, and are thereby the same, then in the first place the Kantian categories, though thoughts of mental origin and therefore confined to mind, are nevertheless applicable
to things, because things, though different from, are the same as, thoughts, and have the categories of thoughts; In the second place, the Fichtian Ego of mankind is not the Absolute Reason of God, and yet is the same Absolute Reason; in the third place, the Schellingian Nature is the "other " of Spirit, and yet, being a mere reflex of the Idea of Neture, is identical with Spirit; and as this Spirit is everywhere the seme in God and men, Nature is also identical with our Spirit, or rather with the Infinite Spirit, or Absolute Reason, which alone exists. The crux of all metaphysical idealiam is the difficulty of reconciling the unity of the object with the plurality of subjecta. Hegel's assumption of identity in difference at once enabled him to deal with the whole difficulty by holding that different subjects are yet one subject, and any one object, e.g. the sun, is at once different from, and identical with, the one subject which is also many. By the rough magic of this modern Prospero the universe of being is not, and yet is, thought, idea, spirit, reason, God. So clastic a solution estahlished a dominant Hegelian school, which is now practically extinct, in Germany, and from Germany spread Hegelianism to Prance, England, America, and, in fact, diffused it over the civilized world to such an extent that it is still a widespread fashion outside Germany to believe that the world of being is a world of thought.
The plain answer is to contest the whole assumption. Different things, however similar, have only similar attributes, and therefore cruicism of are never the same God created man in His own Prantogmof. image, and the world in the image of the Divine idea : Panfogsurn. but I am not God, and the transitory sun is not the same as God's eternal idea of it. The creatures, however like, gre not the same as the Creator and His thoughts. Each is a distinct thing, as Aristotle said. Reality is not Reason. it it strange that the underlying assumption of panlogism was not at once contested in this plain way. Nevertheless, objection was soon taken to the unsatisfactoriness of the system rearud upon it. Schetling himself, as soon as he saw his own formulae exposed in the logic or rather dialectic of his disciple, began to reconsider his philosophy of identity, and brought some powerful objections against both the conclusions and the method of Hegel. Schelling perceived that Hegel, in reducing everything to infinite mind, absorbed man's Iree but finite personality in God, and, in declaring that everything real is rational, failed to explain evil and sin: indeed. the English reader of T. H. Green's Prolegomena to Ethics can see how awkward Is the Hegelian transition from "one spiritual principle" to different men's individual freedom of choice between good and evil. Again, Schelling urged that besides the rational element there muse be something else; that there is in nature, as notura naturans, a blind impulse, a will without intelligence, which belongs to the existent ; and that even God Himself as the Absolute cannot be pure thought, because in order to think He must have an existence which cannot be merely His thought of it, and thercfore pure being is the prior condition of thought and spirit. Hence Schelling objected to the Hegelian dialectic on the ground that, although reason by itself can apprebend notions or essences, and even that of God, it cannot deduce a priori the existence either of God or of Nature, for the apprehension of which experienoc is required. He now distinguished two philosophies: negative philosophy starting from notions, and positive philosophy starting from being; the former a philosophy of conditions, the latter of causes, i.e. of existence. Hegel, he said, had only supplied the logic of negative philosophy: and it must be confessed that the most which could be extracted from the Hegelian dialectic would be some connexion of thoughts without provina any existence of corresponding things. Schelling was right: but he had too much aftinity with Hegelian assumptions. eg, the pandstic confusion of the essences of things with the notions of reasist, to construct a positive philosophy without falling into fresh mysticim, which failed to exorcise the effect of his earlier philosophy of ide: tity in the growing matcrialism of the age.
2. Meanwhile, by the side of panlogism arose the panthelista of Schopenhauer ($1788-1860$). This new noumenal idealism began, like the preceding, by combining psycho-

setropes
 anien.

 logical idealism with the transcendentalism of Kant and Fichte. In Dic Well als Wille and Vorstollang Schopenhauer accepted Kant's position that the world as phenomenal is idea (Vorstellwng); but he added that the worid as noumenal is will (Wille). Ele got the hint of a noumenal will from Kant; but in regarding the noumenad as knoweble, because mental, as well as in the emphasis he laid on the activity of will, be resembled Fichte. His theory of the mature of will was his own, and arrived at from a voluntaristic paychoiogy leading to a voluntaristic metaphysics of his own. His psychologicalstarting-point was the nuproved assumption that the only force of which we are immediately aware is will; his metaphysical goal was the consistent conclusion that in that case the only force we can know, as the noumenal essence of which all else is phenomenal appearance, is will. But hy this noumenal will he did not mean a divine will similar to our rational desirc, a will in which an inference and desire of a desirable end and means produces our rational action. He meant an unintelligent, unconscious, restless, endless will In considering the force of instinct in animals he was obliged to divest will of reason. When he found himself confronted with the blind forces of Natare he was obliged to divest irrational will of feeling. As be resolved one force after another into lower and lower grades of will he was obliged to divest will of all consciousness. In short, his metaphysics was founded on a misnomer, and simply consisted in calling unconscious force by the name of unconscious will (Unbeousster Wille). This abuse of language brought him back to Leibnitz. But, whereas Leibnitz imputed unconscious perception as well as unconscious appetition to monads, Schopenhauer supposed unconscious will to arise without perception, without feeling, without ideas, and to he the cause of ideas only in us. Hence he rejected the infinite intelligence supposed by Fichte, Schelling and Hegel against whom he urged that blind will produces intelligence, and only becomes conscious in us by using intelligence as a means to ends. He also rejected the optimism of Leibnitz and Hegel, and placed the most irrational of wills at the base of the worst possible of worids (sce further Schopenaaver). This pessimistic panthelism gradually won its way, and procured-exponents such as J. Frauenstldt, J. Bahnsen, and, more recently, P. Deussen. The accident of its pessimism altracted F. W. Nietusche, who afterwards, passing from the philosophy of will to the theory of evolution, ended by imagining that the struggle of the will to live produces the survival of the fittest, that is, the right of the strongest and the will to exercise power, which hy means of selection may hereafter issue in a new species of superior man-the Uebermezsch. Finally, Schopenhauer's voluntarism has had a profound effect on psychology inside and outside Germany, and to a less degree produced attempts to deduce from voluntaristic psychology new systems of voluntaristic metaphysics, such as those of Paulsen and Wundt.
3. The first to modify the pure voluntarism of Schopenhauer was E. von Hartmann, who (Die Philosophie des Unbewussten, 1869, ist ed.), advanced the view that the world
as noumenal is both unconscious intelligence and startana unconscious will, thus founding a panpneumatism which forms a sort of reconciliation of the panlogism of Hegel and the panthelism of Schopenhauer. In his tract entitled Schelling's positive Philosophiceals Einheit ton Hegel und Schopenhauer (1869) he further showed that, in his later philosophy, Schelling had already combined reason and will in the Absolute. Indeed, Fichte had previously characterized the life of the Absolute hy reason and wiil without consciousness; and, before Fichte, Leibnits had asserted that the elements of Nature are monads with unconscious perception and appetition. Hartmann has an affinity with all these predecessors, and with Spinoza, wnth whom he agrees that there is but one substance unaltered by the plurality of individuals which are only its modifications. Following, however, in the footsteps of Schelling, be Idealizes the one extended and thinking substance into one mental being; but he thinks that its easence consists in unconscious intelligence and will, of which all individual intelligent wills are only activitica. The merit of this fresh noumenal idealism consists in its correction of the one-sidedness of Schopenhaucr: intelligence is necemary to will. But Hartmann's criticism does not go far enough. He ends by outdoing the paradox of Schopenheuer, concluding that Nature in itsell is intelligent will, but unconscious, a sort of immanent unconscious God.

[^17]sometimes conscious, sometimes unconscious, to the inconsequent conclusion, that there are beings with nothing but unconscious perceptions; and by a similar non sequitur, because there is the idca of an end in will, he argues that there must be an unconscious idoa of an end in instinctive, in reflex, in alt action. Again, in his Grundprodem der Erkenninisstheoree (1889) be uses without proof the hypothesis of psychological idealism, that we perceive psychical effects, to infer with merely hypothetical consistency the conclusion of noumenal metaphysical idealism that all we can thereby know is psychical causes, or something transcendent, beyond phenomena indeed, yet not beyond mind. But, according to him, this transcendent is the unconscious (Kraftoolles wnbewwsst ideales Geschehen). He calls this epistemolopy "transcendent realism"; it is really "transcendent idealism. On these foundations he builds the details of his idealistic metaphysics. (a) He identifies matter with mind by identifying atomic force with the striving of unconscious will after objects conceived by unconscious intelligence, and by defining causality as logical necessity receiving actuality through will. (b) He contends that, when matter ascends to the evolution of organic life, the unconscious has a power, over and above its atomic volitions, of introducing a new element, and that in consequence the facts of variation, selection and inheritance, pointed out by Rarwin, are merely means which the unconscious uses for its own ends' In morphological development. (c) He explains the rise of ends in morphological deveiopment. (c) He explains the rise of tion, it consists in the emancipation of intelligence from will at the moment when in sensation the individual mind finds itself with an idea without will. Here follows his pessimism, like to, but differing from, that of his master. In his view consciousness begins with rant, and pain preponderates over pleasure in every individual life, with no hope for the future, while the final end is not conscioustress, but the painlessness of the unconscious (see Pessimism). But why exaggerate? The truth of Nature is lorce: the truth of will is sational desire; the truth of life is neither the optimism of Leibnitz and Hegel, nor the pessimism of Schopenhauer and Hartmann, but the moderatism of Aristotle. Life is sweet, and most men have more pleasures than pains in their lives.
4. Lotze (1817 -1881) elaborated a very different noumenal idealism, which perhaps we may express by the name "PanLetwa teleologism," to express its conclusion that the known world beyond phenomena is neither absolute thought nor unconscious will, nor the unconscious at all, but the activity of God; causing in us the system of phenomenal appearances, which we call Nature, or bodies moving in time and space; but being in itself the system of the universal reclprocal actions of God's infinite spirit, animated by the design of the supreme good. The Metophysik of Lotze in its latest form (1879) begins with a great truth: metaphysics must be the foundation of psychology. He saw that the theories of the origin of knowledge in idealistic epistemology are unsound. Like Aristotle, then, he proposed anew the question, What is being? Nevertheiess he was too much a child of his age to keep things knownsteadily before him; having asked the metaphysical question he proceeded to find a psychological answer in a theory of sensation, which asserted the mere hypothesis that the being which we ascribe to things on the evidence of sensation consists in their being felt. He really accepted, like Kant, the hypothesis of a sense of sensations which led to the Kantian conclusion that the Nature we know in time and space is mere sensible appearances in us. Further, from an early period in his Medicinische Psychologie (1852) he reinforced the transcendental idealism of Kant by a general hypothesis of " local signs," containing the subordinate hypotheses, that we cannot directly perceive extension either within oursetves or without; that spatial bodies outside could not canse in us spatial images either in sight or in touch; but that besides the obvious data of sense, e.g. pressure, heat and colour, there must be other qualitative different excitations of different nerve-fibres, by means of which, as non-local signs of localities, the soul constructs in itself an image of extended space containing different places. This hypothesis of an acquired perception of a space mentally constructed by "local signs" supplied Lotze and many succeeding idealists, including Wundt, with a new argument for metaphysical idealism. Lotze concluded that we have no more reason for supposing an external space like space constructed out of our perceptions, than we bave for supposing an external colour like perccived colour. Agreeing, then, with Kant that primary qualities are as mental as secondary, he agreed also with Kant that all the Nature we know as a system of bodies moving in time and space is
sensible phenomena. But while be was in fundamental agreement with the first two positions of Kent, he differed from the third, he did not believe that the causes of sensible phenomens can be unknown things in themselves. What then are they? In answering this question Lotze regarded Leibnits as his guide. He accepted the Leibnitaian fallacy that unity is indivisibility, which led to the Leibnitaian analysis of material bodies into immaterial monads, indivisible and therefore unertended, and to the theory of monadic souls and entelechies. Indeed, from the time of Leibnitz such attempts either to analyse or to construct matter had become a fashion. Latze agreed with Leibnits that the things which cause phenomena are immaterial elements but added that they are not simple substances, self-acting, as Lelbnitz thought, or preserving themselves against disturbance, as Lerbart thought, but are interacting modifications of the one substance of Cod.

In the first place, he resolved the doubt of Leibnitz about bodies by deciding cntircly against his realistic alternative that an organic body is a substontic rellisans phacnomsno. and for his idealistic alternative that every budy is a phenomenon and not a substance at all. Secondly, he accepted the Leibnitzian hypothesis of immaterial elements without accepting their self-action. He believed in reciprocal action; and the very espence of his metaphysics consists in sub limating the interaction of bodies into the interaction of immaterial elements, which produce eflects on one another and on the soul as one of them. According to the mechanics of Newton, when two bodics collide each brdy makes the other move equally and oppositcly: but it has become a convenient habit to express this conurtic luct in abstract language by calling it the conservation of momentum, by talking of one body communicating its motion to the other; as if bodies exchanged motion as men do money. Now Lotze took this abstract language literally, and had no difficulty in showing that, as an attributc is not separated from its substance. this supposed communication of motion does not really take place; nothing passes. But instead of returning to the concrete lact of the equivalence of momentum, by which each body moving makes the other move oppositely, he denied that bodies do reciprocally act on one another, and even that bodies as mutually resisting substances press onc another a part in collision. Having thus rejected all bodily mechanism, he had to suppose that reciprocal action somehow takes place between immaterial elements. This brought him to another difference from Leibnitz as well as from Newton. According to Leibnitz, while each immaterial element is a monadic substance and self-acting secondary cause, God is the primary cause of all. According to Lotze, the connexion required by reciprocity requires also that the whole of every reciprocal action should take place within one substance; the immaterial elements act on one another merely as the modifications of that substance interacting within itself; and that one substance is God, who thus beomes not merely the primary but the sole cause in scholastic language a cousa immanens, or agent of acts remaining within the agent's being. At this point, having rejected both the Newtonian mechanism of bodily substances and the Leibnitzian automatism of monadic suhstances, he few to the Spinozistic unity of substance; except that, according to him, the one substance, God, is not extended at all, and is not merely thinking, but is a thinking, willing and acting spirit

Lotze's metaphysics is thus distinguished from the theism of Newton and Leibnitz by its pantheism, and from the pantheism of Spinoza by its idealism. It is an idealistic pantheism, which is a denial of all bodily mechanism, a reduction of everything bodily to phenomena, and an assertion that all real action is the activity of God. At the same time it is a curious attempt to restore mechanism and reconcile it with teleology by using the word "mechanism" in a new meaning, according to which God performs His own reciprocal actions within Himself by uniform laws, which are also means to divine ends. It is also an attempt to reconcile this divine mechanism with freedom. In his Metaphysik (1879), as in his earlier Mikrokosmus (1856-1864), Lotze vindicated the contingency of freedom by assigning to God a miraculous power of unconditional commencement, whereby not only at the very beginning but in the course of nature there may be new beginnings, which are not effects of previous causes, though once started they produce effects according to law. Thus his pantheistic is also a teleological idealism, which in its emphasis on free activity and moral order recalls Leibnitz and Fichte, but in its emphasis on the infinity of God has more affinity to Spinoza, Scheiling and Hegel. Hence his philosophy, like the Hegelian, continually torments one with the difficulty that its sacrifice of the distinct being of
all Individual substances to the universality of God entails the sacrfice of the individual personality of men. Our bodies were reduced by Lotze to the general ruck of phenomenal appearances. Our souls he tried his best to endow with a quasiexistence, arguing that the unity of consciousness requires an indivisible subject, which is distinet from the plurality of the body but interacting with it, is in a way a centre of independent activities, and is so far a substance, or rather able to produce the appearance of a substance. But at the end of his Melaphysik, from the conclusion that everything beyond phenomena is divine interaction, he drew the consistent corollary that individual souls are simply actions of the one genuine being. His final view was that certain actions of the divine substance are during consciousness gifted with knowledge of themselves as active centres, hut during unconsciousness are non-existent. If so, we are not persons with a permanent being of our own distinet from that of God. But in a philosophy which reduces everything to phenomenal appearance except the self-interacting substance of God, there is no room for either the bodies or the souls of Gnite substances or human persons.
5. Fechner ($1801-1887$) affords a conspicuous instance of the rdealistic tendency to mysterize nature in his Panpsychism, or Fecterer. that form of noumenal idealism which holds that the universe is a vast communion of spirits, souls of men, of animals, of plants, of earth and other planets, of the sun, all embraced as different members in the soul of the world, the highest spirit - God, in whom we live and move and have our being; that the bodily and the spiritual, or the physical and the psychical, are everywhere parallel processes which never meet to interact; but that the difference between them is only a difference between the outer and inner aspects of one identical psychophysical process; and yet that both sides are not equally real, because while psychical and physical are identical, the psychical is what a thing really is as seen from within, the physical is what it appears to be to a spectator outside; or spirit is the self-appearance of matter, matter the appearance of one spirit to another. Fechner's panpsychism has a certain affinity both to Stahl's animism and to the hylozoism of materialists such as Haeckel. But, while it differs from both in denying the reality of body, it differs from the former in extending conscious soul not only to plants, as Staht did, but to all Nature; and it differs from the latter in the different consequences drawn hy materialism and jdcalism from this universal animism. According to Haeckiel, matter is the universal substance, spirit its universal attrihute. According to Fechner, spirit is the universal reality, matter the universal appearance of spirit to spirit; and they are identical because spirit is the reality which appears. Hence Fechner describes himself as a twig fallen from Schelling's stem. Schelling's adherent Oken by his Lelirbuch der Naturphilosophic conveyed to his mind the life-long impression that God is the universe and Nature God's appcarance. At the same time, while accepting the Schellingian parallelistic identity of all things in God, Fechner was restrained by his accurate knowledge of physics from the extravagant construction of Nature, which had failed in the hands of Schelling and Hegel. Besides, he was decply impressed by the fact of man's personality and by the problem of his personal immortality, which brought him back through Schelling to Leibnitz, whose Moradologic throughout maintains the plurality of monadic souls and the omnipresence of perception, sketches in a few sections ($\$ \S 23,78-81$) a panpsychic parallelism, though without identity, between bodily motions and psychic perceptions, and, what is most remarkable, already uses the conservation of energy to argue that physical energy pursues its course in bodies without interacting with souls, and that motions produce motions, perceptions produce perceptions. Leibnitz thus influenced Fechner, as in other ways he influenced Lotze. Both, however, used this influence frecly; and, whereas Lotze used the Leibnitzian argument from Indivisibility to deduce indivisible elements and souls, Feehner used the Leibnitzian hypotheses of universal pereeption and parallelism of motions and perceptions, In the light of the Schellingian identification of physical and psychical, to evolve
a world-view (Wdiansicht) containing something which was neither Leibnitz nor Schelling.
Fechner's first point was his panpsychism. Emphasizing the many real analogies between physical and mental agency, but underrating the much stronger evidences that all the mental operations of men and animals require a nervous system, he flew to the paradox that soul is not limited to men and animals, but extends to plants, to the earth and other planets, to the sun, to the world itgelf, of which. according to him, God parateme. is the world-soul. In this doctrine of universal animation he was like Leibnitz, yet very different. Whereas Leibnia confined a large area of the world to wholly unconscious perceptions, and therefore preferred to call the souls of inorganic beings "Entclechies." Fechner extended consciousness to the whole world: and accordingly. whereas Leibnitz believed in a supramundane Creator, "au dessus du Monde " and " dans le Monde, Fechner, in the spirit of Schelling, identified God with the soul of the world. Fechner's sccond point was that, throughout the a nimated universe, physical processes accompany psychical processes without interaction. In this panpsychistic paralleliam he was again like Leibnitz, and he developed his predecessor's view, that the conservation of energy prevents interaction, into the supposition that alongside the physical there is a parallel psychical conservation of energy. Here, again, he went much further than Leibnitz, but along with Schelling, in identifying the physical and the psychical as outer and inner sides of the same process, in which the inner is the real and the outer che apparent. Fechner's third point carried him beyond all his predecessors, containing as it does the true nriginality of his "world-view." He advanced the ingenious suggestion that, as body is in body and all ultimately in the world-body, so soul is in soul and all ultimately in the world-soul. By this meass he explained immortality and vindicated personality. His fourth point was connected with this inclusion of personal spirits in higher spirits and in the highest. It is his so-called "synechological view" of the soul. Herbart and Lotze. both deeply affected by the Leibaitzian hypothesis of indivisible monads, supposed that man's soul is seated at a central point in the brain; and Lotze supposed that this supposition is necessary to explain the unity of consciousness. Fechner's supposition was that the unity of consciousness belongs to the unity of the whole body; that the seat of the soul is the living body; that the soul changes its place as in different parts a process rises above the "threshold of consciousness ": and that soul is not substance but the single psychical life which has its physical manifestation in the single bodily life. Applying this "synechalogical view "to the supposed inclusion of coul in soul, he deduced the conclusion that, as here the nature of one's soul is to unite one's little body, so hereafter its essence will be to unite a greater body, while God's spirit unites the whole world by His omnipresence; and he pertinently asked, in opposition to the "punctual" view, whether God's soul is centred in a point. Lastly, the whole of this "world-view" was develnped by Fechner in early life, under the influence of his religious raining. and out of a pious desire to understand those main truths of Christianity which teach us that we are children of God, that this natural body will become a spiritual body, and that, though we are different individual members, we live and move and are in God: " in Deo vivimus, movemus, et sumus.". It is important to notice that Fechner maintained this "world-view 't it 1 little book, Das BiichLein vom Leben nach dem Tode, which he Niginally published in 1836 under the pseudonym of Dr Mises, but w whe he afterwards republished in his own name in 1866, and again in 1887, as a sketch of his Weltansicht. Afterwards in Nonng (18,8) he discussed the supposed souls of plants, and in Zendavesia (1851) :he supposed souls of the earth and the rest of the world. Then in 1855 he published his Alomenlelire partly founded on his physics, I uut mainly on his metaphysics. Under the influence of Leibnitz. Boscovich, Kant and Herbart, he supposid that bodies are disuble into puncrual aloms, whath are not budies, but centres of foces of attraction and repulsion; that impenerrability is a result 1 repulsive force; and that lorce inscll is only law-taking as an ins ance that Newion: an force of attraction whose process we do ne: understand, and negfecting that Newtonian force of pressure , ad impact whose process wi Jo understand fromit the cullizion of Lodies already excended and resisting. But, in thus adapting to his own purposes the Leibnitzian analysis of material into immaterial, he drew his own conclusions according to his own meraphysics, which required that the supposed centres of lorce are not Leibnitzian "t monads." nor Herbartian "reals," nor divine modifications such as Lotze afterwards supposed, but are elements of a system which in outer aspect is boxlily and in tnmer aspect is spiritual, and obeying laws of spirit. Ac the same time his synochological view prevented him from saying that cuery atom has a soul, Lecause according to him a soul always corresponds to a unity of a physical manofold. Thus his melaphysics is Leilnnitzian. like that of Lotze, and yet is opposed to the most characteristic leature of monadology-the percipient indivisible monad.
In 1860 apprared Fechner's Elemente der Psyehophysik, a work which desply afferted subsequent psychology. and almost revolutionuted meraplysucs of lexdy and soul, and of physical and psychical reiatione generally. It becomes necestary, therefore, to determine
bow far Fechner derived his poychophysica from experience, how far from fallacies of inference, from bis romantic imagination and from his theowophic metaphysics, which indeed coloured his whole book on peychophysics At the very outset be started-with his previous metaphywical hypothesis of parallelistic identity without interaction. He now compared the spiritual and bodily sides of a man to the concave and convex sides of a circle, as inner and outer sides of the same process, which is psychical as viewed from within and physical as viewed from without. He also maintained throughour the book that physical and psychical energy do not interfere, but that the paychical 13, like a mathematical quantity, a function of the physical, depending upon it, and vice versa, only in the sense that a constant relation according to law exists, such that we may conclude from one to the other. but without one ever being cause of the other. By his psychophysics he meant the exact doctrine of the relations of dependency between physical and psychical. The name yas new, but not the doctrine. From antiquity men had applied themselves to determine the relations between the physical stimuli and the socalled " quality" of sensatinns. But what was new, was the application of this doctrine to the relations between the stimuli and the socalled " intensity" of sensations. He generalized Weber's law (q.v.) in the form that sensation generally increases in intensity as the sximulus increases by a constant function of the previous stimulus; or increases in an arithmetical progression as the stimulus increascs ia a geometrical ratio; or increases by addition of the same amount as the stimulus increases by the same multiple; or increases as the logarithm of the stimulus. There are then, at least within the limits of moderate sensations, concomitant variations between stimuli and sensations, not only in "quality." as in the intervals of sounds, which were understood long ago, but slso in " intensity "; and the discovery of the latter is the importance of Weber's and Fechner's law. By the rules of induction from concomitant variations, we are logically bound to infer the realistic conclusion that outer physical stimuli cause inner sensations of sensible effects. But, unfortunately for Fechner, the very opposite conclusion followed from the presuppositions of his parallelistic metaphysics, and from the Leibaitzian view of the conservation of energy, which he was the first in our time to use in order to argue that a physical cause cannot produce e psychical effect, on the ground that physical energy must be exactly replaced by physical energy.

Having satisfied himself in what he called "outer psychophysica," that the stimulus causes only the nervous process and not sensation, he passed to what be called "inner psychophysics," or the theory of the relation between nervous and psychical processes. He rightly argued against the old theory that the continuity of nervous processes in the brain is interrupted by mental processes of thought and will: there is a servous process for every mental procesa. But two questions then arose. What is the relation between nervous process and sensation? What causes sensation? The first question he answered from his imagination by supposing that, while the external world is stimulus of the nervous process, the nervous process is the immediate stimulus of the sensation, and that the sensation increases by a constant fraction of the previous stimulus in the rervous system, when Weber's law proves only that it increases by a constant fraction of the previous stimulus in the external world. The second question he answered from his parallelistic metaphysics by deducing that even witbin the organism there is only a constant dependency of eensation on nervous process without causation, because the nervous process is physical but the sensation psychical. This answer supposed that the whole physical process Irom the action of the external stimulus on the nervous system to the reaction of the organism on the external world is one serios, while the conscious process beginning with sensation is only paralkel and as it were left high and dry. What then is the cause of the sensation ? Huxley, it will be remembered, in similar circumstances, answered this question by degrading consciousness to an epiphenomenon, or bye-product of the physical process. Fechner was saved from this absurdity, but only to lall into the greater absurdity of his own panpsychism. Having long assumed that the whole world is animated throughout, and that there are always two paraliel scries, physical and psychical, he concluded that, while a physical stimulus is causing a physical nervous process, a psychical accompaniment of the simulus is causing the sensation, which, according to him, is the poychical accompaniment of the nervous process; and that, as the whole physical and the whole psychical series are the sime, differing only as outer and inner, this identity holds both of stimulus and its psychical accompaniment and of nervous process and its acrompanying sensation. Apcordingly, he calls these and all other processes "psychophysical"; and as he, recognized two parallel energies, physical and psychical, differing only as outer and innet asperts of the same energy, he called this" "psychophysical enersy." In such a philosophy all reality is "psychophysical." At the same time Fechner would not have us suppose that the two sides are equal: according to him, the psychical, being the psychophysical as viewed from within. is real, the physical, being the pesychophysical viewed from without, is apparent ; so in oneself, though nervous process and psyctical process are the same, it is the psychical which is the reality of which the nervous is mere appearance; and so everywhere. spirit in the reality, body the appearanoe of spirit to spirit. Finally, we
supposed that one spirit is in another, and all in the highest spirit, Cod. By this means also he explained unconsciousness. In point of fect, many stimuli are beneath the " threshold " of a man's consciousness. Leibnitz, in the Noweaux Essais, ii. 11, had also said that we have many "petites perceptions," of which we are unconscious, and had lurther suggested that a perception of which we are, is composed of a guantity of " petites perceptions" of which we are not, conscious Proceeding on this suggestion. and misled by the mathematical expression which he hadgiven to Weber's law. Fechner held that a conscious sensation, like its stimulus, consist of units, or elements, by summation and increments of which conscious sensations and their differences are produced; so that consciousness, according to this unnecesaary assumption, emerges from an integration of unconscious shocks or tremors. But by the hypothesis of the inclusion of spirit in spirit, he was further able to hold that what is unconscious in one spirit is conscious in a higher spirit. while everything whatever is in the consciousness of the highest spirit of God. who is the whole of reality of which the spirits are parts, while the so-cailed physical world is merely outer appearance of one spirit to anot her.

Fechner first confused physics and metaphysics in psychophysics, and next proceeded to confuse them again in his work on evolution (Einige Ideen zur Schopfungs und Entwicklungs-geschichte der Organis. men, 1873). He percesved that Darwinism attributed too mucl to accident, and was also powerless to explain the origin of life and of consciousness. But his substitute was his own hypothesis of panpsychism, from which he deduced a " cosmorganic "evolution from a " cosmorganic "or original condition of the world as a living organism into the inorganic, by the principle of tendency to stability. The world, as he thought, on its physical side, always was a living body: and on its psychical side Cod always was its conscious spirit: and, so far from life arising from the lifeless, and consciousness from unconsciousness, the life and consciousness of the whole world are the origin of the lifeless and the unconscious in parts of it, by a kind of eccondary automatism, while we ourselves are developed from our own mother-earth by dificrentiation. By thus supposing a psychical basis to evolution, Fechner, anticipating. Wundt, substituted a psychical development of organs for Darwinian accidental variation. The difficulty of such speculations is to prove that things apparently dead and mindless are living souls. Their interest to the metaphysician is their opposition to physics on the one hand and to theism on the other. Shall we resign our traditional belief that the greater part of the world is mere body, but that its general adaptability to conscious organisms proves its creation and govermment by Cod, and take to the new hypothesis, which, by a transler of design (rom God to Nature, supposes that everything physical is alive, and conducts its life by psychical impulses of its own? Fechner himself went even further, and together with design transferred God Himself to Nature. This is the subject of his last metaphysical work. Dis Tagesansicht gegemüber der Nachansicht (t879). The " day-view" (Fechner's) is the view that Cod is the psychophysical all-embracing being, the law and consciousness of the world. It resembles the vicws of Hegel and Lotze in its pantheistic tendedcy. But it does not. like theirs, sacrifice our personality; because, according to Fechner, the one divine consciousness includes us as a larger circle includes smaller circles. By this ingenious suggestion, of the membership of one apirit in another. Fechner's "day-view" also puts Nature in a different position; neither with Hegel sublimating it to the thought of Cod's mind, nor with Lotze degrading it to the phenomena of our human minds, but identilying it with the outer appearance of one spirit to another spirit in the highest of spirits

We have dwelt on this curious metaphysics of Fechner because it contains the master-key to the philosophy of the present moment. When the later reaction to Kant arose against both Hegclianism and materialism, the nearly contemporany appearance of Fechner's Psychophysics began to attract experimental psychologists by its real as well as its apparent exactness, and both psychologists and metaphysicians by its novel way of putting the relations between the physical and the psychical in man and in the world. Feehner saw psychology deriving advantage from the methods, as well as the results, of his experiments, and in 1879 the first psychological laboratory was erected by Wundt at Leipzig. But he had also to endure countless objections to his mathematical statement of Weber's law, to his unnecessary assumption of units of sensation, and to his unjustifiable transfer of the law from physical to physiological stimuli of sensations, involving in his opinion his parallelistic view of hody and mind. Among psychologists Helmbolta, Mach Brentano. Hering, Delbocuf, were all more or less againat him Sigwart in his Lagir has also opposed the parallelistic vitw itselft and james has criticized it from the point of view that the soul selects out of the possibibities of the brain means to its own ends. Nevertheless, largely under the influence of the exaggeration
of the conservation of energy, meny psychologists-Wundt, Paulsen, Riehl, Jodl, Ebbinghaus, Münsterberg, and in England Lewes, Cliford, Romanes, Stout-have accepted Fechner's psychophysical parallelism, as far at least as men and animals are concerned. Most stop here, but some go with Fechner to the full length of his metaphysical parallelism of the physical and psychical, as psychophysical, throughout the whole world. This influence extended from Germany to Denmark, where it was embraced by Höffding, and to England, where it was accepted by Romanes, and in a more qualified manner as " a working hypothesis" by Stout. But the most thorough and most eloquent of Fechner's metaphysical disciples was F. Paulsen (q.v.), who spread panpsychism far and wide in bis Einleilung in die Philosophie.
Here reappear all the characteristic pcints of Fechner's "worldview "-the panpsychism, the universal parallelism with the identiPamber. fication of physical and psychical, the inclusion of spirit "day-vew in spirit, the synechological view of spirit, and the fina ppirit to spirit Bul peaity is spiric. and body the appearance of Firt to spirit. But Paulsen tries to supply something wanting in epistemological explanation of the metaphysics of Fechner, by recon. ciling him with Kant and Schopenhaucr. He borrows from Kant's "rationalism" the hypothesis of a spontancous activity of the oubject with the deduction that knowledge begins from sense, but arises from understanding; and he acecpts ?rom Kant's metaphysical idealism the consequence that everything we perceive, experience and know about physical nature, and the bodics of which it consists, is phenomena, and not bodily things in themselves. But he has a different theory of human nature and soul, and so docs not accept the Kantian conclusion that things in themselves, in the sense of things beyond phenomena. are all unknowable. On the contrary. his contention is that of Fechner-that all knowable things are inner psychical realities beneath outer physical appearances-the invisible symbolized by the visible. Kant, however, had no epistemology for such a contention, because according to him both outer and Inner senses give mere appearance, from which we could not know either body in itself, or soul in itself. Parting, then, from Kant. Paulsen resorts to a paradox which he shares with Fechner and Wundt. He admits, indeed. Kant's hypothesis that by inner sense we are conscious only of nental states, but he contends that this very consciousness is a knowledge of a thing in itself. He agrees with Fechner and Wundt that there is no substantial soui. and that soul is nothing but the mental states, or rather their unity-thus identifying it with Kant's synthetic unity. On this assumption he deduces that in being conscious of our mental states we are conscious of soui not merely as it appears, but as it is in itself, and therefore can infer similar souks, other psychical unities, which are also things in themselves.

But what is the essence of this poychical reality which we thus immediately and mediately know? Here he appeals to Schopenhauer's doctrine that will of some sort is the fundamental fact of mental life. Taking, then, will to be the essential thing in itself of which we are conscious, he deduces that we can infer that the poychical things in themseives beyond ourselves are also essentially
wills." Combining with this the central dogma of Fechner that spirit extends throughout the world of bodily appearance, he concludes that the realities of the world are "wills," that bodies are mere appearances of " wills," and that there is one universal and all-embracing spirit which is "will." His uitimate metaphysics, then, is this: Everything is spirit, and spirit is ". will." Lastly, by "will" he does not mean "rational desire," which is it proper meaning, but inapplicable to Nature; nor umenscious irrational win, which is Schopenbauer's forced meaning; nor unconscious ittelligent will, which is Hartmann's more correct meaning, though inapplicable to Nature. His " will " is instinct, imptlive fecting, a " will to live," not indeed unconscious, but often subiennscious, without idea, without reasoning about ends and means. yet pursuing ends-in short, what he calls, after K. E. von Biler, Zidstrebigkeil. How persistent is ancient animism! Empedocles, Plato and Aristotle; Telesio, Bruno and Campanclla: Leibnitr: the idealists, Schopenhauce and Hartmann, Fechner and Pauben; and the materiatist, Haeckel-all have agreed in according some sort of appetition to Nature. So prone are men to exaggerate adaptation into aim! So prone are they to transfer to Nature the part played hy the providence of God I (see Bacon, De augme :l

Noumenal idealism is not dead in Cermany. It died down for a time in the decline of Hegelianism and the rise of materialism. It has since revived. The pure idealism of Fichte is at the bottom of it all. The panlogism of Schelling and Hegel survives in its influence. So still more does the pantheism of Schopenhauer. The three most vital idealisms of this kind at the moment are the panpnermatima of Hartmann, combining Hegel with

Schopenhauer; the pantelcologism of Lotze, reviving Leibaitz; and the panpsychism of Paulsen, continuing Fechner, but with the addition of an epistemology combining Kant with Schopenbauer. All these systems of metaphysics, differ as they may, agree that things are known to exist beyond sensible phenomena, but yet are mental realities of some kind. Meanwhile, the natural substances of Aristotelian realism are regarded with common aversion.

5.-Prenomental Idealism ne Germany

Phenomenal idealism is the metaphysics which deduces that, as we begin by perceiving nothing but mental phenomena of sense, so all we know at last from these data is also phenomena of sense, actual or possihle. So far it is in general agreement not only with Hume, but also with Kant in his first two positions. But it follows Fichte in his revolt against the unknown thing in itself. On the other hand, as the speculative systems of noumenal idealism, starting from Fichte, succeeded one another, like ghosts who "come like shadows, so depart," without producing conviction, and often in flagrant opposition to the truths of natural science, and when, in consequence, a wave of materialism threatened to submerge mind altogether hy reducing it to a function of matter, many philosophers began to despair of the ambitious attempts which had been made to prove that there is a whole world of mind beyond phenomena, as the nommenalists had supposed. Thus they were thrown back on the limits of human knowledge prescrmed by Kant, but purged of the unknown thing in itself by Fichte. Phenomenal idealism is the Kantian contentlon that Nature, as known to science, is phenomena of experience. Unfortunately, the word "phenomenon" is equivocal (see Mind, xiv. 300). Sometimes it is used for any positive fact, as distinguished from its causa But sometimes also it means what appears, or can appear, to the senses, as distinguished from what does not appear, but can be inferred to exist. Now, Kant and his followers start from this second and narrower meaning, and usually narrow it still more by assuming that what appears to the senses is as mental as the sensation, being undistinguishable from it or from the idea of $i t$, and that an appearance is a mental idea(Vorstcllurg) of sense; and then they conclude that we can know by inference nothing but such mental appearances, actual and possible, and therefore nothing beyond sensory experience. When, on the other hand, the objects of science are properly described as phenomena, what is meant is not this pittance of sensible appearances, but positive facts of all kinds, whether perceptible or imperceptible, whet her capable of being experienced or of being inferred from, but beyond, experience, e.g. the farther side of the moon, which is known to exist only by inference. Hence the doctrine of Kant, that Nature as known to science is phenomena, means one thing in Kantism and another thing in science. In the former it means that Nature is mental phenomena, actual and possible, of sensory experience; in the latter it meass that Nature is positive facts, cither experienced or inferred. It is most important also to notice that Kantism denies. but acience asserts, the logical power of reason to infer actual things beyond experience. But the phenomenal idealists have not, any more than Kant, noticed the ambiguity of the term " phenomenon "; they fancy that, in saying that all we know is phenomena in the Kantian sense of mental appearances, they are describing all the positive facts that science knows; and they follow Kant in supposing that there is no logical inference of actual things beyond experience.

1. The Reacion to Kand.-The reaction to Kant ("Zurick zu Kant!") was begon by O. Liebmann in Kant and die Epigonen (1865). Immediately afterwards, in 1866, appeared Lange's Geschichte des Materialismus. In 1870 J. B. Meyer published hia Kants Psychologia, and in 1871 H , Cohen his more important Kants Theorie der Erfahrung, which led Lange to modify his interpretation of Kant in the second edition of his own book. Lange (a.p.) by his History of Materialism has exercised a profound infuence, which is due partly to its apparent success in ansvering materialism by Kantian arguments, and partly to
its ingenious attempt to give to Kantism itself a consistency, which, however, has only succeeded in producing a new Leggh philosophy of Neo-Kantism, differing from Kantism in modifying the a priori and rejecting the thing in itself. Lange to some extent modified the transcendentalism of Kant's theory of the origin of knowiedge. A priori forms, according to Kant, are contributions of the mental powers of sense, understanding, and reason; but, according to Lange, they are rooted in " the physico-psychical organiration." This modification was the beginning of a gradual lessening of the antithesis of a priori to a posteriori, until at last the a priori forms of Kant have been transmuted into "auxiliary conceptions," or "postulates of experience." But this modification made no difference to the Kantian and Neo-Rantian deduction from the epistemological to the metaphysical. Lange entirely agreed with Kant that a priori forms can have no validity beyond experience when he says: "Kant is at any rate so far justified as the principle of intution in space and time a priori is in $u s$, and it was a service to all time that he should in this first great example, show that what we possess a priori, just because it arises out of the disposition of our mind, beyond our experience has no longer any chaim to validity" (Hist. of Ma(erialism, trans. E. C. Thomas, ii. 203). Hence he deduced that whatever we know from sensations arranged in such a priori forms are ohjects of our own experience and mental phenomena. Hence also his answer to materialism. Science, says the materialist, proves that all known things are material phenomena. Yes, rejoins Lange, but Kant has proved that material are merely mental phenomena; so that the more the materialist proves his case the more surely he is playing into the hands of the idealist an answer which would be complete if it did not turn on the equivocation of the word "phenomenon," which in science means any positive fact, and not a mere appearance, much less a mental appearance, to sense and sensory experience. Having, however, made a deduction, which is at all events consistent, that on Kantian assumptions all we know is mental phenomena, Lange proceeded to reduce the rest of Kantism to consistency. But his ardent love of consistency led him far away from Kant in the end; for he proceeded consistently from the assumption, that whatever we think beyond mental phenomena is ideal, to the logical conclusion that in practical matters our moral responsibility cannot prove the reality of a moumenal freedom, because, as on Kant's assumption we know ourselves from inner sense only as phenomena, we can prove only our phenomenal freedom. Lange thus transmuted inconsistent Kantism into a consistent Neo-Kantism, consisting of these reformed positions: (1) we start with sensations in a priori forms; (2)all things known fiom these data are mental phenomena of experience; (3) everything beyond is idea, without any corresponding reality being knowable. "The intelligible world," he concluded, "is a world of poetry." Our reffection is that there is a great difference between the essence and the consistency of Kant's philosophy. Its csseace, as stated by Kant, was to reduce the logical use of reason to mental phenomena of experience in speculation, in order to extend the practical use of reason to the real noumena, or things in themselves, required for morality. Its consistency, as deduced by Lange, wes to reduce all use of reason, speculative and practical, to its logical use of proceeding from the assumed mental data of outer and inner sense, arranged a priori, to mental phenomena of experience, beyond which we can conceive ideas but postulate nothing. As \mathbf{H}. Vaihinger, hinself a profound Kantian of the new school, says: "Critical scepticism is the proper result of the Kantian theory of knowledge."

There is only one Neo-Kantlan way out of this dilemma, but it is to alter the original assumptions of Kant's psychological idcalism. This is the alternative of A. Riehl, who in Der philosophische Kriticispeohl mus ($1886,8 \mathrm{cc}$.) proposes the non- Kantian hypothesis through reason alone; they are knowable by empirical intuition, and therefore also by einpirical thought starting from intuition. Like all true followers of Kant, Richl prefers epistemology to metaphysics; yet in reality he founds a metarhysics on epistemology, which he calls "critical realism," so far as it asserts a knowledge of things
beyond phenoment, and "critical monism," so tar as it holds that these thinge are unilike both physical and psychical phenomena, but are nevertheless the common basis of both. He accepts the Kantian positions that unity of consciousness combines sensations by a priori synthesis, and that therefore all that natural science knows about matter moving in space is merely phenomena of outer sense; and he agrees with Kant that from these data we could not infer things in themselves by reason. But his point is that the very sensation of phenomena or appearances implies the things which appcar. "Sensory knowledge," he says, "is the knowledge of the relations of things through the relations of the sensations of things." Further, tholding that, "tike every other perception, the perception of a human body immediately involves the existence of that body." and, like Fiche, believing in a "common consciousness," he concludes that the evidence of sense is verited by "common consciousness " of the external world as objective in the Kantian sense of universally valid. He interprets the external world to be the common basis of physical and psychical phenomena. He rightly relies on the numerous passages, neglected by Lange, in which Kant regards things in themselves as neither phenomena nor ideas, but things existing beyond both. But his main reliance is on the passage in the Kriitik, where Kant, speaking of the Cartesian difficulty of communication between body and soul, suggests that, however body and soul appear to be different in the phenomena of outer and inner sense, what lies as thing in itself at the basis of the phenomena of both may perhaps be not so heterogencous (ungleicharfig) alter all. Riehl chaborates this bare suggestion into the metaphysical theory that the single basis of physical and psychical pheqomena is neither bodily nor mental, nor yet space and motion. In order to establish this paradox of "critical monism," he arcepts to a certain extent the psychophysical plitlosophy of Fectner. He agrees with Fechner that physical process of nerve and psychical process of mind are really the same psychophysical process as appearing on the one hand to an obseryer and on the other hand to one's own consciousness; and that physical phenomena only produce physical phenomena, so that those materialists and realists are wrong who say that physical stimuli produce sensations. But whereas Fechner and Paubsen hold that all physical processes are universally accompanied by psychical processes which are the real causes of psychical sensations. Riehl rejects this paradox of universal parallelism in order to fall into the equally paradoxical hypothesis that something or other, which is neither physical not psychical, causes both the physical phenomena of matter moving in space and the psychical phenomena of mind to arise in us as its common effects. In supposing a direct perception of such a nondescript thing, he shows to what st raits idealists are driven in the endeavour to supplement Kant's limitation of knowledge to phenomena by some sort of knowledge of thingz
2. The Reaction to Hume.- When the Neo-Kantians, led by Lange, had modified Kant's hypothesis of a priori forms, and retracted Kant's admission and postulation of things in themselves beyond phenomena and ideas, and that too without proceeding further in the direction of Fichte and the noumenal idealists, there was not enough left of Kant to distinguish him essentially from Hume. For what does it matter to metaphysics whether by association sensations suggest ideas, and so give rise to ideas of substance and causation a posteriori, or synthetic unity of consciousness combines sensations by a priori notions of substance and causation into objects which are merely mental phenomena of experience, when it is at once allowed by the followers of Hume and Kant alike that reason in any logical use has no power of inferring things beyond the experience of the reasoner? In either case, the effective power of inference, which makes us rational beings, is gone. Naturally then the reaction to Kant was followed by a second reaction to Hume, partly under the name of "Positivism," which has attracted a number of adherents, such as C. Goring (t841-1879), author of an incomplete System der Kritischen Philosophic (1874-1875) and E. Laas (g.o.), and partly under the name of the "physical phenomenology" of E. Mach.

Ernst Mach (q.v.) is a conspicuous instance of a confusion of physics and psychology ending in a scepticism like that of Hume. He tells us how from his youth be pursued physical and psychological studies, how at the age of fifteen he read Kant's Prolegomena, and later rejected the thing in itself, and came to the conclusion that the world with his ego is one mass of sensations. For a time, under the influence of Fechner's Psychophysics, he thought that Nature has two sides, a physical and a psychological, and added that all atoms have feeling. But in the progress of his physical work, which taught him, as he thought, to distinguish between what we see and what we
mentally supply, he soon passed from this noumenalism to a "universal physical phenomenology." It retains some relics of Fechner's infuence; first, the theory of identity, according to which the difference between the physical and psychical is not a dualism, but everything is at once both; and secondly, the substitution of mathematical dependence for physical causality, except that, whereas Fechner only denied causality between physical and psychical, Niach rejects the entire distinction between causality and dependence, on the ground that "the law of causality simply asserts that the phenomena of Nature are dependent on one another." He comes near to Hume's substitution of surcession of phenomena for real causality. He holds, like Hume, that nothing is real except our sensations and complexes of sensory elements; that the ego is not a definite, unalterable, sharply bounded unity, but its continuity alone is important; and that we know no real causes at all, much less real causes of our sensations; or, as he expresses it, bodies do not produce sensations, but complexes of sensations form bodies. If he has any originality, it consists in substituting for the association of ideas the "economy of thinking." by which he means that all thcoretical conceptions of physics, such as atoms, molecules, energy, \&c., are mere helps to facilitate our consideration of things. But he limits this power of mind beyond sensations to mere ideas, and like Hume, and also like Lange, holds at last that, though we may form ideas beyond sensations or phenomena, we cannot know things. If we ask how Mach arrived at this scepticism, which is contained in his well-known scientific work Dic Bfechanik in ihrer Entwickelung (1883 ; ed. 1go8) as well as in his psychological work on the Analysis of Sensations (Bcitradge sur Analyse der Empfindungen, 1886), we find two main causes, both psychological and epistemological; namely, his views on sense and on inference. In the first place, he displays in its most naked form the common but unproved idealistic paradox of a sense of sensations, according to which touch apprehends not pressure but a sensation of pressure, sight apprehends not colour but a sensation of colour, and there is no difference between the sensory operation and the sensible object apprehended by any sense, even within the sentient organism. Hence, according to him, sensations are not apprehensions of sensible objects (e.g. pressures felt) from which we infer similar objects beyond sense (e.g. similar pressures of outside things), but are the actual elements out of which everything known is made; as if sensations were like chemical clements. Within the limits of these supposed sensory elements he accords more than many psychologists do to sense; because, following the nativists, Johannes Müller and Hering, be includes sensalions of time and space, which, however, are not to be regarded as "pure intuitions" in the styie of Kant. But here again be identifies time and space with the sensations of them (Zcilempfindungen and Raumempfindungen). On the assumption, then, that time and space are not objects, but systems, of sensations, he concludes that a body in cime and space is " a relatively constant sum of touch-and-light-sensations, joined to the same time-and-space-scnsations," that each man's own body is included in his scnsations, and that to cxplain sensations by motions would only be to explain one set of sensations from another. In short, sensations are elements and bodies complexes of these elements. Secondly, his theory of inference contains the admission that we infer heyond sensations: he remarks that the space of the geometer is beyond space-sensations, and the time of the physicist does not coincide with time-sensations, because it uses measurements such as the rotation of the earth and the vibrations of the pendulum. But by inference beyond sense he does not mean a process of concluding from sensible things to danilar things, e.g. from tangible pressures to other similat pressures in the external world. Inference, according to him, is merely mental completion of sensations; and this mental completion has two characteristics: it only forms ideas, and it proceeds by an "economy of thought." In the course of his learned studies on the history of mechanics he became deeply impressed wilh Galileo's appeals to simplicity as a test of truth, and converted what is at best only one characteristic of thinking
into its essence. According to him, whatever inferences we make, certain or uncertain, are mere economies of thought, adapting ideas to sensations, and filling out the gaps of experience by ideas; whatever we inier, whether bodies, or molecules, or atoms, or space of more than three dimensions, are all without distinction equally provisional conceptions. things of thought; and "bodies or things are compendious mencal symbols for groups of sensations-symbols which do not exist outside thought." Moreover, he applies the same scepticism to cause and effect. "In Nature," says he," there is no cause and no effect." He thinks that repetitions of similar conjunctions occur in Nature, the connexion of cause and effect only in abstraction. He refers to Hume as recognizing no causality but only a customary and habitual succession, but adds that Kant rightly recognizes that mere observation cannot teach the necessity of the conjunction. But in reality his thcory is neither Hume's theory of association nor Kant's of an a priori notion of understanding under which a given case is subsumed. He thinks that there is a notion of understanding (Verstandesbegrif), under which every new experience is subsumed, but that it has been developed by former experience, instinctively, and by the development of the race, as part of the economy of thinking. "Cause and effect are therefore," he concludes, "thought-things of economical function (Gedankendinge von okonomischer Function)." His philosophy, therefore, is that all known things are sensations and complexes of sensory elements, supplemented by an economy of thinking which cannot carry us beyond ideas to real things, or beyond relations of dependency to real causes.
It is important to understand that Mach had developed this economical view of thought in 1872 , more than ten years before the appearance of his work on the history of mechanics as be tells us in the preface, where he adds that at a later date similar vicws were expressed by Kirchbofit in his Vorlesungen itber mathemolische Physik (1874). Kirchhofl asserted that the whole object of mechanics is " to describe the motions occurring in Nature completely in the simplest manner." This view involves the denial of force as a cause, and the assertion that all we know about force is that the acceleration of one mass depends on that of another, as in mathematics a function depends on a variable; and that even Newton's thitd law of motion is merely a description of the fact that two material points determine in one another, without reciprocally causing, opposite accelerations. It is evident that Kirchhoff's descriptive is the same as Mach's economical view. "When I say," says Mach, "that a body A excrts a force on a body B, I mean that B, on coming into contraposition with A , is immediately affected by a certain acceleration with respect to A." In a word, Mach and Kirchhoff agree that force is not a cause, convert Newtonian reciprocal action into mere interdependency, and, in old terminology, reduce mechanics from a natural philosophy of causes to a natural history of mere facts. Now, Mach applies these preconceived opinions to " mechanics in its development," with the result that, though he shows much skill in mathematical mechanics, he misrepresents its development precisely at the critical point of the discovery of Newton's third law of motion.
The true order of discovery, however, was as follows:-
(a) Sir Christopher Wren made many experiments before the Royal Society. which were afterwards repeated in a corrected form by Sir Isaac Newton in the Principic, experimentally proving that bodies of ascertained comparative weights, when suspended and impelled against one another, forced one another back by impressing on one another opposite chamges of velocity inversely as their weights and therefore masees; that is, by impreasing on one another equal and opposite changes of momentum.
(b) Wallis showed that such bodies reduce one another to a joint mass with a common velocity equal to their joint momentura divided by their joint weights or masars. This result is easily deducible also from Wren's discovery. If m and m^{\prime} are the masses 0 and ∇^{\prime} their initial velocitics, and V the common velocity, thea $m(v-V)=m^{\prime}\left(V-v^{\prime}\right)$, therefore $m \dot{m}+m^{\prime} v^{\prime}=\left(m+m^{\prime}\right) V$, and hence $\left(m o+m^{\prime} v^{\prime}\right) /\left(m+m^{\prime}\right)=V$.
(c) Wren and Huygens further proved that the law of equal action and reacion, already experimentally established by the former, is deducible from the conservation of the velucity of the common centre of gravity. which is the same as the common velocity of the bodies, that is, deducille from the fact that their common cenire
of gravity does not change its sate of motion or rest by the action
of the bodies betwen themselves; and they further extended the of the bodies between th
hw to bodies, qua elastic.
(d) Hence. hirst inductively and then deductively, the third law was originally discovered only as a law of collision or impact between bodics of ascertained weights and therefore mastes, impressing on one anorher equal and opposite changes of momentum, and always reducing one another to a joint mass with a common velocity to begin with, apart from the subsequent effects of clasticity.
(e) Newton in the Principia, repeating and correcting Wren's experiments on collision, and adding further instances from attractive forces of magnetism and gravity, induced the third law of motion as a general hw of all forces.

This order of discovery shows that the third law was generalized from the experiments of Wren on bodies of ascertained comparative weights or masscs, which are not material points or mass-points It shows that the bodics impress on one another opposite changes of velocity inversely as their weights or masses; and that in doing so they always begin by reducing one another to a joint mass with a common velocity, whatever they may do afterwards in consequence of their elarticities. The two bodies thercfore do not penetrate one another, but begin by acting on one another with a lorce precisely suficient, instcad of penetrating one another, to cause them to form a joint mass with a common velocity. Bodies then are triply extended substances, each occupying enough space to prevent mutual penetration, and by this force of motual impenctrability or interresistance cause one another to form a juint mass with a common velocity whenever they collide. Withdraw this foundation of bodies as inter-resisting forces causing one annther in collisicn to form a joint mass with a common velocity but without penetration, and the evidence of the third law disappears; for in the case of attraetive forces we know nothing of their modus operandi except by the analogy of the collision of inter-resisting bodics, which makes us believe that something similar, we know not what, takes plare in gravity, magnetism, electricity, \&c. Now, Mach, though he occasionally drops hints that the discovery of the law of collision comes first, yet never explains the process of development from it to the third law of motion. On the contrary, he treats the law of collision with other laws as an application of the third law of motion. because it is now unfortunately so taught in books of mechanics. He has therefore lost sight of the truths that bodies are triply extended. mutually impenetrable substances, and by this force causcs which reduce one another to a joint mass with a common velocity on collision, as for instance in the ballistic pendulum; that these lorces are the ones we best understand; and that they are reciprocal causes of the common velocity of their joint mase, whatever happens afterwards. In the case of this one force we know lar more than the interdependence supposed by Mach and Kirchhoff: we know bodies with impenetrable force causing one another to keep apart. It might have been expected that scepticism on this subject would not have had murh effert. But the idealists are only too glad to get ary excuse for denying bodily substances and causes; and, while Leibnitz supplied them with the fancied analysis of material into immaterial elements, and Hume with the reduction of bodies to assemblages of senstions, Mach adds the additional argument that bodity lorces are not conses at all. In Great Britain Maeh's scepticism was welcomed by Karl Pearson to support an idealistic phenomenalism derived from Hume, and by Ward to support a noumenal idealism derived from Lotze. No real advance in metaphysics can take place, and natural science itself is in some dangcr, until the true history of the evidences of the laws of meehanical force is restored; and then it will soon appear that in the force of collision what we know is not material points determining one another's opposite accelerations, but bodics by force of impenetrable pressure causing one another to keep apart. Mechanics is a atural philosophy of causes.
3. Dualism wilhin Exprrience--Besides those phlosophies which are reactions to Kant or to Hume, there are a number of other modern systems which start with the common hypothesis that knowledge is cxperience. The consequence is that whatever is true of expenience they transfer to all knowledge. One of the characteristics of actual experience is that lis object is, or has been, present to an experiencing subject; and of possible experience that it can be present. As a matter of fact, this characteristic differeatiates experience from inference. By inference wc know that things, such as the farther side of the moon. which neither are, nor have been, nor can be. present to an experiencing subject on the earth, nevertheless exist. But, on the hypothesis that knowledge contains no inferences beyond experience, it follows that all the objects of knowiedge, being objects of experience, are, or have been, or can be, presemt to an experiencing subject. Hence it is common nowadays to bold that there is indeed a difference between knower and known. ego and non-ego, sobject and object. but that they are inseparable; or that all known things are objects and subjects inseparably connected is
experience. This view, however, is held in different forms; and two opposite forms have arisen in Germany. " immanent phifosophy" and "empirio-criticism," the former nearer to Kant, the litter to Hume.

Immanent Philosophy is the hypotheis that the world is not tramsendent, but immanent in consciousness. Among the uphoders of this view are Anton von Leclair, who expresses fanameet it in the formula-" Denken einea Seips or gedachtcs pranoent Scin." and R. von Schubert-Soldern, Tho says that every fragment of the pretended transcendent world belongs to the immanent But the best known representative of Immanent Philosophy is W. Schuppe, who, in his Erkewntnistheoretische Logik (1878). and in his ahorter Grundriss der Eshenntnistheorie und Logik (1894), gives the view a wider scope by the contention that the real world is the common content or object of common consciousness, which, according to him, as according to Fichte, is one and the same in all individual men. Different individual consciousnesses plainly differ in having each its own content, in which Schuppe includes each individual's body as well as the rest of the things which come within the consciousness of each; but they also as plainly agree, e.t. in all admitting one sun. Now, the point of Schuppe is that, so lar as they agree, individual consciousnesses are not merety similar, but the same in essence; and this supposed one and the same essence of consciousness in different individuals is what he calls consciousness in gencral (Bewnsslsein uberhaupl). While in this ideatification he follows Fichte, in other respects he is more like Kant. He supposes that the conscious content is partly a posicriori, or consisting ol given data of sense, and partly a priori, or consisting of categorics of understanding, which, being valid for all objects, are contributed by the common consciousness. He differs, however, from Kant, not only because he will not allow that the given data are reccived from things in themsclves, but also because, Iike Mach. be agrees with the nativists that the data already contain a spatial coterminacy and a temporal determinacy, which he regards as a posteriori clements of the given, not like Kant, as a priori forms of sense. He allows, in fact, no a priori forms exccpt categories of the understanding. nnd these he reduces, considering that the most important are identity with difference and causality, which in his view are necessary to the judgments that the various data which make up a total impression (Gesammieindruck, Totaleindruck) are each different from the others, together identical with the total impression, and causally connected in relations of necessary sequence and coexistence. At the same time, true to the hypothesis of "immanence," he rigidly confines these categorics to the given data, and altogether avoids the inconsistent tendency of Kant to transfer causality from a necessary relation between phenomena to a necessary relation between phenomena and things in themselves as their causes, Hence he strictly confines true judgment and knowledge to the consciousness of the identity or difference, and the causal relations of the given content of the common consciousness. From this epistemology he derives the metaphysical conclusion tlat the things we know are indeed independent of my consciousness and of yours, taken individually, or, to use a new phrase, are "transsubjective": but. so far from being independent of the common coneciousness, one and the same in all of us, they are simply its contents in the inseparable relation of subject and object. To the objection that there are objects, e.g. atoms, which are never given to any consciousness, he returns the familiar Kantian answer that. though unperceived, they are perceptible. The whole known world. then according to him, is the perceived and the perceptible content of common consciousness.

The " empirio-criticism ${ }^{\text {m }}$ of R. Avenarius (q.0.) is the hypothesis of the inseparabitity of subject and object, or, to use his own phraseology, of ego and environment. in purely empirical, or a Eaphrion posteriori form. It is like "immanent philosophy." Eaphrios. in opposing experience to the transcendent: but it
also opposes experience to the transcendental. or a priori It opposcs ". pure experience " to "pure reason," while it agress with Kant's limitation of knowledge to experience. Avenarius held a view of knowledge very like that of Mach's view of the economy of thinking. In his turst philosophical treatise. Philosophie als Denken der Well gemùss dem Princip des kleinsien Krafimaasses, Prolegomena zu ciner Krilik der reines Erfahrung (1876), he based his views on the principle of least action, contending that. as in Nature the force which produces a change is the least that can be, so in mind belief tends in the easiest direction. In illustration of this tendency, he pointed out that mind tends to assimilate a new impression to a previous content, and by gencralization to bring as many impressions under as few general conceptions ns possible, and succeeds so fay as it generalizes from pure experience of the given. Nor is there any objection to this economical view of thought, as long as we remember what Avenarius and Mach forget, that the cescnce of thought is the least action neither more nor less than necessary to the point, which is the reality of things. Alterwards, In his Kritik der reinen Erfahreng (1888-1890), Avenarius aimed at giving a description of pure experience which he identified with the natural view of the world held by all unprejudiced persons. What, then. is this pure experience? "Every human individual," says he,
" originally accepts over against him an environment with manifold parts, other individuals making manifold statements, and what is stated in some way dependent upon the environment." Statements dependent upon the environment are what he means by pure experience. At first this starting-point looks like dualistic rcalism, but in reality the author only meant dualism within experience. By the environment he meant not a thing existing in itself, but only a counterpart (Gegenglicd) of ourselves as central part (Cenfolglied). "We cannot," he adds, "think ourselves as central part away." He went $s 0$ far as to aseert that, where one assumes that at some time there was no living being in the world, all one means is that there was besides oneself no other central part to whom one's counterparts might also be counterparts. The consequence is that all the world ndmiticd into his philosophy is what he called the "empirio-critical essential co-ordination" (empirio-krifische Prinsipialkoordination), an inseparable correlation of central part and counterpart, of ego and environment. Within this cssential co-ordination he distinguished three values: R-oalues of the environment as stimulus; C volues of the central nervous system; and E-volues of human staiements-the latter being characterized by that which at the time of its existence for the individual admits of being named, and including what we call sensations. \&c.i which depend indirectly on the environment and directly on the central nervous system, but are not, as the materialist supposes, in any way reducible to possessions of the brain or any other part of that systern. This division of values brings us to the second point in his philosophy. his theory of what he called "vital series" "by which he assayed to explain all life, action and thoughe. A vital serics he supposed to be always a reaction of C against disturbance by R, consisting in Grst a vital difference, or diminution by R of the mainmenance-value of C , and then the recovery by C of its maintenance-value, in accordance with the principle of least action. He further supposed that, while this independent vinal scries of C is sometimes of this simple kind, at orher times it is complicated by the addition of a dependent vital series in E, by which, in his fondness for too general and farfetched explanations, he endcavoured to explain conscious action and thought. (Thus, if a pain is an E-value directly dependent on a disturbance in \mathbf{C}. and a pleasure another E-value directly dependent on a recovery of C. it will follow that a fransition from pain to pleasure will be a vital series in E directly dependent on an independent vital series in \mathbf{C}, recovering from a vital difference to its main-tenance-maximum.) Lastly, supposing that all human processes can in this way be reduced to vial series in an essential co-ordination of oneself and environment, Avenarius held that this empirio-critical supposition, which according to him is also the natural view of pure experiences, contains no opposition of physical and psychical, of an outer physical and an inner psychical wordd-an opposition which seemed to him to be a division of the inseparable. He considered that the whole hypothesis that an outer physical thing causes a change in one's central nervous system, which again causes another change in one's inner psychical system or soul, is a departure from the natural view of the universc, and is due to what he called " introjection," or the hypothesis which encloses soul and its facultics in the body, and then, having created a false antithesis between outer and inner, gets into the difficulty of explaining how an outer physical stimulus can impart something into an inner psychical soul. He concluded therefore that, having disposed of this lallacy of introjection, we ought to return to the view of reality as an essential co-ordlnation of ego and environment, of central part and counterpart, with R-values, C-values and E-values

It is curious that Avenarius should have brought forward this artificial hypothesis as the natural view of the world, without reflecting that on the one hand the majority of mankind believes that the environment (R) exises, has existed, and will exist, without being a counterpart of any living being as central part (C) ; and that on the other hand it is so far from being natural to man to believe that sensation and thoughe (E) are different from, and merely dependent on, his body (C). that throughout the Homeric poems, though soul is required for other purposes, all thinking as well as sensation is regarded ac a purely bodily operation. It is indeed dificuit to assign any ratioral place to the empirio-criticism of Avenarius. It is materialistic without being materialism: it is r alistic without being realism. Its rejection of the whole relation of rhysical and psychical makes it almost too indefinite to classif among philosophical systems. But its main point is the essential co-ondination of ego and environment. as central part and counterpart. in experience. It is thercfore nearly connected with " Immanent philosophy." Schuppe. indeed, wrote an article in the Vierteljahrsschrifl of Avenatius to prove their essential agreement. At the same time Schuppe's hypothesis of one common consciousness uniting the given by a priori categories could hardly be accepted by Avenarius as pure experience, or as a natural view of the world. His "empiriocriticism ${ }^{*}$ ls idealistic dualism within experience in an a posteriori form. but with a tendency towards materialism.
4. Volunlaristic Phencmenalism of Wund.-Wundt's meta pbysics will form an appropriate conclusion of this sketch of Cerman idcalism, because his patient industry and eclectic epirit have fited him to assimilate many of the vicws of his
predecessors. Wundt preves that all idealisms are in a way one. He starts as a phenomenalist from the hyporhesis, which we bave just described, that knowledge is experieace containing subject and object in inseparable connexion, and has something in common whit the premature attempt of Avenarius to develop the hypothesis of dualism in experience into a scientific philosophy comprehending the universe in the simplest possible manner. Again he agrees with the resction both 10 Hume and 10 Kant in limiting knowledge to mental phenomena, and has affinities with Mach as well as witb Lange. His main sympathies are with the Neo-Kentians, and especially with Lange in modifying the a priori, and in extending the power of reason beyond phenomena to an ideal world; and yet the cry of his phenomenalism is not " back to Kant," but "beyond Kant." Though no noumenalist, in many details he is with noumenalists; with Fechner in psychophysics, in psychophysical parallelism, in the independence of the physical and the psychical chains of causality, in reducing physital and psychical to a difference of aspects, in substituting impulse for accident in organic evolution, and in wishing to recognive a gradation of individual splritual beings; with Schopenhauer and Hartmann in voluntarism; and even with Schelling and Hegel in their endcavour, albeit on an artificial method, to bring experience under notions, and to unite subject and object in onc concrete reality. He has a special relation to Fichte in developing the Kantian activity of consciousness into will and substituting activity for substantiality as the essence of soul, as wall as in hreaking down the antithesis between phenomena and things in themselves. At the same time, in spite of his sympathy with the whole development of idealison since Kant, which leads him to reject the thing in itself, to modify a priorism, and to stop at transcendent "ideals," without postulates of practical reason, he nevertheless has $s 0$ much sympathy with Kant's Kritik as on its theories of sense and understanding to build up a system of phenomenalism, according, to wbich knowledge begins and ends with ideas, and finally on its theory of pure reason to accord to reason a power of logically forming an "ideal" of God as ground of the moral "ideal" of humanity-though without any power of logically inferring any corresponding reality. He constructs bis system on the Kantian order-sense, understanding, reason-and exhibis most clearly the necessary consequence from psychological to metaphysical idealism. His philosophy is the best exposition of the method and argument of modern idealism-that wo perceive the mental and, therefore, all we know and conceive is the mental.

Wundt founds his whole philosophy on four psychological positions: his phenomenalistic theory of unitary experience, his voluntarism, his actualistic theory of soul, and his psychological theory of parallclism. They are positions also which decply affect, not only the psychological, but also the metaphysical idealisms of our time, in Germany, and in the whole civilized world.
i. His first position it his phenomenalistic theory of unitary experience. According to birn. we begin with an experience of ideas, in which object and idea are originally identical (Vorstellmansobject): we divide this unitary experience into its subjective and objective factors; and especially in natural science we so lar abstract the objects as to believe them at last to be independent things; but it is the office of psychology to warn us agninst this popular dualiscn. and to teach us that there is only a duality of psychical and physical, which are divisible, not separable, factors of one and the same content of our immediate experience; and experience is our whole knowledge. His metaphysical deduction from this peychological view is that all we know is mental phenomena, "the whole outter world exists for us oaly in our ideas" and all that our reason can logically do beyond these phenomem is to frame transcendent "ideals."
i. His second position is his voluntarism. He agrees with Schopewhauer that will is the fundamental form of the spiritual. He doos not mean that will is the only mental operation; for he recognizes idea derived from sensation, and foeling, as well as will. Morcover, he contends that we can neither have idea without lecting and will, nor will without idea and feetint; that idea alone wants ectivity, and will alope wants content; that will in ideating and activity (sortellewde Thatigheit), which alwayi includet modives
and ends and consequentiy ideal He is therefore follower of Schopenhauer as corrected by Hartmann. Like these predecessors, and like his younger contemporary Paulsen, in calling will funda. mental he includes impulse (Trisb). Accordingly he divides will iato two species: on the one hand, simple volition, or impulse, which in his view requires as motive a feeling directed to an end, and thercfore an idea, e.g. the impulse of a beast arising from hunger and aight of prey; on the other hand, complex volition issuing in a voluntary act requiring decision (Endscheidung) or conscious adoption of a motive, with or without choice. Like other German voluntarists, he imputes "impulsive will" to the whole organic worid. He follows Fechner closely In his answer to Darwin. If be is to be believed, at the bottom of all organic evolution organic impulses becoming habits produce atructural changes, which are transmiated by heredity; and as an impulse thus gradually becomes eecondarily automatic, the will passes to higher activitics, which in their turn become secondarily automatic, and 80 on. As now he supposes feeling even in "impulsive will" to be directer to an end. he deduces the conclusion that in organic evolution the pursuit of final causes precedes and is the origin of mechanism. But at what a cost I He has endowed all the plants in the world with motives, feelings directed to an end, and ideas, all of which, according to bim, are required for impulse! He apparently forgets that mere Peelingt of en produce actions, as when one writhes with pain. But even so, have plants even those lowest impulses from feelings of pain or pleasure? Wundt, however, having gone so far, there ptops. It is not necessary for him to lollow Schopenhauer, Hart. mann and Fechner in endowing the material universe with will or any other mental operation, because his phenomenalism already reduces Inorganic nature to mere objects of expericncing subjects. Wundt's voluntarism takes a new departure, in which, however, he was anticipated by the paradox of Descartes: that will is required to give assent to anything perceived (Principia philosophiac, 1. 34). Wundt supposes not only that all organisms have outer will, the will to act, but also that all thinking is inner will-the will to think. Now there is a wild to think, and Aristotle pointed out that thinking is in our power whenever one pleascs, whereas sense depends on an external stimuius (D_{0} anima, ii. 5). There is also an impulse to think, e.f. from toothache. But it does not follow that thought is will, or even that there is no thinking without either impulse or will proper. The real source of thinking is evidence. Wundt, however, having supposed that all thinking consists of ideas, next supposes that all thinking is willing. What is the source of this paradox? It is a confusion of impulse with will, and activity with both. He supposes that all agency, and therefore the agency of thinking, is will. In detail, to express this supposed inner wilf of thinking, be borrows from Leibnitz and Kant the term "apperception,' but in a sense of his own. Leibnitz, by way of distinction from unconscious perception, gave the name " apperception " to consciousness. Kant further Insisted that this apperception, "I think," is an act of spontaneity, distinct from sense, necrssary to regarding all my ideas as mine, and to combining them in a synthctic unity of apperception; which act Fichte afterwards devdoped into an active construction of all knowledsc, requiring will dire ted to the end of duty. Wundt, in consurpence, thinking with liunt that apperception is a spontaneous acuivity, and with Fichte that this activity requires will, and indeed that all activity is will, infers that apperception is inner will. Further, on his own account, he identifies apperception with the process of attention, and regards it as an act necessary to the genera! formation of compound ideas, to all association of ideas, to all imagimation and understanding. According to him, then, attention, even involuntary altention, requires inner will; and all the functions imputed by Hume to association, as well as those imputed to understanding by kint, require appenception, and therefore inner will. At the same time be does not suppose that they all require the same kind of will. In accordance with his previous divisic n of ourer will into impulsive and decisive, he divides the inner will of apperception into passive apperception and active apperception. Apperctution in general thus becomes activity of inner will, constituting the process of attention, passive in the form of impulsive will required for association, and active in the form of decisive will required for understanding and judgment. Now, beneath these confusing phrases the point to be regarded is that, in Wundt's opinion, though we can receive sensations, we cannot think at all beyond sense, without some will. This exaggeration of the real fact of the will to thlnk ignores throughout the position of litele man in the great world and at the mercy of things which drive him perforce to sense and from sense to thought. It is a substitution of will for evideoce as ground of assent, and a neglect of our consciousness that we often believe against our will (e.g. that we must dje), often without even an impulse to believe, often without taling any interest. or when taking intersst in something else of no importance. "The Dean is dead (Pray, what is trumps?)." Yet many psychologists accept the universality of this will to believe, and among them. James, who says that "it is far too little recognized how entirely the intellect is built up of practical interests." We should rather say " far too much." Wundt, however, goes still farther. According to him, that which acts in all organisms, that which acts in all thinking, that which divides unitary experience into subject and object,

XVIIIs
the source of self-corsciousncss, the tunity of our mental Iffe, "the most proper being of the individual subject is will." In short, his whole voluntarism means that, while the inorganic world is mere object, all organization is congealed will, and all thinking is apperceptive will. But it must be remembered that these conclusions are arrived at by confusing action, reaction, life, excitability, impulse, and rational desire, at] under the one word " will," as well as by omitting the involuntary action of inteltigence under the pressure of evidence. It may well be that impulsive feeling is the beginning of mind; but then the order of mind is feeling. sense, inference, will, which inst cad of first is last, and implies the others. To proceed, however, with volurtarism, Wundi, as we have seen, makes personality turn on will. He does not accept the universal voluntarism of Schopenhauer and Hartmann, but believes in individual wills, and a gradation of wills, in the organic world. Similarly, he supposes our personal individual will is a collective will containing simpler will-unities, and he thinks that this conclusion is proved by the continuance of actions in animals after parts of the brain have been removed. In a similar way he supposes our wills are included in the collective will of society. He does not, however, think with Schuppe that there is one common consciousness, but only that there is a collective consciousness and a collective will; not perceiving that then the sun-in his view a mere object in the experience of every member of the collection-would be only a collective sun. Lastly. he believes that reason forms the "ideal" of God as worldwill, though without proof of existence. On the whole, his voluntarism, though like that of Schopenhauer and Hartmann, is not the same; not Schopenhauer's, because the ideating will of Wundt's philosophy is not a universal irrational will; and not Hartmann's, because, although ideating will, according to Wundt's phenomenalism, is supposed to extend through the world of organisms, the whole inorganic world remains a mere object of unitary experience.
iii. His third position is his actualistic theory of soul, which he shares with Fichte, Heget, Fechner and Paulsen. When Fichte had rejected the Kantian soul in itself and developed the Kantian activity of apperception, he considered that soul consists in constructive activity. Fechner added that the soul is the whole unitary spiritual process manifested in the whole unitary bodily process without being a substance. Wund accepts Fichte's theory of the actuality, and Fechner's synechological view, of the soul. Taking substance entirely in the sense of substrate, he argues that chere is no evidence of a substantial substrate beacath mental operations; that there is nothing except unitary experience consisting of ideas, (eelings, volitions, and their unity of will; and that soul in short is not swbstantia, but actus. He dors not see that this unity is only apparent, for men think not always, and will not always. Nor does he see that a man is conscious not of idea, feeling, will, expcrience, but of somcthing conceiving, feeling, willing and experiencing, which he gradually learns to call himsell, and that he is never conscious of doing all this " minding " without his body. If, then, these mental operations. were merely actuality, they would be actuality of a man's bodily substance. In truth there is oo sound answer to Materialism, except that, besides bodily substance psychical substance is also necessary to explain how man performs mental actualities consciously (see case Physical Realism, ch. v.). Wundt, however, has satisfied himself, like Fechner, that there is no real opposition of body and soul, and concludes, in accordance with his own phenomerialism, that his body is only an object abstracted from his unitary experience, which is all that really is of him.
iv. Hence his fourth point is his psychological theory of parallelism of physical and psychical reduced to identity in unitary experience. Here his philosophy is Fechnerism phenomenalized. He accepts Fechner's extension of Weber's law of the external stimuli of sense, while judiciously remarking that " the physiological interpretation is entirely bypothetical." He accepts psychophysical parallelism in the sense that every. psychical process has a physical accompaniment, every physiological lunction has a psychical meaning, but neither external stimulus nor physiological stimulus is cause of a psychical process, nor vice versa. Precisely like Fechner, he holds that there is a physical causality and energy and there is a psychical causality and energy, parallels which never meet. He uses this psychical causality to carry nut his voluntarism into detail, regarding it as an agency of will directed to ends, causing association and understanding. and further acting on a principle which he calls the heterogony of ends; remarking very truly that each particular will is directed to particular ends, but that beyond these ends effects follow as unexpected consequences, and that this heterogony produces social effects which we call custom. But while thus sharply distinguishing the physical and the psychical in appearance, he follows Fechner in identifying them in reality; except that Fechner's identification is noumenal Wundt's phenomenal. Wundt does not allow that we know beyond experience any souls of earth, or any other inorganic being. He does not, therefore, allow that there is a universal series of physical and psychical paralles. According to his phenomenalism, the external stimulus and the physiological stimulus qre both parallele of the same psychical process: the external body, as well as
my body, is merely an object abstracted from an idea of my experience; and what is really known in every case is a unitary experience; divisible, but not separable, into body and soul, physical and psychical factors of one and the same unitary experience. Wundt is confined by his starting-point to his deduction'that what we know is mental phenornena, ideas regarded as objects and subjects of experience.

With these four positions in hand, Wundt's philosophy consecutively follows, beginning with his psychology. He begins with psychical elements, scnsations and feclings, but he asserts that these always exist in a psychical compound, from which they can be discovered only by analysis and abstraction; and his paradox that a pure sensation is an abstraction is repeated by W. James. Further, Wundt declares that the psychical compound of sensations, with which, according to him, we actually start, is not a complex sensation, but a compound idea; so that I am expected to believe that, when I hear the chord of D, I am not conscious of single sensa. tions of D, F, A, and have only a compound idea of the cliord-s if the hearing of music were merely a series of ideas! Wundt, however, has a reason for substituting compound idea for sensation: he accepts Lotze's hypothesis of local signs, and adds a hypothesis of temporal signs. He supposes that we have no sensations of space and time, as the nativists supposc, but that, while local signs give us spatial ideas, feelings of expoctation are temporal signs giving us temporal ideas, and that these ideas enter into the psychical compound, which is our actual starting-point. It follows that every psychical compound into which temporal and spatial idens enter must itself be an idea; and, as time at any rate accompanies all our eensations, it follows that every psychical compound of sensations, contalning as it does, always temporal, if not also spatial, ideas, must be a compound idea. and not, as nativists suppose, Schuppe for instance, a compound sensation. The next question is, how compounded? Wundt's answer is that inner impulsive will, in the form of passive apperception, forms compound ideas by association; so that all these operations are necessary to the starting-point. He prefixes to the ordinary associations, which descend from Hume, an associa. tion which he calls fusion (VerschmelsumR), and supposes that it is a fundamental process of fusing sensations with spatial and temporal ideas into a compound idea. But he also recognizes association by similarity or assimilation, or "apperception" in Herbart's more confined sense of the word, and association by contiguity, or complication. Recognizing, then, three kinds of association in all, he supposes that they are the first processes, by which inner will. in the form of passive apperception, gencrates ideas from sense. So far his psychology is a further development of Hume's. But he does not agree with Hume that mind is nothing but sensations, ideas, and associations, but with Kant, that there are higher combinations. According to him, inner decisive will, rising to active apperception. proceeds to what he calls "apperceptive combinations" (Apperceplionnerbindungen): first to simple combinations of relating and comparing, and then to complex combinations of synthesis and analysis in imagination and understanding; in consequence of which synthesis issues in an aggregate idea (Gesommfcorstellung), and then at last analysis, by dividing an aggregate idea into subject and predicate, forms a judgment (see further LoGic). The main point of this theory is that, if it were true, we should be for ever confined to a jumble of ideas. Wundt, indeed, is aware ol the consequences. If judgment is an analysis of an aggregate idea into subject and predicate, it follows, as he says, that in as judgment is an immediate, so is inference a mediate, reference of the members of atly aggregate of iseas to one another " (Syslem der Philosophie, 66, first ed.). He cannot allow any inference of things beyond ideas. His psychology poisons his logic.

In his logic, and especially in his epistemology. Wundt appears as a medistor between Hume and Kant, but with more leaning to the latter. While he regards association as lying at the basis of all knowledge, he does not think it sufficient, and objects to Hume that he does not account for necessity, nor for substance and causation as known in the sciences. He accepts on the whole the system of synthetic understanding which Kant superimposed on mere association. Yet he will not proceed to the length of Kant's transcendentalism. Between Hume's a posteriori and Kant's a priori hypothesis he proposes a logical thcory of the origin of notions beyond experience. He explains that the arrangement of facts requires "general supplementary notions (Hüljsbegriffe), which are not contained in experience itself, hut are gained by a process of logical treatment of this experience." Of these eupplementary notions he holds that the most gencral is that of causality, coning from the necessity of thought that all our experiences shall be arranged according to ground and consequent. That sense only gives to experience coexistences and sequences of appear. ances, as Hume said and Kant allowed, is also Wundt's starting. point. How then do we arive at causality? Not, says Wundt, by association, as Hume said, but by thinking; not, huwever, by a priori thinking, as Kant said, but by logical thinking, by applying the logical principle of ground and consequent (which Leibnilz had called the principle of sufficicnt reason) as a causal law to empirical appearances. Now, Wundt is aware that this is not elways possible. for he holds that the logical principle of ground belonge generally to the connexion of thoughts, the causal lav to
the combination of empirical appearances. Nevertheless he believes that, when we can apply measures to the combination of empirical appearances, then we can apply the logical principle as causal haw to this combination, and say that one appearance is the cause of another, thus adding a notion of causality not contained in the actual obacrvations, but specializing the general notion of causality. He quotes as an instance that Newton in this way added to the planetary appearances contained in Kepler's laws the gravitation of the planets to the sun, as a notion of causality not contained in the appearances, and thus discovered that gravitation is the cause of the appearances. But Newton had alrcady discovered beforehand in the mechanics of terrestrial bodics that gravitation constantly causes similar facts on the earth, and did not derive that cause from any logical ground beyond experience, any more than he did the thind law of motion. Wundt docs not realize that, though we can often use a cause or real ground (principinm essendi) as \boldsymbol{x} logical ground (principinm cognoscendi) for deducing effects, we can do 40 only when we have previously inferred from experience that that kind of cause does produce that kind of effect (see Logic). Otherwise, logical ground remains logical ground, as in any non: causal syllogism, such as the familiar one from " All men are mortal," which causcs me to know that I shall die, without telling me the cause of death. Wundt, however, having satisfied himseff of the power of mere logical thought beyond expericnce, goes on to furthet apply his hypothesis, and supposes that, in dealing with the physical world, logical thinking having added to experience the "pupplementary notion" of causality as the connexion of appearances which vary together, adds also the " supplementary notion" of wbstance as substratum of the connected appearances. But, using substance as he does always in the Kantian sense of permanent subsiratum bencath changing phenomena, and never in the Aristotelian sense of any distinct thing. he proceeds to make distinctiont between the applications of causality and of substance. Even in the physical, he confines substance to malter, or what Aristotle would call material causes, thus makes its power to be merely passive, and limits substantial causality to potential energy, while he supposes that actual causality is a relation not of substances but of events. On this false abstraction Sigwart has made an excellent criticism in an appendix at the end of his Logic, where be remarks that we cannot isolate events from the substances of which they are attributes. Motions do not cause motions; one body moving causes another body to move: what we know is causal substancess Secondly, when Wundt come to the prychical. he naturally infers from his narrow Kantian definition of subatance that there is no proof of a substrate over and above all mental operations, and falsely thinks that he bas proved that there is no substance mentally operating in the Aristotelian sense. Thirdly, on the grounds that logical thinking adds the notion of substance. as substrate, to experience of the physical, but not of the psychical, and that the most proper being of mind is will, he concludea that wills are not active substances, but substance-generating activities (" nicht thătige Substanzen sondera substanzerreugende Thatigkeiten," System, 429).

What kind of metaphysics, then, follows from this compound of psychology and epistemology? As with Kant against Hume, so with Wundt against Mach and Avenarius, the world we know will contain something more than mere complexes of sensations, more than pure experience: with Wundt it will be a world of real causes and some substances, constituted partly by experience and partiy by logical thinking, or active inner will. But as with Kant, so with Wundt, this world will be only the richer, not the wider. for these notions of understanding; because they are only contributed to the original experience, and, beint mentally contributed, only the more surely confine knowtedge to experience of mental phenomena. Hence, according to Wundt, the world we know is still unitary experience, distinguished, not separated, into subject and object, aggregates of ideas analysed by judgment and combined by inference, an object of idea elaborated into causes and substances by logical thinking, at most a world of our idens composed out of our sensations, and arranged under our categories of our understanding by our inner withs, or a world of out ideating wills; but nothing else. It is Wundt's own statement of his solution of the epistemological prohlem "that on the one hand the whole outer world exists for us only in our ideas, and that on the other hand a consciousness without objects of idea is an empty abstraction which possesses no actuality " (Systcm, 212-213). There remains his theory of reason. His pupil, Oswald Külpe (1862-
), who bases his Grundriss der Psychologic on the hypothesis of unitary experience, says in his Einleilung in die Philosophit (8895 ; $4^{\text {th }}$ ed. 1907) that Wundt in his System derives the right of metaphysics to transcend experience from similar procedure
within the limits of the special sciences. This is Wundt's view, but only in the sense that reason passes from idcas to "- ideals," whether in the special sciences or in metaphysics. Reason, as in most modern psychologies and idealisms, is introduced by Wundt, after all sorts of operations, too late; and, when at length introduced, it is described as going beyond ideas and notions to "ideals" (Ideen), as an idcal continuation of series of thoughts beyond given experience-nothing more. Reason, according to Wundt, is like pure reason according to Kant; except that Wundt, receiving Kantism through NeoKantism, thinks that reason arrives at "ideals" not a priori, but by the logical process of ground and consequent, and, having abolished the thing in itself, will not follow Kant in his inconsequent passage from pure to practical reason in order to postulate a reality corresponding to "idcals" beyond experience. Wundt, in fact, agrees with Lange: that reason transcends experience of phenomena only to conceive "ideals." This being so, he finds in mathematics two kinds of transcendencereal, where the transcendent, though not actual in experience, can become parily so, e.g. the divisibility of magnitudes; imaginary, where it cannot, e.g. n-dimensions. He supposes in metaphysics the same transcendence in forming cosmological, prychological, and ontological "idenk." He supposes real as well as imaginary transcendence in cosmological "ideals"; the former as to the forms of space and time, the latter as to content, e.g. atoms. But he limits psychological and ontological "ideals" entirely to imaginary transcendence. The result is that he confines metaphysical transcendence to "a process into the imaginary" as regards the subetantial and causal content of cosmological "ideals," and altogether as regards psychological and ontological "ideals." Thus, according to him, in the first place reason forms a cosmological "ideal" of a multitude of simple units related; secondly, it forms a psychological "ideal" of a muititude of witls, or substance-gencrating activities, which communicate with one another by ideas so that will causes ideas in will, while together they constitute a collective will, and it goes on to form the moral ideal of humanity (des silliche Menschheitsideal); and, thirdly, it forms an ontological "ideal " of God as ground of this moral "ideal," and therewith of all being as means to this end, and an "ideal " of God as world-will, of which the world is development, and in which individual wills participate each. in its sphere. "Herein," says Wundt, "consists the Imperishable truth of the Kantian proposition that the moral order of the world is the single real proof of the existence of God " (Systom, 405; cf. 439). "Only," he adds, "the expression proof is here not admissihle. Rational 'ideals' are in general not provable." As the same limit is applied by him to all transcendent rational "ideals," and especially to those which refer to the content of the notion of the world, and, like all psychological and ontological "ideals," belong to the imaginary transcendent, his conclusion is that reason, in transcending experience, logically conceives "ideals," but never logically infers corresponding realities.

The conclusion that reason in transcending experience can show no more than the necessity of "ideals" is the only conclusion which could follow from Wundt's phenomenalism in psychology, logic, and epistemology. If knowledge is experience of ideas dist inguished by inner will of apperception into subject and object in inseparable conncxion, if the starting-point is ideas, if judgment is analysis of an aggregate idea, if inference is a mediate reference of the members of an aggregate of ideas to one another, then, as Wundt says, all we can know, and all reason can logically infer from such data, is in our ideas, and consciousness without an object of idea is an abstraction; so that reason, in transcending experience, can show the necessity of ideas and " ideals," but infer no corresponding reality beyond, whether in nature, or in Man, or in God. Wundt, starting from a psychology of unitary experience, deduces a consistent metaphysics of no inference of things transcending experience through-out-or rather until he came to the very last sentence of his System der Philosophic (1880), where he suddenly passes from a necessity of "ideals" (Ideen), to a necessity of "faith"
(Clawben), without " knowledge " (Wissen). He forgets apparently that faith is a belief in things beyond ideas and ideals, which is impossible in his psychology of judgment and logic of mference. The fact is that his System may easily seem to prove more than it does. He describes it as idealism in the form of ideal realism, hecause it recognizes an ideating will requiring substance as sabstratum or matter for outer relations of phenomena. But when we look for the evidence of any such will beyond ourselves and our experience, we find Wundt offering tothing but an ontological "ideal" of reason, and a moral "ideal" requiring a religious "ideal," but without any power of inferring a corresponding reality. The Systom then ends with the necessity of an "ideal" of God as world-will, but provides no ground for the necessity of any belief whatever in the being of God, or indeed in any being at all beyond our own unitary experience.
Wundt, however, alterwards wrote an Einleifung in die Philosophic (rgOs ; 4th ed., 1906), in which be speaks of realism in the form of idcal realism as the philosophy of the future. It is not to be idealism which resolves everything into spirit, hut realism which gives the spiritual and the material each its own place in harmony with scientific consciousness. It is not to be dualistic but monistic realism, because matter is not separate from spirit. It is not to be materialistic hut ideal realism, because ibe physical and the psychical are inseparahle parallels inexplicable by one another. It is to be monistic ideal realism, like that of Fichte and Hegel; not, however, like theirs idealistic in method, a Phantastisches Begrifsgebiude, bot realistic in method, a Wissenschofliche Philosophie. It is to be ideal realism, as in the System. It is not to be a species of idealism, as in the Systom-hut of realisn. How are we to understand this change of front? We can only explain it by supposing that Wundt wishes to believe that, beyond the " ideal," there realiy is proof of a transcendent, ideating, sub-stance-generating will of God; and that he is approaching the noumenal voluntarism of his younger contemporary Paulsen. But to make such a conversion from phenomenalism plausible, it is necessary to be silent about his whole psychology, logic, and epistemology, and the consequent himitation of knowledge to experience, and of reason to ideas and "ideals," without any power of inferring corresponding things.

What a pity it is that Wundt had committed himself hy his psychology to phenomenalism, to unitary experience, and to the limitation of judgment and reason to ideas and idealst For his phenomenalism prevents him from consistently saying the truth inferred by reason-that there is a world beyond experience, a world of Nature, and a will of God, real as well as ideal. To understand Wundt is to discover what a mess modern poychology has made to metaphysics. To understand phenomenal idealism in Germany is to discover what a narrow world is to be known from the transcendental idealism of Kant shorn of Kant's inconsistencies. To understand noumenal ideaksm in Germany and the ris: of metaphysical idealism in modern times is to discover that psychological is the origin of all metaphysical ideahism. If we perceive only what is mental, all that we know is only mental. But who has proved that psychological starting point? Who has proved that, when I scent an odoar in my nostrils, I apprehend not odour but a sensation of odour; and so for the other senses? Sensation, as Aristotie said, is not of itself: it is the apprehension of a sensible object in the organism. I perceive pressure, heat, colour, sound, flavour, odour, in my five senses. Having felt reciprocal pressures in touch, I infer similar pressures bet ween myseif and the external world.

6.-Englisa Idealism

The Follotwers of Hume's Phenomenalism.-Compared with the great systems of the Germans, English idealism in the igth century shows but little originality. It has been largely borrowed either from previous English or from later German idealism, and what originality it has possessed has been mainls shown in that spirit of eclectic compromise which is so dear to the English mind. The predominant infuence, or the Fhole,
has been the phenomenalism of Hume, with its slender store of sensations, ideas and associations, and its conclusion that all we know is sensations without any known thinkers or any other known things. This phenomenalism was developed by James Mill (1773-1836) and J. S. Mill (1806-1873), aad has since been continued by A. Bain. It also became the basis of the philosophies of Huxley and of Spencer on their phenomenalistic aide. It is true that Spencer's "transfigured realism" contains much that was not dreamt of by Hume. Spencer widens the empirical theory of the origin of knowledge by his brilliant bypothesis of inherited organized tendencies, which hns influenced all later psychology and epistemology, and tends to a kind of compromise between Hume and Kant. He describes his belief in an unknowable absolute as "carrying a step farther the doctrine put into shape by Hamilton and Mansel." He develops this belief in an absolute in connexion with his own theory of evolution into something different both from the idealism of Hume and the realism of Hamilton, and rather falling under the head of materialism. Nevertheless, as he believes ali the time that everything knowable throughout the whole world of evolution is phenomena in the sense of subjective aflections of consciousness, and as he applies Hume's distinction of impressions and ideas as a distinction of vivid and faint atates of consciousness to the distinction of ego and non-ego, spirit and matter, inner and outer phenomena, his philosophy of the world as knowable remuins within the limits of phenomenalism. Nothing could be more like Hume than his final statement that what we are conscious of is subjective affections produced by abjective agencies unknown and unknowable. The "antirealism,", which takes the lion's share in "transfigured realism," is simply a development of the phenomenalism of Hume. Hume was also at the bottom of the philosophies of G. H. Lewes, who held that there is nothing but feclings, and of W. K. Clifford. Nor is Ilume yet dethroned, as we see from the works of Karl Pcarson and of William James, who, though an American, has exercised a considerable influence on English thought. The most flourishing time of phenomenalism, however, was during the lifelime of J. S. Mill. It was counteracted to some extent by the study at the universities of the deductive logic of Aristotle and the inductive logic of Bacon, by parts of Mill's own logic, and by the natural realism of Reid, Stewart, and Hamilton, which met Hume's scepticism by asscrting a direct perception of the external world. But natural realism, as finally interpreted by Hamilton, was too dogmatic, too unsystematic, and too confused with elements derived from Kantian idealism to withstand the brilliant critisism of Mill's Examiration of Sir William Hamillon's Philosophy (1865), a work which for a time almost persuaded us that Nature as we know it from sensations is nothing but permanent possibilities of scensation, and onesolf only a series of states of consciousness.
2. The Infucnce of Kant and Hegal.-Nevertheless, there have never been wanting more sparing spirits who, shockod at the narrowness of the popular phenomenalism of Hume, have tried to find a wider idealism. They have, as a rule, mought it in Germany. Before the beginning of the 1 gth century, Kant had made his way to England in a cranslation of some of his works, and in an account of the Elcments of the Critical Philosophy by A. F. M. Willich, both published in 1798 . After 2 period of struggle, the influence of Kant gradually extended, and, as we see in the writings of Coleridge and Carlyle, of Hamilton and Mansel, of Green and Caird, of Laurie, Martineau and others, has secured an authority over English thought almost equal to that of Hume (sec IDEalist). Both philosophers appeal to the English love of experieace, and Kant had these advantages over Hume: that within the narrow circle of sensible phenomena his theory of understanding gave to experience a fuller content, and that beyond phenomena, however inconsistently, his theory of reason postulated the reality of God, freedom and immortaliny. Other and wider German philosophies gradually followed that of Kant to England. Coleridge (1272-1834) not only called attention to Kant's distinclion
between understanding and reason, but also introduced his countrymen to the noumenal idcalism of Schelling. In the Biographia Likeraria ($\mathrm{r}_{1} \mathrm{I} 7$) be says that in Schelling's Nutur. philosophic and System des transcendentalen Idcalismus be first found a general coincidence with much that he had toited out for himself, and he repeated some of the main tenets of Schelling. Carlyle (1795-188t) laid more emphasis on Fichte. At the height of his career, when between 1840 and 1850 many of Fichte's works were being translated in the Catholic Series, he called attention to Fichte's later view that all earthly things are but as a vesture or appearance under which the Divine idea of the world is the reality. Extravagant as this noumenalism is, it was a healthy antidote to the phenomenalism of the day. Among other followers of German idealism were J. F. Ferrier (q.v.), who adopted the hypothesis of Schelling and Hegel that there is one absolute intelligence (see his Lectures and Philosophical Remains, 1866, i. 1-33; ii. $545-568$), and J. Hutchison Stirling (q.v.). About the same time Benjamin Jowetl (g.v.) had been studying the philosophy of Hegel; but, being a man endowed with much love of truth but with little belief in first principles, he was too wise to take for a principle Hegel's assumption that different things are the same. He had, however, sown seeds in the minds of two distinguished. pupils, T. H. Green and E. Caird (q.o.). Both proceeded to take Hegelianism seriously, and between them spread a kind of Hegelian orthodoxy in metaphysics and in theoloky throughout Great
 tried to effect 2 harmony of Kant and Heget by proceeding from the epistemology of the former to the metaphysics of the latter. Taken for granted the Kantian hypor hesis of a sense of sensations requiring synthesis by understanding, and the Kantian conclusion that Nature as known consists of pbenomena united by categories as objects of experience, Green arguci, in accordance with Kant's first position, that knowledge, in order to unite the manifold of sensations by relations into related phenomena, requires unifying intelligence, or what Kant called synthetic unity of apperception, which cannot itself be sensation, because it arranges sensations; and he argued, in accordance with Kant's second position, that therefore Nature itself as known requires unifying intelligence to constitute the relations of its phenomena, and to make it a connected world of experience. When Green said that "Nature is the system of related appearanees, and related appearances are impossible apart from the action of an intelligence," be was speaking as a pure Kantian, who could be answered only by the Aristotelian position that Nature consists of related bodiea beyond appearances, and by the realistic supposition that there is a tactical sense of related bodies, of the iater-resisting members of the organism, from which reason infers similat related bodies beyond sense. But now, whatever opinion we may kave about' Nature, at all events, as Green saw, it does not come into existence in the process by which this person or that begins to think Nature is not my nature, nor your nature, but one. From this iact of unity of Nature and of everything in Nature, combined witb the two previous positions accepted, not from Nature, but from Kant, Green proceeded to argue, altoget her beyond Kant, that Nature, being one, and also requiring unifying intelligence, requires one intelligence, an eternal intelligence, a single spiritual principle, prior to, and the condition of, our individual knowledge. According to him, therefore, Nature is one system of phenomena united by relations as objects of experience, one system of related appearances, one system of one eternal intelligence which reproduces itself in us. The "true account " of the world in his own words is "that the concrete whole, which may be described indifferently as an eternal intelligence realized in the related facts of the world, or as a system of related facts rendered possible by such an intelligence, partially and gradually reproduces itsell in us, communicating piecemeal, but in inseparable correlation, understanding and the facts understood, experience and the experienced world." Nobody can mistake the Schellingian and Hegelian nature of this conclusion. It is the Hegelian view that the world is a system of absolute reason. But it is
not a Kentian view; and it is necessary to correct imo confusions of Kant and Hegel, which have been imported with Hegelianism by Green and Caird. Ferrier was aware that in Kant's system "there is no common nature in all intelligence " (Lectures, ii. s(8). Green, on the other hand, in deducing his own conclusion that the world is, or is a system of, one eternal intelligence, incautiously put it forward as "what may be called hroadly the Kantian view" (Proligomena, 8 36), and added that he follows Kant "in maintaming that a single active conscous principle, by whatever name it be calied, is necessary to constitute such a werld, as the condition under whichatone phenomena, i.e. appearances to consciousness, can be related to each other in a single universe' (\$ 3). He admitted, however, that Kant also asserted, beyond ths single umverse of a single principle, a wortd of unk nowable things in themselves, which is a Kantian not a Hegelian work. But Caird endeavoured to break down even e. calrd. this second barrier between Kant and Hegel. Accordin itself (which he at first speaks of as affecting our sensibility) to a noumenon which is projected by reason itself " (Essays, ii. 405); and in the Transcendental Dialectic, which forms the last part of Kant's Kritik, the noumenon becomes the object of an intuitive understanding "whose thought," says Caird, " is one with the existence of the objects it knows" (ibid. 412, 413). Kant, then, as interpreted by English Hegelians, already believed, before Hegel, that there is one intelligence common 10 all individuals, and that a noumenon is a thought of this common intelligence, "an ideal of reason "; so that Kant was trying to be a Hegeiian, holding that the world has no being beyond the thoughts of one inteHigence. But history repeats itself; and these same two interprelations of Kant had already been made in the lifetime of Kant by Fichte, in the two Introductions to the "Wissenschaftstehre," which he published in his Philosophical Journal in 1797 . Now, the curious fact is, that Kant himself wrote a most indignant letter, dated 7 th August 1799 (Kani's Werke, ed. Hartenstein, viii. 600-601), on purpose to repudiate all connexion with Fiche. Fichte's "Wissenschaftslehre;" he said, is a completely untenable system, and a metaphysics of fruitless apices, in which he disclaimed any participation! bis own Krink he refused to regard as a propaedeutic to be construed by the Fichtian or any ot her standpoint, declaring that it is to be understood accotding to the letter; and he went so far as to assert that his own critical philosophy is so satisfactory to the reason, theoretical and practical, as to be incapable of improvement, and for all future ages indispensable for the highest ends of hamanity. After this letter it cannot be doubted that Kant not only differed wholly from Fichte, both about the synthetic unity of apperception and about the thing in itself, but also is to be construed fiterally throughout. When he said that the act of consciousness "I think," is in allem Bewusstsein cin und dasselbe, he meant, as the whole context shows, not that it is one in all thinkers, but only that it accompanies all my other ideas and is one and the same in all my consciousness, while it is different in different thinkers. Though again in the Transcendental Dialect he spoke of pure reason conceiving " ideals " of nowmena, he did not mean that a noumenon is nothing but a tbought arising only through thinking, or projected by reason, but meant that pure reason can only conceive the "ideal" white, over and above the "ideal" of pure reason, a noumenon is a real thing, a a hing in itself, which is not indeed known, but whose existence is postulated by practical reason in the three instances of God, freedom, and immontality. Consequemly, Kant's explamation of the unity of a thing is that there is always one thing in itself causing in us many phenomena, which as understood by us are objectively valid for all our consciousnesses. What Kant never said and what his whole philosophy prevented his saying, was that a single thing is a single thought of a single consciousness; eit her of men, as in Fichte's philosophy, or of God and man, as in Heget's. The passage from Kant to Hegel attempted by Green. and the harmony of Kant and Hegel attempted by Green and Caind, are unhistorical, and have cused much confusion of
thought. The success, therefore, of the works of Green and Caird must stand or fall by their Hegelianism, which has indeed secured many adherents, partly metaphysical and partly theological. Among the former we may mention W. Wallace, the translator of most of Hegel's Encyklopadic, who had previously learat Hegeliansm from Ferrier, W. H. Faurbrother, who has written a Tauthful account of The Philosophy of Thomas Hull Green (1806), R. L. Nettleship, D. G. Ritchie, J. H. Murhead, J. S. Mackenzic, and J. M. E. M'Taggart, who closes his acute Studies in Hegelian Cosmology (1001) with " the possibility of finding, above all knowledge and volition, one all-embracing unity, which is only not true, only not good. because all truth and all goodness are but distorted shadows of its absolute perfection' das Unbegreifiche, weil es der Begriff selbst ist."
There are still to be mentioned two English Hegelians, who have not confused Kant and Hegel as Green did: namely, Simon Somerville Laurie ($1820-1900$) and F. H. Bradiey (b 1846), fellow of Merton College, Oxford.
Lauric wrote Mrtaphystca, noxd et betusta, a Retwrn to Dualism. by Scotus Novanıcus (1884 , 2nd ed., enlarged. 1889). His attitude to Green is expressed towards the end of his book, where Lewite he says: "The more recent argument for God which resolves itself into the neecessiny of a self-distinguishing one basis to which mature as a mere system of relations must be referred, is simply the old argument of the necessity for a First Cause dressed up in new clothes. Not by any means an argument to be despised. but stopping short of the truth through an inadequate analytic of knowiedge." His atm is to remedy this defeet by psychology. under the conviction tlat a true melaphysics is at bottom Piychology. and a true psychology fundamentally metaphysica fis psychology is founded on a proposed distinction belween "attuilion". and reason. His theory of "altuilion." by which he supposes thit we brrome "conscious of objects outside oursclves, is his " return to dualism." and is indeed so like natural realism a: to suggest that. like Ferrier, the starts from Hamilton to end in liegel. As, bowever, he does not suppose that we have a direct perception of someiting resisting the organism, such as Hamilion maintained, it becomes necessary to state exactly what he means by "altuition." It is, according to him. somet hing more than sensation, but less than perception: it is common to us with lower anmals such as dogs; its operation consisis in co-ordinating sensutions into an aggregate which the subject throws back into space. and thereby has a consciousness of a total object outside itself, e.f. a stone or a stick. 2 man or a moon. He carries its, operation before reason still farther. supposing that " attuition " makes particular infirences about outside objects, and that a man, or a dog, through association "attuites" sequence and invariableness of succession. and, in fart. gets as far in the direction of causation as Hume thought it possible to go at all. Laurie's vicw is that a dog who has no higher farulty than "attuition." can go no farther; but that a man goes farther by reason. He thinks that "attuition" gives us consciousness of an object, but without knowiledge, and that knowledge begins with reason. His theory of reason brings him into contact with the German idealists: he accepts from Kant the hypothexis of synthesis and a priori categorics, from Fichte the hy poilhesis that will is necessary to reason, from Schelling and Hegel the hypothesis of universal reason, and of an identity between the cosmic reason and the reason of man. in which he agrees also with Green and Caird. But he has a peculiar view of the powers of reason: that (1) under the law of excluded middle it states alterna. tives. A or B or C or D: (z) under the law of contradiction it negates B. C. D: (3) under the law of sufficient reason it says "therefore"; and (4) under the law of identity it concludes. A is A. In working out this process he supposes that meason throws into consciousness a priori categories. syniteric predicates a priori. or, as he also calls them. "diolectic percepts." Of these the post importamt is cause. of which his theory, in short, is that hy this a priori category and tbe process of reason we go on froni sequence to consequence; first stating that an effect may be caused by several alternatives, then negating all but one, next concluding that this one as sufficient reasor is cause, and finally attaining the necessity of the causal nexus by con: verting gasality into identity, eq instead of "Fire burns wood." putting "Fire is comburent, wond is combustible." Lastly. while he agrees with Kant about a priori categories, he differs about the knowledge to be got out of them. Kant, applying them only to sensations. concluded that we can know nothing beyond by their means But Lauric. applying them to "attuitions" of objects outside. considers that, though they are" reason-born." yee they make us know the objects outside to which they are applied. This is the farthest point of his dualism. which sugeests a realistic theory bf knowledge. different in procese from Hamilton's, but with the same result. No so: Lauric is a Hegelian, using Kant's categories, as Hegel did. to argue that they are true not only of thoughts but of things; and for the same reason, that things a nd thoughts are the same. At first in his psychology he speaks of the "ateuition"
and the rational perception of an outside object. But in his metaphysics founded thereon he interprets the outside object to mean an object outside you and me, but not self-subsistent: nox outside universal reason, but only ". Beent reason." He quotes with approval Sihelling's phrase, "Nature is visible Inteltigence and Intelligence visible Nalure." He agrces with Hegel that there are two fundamental identitics. the idenity of atl reason, and the identity of all reason and all being. Hence, he explains. what is a duality for us is only a "quasi-duality" from a universal slandpoint. In fact, his dualism is not realism, but merely the distinction of subject and object within idealism. Laurie's metaphysics is an attempt to supply a psychological propacdeutic to Hegelian metaphysics.
Bradley's Appearance and Reality (1803) is a more original performance. If proceeds on the opposite method of making Bradoy. melaphysics independent of psychology. "Melaphysics," says he, " has no direct interest in the origin of ideas" (254), and "we have nothing to do here with the psychological origin of the perception" (3s). This metaphysical method, which we have already seen attempted by Lotze, is the true method, for we know more about things than about the beginnings of our knowledge. Bradley is right to go straight to reality, and right also to inquire for the absolute, in order to take care that his metaphysical view is comprehensive enough to be true of the world as a whole. He is unconsciousty returning to the metaphysics of Aristote in spirit; yet he differs from it toto coclo in the letter. His starting-point is the view that things as ordinarily understood, and (we may add) as Aristote understood them (though with important qualifications) are self-contradictory, and are therefore not reality but appearances. If they were really contradiclory they would be non-existent. However, he illustrates their supposed contradictoriness by examples, such as one substance with many attributes, and motion from place to place in one time. But he fails to show that a substance is one and many in the same respect, and that motion requires a body to be in two places at the same moment of one time. There ts no contradiction (as Aristotie said) between a man being determined by many attributes, as rational, six-foot-high, while, and a father, and yet being one whole substance distinct from any other, including his own son; nor is there any contradiction between his body being in bed at $8 . \mathrm{r} 5$ and at breakfast at 8.45 within the same hour. Bradley's supposed contradictions are really mere differences. So tar he reminds one of Herbarl, who founded his "realistic" metaphysics on similar misunderstandings; except that, while Herbart conctuded that the world consists of a number of simple "reals," each with a simple quality but unknown, Bradley concludes that reality is one absolute experience which barmonizes the supposed contradictions in an unknown manner. If his starting.point recalls Herbart his method of arriving at the absolute recalls Spinoza. In his Table of Contents, ch. xiii., on the General Nature of Reality, he says, in true Spinozistic vein, "The Real is one substantially. Plurality of Reals is not possible." In the text he explains that, if there were a plurality of reals, they would have to be beings independent of each other, and yet, as a plurality related to each other-and this again seems to him to be a contradiction. Throughout the rest of the work he often repcats that a thing which is related cannot be an independent tbing. Now, if "independent" means "existing alone" and unrelated the same thing could not be at once related and independent; and, taking substance as independent in that sense, Spinoza concluded that there could only be one substance. But this is not the sense in which a plurality of things would have to be independent in order to exist, or to be substances in the Aristotclian sense.
 means "existing apart." i.e. existing differently: it does not mean " existing alone," solitary, unrelated. This existing apart is the only sease in which a plurality of things need be independent in order to be real, or in order to be substances; and it is a sense in which they can all be related to each other, as 1 am not you, but I am addressing you. There is no contradiction, then, though Bradley supposes one, between a thing being an individual, independent, sell-subsistent substance, existing apart as a
distinct thing, and being also related to other things. Aecordingly, the many things of this world are not self-discrepant, as Bradiey says, but are distinct and relative substances, as Aristotle said. The argument, therefore, for one substance in Spinoza's Elhict, and for one absolute, the Real, which is one substantially, in Bradiey's appcarance and Reality, breaks down, so far as it is designed te prnve that there is only one substance, or only one Real. Bradicy, however, having satisfied himself, like Spinoza, by an abuse of the word "independent," that "the finite is self-diacrepant," goes in to ask what the one Real, the absolute, is: and, as he passed from Herbart to Spinoza, so now he passes from Spinoza to Kant. Spinoza answered realistically that the one substance is both extended and thinking. Bradley answers idealistically that the one Real is one absolute experience, because all we know is experience. "This absolute," says be, "is experience, because that is really what we mean when we predicate or speak of anything." But in order to identify the absolute with experience he is obliged, as he before abused the words "contradictory" and "independent," so now to abuse the word "experience." "Experience," says he, " may mean experience only direct, or indirect also. Direct experience I understand to be confined to the given simply, to the morely felt or presented. But indirect experience includes all fact that is constructed from the basis of the 'this ' and the 'mine.' It is all that is taken to exist beyond the bare moment " (243). This is to substitute "indirect experience" for all inference, and to maintain that when, starting from any "direct experience," I infer the back of the moon, which is always turned away from me, I nevertheless have experience of it; nay, that it is experience. Having thus confused contradiction and difference, independence and solitariness, experience and inference, Bradley is able to deduce finally that reality is not different substances, experienced and inferred, as Aristote thought it, but is one absolute super-personal experience, to which the socalled plurality of things, including all bodies, all souls, and even a personal God, is appearance-an appearance, as ordtnarily understood, sell-contradictory, but, as appearing to one spiritual reality, somehow reconciled. But how?
3. Other Garman Infinences.- Briet reference only can be made to four other English idealists who have quarried in the rich mines of German idealism: G. H. Lewes, W. K. Clifford, G. J. Romanes and Karl Pearson. Lewes (q.v.), starting from the phenomenalism of Hume, fell under the spell of Kant and his successors, and produced a compromise between a.f.Lowe. Hume and Kant which recalls some of the later
German phenomenalisms which have been described (see his Problems of Life and Mind). Rejecting every thing in the Kritio which savoured of the "melempirical," he yet syrapathized so far with Hegel's noumenalism as to accept the identification of cause and effect, though he interpreted the hypothesis pbenomenalistically by saying that cause and effect are two aspects of the seme phenomenon. But his main sympalhy was with Fechner, the gist of whose "inner psychophysics " he adopted, witbout, however, the hypothesis that what is conscious in us is conscious in the all-embracing spirit of God. His phenomenalism also compelled him to give a more modifed adbesion to Fechner's "outer psychophysics." It will be remembered that Fechner reganded every composite body as the appearance of 2 spirit; so that when, for example, molecular motion of air is said to cause a sensation of sound in me, it is really a spitit appeariag as air which causes the sensation in my spirit. This noumenalism would not do for Lewes, who says that air is a group of qualities, and qualities are feclings, and motion is a mode of feeling. What, then, could he raake of the external stimulus? He was obliged by bis phenomenalism to say that it is only one feeling causing another in me. He ingeniously suggested that the external agent is one fecling regarded objectively, and the internal effect another fecling regarded subjectively; "and therefore." wo quose his own words, "to say that it is a molecular movement which produces a sensation of sound, is equivalent to saying that 2 sensetion of sight producessa sensation of hearing." Accordingly,
his final conctusion is that "existence-the absolvte-is known to us in feeling," and "the external changes are symbolized as motion, because that is the mode of feeling into which all others are translated when ohjectively considered: objective consideration being the attlude of looking at the phenomena, whereas subjective consideration is the attitude of any other sensible response." He does not say what happens when we use vision alone and atill inter that an external stimaulus causes the internal rensation. But his metaphysics is an interesting example of a phenomenalist, sympathizing with noumenalists so different as Hegel and Fechner, and yet maintaining his phenomenalism. In this feature the phenomenalism of Lewes is the English parallel to the German phenomenalism of Wundt. At the same time, and under the derivative influence of Wundt, rather than the more original inspiration of Fechner, W. K. Clifford (q.0.) was working out the hypothesis of psychophysical parallelism to a conclusion different from that of Lewes. and more allied to that of Leibnitz, the prime originator of all these hypotheses. Cliford w. K. advanced the hypothesis that the supposed uncembore conscious units of feeling. or psychical atoms, are the " mind-stuff" out of which everything physical and psychical is composed, and are also things in the mselves, such as Kant supposed when he threw out the hint that after all "the Ding-ansich might be of the nature of mind " (see Mind, 1878, p. 67). As a matter of fact, this " mind-stuff "of Clifford is far more like the "petites perceptions" of Leibnitz, from which it is indirectly derived. This hypothesis Clifiord connected with the bypothesis of psychophysical parallelism. He maintained that the physical and the psychical are two orders which are perallei without interierence; that the physical or objective order is merely phenomena, or groups of feeiings, or "objects," while the psychicai or suhjective order is bot hastream of feelings of which we are conscious in ourselves, and similar streams which we infer beyond ourselves, or, as he came to call them، "ejects"; that, if we accept the doctrine of evolution at all, we must carry these cjective strcams of feelings through the whole organic world and beyond it to the inorganic world, as a "quasimental fact "; that at bottom both orders, the physical phenomena and the psychical streams, are reducible to feelings; and that therefore there is no reason against supposing that they are made out of the same " mind-stuff," which is the thing-in-itself. The resemblance of this noumenal idealism to that of Fechner is unmistakable. The difference is that Clifford considers "mind-stuff" to be unconscious, and denies that there is any evidence of consciousness apart from a nervous system. He agrees with du Bois-Rey mond in relusing to regard the universe as a vast brain animated by conscious mind. He disagrees with Fechner's hypothesis of a world-soul, the highest spirit, God, who embraces an psychophysical processes. Curiously enough, his follower G. J. Romanes (q...) look the one step needed to bring Cliffordism completely back to Fechnerism. In his Rede Lecture on Mind and Motion (1885). he said that Clifford's deduction, that the 0. universe, alt hough entirely composed of " mind-stuff," is itself mindless. did not follow from his premisses. Afterwards, when the lecture was published in Mfind and Motion and Monism (1805), this work also contained a chapter on "The World as an Eject." in which Romanes again contended against Clifford that the world does admit of being regarded as an eject, that is. as a mind beyond one's own. At the same time, he refused to regard this "world-eject" as personal, because personality implies limitation. He concludes that the integrating principle of the whole-the Spirit, as it were, of the Universe-must be something akin to. bat immeasura bly superior to, the "psychism "of man. Nothing can be more curious than the way in which a school of English philosophers. which originally started from Hume, the most sceptical of phenomenalists, thus gradually passed over to Lelbnitz and Fechner, the originators of panpsychistic noumenalism. The Spirit of the Universe contemplated by Romanes is identical with the World-soul contemplated hy Fechner.
Karl Pearson (The Grammar of Sciencr. 1892. 2nd enlarged ed. 1900), starting from Hume's phenomenal idealism, has developed
views closely allied to Mach's universal physical phenomenotogy. What Hume called repeated sequence Pearson calls "routine" of perceptions, and, like his master, holds that cause is an antecedent stage in a routine of perceptions; while he also acknowledges that his account of matter leads him very near to John Stuart Mill's definition of matter as "a permanent possibility of sensations." His views, in his chapter on the Laws of Motion, that the physicist forms a conceptional model of the universe by aid of corpuscles, that these corpuscies are only symbols for the component paris of perceptual bodies, and that force is a measure of motion, and not its cause, are the views of Mach. At the end of this chapter he says that the only published work from the perusal of which he received any help in working out bis views in 1882 and 1884, was Mach's Die Mechanik in ihrer Entwicklung (883). Mach had begun to put them forward in 1872, and Kirchhof in 1874. But they may very well have been developed independently in Germany and in England from their common source in Hume. Their point is to stretch Hume's phenomenalism so as to emhrace all science, by contending that mechenism is not at the bottom of phenomens, but is only the conceptual shorthand by aid of which men of science can briefly describe pbenomena, and that all science is description and not explanation. These are the views of Mach and of Pcarson, as we read them in the latter's Preface. Nor can we find any difference, except the minute shade that Pearson takes up a position of agnosticism between Clifford's assertion of " mind-stuff" and Mach's denial of things in themselves.

James Ward (q.v.), in Naluralism and Agnosticism (1899), starts from the same phenomenalistic views of Mach and Kirchhoff about mechanics; he proceeds to the hypothesis of duality within experience, which we have traced in the phenomenalisms of Schuppe, Avenarius and Wundt, and to the hypothesis of one consciousness, which appears variously in the German idealisms, not of Kant, as Ward thinks, but of Fichte, Hegel and Schuppe; and somehow he manages to end with the nommenalistic conclusion that Nature is God'saSpirit. Though this work evinces a thoroughly English love of compromise, yet it is not merely eclectic, but is animated throughout hy the inspiration of his "old teacher, Lotzc." Lotzc, as we saw, rejected bodily mechanism, reduced known bodies to phenomena, and concluded that reality is the life of God. Ward on the whole follows this triple scheme, but modifies it by new arguments founded on later German phenomenalism.

Under the first head he attacks mechanics precisely as Mach had dome (see above): if this altack had been consistently carried out it would have carried him no lurther than Mach. Under the second head, according to Ward, as according to Wundt, knowivdge is experience; we must start with the duality of subject and object, or perpetual reality. phenomenon. in the unity of experience, and not believe. as realists do. that either subject or object is distimet Irom this unity: morcover, experience requires "conation," because it is to interesting objects that the subject atiends: conation is required for all synohesis, associative and inecllective; thinking is doing: presentation. feeling, conation are one inscparable whole; and the unity of the subject is due to activity and not to a substratum. But, in opposition to Wundt and in common with Schuppe, he believes that experience is (1) experience of the individual, and (2) experience of the race, which is but an extension of individual experience, and is variously called, in the course of the discussion. universal, colleetive, conceptual, raitonal experience. consciousness in general, absolute consciousness, intelligence, and even. after Caird, " a perfect intelligence." He regards this universal experience as the result entirely of intersubjective intercourse, and concludes that its subject is not numerically distinct from the subject of individual experience, but is one and continuous with it, and that its conceptions depend on the perceptions of individual experience. He inlers the corollary that universal experience contains the same duality of subjective and objective factors without dualism. He thinks that it is the origin of the categories of causality. which he refers to "conation" and substance, which he attributes to the interaction of active subjects with their environment and to their interrourse with each other. He applies universal experience, as Schuppe docs, to explain the unity of the object, and its independence of individual but not of universal experience, holding that the one sum, and the pibole world of intersubjective interrourse. or the "trans-subjective" " world, though " independent of the individual percipient as such," is" not independent of the universal experience, but the object of that experience" (iii, 196-197). He applies universal experience
to explain how we come, falsely in his opinion, to believe that the object of experience is an independent thing: and he uses three arguments, which are respectively those of Schuppe, Avenarius and Wundt. He supposes first, that we falsely conclude from the sun being independent of cach to beinf independent of all: secondly, that by "introjection" we falsely conclude that another's experience is in him and therefore one's own in onesell. While the sun remains outside; and thirdly, that by "reifcation" of abstractions, natural science having abstracted the object and psychology the subject, each falsely believes that its own bstract, the sun or the subject, is an independent thing; What, then, could we know from this "duality in experience"? He hardly has a formal theory of inference, but implics throughout that it only transcends perceptions, and perceptual realities or phenonema. in order to conclude with idens, not facts. When we combine his view of Nature under the first head that whatever is inferred in the natural sciences is ideas, with his view of knowledge under the second head that knowledge is experience, and experience, individual or universal, is of deality of subject and object in the unity of experience, it follows that all we coutd know from the data would be one experience of the race, one subject consisting of individual subjects, and in Nature single objects in the unity of this universal experience: and beyond we should be \&ble 20 form conceptions dependent on the perceptions of individual experience in the unity of universal experience: that is alt. There can be no doubt that Mach, Schuppe and Wundt drew the right phenomenalistic cunclusions from such phenomenalistic data. Not so Ward, who proceeds to a Natural Theology, on the ground that "from a world of spirits to a Supreme Spirit is a possible step." He had definitely confined universal experience to the one experience of the race. But perhaps Caird's phrase " a perfect intelligence " has beguiled him into thinking that the one subject of universal experience is not mere mankind, but God Himself. Under the third head, however, his guide is Lotze. The argument may be shortly put as follows: As the Nature which is the objcet of mechanics and all natural sciences is not natural substances, but phenomena a nd jdeas; as mass is not substance, and force is not cause; as activity is not in the physical but in the psychical world; as the laws of Nature are not facts but telcological conceptions, and Nature is cleological, as well as not mechanical but kinematical; as the category of causality is to be referred to " conation ": as. in short. " mind is active and matter inert," what then? One subject of universal experience, one with the subjects of individual experience, you would suppose, and that Nature as a whole is its one object. Not so, according to Ward; but "God as the living unity of all," and " no longer things, but the connceting conserving acts of the one Supreme." What, then, is the relation of God to the one universal experience, the experience of the race, which was under the second head the unity in duality of all know. ledge? He does not say. But instead of any longer identifying the experience of the race and universal experience, he concludes his book by saying " our reason is confronted and determined by universal reason." This is his way of destroying Naturalism and Agnosticism.
4. Personal Idcalism.-The various forms of idealism which bave been described naturally led in England, even among idealists themselves, to a reaction against all systems which involve the denial of personality. English moral philosophy cannot long tolerate a metaphysics which by merging all minds in one would destroy personality, personal causation and moral responsibility, as James Martineau well said. A new school, therefore, arose of which the protagonist was Andrew Seth Pringle-Pattison (b. 1856; professor of logic and met2physics at Edinburgh University (rom 1880) in his Scoltish Philosophy (1885), and Hegelianism and Personalily (1887).
"Each of us is a self." he says, and in another passage. "The real self is one and indivisible, and is unique in each individual. This is the unequivocal testimony of consciousness." What makes his vindication of conscious personality all the more interesting is that he has so much in common with the Hegclians; agreeing as he does with Hegel thal self-consciousness is the highest lact, the ultimate eategory of thought through which alone the universe is intelligible, and an adequate account of the great fact of existence. He agrees also that there is no object without subject. It is difficut to see exactly where he begins to differ from Hegel; but at any rate he betieves in differcnt sell-conscious persons; he does not accept the dialectical method, but believes in beginning from the personal experience of onc's own scli-consciousness; and. though he is not very clear on the subject, he would have to admit that a thing, such as the sun. is a different object in cach person's consciousness. He is not a systematic thinker, but is too much affected by the eclectic notion of reconciling al] philosophics. F C. S. Schilter (b. 1864 , fcllow of Corpus Christi College. Oxford). in Riddles of the Sphinx (1801). is a more systematic thinker. He rejects the difference betwcen matter and spirit. He agrees with
Leibnitz in the analysis of the material into the immaterial, but with

Lotse in holding that the many immaterial clementa coexist and interact. At the same time he differs from Lotze's conclusion that their union requires one absolute substance. Again, he thinks that substance is activity i differing from both Leibnitz and Lotze herein. And still more in not allowing the existence of the many beyond experience. Hence his personal or pluralistic idealism is the wiew that the world is a plurality of many coexisting and interacting centres of cxpersence, while wilt is the most fundamental form of experience. In connexion with these views reference should be made to a work entitled Personal Idealism. Philosogkical Essays by Eight Mentbers of the Unizersity of Oxford (1902), edited by H. Sturt, and numbering Schiller, as well as G. F. Stout, H. Rasheislt and others among lts contributors (cl. also H. Sturt. Idota ticitri, 1908). They do not all agree with one another, or perhaps even with the title. Nevertheless, there is a common tendency in them, and in the university of Oxford, towards the belief that, to use the words of the editor, "We are free moral agents in a sense which cannot apply to what is mercly natural," There is indeed much more activity of thought at Oxford than the world suspects. Mansel and Jowett, Green and Caird, Bradley and Bosanquet arose in quick succession, the predecessors of a generation which aims at a new metaphysics. The same sort of antithesis between the one and the many has appeared in the United States. Josiah Royce (b. 1855. profeseor of philosophy, Harvard) believes in the absolute lice Green and Bradley, in "the unity of a single self-consciousness, which includes both our own and all hnite conscious meanings in one final eternally present insight," as be says in The World and the Individual (1900; see also later works). G. T. Ladd (q.y.) also believes in "a larger all-inclusive self," and goes 80 far as the paradox that perfect personality is only reconcilable with one infiaite being. While Royce is Hegelian, Ladd prefers Lotze, but both believe in one mind. William lames (g.v.) on the other hand, in his psychological works shows that the tendency of recent psychology is to personality, interpreted idealisticall;: though without a very clear appreciation of what a person is, and persomality means. By a curious coincidence, almost at the time of the appearance of the Essays on Personal Idealism. an American writer, G. H. Howison, published The Limits of Eoolntion. and other Essays illustrating the Melaphysical Theory of Personad Idealism (1901). In fact there has been an increase of philosophical intercourse between English and American universities, which is a hopelul sign of progress.

The advent of personal idealism is a welcome protest against the conlusion of God and man in one mind, and against the confusion of one man's mind with another's. The school undoubtedly tends towards realism. 1 am conscious only of myself as a person, and of my bodily signs. I know the existence of other human persons and minds only through thejr giving similar bodily signs. If the personal idealist consistently denies other bodies, then the bodily signs become, according to him, only part of his experience, which can prove only the existence of himself. To infcr another mind he must infer another body, and the bodily cnvironment including his and other bodies. Again, in being conscious of mysdi, I am not conscious of my mind in the abstract without my body. I cannot separate touching from my tactile organs, seeing from my eyes, or hearing from my ears. I cannot think my body away. Moreover, I am not conscious of my whole personal life at all. How do I know that I was born, though I cannot remember it, and that I shall die, though I am not now conscious of death? How do I know that I am the same person from birth to death? Not by my consciousnesp, but by knowing the bodies of others-of babies on the one hand, and of old men on the other hand. It is usual to say that the body has not enough unity 10 be part of the person: the objection is much more true of conscious mind. The truth is that not the unity of consciousness but the fact α its existence is the important point. The existance of my consciousness is my evidence for my soul. But it does not prove that I am nothing but soul. As a human person, I am body and soul; and the idealistic identification of the Ego with soul or mind, in volving the corollary that my body belongs to the non-Ego and is no part of myself, is the reductio ad absurdum of idealism. Lastly, though the personal idealists are right in rejecting the hypothesis of onc mind, they are too hasty in supposing that the bypothesis is useless for ídcalistic purposes. No idealism can cxplain how we all know one stn, except by supposing that we all have one mind. The dificulty of personal idcalism, on the other hand, is to reconcile the unity of the thing with the plurality of thinkers. The unity of the sun can anly be explaned either idealistucally

- For Dr Schiller's views, see further Praguailsm.
by supposing it to be ono object of one mind, or realistically by supposing it to be one thing distinct from the many minds which think about it. The former alternative is false, the latter true. Personal idealism, therefore, must end in dersonal realism.

7.-Realism

1. Mataphysical and Psychological Realism.-Realism is the view that some known things are bodily, and some are mental. At its best, it is the Aristotelian view that both are substances. The modern misunderstanding of "substance" has been a main cause of the confusion of modern thought. Aristotle meant by it any distinct thing; e.g I, you, an animal, a plant, the earth, the moon, the sun, God. He calls each of thesc, as existing apart, a thing per se ($\kappa a \theta^{\prime}$ airo). It is true that, having divided a natural substance into form and matter, he called each element "substance." But these are not primary meanings; and matter, or supposed substratum, in particular, he says, is not actually substance ($\mathrm{Maf} . \mathrm{Z}_{3}$) or is oaly potentially substance ($\mathrm{Med} . \mathrm{H}_{\text {1-2 }}$). In modern times, Spinoza, by a mere mistake, changed the meaning of "substance" from " existing apart" to "existing alone," and consistently concluded that there is only one. Locke mistook it to mean " substratam," or support of qualities, and naturally concluded that it is unknown. Kant, taking it in the mistaken meaning of Locke, converted it into the a priori category of the permanent substrate beneath the changes of phenomena, and even went so far as to separate it from the thing in itself, as substantia phenomenon from noumenon. When it had thus lost every vestige of its true meaning. Kant's successors naturally began to speak of things as being distinct without being substances. Fichte began this by saying that ego is activity, and being is life. Hegel said that spirit is not substance but subject, which to Aristotle would have meant that it is not a distinct thing, yet is a distinct thing. Fechner, Wundt and Paulsen have fixed the conclusion in psychology that soul is not substance but unity of mental life; and Wundt concludes from the modern history of the term that substance or "substrate" is only a secondary conception to that of causality, and that, while there is a physical causality distinct from that of substance, psychical causality requires no substance at all.

The result of this confusion is that the moderns have no name al all for a distinct thing, and, being mere slaves of abstract terms, constantly speak of mere attributes, such as activity, life, will, actuality, unity of mental operations, as if they were distinct tbings. But an attribute, though real, is not a distinct reality, but only a determinant of a substance, and has no being of its own apert from the substance so determined; whereas a subetance, determined by all its attributes, is difierent from everything else in the world. Though, for simplicity and universality of thought. even in science, we must use the abstraction of attrihutes, and, by the necessity and weakness of language, must signify what are not substances by nouns substantive, we must guard against the over-abst raction of believing that a thing exists as we abstract it. The point of true realism is Aristotic's point that the world consists of such distinct, though related, things, and therefore of substances, natural and supernatural. Again, the method of true realism is that of Aristotie, and consists in recognizing the independence of metaphysics. The contrary method is psycbological metaphysics, which makes metaphysics dependent on psychology, on the ground that the origin of know. ledge determines its limits. This is the method which, as we have seen, has led from psychological to metaphysical idcalism, by the argument that what we begin by perceiving is mental, and, therefore, what we end by knowing is mental. Now, there is no principle of method superior to that of Aristotle-we must begin with what is known to us. The things best known to man are the things which he now knows as a man. About these known things there is some agreement: about the beginnings of knowledge there is nothing but controversy. We do not know enough about the origin of knowledge to determine its limits. Hence, to proceed from psychology to metaphysics is to proceed from the less to the more known; and th.
paradoxes of psychological have caused those of metaphysical idealism.

The realist, then, ought to begin with metaphysics without psychological prejudices. He must ask what are known things, and especially what has been discovered in the sciences; in mechanics, in order to find the essence of bodies which is neglected by idealism; in mental science. in order to understand consciousness which is neglected by materialism. With the conviction that the only lair way of describing metaphysics has been to avoid putting forward one system, and even to pay most attention to the dominant idealism, we have nevertheless been driven occasionally to test opinions by this independent meta. physical method. The chief results we have found against idealism are that bodies have not been successfully analysed except into bodies, as real matter; and that bodies are known to exert reciprocal pressure in reducing one a nother to a joint mass with a common velocity by being mutually impenetrable, as real forces. The chicf results we have found against materialism are that bodies evolving account neither for the origin of themselves, their nature, and their fundamental order of resemblance and difference, nor for the nature and origin of consciousness, nor even as yet for their becoming good for conscious beings. Hence we come to the realistic conclusions that among known substances some are bodies, others are souls; that man is body and soul; and that Cod is a pure soul or spirit. At the same time, while the independence of metaphysics leads us to metaphysical realism, this is not to deny the value of psychology, stili less of logic. Besides the duty of determining what we know, there is the duty of determining how we know it. But in order to discharge it, a reform of psychology as well as of meiaphysics is required. Two psychological errors, among many others, constantly meet us in the history of idealism-the arbitrary hypothesis of a sense of sensations, or of ideas, and the intolerable neglect of logical inference. Logical inference from sense is a process from sensible to insensible existence. The former error needs sometbing deeper than a Kantian critique of reason, or an Avenarian criticism of experience; it needs a criticism of the senses. We want an answer to this question-What must we know by the senses in order to enable us to know what we infer by reason in the sciences? Without here aiming at exhaustiveness, we may bring forward against the dominant idealism a psychological theory of sense and reason. By touch I perceive one bodily member reciprocally pressing amother in myself, e.g. lip pressing lip, by touch again I perceive one bodily member similarly pressing but not another member in myself, e.g only one lip pressing: by inference from touch I infer that it is reciprocally pressing another body similar to my other bodily member, i.e. another body similar to my other lip. On this theory, then, founded on the conscious facts of double and single pressure in touch, and on the logic of inference, we have at once a reason for our knowledge of external bodies, and an explanation of the early appearance of that knowledge. The child has only to have its mother's nupple in its moutb in order to infer something very like the mutually pressing parts of its own mouth. Having thus begun by touch and tactile inference, we confirm and extend our inferences of bodies in Nature by using the rest of the senses. This is not to forget that the five senses are not our whole stock or to confine inference to body. We have also the inner sense of consciousness which is inexplicable by body alone. By combining, moreover, our knowledge of Nature with our consciousness of our own works, we can infer that Nature is a work of God. Next, finding that He gives signs of bodily works, but no signs of bodily organs, we can infer that God is a Spirit. Finally, returning to ourselves, we can conclude that, while the conscious in God is Spirit without Body, in us it is spirit with body. This final distinction between bodily and spirituad substances we owe to Descartes.
2. The Undercurrent of Modern Realism.-Coming after the long domination of Aristotelian realism, Descartes and Locke, though psychalogical idealists, were metaphysical realists. Their position was so illogical that it was easily turned into metaphysical idealism. But their psychological method and
idealism produced another mistake-the tendency to a modicum of realism, as much as seemed to this or that author to follow from psychological idealism. In Germany, since the victory of Kant over Wolf, realism has always been in difficulties, which we can appreciate when we reflect that the Germans by preference apply the term " realism " to the paradoxes of Herbart (:7776184t), who, in order to avoid supposed contradictions, supposed that bodies are not substances, but show (Schein), while 'reals' are simple substances, each with a simple quality, and all preserving themselves against disturbance by one another, whether physically or psychologically, but not known to be either material or spiritual because we do not know the simple quality in which the nature of the real consists. There have indeed been other realisms in Germany. Trendelenburg ($1802-1872$), a formidable opponent of Hegel, tried to surmount Kant's transcendental idealism by supposing that motion, and therefore time, space and the categories, though a priori, are common to thought and being. Duhring, with a similar object, makes matter a common basis. While these realisms come dangerously near to materialism, that of the Roman Catholic A. Gunther (1783 -1863), "Cartesius correctus," erected 100 mystical an edifice on the psychological basis of Descartes to sustain a satisfactory realism. Yet Guntherism has produced a school. of which the most distinguished representative is the Old Catholic bishop in Bonn, Th. Weber, whose Mfelupliysik, completed in 1891 , starting from the ego and the analysis of consciousness, aims at arriving at the distinction between spirit and nature, and at rising to the spirit of God the Crcator. Other realistic systems are those of J. H. von Kirch-mann(1802-1884), author, a mong other works, of Die Philosophie des IV'issens (1864) and Ucber die Principiendes Realismus (1875); Goswin Uphues (b. 1842: professor of philosophy at Halle), directed against the scepticism of Shute's Discourse on Truth; and Hermann Schwarz (born 1864), who completes the psychological view of Uphucs that we can know objects as they are, by the melaphysical view that they can be as we know them. But German realism lacks critical power, and is fittie better than a weed overshadowed by the luxuriant forest of German idealism.

In France, the home of Cartesian realism, after the vicissitudes of sensationalism and materialism, which became connected in Freach the French mind with the Revolution, the spirit of Reshm. Descartes revived in the toth century in the spiritualistic realism of Victor Cousin. But Cousin's psychological method of proceeding from consciousness outwards, and the emphasis laid by him on spirit in comparison with body, prevented a real revival of realism. He essayed to answer Locke hy Kant, and Kant by Reid, Majne de Biran and Scheling. From Reid he adopted the belief in an external world beyond sensation, from Biran the explanation of personality by will, from Schelling the identification of all reason in what he called " impersonal reason," which he supposed to be identical in Cod and man, to be subjective and objective, psychological and ontological. We start, according to him, from a psychological triplicity in consciousness, consisting of sensation, personal will and impersonal reason, which by a priori laws of causality and substance carrics as to the ontological triplicity of oneself as ego willing, the non-cgo as cause of sensation, and God as the absolute cause beneath these relative causes. So far this ontological triplicity is realism. But when we examine his theory of the non-ego, and find that it resolves matter into active force and this into animated activity, identifies law with reason, and calls God absolute substance, we sce at once that this spiritual realism is not very far from idealism. About 1840 , owing largely to the teaching of \mathbf{E}. Saisset in the spiritualistic school, the influence of Descartes began to give wiay to that of Leibnitz. Leibnitz has been used both realistically and idealisticaliy in France. He was taken literally by spiritual realists, e.g. by Paul Janet (q.v.). Janet accepted the traditional ontological triplicity-God, souls and bodies-and, in answer to Ravaisson, who called this realism "demi-spiritualisme." rejoined that he was content to accept the tille. At the same time. like Cousin, his works show a tendency to underrate borly, tending as they do to the Leihnitzian analysis of the material into the immaterial, and to the supposition that
the unity of the body is only given by the soul. His emphasis is on spirit, and he goes so far as to admit that 'no. spiritualist is engaged to defend the existence of matter." The strength of Janet's position is his perception that the argument from final causes is in favour of an omnipresent rational will making matter a means to ends, and not in favour of an immanent mind of Nature working out her own ends.
The biy hanigita! metaphs ica of Cobsin and of Jant wk, liowever, too Himsy a realisim to withstand its passage into this very idcalism of mutter which has become the dominant French metsphysics. Etienne Vacherot (g.0.) deserted Descurtes for Heged. He accepted from Hegel " the real is rational " without the llegethan meshod, for which he substituted conscious experience as a revelation of the divine. Matocr he held so be mish at the munimum of ite action, and evolution the " expansion de l"activite incessante de la cause finale." God, according to his latest view, is the absolute being as first cause and final end. "Let us teave," says he in deferente to Janet. " the category of the idcal. which applies to nothing real or living." But the most noticeable passage in Le Noureat spirilualisme (1884) is its contrast between the old and the new; where he ays that the ofd spiritualism opposed spirit to matter, God to Narure. the new spiritualism places ntatter in spirit, Noture in God (p. 377). F. Ravaisson (see Ravalsson-Mollien), by his Repport (prepared for the Exhibution of 1867) on philosophy in France, gave a fresh impulse to the eransition from spisitual realism to idealism, by developing the Aristotchian zoan of matter and the Leibnitzian appetition of monads into "l'amour" as the sery being of things. Jules Lachelier (born 1832) agreed with Ravaisson that beiury is the last word of things, but, under the influence of Kant and his successors, put his idealism rather in the form that all is thought. A. Fouilléc (q.v.) righty, objects that we must not thus impure thought and intention to Nature, and yet does not scruple to impuse to it life, sensation and want. Stafting from consciousne ss, he argues that all known things are phenomena of consciousnesi Then, agrecing with evolutionism, that things are necessirily determined by forces, but with Leibnitz that body is merely passive, he infers that forec, being active, is paychical-a force, which he describes as "idec-force." and as "voufoir-visre." In connexinn with the "idees directrices et organisatrices," supposed by the French physiologist Cliude Bernard, and the universal will supposed by German voluntarists. Fouillee concludes that the world is a society of wills. Meanwhile, more under the influence of Kant, C. B. Renouvier (q.t.) has worked out an idealism which he ealls "'Neo-cricicisme," rejecting the thing-in-itself, while limiting knowledge to phenomena constituted by a priori categories. Phenomena he identifies with "représentations représentalives et représcntées." But he take the usual advantage of this most ambiguous of terms when he extends it socmbrace God, freedom, and immortality required by the moral law. In his later work, La Nourelle monadologre (1899), he mainsaint dat cach monad is a simple substance, endowed with representation, which is consciousness in [orm, phenomenon in matier as represented. In order to cxplain free will, he supposes, contrarily to Fouillee, that the laws of phenomena are indeterminate, contingent and liable to exceptions. Here we trace the influepce of Leibnitz and Lotze, which is still more marked in Lo Contingence des lois de la malure (1874), by E. Boutroux. Fouillee meets the mechanics of evolution by the argument that will to live determines its necessary laws, Boutroux by denying the necessity. His point is, that the worid only appears to be phenomena governed by necessary laws, and is really a spontaneity which makes new beginnings. such as life and consciousness, tending to good. These examples are enough to show that the psychological metaphysics of spiritual realism has not been able to withstand the rise and progress of spiritual idealism in France.

In England, the Land of Bacon and Locke, the realistlc tendency has been more active, and is exhibited in Bacon's Novum organum and De Augmentis scientiorum, Eagtah as well as 10 a less degree in the Fourth Book of amman Locke's Esscy. After the metaphysical idealism, begun by Berkeley, had eventuated in Hume's reduction of the objects of knowledge to sensations, ideas and associations, the Scottish school, applying the Baconian method to the study of mind, began to inquire once mote for the evidences of our knowledge, and produced the natural or intuitive realism of T. Reid, Dugald Stewart and Sir William Hamilton, who, having been followed by H. L. Mansel, as well as by J. Veitch, H. Calderwood and J. M^{2} Cosh, prolonged the existence of the school, in which we may venture to place L. T. Hobhouse and F. W. Bain, author of The Realication of the Possible (1899), down to our own time.

Its main tenet. that we have an immediate perception of the external world, is roughly expreased in the followints worde of Reid: "I do perceive matter objectivety-chat is something
which ian extended and solid. which may be measured and weighed. move is the immediate object of my touch and sight. And this object I take to be matter, and not an idta. And though I have been taught by philosophers that what I immediately touch is an idea, and not matter. yet I have never been able to dist: cover this by the most accurate attention to my own perceptions." No opposition to idealism could be more distinct. Reid, however, did not always express himself so distinctly. Morcover. he and his successors mixed up so many accidents with the essence of their realism that the whole system broke down under its own wright. Their peychology contained valuable points. It also contained much that was doubtful, and much that was ill-adapted to the metaphysics of realism. Yet they thought it the only avenue to metaphysics. It is full of appeals to common sense. and of principles of common sense, which Reid also called intuitive first prin ciples, and sell-evident truths. It is spoilt by Locke's hypothesis that we do not perceive things hut qualitics implying things. Whik it asserted a realism of individuals. it admitted a conceptualism of aniversals. Stewart also said that our knowledge of matter and mind is merely relative. Hamiloon went sill further; he tried to combine the oil of Reid with the water of Kant; and converting temane the intuitive into the a priori, he lound a furt her reaton fately and in iteelf, but only in special modes; second, because these modes thus relative to our laculties are presented to and known by the mind, only under modification, determined by these faculites themselves." Not only. so, but in his review of Cousin (" Philosophy of the Unconditioned. in Discussions, pp. 12-15), he made conception the test of knowledge, argued that "the mind can conccive, and consequeatly can know, only the limited, a ad the conditionally bimited," that "to think is to condition," that all we know either of mind or matter is " the phenomenal.' that "we can never in our highest generalizations rise above the finite." and concluded that we cannot conceive or know the unconditioned. yet must believe in its existence. Neverthetesen in spite of all this Kantism, he adhered to his natural reatism. He vacillated a great dcal ahout our mode of perceiving the external world: but his final view (edition of Reid's works, note D^{*}) consisted in supposing that (1) sensation is an apprehension of secondary qualities purely as affections of the organism viewed as ego: (a) perception in general is an apprehension of primary qualities as relations of sensations in the organism viewed as non-ego; while (3) a special perception of a so-called "secundo-primary" quality consists in "the consciousness of a resisting something external to our organism." Hamiton's views both on the absolute and on perception affected Mansel and Spencer. Taey were not, however. received without question even by his Iollowera H. Calderwood. In his Philosophy of the Infinite (1854) made the pertinent objection that, though thoughs, conception and Caldermoos knowledge are finite. the object of thought may bc limitiog knowledge to what in lact. madeive and conf using the determinale with the finite or limited. We never know anything eacept as determined by its attributes; hut chat would not prevent us from inferring somethiug determined as uncondilioned. whethes infinite or absolute. J. M.Cosh again, in The Presoriting Types of Phalosophy: Can they logually reach reahty? (1891), rightly protests (quant Hamilton's combination of Scottish and German schools which will not coalesce, and exhorts the former 'to throw away its crutches of impressions, instincts, sug. gestions, and common sense, and give the mind a power of secing thinge directly." He has the merit of prementing natural or intuitive mealisen in its purity.

The common tenet of the whole school is that without inference we immediately perceive the external world, at all events as a resisting something external to our organism. But is it true? There are three reasons against it, and for the view that we perceive a sensible ohject within, and infer an external object without, the organism. In the first place, there are great differences between the sensible and the external object; they differ in secondary qualities in the case of all the senses; and even in the case of touch, heat felt within is different from the vihrating heat catside. Secondly, there are so-called "subjective ensations," without any external ohject as stimulus, most commonly in vision, hut also in touch, which is liahle to formication, or the feeling of creeping in the skm, and to horripilation. or the feeling of bristling in the hair; yct. even in "subjective sensations," we perceive something sensible, which, however, must be within, and not outside, the organism. Thirdly, the external world and the senses always act on one another hy canse and effect and by pressure, although we only feel pressure by touch. Now, when the thing with which touch is in a state ol reciprocal pressure is external, r.g. a tahle, we feel our organism presed atd pressing; we do nol leel the tahle pressing and
pressed, hut infer it. The Scottish School never realized that every sensation of the five senses is a perception of a sensible ohject in the bodily organism; and that touch is a perception, not only of single sensible pressurc, but also of double sensible pressure, a perception of our bodily members sensibly pressing and pressed hy one another, from which, on the recurrence of a single sensible pressure, we infer the pressure of an external thing for the first time. Intuitive Realism is to be replaced by Physical Realism.
3. Reaction to Hypothetical Realism.-The three evidences, which are fatal to intuitive realism, do not prove hypothetical realism, or the hypothests that we perceive something mental, hut infer something bodily. This illogical hypothesis, which consists of incautiously passing from the truth that the sensible object perceived is not exteraal but within the organism to the non-sequitur that therefore it is within the mind, derived what litte plausibility it ever possessed from three prejudices: the first, the scholastic dogma that the sensible object is a species sensibilis, or immaterial sensible form received from the external thing; the second, the Cartesian a priori argument that the soul as thinking thing can perceive nothing but its own ideas; the third, the common assumption of a sense of sensations. But not withstanding its illogicality, its tendency to underrate Nature as inferred from such idealistic premises, and its certain transition into a consistent idcalism, hypothetical realism has, with litte excuse, revived among us in the writings of Shadworth Hodgson, James Martineau and A. J. Balfour. The cause of this anachronism has been the failure of intuitive realism and the domination of idealism, which makes short-sighed men suppose that at all events they must begin with the psychology and the psychological idealism of the day, in the false hope that on the sands of psychological ideatism they may huild a house of metaphysical realism.

Shadworth Holloway Hodgson (horn 1832 ; hon. fellow of Corpus Christi College, Oxford), whose chief work is The Mciaphysic of Expericrice (4 vols., 1898), helieving that philosophy is an analysis of the contents of Modreen. consciousness, or experience, and that this is metaphysics, begins, like Kant, with an analysis of experience. Like Kant, he supposes that experiente is concerned with sensations, distinguishes matter and lorm in sense, identifies time and space, eternal time and infinite space, with the formal element, and substitutes synthesis of sensations of touch and sight for association and inference, as the origin of our knowing such a solid material object as a bell. Alchough he does not agree with Kant that either the formal ekement in sense or the synthesis of sensations is a prion, yet in very Kantian fashion, through not distinguishing between operation and object. he holds that, in synthetically combining sensations of touch and sight, we not only have a complex perception of a solid body. hut also know this "object thought of "as itself the complex of these sensations objectified. Hence he concludes that " moller is the name for the sensation-elements derived from both senses. abstracting in thought, so far as possible, from the cxtension-clements of both " (i. 296).
Here you would expect him to stop, as the German Neo-Kantism of Lange stops. with the tonsistent conclusion that all we know of Nature from such data is these complexes of sensation-tlements, or phenomeas in the Kantian meaning. Not so: like Kant himself. Hodes son supposes somet hing beyond: not, howevec, an unknown thing ip itself causing sensations, but a condition. or sinc qua non, of their existence, without being a cause of their nature. In order to make this leap he suppotes that we have beyond perceptions a conception of condition. Hisaccount of the origin of thisconception is puzzling. (i. 380). Whatever its origin may be, it could not, any more than a Kantian category of cause, justily us in concluding anything more than a relation of perceptions as conditions of one another. sering that they were supposed to be the whole dasa, and matter itself to be "sensation-elements." But what be procceds to suppose is that, having the conception, and finding that the complex of perceptions needs accounting for, we infer a real condition. e.g. the solid interior of a bell. What we know, however, of this condition according to him, has two limits: on the one hand, it is the condition only of the existence of our perceptions; on the other hand. all we know of its pature is our perceptions. Matter thus, which had at Eirst been defined as a complex of perceptions objectified, now turns
out to be a condition without which perceptions would not exist but whose nature is known only as a complex of perceptions. Finally, eccording to him, having inferred matter as the condition of our perceptions, we are entitied to infer that the condition of the cxistence of matter is God, whosc nature, however. can be inferted only by practical reason lrom conscience. He avers that this" metaphysic of experience " ' is not idealism, or the tenet that consciousness is the only reatity. It is realism-but inconsequent and inadequate realism, aomething like that of Spencer; accordjig, indeed, more knowledge of the distinction between Nature as condition of sensations and Cod as condition of Nature; but very like in holding that all we know of natural forces is our perceptions. We know more, however, about a body, such as a bell, than ell her Spencer or Hodgson allows. We know, from the concomitant variations between its vibrations and our perceptions, that its vibrations are not mere conditions but real causes of our perceptions: and that those vibrations are'not our perceptions, because we cannot perceive them, but are real ateributes of the bell. it will be objected that they are merely possible perceptions. Dut as they really produre our real perceptions, they are themselves not merely posible, but real or actual. A possible cause could not actually produce an actualefect.

James Mfartincau (q.v.) in A Study of Religion (1888), like Shadworth Hodgson, started from Kant, and tried to lound on transcendental idealism "a return to dualism." If there is one thing certain in the Kantian philosophy, it is its author's perception that what is contributed by mind must not be extended to things beyond mind. Hegel only extended a priori forms to things by resolving things into thoughts. Mill also protested " against adducing, as evidence of the truth of a fact in external nature, the disposition, however strong or however general, of the human mind to believe it." Yet Martineau edopted, as his view of the limits of human intelligence, that Kant was right in making space and time a priori forms of sense, but wrong in limiting them to sensations. But in order to make space a form of external things, Martineau had to take the external in spacc, by which Kant meant one sensation out of another, in the very different meaning of the sclf here and the not-self there. He facilitated this awkward transition by adding to Kant's a priori forms of space and time an "a priori form of alternative causality," or, as he also called it, "an intuition of causality involved in the clementary exercise of perception," which is the key to his whole philosophy. He supposed that this intuition of causality arises when will is resisted, and, further supposing that causality requires decision between alternatives, concluded that the intuition of will resisted is an intuition of will against will, mine against other (i. 65). To pass over tis confusion of a priori and intuitive, there are two latal objections to this view. In the first place, the intuition of causality does not require will al all, because we often perccive one bodily member pressing another involuntarily; a man suffering from lockjaw neither wills nor can avoid fceling the pressure of his upper and lower jaws against oae another. Secondly, though causality requires alternatives in the material cause, e.g. wax may or may not be melted, the determination between them is not always a decision of will, but in physical causation depends on the efficient cause, e.g. the fire: as Aristotle says, when the active and passive powers approach, the one must act and the other sufter, and it is only in rational powers that will decides (Mct. 9 5).
A. J. Balfour, in The Foundalions of Bclief, being Notes Introductory to the Study of Theology (i895), begins by maintaining A. 4 Uat the evidence of the senses is not a foundation Benfowr of belicf, and then expects us to believe in Nature and in God. He revives the "Acatalcpsia" of the Now Academy. In Part 11 ., ch i_{H}, he makes three assumptions about the senses, and, without stopping to prove them. or even to make them consistent, deduces from them his thesis that the evidence of the senscs is not a foundation ol belief in Nature. He first assumes an immediate experience of a body, c.g. a green trec; and then deduces thal the evidence of the senses proves now and then to be lallacious, because we may have an experience indistinguishable from that of a iree but incorrect; and further, that our perceptions are habitually mendacinus, because all visual experiences are erroneous, as colour is a sensation while the thing consists of uncoloured particies. This argument from a pure assumption is a confusion of sense and
inference. In tho case is the evidence of the senses fallacious ot mendaclous; the fallacy is in the inference.

He next assumes that we have no immediate experience of indepeadent things-that sense perceives sensations, leelings, of ideas; while all else, c.g. a tree, is a matter of inference. On this quite new assumption of a sense of sensations he deduces that, Irom a perception of these mental facts, we could not infer material facts, e.g. a tree; so that again the evidence of the senses does not aflord trust worthy knowiedge of the material universe. His deduction is logical; but he has forgotten to prove the assumption, and now confuses sensory operation with sensible object. Vision docs not perceive a sensation of colour; it perceives a visible picture, c.g. green, which is in the organism, but has never been proved to be a mental fact, or not to be a material fact. So touch perceives not a sensation of pressure, but a pressure which is a material fact in the organism. From a material pressure within we logically infer a material pressure outside. He thirdly assumes an appendix to the second assumption: he assumes that sense perceives mental sensations with succession but without causality, because no kind of cause is open to observation. On this assumption of a sense of sensations, but not of causality, he deduces that we could not from such data inler any particular kind of cause, or a bodily cause, e.g. a tree, or indeed any cause at all, or any event beyond perception, without assuming the principle of causation that Nature is uniform in cause and eJect over great intervals of time and space. Nevertheless he gives absolutely no prool of the assumption that there is no sense of causality. There is none in the subsidiary senses, because none of them perceives the pressures exerted on them. But the primary sense of touch perceives one bodily member causing pressure on another, reciprocally, within the organism, from which we infer similar particular pressures caused between the organism and the external world; but without needing the supposed stupendous beliel and assumption ol the uniformity of Nature, which is altogether ignored in the inferences of the ordinary man. Finally, as touch perceives reciprocal pressure within, and tactile inference inlers it without, touch is the primary evidence of the senses which is the foundation and logical ground of our belief in Nature as a systern of pressing bodies. Balfour, however, having from unproved assumptions denied the evidence of the senses, and the rational power of using them to infer things beyond oneself, has to look out for other, and non-rational, foundations of beliel. He finds them in the needs of man. According to him, we believe in Nature because it satisfies our material needs, and in God because he satisfics our spiritual needs. But bare need, e.g. a pang of hunger, is no cause ol belief beyond itsell; and desire, or need of something prospective, e.8. a desire of food, is effect, not cause, of a previous belief that there is such a thing, and of a present inference that it may again be realised. Moreover, when the belicf or inference is uncertain, need even in the shape of desire is not in itself a loundation of beliel in the thing desired: to need a dinner is not to belicve in getting it; and, as Aristole said, "there is a wish for impossibilities." It is fair, however, to add that Balfour has a further foundation for the belici in Nature, the survival of the fillest, hy which those only would survive who possessed and could transmit the belief. But here he fails exactly as Darwin himself failed. Darwin said, gived that organisms are fit, they will tend to survive; but he failed to show how they become fit. Ballour says, given that mea believe in Nature, they will survive; but he lails to show how they come to believe in it. Inference from sense is the ane condition of all belief in anything beyond oneself, whether it be Nature, or Authority, or God; and it is the one condition of all needs, which are not mere feelings, hut desires of things. The result of undermining this sure foundation emerges in Balfour's attitude to the beliels themselves. He holds that space, time, matter, motion, force, are all full of the insoluble contradictions. supposed by Spencer; and that all our beliefs, in Nature and in God, stand on the same footing of approximations. Hence his really valuable argumeots from Nature to God sink to the problematic form-there may be Niture; if so, there is God.

Such is the modern "Acatalepsia," which axises from denying the evidence of the senses, and from citing the transfigured realism of Spencer instead of the original realism of Aristotle, about whom Balfour speaks as follows: "It would be difficult, perhaps impossible, to sum up our debts to Aristatle. But assuredly they do not include a tenable theory of the universe.'
4. The Past and Fulure of Medaphysics.-Aristotelian reahism is the strong point of Roman Catholic philosophy. As interpreted by Thomas Aquinas, it is now in danger of becoming a dogma. In 1879 Pope Leo XIII. addressed to the bishops the Encyclica aeterni patris, which contained the words, "Sancti Thomac sapientiam restituatis et quam latissime propagetis." From the Roman Catholic point of view this reaction to "Thomism" was a timely protest against modern metaphysics It was founded upon a feeling of uneasiness at a growing tendency among Roman Catholic writers not only to treat theology frecly, but to corrupt it hy paradoxes. One cannot but feel regret at seeing the Reformed Churches blown about by every wind of doctrine, and catching at straws now from Kant, now from Hegel, and now from Lotze, or at home from Green, Caurd, Martineau, Ballour and Ward in succession, without ever having. considered the basis of their faith, white the Roman Catholics, are making every effort to ground a Universal Church on a gane system of metaphysics. However this may be, the power of the movement is visibie enough from the spread of Thomism over the civilized world, and in Engtand from the difference between the freer treatment of metaphysics by some Roman Catholic writers and that whicb has arisen under the immediate infuence of Thomism. J. H. Newman (1801-1890), maintaining the authority of conscience and the probabilism of the understanding, concluded to the necessity of a higher authority in the primitive church. W. G. Ward was a philosophical critic of Mill. St George Mivart, in The Ground-zbork of Scrence (1898), maintained the reality of an active causative power underlying Nature, and the dignity of human reason, from an independent point of view. On the other hand, more under the influence of the Thomist reaction, Thomas Harper pubtished The Melapthywics of the Scheol (1879, ac.), describing scholasticism, as it appears in the works of Aquinas; and The Mantols of Catholic Philosophy, edited by R. F. Clarke, include General Metaphysics (1890), by John Rickaby, who effectively criticizes Hegel by precise distinctions, which, though scholastic, did not deserve to be forgotien.

The Thomist reaction has had a good effect in the way of encouraging the study of Aristotelian philosophy in itself, and as modified by Aquinas. Nevertheless, the world cannot afford to surrender itself to Aristotle, or to Aquinas. Aristotle could not know enough, physically, about Nature to understand its matter, or its motions, or its forces: and consequently he fell into the error of supposing a primary matter with four contrary primary qualities, hot and cold, dry and moist, forming by their combimations four simple bodics, earth. water, air and fire, with natural rectilineal motions to or Irom the centre of the earth; to which he added a quintessence of ether composing the stars, with a naturat circular motion round the earth. Metaplymically, he did not, indeed, as is often supposed, think the nature of substance to be matter and form, because in his view Cood is a subotanoe, yet with no matter; but he did think that every natural substance or body is a concrete whole. composed of matter and form different from matter. He thought that besides proximare matter, or one body as matter of another, there is a primary formicss matter beneath all bodies, capable of becoming all in turn, but iteself potentially, not actually, subsance. He thoughe not only that a form, or estence. is something different from, and at most conjoined with, matter in a concrece body, but also that in ail the bodies of one kind, e.g. in all men. there is one undivided form or essence, e.g. rational animal, communicated from one member to another member of the kind, e.g. From father to son, by what we still call, though without any meaning, the propagation of the species. He thought, in consequence, that the princtipium indrundaathoxis, which differentiates two members of the kind, e.g. Socrates and Callias, is their one form or essence only as conjoined with different matters, e.f. different bones and ficsh. He thought. moreover, that the one form of a kind is an original essence (rd $7 \boldsymbol{i}$ 种 eipac), which is uncreate; and, in order to avoid the "scparate forms "supposed by Placo, he concluded that the world of Nature must be eterna!. ia order that each original essence may from eternity always be in come individual or another of its kind. On this assumption of the
etcrnity of the world, God could not be a Creator. Aristotle thought that God 15 only prime mover, and that too only as the good For the sake of which Nalure moves. so that Cond moves as molive. Psyehologically. Anstotle applied his dualism of matter and form to explain the antithesis of body and soul. so that the soul is the form. or entelechy, of an organic body, and he applied the same dualism to explain sensation. which he supposed to be reception of the sensible form or essence, without the matter, of a body, e.g of the form of white, without the matter, of a white stone. He thought that in the coul there is a productive intellert and a passive intellect. and that, when we rise from sense by induction, the productive causes the passive intellert to receive the untversal form or essence. e.g. of all white things; and he thought that this productive intellect is our immortal faculty. Lasity, he thought that, while other operations have, intellect (wov) has not. a bodily organ, and hence he besame responsible for the fancy that there is a break in bodily continuity between sense and will, while intellect is working out a purely immaternal operation of soul, resulting from the former and tending to the latter It is evident that a philosophy containing so many questionable opinions is not fit to be made unto an authoritative orthodoxy in metaphysics.
Now these, on the whole, are the very opinions of Aquinas, except so las as they were clearly inconsistent with the Christan faith Aquinas thought. as an article of 「aihh. that the world began. and that God is its Creator. This involved a change of decail in the theory of essences and of universals gencrally. Aquinas thought that before the creation the one eternal essence of any kind was am abstract form, an idea in the intellect of God, like the form of a house in the mind of a builder, ante rem; that after the creation of any lund It is 2 mre , as Aristotle supposed; and that, as we men think of it. it is post rem, as Aristotle also supposed. Of this view the "part which was not Aristotle's, the state of " universalia ante rem," was due to the Neoplatonists, who interpreted the " separate forms" of Plato io be ideas in intellect, and handed down their interpretation through St Augustine to the medieval Realists like Aquinas, who thus combined Neoplatonism with Aristotclianism. Hence too Aguinas opposed essence to existence much more than Aristotle did. Lastly, as a Christian, he supposed the whole soul to be immortal, and to form ior itself a new body after death. But, with these modifications he accepted the gencra! physics of Aristotle, the metaphysical dualism of matter and form, a nd the psychology founded upon it. The Thomism, therefore, of our day is wrong. from a metaphysical point of view, so far as it clevates Aristotelianism, as seriously modified but not fundamentally corrected by Aquinas, into an authoritative orthodoxy in metaphysics.
Centuries elapsed after Aquinas before Galileo and his successors reformed natural science, and before Bacon destroyed the metaphysical dualism of matter and form by showing that a form in Nature is only a law of the action of matter, and that, as the action of a body is as individual as the body, the form is eternal only in thought (ratione). The psychology of Aristotle and Aquinas thus became impossible: for, if the form of a body is only a mode of matter, to call one's soul the form of one's body is to reduce it to only a mode of matter, and fall into materialism. Hence Descartes began the reform of psychology not only by the appeal to consciousness, "I think," but also by opposing body and soul, no longer as matter and form, but as different substances. These great improvements, duc to the genius of Galilco, of Bacon, of Descartes, are the fresh beginnings of modern thought, from which we dare not turn back without falling into obscurantism. What, then, is the future of metaphysics? We must return not to the authority but to the study of Aristotic. The independence of metaphysies as the science of being, the principles of contradiction and excluded middle with their qualifications, the distinction without separation between substance and attributes, the definition of substance as a distinct individual thing, the discovery that the world consists of substances existing apart but related to one another, the distinction between material and efficient causcs or matter and force, the recognition both of the natural and of the super-natural-all these and many other half-forgotien truths are the reasons why we must always begin with the study of Aristotle's Metaphysics. But their incompleteness shows that we must go forward from Aristotle to Bacon and modern seience, and even pass through the anarchy of modern metaphysics, in the hope that in the future we may discover as complete an answer as possible to these two questions:-

1. What is the world of things we know?

2. How do we know it?

For authoritics see the works quoted above, and the refercnces in the articles on philosophers and philosophical subjects.

METAPONTUM (Gr. Merañórcov, mod. Metaponto), an ancient city of Magna Graecia situated on the Gulf of Tarentum, near the mouth of the river Bradanus, and distant about 24 m . from Tarentum and 14 m . from Heraclea. It was founded by an Achacan colony from Sybaris and Crotona about 700 b.c. Metapontum was one of the ciltes that played a conspicuous part in the troubles arising from the introduction of the Pythagorism into Magna Graecia, and it was there that Pythagoras died in 497 B.c. His tomb was still shown in the time of Cicero.

At the time of the Athenian expecition to Sicily (415 B.c.) Metapontum appears to have been an opulent and powerful city, whose alliance was courted by the Athenians, but it contented itself with a very triling support. In 332 B.c., at the time of the expedition of Alexander, king of Epirus, into Italy, it was one of the first cities to enter into an alitiance with hum. The Second Punic War gave a fatal blow to its prosperity. After the battle of Cannae in 216 m.c. it was among the first cities in the south of Italy to declare in favour of Hannibal, and became for some years the headquarters of Hannibal. Hence, when the defeat of Hasdrubal at the Metaurus (207 B.c.) compelled him to abandon this part of Italy, the inhabitants of Metapontum abandoned their city, and followed him in his ret reat.

From this time Mctapontum sank; though it was still existing in the days of Cicero, Pausanias tells us that in his time nothing remained of it but a theatre and the circuit of the walls.

Metapontum has the remains of two temples, both of which seem to belong to the period 5to-48o b.c. (Koldewey and Puchstein, Die griechischen Tempel in Unterilalien und Sicilicn, Berlin, 1899, pp. 35-41). The so-called Chiesa di Sansone, which lay within the ancient town, and was probably dedicated to Apollo Lycius, was a peripteros measuring 186 by gi $\mathfrak{f l}$, of which only the foundations are left. The capitals were $3 \frac{1}{1} \mathrm{ft}$. in diameter. The temple was decorated with finely painted terra-cottas. Of the other temple, the so-called Tavole Paladine, which lay outside the area of the ancient city, and was a peripteros with 6 colurnss, 31 fl . in diameter, in front and 12 ft . at the sides, 15 columns are standing, with the lower portion of the epistyle. It measured 105 ft . hy 49 ft . without the steps. There are also traces of the town walls, which have served for the construction of farmhouses, of tombs, and of a harbour by the shore. Pliny speaks of a temple of Juno at Metapontum supported by columns of vinewood (Hist. nat. xiv. 9). An archaic treasure-house dedicated at Olympia by the people of Metapontum has been discovered there. The railway station is the junction of the line from Battipaglia (and Naples) with that from Taranto to Reggio.
(T. As.)

Sec M. Lacava, Topozrafia e storia di Metaponto (Naples, 1891).
METASOMATISM (Gr. Merh, change, oũua, body), in petrology, a process of alteration of rocks by which their chemical composition is modifed, new substances being introduced while those originally present are partly or wholly removed in solution. For example a limestonc may be converted into a siliceous chert, a dolomite, an ironstone, or a mass of metalliferous ores by metasomatic alteration. The process is usually incomplete, greater or smaller portions of the original rock remaining. The agencies of metasomatism are in nearly all cases aqueous solutions; probably they were often at a high temperature, as metasomatic changes are especially liable to occur in the vicinity of igneous intrusions (laccolites, dikes and necks) where large quantities of water were given of by the volcanic magma at a time when it had solidified but was not yet cold. Metasomatism also usually gocs on at some depth, so that we may readily believe that it is favoured hy increase of pressure. On the other hand, there are many instances in which these processes cannot be shown to have taken place at temperalures or pressures above those which normally exist in the upper part of the earth's crust (e.g. dolomitization and silicification of many limestones). There are also cases of metasomatism in which steam and other vapours are supposed to have been operative; the temperatures were probably above the critical temperature of water. Changes of this sort are
described as pneumatolytic, being induced by gases (see Pneumatolysis).
By metasomatism new minerals replace the primitive ones; at the same time the original rock-structures may be completely obliterated. An igneous rock for example may be entirely replaced by crystalline massive quartz, a fosstiferous limestone by granular crystalline dolomite. It is equally common, bowever, to find that the structure of the original rock is preserved though lis substance has been entirely altered. An oolitic limestone may become an colitic ironstone or chert (see Petrology, PI. IV. fig. 5.) and casts of the fossils which the limestone contained may be formed of siderite or of chalcedony. In this case the rock resembles a pseudomorph, which is the term applied to a mineral which has been entirely replaced by another mineral without losing its original crystalline form. As a result of metasomatism rocks usually become more crystalline, especially those which have been in large part built up of fossil organic remains; this is a consequence of the new substances having been deposited by purely inorganic processes from solution in water.

The chemical change is often complete, as when a limestone is replaced by chert or otherwise silicified, but it is probably more usually incomplete, part of the substance of the original rock having been retained though possibly in new mineral combinations. When a limestone is replaced by ironstone (e.g carbonate of iron or siderite) part at least of the carbonic acid may be that of the limestone. A dolomite, formed from a limestone, contains more than one-half of its weight of carbonate of lime presumably derived from the limestone inself; yet in this case the mineral transformation may be perfect, as the dolomite retains none of the calcite of which the limestone was formed; it is all present as the double carbonate of lime and magnesia (or dolomite). When a granite is converted by emanations containing fluorine and boron into a quartz-tourmaline rock (schorl rock, q.v.) or a quartz mica rock (greisen, q..v.) it can be proved by analysis that there has been very little modification of the chemical composition of the original mass. This resembles paramorphism in minerals, in which one mineral is substituted for another having the same chemical composition (e.g. \mathbf{z} yanite for andalusite).
The relations between metamorphism and metasomatism are very close; in fact some authors regard metasomatism as a variety of metamorphism. It is generally true, however, that in metamorphic changes there is little chemical alteration; sandstones pase into quartziles. clays into mica-schists and gneisses, limestones into marbles without any essential modification in chemical composition, for the original minerals new ones being substiluted and new structures being produced at the same time. In metasomatism, on the other hand. chemical alteration is supposed by most geologists to be an essential feature; new minerals appear, but the original structures are sometimes retained.
The facility with which a rock undergoes metasomatism depends partly on its nature, and partly on the circumstances in which it is placed. Limestones, being readily soluble under natural conditions, are especially liable. The Cleveland iron ores of Yorkshire are limestones replaced by siderite and limonite; the Whitehaven iron ores are metasomatic replacements of limestone by haematite. The former are of Mesozoic, the latter of Palseozoic age, but both have been changed in very much the same way by percoleting solutions containing salts of iron. In some cases limonite and magnetite are the principal ores. Often the changes have takea place very irregularly, along bedding planes, faults and (ractures. An ironstone may in many places be traced laterally into a limestone, the amount of iron in the rock gradually diminishins. Some ironstones (Carboniferous, Jurassic. \& ac.) retain the oohtic structures of the original limestonc; others show corals, shells and other calcareous fossils replaced by iron ores. When beds of shaie or sandstone are intercalated a mong the limestones they usually show little change. a lact which indicates that the ready solubility of the calcareous rocks was a dominating factor in determining the metasomatic deposits. It is bclieved that the Whitehaven iron ores may be derived from the ironstones of the Coal-Measures which once covered the limestone districts.
Dolomilization of limestones is even more common than replacement by iron ores. That it is going on at the present day is evident from the lact that cores obtained by boring in recent coral reefs have shown that these may be extensively dotomitized in their deeper parts. and the older limestones such as the Triasic of the Alpa, the Carbonifcrous Limestone of England and the Cambriea

Limestone of Scotlond aro wometimes converted into dolomite over wide areas. There has been an introduction of magnesia, with sometimes a little silica and iron; the rock recrystallizes owing to the formation of small rhombohedra of dolomite: it frequently becomes porous and full of drusy cavitics, owing to the contraction in volume which takes place, and the fossils and other organic structures of the original rock disappear. The change proceeds outwards from fissures and bedding planes and spreads gradually through the mass of the limestone; often the transformation is complete and no unaltered rock remains. Silicification or the replacement of limestone by chalcedony, chert or quartz, is often exhibited on a large seale. The formation of flint nodules and chert bands is of this nature; the silica is not really an introduction from without, but is merely the material of the fine siliceous skelet ons of sponges, radiolaria and other organisms, which at first were widely scattered through the limestone and at a later time were dissolved by percolating, waters, percolated through the rock and were deposited in certain situations as bands, nodules and tabular masses of cryptocrystalline silica. In limestones extensive deposits of zine ore may occur, usually calamine. These are important sources of the metal and there is little room for doubt that they have formed by a process of metasomatic replacement. e.e. Carthagena, Raibl (in Carinthia) and Belgium. In many parts of western North America (Nevada, Arizona. \&c.) great deposits of copper. lead and silver ores are worked in crystalline limestoncs. They are often highly silicified, and associated with them are intrusive igreous rocks such as granite, dacite, porphyry and diabase. The ores occur not only in veins and shoots, but also in great masses replacing the limestone, and the geologists who have examined these mining districts are nearly unanimous as to the metasomatic nature of a large part of these deposits. Other rocks such as tuff, voicanic breccia, shate. porphyry and granite may also be impregnated with metalliferous ores, but the largest ore bodies are found in the limestones. Secondary enrichment has often taken place on a considerable scale. The constant presence of igneous rocks indicates that they are connected with the Introduction of the metals, and the deposits are often of such a kind as to show that post-volcanic discharges of magmatic gases and water have been the act ual mineralizing agents. Bisbee, Clifton and the Globe district in Arizona, Flagstaff in Utah, and the Eurelca district in Nevada are good eximples of the deposits in question.

As indicated above, shales, sandstones and igneous rocks may be silicified and minerallzed under suitable conditions. Rhyolites and rhyolitic tufls are often impregnated with silica to such an extent that they become almost massive quartz, and the fluidal., porphy. ritic, spheroidal and other igneous structures of the original rock may be retained in the siliceous peeudomorph. There are many eamples of this in North Wales and the Pent land Hills. In andesites, erpentines and trachytes silicification is irequently found in circumstances indicating that the changes are not due to weathering but are the effect of post-volcanic emanations of heated waters. Silicified shales may accompany mineral deposits, e.g. in the Cornish tin mines the killas or grey slate may be converted into quartz and brown tourmaline and contains small quantities of tin stone. In the copper mines of Parys Mountain, Anglesey; formerly of great importance as producers of this metal. there are large areas of silicified slate and silicified porphyry. White mica, kaolin, pilbertite, chlorite and epidote are frequently. present in silicified tgneous rocks. As a further instance of mineral deposition in metasomatized igneous rocks we may quote the Cripple Creek gold. field in Colorado, where syenites latites, phonolites, breccias, \&c., have been filled with pyrite, dolomite, fluorite, calaverite and other new minerals together with quartz.

Another type of metasomatic alteration is phosphatization. This is most common in limestones, and many of the most important bedded plosphate deposits are of this origin. Trachytes and other igneous rocks are occasionally phosphatized. The source of the phosphate is for the most part the skeletons of animals, vertebrate bones and teeth, shells ol certain brachiopods, critobites and other organisms. Guano, the excreta of birds. is rich in phosphates and these are washed downwards by rain producing metamomatic changes in the underlying rocks. Phosphatized limestones are obtained in great quantities in Christmas Island, Sombrero. Curaça and other uninhabited limestone islands.
(J. S. F.)

HEAASTASIO (1698-1782). Pietro Trapassi, the Italian poet who is better known by his assumed name of Metastasio, was born in Rome on the 13 th of Jonuary t 698 . His father, Felice Trapassi, a native of Assisi, came to Rome and took service in the Corsican regiment of the papal forces. He subsequently married a Bolognese woman. called Francesca Galasti, and established himself in busincss as a grocer in the Via dei Cappellari. Two sons and two daughters were the fruit of this marriage. The eldest son. Leopoldo, must be mentioned, since he played a pert of some importance in the poet's life. Pietro. while quite a child, often held a crowd attentive in the streets while be recited impromptu verses on a given subject. It so
happened that, while he was thas engaged one evening in the Year $\mathbf{~} 709$, I wo men of distinction in Roman society stopped to listen to his declamation. These were Gian Vincenzo Gravina, famous for legal and literary erudition, lamous no less for his dictatorship of the Arcadian Academy, and Lorenzini, a critic of some note. Gravina was at once attracted by the boy's poetical taient and charm of person, interested himself in the genius he had accidentally discovered, made Piet ro his protege, and in the course of a lew weeks adopted him. Felice Trapassi was glad enough to give his son the chance of a good education and introduction into the world under auspices so favourable. Gravina hellenized the bey's name Trapassi into Metastasio; and intended his adopted son to be a jurist like himself. He therefore made the boy learn latin and begin the study of law. At the same time he cultivated his literary gifts, and displayed the youthful prodigy both at his own house and in the Roman coteries. Metastasio soon found himself competing with the most celebrated improvisatori of his time in Italy. Days spent in severe st udies, evenings devoted to the task of improvising eighty stanzas at a single session, were fast ruining Pietro's health and overstraining his poetic faculty. At this juncture Gravina had to journey into Calahria on business. He took Metastasio with him, exhibited him in the literary circles of Naples, and then placed him under the care of his kinsman Gregorio Caropresc at a litile place called Scaléa. In country air and the quiet of the southern seashore Metastasio's health revived. It was decreed by Gravina that he should never improvise again, but should be reserved for nobler efforts, when, having completed his education, he might enter into competition with the greatest poets.

Metastasio responded to his patron's wishes. At the age of twelve he translated the lliad into octave stanzas; and iwo years later be composed a tragedy in the manner of Seneca upon a subject chosen from Trissino's Italia liberata - Gravina's favourite epic. It was called Giustino. Gravina had it printed in 1713 ; hut the play is fifeless; and fort y-two years afterwards we find Metastasio writing to his publisher, Calsabigi, that he would willingly suppress it. Caroprese died in 1714, leaving Gravina his heir; and in 1718 Gravina also died. Metastasio inherited bouse, plate, furniture and money, which amounted to 15,000 scudi, or about $£ 4000$. At a meeting of the Arcadian Academy, he recited an elegy on his patron, and then settled down, not it seems without real sorrow for his loss, to enjoy what was no inconsiderahle fortune at that period. Metastasio was now twenty. During the last four years he had worn the costume of abbe, having taken the minor orders without which it was then useless to expect advancenment in Rome. His romantic history, personal beauty, charming manners and distinguished talents made him fashionable. That before two years were out he had spent his money and increased his reputation for wit will surprise no one. He now very sensibly determined to quit a mode of life for which he was not born, and to apply himself seriously to the work of his profession. Accord. ingly he went to Naples, and entered the office of an eminent lawyer named Castagnola. It would appear that be articled himself as clerk, for Castagnola exercised severe control over his time and energies. While slaving at the law, Metastasio in 172: composed an epithalamium, and probably also bis first musical serenade, Endimione, on the occasion of the marriage of his patroness the Princess Pinelli di Sargro to the Marchese Belmonte Pignatelli. But the event which fixed his destiny was the following. In 1722 the birthday of the empress had to be celebrated with more than ordinary honours, and the viceroy applied to Metastasio to compose a serenata for the occasion. He accepted this invitation, but it was arranged that his authorship should be kept secret. Under these conditions Metastasio produced Gli orli esperidi. Set to music by Porpora, it won the most extraordinary applause. The great Roman prima donna, Marianna Bulgarelli, called La Romanina from her birthplace, who had played the part of Venus in this drama, spared no pains until she had discovered its author, La Romanina forthwith took possession of him, induced him to quit his
lawyer's office, and promised to secure for him fame and independence, if he would devote his talents to the musical drama. In La Romanina's house Metastasio became acquainted with the greatest composers of the day-with Porpora, from whom he took lessons in music; with Hasse, Pergolese, Scarlatti, Vinci, Leo, Durante, Marcello, all of whom were destined in the future to set his plays to melody. Here too he studied the art of singing, and learned to appreciate the style of such men as Farinelli. Cifted himself with extraordinary facility in composition, and with a true poetic feeling, he found no difficulty in producing plays which, while beautiful in themselves, judged mercly as works of literary art, became masterpieces as soon as their words were set to music, and rendered by the singers of the greatest school of vocal art the world has ever seen. Reading Metastasio in the study, it is impossible to do him justice. But the conventionality of all his plots, the absurdities of many of his situations, the violence he does to history in the persons of some leading characters, his "damnable iteration " of the theme of love in all its phases, are explained and justifed by music.

Metastasio resided with La Romanina and her husband in Rome. The generous woman, moved by an affection half maternal half romantic, and by a true artist's admiration for so rare a talent, adopted him more passionately even than Gravina had done. She took the whole Trapassi familyfather, mother, brother, sisters-into her own house. She lostered the poet's genius and pampered his caprices. Under her influence he wrote in rapid succession the Didone abbandorata, Calonc in Utica, Ezio, Alessandro nell' Indic, Semiramide ricomosciuta, Siroe and Arlascrse. These dramas were set to music by the chici composers of the day, and performed in the chief towns of ltaly. But meanwhile La Romanina was growing older; she had ceased to sing in public; and the poet felt himself more and more dependent in an irksome sense upon her kindness. He gained 300 scudi (about (60) for each opera; this pay, though good, was precarious, and he longed for some fixed engagement. In September 1729 he received the offer of the post of court poet to the theatre at Vienna, with a stipend of 3000 Borins. This he at once accepted. La Romanina unselfishly sped him on his way to glory. She took the charge of his family in Rome, and be set ofi for Austria.

In the early summer of 1730 Metastasio settled at Vienna in the bouse of a Spanish Neapolitan, Niccolo Martinez, where he resided until his death. This date marks a new period in his artistic activity. Between the ycars 1730 and 1740 his finest dramas, Adriano, Demetrio, Issipile, Denojoonte, Olimpiade, Clemense di Tito, Achille in Sciro, Temistocle and Allilio Regolo, were produced for the imperial theatre. Some of them had to be composed for special occasions, with almost incredible rapiditythe Achille in eighteen days, the Ipermnestra in nine. Poet, composer, musical copyist and singer did their work together in Irantic haste. Metastasio understood the technique of his peculiar art in its minutest details. The experience gained at Naples and Rome, quickened by the excitement of his new carcer at Vienna, enabled him almost instinctively, and as it were by inspiration, to hit the exact mark aimed at in the opera.
At Vienna Metastasio met with no marked social success. His plebeian birth excluded him from aristocratic circles. But, to make up in some measure for this comparative filure, he enjoyed the intimacy of a great lady, the Countess Althann, sister-jn-law of his old patroness the Princess Belmonte Pigna. telli. She had lost her husband, and bad some while oceupied the post of chief favourite to the emperor. Metastasio's liaison with her became so close that it was cven believed they had been privately married. The even tenor of his existence was broken in the year 1734 by the one dark and tragic incident of his biography. It appears that La Romanina had at last got tired of his absence. Could not Metastasio get her an engagement at the court theatre? The poet at this juncture revealed his own essential feebleness of character. To La Romanina be owed almost everything as a man and as an artist. But he was ashamed of her and tired of her. He vowed she should not come to Vienna, and wrote dissuading her from the projected visit.

The tone of his letters alarmed and irritated her. It is probable that she set out from Rome, but died suddenly upon the road. All we know is that she left him her fortune after her husband's life interest in it had expired, and that Metastasio, overwhelmed with grici and remorse, immediately renounced the legacy. This disinterested act plunged the Bulgarelli-Metastasio bousfhold at Rome into confusion. La Romanina's widower married again. Lcopoldo Trapassi, and his father and sister, were thrown upon their own resources.

As time advanced the life which Metastasio led at Vienna, together with the climate, told upon his health and spirits. From about the year 1745 onward he wrote but little, though the cantatas which belong to this period, and the canzonet Ecco quel fiero istante, which he sent te his íriend Farinelli, rank among the most popular of his productions. It was clear, as Vernon Lee has phrased it, that " what ailed him was mental and moral ennui." In 1755 the Countess Althann died, and Metastasio was more than ever reduced to the society which gathered round him in the bourgeois house of the Martinez. He sank rapidly into the habits of old age; and, though his life was prolonged till the year 1782, very little can be said about it. On the 12th of April he died, bequeathing his whole fortune of some 130,000 florins to the five children of his friend Martinez. He had survived all his Italian relatives.
During the long period of forty years in which Metastasio overlived his originality and creative powers his lame went on increasing. In his library he counted as many as forty editions ol his own works. They had been translated into French, English, German, Spanish, even into modern Greek. They had been set to music over and over again by every composer of distinction, each opera receiving this honour in tum from several of the most illustrious men of Europe. They had been sung by the best virtuosi in every capital, and there was not a literary academy of note which had not conierred on him the honour of membership. Strangers of distinction passing through Vienna made a point of paying their respects to the old poet at his lodgings in the Kohlmarkt Gasse. But his poetry was intended for a certain style of music-lor the music of omnipotent vocalists, of thaumaturgical soprani. With the changes effected in the musical drama by Cluck and Mozart, with the development of orchestration and the rapid growth of the German manner, a new type of libretto came into request. Metastasio's plays fell into undeserved neglect, together with the music to which he had linked them. Farinelli, whom he styled "twin-brother," was the true exponent of his poetry; and, with the abolition of the class of singers to which Farinelli belonged, Metastasio's music suffered eclipse. It was indeed a just symbolic instinct which made the poet dub this unique soprano his (win-brother.
The musical drama for which Metastasio composed, and in working for which his genius found its proper sphere, has so wholly passed away that it is now difficult to assign his true place to the poet in Italian literary history. His inspiration was essentially emotional and lyrical. The chici dramatic situations are expressed by lyrics for two or three voices, embodying the several contending passions of the agents brought into conflict by the circumstances of the plot. The total resule is not pure literature, but literature supremely fit for musical effect. Language in Metastasio's hands is exquisitely pure and limpid. Of the Italian poets, he professed a special admiration for Tasso and for Marini. But he avoided the conceits of the latter, and was no master over the refined richness of the former's diction. His own style reveals the improvisatore's facility. Of the Latin poets he studied Ovid with the greatest pleasure, and from this predilection some of his own literary qualities may be derived. For sweetness of versification, for limpidity of diction, for delicacy of sentiment, for romantic situations exquisitely rendered in the simplest style, and for a certain delicate beauty of imagery sometimes soaring to ideal sublimity, he deserves to be appreciated so long as the Italian language lasts.
There are numerous editions of Metastasso's works. That by Calsabigi (Paris, 1755.9 vols 8va) published under his own ouperintendence, was the poet's favourite. Another of Turin (2757) and a
third of Paris (1780) deserve mention. The posthumous wortas ware printed at Vienna. 1705. The collected editions of Genoa (1802) and Padua (1811) will probabiy be found most usefill by the general student. An edition of the letters, by Carducci, was p blished at Bologne in 1883. Metastasio's life was written by Aluigi (Asrisi, 1783) : by Charles Burney (London, 179\%); and by others but by far the most vivid sketch of his biography will be found in Vernon Lee's Studies of the 18th Century in lialy (London, 1880) a work Which throws a flood of light upon the development of tralian dramatic music, and upon the place occupied by Netastasia in the artistic movement of the last century. (J.A. S.)

METAURUS (mod. Melawro; the form Mataurus is later, and is more frequent in inscriptions of the imperial period), a river of Italy, which flows into the sea a little south-east of Fanum Fortunac (mod. Fano). On its banks Hasdrubal, while marching to the aid of Hennibal in 207 b.c., was defeated and slain by the Roman army, this being the decisive battle of the Second Punic War. The exact site of the batcle is uncertain; tradition places it between Fossombrone and the Furlo Pass, but it is probahle that it occurred nearer the sea-coast.

Metaxas, ANDREAS ($1786-1860$), Greek politician, was born in the island of Cephalonla. During the latter part of the War of Independence (1824-1827) he accompanied Capo d'Istria to Greece, and was appointed by him minister of war. When Capo d'Istria was murdered in 1831 Metaxas became a member of the provisional government which held office till the accession of King Otho in 1833. During the minority of Otho be was named privy councillor and minister at Madrid and Lisbon. In 1840 he was recalled and appointed minister of war. In 18431844 he was president of the council of ministers, and he subsequently held the post of ambassador at Constantinople from 1850 to 1854 . He died at Athens on the $19 t h$ of September 1860.

METAYAGE SYSTEM, the cultivation of land for a proprietor by one who receives a proportion of the produce. The system has never existed in England and has no English name, but in certain provinces of Italy and France it was onee aimost universal, and is still very common. It is also not unusual in Portugal, in Greece, and in the countries bordering on the Damube. In Italy and France, respectively, it is called messeria and melayage, or halving-the halving, that is, of the produce of the soil between landowner and landholder. These expressions are not, however, to be understood in a more precise sense than that in which we sometimes talk of a larger and a smaller half. They merely signify that the produce is divisible in certain definite proportions, which must obviously vary with the varying lertility of the soil and other circumstances, and which do in practice vary so much that the landlord's share is sometimes as much as two-thirds, sometimes as little as one-third. Sometimes the landlord supplies all the stock, sometimes only part-the cattle and seed perhaps, while the farmer provides the implements; or perhaps only half the seed and half the cattle, the farmer finding the other halves-taxes too being paid wholly by one or the other, or jointly by both.
English writers were unanimous, until J. S. Mill adopted a different tone, in condemning the metayer system. They judged it by its appearance in France, where it has never wom a very attractive aspect. Under the ancien regime not only were all direct taxes paid by the metayer, the noble landowner being exempt, but these taxes, being assessed according to the visible produce of the soil, operated as penaltics upon all endeavours to augment its productiveness. No wonder, then, if the metayer fancied that his interest lay less in exerting himself to augment the total to be divided between himself and his landlord, than in studying how to defraud the latter part of his rightful share; nor if he has not yet got rid of habits so acquired, especially when it is considered that he still is destitute of the fixity of tenure without which metayage cannot prosper. French métayers, in Arthur Young's time, were " removable at pleasure. and obliged to conform in all things to the will of their landlords," and so in general they are still. Yet even in France, although métayage and extreme rural poverty usually coincide, there are provinces where the contrary is the fact, as it is also in Italy. Indeed, to every tourist who has passed through the plains of

Lombardy with his eyes open, the knowledge that metayage has for ages been there the prevailing form of tenure ought to suffice for the triumphant vindication of métayage in the abstract. An explanation of the contrasts presented by métayage in different regions is not far to seek. Métayage, in order to be in any measurc worthy of commendation, must be a genuine partnership, one in which there is no sleeping partner, but in the affairs of which the landlord, as well as the tenant, takes an active part. Wherever this applies, the results of mttayage appear to be as eminently satisfactory, as they are decidedly the reverse wherever the landlord holds himself aloof.

In France there is also a system termed milayage par groupes, which consists in letting a considerable farm, not to one metayer, but to an association of several, who work together for the general good, under the supervision either of the landiord himself, or of his bailif. This arrangement gets over the difficulty of finding tenants possessed of capital enough for any hut very small farms.

See further the section Agricullure in the articlee France, Grezes, Italy, \&e.; and consult J. Cruveilhicr, Elude skef fe mellayge (Paria, 1894).

METCALP, WILLARD LBROY (1858-), American artist, was born at Lowell, Massachusetts, on the ist of July 1858. He was a pupil of the Boston Normal Art School, of the Boston Art Museum School, and of the Academie Julien, Paris. After early figure-painting and illustration, he became prominent as a landscape painter. He was one of the "Ten American Painters" who in 1897 seceded from the Society of American Artists. For some years he was an instructor in the Woman's Art School, Cooper Union, New York, and in the Art Students' League, New York. In 1893 he became a member of the American Water Colour Socicty, New rYork.

MBTCALFB, CHARLEs THEOPHILUS METCALFE, BARON (1785-1846), Indian and colonial administrator, was borm at Calcutta on the 3oth of January 1785; he was the second son of Thomas Theophilus Metcalfe, then a major in the Bengal army, who afterwards became a director of the East India Company, and was created a baronct in 1802. Having been educated at Eton, he in 1800 sailed for India as a writer in the service of the Company. After studying Oriental languages as the first student at Lord Wellesley's College of Fort William, he, at the age of nineteen, was appointed political assistant to General Lake, who was then conducting the final campaign of the Mahratta war against Holkar. In 1808 he was selected by Lord Minto for the responsible post of envoy to the court of Ranjit Singh at Lahore; here, on the 25 th of April 1800 , be concluded the important treaty securing the independence of the Sikh states between the Sutlej and the Jumna. Four years afterwards he was made resident at Delhi, and in 1819 he received from Lord Hastings the appointment of secretary in the secret and pohitical department. From 1820 to 1825 Sir Charles (who succeeded his hrother in the baronetey in 1822) was resident at the court of the nizam, and afterwards was summoned in an emergency to his former post at Delhi. In 1827 he obtained a seat in the supreme council, and in March 1835, after he had acted as the first governor of the proposed new presidency of Agra، he provisionally sueceeded Lord William Bentinck in the governor-generalship. During his brief tenure of office (it lasted only for one year) he carried out several important measures, including that for the liberation of the press, which, while almost universally popular, complicated his relations with the directors at home to such an extent that he resigned the service of the Company in 1838 . In the following year he was appointed by the Melboume administration to the governorship of Jamaica, where the difficulties created by the recent passing of the Negro Emancipation Act had cailed for a high degree of tact and ability. Sir Charles Metcalle's success in this delicate position was very marked, but unfortunately his health compelled his resignation and return to England in 1842. Six months afterwards he was appointed by the Peel ministry to the governor-generaiship of Canada, and his success in carrying out the policy of the home government was rewarded with a
peerage shortly after his return in 1845. He died at Malshanger, near Basingatoke, on the sth of September 1846.

See J. W. Kaye's Lifa and Correspondence of Charles Lood Metealfe (London, 1854).
METELLLUS, the name of a distinguished family of the Caecilian (pleheian) gens in ancient Rome. The following are the most important:-

1. Lucius Caectiug Metellus, general during the arst Punic War. Consul in 251 b.c., he was sent to Sicily, and gained a decisive victory over Hasdrubal, who, trusting to his numerically superior forces and the alarm inspired by his elephants, ventured to attack him. Metellus's victory was in great measure due to a panic caused amongst the elephants hy his ciever manceuvring. A number of these animals were sent in specially constructed rafts to adorn his triumph, and from this time the elephant frequendy occurs as a device on the coins of the Metelli. In 241, when the temple of Vesta was destroyed by fire, Metellus succeeded in hringing out the Palladium uninjured, but lost his eyesight. As a reward, be was granted permission to ride to the senate-house in a carriage, a privilege hitherto unheard of. But the story of his blindness is doubtful, since it is hardly consistent with his appointment as dictator in 224 "for the purpose of holding the comitia," nor is any mention made of it in the extract [Pliny, Nof. Hist. vii. 43 (45)] from the funeral oration pronounced over him by his son.
2. Quintus Caecilius Metellus, son of (i), became consul in 206 as a reward for his services at the Metaurus. In 205 he was dictator for bolding the comitia; in 201 one of the commissioners for dividing the public land in Samnium and Apulia amongst the Roman veterans; in 186 be conducted an embassy to Macedonia, afterwards proceeding to Peloponnesus to investigate the quarrel between Sparta and the Achaeans. He is the Metellus who caused the poet Nacvius (g.v.) to be imprisoned and exiled for having attacked him on the stage.
3. Lucius Carciluus Metelius, possibly son of (1), when the disastrous news of the battle of Cannae (216) reacbed Rome, proposed to a number of young nobles that they should leave Italy and offer their services to some foreign ruler, hut they were prevented hy the threats of the younger Scipio from carrying out their purpose. For this offence, when quacstor two years later, he was degraded hy the censors from his tribe to the class of aerarii. Nevertheless, he was elected one of the tribunes for the following year, hut his attempt to call tbe censors to account for their action proved unsuccessful in the face of the opposition of his colleague.
4. Quintus Cabctluus Metellus Macedonicus (d. 115 b.c.), praetor 148 в.C., deleated the usurper Andriscus (q.ק.) in Macedonia and forced him to surrender. Under his superintendence the country was made a Roman province. In 146, he attacked the Achacans to avenge an insult offered to a Roman embassy at Corinth. He gained decided successes over them at Scarpheia asd Chaeroneia, but was superseded by L. Mummius. On his return to Italy he received the bonour of a triumph and the title of Macedonicus. Consul in 143, he reduced the Celliberians in northern Spain to obedience. In 131, when censor with Q. Pompeius (they were the first two plebcian censors), he proposed that all citizens should be compelled to marry. He expelled a number of senators, one of whom, the trihune C. Atinius Labeo, proposed that he should be hurled from the Tarpeian rock; his life was only saved through the intervention of another tribunc. He was an opponent of the Gracchi, although not averse from moderate reform. He was a strict disciplinarian, a good general, and a type of the ancient Roman both in public and private life. He erected a splendid colonnade in the Campus Martius, and two temples dedicated to Jupiter Stator and Juno:
5. Quinites Cazctlius Metelius Numidicus, consul rog, and commander in the Jugurthine War. He defeated Jugurtha ($g . v$.) by the river Muthul, and after a difficult march through the desert took his stronghold, Thala. Marius, however, who had been intriguing for the command, accused Metellus of protracting the war, and received the consulship for 107 with the province
of Numidia. Metellus received a splendid triumph and the title of N mmidicus. Saturninus, whom as a censor he tried to remove from the senate, passed in 100 an agrarian taw, inserting a provision that all senators should swear to it within five days. All complied but Metellus, who retired to Asia. After Saturninus was killed he returned, and died (prohabiy in 91). He was a man of the highest integrity, a strict and efficient general, and one of the chief leaders of the aristocratic party. He was a man of education and learning, and Cicero speaks highly of him as an orator.
6. Quinrus Cabcinits Metellus Pius, so called from his efforts to hring about the recall of his father Numidicus from exile. He was one of the commanders in the Social War, and defeated Q. Pompaedius Silo, the Marsian leader (88). Sults, on his departure for Asia, gave him proconsular command over south Italy. When Marius returned to Italy and joined Ciana, the soldiers, who had no confidence in the consul Gnaeus Octavius, wished Metellus to take command, but he refused. The soldiers deserted in large numbers, and considering it impossible to defend Rome, Metellus retired to Africa and afterwards to Liguria, resuming his former proconsular command on Sulla's return. In the war against Marius he gained several important successes, and after his victory over C. Norbanus at Faventia (82) he subdued the whole of upper Italy. Consul in 80 with Sulla, he went to Spain next year against Sertorius, who pressed him hard till the arrival of Pompey in 76. Next year Metellus defeated Sertorius's lieutenant Hirtuleius at Italica and Segovia, and joining Pompey rescued him from the consequences of a cbeck at Sucro. From this time Sertorius grew weaker till his murder in 72. In 71 Metellus returned to Rome and triumphed. He hecame pontifex maximus, and died prohably at the end of 64. He was an upright man, of moderate ability.
7. Quintus Caecilius Metellus Celez, legate of Pompey in Asia 65 b.c., practor 63 . He was despatched to cut off the retreat of Catiline to the north by hlocking the passes, and in 62 went into the province of Cisalpine Gaul with the tille of proconsul, although he did not become consul till 60 . A strong supporter of the optimates and an enemy of Pompey, he strenuously opposed the agrarian law hroughs forward by the trihune Lucius Flavius, to provide for Pompey's veterans, and stood firm even though imprisoned; the law had to be given up. He also tried, though fruitessly, to obstruct Caesar's agrarian Law in 59. He died suddenly in the same year-it was usually supposed from poison administered hy his wife Clodia.
8. Quintus Caeciluus Metellus Nepos, son of a Metellus of the same name, so called because be was the grandson of (4). He was legate to Pompey in the war against the Mediterranean pirates (67), and took part in the Syrian cartpaign. In 63 be returned to Rome, to assist Pompey in carrying out his plans. He violently attacked Cicero, and refused to allow him to deliver the customary speech on laying down office as consul; he even threatened to impeach him for baving executed Roman citizens (referring to the Catilinarian conspirators) without a trial In 62 his proposal that Pompey should be summoned to Italy to restore order was bitterly opposed by Cato, and on the day set down for the bill a fight took place in the forum. Metellus fled to Pompey, hut soon returned with him to Rome. In 60, when practor, be proposed a law for the abolition of the pectigalia in Italy. In 57 he was consul, hut offered no opposition to the return of Cicero from crile. In 56 he was governor of Hither Spain, where he was engaged in hostilities against the Vaccaei with indifferent success. He appears to have died in Rome in the following year. He was a mere creature of Pompey.
9. Quintus Caecluius Metellus Pius Scipio, son of P. Scipio Nasica, was adopted by (6). He was accused of bribery in 60 b.c., and defended by Cicero, to whom he had rendered valuable assistance during the Catilinatian conspiracy. In August 52, he became consul through the influence of Pompey, who had married his daughter Cornelia. In 49 he proposed that Caesar should disband his army within a definite time, under pain of being declared an enemy of the state. After the outhreak of the civil war, the province of Syria was assigned to
firm, and he was about to plunder the temple of Artemis at Ephesus when he was recalled by Pompey. He commanded the centre at Pharsalus, and afterwards went to Africa, where by Cato's "influence he received the command. In 46 he was defeated at Thapsus; while endeavouring to escape to Spain he fell into the hands of P. Sittius, and put himself to death. His connexion with two great families gave him importance, but he was selish and licentious, wanting in personal courage, and his violence drove many from his party.
10. Quintus Caecilius Metellus, sumamed Creticus, Roman general. Consul in 69 b.c., he was appointed to the command of the war against Crete, the headquarters of the pirates of the Mediterrancan. Its subjugation proceeded slowly but surely until 67, when Pompey claimed the control of affairs in virtue of the powers conferred upon him by the Gabinian law. Thereupon the Cretans, who had been treated with great harshness by Metellus, offered to surrender to Pompey, who enjoyed a reputation for lenienty towards the conquered. Pompey accepted the offer and sent instructions to Metellus to suspend operations. Metellus refused and completed tbe conquest of the island, which was annexed to Cyrene and became a Roman province. On Metellus's return to Rome the partisans of Pompey sucteeded in keeping him out of a triumph until after the Catilinarian conspirary, when he made his entry into the city and received the name Creticus in honour of his achievements. Metellus naturally joined the senatorial party in their opposition to Pompcy, and had the satislaction of preventing the ratification of what he had done in Asia. He was one of a commission of three sent (60) to investigate the state of affairs in Gaul, where disturbances were apprehended. He appears to have been alive in 54 , but nothing further is known of him. On the family of the Metelli generally. see M. Wende, De Coeciliis Metellis, i. (Bonn. 1875), for its history up to the time of the Gracthi the new edition by P. Grobe of Drumann's Ceschichle Roms, ii. ; and the article s.v. "Caecilius" by F. Münzer in Pauly.Wissowa's Realencyclopodie der classischen Allerlum swissenschafi, ïi. pt. I (1897).
METBMPSYCHOSIS (Gr. $\mu e r e \mu \psi i x \omega \sigma t s)$, or Transmaration or tae Sout, the doctrine that at death the soul passes into another living creature, man, animal, or even plant. This doctrine, famous in antiquity and still held as a religious tenet by certain sects of the civilized world, has its roots far back in primitive culture. It is developed out of three universal savage beliefs: (1) that man has a soul, connected in some vague way with the breath, which can be separated from his material body, temporarily in sleep, permanently at death; (2) that animals and even plants have souls, and are possessed to a large extent of human powers and passions; (3) that souls can be translerred from one organism to another. Innumerable examples might be mentioned of the notion that a new-born child is the reincarnation of someone departed, as in Tibet the soul of the Dalai-Lama is supposed to pass into an inlant born nine months after his decease. Transmigration of human souls into non-human bodies is implied in totemism (q.0.), for, as Professor Frazer says, "it is an article of faith that as the clan sprang from the totem, so each clansman at death reassumes the totein form." All these savage notions are to be regarded as presuppositions of metempsychosis, rather than identified with that doctrine itsclf as a reasoned theory.

Till full investigation of Egyptian records put us in possession of the facts, it was supposed that the Egyptians believed in metempsyshosis, and Herodotus (ii. 123) explicitly credits them with it. We now know that he was wrong. All that they believed was that certain privileged souls might in the other world be able to assume certain forms at pleasure, those of a sparrow-hawk, lily, \&c. Herodotus misunderstood the Egyptians to hold beliels identical with those which were current in his day in Greece. In India, on the contrary, the dortrine was thoroughly established from ancient times; not from the most ancient. as it is not in the Vedas; but onwards from the L'panishads. In them it is used for moral retributom be who hills a Brahman is, after a long progress through dreadful hells, to be reborn as a dog. pig, ass, camel, \&e. This we always find in metempsychosis as a reasoned theory. It is formed by combina-
tion of two sets of ideas which belong to different planes of culture: the ideas of judgment and punishment alter death elaborated \ln a relatively cultured society by a priestly class are combined with ldeas, like that of totem-transmigration, proper to a savage society. In India we may explain the whole phenomenon as an infusion of the lower beliefs of the non-Aryan conquered races into the higher religious system of their Aryan conquerors. In later Hinduism metempsychosis reached a monstrous development; according to Monicr-Williams it was believed that there were $8,400,000$ forms of existence through which all souls were liable to pass before returning to their source in the Deity. Buddhism appeared as a reaction against all this, and sougbt by a subtle modification to harmonize the theory with its own pessimistic view of tbe world. According to Buddhism there is no soul, and consequently no metempsychosis in the strict sense. Something, however, is transmitted, i.e. Karma (character), which passes from individual to individual, till in the perfectly righteous man the will to live is extinguished and that particular chain of lives is brought to an end.

We do not know exactly how the doctrine of metempsychosis arose in Greece; it cannot, as was once supposed, have been borrowed from Egypt and is not likely to have come from India. It is easiest to assume that savage ideas which had never been extinguished were utilized for religious and philosophic purposes. The Orphic religion, which held it, first appeared in Thrace upon the semi-barbarous north-eastern frontier. Orpheus, its legendary founder, is said to bave taught that "soul and body are united by a compact unequally binding on either; the soul is divinc, immortal and aspires to freedom, while the body bolds it in letters as a prisoner. Death dissolves this compact, but only to re-imprison the liberated soul aiter a short time: for the wheel of birth revolves inexorably. Thus the soul continues its journey, alternating between a scparate unrestrained existence and fresh reincarnation, round the wide circle of necessity, as the companion of many bodies of men and animals. To these unfortunate prisoners Orpheus proclaims the message of liberation, that they stand in need of the grace of redeeming gods and of Dionysus in particular, and calls them to turn to God by ascetic piety of life and self-purification: the purer their lives the bigher will be their next reincamation, until the soul has completed the spiral ascent of destiny to live for ever as God from whom it comes." Such was the teaching of Orphism which appeared in Greece about the 6 th century B.c., organized itself into private and puhlic mysteries at Eleusis and elsewbere, and produced a copious literature.
The carliest Greek thinker with whom metempsychosis is connected is Pherecydes; but Pythagoras, who is said to have been his pupil, is its first famous philosophic exponent. Pythagoras probably neither invented the doctrine nor imported it from Ebypt, but made his reputation by hringing Orphic doctrine from North-Eastern Hellas to Magna Graccia and by instituting socicties for its diffusion.

The real weight and importance of metempsychosis is due to its adoption hy Plato. Had he not embodied it in some of his greatest works it would be merely a matter of curious investigation for the anthropologist and student of folk-lore. In the eschatological myth which closes the Republic be tells the story how Er , the son of Armenius, miraculously returned to life on the twelfth day after death and recounted the secrets of the other world. After death, he said, he went with others to the place of Judgment and saw the souls returning from heaven and from purgatory, and proceeded with them to a place where they chose new lives, human and animal. "He saw the soul of Orpheus changing into a swan, Thamyras becoming a nightingale, musical birds choosing to be men, the soul of Atalanta choosing the honours of an athlete. Men were seen passing into animals and wild and tame animals changing into each other." After their choice the souls drank of Lethe and then shot away like stars to their birth. There are mytbs and theories to the same effect in other dialogues, the Phoedrus, Dfero, Phaedo, Timaens and Lazos. In Plato's view the number of souls was fixed;
birth therefore is never the creation of a soul, but only a transniggration from one body to another. Plato's acceptance of the doctrine is characteristic of his sympathy with popular beliefs and desire to incorporate them in a purified form into his system. Aristotle, a far less emotional and sympathetic mind, has a doctrine of immortality totally inconsistent with it. In later Greek literature the doctrine appears from time to time; it is mentioned in a fragment of Menander (the Inspired Woman) and satirized by Lucian (Gallus $\S 18$ seq.). In Roman literature it is found as early as Ennius, who in his Calahrian home must have been familiar with the Greek teachings which had descended to his times from the cities of Magna Graecia. In a lost passage of his Annals, a Roman bistory in verse, Ennius told how he had seen Homer in a dream, who had assured him that the same soul which had animated both the poets had once belonged to a peacock. Persius in one of his satires (vi. 9) laughs at Ennius for this: it is referred to also hy Lucretius (i. 124) and by Horace (Episf. II. i. 52). Virgil works the idea into his account of the Underworld in the sixth book of the Acreid (vv. 724 sqq.). It persists in antiquity down to the latest classic thinkers, Plotinus and the other Ncoplatonists.

Attempts have been made with litile success to find metempsychosis in early Jewish literature. But there are traces of it in Philo, and it is definitely adopted in the Kabbala. Within the Christian Church it was held during the first centuries by isolated Gnostic bects, and by the Manichacans in the $4 t \mathrm{~h}$ and 5 th centuries, but was invariably repeudiated by orthodox theologians. In the middle ages these traditions were continued by the numerous sects known collectively as Cathari. At the Renaissance we find the doctrine in Giordano Bruno, and in the 17 th century in the theosophist van Helmont. A modified form of it was adopted by Swedenborg. During the elassical period of German literature metempsychosis attracted much attention: Goethe played with the idea, and it was taken up more seriously by Lessing, who borrowed it from Charles Bonnet, and by Herder. It bas been mentioned with respect by Hume and by Schopenhauer. Modern theosophy, which draws Its inspiration from India. has taken metempsychosis as a cardinal tenct: it is, says a reent theosophical writer, "the master-key to modern problems," and among them to the problem of heredity.

Outside the somewhat narrow circle of theosophisis there is little disposition to accept the doctrine: but it may be worth while to point out that there are two fatal objections to it. The first is that personal identity depends on memory. and we do not remember our previous incarnations. The second is that the soul, whatever it may be is influenced throughout all its qualities by the qualities of the body: modern peychology discredits the idea that the soul is a metaphysical essence which can pass indifferently from one body to another. If (to suppose the impossible) the soul of a dog were to pass into a man's body it would be so changed as to be no longer the same soul; and so, in a less degree, of change from one human body to another.
See A. Bertholet, The Transmigration of Souls (trans. from the German by H. J. Chaytor); E. Rohde, Psycke. (H. St.)

IETEOR (Gr. μ ericospa, literally " things in the air," from μ ert, beyond, and deipery, to lift up), a term originally applied by the ancient Greeks to many atmospheric phenomenarainbows, halos, shooting stars, \&c.-but now specially restricted to those luminous bodies known as shooting stars, falling stars, fireballs and bolides. Though these objects only become visible in the atmosphere they are extra-terrestrial planetary bodies, and properly belong to the domain of astronomy. The extraterrestrial bodies which happen to find a resting-place on the earth-are studied under the name of meteorites (q.v.).

In ancient times meteors were supposed to be generated in the air by inflammable gases. Isolated firehalls and star showers had been occasionally observed, but instead of being attentively watched they had been neglected, for their apparitions had Gilled mankind with dread, and superstition attributed to them certain malevolent influences. It was the brilliant exhibition in November 1833 that, in modern times particularly, attracted earnest students to investigate the subject of meteors generally, and to make systematic observations of their apparitions on ordinary nights of the year. Historical records were searched for references to past meteoric displays, and these were tabulated and compared. The attention devoted to the matter soon clucidated the phenomena of meteors, and proved them to be small planetary bodies, practically infinite in numbers and inlimitable in the extent and variety of their orbits.

The various kinds of meteors are probably but different manilestations of similar objects. Perhaps the most important meteors are those which, after their bright careers and loud detonations, descend upon the earth's surface and can be submitted to close inspection and analysis (sec Meteorites). The fireball or bolide (Gr. Bodis, a missile) comes next in order from its size and conspicuous effects. It may either be interspersed with many smaller meteors in a shower or may be isolated. The latter usually move more slowly and approach rat her near to the earth. The ordinary shooting stars vary from the brilliancy of a first- to a sixth-magnitude star. They exhibit a great dissinuiarity in paths, motions and colours. The smallest and most numerous class are the telescopic metcors invisible to the naked eye. They range from the 7th magnitude to the smallest object perceptible in large telescopes.
The altitudes at which thesc bodies are visibly presented to us differ in individual cases. More than a thousand observations in duplicate have been made of the patbs of identical metcors seen from two stations many miles apart. These pairs of ohservations have shown a parallax from which the elevation of the objects above the carth, the lengths and directions of their courses, \&c. could be computed. The average heights are from 80 to 40 m . A few, however, first appear when higher than 80 m . and some, usually slow-moving metcors, descend below 40 m . But altitudes beyond 100 and within 20 m . are rare:-

	Average Heights.		Length of Path.	Velocity per sec.
	Beginning.	Ending.		
Swift fircballs	$85 \mathrm{~m} .$	$50 \mathrm{~m} .$	55 m	$38 \mathrm{~m} \text {. }$
Slow fireballs. Slow fireballs	66	$25 .$	116	$15,$
(radiants near horizon).				
horizon). Swilt shooting	59 "	48	121%	13.
stars . ${ }_{\text {star }}$	8! ${ }^{\text {\% }}$	56 ,	$42 \cdot$	41 "
Slow shooting stars.	63.	49.	36	17 \%

30 of the November Leonids give a mean height of 841 to $57 \frac{1}{} \mathrm{~m}$. 40 of the Aagust Perseids
When the length of a metcor's course is known and the duration of its flight has been correctly estimated it is easy to compute the vclocity in miles. The visible life of an ordinary shooting star is, however, comprised within one second, and it is only rarely that such short time intervals can be accurately taken. The real velocities derived from good observations are rarely, if ever, under 7 or 8 m . per second, or over 60 or 70 m . per second. In a few exceptional cases abnormal speed has been indicated on good evidence. The slower class of meteors overtaking the earth (like the Andromedids of November) have a velocity of about 8 or 10 m . per second, while the swifter class (meeting the earth like the Leonids of November) have a velocity of about 44 m . per second.

When the memhers of a shower are ohserved with special regard to their directions it is seen that they diverge from a common focus. The apparent scattering or diversity of the fights is merely an effect of perspective upon objects really traversing parallel lines. The centre upon which the observed paths converge is called the radiant point or, shortly, the radiant. On every night of the year there are a great number of these radiants in action, hut the large majority represent very attenuated showers. In 1876 the number of radiants known was 850 , hut about 5000 have been determined up to the present time. These are not all the centres of separate systems, however: many of the positions being multiple observations of the same showers. Thus the August Perseids, the returns of which have been witnessed more frequently than those of any other meteoric stream have had their radiant point fixed on more than 25° occasions.
There appear to be moving and stationary radiants, contracted and diffused radiants, and longenduring and brief radiants. The Perseids are visible from about the ith of July to the zoth
of August, the radiant having a daily motion of about I° R.A. to E.N.E. The Lyrids also vary in the position of their radiant, but the Orionids form a stationary position from about the oth to the 24th of October. A large proportion of the ordinary feeble showers also appear to be stationary.

Solid bodies (chiefly stone or stone and iron) enter the atmosphere from without, at all conccivable angles and at a velocity of about 26 m . per second, while the earth's orbital velocity is about 181 m . per second. In thus rapidly penetrating the air heat is generated, the meteor becomes incandescent, and the phenomena of the streak or train is produced. Before the object can pierce the dense lower strata of air its material is usually exhausted, but on rare occasions it withstands the fiery ordeal, and fragments of the original mass fall upon the earth.

Multitudes of meteors infest space. On a clear moonless night one person may count eight or ten shooting stars in an bour. But there are more than twice as many vistble in the carly morning hours as in the evenings, and during the last half of the year there are also more than twice as many visible as during the first half. It is computed that twenty millions of metcors enter the atmosphere every day and would be visible to unassisted vision in the absence of sunlight, moonlight and clouds, while if telescopic metcors are included the number will be increased twentyfold. Ordinaty meteors, in the region of the earth's orbit, appear to be scparated by intervals of about 250 m . In special showers, however, they are much closer. In the rich display of the 12 th of November 1833, the average distance of the particles was computed as about 15 m ., in that of the 27 th of November 1885 as about 20 m ., and in that of the 27 th of November 1872 as about 35 m .

The metcors, whatever their dimensions, must have motions around the sun in obedicnce to the law of gravitation in the same manner as planets and comets-that is. in conic sections of which the sun is always at one focus. The great varicty in the apparent motions of meteors proves that they are not directed from the plane of the ecliptic; hence their orbits are not like the orbits of planets and short-period comets, which are litule inclined, but like the orbits of parabolic comets, which often have great inclinations.

Historical records supply the following dates of abundant meteoric displays:-

902, Oct. 13.	1101. Oct 17.	1602, Oct 28.	1833. Nov. 13.
931. Oct. 14.	1202, Oct. 19.	1698, Nov. 9.	1866, Nov. 14.
$934, \mathrm{Oct} 14$.	${ }^{1366 . O c t . ~} 23$.	1799, Nov. 12.	1867. Nov. 14.
1002, Oct. 15.	1533 . Oct. 35.	1832, Nov. 13.	1868. Nov. 14.

These showers occurred at intervals of about one-third of a century, while the day moved along the calendar at the rate of one month in a thousand years. The change of style is, however, responsible for a part of the alteration in date. The explanation of these recurring phenomena is that a great cloud or distended stream of meteors revolves around the sun in a period of 33 \$ years, and that one portion of the elliptical orbit intersects that of the earth. As the metcors have been numerously visible in five or six sucecssive years it follows they must be pretty densely distributed along a considerable are of their orbit. It also follows that, as some of the meteors are seen annually, they must be scattered around the whole orbit. Travelling at the rate of 36 m. per second, they encounter the earth moving $18 \frac{\mathrm{~m}}{}$. per second in an opposite direction, so that the apparent velocity of the meteors is about 44 m . per second. They radiate from a point within the Sickle of Leo and are termed Leonids. In 1867 the remarkable discovery was made that Tempel's comet (1866 : I .) revolved in an orbit identical with that of the Leonids. That the comet and metcors have a close physical association seems certain. The disintegrated and widely dispersed material of the comet forms the metoors which embelish our skies on mid-November nights.

Fine meteoric showers occurred in 1798 (Dec. 7), 1838 (Dec. 7), 1872 (Nov. 27), 1885 (Nov. 27), 1892 (Nov. 23) and 1899 (Nov. 23 and 24), and the dates indirate an average period of 6.7 years for fifteen returns. The metoore move very slowly,
as they have to overtake the earth, and their apparent velocity is only about 9 m . per second. They are directed from a point in the sky near the star $\boldsymbol{\gamma}$ Andromedac. Biela's comet of 1826 , which had a period of 6.7 years, presented a significant resembance of orbit with that of the metcors, but the comet has not been seen since 1852 and has probably been resolved into the meteoric stream of Andromedids.

Rich annual displays of meteors have often been remarked on about the roth of August, directed from Perseus, but they do not appear to have exhibited periodical maxima of great strength. They are probably dispersed pretty evenly along a very extended ellipse agreeing closely in its elements with comet 1862 : III. But the times of revolution are doubtiul; the probable period of the comet is 121 years and that of the meteors $105 \frac{1}{2}$ years. This shower of Perseids is notable for its long duration in the months of July and August and for its moving radiant.

There was a brilliant exhibition of metcors on the zoth of April 1803 , and in other years meteors have been very abundant on about the rgth to the 2 ist of April, shooting from a radiant a lew degrees south-west of a Lyrae. The display is apparently an annual one, though with considerable differences in intensity, and the cycle of its more abundant returns has not yet beeq determined. A comet which appeared in 586 t had a very suggestive agreement of orbit when compared with that of the meteors, and the period computed for it was 415 yedrs.

Apart from the instances alluded to there seem few coincidences between the orbital elements of comets and metcors. Halley's comet conforms very well, bowcver, with a metcoric shower directed from Aquarius early in May. But there are really few comets which pass sufficiently near the earth to give rise to a metcoric shower. Of 80 comets scen during the 20 years ending 188_{3}, Professor Herschel found that only two, viz. Denming's comel of 188 r and Finlay's of 1886 , approached comparatively near to the earth's path, the former within $3,000,000 \mathrm{~m}$. and the latter within $4,000,000 \mathrm{~m}$.

Radiants of Principal Showers.-The following is a list of the chicf radiant points visible during the year:-

Date.	Radiant R.A. Dec.	Date.	Radiant R.A Dec.
Jan. 2-3	$23^{\circ}+53^{\circ}$	July-Scht.	
Feb. 10-15 March 1-4	735 ${ }^{\circ}+41^{\circ}$	Sept. 5-t5 Sept. $3-22$	$3^{62} 2^{\circ}+37^{\circ}$
March 1-4 March 24	$166^{\circ}+4^{\circ}$ $161^{\circ}+58^{\circ}$	Scpt. ${ }_{\text {Oct. }}{ }^{\text {-12 }}$	
April 19-22	$271^{\circ}+33^{\circ}$	Ort. 4 .	$310^{\circ}+79^{\circ}$
April-May	$193^{\circ}+58^{\circ}$	Oct. 15-14	$92^{\circ}+15^{\circ}$
May 1-6	$33^{\circ}{ }^{\circ}-2^{\circ}$	Oct. 20-25	$100^{\circ}+13^{\circ}$
May 11-18	$231^{\circ}+27^{\circ}$	Oct. $30-\mathrm{Nov}$.	$43^{\circ}+22^{\circ}$
May-July	252 ${ }^{\circ}-21^{\circ}$	Nov. 2.16	$58^{\circ}+9^{\circ}$
une 13-19	$31{ }^{31} 1^{\circ}+68^{\circ}$	Nov. 1 (r 28	154 ${ }^{15}$
July 28-30	$339^{\circ}-11^{\circ}$	Nov. 20-23	$63^{\circ}+22^{\circ}$
Aug. 9-13	$45^{\circ}+57^{\circ}$	N. $\mathrm{V}_{1} 17$-23	$25^{\circ}+43^{\circ}$
Aug. $10-15$		Dc. 4	$162^{\circ}+58^{\circ}$
Aug. 21-25	29: $+0^{\circ}$	DE..7-12	$108^{\circ}+33^{\circ}$

Many metcors exhibit the green line of magnesium as a principal constituent. Professor N. von Konkoly remarked in the fireball of 1873 (July 26) the lines of magnesium and sodium. Other lines in the red and green have been detected and found by comparison with the lines of marsh gas. Bright metcors often cmit the bluish-white light suggestive of burning magnesium. In addition to magnesium and sodium the lines of potassium, lithium and also the carbon flutings exhibited in cometary spectra, have beed seen.

Meteoric observation has depended upon rough and hurried eye estimates in past ycars, but the importance of attaining greater accuracy by means of photography has been recognized. At several American observatorics, and at Vienna, fairly successiul attempts were made in November 1898 to pholograph a sufficient number of meteor-trails to derive the Leonid radiant, and the mean position was at R.A. $155^{\circ} 33^{\prime}$ Dec. $+22^{\circ} 12^{\prime}$. But the materials obtained were few, the shower having proved inconspicuous. The photograplic method appears to have practically failed duriog recent years, since there has
been no brilliant display upon which to test its capacity. Really large meteors can be satisfactorily photographed, but small ones leave no impression on the plates.

Meteors look larger than they are, from the glare and flaming effect due to their momentary combustion. The finer meteors on entering the air only weigh a few hundred or, at most, a few thousand pounds, while the smallest shooting stars visible to the eye may probably be equal in size to coarse grains of sand, and still be large enough to evolve all the light presented by them.
(W. F. D.)

METEORA, a group of monasteries in Thessaly, in the northern side of the Peneius valley, not quite 20 m . N.E. of Trikkala, and near the village of Kalabaka (the ancient Aeginium, medieval Stagus or Stagoi). From the Cambunian chain two masses of rock are thrust southward into the plain, surmounted by isolated columns from 85 to 300 ft . high, " some like gigantic tusks, some like sugar-loaves, and some like vast stalagmites," but all consisting of iron-grey or reddisbbrown conglomerate of gneiss, mica-slate, syenite and greenstone. The monasteries stand on the summit of these pinnacles; they are accessible only by aid of rope and net worked by a windlass from the top, or by a seties of almost perpendicular ladders climbing the cliff. In the case of St Stephen's, the peak on which it is built does nor rise higher than the ground behind, from which it is separated by a deep, narrow chasm, spanned by a drawbridge. Owing to the confined area, the buildings are closely packed together; but each monastery contains beside the monks' cells and water-cisterns, at least one church and 2 refectory, and some also a library. At one time they were fourteen in number, but now not more than four (the Great Monastery, Holy Trinity, St Barlaam's and St Stephen's) are inhabited by more than two or three monks. The present church of the Great Monastery was erected, according to Leake's reading of the local inscription, in 1388 (Bjornstahl, the Swedish traveller, had given 1371), and it is one of the largest and handsomest in Grece. A number of the manuscripts from these monasteries have now been brought to the National Library at Athens. Aeginjum is described by Livy as a strong place, and is frequently mentioned during the Roman wars; and Stagus appears from time to time in Byzantine writers.
See W. M. Leake, Northern Greece (4 vols., London, 1835): Professor Kriegk in Zeitschr, f. allg. Erdk. (Berlin. 1858); H. F. Tozer, Researches in the Highlands of Turkey (1869); L. Heuzey and H. Daumet, Mission arehcologique de Macedoine (Paris, 1876), where there is a map of the monasteries and their surroundings: Guide-Joame; Grece, vol. ii. (Paris, 1891).

HETEORITB, a mass of mineral matter which has reached the earth's surface from outer space. Observation teaches that the fall of a meteorite is often preceded by the flight of a fireball (see Meteor) througb the sky, and hy one or more loud detonations. It was inierred by Chladni (1794) that the fireball and the detonations result from the rquick passage of the meteorite through the earth's atmosphere.

The fall of stones from the sky, though not credited by scientific men till the end of the 18th century, had been again and again placed on record. One of the most famous of meteorites fell in Phrygia and was worshipped there for many gencrations under the name of Cybele, the mother of tbe gods. After an oracle had declared that possession of the stone would secure to the Romans a continual increase of prosperity, it was demanded by them from King Attalus about the year 204 B.C., and taken with great ceremony to Rome. It is described by the historian as "a black stone, in the figure of a cone, circular below and ending in an apex above." Plutarch relates the fall of a stone in Thrace about 470 b.c., during the time of Pindar, and according to Pliny the stone was still preserved in his day, 500 years afterwards. Both Diana of the Ephesians "which fell down from Jupiter." and the image of Venus at Cyprus, appear to have been conical or pyramidal stones. One of the holiest relics of the Moslems is preserved at Mecca, built into a corner of the Kaaba; its history goes back far beyond the 7th century; the description of it given to Dr Partsch suggests that the stone had fallen from the sky. The oldest existing meteorite of which
the fall is known to have been observed is that which fell at Ensisheim in Elsass on the roth of November 1402. It was scen to strike the ground and was immediately dug out; it had penetrated to a depth of 5 ft . and was lound to weigh 260 lt . It was long suspended by a chain from the roof of the parish chureh, and is now kept in the Rathhaus of the town.

It was not till scientific men gave credepce to the reports of the fall of heavy bodies from the sky that steps were taken for the formation of meteorite collections. The British Museum (Natural History) at South Kensington now contains specimens belonging to 566 distinet falls; of these falls 325 have been actually observed; the remaining specimens are inferred to have come from outer space, because their characters are similar to those of the masses which have been seen to fall. Of these meteorites the following twelve have fallen within the British Isles -

In England.	Place.	Date.
	Wold Cottage, Thwing, York. shire. Launton, Oxfordshire Aldsworth, Gloucestershire Rowton. Shropshire Middlesbrough, Yorkshire High Poseil, Glasgow	Dec. 13. 1795
		Feb. 15.1830.
		${ }^{\text {Aug. }} 4.1835$.
		April 20,1856 March 4, 188 t
In Scotland.	Perth Poseil, Glasgow :	May 17, 1830.
In Ireland.	Mooresfort, Tipperary	Aug. 8810.
	Adare, Limerick .	Sept. 10. 1813.
	Killeter, Tyrone :	April 29, $18{ }_{4+}$.
	Dundrum. Tipperary :	Aug. 12, 1865.
	Crumlin. Ansrim	Sept. 13. 1902.

Meteoritic falls are independent of thunderstorms and all other terrestrial circumstances; they occur at all hours of the day and night, and at all scasons of the year; they favour no particular latitudes. The number of stones which teach the ground from one fireball is very variable. In each of the two Yorkshire falls only one stone was found; the Guernsey County meteor yielded 30 ; at Toulouse, as many as 350 are estimated to have fallen; at Hessle, over 500 ; at Knyahinya, more than 1000; at L'Aigle, from 1000 to 2000 ; at both Pultusk and Mocs no fewer than 100,000 are estimated to have rached the earth's surface. The largest single mass seen to fall is one of those which came down at Knyahinya, Hungary, in 1866, and weighed 547 tb ; but far larger masses, inferred from their characters to be meteorites, have been met with. The larger of the Cranbourne masses, now in the British Mfuseum (Natural History), before rusting weighed 3 t tons; the largest of the masses brought by Lieut. Peary from western Greenland weighs $36 \frac{1}{2}$ tons. A mass found at Bacubtrito in Mexico is 13 ft . long, 6 ft . wide and 5 ft . thick, and is estimated to weigh 50 tons.

From observations of the path and time of flight of the luminous meteor it is calculated that meteorites enter the earth's atmosphere with absolute velocities ranging from 10 to 45 m . a second; but the speed of a meteorite after the whole of the resisting at mosphere has been traversed is extremely small and comparable with that of an ordinary falling body. According to Professor A. S. Herschel's experiments, the meteorite which fell at Middleshrough must have struck the ground with a velocity of only 412 ft . a second. In the case of the Hessle fall. several stones fell on the ice, which was only a iew inches thick, and rebounded without breaking the ice or being broken themselves. The depth to which a meteorite penetrates depends on the speed, form, weight and density of the metcorite and on the nature of the ground. At Stannern a meteoric stone weighing 2 ib entered to a depth of only 4 in.; the large Knyahinya stone already mentioned made a hole it ft. deep.

The area of the earth's surface occupied by towns and villages being comparatively small, the prohability of a shower of stones falling within a town is extremely minutc; the likelihood of a Tiving creature being struck is still more remote. The first Yorkshire stone, that of Wold Cottage, struck the ground only ro yds. from a labourer; the second, that of Middlesbrough. fell on the railroad only 40 -yds. asay from some platelayers at
work; a stone completely buried itself in the highway at Kaba; one fell between two carters on the road at Charsonville, throwing the ground up to a height of 6 ft .; the Tourinnes-la-Grosse metcorite broke the pavement and was broken itself; the Krăhenberg stone fell within a few paces of a little girl; the Angers stone fell close to a lady standing in her garden; the Braunau mass went through the roof of a cottage; at Macao, in Brazil, where there was a shower of stones, some oxen are said to have been killed; at Nedagolla, in India, a man was so near that he was stunned by the shock; while at Mhow, also in India, a man was killed in 1827 by a stone which is a true meteorite, and is represented by fragments in museam collections.

Though the surface of a meteoric stone becomes very hot during the early part of the fight through the air, it is cooled again during the later and slower part of the fight. Meteorites are generally found to be warm to the touch if immediately dug out; at the moment of their impact they are not hot enough to char woody fibre on which they chance to fali, nor is the surface then soft, for terrestrial matter with which the surface comes into contact makes no impression upon the meteorite. Where many stones fall at the-same time they are generally distributed over a large area clongated in the direction of the flight of theluminous meteor, and the largest stones generally travel farthest. At Hessle, for instance, the stones were distributed over an area of 10 m . long and 3 m . broad.

Meteorites are almost invariably found to be completely covered with a thin crust such as would be caused by intense heating of the material for a short time; its thinness shows the slight depth to which the heat has had time to penetrate. They are presumably cold and invisible when they enter the earth's atmosphere, and become heated and visible during their passage through the air; doubtless the greater part of the superficial material ficks off as the result of the sudden heating and is left behind foating in the air as the trail of the metcor. The crust varies in aspect with the mineral composition of the meteorite; it is generally black; it is in most cases dull but is sometimes lustrous; more rarely it is dark-grey in colour. Each stone of a shower is in general completely covered with crust; hut occasionally, as in the case of the Butsura fall, stones found some miles apart fit each other closely and the fitting surfaces are uncrusted, showing that a meteorite may break up during a late and cool stage of the flight through the atmosphere. A meteorite is generally covered with pittings which have been compared in size and form to thumbmarks; the pitings are probably caused by the unequal conductivity; fusibility and frangibility of the superficial material. As picked up, complete and covered with crust, meteorites are always irregularly-shaped fragments, soch as would be obtained on breaking up a rock presenting no reguiarity of slructure.

About one-third, and those the most common, of the chemical elements at present recognized as constituents of the earth's crust have been met with in meteorites; no new chemical element has been discovered. The most frequent or plentiful in their occurrence are: aluminium, calcium, carbon, iron, magnesium, nickel, oxygen, phosphorus, silicon and sulphur; while less frequently or in smaler quantities are found antimony, arsenic, chlorine, chromium, coball, copper, hydrogen, lihhiam, manganese, nitrogen, potassium, sodium, strontium, -in, titanium, vanadium. The existence of minute traces of several other elements has been announced; of these special mention may be made of galiium, gold, iridium, lead, platinum and silver. Iron occurs chiefly in combination with nickel, and phosphorus almost always in combination with both nickel and iron (schreibersite); carbon occurs both as indistinctly crystallized diamond and as grapbitic rarbon, the latter generally being amorphous. but occasionally having the forms of cubic crystals (eliftorite); Iree phospborus has been found in one meteorite; free sulphur has also been observed, but may have resulted from the decomposition of a sulphide since the fall of the stome.

Of the mineral constituents of meteorites, the following are by many mineralogists regarded as still unrepresented among native
terrestrial products: cliflomile, a cubic form of graphitic carbont phosphorus; various alloys of niekel and iron; morssanite. silicide of carbon: cohenite. carbide of iron and nickel (corresponding to cementite, carbide of iron, found in artificial iron); schreibersite phosphide of iron and nickel; tronite, protosulphide of iron; oldhamile. sulphide of calcium: osbornile, oxysulphide of calcium and titanium or zirconium; daubrédite, sulphide of iron and chromium; lawrencile, protochloride of iron: asmanite, a species of silica; maskrlynite, a singly refractive mineral with the chemical composition of labrador. ite; uxinbergerite. a silicate intermediate in chemical composition to gyroxene and nepheline.
Of these troilite is perhaps identical with some varieties of terrestrial pyrrhotite; asmanite has characters which approach very closely to those of terrestrial tridymite; maskelynite, according to one view, is the result of fusion of labradorite, according to another view, is an independent species chemically related to leucite. Other compounds are present corresponding to the lollowing terrestrial minerals: olivine and forsicrite; enstatite and bronzite; diopside and augite ; anorthite, labradorite and oligoclase; magnctite and chromite; pyrites; pyrrhotite; breupnerite. Quarti (silica), the most common of terrestrial mincrals, is absent from the stony metcorites; but from the Toluca meteoric iron microscopic crystals have been obfained of which some have certain resem. blances to quartz, and others to zircon. Free silica is present in the Breitenbach meteorite but as asmanite. In addition to the above there are several compounds or mixtures of which the nature has not yet been satisfactorily ascertained.
Metcorites are conveniently distributed into three classes, which pass more or less gradually into each other: the first (siderites or meteoric irons) includes all those which consist mainly of metallic iron alloyed with nickel; only nine of them have been actually seen to fall; the second (siderolites) includes those in which metallic iron (alloyed with nickel) and stony matter are present in large proportion; few of them bave been seen to fall; those of the third class (aerolites or met eoric stones) consist almost entirely of stony matter; nearly all have been seen to fall.
In the metcoric irons the iron gencrally varies from 80 to 95% and the nickel from 6 to 10%; the latter is generally alloyed with the iron, and several alloys or mixiures have been distinguished by special names (kamacite, taenite, plessite). Troilite is frequently present as plates, veins or large nodules, sometimes surrounded by graphite; schreibersite is almost always present, and occasionally also daubreelite. The compositeness and the structure of meteoric iron are well shown by the figures generally called into existence when a polished surface is etched by means of acids or hromine-water; they are due to the inequality of the etching action on thick and thin piates of various constituents, the plates being composed chiefly of two nickel-iron materials (kamacite and taenite). A third nickel-iron material (plessite) fills up the spaces formed hy tbe intersection of the joint plates of kamacite and tacnite; it is probably not an independent substance but an intimate intergrowth of kamacite and taenite. The figures were first observed in 1808 and are generally termed "Widmanstutten figures" in honour of their discoverer; the plates which give rise to them are paraliel to the faces of the regular octahedron, and such masses have therefore an octahedral structure. A small number of the remaining masses have cubic cleavage; instead of Widmanstatten figures they yieid fine linear furrows when etched; the furrows were found by Neumann in 1848 to have directions such as would result from twinning of the cube about an octahedral face; they are known as "Neumann lines." For meteoric irons of cubic structure the percentage of nickel is lower than 6 or 7 ; for those of octahedral structure it is higher than 6 or 7; the plates of kamacite are thinner, and the structure therefore finer the higher the percentage of that metal. A considerable number of meteoric irans, however, show no crystalline structure at all, and have percentages of nickel both beiow and above 7; it has been suggested that cach of these masses may once have bad crystalline structure and that it has disappeared as a result of prolonged heating throughout the mass while the meteorite has been passing near a star.

An investigation of the changes of the magnetic permeability of the Sacramento meteoric iron with changing temperature led Dr S. W. J. Smith to infer that the magnetic behaviour can oniy be explained by imagining the meteorite to consist
largely of plates of nickel-iron containing about 7% of nickel (kamacite), separated from each other by thin plates of a nickel-iron constituent (taenite), containing about 27% of nickel and having different thermomagnetic characters from those of kamacite; be suggests, however, that taenite is not a definite cbemical compound but a eutectic mixture of kamacite and a nickel-iron compound containing not less than 37% of nickel.
About eleven out of every twelve of the known meteoric stones belong to a division to which Rose gave the name "chondritic" (xbwbos, a grain); they present a very finc-grained but crystalline matrix or paste, consisting of olivine and enstatite or bronzite, with more or less nickel-iron, troilite, chromite, augite and triclinic feldspar; through this paste are disseminated round chondrules of various sizes and generally with tbe same mineral composition as the matrix; in some cases the chondrules consist wbolly or in great part of glass. Some meteorites consist almost solely of chondrules; others contain only few; in some cases the chondrules are easily separable from the surrounding material. In mineral composition chondritic meteorites approximate more or less to terrestrial lherzolites.
A few meteorites belonging to the chondritlc division are remarkable as containing carbon in combination with bydrogen and orygen; those of Alais and Cold Bokkeveld are good examples.
The remaining meteoric stones are without chondrules and contain little or no nickel-iron; of these the following may be mentioned as illustrative of the varieties of mineral composition: Juvinas, consisting essentially of anorthite and augite: Pelersburg, of anorthite, augite and olivine, with a little chromite and nickel--ron (both Juvinas and Petersburg may be compared to terrestrial basalt); Sherghotly, chiefly of augite and maskelynite: Angre dos Reis, almost wholly of augite, but olivine is present in small proportion: Bustee, of diopside, enstatite and a little triclinic feldspar, with some nickeliron, oldhamite and osbornite; Bishopoille, of enstatite and triclinic feldspar, with occasionil augite, nickel-iron, troilite and chromite; Roda, of olivine and bronzite; and Chassigny, consisting of olivine with enclosed chromite; and thus mineralogically identical with terrestrial dunite.
Almost all meteoric stones appear to be made up of irregular angular fragments, and some of them bear a close resemblance to volcanic tufis. In the large groap of chondritic stones, chondrules or spherules, some of which can only be seen under the microscope while others reach the size of a walnut, are embedded in a matrix apparently made up of minute splinters such as might result from the fracture of the chondrules themselves In fact, until recently it was thought by some mineralogists that the chondrules owe their form, not to crystallization, but to friction, and that the matrix was actually produced by the wearing down of the cbondrules through frequent collision with each other as oscillating components of a comet or during repeated ejection from a volcanic vent of some small celestial body. Chondrules have been observed, however, presenting forms and crystalline surfaces incompatible with such a mode of formation, and others have been described which exhibit features resulting from mutual interference during their growth. The chondritic structure is different from anything which has yet been abserved in terrestrial rocks, and the chondrules are distinct in character from those observed in perlite and obsidian. It is now generally believed that the structural features of meteoric stones are the result of hurried crystallization.
No organized matter has been found in meteorites and they have brought us, therefore, no evidence of the existence of living beings outside our own world.

Authosiriss.-The literature consists chiefly of memoirs dispersed through the journals of scientific societies. The following peparate works may be consulted: A. Brezina, Die Meteoruen. Sammlung d. k-k. min. Hofkabrneles in Wien (Vienna, 1896); A. Brezina u. E. Cohen, Die Structur und die Zusammensetzung der Meleoriten (Stuttgart, 1886-1887): P.S. Bigot de Morogues, Memorra historique at physique sur les chutes des prerres (Otleans, 1812); Chladni. Ueber den Ursprune der von Pallas gefundenen und anderer ing ahniuher Eisenmassen (Riga. 1794), and Ueber Feuer. Meteore, wnd uber die mil denselben herabpefallenen Massew (Vienna, 1819); E. Cohen, Meleoritenkwnde (Stuttgart, 1894-1905); L. Fletcher, An Intradinction to the Sendy of Meleorites, 1oth ed. (Loodon, 1908):
E. King. Remarks concerning Slomes said to have fallen from the Clopuls both in Uhese Days and in Ancient Times (London, 1790); S. Meunier, Metteorites (Paris, 1884); C. Rammelsberg, Die chemische Natur der Meteoriten (Berlin, 1870-1879); G. Rose, Beschreibung and Eintheilung der Meteorilen (Berlin, i864); G. Tschermak, Die mikroskopische Beschaffenheit der Meteoriten (Sturtgart, 1883-1885): E. A. Wulfing, Dis M(cleorites in Sammisngen und ihre Liceratur (Tubingen. 1897).
(L. F.)

1-ETBOROLOGY (Gr. Merkopa, and λ byos, i.e. the science of things in the air), the modern study of all the phenomena of the atmosphere of gases, vapours and dust that surrounds the earth and extends to that unknown outer surface which marks the beginning of the so-called interstellar space. These phenomena may be studied eitber individually or collectively. The collective study has to do with statistics and general average conditions, sometimes called normal values, and is generally known as Climatology (see Cunure, where the whole subject of regional climatology is dealt with). The study of the individual items may be either descriptive, explanatory, physical or theoretical. Physical meteorology is again subdivided according as we consider either the changes that depend upon the motions of masses of air or those that depend upon the motions of the gaseous molecules; the former belong to hydrodynamics, and the latter are mostly comprised under thermodynamics, optics and electricity.

History. - The historical development of meteorology from the most ancient times is well presented by the quotations from classic authors compiled by Julius Ludwig Ideler (Mateorologia peterum graecorwm ef romasorum, Berlin, 1832). We owe to the Arabian philosophers some slight advance on the knowledge of the Greeks and Romans; especially as to the optical phenomena of the atmosphere. The Meleorologia of Aristotle (see Zeller, Phil. der Griecken) accords entirely with the Philasophica of Thomas Aquinas, the poetic songs of the troubadours, and the writings of Dante (see Kuhn's Treabmant of Nature in Danle's Disina Commedia; London, 1897). Dante's work completed the passage from the ancient mythological treatment of nature to the more rational recognition of one creator and lawgiver that pervades modern science. The progress of meteorology has been coincident witb the progress of physics and chemistry in general, as is shown by considering the works of Alhazen (1050) on twilight, Vitellio (1250) on the rainbow, Galileo (1607) on the thermometer and on the laws of inertia, on attractions and on the weight of the air, Toricelli (1642) on the barometer, Boyle (1659) on the elastic pressure bf the air in all directions, Newton (1673) on optics; Cavendish (1760), elastic pressure of aqueous vapour; Black (1752), separation of carbonic acid gas from ordinary air; Rutherford (1772), separation of nitrogen; Priestley and Schecle (1775) and Cavendish (1777), separation of oxygen; Lavoisier (1.783), general establishment of the character of the atmosphere as a simple mixture of gases and vapour; De Saussure's measurement of relative humidity by the accurate hair hygrometer (1780), Dalton's measurement of vapour tension at various temperatures (1800), Regnault's and Magnus's reviaion of Dalton's tension of water vapour (1840), Marvin's and Juhlins's measurements of tension of ice vapour (r 8 gI), and the isolation of argon by Rayleigh and Ramsay (1894).

Theoretical meteorology has been, and always must be, wholly dependent on our knowledge of thermodynamics and on mathe. matical methods of dealing with the forces that produce the motions within the atmosphere. Progress has been due to the most eminent mathematicians at the following approximate dates: Sir Isaac Newton (1670), Leonhard Euler (1736), Pierre Simon Laplece (1780), Jean Baptiste Joseph Fourier (1785), Simon Denis Poisson (1815), Sir George Gabriel Stokes (8851), Hermann von Helmholts (1857), Lord Kelvin (i860), C. A. Bjerknes (i868), V. Bjerknea (1906), and to their many distinguished followers.

The earliest systematic daily record of local weather phenomena that has survived is that kept by Williem Merie, reclor of Driby, during seven years 133I-1338: the manuscipt is preserved in the Digby MS., Mertom College, Oxford, and
was published in faccimile by George G. Symons in 1891. Doubtless many similar monastic diaries have been lost to us. In 1653 Ferdinand II. of Tuscany organized a local system of stations and daily records which extended over and beyond northern Italy. This was the first fairly complete meteorological system in Europe. The records kept during the years 1655^{-1670} at the Cloister Angelus near Florence were reduced by Libri, professor of mathematics at Pisa, and published in 1830.

The history of meteorology is marked by the production of comprehensive treatises embodying the current state of our knowledge. Such were Louls Cotte's Trailt de meltoorologic (Paris, 1374) and his Memoires sur la mellorologic, supplement ax traile (1788); Ludwig Kämtz's Lehrbuch der Meteorologic (Halle, 1831-1836) and his Vorleswngen (1840; French 1842, English 1845); Sir John Herschel's Meteorology (London, 1840); the splendid series of memoirs by H. W. Brandes in Gehler's Physikolisches Worterbuch (Leipzig, 1820-1840); E. E. F. W. Schmid's Grundriss der Metcorologic (Leipzig, 1862); Ferrel's Recent Advonces in Meteoralogy (Washington, 1885); the great works of Julius Hann, as summarized in his Handbuck der Klimatologic (1883; 2nd ed., Stuttgart, 1897; vol. i. English 1903) and his Lehrbuck der Metcorologie (Leipzig, 1901, and ed. 1906); the extensive studies of J. E. Wocikof (Voeikol), as presented in his Klime der Erde (Ruscian 1883, German 188 s) and his Meteorologie (Russian 1904).

The development of this science has been greatly stimulated by the regular publication of special periodicals such as the Zeilschrift of the Austrian Meteorological Society, 1866-1885, vol. 21 appearing with vol. 3 of the Meleorologische Zeitschrift of the German Meteorological Society in 1886, and since that date this journal has been jointly malntained hy the two societies. The analogous journals of the Royal Meteorological Society, London, 1850 to date, the Scottish Meteorological Society, 1860 to date, the Meteorological Society of France, 1838 to date, the Italian Meteorological Society, and the American Meteorological Journal, $188{ }_{5}-1895$, have all played important parts in the history of meteorology. On the other hand, the Ainnals of the Central Meteorological Office at Paris, the Archiv of the Deutsche Seewarte at Hamburg, the Arnals and the Reperlerium of the Central Physical Observatory at St Petersburg, the Annales of the Central Meteorological Office at Rome, Bulletin of Intcrnational Simullaneous Mal. Obs. and the Monlily Wealher Revicw of the Weather Bureau at Washington, the Abhandlumgen of the Royal Prussian Meteorological Institute at Berlim, the Mcteorological Papers of the Meteorological Office, London, and the transactions of numerous scientific societies, have represented the important official contributions of the respective national governments to technical meteorology.

The recent international union for acrial exploration by kites and balloons has given rise to two important puhlications, i.e. the Veroffentlickungen of the International Commission for Scientific Aerostatics (Strassburg. 1905, et seq.), devoted to records of observations, and the Beilrdge sur Physik der freien Almosphare (Strassburg, 1904, et seq.), devoted to research.

The necessity of studying the atmosphere as a unit and of securing uniform accuracy in the obscrvations has led to the formation of a permanent International Meteorological Committec (of which in 1909 the secretary was Professor Dr G. Hellmann of Berlin, and the president Dr W. N. Shaw of London). Under its directions conferences and general congresses have been held. beginning with that of $\mathbf{1 8 7 2}$ at Lelpzig. Its Intermational Tables, Allas of Clouds, Codex of Lnstruclions, and Forms for Climatological Publications illustrate the activity and usefulness of this committee.

Modern meteorology has been developed along two lines of study, based respectively on maps of monthly and annual averages and on daily weather maps. The latter study seems to have been begun by H. W. Brandes in Leipzig, who first, about 1820 , compiled maps for 1783 from the data collected in the Ephemerides monuhcimensis, and subsequently published maps of the European storms of 1820 and 1821 . Simultaneously with Brandes we find William C. Redfeld in New York
compiling a chart of the hurricane of $\mathbf{1 8 2 1}$, which was published in 1831, and was the first of many memoirs by him on hurricanes that completely established their rotary and progressive motion. Soon alter this Piddington and Sir William Reid began their great works on the storms of the Orient. About 1825 James Pollard Espy, in Philadelphia, began the publication of his views as to the motive power of thunderstorms and tornadoes, and in 1842 was appointed "meteorologist to the U.S. government " and assigned to work in the office of the surgeon-general of the army, where he prepared daily weather maps that were published in his four successive "Reports." In 1848 the three American leaders united in letters to Professor Joseph Henry, secretary of the Smithsonian Institution, urging that the telegraph be used for collecting data for daily maps and weather predictions. Favourable action was taken in 1849 , the Smithsonian maps began to be compiled about 1851 and were displayed in puhlic from 1853 onwards. Meanwhile in England James Glaisher, with the help of the daily press, carried out similar work, publishing his first map in 1851 as soon as daily weather maps of sufficient extent could be promptly prepared by the help of the telegraph. The destructive storm of the $14^{\text {th }}$ of November 1854 , in the Crimea gave U. J. J. Le Verrier, at Paris, an opportunity to propose the proper action, and his proposals were immediately adopted by the secretary of war, Marshal Vaillant. On the 17 th of Fehruary 1855 the emperor ordered the director-general of government telegraph lines to co-operate completely with Le Verrier in the organization of bureau of telegraphic metcorology. The international daily hulletin of the Paris Obscrvatory began to be printed in regular form on the 13 t of January $\mathbf{1 8 5 8}$, and the daily map of isobars was added to the text in the autumn of 2863 . The further development of this bulletin, the inclusion of British and ocean reports in 1863, the addition of special storm warnings in 1863, the publication of the Allas des mounements generaux covering the Aliantic in 1865, the study of local thunderstorms by Hippolyte Marie-Davy, Sonrel, Fron, Peslin, in France, and the work of Fitzroy, Buys-Ballot, Buchan, Glaisher and Thomson in Great Britain, parallel the analogous works of the American students of meteorology and form the beginninga of our modern dynamic meteorology.

The detajils of the historical development of this mubject are well given by Hugo Hildebrand-Hildebrandsson and Leon Teiserenc de Bort in their joint work, Les Bases de la medicora'ogie dymamigue (Paris, 1898-1907). The technical material has been collected by Hann in his Letriuch. Many of the original memoirs have been reproduced by Brillouin in his Mémoires ortginamx (Paris, 1900), and in Cleveland Abbe's Mechanias of the Earth's Almosphere (vol. i., 1891; vol. ii., 1909).

The pultication of daily weather charts and forecasts is now carried on by alt civilized nations. The list of government bureaux and their publications is given in Bariholomew's Allas (vol. iii.. London, 1899). Special establishments for the exploration of the upper atmospheric conditions are maintained at Faris, Berlin. Copenhagen, St Petersburg. Washington and Strassburg.

The general problems of climalology (1900) are best presented in the Handbook of Dr Julius Hann (2nd ed., Stuttgart. 1897). The general distribution of temperature, winds and pressure over the whole globe was first given by, Buchan in charts published by the Royal Society of Edinburgh in 1868 , and again greatly revised and improved in the volume of the Challenger reports devoled to meteorology. The most complete atlas of metcorology is Buchan and Herbertson s vol, iii. of Bartholomew's Allos (London, t899). Extensive works of a more special character have been published by the London Metcorological Office, and the Deutsche Seewarte for the Athantic, Pacific and Indian Dceans. Daity charts of atmospheric conditions of the whole northern hemisphere were published by the U.S. Weather Burcau from 1875 so 1883 inclusive, with monthiy charts. the latter were continued through 1889. The physical problems of meteorology were discussed in Ferrel's Recent Advances in Leteorology (Wasinington. 1885). Mathematical papers on this subject will be found in the author's collection known as The Mechesics of the Earll's Almosphere; the memoirs by 11 clmholiz and Vun Bezold contained in this collection have been made the basis of a most important work by Brillouin (Taris, 1898), entitled Vents contigus et nuages. A general summary of our knowledge of the mechanics and physics of the atmosphere is contained in the Report on the International Cloud Work, by F.H. Bigelow (Washington, 1900). The extensive Iochrburh (t.eipzig, 1901; and ed., 1906) by Dr Julius Hann is an authoritative work. The optical
phenonera of the atmopphere are well treated by E. Mascart in his Traitéd"optrque (Paris, 1891-1898), and by J. M. Penter, Mateorologische Oprik (1904-1907). Of minor treatises especially adapted to collegiate courses of study we may mention thoee by Sprung (Berlin, 1885) ; W. Ferrel (New York, 18go): Angot (Paris, 1898); W. M.Davis. (Boston. 1893); Waldo (New York, [898); Van Bebber (Stuttgart, 1890): Moore (London, 1893): T. Russell (New York). 1895. The brilliant volume by Svante Arrhenius, Kosmische Physik (Leipzig, 1900) contains a section by Sxindstrom on meteorology, in which the new hydrodynamic methods of Bjericnes are developed.

1.-Fundamental Peysical Data

There can be no proper study of meteorology without a consideration of the various physical properties of the atmospheric gases and vapours, each of which plays an independent part, and yet also reacts upon its neighbours.

Atmospheric air is a mixture of nitrogen, oxygen, aqueous vapour, carbonic acid gas (carbon dioxide), ammonia, argon, neon, helium, with slight traces of free hydrogen and hydro-carbons. The proportions in which these gases are present are quite constant, except that the percentage of aqucous vapour is subject to large variations. In an atmosphere that is saturated at the temperature of $90^{\circ} \mathrm{F}$., as may occur in such a climate as that of Calcutta, the water may be $2 \frac{1}{2} \%$ of the whole weight of any given volume of air. When this aqueous vapour is entirely abstracted, the remaining dry gas is found to have a very uniform constitution in all regions and at all altitudes where examination has been carried out. In this so-called dry atmosphere the relative weights are about as follows: Oxygen, 23.16; nitrogen and argon, 76.77 ; carbonic acid, 0.04 ; ammonia and all other gases, less than oror in the lower half of the atmosphere but probably in larger percentages at.great altitudes. Of still greater rarity are the highly volatile gases, argon (q.v.), neon, krypton and helium (q.v.).

Outer Limit.-These exceedingly volatile components of the atmosphere cannot apparently be held down to the carth by the attraction of gravitation, but are continually diffusing through the atmosphere outwards into interstellar space, and postibly also from that region back into the atmosphere. There are doubtle'ss other volatile gascs filling interstellar space and occasionally entering into the at mosphere of the various planets as well as of the sun itse!f ; possibly the hydrogen and hydro-carbons that escape from the carth into the lower atmosphere ascend to regions inaccessible to man and slowly diffuse into the outer space. The laws of diffusion th:ow that for each gas there is an altitude at which as many molectiag . 1 Tase inwards as outwards in a unit of time. This condition defines the outer limis of each particular gascous atmosphere, so that we must not imagine the at mosphere of the earth to have any general boundary. The onty intimation we have as to the presence of gases far above the surface of the globe come from the phenomena of the Aurora, the refraction of light, the morning and evening twilight, and especially from the shooting stars which suddenly become luminous when they pass into what we call our atmosphere. (See C. C. Trowbridge, Pan Luminous Meteor Trains" and "On Movements of the Atmosphere at Very Great Heights," Monthly Weather Review, Sept. 1907.)

Such observations are supposed to show that there is an appreciable quantity of gas at the height of 100 m. . where it may have a density of a millionth part of that which prevails at the earth's surface. Such matter is not a gas in the ordinary use of that term, but is a collection of particles moving independently of each other under those influences that emanate from sun and earth, which we call radiant energy. According to Stormer this radiant energy is that of electrons from the sun, and their movements in the magnetic field surrounding the earth give rise to our turoral phenomena.

According to Professor E. W. Morley, of Cleveland, Ohio, the rela: tive proportions of oxygen and nitrogen vary slightly at the surface of the earth according as the areas of high pressure and low pressure alternately pass over the point of observation; his remarkably exact work seems to show a possible variation of a small Iraction of 5% and he suggests that the air descending within the areas of high preseure is probably slightly poorer in oxygen. The proportion of carbonic acid gas varies appreciably with the exposure of the region to the wind, increasing in proportion to the amount of the shelter; it is preater over the land than over the sea, and it also slightly increases by night-time as compared with day, and in the summer and winter as compared with the spring and autumn monthe During the year 1896 Professor S. Arrhenius in the Phil. Mas.inand in 1899 Prolessor T. C. Chamberlin in the Amer. Gcol. Jowr., published memoirs in which they argued that a variation of several per cent. in the proportion of carbonic acid gas is quite consistent with the existence of animal and vegetable Ufe and may explain the varistions of climate during geological periods. But the specific absorption of this gess for solar rediations is 200 amall (C. C. Abbot. 1903) to
support this argument. The question whether free ozone exists in the atmosphere is still debated, but there seens to be no satisfactory evidence of its presence, except possibly for a few minutes in the neighbourhood of, and immediately after, a discharge of lightning. The general proportions of the principal gases up to considerable altitudes can be calculated with close approximation by assuming a quiescent atmosphere and the ordinary laws of diffusion and elastic pressure; on the other hand, actual observations show that the rapid convection going on in the atmosphere changes these proportions and brings about a fairly uniform percentage of oxygen, nitrogen and carbonic acid gas up to a height of 10 m .

A gueous Vapowes.- The distribution of aqueous vapour is controiled by temperature quite as much as by convection and has very litele to do with diffusion: the law of its distribution in altitude has been well expressed by Hann by the simple formula: $\log e=\log \epsilon_{0}-h / 6517$ where h is the height expressed in metres and c and e_{0} are the vapour pressures at the upper station and sea-level respectively. Hann's formula applics especially to obsenvations made on mountains. but R. J. Süring, Wissenschafthche Luftfahrien, III. (Berlin, 1900) has deduced from balloon observations the following formula for the free air over Europe-
$\log e=\log c_{2}-h(1+h / 20000) / 6000$.
He has also computed the specific moisture of the atmosphere of the mixing ratio, or the number of grams of moisture mixed with I kilogram of dry air for which he finds the formula

$$
\log m=\log m_{4}-h(1+3 h / 40) / 9000
$$

The relative humidity varies with altitude so irregularly that it cannot be expressed by any simple formula. The computed values of ϵ and m are as given in the following table:-

Altitude Metres. h.	Relative Vapour Pressure. e/eo-	Relative Specific MoisIure. n/mo.
0	1000	1000
1000	665	759
2000	431	555
3000	266	391
4000	158	264
5000	98	172
6000	50	108
7000	27	65
8000	14	38

In addition to the gases and vapours in the atmosphere, the motes of dust and the aqueous particies that constitute cloud, fog and haze are also important. As all these float in the air, slowly descending, bui resisted by the viscosity of the atmosphere, their whole weight is added to the atmosphere and becomes a part of the barometric record. When the air is cooled to the dew-point and condensation of the vapour begins, it takes place first upon the atoms of dust as nuclei ; consequenly, air that is free from dust is scarcely to be found except within a mass of cloud or fog.

Mass.-According to a calculation published in the U.S. Monthly Weather Review for February 1899, the total mass of the atmosphere is $1 / 1,125.000$ of the mass of the earth itself but, according to Professor R. S. Woodward (see Science for Jan. 1900), celestial dynamics shows that there may possibly be a gaseous envelope whose weight is not felt at the earth's surface, since it is held in dynamic equilibrium above the anmosphere; the mase of this outer atmosphere cannot exceed jisoth of the mass of the earth, and is probably far less, if indeed it be at all appreciable.

Conductivity.-Dry air is a poor conductor of heat, its coefficient of conduction being expressed by the formula: $0-0000568$ ($1+0.00190$ t) where the temperature (t) is exprewed in centigrade degrees. This formula states the fact that a plate of air i centimetre thick can conduct through its substance for every square centimetre of its area, in one second of time, when the difference of temperzture between two faces of the plate is $1^{\circ} \mathrm{C}$., enough heat to warm 1 gram of water $000000568^{\circ} \mathrm{C}$., or I gram of air $0.000239^{\circ} \mathrm{C}$., or a cubic centimetre of air $0.1850^{\circ} \mathrm{C}$. if that air is at the standard density for 760 millimetres of pressure and $0^{\circ} \mathrm{C}$. The figure $0.1850^{\circ} \mathrm{C}$. is the thermometric coefficient as distinguisbed from the first or calorimetric coefficient ($0.0000568^{\circ} \mathrm{C}$.), and shows what great effect on tbe air itself its poor conductivity may have.

Diathermancy.-Dry air is extremely diathermanous or transparent to the transmission of radiant heat. For the whole moist atmosphere the general coefficient of transmission increases as the waves become longer: and for a zenithal sun it is about $0-4$ at the violet end of the spectrum and about 0.8 at the red. By specific absorption many specific wave-lengths are entirely cut of by the vapoura and gases, so that in general the atmosphere may appear to be more transparent to the short wave-lengths or violet end of the spectrum, but this is not really 20 . When the zenithal sun's rays fall upan a station whose barometric pressure is 760 mm ., then only from 90 to 80% of the total heat reaches the carth's surface, and thus the general coefficient of transmission for the thickness of one atmosphere is usually estimated at about 60% Of course when the rays are more oblique, or when hase, dust or clowd interfere, the trennmiscion
in still further diminished. In general nne half of the heat received from the sun by the illuminated terrestrial hemisphere is absorbed by the clearest atmosphere. leaving the other half to reach the eurface of the ground, provided there be no intercepting clouds. The thermal conditions actually observed at the immediate surface of the globe during hazy and cloudy weather are therefore of minor importance in the mechanism of the whole at mosphere, as compared with the influence of the heat retained within its mass.

The transmission of solar radiation through the earth's atmosphere is the fundamental problem of meteorology, and has been the subject of many studies, beginning with J. H. Lambert and P. Bouguer. The pyrbeliometer of C. S. M. Pouillet gave us our first idea of the thermal equivalent of solar radiation outside of our atmosphere or the so-called "solar constant," the value of which has been variously placed at from 2 to 4 calories per sq . cm . per minute. At present the weight of the argument is in favour of 2-I, with a fair presumption that both the intensity and the quality of the solar madiation as it atrikes the upper layers of our atmosphere are slightly variable. It is also likely that this "constant " does not represent the sun proper, but the remaining energy after the sunbenm has sifted through masses of matter bet ween the sun and our upper atmosphere, so that it may thus come to have appreciable variations.

The coefficients of absorption for specific wave-lengths were first determined hy L. E. Jewell, of Johns Hopkins University, for numerous va pour lines in ileg2 (see W. B. Bulletin. No. 16). In 1904 C. G. Abbot published a table based on bolograph work at Washington chowing the coefficient of atmospheric transmission for solar rays passing through a unit mass of air-namely, Irom the zenith to the ground. He showed that this coefficient increased with the wavelength: hence any change in the quality of the solar radiation will affect the general coefficient of transmission. The following table gives his averages for the respective wave-lengths, as deduced from ten clear days in 1901-1902 and nine clear days in 1903:-

Wave Length.	Coefficient of Atmospheric Transmission (Abbot)		
	1901-1902.	1903.	Mean by Weights.
microna. 0.40 violet	-		-
0.45	-	0.557	-
0.50	0-765	0.627	0-700
0.60	0.769	0.692	0.730
0.70	0.857	0.753	-0.808
0.80 red	0.897	0.797	0.847
0.90	0.910	0.825 0.847	0.856
3.00 120	-0.921	0.847 0.874	0.884
$\begin{array}{r}1.20 \\ \\ \hline\end{array}$	0.933 0.933	0.874	0.903 0.920
1.60	0.930 0.950	0.909 0.912	-0.919

Any variation in the energy that the atmosphere receives from the sun will have a corresponding influence on meteorological phenomena. Such variations were simultaneously announced in 1903 by Charles Dufour in Switzerland and H. H. Kimball in Washington (Monthly Weather Retiew. May 1903); the latter was then conducting a ecries of observations with Angstrom's electric compensation pyrteliometer, a nd his conclusions have been confirmed by the work of L. Gorczynski at Prague (1901-1906) and C. G. Abbot at Washington. Kimbalt's pythefiometric work on this problem is still being continued; but meanwhile Abbot and Fowle from their bolometric observations at the Smithsonian Astrophysical Observatory have deduced preliminary values of the observed total energy, or the solar constant. for numerous dates when the sky was very clear, as follows (see Smilhsonian Mis. Coll., xlv. 78 and xlvii. 403, 1905):-

Date.	Abbot. Calories.	Fowle. Calories.
	$\begin{aligned} & 2.19 \\ & 2.19 \\ & 2.16 \\ & 2.28 \\ & 2.25 \\ & 2.26 \\ & 2.27 \\ & 2.10 \\ & 2.07 \\ & 1.99 \\ & 2.27 \\ & 1.97 \\ & \square \\ & \square \\ & \square \\ & \square \end{aligned}$	$\begin{gathered} 2.19 \\ 2.27 \\ 2 \\ 2.23 \\ 2.09 \\ 2.18 \\ 1.96 \\ 2.144 \\ 1.96 \\ 1.94 \\ 1.99 \\ 2.02 \\ 2.26 \\ 2.09 \\ 2.32 \\ 1.98 \end{gathered}$

If the relative accuracy of theee figures is 1%, as estimated by Abbot, then they demonstrate irregular fluctatinns of 5% But different observers and localities vary so much that Abbot estimates the reliability of the mean value, 2.12, to be about 10% The causes of this variation apparently lie above our lower atmosphere and move slowly castward from day to day, and as the variability is comparable with that of other atmospheric data, therefore conservative meteorologists at present confine their attention to the explanation of terrestrial phenomena under the aseumption of a constant solar radiation. The large local changes of weather and climate are not due to changes in the sun, but to the mechanical and thermodynamic interactions of carth and ocean and atmopphere. Excellent illustrations of this principle are found in the atudies of Blanford, Eliot and Walker on the monsoons of Indis, of Sieger (1892) on the contrasts of temperature between Europe and North America, of Hann (1904) on the anomalies of weather in Iceland, of Meinardus (1906) on periodical variations of the icedrift near Iceland.
The absorption of solar radiation by the atmosphere is apparently explained by the laws of difiuse reflection, selective diffusion and fuorescence in accordance with which each atom and molecule and particle becomes a new centre for the difusion in all directions of the energy represented by some specific wave-length. The specific influepces of carbon dioxide and water vapour are less than thowe of the liquid particles (and of cloud and rains) and of the great mas. of oxygen and nitrogen that make up the atmosphere.
Sprific Heah.-The capacity of dry air for heat varies acconding as the heat increases the volume of the air expanding under constant pressure, or the pressure of the air confined in constant volume. The specific heat under constant pressure is about 1.4025 times the specific heat under constant volume. The numerical value of the specific heat under constant pressure is about 0.2375 -that is to say, that number of gram-calories, or units of heat, is required to change the temperature of 1 gram of air by $1^{\circ} \mathrm{C}$. This coefficient hoids good, strictly speaking, between the temperatures - 30° and $+10^{\circ} \mathrm{C}$., and there is a very slight diminution for higher temperatures up to 200°. The specific heat of moist air is larger than that of dry air, and is given by the expression $\mathrm{C}_{8}^{\prime \prime}=(0.2375+0.4805 x)$ where x is the number of kilograms of vapour associated with 1 kilogram of dry air. As x does not exceed 0.030 (or 30 grams) the value of $\mathrm{C}_{2}^{\prime \prime}$ may increase up to $0-2519$. The latent heat evolved in the condensation of this moisture is a matter of great importance in tbe formation of cloud and rain.
Radiating Power.-The radiating power of clean dry air is so small that it cannot be measured quantitatively, but the spectroscope and bolometer demonstrate its existence. The coefficient of radiation of the moist ure diffused in the at mosphere is combined with that of the particles of dust and cloud, and is nearty equal to that of an equal surface of lamp-black. From the normal diurnal change in temperature at high and low stations, it should be poesible to determino the general coefficient of atmospheric radiation for the average condition of the air in so far as this is not obscured by the influence of the winds. This was first done by J . Maurer in 1885, who obtained a remult in calorics that may be expressed as follows: the total radiation in twenty four hours of a unit mass of average dusty and moist air towards an enclosure whose temperature is 3° hower is sufficient to lower the temperature of the radiatipg air by $3.31^{\circ} \mathrm{C}$. in twenty-four hours This very small quantity was confirmed by the studies of Trabert, pablished in 1892, who found that ! gram of air at 278° absolute temperature radiates 0.1655 calories per minute toward a black surface at the absolute zero. The direct observations of C. C. Hutchins on dry dusty air, as published in 1800. gave a much larger value--vide ently too large. Slight changes in water, vapour and carbon dioxide affect the radiation greatly. The investigation of this subject prosecuted by Professor F. W. Very at the Allegherry Observatory, a nd published as "Bulletin G" of the U.S. Weather Bureau. shows the character and armount of the radiation of several gases, and especially the details of the process going on under normal conditions in the atmosphere.
Density.-The absolute density or man of a cubic centimetre of dry air at the standard pressure, 760 millimetres, and temperature $0^{\circ} \mathrm{C}$., is 0.00129305 grams; that of a cubic met re is 1.22305 kilograms; that of a cubic foot is 0.0807 lt avoirdupois. The varations of this density with pressure, temperature, moisture and gravity are given in the Smithsonian meteorological tables, and give rise to all the movements of the atmosphere; they are, therefore, of fundamental importance to dynamic meteorology.
Exponsion. - The air expands with heat, and the expansion of aqueous vapour is so nearly the same as that of dry air that the same coefficient may be used for the complex atmosphere itself. The change of volume may be expressed in centigrade degrees by the formula $V=V_{0}(1+0.0003665!)$, or in Fahrenheit degrees $\mathrm{V}=\mathrm{V}_{0}(1+0.000237!$).
Elasticity. -The air is compressed nearly in proportion to the pressure that confines it. The pressure, temperature and volume of the ideal gas are connected by the equation $p=$ RT, where T is the absolute temperature or 273°, plus the centigrade temperature ϕ is the barometric pressure in millimetres and the volume of a unit mass of gas. or the reciprocal of the density of the gas. The constant R is 29.272 for dry atmospheric sir when the centimetre.
the gram, the second and the centigrade degrtes are adopted as units of measure, and differs for each gas. For aqueous vapour in a gaseous state and not near the point of condensation \mathbf{R} has the value 47-061. For ordinary air in which x is the mass of the aqueous vepour that is mixed with the unit mass of dry air, the above equation becomes $p 0=(29 \cdot 272+47 \cdot 061 x)$ T. This equation is sometimes known as the equation of condition peculiar to the gaseous state. It may also be properly called the equation of elasticity or the elastic equation for gases, as expressing the fact that the elastic pressure p depends upon the temperature and the volume. The mose exact equations given by Van der Waals, Clausius, Thiesen, are not needed by us for the pressures that occur in meteorology,

Diffusion.-In comparison with the convective actions of the winds, it may be said that it is difficult for aqueous vapour to diffuse in the air. In fact, the distribution of moisture is carried on principally by the horizontal convection due to the wind and the vertical convection due to ascending and descending currents. Diffusion proper, bowever, comes into play in the first moments of the process of evaporation. The coefficient of diffusion for aqueous vapour from a pure water surface into the atmosphere is 0.18 according to Stefan, or o. 1980 mocording to Winkelmann; that is to say. for a unit surface of 1 sq . centimetre, and a unit gradient of vapour presture of one atmosphere per centimetre, as we proceed from the water surface into the still dry air, at the standard pressure and temperature, and quantity of moisture diffused is 0.1980 grams per second. This coefficient increases with the temperature, and is 0.2827 at $49.5^{\circ} \mathrm{C}$. But the gradient of vapour pressure, and therefore rate of diffusion, diminishes very rapidly at, a small distance from the free surface of the water, so that the most important condition facilitating evaporation is the action of the wind.

Viscosity.-When the atmosphere is in motion each layer is a drag upon the adjacent one that moves a little faster than it does. This drag is the so-called molecular or internal friction or viscocity. The coefficient of viscosity in gascs increases with the absolute temperature, and its value is given by an equation like the follow. ing: $0.000248(1+0.00 ; 665$) ?, which is the formula given by Carl Barus (Ann. Phvs., 1889, xxxvi.). This expression implies that for air whose ternperature is the absolute pero there is no viscosity, but that at a temperature (t) of 0° C. or 273° on the absolute scale, a force of 0.000248 grams is required in order to push or pull a layer of air 1 centimerre square past another layer distant from it by i centimetre at a uniform rate of i centimetre per second.

Friction.-The general motions of the atmosphere are opposed by the viscosity of the air as a resisting force, but this is an exceed. ingly feeble resistance as compared with the obstacics encountered on the earth's surface and the inertia of the rising and falling masoes $\boldsymbol{\alpha}$ warm and cold air. The coefficient of friction used in meteorology is deduced from the observations of the winds and results essentially not from viscosity, but from the resistances of all kinds to which the motion of the atmosphere is subjected. The greater part of these resistances consists essentially in a dissipation of the energy- of the moving masses by their division into smaller masses which penetrate the quiet air in all directions. The loss of energy due to this process and the conversion of kinetic into potential energy or pressure, if it must be called friction. should perhaps le called convective friction, or, more properly, convectiveresistance.

The coefficient of resistance for the free air was determined by Mohn and Ferrel by the following considerations. When the winds, temperatures and barometric pressures are steady for a considerable time, as in the trade winds, monsoons and stationary cyclones, it is the barometric gradient that overcomes the resistances, while the resulting wind is deflected to the right (in the northera hemisphere) by the influence of the centrifugal force of the diumal rotation (ω) of the earth. The wind, therefore, makes a constant angle (a) with the direction of the gradient (G). There is also a slight centrifugal force to be considered if the winds are circulating with velocity ${ }^{\circ}$ and radius (r) about a storm centre. but neglecting this we have approximately for the latitude

$G \sin \pi=2 \omega \sin \phi, G \cos \pi=k p$,

where (x) is the coefficient connecting the wind-velocity (b) with the component of the gradient pressure in the direction of the wind. These relations give $\varepsilon=2 \omega \sin \phi / \tan a$. The values $o f a$ and m as read off from the map of winds and isotherms at sea level give us the data for computing the cocfficients for oceanic and continental surfaces respectively, expressed in the same units as those used for G and $\%$. The extreme values of this coefficient of friction were found by Guldberg and Mohn to be 0.00002 for the free ocean and 0.00012 for the irregular surface of the land. For Norwegian land stations Mohn found $\phi=61^{\circ} e=56.5^{\circ} x=0-0000845$ - For the interior of North America Elias Loomis (ound $\phi=37 \cdot 5^{\circ} \mathrm{e}=42 \cdot 2^{\circ}$ $4=0-0000803$.

Gravily.-The weight of the atmosphere depends primarily upon the action of gravity, which gives a downward pressure to every perticle. Owing to the elastic compressibility of the air, this downward pressure is converted at once into an elistic presture.
in all directions. The force of gravity varies with the latitude and the altitude, and in any exact work its variations must be taken into account. Its value is well represented by the formula due to Helmert, $s=980.6$ ($1-0.0026 \cos 2 \phi) \times(1-f h)$, where represents the latitude of the station and h the altitude. The coeffcient f is small and has a different value according as the station is raised above the earth's surface by a continent, as, for instance, on a mountain top, or by the ocean, as on a ship miling over the rea, or in the frce air, as in a balloon. Its different values are suffciently well known for meteorological needs, and are utilized most discrectly in the elaborate discussion of the hypsometric formula published by Angot in 1899 in the memoirs of the Central Meteorological Bureau of France.

Temperature at Sea-Level.-The temperature of the air at the surfaces of the earth and ocean and throughout the atmosphere is the fundamental clement of dynamic meteorology. It is best exhibited by means of isotherms or lines of equal temperature drawn on charts of the globe for a scries of level surfaces at or above sea-level. It can also be expressed analytically by spherical harmonic functions, as was first done by Schoch. The normal distribution of atmospheric temperature for cach month of the sear over the whole globe was first given by Buchan in his charts of 1868 and of 1888 (see also the U.S. Weather Burcau "Bulletin A." of 1893. and Buchan's edition of Bartholomew's Physical Allas, London. 1899). The temperatures, as thus charted, have been corrected so as to represent a uniform special set of years and the conditions at sea-level, in order 20 constitute a homogencous system. The actual temperature near the ground at any altitude on a continent or island may be obtained from these charts by subtracting $0.5^{\circ} \mathrm{C}$. for each 100 metres of elevation of the ground above sca-level, or $I^{\circ} \mathrm{F}$. for 350 ft . This reduction, however applies specifically to temperatures observed near the surface of the ground, and cannot be used with any confidence to determine the temperature of points in the frec air at any distance above the land or ocean. On all such charts the reader will notice the high temperatures near the ground in the interior of each of the continents in the summer season and the low temperatures in the winter season. In February the average temperatures in the northem hemisphere are not lowest near the North Pole, but in the interiors of Siberia and North America; in the eouthern hemisphere they are at the same time highest in Australia. and Alrica and South America. In August the average temperatures are unexpectedly higi in the interior of Asia and North America, but low in Australia and Africa.

Temperature at Upper Levals.-The vertical distribution of temperature and moist ure in the free air must be studied in detail in order to understand both the general and the special systems of circulation that characterize the earth's atmosphere. Many observations on mountains and in balloons werc made during the 19th century in order to ascertain the facts with regard to the decrease of temperature as we ascend in the atmosphere; but it is now recognized that these observations were largely affected by local influences due to the insufficient ventilation of the thermometers and the nearness of the ground and the balloon. Strenuous efforts are being directed to the elimination of these disturbing elements, and to the continuous recording of the temperature of the free air by means of delicate thermographs carried up 10 great heights by small free "sounding balloons," and to lesser heights by means of kites. Many international balloon ascents have been made since 1890 , and a large amount of information has been secured.

The development of kite-work in the United States began in October 1893, at the World's Columbian Congress at Chicago, when Professor M. W. Harrington ordered Professor C. F. Marvin of the Weather Bureau to take up the development of the Hargrave or box kite for meteorological work. At that time \mathbf{W}. A. Eddy of Bayonne, New Jersey, was applying his "Malay " kite to raising and displaying heavy objects, and in August 1894 (at the suggestion of Professor Cleveland Abbe) he visited the private obeervatory of A. L. Ratch at Blue Hill and demonstrated the value of his Malay kite for aerial research. The first wort done at this observatory With crude apparatus was rapidly improved upon, while at the same time Professor Marvin at Washington was developing the Hargrave kite and auxiliary apparatus, which he brought up to the point of maximum efficicncy and trustworthiness. When be reported his apparatus as ready to be used by the Weather Bureau on a large scale, Prolessor Willis L. Moore, as the successor of Professor Harrington, ordered its actual use at seventeen kite stations in July 1898. This was the frat attempt to prepare isotherms for a special hour over a large area at some high leved, such as 1 m. . in the free air. Daily meteorological charts were prepared for the region covered by these obscrvations; but it became necessary to discontinue them, and nothing more was done by the Weather Bureat in this line of work untid the inauguration of kite work at Mount Weather in igo6. Meanwhile a special method for the reduction asd study of such observations was devised by Bjerknes and Sandstrom, and was published in the Trans. Amaricen Philosoplical Sociels (Philaddphia, 1906). The gencral average results as 10 temperature gradients were compiled ly Dr H. C. Frankenfield and published in the Uaited Sqates Weather Bureau "Bulletin F.": from thete

Rere deduced the following tablet, published in the Momblys. Weather Repiow:-

Mean Temperatura Gradients in degrees Fahrenheil per 1000 f . from the ground up to the respective allifudes.

Stations.	$\begin{gathered} 1000 \\ \mathrm{ft} . \end{gathered}$	1500	$\begin{gathered} 2000 \\ \mathrm{ft} . \end{gathered}$	$\begin{aligned} & 3000 \\ & \mathrm{ft} . \end{aligned}$	4000	$\begin{gathered} 5000 \\ \mathrm{ft} . \end{gathered}$	$\begin{aligned} & 6000 \\ & \mathrm{ft} . \end{aligned}$
			-		-	\bullet	-
Washington, D.C.	$5 \cdot 6$	$4 \cdot 4$	4.0	$3 \cdot 5$	$3 \cdot 2$	3.0	3-1
Cairo, III. -	$9 \cdot 7$	6.6	$6 \cdot 0$	49	$4 \cdot 7$	$4 \cdot 3$	
Cincinnati, 0.	13.0	$6 \cdot 3$	$6 \cdot 9$	5.8	5.6	4*7	$4 * 2$
Fort Smith, Ark.	$7 \cdot 2$	$7 \cdot 0$	$6 \cdot 7$	$5 \cdot 8$	$3 \cdot 8$		
Knoxville, Tenn.	8	$6 \cdot 2$	6.6	5.4	5.0	-	-
Stemphis, Tenn.	7.8	6.8	$5 \cdot 0$	$3 \cdot 8$	$3 \cdot 7$	3.5	
Springficld, III.	7.6	5.7	5.1	$4 \cdot 4$	$4 \cdot 0$	3.7	$3 \cdot 6$
Cleveland. 0.	$5 \cdot 7$	4.1	$3 \cdot 6$	$3 \cdot 5$	$4 \cdot 1$	$4 \cdot 1$	$4 \cdot 3$
Duluth, Minn.	$5 \cdot 2$	4.8	$4 \cdot 6$	$4 \cdot 6$	$4 \cdot 3$	3.8	4.6
Lansing, Mich.	$7 \cdot 5$	6.0	$4 \cdot 7$	$4 \cdot 1$	3.9	$3 \cdot 8$	
Sault Ste Marie, Mich.	6.6	$6 \cdot 2$	$5 \cdot 2$	$4 \cdot 5$	3.9	3.0	3
Dodgc, Kans. . .	$6 \cdot 3$	$5 \cdot 2$	$4 \cdot 8$	$3 \cdot 7$	$3 \cdot 1$	$3 \cdot 2$	$3 \cdot 2$
Dubuque, lowa	6.9	5.9	$4 \cdot 6$	$3 \cdot 5$	3.2	$3 \cdot 3$	
North Platte, Neb.	6.8	6.5	5.9	$5 \cdot 2$	$4 \cdot 4$	4.7	5.4
Omaha, Ncb.	-	$5 \cdot 4$	49	$3 \cdot 6$	$3 \cdot 2$	$3 \cdot 5$	3.8
Pierre, S. Dak.	$5 \cdot 9$	$5 \cdot 1$	$4 \cdot 8$	$4 \cdot 3$	$3 \cdot 7$	$4 \cdot 4$	4.0
Topeka, Kans.	$7 \cdot 4$	$6 \cdot 2$	4.9	$4 \cdot 0$	$3 \cdot 8$	3.9	$4 \cdot 5$
Average	$7 \cdot 4$	5.8	$5 \cdot 2$	$4 \cdot 4$	$4 \cdot 0$	3.8	$4 * 1$

Stations	Altitude	Temperature.	
	Fect.	Gradient.	Reduction.
Washington			
Cairo	${ }_{315}^{215}$	- ${ }_{-4.30}$	-
Cincinnati	940 587	-5; ${ }^{15}$	-27.5
Fort Smith			
Memphis	390	-3.00	$\square_{17}^{21.5}$
Springficld	684	-3.65	-17.7
Cleveland . . : . .	${ }^{705}$	-4.10	
	1197 869	${ }^{-4}{ }^{4} \cdot 3_{5}^{\circ}$	-17.6 $=17.0$
Sault Ste Marie	${ }_{722}$		-15.7
Dodge	2473	-4.10	-11.6
Dubuque	8894	-3.30	-14.5
North Platte		-5.40	- 13.6
${ }_{\text {Prema }}$	124 1595	- ${ }^{-3.90}$	二12.9
Topeka	$\begin{array}{r}159 \\ \\ \hline 12 \\ \hline\end{array}$	-3.83	-16.5

In this table the second column gives the altitude of the ground at the recl on which the kite wire was wound. The third column shows the average gradient in degrees Fahreaheit per 1000 ft. between the reel at the respective stations, and a unitorm altitude 5280 ft . above sea-level. The fourth column shows the total reduction to be applied to the temperature at the reel in order to obtain the temperature at the i m. level above we. These gradients and reductions are based upon observations made only during the six warm months from May to October 1898.
The kite-work at the Blue Hill Obeervatory has been published in full in the successive Annals of the Harvard College Observatory, beginning with 1897. yol. xiii. It has been discussed especially by H. H. Clayton with peference to special meteorological phenomena, such as areas of high and low pressure, Pair and cloudy weather, the winds and their velocitics at different elevations, insolation, radiation, \&cc, and has served as a stimutus and model for European meteorologietea Kite-work bas alco been watcessfully prosecuted at Trappes, Hamburg. Berlin, St Petersburg, and many other European stations. The bighest flights that have been attained have been about 8000 metres.

	Annual Temperatures and Wind.							
	Tegel	3903.	Tegel, 3904		Lindenberg, 1905.		Lindenberg, 1905.	
A	Dow	${ }^{\circ} \mathrm{C}$	Dasm	${ }^{\circ} \mathrm{C}$	Das.	${ }^{\circ} \mathrm{C}$	Das	Merres pasac
Ground	${ }^{365}$	9-2	${ }^{366}$	9.1	335	8.5	365	4.65
, 500 m .	363 3 3	${ }_{6} 67$	${ }_{364}^{364}$	6.5	-365	8.2	-	8.65 8.85
1,000 ${ }_{\text {1,500 }}$	344 252	4.3 200	379 18	4.2	352 394	2.6	306 306	8.55
2,000 "	170	$0 \cdot 0$	188	-0.2	242	$0 \cdot 5$	257	9.5
li, $\begin{aligned} & \text { 2,500 ", } \\ & 3.000,1\end{aligned}$	98 55	-1.8 -3.9	132 79	-1.7	179 119	-1.1 -2.8	195 127	10.0 10.7

The great work of L. Teisserenc de Bort began with 1897 , when he founded his private observatory at Trappes near Paris devoted to the problems of dynamic meteorology: His results are pablished in full in the Momoirs of the Central Meteorological Bureau of France for 1897 aod subsequent years. Bcginning with the pounding balloons devised by Hermite, be oubsequently added kite work as supplementary to there. In the Comples rendws (1904), he gives the mean temperatures as they result from five years of work, 1899-1903, at Trappes. Out of 581 zscensions of counding balloons there wero 141 that attained 14 km . or more, and the following table gives the average temperatures pecorded in these ascensions. It will be scen that there is a slow decrease in tomperate up to 2 km . ; a rapid decrease thence up to 10 km ., and a slow decrease, almost a stationary temperature, between
a new independent establishment, the "Royal Prussian Aeronauti Observatory," was founded at lindenberg, under the direction Dr Assmant, who has published the results of his work in annu; volumes of the Ergebwisse of that institution, considering it as continuatioa of the work done at Berlin and Tegel. In additio to these elaborate official publications various summaries have bee published, the most instructive of which is the chart embodyin daily observations with corresponding isotherms at all attainab: altitudes, puhlished monthly gince January 1903 in Das Wetle The growth of this serial work and the reliakility of the rcsult may be inferred from z statement of the number of ascensior made each year: 1899, 6; 1900, 39; 1901, 169; 1902, 261; 1903.481 1905, 513. This large number, combined winh 581 voyages 1 Teisserenc de Bort at Trappes and many others made in Englan

Holland and Russia, a mounting in all to over 2000, enabled Assmann to compute the monthly and annual means of temperature and wind velocity for each altitude; the German results are given in table at foot of page 269 .
The results of these numerous ascents. during these six years. have also been grouped into monthly means that have a reliability proportionate to the number of div's on which obscrvations were obtained at a given level, and we are now able to speak of the annual and even of the diurnal periodicity of temperature at different altitudes in the free air with considerable confidence.

Some of the most important conclusions to be drawn from the best recent work were published by llann either in special memoirs or in his Lehrbuch, from which we take the following table. The artual temperatures given in this table have only local importance, but the differences or the vertical gradients doubtless hold good over a large portion of Europe if not of the world.
the highest cirrus, from which Cleveland Abbe inferred that it had something to do with the absorption of the solar and terrestriai heat by dissolving cirri. But the most plausible explanation is that published simultancously in September 1908 by W. I. Humphreys of Washington, and Ernest Gold of London.

The daily diagrams in Das Welley show that both the irregular and the periodic and the geographic variations of temperature in the upper strata are unexpectedly large, almost as large as at the carth's surface, so that the uniform temperature of space that was formerly supposed to prevail in the upper air must be looked for, if at all, far above the level to which sounding balloons have as yet attained. It is evident that both horizontal and vertical convection currents of great importance really occur at these great altitudes. These upper currents cannot be duc to any very local influence at the earth's surface, but only to the interchange of the air over the oceans and continents or between the polar and cquatorial regions. They constitute the important feature ol the so-calied general circulation of the atmosphere, which we have hitherto mistakenly thought of as confined to lower levels. their general direc tion is from west to east over all parts of the globe as far as yet known, showing that they are controlled by the rotation of the earth. It is likely that masses of air having special temperature conditions or clouds of vapour dust such as came from Krakatoa, may be carried in these high currents a round the globe perhaps several times before being dissipated.
The average east ward movement or the west wind at 3 km . above Germany is $\mathbf{t 0 . 7 \mathrm { m } \text { . per sec. or } t ^ { \circ } \text { of }}$ longitude (at 45° latitude) in $\mathbf{4 2 . 4}$ minutes, or such as 10 describe
The differences of temperature between any layer and those above it and below it, or the vertical gradients at each level go through annual periodical changes quite amalogous to those derived from mountain observations; the most rapid falls of temperature, or the largest vertical gradients in the firee air occur on the lollowing dates over Europe:-

Altitude.	Over Germany.	Over Trappes.
1, 2, 3 km .	May June	May 15
3. 4, 5	March	Feh. 15
5. 6, 7	April	fan. 27
7. 8, 9	July	Tuly 28
9. 10,11	-	Sept 14

The valucs above given as deduced from tit high ascensions at Trappess show that between II and 14 km . there was no appreciable diminution of temperature, in other words, the air is warmer than could be expected and therefore has a higher potential temperature. This fact was first confirmed by the Berlin ascer.sions, and is now recognized as wellnigh universal. The altitude of the base of this warm stratum is about 12 km . in arcas of high pressure and to km. in areas of low pressure. It is higher as we approach itie tropics and above ordinary balloon work near the equator if indeed it exists there. At first this unexpected warmeth was considered as possibly a matter of error in the metcorographs, but this idea is now abandoned. Assmann suggested that the altitude is that of

caused, by this general deep swift upper curtent of air that began as an ascending east wind above the calm equatorial air but speedily overnowed as west wind settling down to the sea-level in the temperate and polar regions as great areas of high pressure and dry clear cool weather containing air oil its return pasesge to the equatorThe upper air is chrown easily into great billows, and wherever it rises the warm equatorial wind flows in berieath it, but when it descends we have blizzards and eiry clear weather. It is a covering for the lower atrata of air, it flows over them in standing waves and somecimes mixes with them at the surface of contact. It receives daily acocssions from betow and gives out corresponding accessions to the lower strata, by a process of overturning such as has been studied theoretically by Margules and Bigelow.
At the fifth ronference of the laternational Committee on Scientific Aeronautics (Milan. October (906) Rykatchef presented the results of kite-work during 1904 and 1905 at Pavlosk. near St Petersburg. from which we select the resuits for these two ycars given in table at foot of page 270.
Mary inveraions occur during January below 1000 metres The decrease is more rapid in cummer than in winter and in clear weather than in cloudy, bur of course these observations did not extend above the upper level of the cumulus cloud layer. A general survey of the existing state of knowledge of the upper atmosphere is given in the Report of the British Association for 1910.
Disfribution of Aqucous Vapowr.-The distribution of equeous vapour is best ahown by lines of equal dew.point or vapour tension though for some purposes lines of equal relative humidity are convenient. The dew-point lines are not usually shown on charts, partly because the lines of vapour pressure are approximately paratiel to the lines of mean temperature of the air, and partly becauee the observations are of very unequal aceuracy in different portions of the globe. In general we may consider any isotherm as agreeing with the dew-point line for dew-points a few degrees lower than the temperature of the air. The distribution of moisture is quite irregular both in a horizontal and in a vertical direction. On charts of the world we may draw lines based on actual observa. tions to represent equal degrees of relative humidity, or equal dewpoints and vapour pressures; but as regards the distribution of moisture in a vertical direction we are. in the absence of specific observations. generally forced to assume that the vapour pressure at any altitude k follows the average law first deduced from a limited number of observations by Hann, and expressed by the Logarithmic equation, $\log \varepsilon=\log e_{0}-h / 6517$, which is quite analogous to the elementary bypsometric formula, $\log p=\log p_{0}-h / 18400$. Therefore, in general, the ratio between the pressure of the vapour and the pressure of the atmosphere at any altitude is represented by the approximate formula. $\log e / p=\log e_{a} / p_{0}-h / 10091$. Of course these relations can only represent average or normal conditions, which may be departed from very widely at any moment; they have, however, been found to agree remarkably with all observations which have as yet been published. The average results are given in the following table, which is abbreviated from one published by Hann, but with the addition of the work done by the U.S. Weather Burcau, as reduced by Dr Frankenficld in $\mathbf{8 9 9}$. The vapour constituent of the atmosphere is not dist ributed according to the law of gaseous diflusion, but. like temperature and the ratio between oxygen and nitrogen, is controlled by other laws prescribed by the winds and currents, namely-convection.

Diminulion of the Relative Vapour Pressure with Allitude.

Aulbarity.	${ }^{1800}$	${ }_{\text {2000 }}$	\%000	${ }_{6}$	S000	cose h.	${ }^{7} \mathbf{7}$	8000	Na. Obs.
Kites.	0-82	0.78	0.70	0-61	0.57	0.49	0.39	$0 \cdot 44$	1123
(Ux,W.B.)	0.97	0-96	0.87	0.68	$0 \cdot 44$	0.59		-	4
(Hammon.)		0.8	0-80		0-67				2
(Hazen)		-	0.60	$0 \cdot$	0.67				
Balloons.	0.84	0-80	0-66	$0-61$	0.50	0-54	0.41	0.37	15
(Hans.)		81	0.80	0.66	0.61				6
(Hann.)									
Computed by Hana.	0.85	0.81	0.72	0-65	0.58	0.52	0.47	0.42	

Note -The vapour pressure at any altitude is supposed to be expressed as a fraction of that observed at the ground. When the aliftudes are given in ft. Hann's formula becomes \log e/e $=\boldsymbol{k} / 29539$.

From 7^{8} high balloon voyages in Germany, 1887-1899, Siling deduced the average vapour pressure in millimetres as found in

Dimisution of Pressurt of Aqueors Vapour in the Free Air.

Alt.	$0 \cdot 1$	$1 \cdot 0$	$1 \cdot 5$	2.0	2.5	$3 \cdot 0$	$3 \cdot 5$	4.0	$4 \cdot 5$	$5 \cdot 0$	6.0	$\begin{gathered} \mathrm{km} .0 \\ 7 \cdot 0 \end{gathered}$	8.0
Strin	$\begin{aligned} & 101 \\ & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \operatorname{mon} \\ & 0.68 \\ & 0.70 \end{aligned}$		$\begin{aligned} & \operatorname{mon} \\ & 0-41 \\ & 0-4 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0.34 \\ & 0-40 \end{aligned}\right.$	$\begin{aligned} & 0.26 \\ & 0.34 \end{aligned}$	$\left\|\begin{array}{c} 0.20 \\ 0.28 \end{array}\right\|$	$\begin{array}{\|l\|l} 0-17 \\ 0.23 \end{array}$	$\begin{gathered} \min . \\ 0.14 \\ 0.19 \end{gathered}$	$\left\lvert\, \begin{aligned} & \operatorname{mim}_{0} . \\ & 0-12 \\ & 0-16 \end{aligned}\right.$	$\min _{0-054}$	mm.	$\mathrm{mm}_{\mathrm{m} .}$

the first line of the table at foot of this page (see Wissenschafliche Lufffahrien, Bd. III., and Hann, Lehrbuck, 1906, p. 169). The obser vations on mountains gave Hann the presaures in the second line. Saring's figures result from the use of Asemann's ventilated psychrometer and are therefore very reliable.
The yapour pressure in mm. in free air over Europe is best given by Suring's formula

$$
\log e_{A}=\log c_{0}-\frac{h}{6}\left(1+\frac{h}{20}\right)
$$

where the altitude is to be expressed in kilnmetres. From this formula we derive the "specific moisture" or the mass of vapour contained in a kilogram of moist air as given in the following table whose numbers do not appreciably differ from "the mixing ratio" or quantity of moisture associated with a kilogram of dry air. The relative humidities vary irregularly depending on convection currents, but in clear weather when descending currents prevail they have been observed in America and over Berlin es showa in the third and fourth rolumns of the following tabie:-

Observed Specific Moisture and Relatioe Humidity.

Alt.	Specific moisture.	Relative Humidity.	
		U.S.A.	Berlin.
Km.	1.00	\%	\%
0.5	-	65	71
1.0	0.76	65	71
1.5	$0 \cdot 65$	59	62
2.0 2.5	0.55 0.47	49	57 58
$3 \cdot 0$	0.39	4	55
3.5 4.0	\bigcirc	二	49
$4 \cdot 5$	$\stackrel{-26}{ }$	$\underline{-}$	53 54
5.0	0.17	$=$	-
5.6 5.7	0.11 0.07	\cdots	二
5.8	0.04	-	-

The total amount of vapour in the atmosphere, according to Hann's formula, is between one-fourth and one-fifth of the amount required by Dalton's hypothesis, as is illustrated by the following table taken from an article by Cleveland Abbe in the Smithsonian Report for 1888, p. 410 :-

Total Vapowr in a Vertical Column that is salurdied at its base.

$\begin{aligned} & \text { Alifecede. } \\ & \text { Feel: } \end{aligned}$	Relative Tensica -sforo	Acran Whethu Gr. per Cebic Fool.				Total Vapotar io the Columens exprested as Idches of Rala.			
		$80^{\circ} \mathrm{F}$.	$70^{\circ} \mathrm{F}$	$160^{\prime \prime} \mathrm{F}$.	$50^{\circ} \mathrm{F}$				$0^{\circ} \mathrm{F}$
\bigcirc		10-95	7.99	$5 \cdot 76$	4.09	$0-0$	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$
6000	0.524	$5 \cdot 75$	4.19	3.02	2-34	1.3	1%	$0 \cdot 7$	0.5
12,000	0.275	$3-01$	$2 \cdot 20$	1-58	1-12	$2 \cdot 1$	1.5	1-1	0.8
18,000	0.144	1.58	1.15	0.83	0.59	$2 \cdot 5$	1.8	$1-3$	0.9
24.000	0.075	0.82	0.62	0.43	$0 \cdot 31$	$2 \cdot 7$	$2 \cdot 0$	1.4	1.0
30,000	0.040	0.43	0.32	$0 \cdot 23$	0.16	2.8	$2 \cdot 1$	$1-5$	t-

A heavy rainfall results from the precipitation of only a small percentage of the water contained in the fresh supplies of air brought by the wind; if all mnisture were abstracted from the atmosphere it could only affect the barometer throughout the equatorial regions by $2.8 / 13.6$ inches. or about two-tenths of an inch, while at the polar regions the diminution wouid be much tess than one-tenth. Evidently, therefore. it is idte to argue that the fali of pressure in an extensive storm is to be considered as the simple result of the coadensation of the vapour into rain.

Barometric Pressure.-The horizontal distribution of barometric pressure over the carth's surface is shown by the isobars, or lines of equal pressure at sea-level; it can also be expressed by a system of complex spherical harmonics. As the indications of the mercurial barometer must vary with the variation of apparent gravity whereas those of the ancroid barometer do not, it has been agreed by the International Metcorological Conventions that forscientific purposes all atmospheric pressures. when expressed as barometric readings, must be reduced to one standard value of gravity, namely. its value at sea-level and at 45° of latitude. In this locality its value is such as to give in one second an acceleration of $980 \cdot 8$ centimetres, or 32.2 English ft. per second. The effeet of the variation of apparent gravity with latitude is therefore to make the mercurial barometer read too high. between 45° and the equator, and 100 low . betwicen 45° and the pole. The gravity-correction to be applied to any mer. curial tarome tric reading at or near sca-ievel in order to get the atmospheric pressure in
standard units, should be given on the edge of a meteorological chart, unlew the isobars shown thereon already contain this correction. Onsuch charts it will be perceived that the barometric pressure at sea-level is by no means uniform over the earth's surface, and daily weather charts show very great fluctuations in this respect. the lowest pressures being storm centres and the highest pressures areas of clear cool dry weather. But even the normal average charts show high pressures over the continents in the winter and low pressures over the oceans, these conditions being reversed in the summertime; moreover, Schouff (Pogg. A nn., 1832) first demonotrated that the average pressure in the neighbourhood of the equator is alightly less than under either tropic, and that there is a still more remarkable diminution of pressure from either tropic tow'ards lts pole. The exact statement of these variations of pressure with latitude was subsequently worked out very precisely by Ferrel, and forms the basis of his explanation of the general circulation of the earth's atmosphere and its influence on the barometer. The series of monthly charts for the whole glote, compiled by Buchan and published by the Royal Societ y of Edinburgh in I868, as well as Buchan's later and more perfect charts in the meteorology of the "'Challenger " Expedition, Edinburgh, 1889, and in Bartholomew's Allas, first revenicd clearly the fact that the distinct areas of high and low pressure which are located over the continents and the oceans vary during the year in a fairly regular manner, so that the pressure is bigher over the continents in the winter season and lower in the summer season, the amount of the change depending principally upon the size of the continent. A part of this annua variation in pressure is undoubtediy introduced by the methods of reduction to sea-level; indeed, if the data of the lower stations are reduced up to the level of 10,000 or 15,000 ft., we sometimes find the barometric conditions quite reversed. These annual changes are intimately connected as cause and effect with the annual changes of temperature, moist ure and wind; it is quite erreneous to say that the ohserved charted pressures control the winds; there Is a reaction going on between the wind and the barometric gradient, the resistance and rotation of the earth's surface, such that the true celation between these factors is a complex but fundamentai problem in the mechanics of the atmosplere.

The vertical distribution of pressure as deduced from observation shows a rate of diminution with increasing altitude very closely but not entirely accordant with the laws of static equilibrium, as first elaborated by Laplace in his hypsometric formula. The departures from this law of static equilibrium are sufficient to show that, il our atmosphere is reaily in a state of equilibrium, it must be a matter of dy namics and not of statics. The general average relation of the density of the air to the altitude and cmperature. and the total pressure of the superincumbent almosphere, are shown in the accompanying diagram (fig. t), which is taken Irom a memoir on the equations of motion by Joseph Cottier, published in the U.S. Monthly Wealher Reviesp for July 1897. The diminution of pressure with altitude, as shown in this diagram for average conditions, but not for the temporary conditions that contmually occur, follows a logarithmic law, and can undoubtedly be extended upwards for the normal atmosphere only to a height of 20 or 30 m . owing to our uncertainty as to the actual conditions in the upper portions. of the atmosphere. This diagram is based upon the assumption that the atmosphere is in a state of convecrive equilibrium such that the ascending and descending masses expand and cool as they ascend, or contract and warm up as they descend, nearly but not quite in accordance with the adiabatic law of the change of temperature in pure gases.

The departure of atmospheric temperatures from the strictly adiabatic law, as shown by Cottier, is undoubtedly due largely to the heat absorbed by and radiated from moist or hazy or dusty air. In 1890 . Abbe showed that a very moderate rate of radiation from the atmosphere suffices to explain the coolness of slowly descending air. The absorption by the atmosphere of radiations from the earth and sun, or the balance between warming by absorption and cooling by radiation, is the basis of the arguments of W. J. Humphreys (Astrophysics, Jan. 3909), and E. Gold (Proc. Roy. Soc., 1908 , lxxii., 45 A.), explaining the existence of the "t itermal layer."

The direct evaluation of this radiation and absorption has been attempted by many. The genuine law $a(q-p)$ is adopted by Gold as closely representing nature, whence it follows that (i) the adiabatic rate of cooling in convection currents must cease at a height corresponding to one-half of the barometric pressure at sea-levet; (2) an isothermal layer must exist at the level where the absorption of solar radiation equals that of the terrest rial and atmospherie radiation: (3) within this thermal layer convection is difficult or impossihle (4) above this region the vertical temperature gradient inust depend easentially on radiation and is less than that needed for convective equilibrium; (5) below this level the at mospheric radiation exceeds the atmospheric absorption and vertical currents can only be kept up by the convection of heat or aqueous vagour from the tarth's surface to the adjacent layer of air.

Limil of the Atmosphere. - The limiting height of the atmosphere must he at some unknown elevation above 20 m . Where the tempersture falls to absolute zero. But the uncertainty of the various hypotheses as to the physical properties of the upper atmosphere
forbids us to entertain any positive lideas on this subject at the present time. If we define the outer limit of the atmosphere as that point at which the diffusion of gases inwards just balancen the diffusion outwards, then this limit must be determined not by the hypsometric formula, but by the properties of gases at low temperatures and pressures under conditions as yet uninvestigated by physicists.

Cloudimess.-It is evident that the clouds (9.0.) are formed from clear transparent air by the condensation ol the invisible moisture therein into numerous minute particles of water, ice or snow. Notwithst anding their transparency, these individual globules and crystals, when collected in large masses, disperse the solar rays by reflection to such an extent that direct light from the sun is unable to penettate fog or cloud, and partial darkness results. In a general survey of the atmosphere the geographical distribution of the a mount of cloudy sky is important. When the solar heat falls upon the surface of the cloud it is so absorbed and refocted that, on the one hand, scarcely any penetrates to the ground beneath, while on the other hand the upper surlace of the cloud becomes unduly heated. Evenil this upper surface is completely evaporeted, it may cont inually be renewed from below, and, moreover, the evaporated moisture mixing with the air renders it very much lighter specifically than it would otherwise be. Hence the upper surface of the cloud replaces

Fic. 1. the surface of the ground and of the occan; the air in contact with it acquires a higher temperature and greater buoyancy, while the ground and air beneath it remain colder than they would be in sunshine. The average cloudiness over the globe is therefore intimately related to the density and circulation of the atmosphere; it was first charted in general terms by L. Teisserenc de Bort of Paris, about 1886 . The manifold modifications of the clouds impress one with the conviction that, when properly understood and interpreted, they will reveal to us the most important features of the processes going on in the armosphere. If the farmer and sailor can correcily judge of the weather several hours in advance by a casual glance at the clouds, what may not the prolessional meteorologist hope to do by a more careful study? Acting on this idea, in t868 Abbe asked from all of his correspondent observers full details as to the quantity, kind and direction of motion of each layer of clouds; these were telegraphed daily for publication in the Weather Bulletin of the Cincinnati Observatory, and for use in the weather predictions made at that time. Since January 1872 similar data have been regularly telegraphed for the use of the U.S. Weather Bureau in preparing forecasts, although the special cloud maps that were compiled thrice daily have not been published, owing to the expense. These data were also published in full in the Bullctin of the Internalional Simultaneows Meteorolagical Observituns for the whole northern hemisphere during the years 1875-1884. Abbe"s work on the U.S. Eelipse Expedition to the West Coast of Africa in $1889-1890$ was wholly devoted to the determination of the height and motions of the clouds by the use of his special form of the marine nephoscope. The use of such a nephoscope is to be strongly recommended, as it gives the navigator a means of determining the bearing of a storm centre at sea by studying the lower clouds, better than he can possibly do by the observation of the winds alone. The importance of cloud study has been especially emphasized by the International Meteorological Committce. which arranged for a complete year of systematic cloud-work by national weather bureaus and individual obsctvatories throughout the world from Alay 1806 to Jume 1897 . In this connexion H. H. Clayton ol Blue Hill Observatory published a very comprehensive report on cloud Iorms in 1906. The complete report by Professor F. H. Bigelow on the work done by the U.S. Weather Bureau forms a part of the annual report for 1899 , and constitutes a remarkable addition to our knowledge of the subject. Some preliminaty account of this work was published In the American Journaf of Scuence for December 1899.

Ali howth all the international cloud-work of $1806-1897$ has now been published in full by ihe individual institutions, as in the case of the Intermational Polar Research Work of 1883 , yet a comprehensive study of the resultes still remains to be made. Some of theee have, howeter, been brought logether in Mohnis discuseion of the observations hy Nansen during the voyags of the 'Fram' and aleoin Hann's Lehrbwh a ud in Bigelow's Reporf on Cloud-awork. The mean ofritedes of cirrus and strato-cumulus clouds resulted as follome

Place.	Latitude.	Cirrus.	St.cu.	Highera Cirrus.	Lowest Cirrus.
		ka.	kill.	k.	kil.
Cape Thordeen. .	78.5	$7 \cdot 3$	2.5	-	-
Bomekop, 1838-1842 .	70 63.5	8.3 8.3	1.3 1.8 1.8	12.8	5.5
Storlien. ${ }^{\text {Upeala, }} 1884$-1885. :	63.5 60	8-3	1.8 2.3 1.8	-	-
paic 1896-1897.	60	8-2	$\left.\begin{array}{l}2.3 \\ 1.8\end{array}\right\}$	13.4	3.6
Paviosk. . .	60	8.8	1.9	15.7	$4 \cdot 7$
Dantzig.	54-5	10.0	2.2	-	
Irkutsk, ${ }^{\text {a }}$,	52.3	10.9	$2 \cdot 3$	-	
Bive Hill, $1890-189 \mathrm{l}$ Potedam, eummer.	${ }_{52}^{42 \cdot 5}$	9.0	3.2 2.2	-	
Potar winter	52	$8 \cdot 1$	1.2	-	二
Blue Hill, summer.	$42 \cdot 5$ 42.5	9.5	1.2 1.6 1.6	15.0	5.4
Törcato, wimmere :	$42 \cdot 5$ 43.6	8.6 10.9	1.6 2.0 	150	54
Wähin winter	43.6	10.0	1.5		
Washington, summer	39	10.4 9.5	$\left.\begin{array}{l}2.9 \\ 2.4 \\ 3\end{array}\right\}$	16.5	$5 \cdot 0$
Allahabad . . .	25.5	12.4	3.5	-	-
Manila	15	10.9	3.0	18.0	$4 \cdot 0$

The annual average velocity of houtly movement in metres per sccond without regard to direction may be summarized as foltows:-

	100-3000	1-4000	4-600	-000	3-10000	10-12,000	17-14.000
	m^{m}.	m.	m.	m.	m.	0.	
Bosselkop	6.5	$7 \cdot 3$	12.5	15.4	19.0	24.4	-
Upsala	$9 \cdot 1$	8.7	16-0	20.4	26.6		
Potedam:	$9 \cdot 3$	10.3	16-9	20.8	25.4	-	
Bluc Hill	9.8	14.2		34.3		(33) 28.8	
Toronto -	9.4	17.1	18-4	$32 \cdot 0$	30.8		8
Washingtont Allahabad	(8.6) 3.4	14.6	17.3	20.3	25.8	(28.9)	26.8
Manila.	3.4 5.5	6.4 7	13.0	17.6 8.0	22.3 13.6	20.7 13	34.0 13.4

The movements of the upper clouds are more rapid in winter than in summer at these northern stations, but among the median and lower clouds a retardation takes place apparently due to the ascending currents that form rain and snow. Above 8000 metres at Upsala the average velocity in winter exceeds 30 metres per econd, whereas in summer it is 20; at Tononto and Blue Hill the absolute velocities are larger hut in the same ratio. In the United States the maximum velocities from the west attain 100 metres per second and over 80 or 70 metres per second are not rare. but in Europe the corresponding figures are 70,60,50. (See also Cloud.)

II.-Meteorological Apparatus and Methods

The observational basis of meteorology is the frequent and, if possible, continuous record of the temperature, moisture and barometric pressure at difterent aftitudes in the free atmosphere, the direction and velocity of the wind, the rain and snow-fall, and the kind, a mount and motion of the clouds. For Europe these data have been furnished with more or less accuracy and continuity by thousands of observers ever since 1653, when Ferdinand II., grand duke of Tuscany, organized a system of daily observations in Italy under the general supervision of Luigi Antinori. During the 19th century great efforts were made to obtain equally full records from all parts of the land and ocean, and thousands of navigators were added to the great corps of observers. Other matters have also been investigated, the most important being the intensity of radiation from the earth at night-time and from the sun by day-tine, the optical phenomena of the sky, the amount of dust in the air, the electrical condition and the chemical constitution of the atmosphere. Although all the instruments used belong to the category of physical apparatus, yet certain points must be considered as peculiar to their use in connexion with metcoralogy.
Thermomeler.-In using the thermometer to determine the temperature of the free air it is necessary to consider not merely its intrinsic accuracy as compared with the standard gas thermometer of the International Bureau of Weights and Measures at Paris, but especially its sluggishness, the influence of noxious radiations, the gradual change of its zero point with time, and the influence of atmospheric pressure.
r We have here inserted the Washington data as interpolated from the figures given by Hann, Lahrbuch, 1906, p. 28a.]
xvili 5 *

Sensilisaness.-The thermomoter indicates the temperature of the outside surface of its own bulb only when the whote mase of the instrument has a uniform iemperature. Assuming that by appropriate convection we can keep the surface of the thermometer at the temperature of the air, we have still to remember that ordinarily this itself is perpetually changing both in rapid oscillations of several degrees and in diurnal periods of many degrees, while the thermometer, on account of its own mass or thermal inertia, always lags behind the changes in the temperature of its own surface. On the other hand, radiant heat passes easily through the air, strikes the thermometer, and raiscs its temperature quite independently of the influence of the air whose temperature we wish to measure. The internal sluggishness or the sensitiveness of the thermometer is usually different for rising and for falling temperatures, and is mcasured by a coefficient which must be determined exporimentally for each instrument by observing the rate at which its indications change when it is plunged into a well-stirred bath of water whose temperature is either higher or lower than its own. This coefficient indicates the rate per minute at which the readings change when the temperature of the surface of the bulb is one degree warmer or colder than the temperature of the bath. Such coefticients usually vary between toch of a degree centigrade for sluggish thermometers, and one or two degrees for very sensitive thermometers. Suppose, for instance, that the coefficient is onehalf degree, then when the rate of change in the temperature of the air is one degree per minute this is exactly the same as the rate of change which the thermometer itself undergoes when its own temperature is two degrees different from that of the air; consequently, the thermometer will lag behind the air temperature to that extent and by the corresponding amount of time, assuming that the air itself flows fast enough to keep the surface of the bulb at the air temperature. When the air temperature cedses to rise or fall, and begins to change at the same rate in the opposite direction, the thermometer will fail to record the true maximum or minimum temperature by an appreciable error depending upon the rapidity of the change, and will follow the new temperat ure changes with the same lag. For example, in the case just quoted, if a rising temperature suddenly changes to a falling temperature, the error of the thermometer at the maximum temperature will be two degrees. and yet the thermometer may be absolutely correct as compared with the standard when it is allowed five or ten minutes: time to overcome the sluggishness. It is very difficult to obtaia the temperature of the free air at any moment within foth of a degree Centigrade, owing to the sluggishness of all ordinary thermometers and the perpetual variations in the temperatures of the atmospheric currents.
Rodiation.- When a thermometer bulb is immersed in a bath of liquid all radiant heat is cut off, but when hung in the open air it is subject to a perpetual interchange of radiations between itself and all its surroundings; consequently its own temperature has only an indirect connexion with that of the air adjacent to it. One of the most difficuli problems of meteorology is so to expose a thermometer as to cut off noxious radiations and get the true temperature of the atmosphere at a specific place and time. The following are a lew of the many methods that have been adopted to secure this end: Melloni put the naked glass bulbs within open sheltering caps of perforated silver paper. Flaugergues used a protection consisting of a simple vertical cylinder of two sheets of silver paper enclosing a thin layer of non-conducting substance. like cotton or wool. The influence of radiation upon a thermometer depends upon the radiating and absorbing powers of its own surface: a roughened surface of lamp-black radiates and absorbs perfectly; one of chalk posser does nearly as well; glass much more imperfectly; while a polished silver surface reflects with ease, but radiates and absorbs with the greatest difficulty. Fourier proposed to use two thermometers side by side, one of plain glass and the other of biackened glass; the difference of these would indicate the effect of radiation at any moment; but instead of plain glass he should have used polished silver. His method was quite independently devised and used by Abbe in 1865 and 1866 at Poulkova, where the thermometers were placed within a very light shelter of oiled paper. In order to use this method successfully, both the black and the silvered thermometers should be whirled side by side inside the thermometer shelters (see Bulletin of the Philosophical Society of Washington for 1883). Various forms of open lattice-work and louvre screens have been devised and used by Glalsher, Kupffer, Stevenson. Stowe, Dove, Renou, Joseph Henry and others, in all of which the wind is supposed to blow freely through the screens, while the latter cut of the greater part of the direct sunshine and other obnoxious radiations by day, and also prevent obnoxious radiation from the thermometer to the sky by night. The Italian physicist Belli first proposed a special artificial ventilation drawing the fresh air from the outside and making it flow rapidly over the thermometer. Even before his day de Saussure. Espy. Arago and Bravais whirled the thermometer rapidly either by a small whitling machinc, or by attaching it to a string and swivel and whiting it like a sling. When this whirling is done in a shady place excellent results are obtained. Renou and Craig placed the thermometer in a thin metallic enclosure or shelter, and whiried the latter. Wild established the thermormeter
in a fixed loavre shelter, but by means of a ventilating apparatus drew currents of fresh air from below into the shelter, where they circulated rapidly and passed out. In Germany, since $188 \mathbf{y}_{5}$, Dr Assmann has developed the apparatus known as the ventilated psychrometer, in which the dry-bulb thermometer is placed within a double shelter of thin metallic tubing, and the air is drawn in rapidly by means of a small ventilating fan. In the observations made by Abbe on the cruise of the "Pensacola "to the West Coast of Africa, the dry-and wet-bulb thermometers were enclosed within bamboo tubes and rapidly whirled. The inside of the wet-bulb tube was kept wet, so that its surface, being cooled by eva poration, could not radiate injuriously to the thermometer. In the system of exposure adopted by the U.S. Weather Bureau the dry and wet bulbs are whirled by a special apparatus fixed within the louvred shelter, which is about $3!\mathrm{ft}$. cube, and is placed far enough above the ground or building to ensure free exposure to the wind. In using the whirling and ventilating methods it is customary to take a reading after whirling one minute, and a second reading at the end of the second minute, and so on until no appreciable changes are shown in the thermometer. Of course in perlectly calm weat her these methods can only give the temperature of the air for the exact locality of the thermometer. On the other hand, when a strong wind is blowing the indicated temperature is an average that represents the long narrow stream of air that has blown past the thermometer during the few minutes that are necessary in order that its bulb may obtain approximately the temperature of the air.

Change of Zero.-All thermometers having glass bulbs, especially those of cylindrical shape, are sensitive to changes of at mospheric pressure. The freezing-point, determined under a barometric pressure of 30 in., or at sea-level, stands bigher on the glass tube than if it had been determined under a lower pressure on a mountain top. Therefore delicate thermometers, when trans ported $t 0$ great heights, or even during the very low pressure of a storm centre, read too low and need a correction for pressure. The zeropoint also changes with time and with the method of treatment that the bulb has received as to temperature. Owing to the slow adjustment of the molecules of the glass bulb to the state of stable equilibrium, their relations among themselves are dintirt thenever the bulb is freshly heated. At this time the freczing-point is temporarily depressed to an amount nearly proportional to the heating. The normal method of (reatment consists in first determining the boiling-point of the thermometer, and, after a few minutes, the freezing-point. If this method is uniformly followed the two fiducial points will stay in permanent relation to cach other. A thermometer that has been used for many years by a faithful meteorological observer has almost incvitably been going through a steady series of changes; in the course of ten years its freezingpoint may have risen by 2° or 3° F., and, moreover, it changes by fully a tenth of a degree between suminer and winter. The only way completely to climinate this source of error from metcorological work is to discard the mercurial thermometer altogether; but instead of adopting that course, the use is generally recomniended of thermometers whose bulbs are made of a special glass, ujon which heating and cooling have comparatively very little influence. Any argument as to secular changes in the temperature of the atmosphere is likely to be greatly weakened by the unknown inlluence of this source of error, as well as by changes in the methcris of exposure and in the hours of observation.

Barometer.-The barometer ($q .0$.) indicates the elastic pressure prevailing in gas or liquid at the surface of the mercury in the open tube or cistern, provided that the fluid at that point is in a state of quiet relative to the mercury.

Any motion of the air will have an influence upon the reading quite independently of the prevailing elastic pressure. The pressure within a mass of gas at any point is the summation of the effects due to the motions of the myrad molecules of the gas at that point: it is the kinetic energy of the molecules striking against each other and the sides of the enclosure, which in this case is the surface of the mercury in the cistern of the instrument. If the barometer moves with respect to the gencral mass of the gas there is a change in the pressure on the mercurial surlace, although there may be none in the general mass of the free gas, and a barometer giving correctly the pressure of the air at rest within a room will give a differeat indicasion if the instrument or the air is set in rapid motion so that the air strikes violently against it. If the barometer moves with the air it will indicate the elastic pressure within the air When the wind blows against an obstacle the air pressure is increased slightly on the windward side and diminished on the leeward side. It is thus obvious that in determining the pressure within the free atmosphere the expoutre of the barometer must be carefully considered. The influence of a gale of wind is to raise the elastic pressure within a room whose window laces to the windward, but to lower the pressure if the window faces to the leeward. The influence of the draught up chimney, produced by the wind blowing over its summit, is to lower the pressure within the room. The maximum effect ni the wind in raising the presture is given by the
formula, $P-P, 0-000$ o3 $3 \times \mathrm{V}^{8}$, where the prescure is given
in inches and the velocity in miles per hour. This amounts to about one-tenth of an inch in a $50-\mathrm{m}$. wind, and to nearly fourtentis in a $100-\mathrm{m}$. wind. The diminution by a leeward window or a draught up chimney is usually less than this amount. This alteration in pressure, due to the local effect of wind, does not belong to the free at mosphere but to the method of exposare of the bawometer, and can be eliminated only by methods first described by Abbe in 18S2: it is a very dificrent matter from the general diminution of pressure in the atmosphere produced by the movement of the wind over a rotating earth and by the centrifugel force within a vortex. The latter is an atmospheric phenomenon, independent of instrumerts and locality, which in hurricanes and tornadoes may amount to several inches of the mercurial column. It is, however, quite common to find in the continuous records of preseure during a hurricane evidence of the fact that the low pressure due to the hurricane and the special diminution due to the exposure of the barometer are combined together, so that when the calm centre of a hurricane passes over a station the presoure temporarily riges by the amount due to the sudden stoppage of the wind and the local exposure effect.

The other sources of error that give rise to discrepancics in meteorological work relate to the temperature of the instrument, the sluggishness of the movement of the mercury, and the inevitable large secular changes in the correction for capillarity, due principally to the changes in the condition of the surfaces of the glass and the mercury, especially thoee that are exponed to the open air. The international comparisons of barometers show that discrepancies exist between the best normals or standards, and that ordinary barometers must always be compared with such standards at the temperatures and pressures for which they are to be used.

Anomometer. - The wind is measured either by means of its pressure against any obstacie or by revolving apparatus that gives some idea of the velocity of its movement. The pressure is supposed to interest the engineer and navigator, but the velocity is the fundamental meteorological datum; in fact, the pressure of the wind varies with the nature of the obstacle, the method of exposure, the density of the air, and even the mass of rain carried along with it.

Pressure anemometers date from the pendulous tablet devised by Sir Cbristopher Wren about 1667, and such pressure plates continue to be used in an improved form by Russian observers. Normal pressure plates are used at a few English and Continental stations. The windmill anemometers devised by Schober and Woltmann were modified by Combes and Casella 80 as to make an exceedingly delicate instrument for laboratory use; another modification by Richard is extensively used by French observers. In the carly part of the $19 t h$ century Edgeworth devised and Robinson perfected a windmill system in which hemispherical cups revolved around a vertical axis, and these have come into general use in both Europe and America. Many studies have been made of the exact ratio between the velocity of the wind and the rotations of the Robinson anemometer. The factor 3 is usually adopted and incorporated inte the mechanism of the apparatus, but in ordinary circumstances this factor is entirely too large, and the recorded velocities are therefore too large. The whirling cups do not revolve with any simple relation to the velocity of the wind, even when this is perfectly steady. The relation varies with the dimensions of the cups and arms and the speed of the wind, but especially with the steadiness or gustiness of the wind. The exact ratio must always be determined experimentally for each specific type of inst rument; in most instrumente in actual use the factor for steady wind varics bet ween 2.4 and 2.6 . When the wind is gusty the moment of inertia of the moving parts of the instrument necessitates an appreciable correction; thus, when the gust is at its height the revolving parts receive an impetus that lasts after the gust has gone down, so that the actual velocity of the cups is too high. For this reason, also, comparisons and studies of a nemometers made in the irregular natural winds of a free air are unsatisfactory. For the average natural and gusty winds at Washington, D.C., and on Mount Washington, N.H.: and the small type of Robinson's ancmometer used in the U.S. Weather Bureau Service, Prolessor C. F. Marvin deduced the table (see p. 275) for reduction from recorded to true velocity. This table involves the moment of inertia of the revolving parts of the instrument and the gustiness of the winds at Washington, and will therefore, of course, not apply strictly to other types of instruments or winds, for which special studies must be made.

About 1842 a committee of the American Academy of Arts and Sciences experimentally determined, for a large variety of chimmey caps, or cowls, or hoods, the amount of suetion that produces the draught up a chimney, and shortly afterwards a similar cornmittee made a similar investigation at Philadelphin (eee Proc. Amer. Acod. i. 307, and Journal of Franklin Inslifule, iv. 101). These investigations showed that the open end of the chimncy, acting as an obstacle in the wind, is covered by a layer of air moving more rapidly than the free air at a little distance, and that therefore between this layer and the aperture of the chimney there is a space
rithin which barometric pressure is lest than in the neighbouring free air. The draught up the chimney is due to the pressare of the air at the lower and or freplace pushing up the flue into this region of low pressure, quite as much as it is due to the buoyancy of the beated air within the lue. From such experiments as these there has been developed the vertical suction-tube anemometer, as devised by Fletcher in 1867, re-invented by Hagemann in 1876, and introduced into England by Dines. In his Meleoralogical Apparatus

Marvis's Table for the Reduction of Velocities, given by the smallsixed Robinson's A nemoneter in zusly winds.

Indicaned Vdocily	. True Velocity									
ynies.	0	-	1	3	4	5	6	7	8	-
0	\cdots	-	-	-	-	$5 \cdot 1$	6.0	$6 \cdot 9$	7.8	8.7
10	9.6	$10 \cdot 4$	11.3	12-1	12-9	13.8	14.6	15.4	16.2	17.0
20	17.8	18.6	19.4	20-22	21.0	21.8	22.6	23.4	24.2	24.9
30	25.7	20.5	27.5	28.9	28.8	29.6	$30-3$	31.t	31.8	32.6
40	33.3	34, 1	$34 \cdot 8$	$35 \cdot 6$	$36 \cdot 3$	37-1	$37 \cdot 8$	$38 \cdot 5$	39.3	40.0
50	40.8	41.5	42-2	43.0	$43 \cdot 7$	$44 \cdot 4$	45. I	45.9	$46 \cdot 6$	47•3
60	48.0	46-7	49.4	50.2	50.9	\$1-6	$52 \cdot 3$	53.0	53.8	54.5
70	55.2	559	56.6	57.3	58.0	$58 \cdot 7$	$59 \cdot 4$	$60 \cdot 1$	60.8	61.5
80	62.2	62.9	63.6	$64 \cdot 3$	65.0	65.8	66.4	67.1	67.8	68.5
90	69.2									

and Methods (Washington, 1887) Abbe gives the theory of this class of anemometers and develops the following additionat forms: Tmo vertical tubes, whose apertures are respectively directed to the windward and the lecward, and within which are two independent barometers, give the means of determining the barometric pressure plus the wind pressure and minus the wind pressure respectively, too that both the velocity of the wind and the true barometric pressure can be detcrmined. If instead of a simple opening at the top of the tube we place there horizontally the contracted Venturis tube, we obtain a maximum wind effect, which gives an accurate measure of the wind velocity, and is the form rerommended by Butrdon as an improvement on that of Arson. In all anemometers of this class the inertia of the moving parts is reduced to a minimum, and the meagurement of rapid changes in velocity and of the maximum intensily of gusts becomes leasible. On the other hand, these researches have shown how to expose a barometer so that It shall be tree from the dynamic or wind effect even in a galc. It has only to be placed within a room or box that is connected with the free air by a tube that ends in a pair of porallel plane plates. When the wind blows past the end of this tube it flows between these plates in steady linear motion, and can produce no disturbance of pressure at the mouth of the tube if the plates are at a suitable distance apart. This condition of stable flow as contrasted with permanent flow, was first defined by Sir William Thomson (Lord Kelvin) (see Phil. Mag., Sept. 1887). Such a pair of small circular plates can easily be applied to a tube screwed into the air-hole at the back of any aneroid barometer, and thus render it independent of the influence of the wind.

As to the exposure of the anemometer, no uniform ruies have as yet been adopted. Since the wind is subject to exceedingly great disturbances by the obstacles near the ground, an obscrver who estimates the force of the wind by noticing all that goes on over a large region about him has some advantage over an instrument that can only record the wind prevailing at one spot. The practice of the U.S. Weather Bureau has been to insist upon the perfectly free exposure of all anemometers as high as can possibly be attained above buildings, trees and hills; but, of course, in such cases they give records for an elevated point and not for the ground. These are therefore not preciscly a ppropriate for use in local climatological ktudies, but are those needed for general dynamie metcorology, and proper for comparison with the isobars and the movements of the douds shown on the daity weather map.
Hygrometer.- Moisture floats in the atmosphere either as invisible vapour or as visible haze, mist and cloud. The presence of the latter generally assures us that the air is fully saturated. The total amount of both visible and invisible vapour contained in a unit volume of cloud or mist is directly determined by the Schwacthofer or Svenson hygrometer, or it may be ascertained by warming a definite portion of the air and \log and measuring the tension of the vapoar by Edelmann's apparatus. Both these methods, however, are in practice open to many sources of error. If only invisible aqucous vapour is preseni we may determine its amount by several methods: (a) the chernical method, by absorbing and weighing it; (b) the dewpoint method, by cooling the air down to the temperature where condensation legins; (r) Edelmany's method, by absorbing the moisture chemically and measuring the change in vapour
tension; (d) by adding vapour ontil the air is saturated, and measuring either the increased tension or the quantity of evaporation; (c) the psychrometric method, by determining the temperature of evaporation.

The wet-bulb thermometer, which is the essential feature of the last method, was used by Baume in 1758 and de Sausure in 1787 , but mercly as giving an index of the dryness of the air. The corvect theory of its action was elaborated by many carly investigatora: Ivory, 1822: August. 1825; Apjohn, 1834; Belli, 1838; Regnault. 1845. From the last date until recent years no important progress was made in our knowledge of the subject, and it was supposed that the psychrometer was necessarily crude and unsatisfactory; but in its noodern form it has become an instrument of much greater orecision, probably quite as trustworthy as the dew-point apparatus or other method of determining atmospheric moisture. In order to secure shis accuracy the two bulbs must be of the same size style and sensitiveness; the wet bulb must be covered with thia muslin saturated with pure water; both thermometens must be whirled or veotilated rapidly, but at the definite prtarranged rate for which the tables of reduction have been computed: and, finally. both thermometers must be carefully slellered against obnoxious radiations. In order to attain these conditions European observers tend to adopt Assmann's ventilated psychrometer, but American observers adopt Arago's whirled psychrometer, set up within an ordinary thermometer shcher. By either method the dew-point should be decermined with an aceuracy of one-tenth degree C. or twotenths F. As a crude approximation, we may assume that the temperature of the dew-point is below the temperature of the wet bulb as far as that is below the dry bulb. A greater accuracy can be attained by the use of Ferrel's or Marvin's psychrometric tables or Grossman's formula. But the vapour tension over ice and over water as measured by Marvin and by Juhtin must be carefully distinguished and allowed for. The Sminsonian Meteorological Tables (ed. of 1908) and the pew psychrometer tables by Bjerkchand lor temperatures below freezing (Christiania, 19.) represcnt the present condition of our knowledge of this suijuct. Glaisher deduced empirically from a large mass of obsen itions cortuin factors for computime the lew-point, but these
 psychrometer, nor are they thoroughly satisfactory when used with Regnauli's tables and the stationary psychrometer. Especialty should their use be discarded when the wet bulb ia greatly depressed below the dry bulb and the atmosphere correspondingly dry. For occassonal use at stations, and especially for dally use by travellera and explorers, nothing can exceed the convenience and accuracy of the sling psychrometer, especially if the bulbs are protected from radiation by a slight covering of non-conducting material. or even metal, as was done by Craig in 1866-1869 for uhe stations of the U.S. Army Surgeon-Ceneral. The hair hygrometer gives directly the relative humidity or the ratio between the moisture in the air and that which it would contain il saturated. The very best forms perform very well lor a time, and are strongly recommended by Pernter, and must be used in self-recording apparatus for balloons and kites; they are standardized by comparison with the ventilated psychrometer, which itself must be dependent on the standard dew-point apparatus.

Rain and Snow Cauge.-The simple instrument for catching and measuring the quantity of rain, snow or hail that falls upon a definite horizontal area consists essentially of a vertical cylinder and the measuring apparatus. The receiving mouth of the cylinder is usually terminated by a cone or funnel, so that the water running down through the funnel and stored in the cylinder is protected fram evaporation or other loss. The cylinder is firmly attached to the ground or building. so that the mouth is held permanently at a definite altitude.

The sources of error in its use are the spattering into it from the ground or neighbouring objects, and the loss due to the fact that when the wind blows against the side of the cylinder it produces eddies and currents that carry away drops that would otherwise fall into the moutb, and even carries out of the cylinder drops that have fallen into it. As a consequence all the ordinary raingauges catch and measure too litcle rainlall. The deficit increases with the strength of the wind and the smallness or lightness of the raindrops and snowflakes. If we assume that the correct rainfall is given by a gauge whose mouth is Gush with the level of the groond and is surrounded by a trench wide enough to prevent any spatter, then, on the average of many years and numerous observalions with ordinary rain-gauges in western Europe, and for the average character of the rain in that region and the average strengit of the attending winds, the deficit of rain caught by a rain-gauge whose mouth is 1 metre above the ground is 6% of the proper amount, if its ele vation is $\mathbf{i} \mathbf{f t}$. above ground, the deficit will be 31% This deficit increases as the gauges are higher above the ground in proportion approximately to the square root of the dhitude, provided that they are fully exposed to the increase of wind that prevails at those altitudes. It is evident that even for
altitudes of 5 or 10 f . the records become appreciably discrepant from those obtaised at the surface of the ground. The following table shows in the last column the observed ratio between the catches of gauges at various altitudes and those of the respective standards at the level of the ground. Unfortunately, there are no records of the force of the wind to go with these measurements; but we know that in general, and on the average of many years. cosresponding with those here tabulated, the velocity of the wind increases very nearly as the square root of the altitude. Although this deficit with increasing altitude has been lully recognized for a century, yet no effort has been made until recent years to make a proper correction or to eliminate this infuence of the wind at the mouth of the gauge. Professor Joseph Henry, about 1850, recommended to the observers of the Smithsonian Institution the use of the "pit-gauge." About 1858 he recommended a so-called shiclded gauge, namely-a simple cylindrical gauge 2 in. in diameter, having a wide horizontal sheet of metal like the rim of an inverted hat soldered to it. This would undoubtedly diminish the obnoxious eurrents of air around the mouth of the gauge, but the suggestion seems to have been overlooked by meteorologists. In 1878 Prot. F. E. Nipher of St Louis. Missouri, constructed a much more efficient chield, consisting of an umbelliform screen ol wire-cloth having about sixty-four meshes to the square inch. This shield seems to have completcly annulled the splashing, and to have broken up the eddies and currents of wind. With Nipher's shielded gauges at different altitudes, or in different situations at the same altitude. the rain catch becomes very nearly uniform; but the shield is not especially good for snow, which piles up on the wire screen. Since 1885 numerous comparative observations have been made in Europe with the Nipher gauge, and with the "protected gauge" devised by Boernstein, who sought to prevent injurious eddies about the mouth of the gauge by erecting around it at a distance of 2 or 3 f . an open board fence with its top a little higher than the mouth of the gauge. The boards or slats are not close together, but apparently aflord as good a protection as the shield of Professor Nipher, and give good results with both snow and rain.

Allitude and Relative Calch of Ram.

Situation and Size of Gauge.	Years of Record.	Altitude.	Relative Catch.
		Mctres.	\%
Calne, 5-in, and 8-in.	$4)$	$\left(\begin{array}{l}0 \\ 1\end{array}\right.$	100 00
Castleton, 5 -in. and 8-in. :	3	2	88
Rotherham, 5-in,	8	$\{3$	86
St Petersburg: Central Physical	10	$1 \begin{aligned} & 3 \\ & 4 \end{aligned}$	85
Observatory, ro-in . . .	10	$1 \begin{aligned} & 4 \\ & 5 \end{aligned}$	85 84
London: Weatminster Abbey	1	6.1	74 77
Emden * Co.	2	11	72
St Petersburg: Centrai Physi- cal Observatory . . .	I	13	68
York: Museum + . . .	3	13	80
Calcutta: Alipore Observatory	7	15	87
Woodside: Walton-on-Thames	1	15	73
Philadelphia: Frankford Arsenal Sheerness: Waterworks ${ }^{\circ}$	3	16	95
Whitehaven: St James's ${ }^{\text {c }}$	3	21	52
Church St Pctersburg: Central Physicai	10	24	66
Observatory	10	25	59
Paris: Astronomical Observatory	40	27.	81
Dublin: Monkstown Oxford: Radcliffe Observatory	8	27	64
Copenhagen: Observatory .	4	36	67
London: West minster Abbey .	4	46	52
Chester: Leadworks . .	2	49	61
Wolverhampton: Waterworks	3	55	69
York Minster	3	65	60
Boston: St Botolph's Church	2	79	47

In general it is now conceded by several high authorities that the measured rainfall must be corrected for the influence of the wind at the gauge, if the latter is not annulled by Nipher's or Boernstein's methods. A practicable method of measuring and allowing for the influence of the wind, without introducing any very hazardous hypothesis. was explained by Abbe in 1888 (see Symons's Meteorelogical Magasine for 1889, or the U.S. Monthly Weather Reviav (or 1899). This method consists simply in establishing near each other several similar gauges at different heights above the ground, but in otherwise similar circumstances. On the assumption that for small elevations the diminution of the wind. like that of the rainfatl, is very nearly in proportion to the square root of the altitude. the difference between the records for two different altitudes may be made the basis of a calculation which gives the correction to be applied to the record of the low gause.

In order to obtain the rainfali that would have been caught if there were no wind. It is only when the eatch of the gauge has been properly corrected for the effect of the wind on the gauge that we obtain numbers that are proper to serve for the purpose of determining the variation of the rainfall with altitude and locality, the influence of forests and the periodical changes of climate. Methods of measuring dew, frost, hail, sleet. zicticis and other forms of precipitation still remain to be devised; each of these has its thermodynamic importance and must eventually enter into our calculations.

It has been common to consider that the ram-gauge cannot be properly used on ships at sea, owing to the rolling and pitching of the vessel and the interference of masts and rigging; but if gauges are mounted on gimbals, so as to be as steady as the ordinary mariner's compass, their records will be of great importance. Experimental work of this sort was done by Mohn, and afterwards in 1882 by Professor Frank Waldo; but the most extensive inquiry has been that of Mr W. G. Black (sec Journal Afanchester Geographical Society, 1898, vol. xiv.), which satisfactorily demonstrates the practicability and importance of the marine rain-gauge.

Evaporometer.- The moisture in the atmosphere comes from the surface of the earth or occan by evaporation, a process which goes on continually, replacing the moisture that is precipitated as rain, hail, snow and dew, and maintaining the total quantity of the moisture in the atmospbere at a very uniform figure. The rate of evaporation depends on the temperature, the dryness, and the velocity of the wind. It is not so important to meteonologists to know where the moisture comes from as to know its amount in the atmosphere, and in fact no method has yet been devised for determining how much moisture is given up by any specific portion of tbe earth, or ocean, or forest. Our evaporometers measure tbe quancity of moisture given off by a specific surface of water, but it is so difficult to maintain this water under conditions the same as obtain in nature that no conclusions can be safely deduced as to the actual evaporation from natural surfaces. The proper meteorological use of these evaporometers is, as integrating hygrometers, to give the average bumidity of the air, the psychrometer giving the conditions prevailing at any moment.

Among the many forms of evaporometer the most conveaient is that deviscd by Piche, which may be so constructed as to be exceedingly accurate. The Piche evaporometer consists essentially of a glass tube, whose upper end is closed hermetically, whereas the lower end is covered by a horizontal disk of bibulous paper. which is kept wet by absorption from the water in the tube. As the water evaporates its descent in the tube is observed, whence the volume evaporated in a unit of time becomes known. So long as the paper remains clean, and the water is pure, the records ol the instrument depend entirely upon the evaporating surface, the dryness of the air, and the velocity of the wind. Careful comparisons between the Piche and the various forms of absolute evaporometers were made by Professor Thomas Russell, and the results were published in the U.S. Monthly Weather Revies for September 1888 . pp. 235-239. By placing the Piche apparatus upon a large whirling machine he was able to show the cffect of the wind upon the amount of evaporation. This important datum enabled him to explain the great differences recorded by the apparatus established at eighteen Weather Bureau stations; based upon these results, he prepared a table of relative evaporation within thermometer shelters at all stations. The actual evaporations from ground and water in the sunshine may run parallel to these, but cannot be accurately computed. It is probable that Professor Russcli's computations are smaller than the evaporations from shallow bodies of water in the sunshine, but larger than for deep bodies, like the great lakes, and for running rivers. Recent elaborate studies of evaporation have been undertaken in Egypt and in South Africs-but perbaps the moet isteresting case occurt in southern California. Here the Colorado river, having broken through its bounds, emptied itself into a great natural depression and tormed the so-called "Salton Sea," about 80 m . long. 20 wide and 100 ft . deep. before it could be brought under control. This sea is now isolated. and will, it is hoped, dry up in eight or ten yeara. Meanwhile the U.S. Wearher Burcau has established a large number of evaporation stations in and around it, and has begun the study not only of the relation between evaporation. wind and temperature, but of the eventual disposition of this evaporation throughout the almosphere in the neighbourhood of the (we the Reports of Prolcssor F. R. Bigelow in U.S. Monthly Weather Review, 1907-1909, as also the elaborate hibliography of evaporation in the same volumes). Although the influence of the evaporation on local chimate is scarcely appreciable to our hygrometric apparasus, yet it is teid to be so in the develope ment and ripening and drying of the dates raised on the U.S government experimeatal "date farm" a few miles north-cast of the Salton Ses.

Nephoscope.-The direction and apparent velocity of the motion of a cloud are best observed by means of the nephoscope, which has now become a necessary item in the outfit of any first-class meteorological station. Among the various forms of this instrument are the nephodoscope of Fornioni, the marine nephoscope of Fineman, the simple mirror with attachments used by Clayton, the cloud camera of Vettin, and the alt azimuths of Mohn and Lettry. The most perfect form for use on land is that devised by Professor Marvin in 1896 for the U.S. Weather Bureau stations (see fig. 2); while the most convenient for use at sea is that devised and used

Fig. 2.-Marvin's Nephoscope.
in 1889 by Protessor Abbe on the cruise of the U.S. ship "Pensacola" to the west coast of Alrica, but first described in the report of the International Meteorological Congress held at Chicago in August 1893.
The construction of this instrument is shown in figs. 3, 4, 5. In using it the observer looks down upon a horizontal mirtor and observes the reflection of the cloud. By moving his cye he brings any cloudy, point into coincidence with the reflection of a small fixed spherical knob K above the mirror, and keeps the images of the knob and the cloud coincident as they pass from the centre of the mirror to its edge. This line of motion shows the azimuth of the horizontal component of the cloud's motion. The course of the vessel is shown by the compass card and lubber line AF seen below the mirror. The apparent angular velocity of the cloud, as it would be if the cloud started from the zenith, is obtained by counting the scconds that elapse between its passage from the centre to the edge, or to a small circle inscribed within the edge. With Marvin's nephoscope two obscrvers a short distance apart may ea ily determine the apparent altitude, and azintuth, and motion of any cloud, whence its true altitude and velocity may be compuled. But when the obscrver uses Abbe's marine nephoscope on a vessel which is itself in motion he observes the resultant of his own motion and that of the cloud. If his vessel is under his conerol, so that he may change its velocity or direction at will, he easily determines this resultant for two different courses, and obtains data by which he is enabled to calculate the real altitude and velocity of the cloud in terms of his own velocity. As the matine nephoscope can be used on a wagon moving rapidly over a smooth road, or in a small boat on a smooth pond, almost as well as on a larger sea-going vesel, it becomes an instrument of universal application for cloud stuily. It is also equally convenient for observing the positions of auroras, halos, meteors, and other special phenomena, For the international work undertaken during the year 3898 the photographic camera established upon an alt-azimuth mounting, or the so-called photo-gram-meter, was especially developed. In this apparatus photographs of the clouds are taken simultaneously at two or more stations, and in each case the centre of the photographic plate lias its altitude and azimuth determincd. From this centre one can measure on the plate the additional angles required in order to fix the altitude and azimuth of any point that is photographed, and thus the dimensions of the whole visible cloud and its internal or differential mutions can be determined, as wel! as its gencral motion. During the years 1896 - 8898 about twenty stations were occupied throughout the world for the purpose of determining accurately the altitudes and notions of every liger of choud.
Sunshine Recorder.-The ordinary meteorological record specifes the proportion of sky that appears to be covered with cloud, or the so-called cloudiness, usually expressed in tenths. The obscrver gencrally confines his attention to that portion of the sky within sixty degrecs of the zenith, and ignores the lower zone, since the clouds that are found therein are often
at so great a distance from him that their record is not supposed to belong to his locality. As the cloudiness-or its reciprocal, the sunshine-is supposed to be the most important item in agticultural climatology, and is certainly very important for dynamic meteorology, it is usually considered desirable to obtain more complete records than are given by only one or two specified bours of observation. To this end apparatus for recording sunshine, or, rather, the effect of cloudiness, is widely adopted. At least three forms are worth describing as being extensively used.

The Jordan photographic swashine recorder consiste of a cylinder enclosing a sheet of sensitive paper: the sun's rays penetrate through a small aperture, and describe a path from sunrise to sunset, which appears on this aheet after it has been properly washed with the fixing solution. Any interruption in this path, due to cloudiness or haze, is of course clearly shown, and gives at once the means of estimating what percentage of the day was clear and what cloudy. The modified form of the instrument devised by Prulessor Marvin has been used for many years at about forty Weather Bureau stations, but the original construction is still employed by other observers throughout the world. The Slokes-Campbell recorder consista of a globe of glase acting as a burning-glass. A sheet of pasteboard or a block of wood at the rear receives the record, and the extent of the charriag gives a crude measure of the percentage of full or strong sunshine. Many of thesc instruments are used at stations in Great Britain and the British colonies. The Afarvin thermometric sunshine recorder consists of a thermometer tube, having a black bulb at the lower end and a bright bulb at the other. The excess of temperature in the block bulb causes a thread of mercury to move upwards, and for a certain standard difference of temperature of about $5^{\circ} \mathrm{F}$., such as would be produced by the sun shining through a very thin cloud or haze, a record is made by an electric curreit on a revolving drim, and simply shows when during the day sunshine of a certain inten. sity prevailed, or was prevented by cloudiness. D. T. Maring, in the U.S. Monthly Weather Review for 1897, described an ingenious combination of the thermometer and the photograp.ic register of cloudiness which is worthy of further development. It gives both the quantity of cloudincss and intensity of the sunshine on some arbitrary relative scale.

The intensity of the sunshine, as sometimes employed in general agricultural studics, is crudely shown by Violle's conjugate bulbs, which are thin copper balls about 3 in. in diameter. one of them being blackened on the outside and the other gilded. When exposed to the sunshine the difference in temperature of the two bulbs increases with the intensity of the sunshine, but as the difference is dependent to a considerable extent on the wind, the Violle bulbs have not found wide application. The Arago-Davy actinometer, or bright and black bulbs in tacuo, constitutes a decided improvement upon the Violle bulbs, in that the vacuous space surrounding the thermometers diminishes the effect of the wind. The physical theory involved in the use of the Araso-Davy actinometer was fully developed by Fersel, and he was able to determine the coefficient of absorption of the earth's at mosphere and other data, thereby showing that this apparatus has considerable pretensions to accuracy. In using it as contemplated by Arago and Davy and by Professor Ferrel, we read simply the stationary temperature attained by the bright and black thermometers at any moment, whereas the best method in actinometry consists in alternately shading and exposing any appropriate apparatus so as to determine the total effect of the solar radiation in one minute, or some shorter unit of time; this method of using the Arago-Davy actinometer was earnestly recammended by Abbe in 1883 , and in fact tried at that time; but the apparatus and records were unfortunately burned up. This so-called dynamic. as distinguished from the static, method was first applied by Pouillet in 2838 in using his pyrbeliometer, which was the first apparatus and method that gave approximate measures of the radiant heat received from the sun. In order to improve upon Pouillet's work more delicate apparatus has been constructed, but the fundamental methods remain the same. Thus Angström has applied both Langley's bolometer and his own still more sensitive thermoelectric couple and balance method; Violle uses his absolute actinometer, consisting of a most delicate thermometer within a polished metal sphere, whose temperature is kept uniform by the fow of water; while Crova, with a thermometer within an enclosure of uniform temperaqure, claims to have attained an accuracy of one part in a thousand. Chwolson has reviewed the whole subject of actinometry, and has shown the greater delicacy of his own apparatus, consisting of two thin plates alternately exposed to and shielded from sunshine, whose differences of temperature are measured by electric methods.

As none of the absolute methods for determining the solar radiation in units of heat lend themselves to continuous registration, it is important to call attention to the possibility of accomplishing this by chemical methods. The best of these appears to be that devised by Marchand, by the use of a device which he calls the Phot-antitupimeter. In this the action of the sunlight upon a solution of ferric-oxalate and chloride of iron liberates carbonic acid
gas, the amount of which can be measured either continuously or every hour: but in its present form the apparatus is affected by several serious sources of error.

Fig. 3.-Abbe's Marine Nephoscope. Horizontal Projection of Mirror.
The electric compensation pyrheliometer, as Invented by Knut Angström (Ann. Phys., 1899), offers a simple method of determining accurately the quantity of radiant energy. He employs two blackened platinum surfaces, one of which receives the radiations to

Frg. 4.-Abbe's Marine Nephoscope. Horizontal Projection of Compass.
be measured, while the other is heated by an electric current. The difference of temperature between the two disks is determined by a thermocouple, and they are supposed to receive and lose the same emount of energy when their temperatures are the same. A Hefner

F1c. 5.-Abbe's Marize Nicphoscope. Vertical Section.
bomp is used as an intermediate standard source of radiation, and alternate observations on any other source of radiant heat give the means of determining their relation to each other. By means of two such instruments Angstrobm secured simultaneous observations
on the intensity of the solar radiation at two points, respectively, 360 and 3352 metres above sea-level, and determined the amount of heat absorbed by the interinediate atmosphere. An accuracy of i-to00 appears to be at tainable, and this apparatus is now being widely used. The records of 1901-1905 have already given rise to the belief that there is a varialion in our insolation that may eventually be traced back to the sun's atmosphere.

Mcteorograph.-The numerous forms of apparatus designed to keep frequent or continuous register of the prevailing pressure, temperature, moisture, wind, rainfall, sumshine, evaporation, and other phenomena are instruments that belong peculiarly to metcorology as distinguished from laboratory physics. Such apparatus may be hroadly divided into several classes according as the records are obtained by the help of photography, or electricity, or hy direct mechanical action. The prevailing tendency at present is in favour of apparatus in which the work of the recording pen is done hy a falling weight, whose action is timed and limited by the making and breaking of eiectric currents by the metcorological apparatus proper. The most serious defect in such instruments, even when kept in good working order, is a want of sensitiveness commensurate with the desired openness of scale. It is very important that a fraction of a minute of time should he as recognizable as one-tenth of a degree of cemperature; one thousandth of an inch of harometric pressure; and velocities of one hundred miles per hour, as well as rapid changes in all these clements, must be measurable. But instruments whose scales are large enough to record all these quantities are usually so sluggish as regards time that the comparison of the records is very unsatisfactory. In order to study the relationships between temporary and fleeting phenomena, it is necessary that all instruments should record upon the same sheet of paper, so that the same time-scale will answer for all.
The instruments that respond most nearly to the general needs of meteorology are the various forms of meteorographs devised by Wild for use at. St Petersburg, by Sprung and Fucsa for use at Hamburg and Berlin, and by Marvin for Washington. The photographic systems for pressure and temperature introduced many years ago at stations in Great Britain and the British colonies are not quire adequate to present needs. The portable apparatus manufactured by Richard Frères at Paris is in use at a very large number of land stations and on the occan, and by giving special care to regular control-observations of time, pressure and temperature, important results may be obtained; but in general the timescales are too small, and the unknown sources of error too uncertain, to warrant implicit reliance upon the records.

Polarimeter.-The hrightness and blueness of the sky light, and especially its polarization, have been observed with increasing interest, as it seems possible from these elements to ascertain something with regard to the condition and amount of the moisture of the air. With a simple Nical's prism held in the hand and turned slowly about the axis of vision one can quickly recognize the fact that the sky light is polarized, and that the polarization is largcly due to the air or dust lying between us and the clouds in the distant horizon. Arago, with a more delicate form of polariscope, determined the existence of a socalled neutral region near the sun. Bahinet located a neutral point or zone about as far from the anti-sun as was Arago's from the sun itself. Brewster discovered a neutral point acar the sun and horizon, disappearing when the sun is more than 15° above the horizon. Finally, Brewster explored the sky sufficiently to draw lines of equal polarization, which he puhlished in Johnston's Physical Allas, and which were confirmed hy Zantedeschi in 1849 . Since those days far more delicate work has been done-first by Bosanquet of Oxford, afterwards by Prof. E. C. Pickering of Harvard University and Prof. A. W. Wright of Yale University. A later contribution to the subject is by Jensen (see Met. Zeif. for Oct.-Dec. 1899), who has observed the brightness as well as the polarization, and thus completed the data necessary for testing the various physical theories that have been proposed for the explanation of this phenomenon. We owe to Tyndall the discovery that when a beam of white light penctrates a mass of fine aqueous mist the latter sends off at right angles a delicate blue light, which is almost wholly polarized in a plane at right angles to the plane
of reflection. As the particles of mist grow larger, the blue light becomes whiter and the polarization disappears. The original vapour particles are undouhtedly so small as to be comparable in size with a fraction of the wave-length of ordinary light, and Rayleigh was able to show that molecular as well as minute particles must bave a power of selection, and that the diffused sky light comes to us by selective reflection. On this basis we should expect that in the driest air at great heights, where the temperature is low and condensation has but just begun, and the dust particies are rare, there would occur the smallest aqueous particles reflecting light of the iecblest intensity but the largest percentage of polarization. Rayleigh has shown that it is quite possible that the molecules of oxygen and nitrogen constituting the atmosphere may also exercise a diffuse selective reflection, and contribute to the brightness and polarization that are mainly due to aqueous vapours. (See Sxy.)
We thus see the theoretical importance of adding photometry and polarimetry to the work of a metcorological observatory. The apparatus to be used in this connexion will vary somewhat with the exact character of the obeervations to be made. Tbe most extensive researches that have yet been carried out in this line with a meteorological application in view are those of Jensen. Crova, Cornu, Pickering. Kimball, Nichols, and especially Rubenson, who in fact recormmended that polarimetry and photometry should go hand in hand. In order to measure the position of the plane of polarization the Arago polariscope may be used, but, in order to measure the percentage of polarized light, Mascart's modification of the Savart is better. In order to measure the general brightness of a spot in the sky. Jensen has used a slight modification of the Weber photometer, and in fact Weber himself has applied the same method to she measurement of the daylight. The complete work of Jensen was published in the Schrifton of the Scientific Association of Schleswig-Holstein in 1899, and, like the memoir published by Rubenson in 1863, it gives the meteorological conditions in full as a basis for the investigation of the comnexion between sky light and the moisture in the atmosphere. In his work during 1906-1909 with Angstrom's pyrheliometer Mr A. H. Kimball of Washington has dedvantageously used the Pickering polarimeter, and has shown that the transparency of the air and the polarization of light go hand in hand.

Cyanomeler.-The cyanometer devised by Arago to measure the hlueness of the sky consisted of an arbitrary scale of blues on a strip of porcelain, with which one could compare the blue of the sky. This comparison, however, is open to many suhjective errors. A more satisfactory apparatus is Zollner's photometer, or some equivalent, in which a patch of white surface is illuminated by any particular tint or combination that may be desired. In fact, Maxwell's colour-box admits of ready application to the-analysis of sky light, and reveals at once the proportions of red, yellow, and blue that may be contained therein.

Dust-counter.-The importance of observing the dustiness of the atmosphere has been especially realized since the invention and use of various forms of apparatus for counting the number of particles of dust in a small volume of air. These inventions are due to Mr John Aitken, of Edinburgh.

The latest form of his apparatus is the very convenient "pocket dust-counter." In this the air contained in a smal! receiver is rendered dustless by repeated expansions; the cooling due to expansion forces the vapour to condense upon the dust, which, becoming heavy, falls to the bottom, so that in a short time all is removed. A small stop-cock is now turned, so as to allow a definite small quantity of air to enter and mix with the dustless air in the receiver. The dusty and the dustless airs are now thoroughly mixed, and again the whole quantity within the receiver is expanded, and the duse nuclei fall down by the condensation of vapour upon them. Assuming that every particle of dust is represented by a minute dropiet of water, we have but to count the latter; this is easily done by causing all the drous to fall upon a polished plate of black glass, which is divided into small squares by fine lines ruled with a diamond point. Uaually each of these squares represents a small fraction of a cubic centimetre of air; thus in one case the number of fog particles averaged 2.6 per square mislimetre of the plass plate, and. as the multiplyng factor was 100 , this corresponded to 260 particles of dust in a cubic ceatimetre of air. The cleanest air has been found in the West Highlands of Scothand, where 16 particles per cub centimetre was once recorded as the minimum, while 7600 was the maximum. On the Rigi Kulm. in Switzerland. the cleanest air gave 210, and the dustiest 16,500. On comparing the records of the dust-countcr with the record of the apparent state of the air,

Mr Aitken found that 500 particles per cubic centimetre correaponded to clear air, and 1900 to a thick haze in which distant mountain tops were hidden. In the cities the particles of soot and effluvia of all kinds act as dust, and both in London and Paris the numbers ran as high as 80, 116, I50 and 210 thousand per cubic centimetre.

Electrical Apparalus.-The electrical phenomena of the atmosphere undoubtediy beiong to meteorology, and yet the methods of obscrvation have been so unsatisfactory and the difficulty of interpreting the results has been so baffling that regular observations in electricity are only carried out at a very few meteorological institutions. A general summary of our knowledge of the subject was prepared by J. Elster and H. Geitel for the International Congress held at Chicago in 1893, but since that date the methods and apparatus of observation bave received important modifications.

In gencral the water-dropping collector of Lord Kelvin, arranged for continuous record by Mascart, continues to be the best apparatus for continuous observation at any locality. and a portable form of this same apparatus is used by explorers and in special series of local observations. In order to explore the upper air the kite continues to be used, as was done by A. J. McAdie for the Weather Bureau in $\mathbf{8 8 5}$ and by Weber at Kiel in 1889. The difference of potential between the upper and lower end of a long vertical wire hanging from a balloon has been measured up to considerable altitudes by Elster and Tuma. In gencral it is known that negative electricity must be present in the upper. strata just as it is in the earth, while the intervening layer of air is positively electrified. The explanation of the origin of this condition of affairs is given in the recent rescarches of Sir J. J. Thomson (Phil. Mag., Dec. 1899), and his interpretation

Ftg. 6.-Marvin-Hargrave Kite, with Mcteorograph in position.
Is almost identical with that now recognized by Eister (see Terrestrial Mapnetism, Jan. 1900, iv. 213). According to these results, if positive and negative ions exist in the upper strata and are carried up with the ascending masses of moist air, then the condeasation of the moisture must begin first on the negative ions, which are brought down eventually to the earth's surface; thus the earth receives its negative charge from the atmosphere, leaving a positive charge or an excess of positive ions in the middle air. (See G. C. Simpson, "Atmospheric Electricity," Monthly Weather Repicw, Jan. 1906, p. 16.)
The observations of atmospherce electricity consist essentially in determining the amount and character of the difference of potential between two points not very far distant from each other, as, for instance, the end of the pipe from which the water-drops are discharged, and the nearest point of the carth or buildings resting on the earth. The record may have only an extremely local value, thus the investigations of Professor John Trowbridge of Harvard University, made in conjunction with the U.S. Weather Bureau in 1882- $\mathrm{t88} 5$, show that the differences vary so much with the winds, the time of day, and the situation of the water-dropper that the mere comparison of records gives no correct idea of the general eiectrical relationships. It has been suggested that possibly daily telegrams of electric conditions and daily maps of equipotential curves over the North American continent would be of help in the forecasting of storms, but it is shown to be uscless to attempt any such system until some uniform normal exposure can be devised. Indeed it has not yet been shown that atmospheric electricity is of importance in dynamic meteorology. (See ATMOSPHEaic Electricity.)

Aerial Rescarch. -The exploration of the upper atmosphere is to be regarded as the most important ficld of research at the nowes. present time; the kite and the balloon enable ob. servers and apparatus to he carried to considerable heights, though by no means so far as is desirable. The kite was first used in meteorological work hy Alexander Wilson at or near Glasgow in 1749, and has since then been frequently used by English ohservers. It was used in 1867 by Abbe in studying the winds under a thundercloud, and in 1877 in
studying the depth of the ocean breeze on the cosst of New Jersey, but the later revival of interest in the subject dates from the work done in England in 1882 by E. D. Archibald, who used the kite to carry up anemometers to very considerable heights, and thereby determined the relative movement of the air in the free atmosphere. In 1883 Alexander McAdir used the kite in his studies of atmospheric electricity, Professor Cleveland Abbe proposed to use it for a complete exploration as to temperature, moisture and wind, but W. A. Eddy of New York first forced its varied capahilities upon public attention, and accepted the suggestion of Professor Cleveland Abbe to employ it for meteorological work. Having flown his kites at the Blue Hill Observatory, and having carried up with them the self-registering apparatus devised by Mr Ferguson, Eddy left the further prosecution of this work to Mr Rotch, who has made this a prominent feature of the work at his observatory, having carried up meteorographs to the beight of 15,000 feet by means of a series of kites flying in tandem. The officials of the U.S. Weather Bureau have developed the admirable cellular kite, invented by Hargrave of Australia, and Professor Marvin's works on the theory and construction of this form are well known.

The general appearance of the Marvin or Weather Bureau kite. his reel and other apparatus that go with it, and his meteorograph. are shown in Figs. 6, 7, 8. The size ordinarily used carries about 68 sq . ft . ot supporting surface of muslin tightly stretched on a light wooden frame. The line, made of the best steel piano-wire, is wound and unwound from a reel which keeps an automatic record

Fic. 8.-Marvin Kite Meteorograph.
of the intensity and direction of the pull. The reeling in and out may be done by hand, but ordinarity demands a small gas-engine. The observer at the reel makes frequent records of the temperature, pressure and wind, the apparent angular elevation of the kite, and the length of wire that is played out. At the kite itself the Marvin meteonograph keeps a continuous record of the pressure, tempera.
ture, humidity and velocity of the wind. The meteorograph, with its aluminium case, weighs about two pounds, and is so securely lashed behind the front cell of the kite that no accident has ever happened to one, although the kites sometimes break loose and settle to the ground in a broken country many miles away from the reel. On four occasions the line has been completely destroyed by slight discharges of lightning; but in no case has the kite, the observer, or the reel been injured thereby. Of course, such lightning is preceded by numerous rapidly increasing sparks of elecericity from the lower end of the wire, which warn the obscrver of danger. During the six months from May to October 1898 , seventeen kite stations were maintained by the U.S. Weather Bureau in the region of the lakes, the Upper Mississippi and the Lower Missouri valleys, in order to obtain datu for the more thorough study of atmospheric conditiona over this particular part of the country. During these monits 1217 ascents were made, and as no great height was attempted they were mostly under 7000 or 8000 feet. There was thus obtained a large amount of information relating to the air within a mile of the earth's surface. The general gradients of temperature, which were promptly deduced and published by H. C. Frankenfield in 1899 in a bulletin of the Weather Bureau. gave for the first time in the history of meteorology trustworthy obscrvations of air temperatures in the Irce atmospiere in numbers sufficient to indicate the normal condition of the air.
The kite and meteorograph have now been adopted for use by all meteorologists. The highest flight seems to be that of the 3rd of October 1907, at Mt Weather in Virginia, when 23,ifo ft. above sea-level or $21,385 \mathrm{ft}$. above the reel was attained by the use of $37,300 \mathrm{ft}$. of wire and 8 kites tandem.
The balloon was used for the scientific exploration of the atmosphere quite freely during the igth century. The first important voyages were those of Gay-Lussac and Biot at Paris in August and September of 1804.
The next impertant ascent was that of Bixio and Barral in 1850 at Paris. The most remarkable high ascents have been those of James Glaisher, and of September 1862, and Berson at Berlin in 1889; on both of these occasions the aeronauts attained altitudes of from 30,000 to 35,000 feet. Systematic ascents at many points in Europe simultaneously on pre-arranged dates were made during the years 1895-1809, and led to the development of a general international system of ascension on pre-arranged days of the year that is now a very important, feature in the study of the atmosphere.

Fic. 9.-Chart of Isotherms in Free Air above Trappes.
This diagram shows the height at which the isotherms of $0^{\circ},-25^{\circ},-40^{\circ},-50^{\circ} \mathrm{C}$. were encountered on the respective dates. Below the ground-line are given both the dates and the temperatures of the air observed at the ground when the balloon started on each ascent. The isotherms of -40° and -50° are not given for certain ascents, because in these the balloon did not rise high enough to encounter those temperatures.

Owing to the great risk of human life in these high ancents and especially to the fact that we desire records from still grearer helghta, efforts have been made to devise self-recording apparatus that may be sent up alone to the greatest heights attainable by free hydrogen balloons carrying the least possible amount of ballast. The pioneer in this new field of work was Lón Teisserenc de Bort of Paris. As these ascensions are made with great velocity, and therefore as nearly vertical as possible, he called them "soundings," becauce of their analogy to the mariner's usage at sea, and his balloon icalled a "sounding balloon." The balloons of silk collapse, those of india-rubber explode, and deacend about as rapidly as they ascended,

Such balloon soundings have been made not only individually, but, by pre-arranged system, simultaneously in combination with the ascent of free-manned balloons above referred to: and at some places kites bave been simuleancously used in order to obtain records for the lower atmosphere. The first experiments in simultaneous work were made in 1896 and 1897, when ascents were made at cight or more points in France, Germany and Russia. These experiments and the discussions to which they gave rise have emphasized the importance of increasing the sensitivences of the self-recording apparatus, and as far as practicable the rapidity of the ventilation of the thermometers, and of providing more perfect protection against radiation from the sun or to the sky. It is believed that accurate records may be attained up to at least 30,000 metres, but as yet only 26,000 has been attained, and the records brought back are still under considerable criticism on account of instrumental defects. In general the wind that supports a kite also furnishes sufficient ventilation lor the thermometer; but in the case of the sounding balloon, which as soon as its rapid rate of ascent diminishes floats along horizontally in the full sunshine, a strong artificial ventilation must be provided. Moreover, the sluggishness of the best thermometers is such that during the rapid rise the records of temperature that are being made at any moment really belong to some altitude considerably below the balloon. and a most critical interpretation of the records is required. Notwithstanding all criticisms, bowever, the balloon work in all localities agrees in showing the existence of a region above the 10,000 -metre level, where tempera. tures cease to diminish rapidly, and may even become stationary.

III.-Pifsical and Theoretical Meteorology

The ultimate aim of those who are devoted to any branch of science is to penetrate beyond the phenomena observed on the surface to their ultimate causes, and to reduce ths whole complex of observations and empirical rules based upon limited experiences to a simple deductive system of mechanics in which the phenomena ohserved shall be shown to flow naturally from the few simple laws that underlie the structure of the universe. A correct "theoria" or physical and logical argumentation deducing from primary laws all the phenomena constitutes the noblest achievement of man in science. It is by such works that Newton and Laplace distinguished themselves in astronomy. The development of the true physical and mechanical theories of atmospheric phenomena bas made geeat progress, but is still inferior in completeness to astronomical work, owing to the great complexity of the meteorological problems. The optical and the thermal phenomena have been very satisfactorily elucidated, the electrical phenomena promise to hecome clear, but the phenomena of motion or aerodynamics have only been elucidated to a limited extent. We must, however, introduce the reader to some of the works that have been published on the subject, in the hope fhat thereby he will himself be persuaded to further study and stimulated to contribute to our knowledge. Between the years 1853 and 186r Professor William Ferrel published in Gould's Astronomical Journal. Runke's Mathematical Monthly, and the American Journol of Science several treatises on the motions of solids and fluids relative to the earth's surface. His work resulted in the elucidation of the problems of the atmosphere, and in ingenious ways. applicable approximately to such complex cases, and analytically equivalent to the arithmeticai method of quadraturea or the graphic methods of geometry, he deduced im. portant relations between the density of the air, the barometric pressure, and the nttending winds. His casays seemed to show that tit might be possible to treat the complex problems of meteorology logicaliy and deductively by analytical, numerical and graphic processes, and his memoirs were the first in which observed average meteorological conditions were properly co-ordinated with the fundamertal formulae of mechanics. A beautiful memoir on the steady motions of the atmosphere was published in 1868 in the Astronomische Nachrichten by Profescor Adolph Erman, and is now reprinted in yol. ii. of Abbe's Mechanics of the Earth's Atmosphere. Eapy's, Coffin's, Henry's and Ferrel's ideas were made the basis of the system of daily weather predictions publiehed by the present writer in 1869 in the Daily Woafher Bulletin of the Cincinnati Observatory. Subsequently this work was taken up by the government. and greatiy enlarged during 1871-1891 by the chicf signal officers of the army, and after 1891 by the chiefs of the U.S. Weather Bureau. Ferrel's writing first attracted the attention of European meteorologists in conseguence of reviews published by Hann in the Zeidschrijt of the Austrian Meteorological Society in January 1875. but eapecially after they had been reprinted in a convenient form by the U.S. Signal Office as "Bulletin No. VIII." in 1881 Ferrel, Fter finishing his works on the tides for the U.S. Coast and Geodetic Survey, began a new and extensive series of meteorological contributions, three of which were published by the U.S. Coast Survey and the reat by the Signal Office. Stimulated by the argent needa
of the modern weather bareaus throughout the world, and by the beauty of the mathematical problems presented, numerous mathematicians have lately taken up the study of the earth's atmosphere, so that the literature of the subject is now far mare extensive than is generally supposed, including memoirs by Helmholtz, Kelvin, Bjerknes and other famous men.
In addition to the purely mechanical problems, the numerous physical problems have also been carclully treated, both experimentally and mathematically. The problems of radiation have been elucidated by Langley, Hutchins, Angseröm, Paschen, Violle, Maurer, Crova, Chwolson, Very, Homin, Tamura, Trabort and Coblendz. The thermodynamic problems have been especially developed by Kelvin, Hertz, von Bezold, Ferrel, Brillouin, Neuhoff, Bigelow and Margules. The physical prolslems involved in the formation of rain-drops have bern studied by an optical method by Carl Barus, and with briltiant success. from an electrical point of view, by C. T. R. Wilson and Sir J. J. Thomson at the Cavendigh Laboratory, Cambridge, England.

In a cumplete study of the mechanics of the earth's atmosphere we naturaliy begin by expressing in simple analytic formulae all the various conditions and laws according to which every particle of the air must move. Some of these conditions are local, depending upon the resistances at various points of the earth's surface; others are of the nature of discontinuous functions, as, for instance, when the ascent of moist air above a certain level suddenly gives rise to condensation and clouds, to the cvolution of latent heat, to the precipitation of rain, to the shading of the air and the ground below the clouds, and to the sudden interception of all the solar heat at the upper surface of the cloud. It scems, therefore, incredible that the problems of the atmosphere can ever be resolved by purdy analytical methods; there must be devised combinations of numerical and graphical, and possibly even mechanical methods to reproduce the conditions and give us special solutions adapted to particular cases. But even these special methods can only be perfected in proportion as wc attain approximate solutions of the simples problems, and it is in this preiminary work that a good beginning has alrcady been made.
The present state of theoretical physical and mechanical meteorology cannot be fully presented in non-technical English text. It is necessary to employ algebraic formulac, or numerical tables, or graphic diagrams, the former being certainly the least cumbersome and the most generally available. The imiform system of notation devised by Professor F. H. Bigelow, and a very complete summary of tbe formulae of pbysical meteorology expressing the results of many recent students will be found in chapters x. and x. of his Report on the International Cloud Observations, puhlished as vol. ii. of the annual report of the cbicf of the U.S. Weather Bureau for $1898-1899$.
The fundamental laws to which the atmosphere is subject are as follows:-
A. The Equation of Elastic Pressuré- The pressure shown and measured by the barometer is an clastic pressure acting in all directions equally at the point where it is measured. By virtue of this elastic pressure a unit volume of air will expand in all directions if not rigidly enclosed, but will cool in so doing. On the other hand, if forcibly compressed within smaller dimensions, it will become warmer. For a given temperature and pressure a unit volume of air of a prescribed chemical constitution will have a prescribed definite weight. The general relations between absolute temper. ature, pressure and volume are expressed by the formula

$$
\begin{equation*}
p o=R T \tag{1}
\end{equation*}
$$

where T expresses the absolute temperature p the elastic pressure, v the volume, and R is a constant which difers for each gas, being 29.2713 for ordinary pure dry air and 47.060 for pure aqueous vapour, if we use as fundamental units the kilogram, metre and centigrade degree. This equation is sometimes called the law of Boyle and Charics, or of Gay-Lussac and Marriotte, and it is also known as the equation of condition for true gases, meaning thereby that it expresses the fact that the ideal gas would change its volurne directly in proportion to its absolute temperature and inversely in proportion to its elastic pressure. All gases depart from this law in proportion as they approach the vaporous condition on the one hand, which is brought about by great pressure and low temperat ure, or the ultra-gaseous condition on the other hand, which obtains under hish temperatures and low pressures. The more accurate law of Van der Waals wrould complicate our problems too much. In place of the absolute temperature T we may gubstitute the expression $273^{\circ} \mathrm{C} . \times(1+a)$, where a is the coefficient of volumetric expansion of the gas for a unit degree of temperature $=0.00367$ and t is the temperature expressed on the centigrade scale.
B. Hypsometric Conditions.- The pressure of the atmosphere at any place depends. primarily on the weight of the superincumbent mass of air, and therefore diminishes as we ascend to greater heights. If the air is in motion, that and other considerations corne in to affect the prespure; but if the air is quiet relative to the earth's
aurface, then the preasure at any altitude is expreaned by the so-called barometric or hypemetric formula

$$
\begin{equation*}
p=\int_{4 \rho}^{k}-d x d x \tag{2}
\end{equation*}
$$

where σ is the density and s the apparent gravity for each layer of air whose vertical thickness is dh. The integral of this formula depends upon the vertical distribution of temperature, and moisture, and gravity: but under the simplest possible assumptions as to these vertical gradients, the following formula was deduced by Laplace and is generally known as his hypsometric formula:-

$$
\begin{gather*}
h-h_{0}=18400(1+0.00367 t)\left(1+0.378 \frac{c}{\phi}\right)(1+0.0026 \cos 2 \phi) \\
\left(1+\frac{h+h_{0}}{6370191}\right)(1+0.00157) \log \frac{p_{0}}{p} \tag{2a}
\end{gather*}
$$

In this formula t is the average temperature, e the average vapour tension of the layer of air, p the barometric pressure at the top of the layer, p_{0} the pressure at the bottom, ϕ the latitude of the station, I the elevation above gea-level of the lower limit of the stratum, and h_{0} that of the upper limit. The modifications which this formula needs in order to adapt it to other hypotheses representing more nearly the actual diatribution of temperature, moisture and gravity, have been elaborately investigated by Angot in a me moir published in 1899 in Part 1. of the Memoirs of the Central Meteorological Burcau of France for the year 1896. Angot, Hergesell and Rykatcheff have also shown that for hypsometric work of any pretensions to accuracy it is simplest and best to use Laplace s formula for successive thin strata of air, and add together the individual results, rather than attempt a more complex single formula for the whole部保um; yet the latter seems to be esscntial for work in aerodynamics.
C. Thermodynamic Relations.- The tcmperature of the air is due to the quantity of molecular energy that is present in the form of heat, but usually there is also present a quantity of molecular energy that is spoken of as latent heat. This latent heat is said to do internal work, such as melting ice or boiling water, while the sensible heat does external work, such as expanding and pushing in alt directions. These molecular energies can be transformed into each other over and over again without appreciable loss, and this power of transformation is expressed by the various equations of thermodynamics, of which the fundameatal one for our purpose is

$$
\begin{equation*}
d Q=C_{x} d t+A p d v=C_{p} d t+A R T d v \tag{3}
\end{equation*}
$$

This equation expresses the fact that when a quantity of heat measured in calories, $d Q$, is qdded to or taken from a mass of dry air, there may result both a change of temperature, $d t$, corresponding to one portion of the heat, $C_{0} d t$, and a quantity of external work corresponding to the remaining portion of the heat (Apdv). It usually happens that the quantity of heat in a given mass of air does not remain the same for any length of time; it is diminished by radiation or is increased by absorption, and a certain quantity is lost when rain, snow or hail drops down from the air, while a quantity is added to the atmosphere when moisture evaporates and mixes with the dry air as invisible vapour, even the passage of rain-drops down through a lower layer alters the thermal conditions appreciably. The changes due to increase and diminution of moisture are usually small as campared with the great gain due to absorption and convection of solar beat or with the loss by radiation. If these losses and gains are to be taken account of, then the quantity $d Q$ in the above equation is finite and important. On the other hand, in some cases atmospheric processes go on so rapidly or under such peculiar circumstances for instance, in the interior of a cloud-that the change in the quantity of heat may be considered as temporarily negligible. In these cases $d Q$ is zero; the changes in temperature balance the changes in external work, and the thermal procest is said to be adiabatic.
D. The Condition of Cowtinutity. When a mass of liquid or gas goes through several motions and changes without being disrupted or otherwise broken into smaller portions, and without thic formation of either local condensations into solid or liquid masses or of bubbles and vacuous spaces in its interior, and when all the changes that go on proceed by gradual continuous processes as to time, then the mass of the fuid is subject to the law of continuity as to mass, and the motion of the fluid is continunus as to velocity. These conditions are assumed in elementary hydrodynamics, and are implied in the procest of integration, and in the equation of continuity

$$
\begin{equation*}
\frac{\partial p}{\partial g}+\frac{\partial(\rho u)}{\partial x}+\frac{\partial(\rho p)}{\partial y}+\frac{\partial(\rho \uparrow D)}{\partial z}=0 \tag{4}
\end{equation*}
$$

where p is the density, b is the time and ∂ the ordinary symbol for partial differentiation, But the fact is that meteorologists have to deal eatirely with discontinuous external forces such as insolation ceasing at sunset and rescwed daily; radiations of heat changing abruptly with land and ocean and cloudincss and snow covering: discontinuous boundary conditions and resistances at the earth's ourface altering at every change from mountains to plains; discontinuous masses changing with additions and abstractions of moisture, min and now-all which lead to discontinuous vortex motions and overturnings and rearrangements of the atmospheric minca. The only factors that are continuous for any leagth of time
or extent of area are the rotation of the earth and the atraction of gravitation. In the presence of such aifficulties as these we must at present confinc ourselves to tbe solution of very special local definite problems or to the general statistical problems of our atmosphere:
E. Conditions as to Emergy and Motion. - When the total quantity of heat, both latent and sensible, remains constant or changes in a continuous manner, and when the motions are continuous, the mechanical and thermal processes are expressible by ordinary differentials and integrals. Mocions of fluids involve both energy and inertia, and are subject to conditions expressed by the following equations of hydrodynamics:--
a. Equations of energy. Let the kinetic energy be T, the potential energy V, the intrinsic energy $W: l, m$, n be cosines of the angle between the pressure p, and S the inwardly directed normal to the boundary surface. Then will

$$
\begin{equation*}
\frac{\partial(T+V+W)}{\partial t}-\iint p(l u+m v+n v) d S \tag{5}
\end{equation*}
$$

b. Equations of acceleration and inertia. Let P be the potential of the external forces acting on a unit mass of the atmosphere; μ, be the coefficient of viscosity or internal friction. Then will

Approximate Assumplions and Soluitions.-After introducing into the preceding eystem of fundamental equations $(1-6)$ the actual condstions as accurately as they are known relative to gravity, solar radiation, the rotation of the earth, the viscosity of the air, its mass or inertia, its absorption and radiation of heat, its variable content of moisture, the precipitation of rain and cloud, the mutual interconversions of latent and sensible heat, a special difficulty accurs when we attempt to integrate these cquations, because we have still to express anslytically the initial conditions of the atmosphere as to pressure and temperature, and its boundary conditions as between the rough earth surface on its lower side and the unknown outward surface on its upper side. As the true carth's Eurface cannot be represented by any simple algebraic formula, it is customary to assume that it is a uniform sphere, neglecting at least partially, if not wholly, the spheroidal shape. We may first assume that there is no friction between the earth and the air, but must afterwards make allowance for its influence. Thirdly, we assume that the action of the earth's surface to heat the air and to throw moisture by evaporation into the atmosphere is perfectly uniform. Finally, in many cases we go so far as to 2ssume that the atmosphere is an incompressible rare liquid having a uniform density and a uniform depth of about 8000 metres, corresponding to the average standard density of dry air under a pressure of 760 millimetres and a temperature of $0^{\circ} \mathrm{C}$. Even under these simplifeations the arnalytic diffcuities have been too great to admit of rigorous solutions, except in a few of the simplest casea.

The treatment of atmospheric problems by Ferred wis followed by an equally ingenious mathematical treatment by Profes trs Guldberg and Mohn, of Christiana, in two papers published by luem in 1876 and 1880 respectively. These authors, like Ferrel, is eat isolated portions of the atmosphere and obtain special solutons, which, bowever, have not the generality that must eventually le demanded in a rigorous and general discussion of the atmosphere movements Elcgant mathernatical solutions of our prohlerns were int given in 1882 by Oberbeck, of the university of Halle, in the Anr. Phys. xvii 128. But even Oberbeck's solutions are obtained under various simplifying assumptions that restrict their satisfactory application to the daily weather conditions. Oberbeck's first mamoir treats of the mechanics of stationary cyclonic movements. Assuming that the isobars are concentric circles, and that in the outer portion of a cyclone the air has only horizontal movements, while in the inner portion it has only vertical movements, he solvet his syatem of cquations for the inner and outer regions of the cyclon ineparately. He shows that in general the pressure increases on : 1 ades outwards from the centre; the gradient also increases frin the centre outwards to the limit of the inner region, whence it disc, aishes in the oucr pegion and at a great distance becomes inapprecial we. In both ref. -lich cut the isobars or the radsal gradient every whern at the same angle; therefore the movement of the air can be crtadered as a epiral infow from all sides towards the centre. l. the angle between the wind and the gradient follows different lawi in the outer and inner regions, depending in the former on the tita ation of the
earth and the friction, but in the latter atwo on the intensity of the ascending current of air. In passing from the outer to the inner arface the wind experiences a sudden change of angle, $s 0$ that the directions of the winds are not continuous, although the movement and the barometric pressures are assumed to be continuous. This latter peculiarity does not occur in nature, and is undoubtedly an analytical result peculiar to Oberbeck's method of treating the fandarnental equations.

An improvement in the mathematical amalyais was introduced by Dr F. Pockels of Gotingen in a memoir published in the Med Zeil., 1893, pp. 9-19. He deduces equations showing the continuous changes of temperature, pressure, gradient, wind direction, and velocity from the centre of the cyclone to the outer edge of the anticyclone, or, more properly, the peri-cyclone; these, therefore, may reasonably be supposed to have their counterperts in nature. Such mathematical solutions, however, are based upon the asammption that we are dealing with a comparatively small portion of the earth's surface, which may be considered as a plane having a uniform diurnal rocation and a unform coefficient of friction. Moreover, the movemencs in the cyclones and anti-cyclones are assumed to be stcady and permanent hy reason of the perfect balance of all the forces invoived therein. Of course these conditions are not exactly frifilled, but in general Pockels shows that his theoretlcal results agree fairty well with the observed coaditions as to wind and preseure. Fie computes the actual distribution of these clements under the assumption that the centre of the anti-cyclone bat latitude 55.5 , and that the coefficient of friction is $0-00008$, whereas viscosity proper would require only o-0002. An elegant matbematical preentation of these st udies in cyclonic motion is given by W. Wien, Letrbuch der Hydrodymamik (Leipzig, 1900).

Notwithstanding the fact that these difficult mathematical investigations still lead us to unsatisfactory reaults, they are yet eminently instructive as showing the methods of interaction of the various forces involved in the motions of the atmosphere. We must therefore mention the interesting attack made by Oberbeck upon the problem of the general curculation of the atmosphere. His memoir on this subject was published in tbe Sitmungsberichie of the Academy of Sciences at Berlin in 1888 . The fundamental assumption in this memoir implies that there is a general and simple system of circulation between the equatorial and the polar regions, bet the eventual solution of the problem leads Oberbeck to two independent systems of winds, an upper and a lower, without any well-defined connexion at the polar and equatorial ends of these two currents, so that after all they are not rigorously te-entrant. Among the hypotheses introduced in the course of his mathematical rork, the most important, and perhaps the one most open to objection, is that the distribution of temperature throughout the atmosphere in both the upper and lower strata can be represented by the equation $T=A+B\left(1-3 \cos ^{2} \theta\right)$. Undoubtedly this equa. tion represents observations in the lower strata near the surface of the earth, but the constants that enter into it, if not the form itself. must be changed for the upper strata. The solution arrived at by Oberbeck gives the following equations representing the components of the movement of the atmosphere toward the zenith V, toward the north N_{1} and toward the east O :-

$$
\begin{aligned}
& V=C\left(I-3 \cos ^{2} \theta\right) f \sigma \\
& N=-6 C \cos \theta \sin \theta \phi \theta \\
& O=D\left[\sin \theta\left(1-3 \cos ^{2} \theta\right) g \sigma+6 \cos ^{2} \theta \gamma \sigma\right]
\end{aligned}
$$

In accordance with these equations he deduces the general circuItion of the atmosphere as follows: Inthe lower current the air fows from the polar regions eastward until it reaches the paraliel of 30° or 40°; it theo turns directly towards the equator, and eventuaily westward, until at the equator it becomes a strong east wind (or a so-called west current). In the upper layer the movement begias as an cast wind, turns rapidly to the north at latitude 20^{*} or 30°, and then becomes a south-west wind (or north-eastern current) in the narthern hemisphere, but a north-west wind (and southeastern current) in the southern hemisphere. Of course in the higher strata of air the currents must diminish in strength. In a second paper in the same year, 1888 , Oberbeck determines the distribution of pressure over the earth's surface as far as it is consistent with his system of temperatures and winds. His general equation shows that as we depart from the equator the pressure must depend upoa the square and the fourth power of the cosine of the polar distance or the sine of the latitude, and in this respect harmonizes with Ferrel's work of 1859, although more general in its bearings. By comparing his formulae with the observed mean pressure in different latitudes, Oberbeck obtains the general angular velocity of the air relative to the earth, i.e. $0.0292\left(\sin ^{2} \phi-0.08_{3} 6\right)$, which is quite mall and is a maximum (4.6 metres per second)at fatitude S. $56^{\circ} 27^{\prime}$. H. Hildebmindsson (1906) showed that obecrvations do reveai an east wind prevailing above the equatorial belt of calms.
Contemporsry with Oberbeck's admirable memoirs are those by Professor Diro Kitao, of the university of Tokyo, who, as a student of mathematics in Germany, had become an expert in the modern treatment of hydrodynamic problems. In three memoirs published by the Agricultural College of the unlversity of TokyE in the German langunge in the years 1887, 1889 and 1895. he develops with great pattence many of the minutiae of the movement of the earth's atmospbere aad cyclonic torms. The assumptions under which
be conducts his inveatigntions do mot dopart from mature quite to far as thove adopted by other mathematicians. Like Ferrel, be adheres as clocely as possible to the results of physical and meteorological observations; and although, like all pure matbematicians, he considers Ferrel as having departed too far from rigorous mathematical methods, yet he also uaites with them in acksowledging that the results attained by Ferrel harmonise with the meteorodogy of the earth.

The fact if that the solution of the hydrodynamic equation is not aingle, but multiplex. Every system of initial and boundary conditions must give a solution appropriate and peculiar to itself. The actual atmoephere presents us with the solution or solutions peculiar to the conditions that prevail on the earth. Entirely different conditions prevail on Jupiter and Saturn, Venus and Mars, and even on the earth in January and July, and therefore a wholly new series of solutions belongs to each case and to each planet of the solar system. It matters not whether we attempt to resolve our equations by introducing terrestrial conditions expressed by means of analytical algebraic formulae, and integrate the equations that result, or whether we adopt a graphic process for the representation of observed atmospheric conditions and intergate by arithmetical, geometrical or mechanical processes. In all cases we must come to the same result, namely, our resulting expressions for the distributioa of pressure and wind will agree with observations just as closely as our original equations represented the actual temperatures, resistances and other attending conditions.

In the last portion of Kitao's third memoir he givels some attention to the interaction of two cyclonic systems upon each other when they are not too far apart in the atmosphere, and shows how the influence of one system can be expressed by the addition of a certian linear function to the equations representing the motions of the other. He even gives the basis for the further study of the extension of cyclonic storms into higher latitudes where conditions are so different from those within the tropics. Finally, he suggests in general terms how the resistances of the carth's surface, in connexion with the internal friction or viscosity of the air, are to be taken into consideration, and shows under what conditions the assumptions that underlie his own solutions may, and in fact must, very closely represent the actual atmosphere.

The General Circulation of the Atmosphere.-If the meteorologist had a sufticient number of observations of the motions of the air to represent both the upper and lower currents, he would long since have been able to present a satisfactory scheme showing the average movement of the atmosphere at every point of its course, and the paths of the particles of air as they flow from the poles to the equator and return, but hitherto we have been somewhat misled by being forced to rely mainly on the observed movements of clouds. This motion has been called the general circulation of the atmosphere; it would be a complex matter even if the surface of the earth were homogencous and without special elevations, but the actual problem is far different. Something like this general circulation is ordinarily said to be shown by the monthly and annual charts of pressure winds and temperature, such as were first prepared and published by Buchan in 1868, and alterwards in Bartholomew's Physical Atlos of 1899 . We must not, however, imagine that such charts of averges can possibly give us the true path of any small unit mass of air. The real path is a complex curve, not re-entrant, never described twice over, and would not be 80 even if we had an ideal atmosphere and globe. It is a compound of verticai and undulatory movements in three dimensions of space, variable as to time, which cannot properly be combined into one average.

The average temperatures, winds aod pressures presented on these charts suggest hypothetical problems to the student's mind quite different from the real problems in the mechanics of the atmosphere -problems that may, in lact, be impossible of solution, whereas those of the actual atmosphere are certainly solvable. The momentary condition presented on any chart of simultaneous observations constitutes the real, natural and important problems of meteorology. The efforts of mathematicinns and physicists have been devoted to the ideal conditions because of their apparent simplicity, whereas the practical problertis offered by the daily weather chart are now so easily accessible that attention must be turned towards them: The most extensive system of homogeneous observations appropriate to the study of the dynamics of the atmosphere is that shown in the Daily Bulletin of Iniernalional Simulloneous Observations, published by the U.S. Signal Service in the years 1875-1884, with monthly and annual summaries, and a general summary in " Bulletin $A^{\text {" }}$ published by the U.S. Weather Burcau in 1893 . The study of these daily charts for ten years shows how the general circulation of the at mosphere differs from the simple problems presented in the idealized solutioos based on monthly and anmual averages. The presence of a great and a small cootinent, and a great and small ocean, and especially of the moisture, with its consequent cloud and rain, must enter into the study of the problem of the general circulation. The most prominent features of the general circulation of the atmomphere are the system of trade winds, north-ensterly in the northern tropics and south-easterly in the southern tropics, the system of westerly winds beyond the tradewind region, namely, north-westerly in the north temperate and couth-westerly in the south temperate zone, and again the system
of upper winds shown by the higher clouds, namely, south-weateriy in the northera hemisphere and north-westerly in the southern.

Halley in 1680, and Hadley in 1735, gave erroneous or imperfect explanations of the mechanical principles that bring about these winds. As some errors in regard to this subject are still current, it is necessary to say that it is erroneous to teach that atmospheric air weighs less on being heated, or by reason of the infusion of more moisture, and that therefore the barometer falls. The addition of more moisture must increase its weight as a whole; heat, being imponderable, cannot directly affect its weight either way. We are liable to diseeminatecrror by the carelcss use of the world " lighter." since it means both a diminution in absolute wcight and a diminution in relative weight or specific gravity. Heat and moisture may diminish the specific gravity of a given mass of air by increasing its volume, or of a given volume by diminishing its mass, but neither of them can of themselves affect the pressure shown by the barometer so far as that is due to the weight of the atmosphere. It is not proper to say that by warming the air, thereby diminishing its specific gravity and causing it to rise, so that colder air flows in to take its place, we thereby diminish the barometric pressure. It is easily seen that in the expression $p=\mathrm{RT} / 0$, which, as we have before said, is the law of elasticity, T and v may so vary as to counterbalance each other, and allow the pressure p to remain the same. Within any given room or other enclosure hot air may rise on one side, flow over to the opposite, cool and return, and the circulation be kept up indefinitely without any necescary change in pressure. The problem of the relation between wind and pressure in the free atroosphere is more complex than this, and involves the consideration of the inertia of the masses of air that are in motion with the earth around its axis. The air is so extremely mobile that it moves quickly in response to slight differences in pressure that cannot be detocted by ordinary barometric measurement. The gradients or differences of pressure that are shown on meteorological charts are not directly, but only very indirectiy, due to buoyancy, as caused by heat and moisture. The pressure gradiente, so-cilled, are not merely the prime causes of the winds, but are equally and essentially the results of the winds. They are primarily due to the lact that the atmosphere is rapidly revolving with the surface of the earth around the earth's axis, while at the same time it may be circulating about a storm centre. Inappreciable diferences of pressure start the winds in motion, and the air moves towards the region of low pressure, just as in ihe pneumatic despatch tubes the flow of air towards the low presure carrics the packages along. But in the free air, where there are less important resistances to be overcome, the freedom of mot is is greater than in these pheumatic tubes. No sooner is the at osphere thus set in motion by pressure from all sides towards the central low pressure than it rapidly acquires a spiral circulation and thereby there is superimposed (in the norithern hemisphere a decided diminution of pressure on the left hand side of the winhl, and an equally rapid increase on the right hand side. The graelient of pressure in the direction of the wind overcomes resistancs, but the gradient of pressure, perpendicular to the direction of ti wind, is far greater than that in the direction of the wind, and is that which produces the areas of decided low pressures that appens as storm centres on the daily weather map. Therefore, in gencrat, the wind cuts across the charted isohars in oblique directions and at angles which are nearly 90° for the feeble winds far removed from the centres, but which are almost zero for the most violent winds near the low centre. The winds acquire this spiral circulation for two reasons- (a) all straight line, gusts or jets in fluids, subject to any form of resistance, necessarily break up into rotating spirals whenever the velocity exceeds a certain limit, because the resistances deprive some particles of the fluid of a litile more of their original velocity and energy than the other particles near hy them, and thus the whole series is drawn awiay from linear into curvilinear paths; (b) in addition to their rectilincar motions the particles of air have a rapid circular motion in common with the whole atmosphere diurnally around the earth's axis. Therefore every particle of moving air comes under the influence of a set of forces depending on its own rate of motion relative to the earth's surface and its position relative thereto. If the particles are moving east ward, viz, in the same direction as the carth's diurnal rotation, then the result is as though the atmosphere were rotating more rapidly than does the earth at present; consequently the particles of wind push toward the equator as though the atmosphere were trying to adopt a more fattened spheroidal figure corresponding to its greater velocity of rotation. If the particles are moving westward, on the other hand, it is as though the atmosphere were revoiving less rapidiy than the earth, and as though the flattened spheroid of revolution due to the present rate of rotation were more decidedly flattened than need be; consequently the particles of air push towards the poles. If the winds blow toward either pole, then their initial moment of incrtia about the carth's axis, due to the Initial radius and the eastward movement of the air, must be retained; consequentiy, as the air advances into higher latitudes and to smaller circles of diurnal rotntion its velocity must increase, and must carry the particles to the east of their initial meridrans. If the wind blow towards the equator its finitial moment of inertia must be applied to a largre radius, and ita velocity correspondingly diminished, so that it is left behind or falls awry somevist to the
west. "The reasoning of those who in attempting to explain the trade winds assume that the atmosphere in moving toward or from the equator has a tendency to retain the same original linear velocity is erroncous '(Ferrel's Movements of Flurds. 1859). In genera! the winds tend to retain their moments of ineria, and in the northern hemsphere must necessarily always be deflected continuously toward the right hand. The exact amount of this deffection was first distinctly stated by Poisson, ${ }^{1}$ as applied to the movements of projectules; it was also announced by Tracy of New Haven in 1843 , but was first applied to the atmosphere by Ferrel, who deduced its meteorological consequences. This law is not to be coniounded with that of Buys Ballot, who in 186t deduced from his obscrvations in Holland the rule that the gradient of pressure between two stations for any day would be followed in swenty four hours by a wind perpendicular to that gradient, and having the lower pressure on the left hand. Buys Ballot's law was in the nature of a rule for prediction, and was modified by Buchan 1868, who enunciated the following: "The wind blows towards the regions of low pressure; but is inclined to the gradient at an angle which is less than 90°.: In this form Buchan's law was an improvement upon the laws current amons cyclonologists, who had assumed that, in a rough way, the wind blew in circles around the low centre, and was therefore sensibly at right angles to the gradient. It ought, however, to be said that Redficld throughout the whole course of his studics, from 1831 to 1857, never gave adherence to this view, and in fact for the severer portions of hurricanes determined the average inclination of the movements of the luwer cluads at New York City to be about 7° inwards as compared with the truly circular theory. Now Ferrel's law explains mechanically the reason why the winds do not blow either radially or circularly, and gives the means for determining their inclination to the isobars in all portions of the cyclone and for various degrees of resistance by the earth's surface. The general proposition that the barometric gradients on the weather map are not thuse that cause the wind, but are, properly apeaking. the result of the combined action of the wind, the rotation of the carth, and the resistances at the carth's surface, as frot explained by Ferrel, seems to bave been neplected by meteorologists until brought to their attention repeatedly by Professor Abbe between 1869 and 1875, and especially by Professor Hann in a review of Ferrel's work (see Met. Zeil. 1874). The independent investigations of Sprung, Kıeppen, Finger, and especially Gubdlerg and Mohn. confirm in general the correctness of Ferrel's law.
It is quite crroneous to imagite that the low pressures in atorm areas and in the polar regions, and especially the belt of low pressure at the equa are due simply to the diminution of the density and weight of tie air by the action of its warmeh or its motsture, or to the abunda;: rainfall as relieving the atmosphere of the weight of water. It has been clansly shown thas none of these operations can directly affect the barometric pressure to any appreciable extent. but that high and low pressure areas, as we see them on the weather map, owe their existence entirely to the mechanical interaction of the diurnal rotation of theearth and the motions of the atmosphere. The demonstration of this point by Ferrel in 1857 is considered to have opened the way for modern progress in theoretical meteorology.

Both Espy and Hann have abundantly shown that the formation and downiall of rain do not produce any low barometric pressure uniess they produce a whirling action of the wind-that, in fact, the latent heat evolved by the condensation of vapour into rain may so warm up the cloud as to produce a temporary rise in pressure even at the suriace of the ground, due to the out ward push produced by the sudden expansion of the cloud. TThe details of the thermodynamics of this operation have been elucidated by Wm. von Bczold.] The forec with which the wind presses to the right or tends to be deflected in that direction is $2 n v \sin \phi$, while the curvature of the path of the wind is measured by its radius of curvature, which is $p / 2 n \sin \phi$. where θ is the velocity of the wind, m is the equatorial velocity of the earth's rotation, and ϕ is the latitude It will be seen from this that there is no deflection at the equator: therefore, as Ferrel stated, there is no tendency to the formation of great whirlwinds at the equator, hence hurricanes and typhoons are rarcly found within 10° of the equator.
Ferrel frequently speaks of an anti-cycione, whereby he means the arca of high pressure just outside of a strong cyclonic whirl; the expression peri-cyclone would have been more appropriate and is sometimes substituted. The term anft-cyclone, as first intruduced by Galton in 1863, is appled to a system of winds blowing out from a central area of high pressure, and this is the common usage of the term in modern meteorology. The term eyclone among meteorologists and throughout English literature, except only a lew casce in the Unted States, is equivalent to the ofder usage of whirtwind, and it is unfortunate that misunderstandings often arise becauso local usages in America apply the word cyclone to what has for centuries been called a tornado. The mechanical principles discussed hy Ferrel led him to an algebrai: relation between the barometric gradient \mathbf{G}, the wind velocity y, the radius of curvature of the iyobar r, and the inclination $~$ between the wind and the isobar, which is
${ }^{\text {i }}$ Recherche sur le mowoement des projectiles dant l'air em ayent epard a l infituance du moxpement diurue de la lerre; dated 1837 , printed Paris, 1839.
espresed by the followiog formula for the premares that prevail at sea-lovel:-

$\mathbf{G}=[(2 n \sin \phi+\cos \operatorname{iv} / r)=\sec i] /[83,000,000]$.

A popular exposition of this and other resulte of Ferrel's work is iven by Archibald in Natwre (May 4, 1882), and sill better in Ferrel's Treatise on the Winds (New York, 1889, and later editions).

The charts of mean annual pressure, temperature and wind above referred to show certain broad features that embrace the whole syatem of atmosopheric circulation, viz she low pressures at the equator and the poles the high presaures under the tropics, the trede winds below and the anti-trades above, with comparative caloss under the belts of equatorial low preasure and tropical high pressure. The first effort of the mathematician was to explain how these mean average conditions depend upon each other, and to devise a system of geoeral circulation of the wind consistent with the presures, resistancen and densities. But, as we have already said, such a system may be very far from that presented by the real atmosphere, and little by little wo are being led to a different view of the queation of the general circulation. The earlier students of storms generally accepted one of two views as to the cause of whirlwisds. They were either (1) formed mechanically between two priscipal currents of air flowing past each other, the so-called polar and equatorial currents; or (2) they were due to the ascent of buoyant air while the heavier air flowed in beneath, the whirling motion being coenmunicated by the influence of the rotation of the earth, or by the greater resistancea on one side than on the other. ln order to explain why hurricanes and typhoons exist continuousiy for many daye, or even weeks, it is neceseary that there ahould be a spurce of energy to maintain a continued buoyancy and rising current at the centre, and this was gnpposed to be fully provided for by Eapy's proof of the liberation of latent heat consegoent on the formation of cloud and rain. To this latter consideration Abbe in 1871 added the important influence of the sun's heat intercepled at the upper purface of the cloud. At this stage of the investigation the whirfind is but an incident in the general circulation of the atmosphere, but further consideration shows that it ought rather to be regarded as an estential portion of that circulation, and that then temperature gradients and density gradients exceed a certain limit the formation of great whir)winds is inevitable. Therefore an etmosphere containing several whirlwinds is just as truly a system of general circulation in the one case as an atmosphere without a Whirwind io in the other. The formation of rain, the evolution of hetent heat, and even the absorption of heat at the upper surface of the cloud really constitute a normal general circulation in this special case. We may therefore consider a Eystem of vortices, which is a system of discontinuous motions, as the most natural solution of the equations of motion-but the mathematical tratment of this form of motion has not yet been sufficiently well developed, for the discontinuity relares not only to the motion but to the thermal cooditions and the interchange of vapour and water.
In 1890 Professor Hann published a careful analysis of the actual temperature conditions prevailing over an extensive area of high presoure in Europe, and ahowed that the remperatures of the upper trata in both high and low areas, namely, in anti-cyclones and ofclones are often directly contrary to those supposed to prevail by Eepy and Ferrel. This study necessitated a more carelul examination into the radiation of beat from the dust and moisture of the atmosphere, and Prolessor Abbe seems to have shown that is areas of high preseure and clear wetther a very slow descending movement throughout each horizontal layer gives time for a radiation of beat that explains the anomalies of temperature, but the dyanamic phenomena still remained unexplained. On the other hand, von Helmholtz in several memoirs of 1888-1891 showed that waves or bullows may be formed in the atmosphere of great extent at the dividing surfase between upper and lower strata moving in difforent directions and with different velocities. Under specific conditions these billows may become like the breakers and caps of waves of the ocean when driven by the wind. The hypothesis that these eerial brcakers correspond to our troughs of low prossure and the storms experienced in the lower atmosphere seemed very pleasible. As these billows are formed between upper and lower air currente of great exteat, which themselves represent a large portion of the horizontal circulation between the poles and the equator, it resulta that if von Helmboltr's suggestion and Hann's hypothesis are correct then all general storms must be considered os cesentially a part of the general circulation rather than as caused by the vertical apeculation over any locality. It must occur to everyone to adopt tho intermediate view that, on the one hand, the local vertical circulation, with its clouds, tain, hail and anow, and evolution of latent heat, and, on the other hand the waves and whirla in the zeneral circulation, mutually contribute toward our storms and lair weather. It only remains to allot to each its proper importance in any special case.
Undoubtedly aerial billows, and the clouds that must frequently sccompany them, exist everywhere in the earth's atmosphere. Peetape their extent and importance are not properly appreciated. A voyage around the Atlantic Ocean in 1889-1890, made by Professor Abbe. specifically to sudy cloud phenomena, revealed many reonkable caves, ouch at the cumulua rolls that extend in a
remarkably symmetrical weries frose the island of Ascension westwirds for 100 m . in the southeasterly trades, or the delicate fields of cirro-cumuli that extend from the islands of Santa Luciz and Barbados for 200 m . eastwards under favourable conditions. The mixtures and vorticose motions going on within acrial ballows to form these clouds have been interpreted by Brillouina In the further elucidation of the mechanism of storms Hann showed that every study of observational material confirms the conclusion that the descent of denser cool dry air is-as important as the ascent of warm moist air, and that although the evolution of latent heat withix the clomds of a storm may explain the local cloud phenomena, yet it will not expltin the storm as a whole. The first "norther or blizzard" that was charted at Washington in November 1871 was at once seen to be a case of the underfiow of a thin layer of cold dry air descending from high altitudes above Canadn on the castern slope of the Rocky Mountains, but driven southward by an excess of centrifugal energy added to a moderate barometric gradient. It was seen that in such grand overturaings the dcscent of massea implies energy communicated by the action of gravity, but the whole mechanics of this process was not clear until the puhlication by Margules of his memoir U ber die Energic der Sturme (Vienna, 1905). which will be referred to hereafter.

Mathematics have, almost without excoption, assumed a so-called steady condition in the motion of the at mosphere in order to achieve a successful integration of the general equations of motion. The restrictions within which Helmholtz and others have worked. and the limits within which cheir results are to be accepted, have been analysed by Dr E. Herrmann in a memoir of which a trapstation i published in the bulletin of the American Mathematical Society for June 1896. Of course Herrmann's own investigation is also based upon certain eimplifying hypotheses, such as the abosence of oulside disturbing forces and of viscosity and friction, a-homogeneous ellipsoidal surface, and a unilorm initial temperature and rate of revolution corresponding to an initial state of equilibrium. If now the initial static equilibrum be disturbed by introducing a different distribution of temperature. viz one that varies with altitude and latitude, but is uniform in longitude along any circle of latitude, then the first question is whether the atmosphere can settle down to a now state of static equilibrium. Herrmann shows that in geseral it cannot do so, but that the new state and the frture states can only be those of motion and dynamic equilibrium. If, bowever, there be no external forces acting on the atmoephere, then in one case static equitibrium relative to the earth can occur, namely, when the new temperatures are so distributed in the atmosphere as to satisfy the equation

$\int p r^{4} w d V=\mathrm{Mi}_{\mathrm{c}}$.

in nddition to the ordinary equations of elasticity, inertia and continuity previously given, and to those representing the boundary conditions, M being the total amount of inertia of the atmosphere relative to the axis of rotation. In general, the movements in the atmosphere must consist not only of an interchange between the poles and the equator, but also of east and west motiona, and there must therefore be a different rate of diurnal rotation for each stratum. The second step in this inquiry is, Can these movements become perfectly teady with this unvarying or steady distribution of temperature? In other words, Can the temperature and the movements be so adjusted to each other that cach shall remaint invariable within any given zone of latitude? The rephy to this is, that if they are to become thus adjusted they must satialy a certain differential equation, which itself shows that steady motions and stationary temperatures cannot exist if there be any north or south component. Apart from the fact that Herrmann assumes no friction, it would scem that he has proved that steady motions and stationary pressurcs cannot exist in the atmosphere over a bomo: geneous spherical surface, and presumably the wame result would follow of a rotating globe for the irregular surface of the actual globe. The motions of the real atmosphere must therefore consist of irregular and periodic oscillations and discontinuous whirls and rolls superimposed upon more uniform, regular progressions. but never repeating themselves. Consequently, the conclusions deduced by those who have assumed that steady conditions are possible must depart more or less from meteorological observations. There is a general impression that the belt of low. pressure at the equator and the low areas at the poles and the high pressures under the tropics are pseudo-stationary, and really represent what would, be steady conditions if we had an ideal smooth globe; but Herrmann's researches show that the unsteadiness observed to attach to these arcas under existing conditions would also attach to them under ideal conditions. They really have and must have irregular motions, and we, by taking annual averages, obtain an ideal annual distribution of pressure, temperature and wind that does not represent any specific dyna mic problem. The averages represent what is considered proper in climatology, but are quite improper and misleading from a dynamic point of view, and have no logical mechanical connexion with each other.

Closely connected with this study of steady motions under a constant supply and steady distribution of solar heat comes the further question as to what regular variations in atmospheric pressure and wind can be produced by regular seasonal variations
in the heat received from the sun; for instance, what variation in the earth's atmosphere corresponds to the periodic variations of the solar spots. The general current of Helmholtz's investigations shows that no periodic change in the earth's atmosphere can be maintained for any length of time by a given periodic influence outside of the atmosphere. On the other hand, it is barely possible that wave and vortex phenomena on the sun's surface may have the same periodicities as regular phenomena in the earth's atmosphere, so that there may be a parallelism without any direct connexion between the two.

An important paper on the application of hydrodynamics to the atmosphere is that by Professor V. Bjerknes, of Stockholm, Sweden, which was read in September r809 at Munich, and is now published in an English translation in the U.S. Monthty Weather Review, Oct. 1900 (" On the Dynamic Principle of Circulatory Movements in the Atmosphere "): In this memoir Bjerknes applies certain fundamental theorems in fluid motion by Helmholtz, Kelvin and Silberstein, and others of his own discovery to the atmosphenc circulation. He simplifies the hydrodynamic conceptions by dealing with density directly instead of temperature and pressure, and uses charts of "isosteres," or lines of equal density, very much as was proposed by Abbe in 1889 in his Preparatory Studies, where he utilized lines of equal buoyancy or "isostaths,". and such as Elkholm published in 1891 as "isodenses" and which were called "isopyks" by Muller-Hauentels. Bjerknes has thus made it practicable to apply hydrodynamic principles in a simple manner without the necessity of analytically integrating the equations, at least for many ordinary cascs. He also gives an important criterion by which we may judge in any given case bet ween the physical theory, according to which cyclones are perpetually renewed. and the mechanical theory, according to which they are simply carried along in the general atmoapheric curtent. Bjerknes's paper is illustrated by another one luc to Mir Sandstrom, of Stockholm, who has applied these methods to a storm of September 1898 in the United States. ${ }^{1}$. The further development of Bjerknes's methods promises a decided advance in theorctical and practical metcorology. His profound lectures at Columbia University in New Y'ork and in Washington in December 1905 aroused such an interest that the Carnegie Institution at once assigned the funds needed to enable him to complete and publish the applications to metcorology of the methods of analysis given in detail in Bjerknes's Vorlesungen (Lelpzig, i. 1900, ii. 1902), and in his Recherche ster les champs de force hydradymaniques (Stockholm), Acta Malemalica (Ocı 1905). In his lectures of 1905 at Columbia University Bjerknes treared the atmosphere as a continuous hydrodynamic fueld of aerial solenoids and forces acting on them, to which vector analysis can be applied, as was done b; Jlcaviside for slowisisad magnctic probloms. Every material point is a small spherical mass of air free to extend or contract with pressure, temperature or moisture; free to rotate about each of three movable axes passing through its centre and to move along and revolve about three fixed axes through the centre of the carth. These numerous degrees of freedom are easily expressed in Bjerknes's notation and by his typical equations of motion. The density at any point is recognized as the fundamental " dimension "controlling inertia and movement. The observed atmospheric condition at any moment is shown by a series of isodemse surfaces intersecting potential surfaces of equal gravity and thus forming a continuous mass of unit solenoids. This ficld becomes either an electric, magnetic or hydrodynamic field according to the interpretation asigned to the notalions-in either case the a nalytical processes are identical. The analogies or homologies of these three sets of phenomena are complete throughout, and those of onte fieid clucida te or illustrate those of the two other fields. This is the outcome of the study of such analogies begun by Euler. Helmholtz, Hoppe, and extensively furthered by Maxwell and Kclvin, but especially by C. A. Bjerknes. The homologies or analogies by V. Bjerknes aregiven at p. 122 of his Recherche (1905), and include the following six triads:-

1. $\left\{\begin{array}{l}\text { Hydrodynamics } \\ \text { Magnetics }\end{array}\right.$ Magnetics Hyclrodyna Magneties Electrics Hydrodynamics Magnetics Electrics
IV. Mydrodynamics
Magnetics Magnetics Hydrody
$\left\{\begin{array}{l}\text { Hyurodynami } \\ \text { Magnetics : }\end{array}\right.$ Electrics
Hydrodynamics
Magnetics Magnetics
Electrics
velocity of unit mass
magnetic induction electric induction
intensity of the field
velocity of energy"
intriasic magnetic polarization clectric
velocity of expansion per unit volume density of the true magnetic mass "electric
density of the dymamic vortex atcady magnetic current ** " magnetic
specific volume
magnetic permeability
dielectric constant
which have been slightly rectifed by Dr G. H. Ling, Am. Jowr. Math. (1908). In the application of Bjerknes's methods of study to the daily weather map Sándstrom draws special maps to represent the solenoids and the forces. Barometric pressures are reduced from the observing stations not only down to sea-level but up to other level surfaces of gravity. The differences between these level surfaces represent the work done in raising a unit mass from one level to the next (see Bjerknes and Sindstrbm, A Treatise on Dymamic Meteorology and Hydrography, Washington, 1908).

The Dinrnal and Semi-diurnal Periodicifies in Barometic Presswre. -For a long time attempts were made to explain the periodic variations of the barometer by a consideration of static conditions. but it is now evident that this problem, like that of the circulation of the atmosphere, is a question of aerodynamics. A most extenslve scries of researches into the character of the phenomena from an observational point of view has been made by Hann, who gave a u-nmary of our knowledze of the subject in tire MAt. Zeil. for 1898 , trumlated by R. 11. Stot in the Quart. Jour. Roy. Mct. Soc. Uan. 1899) (see also an impurcant addition by Haun and Trabert in the Mcl. Zeit., Nov. 1899 . itd the summary of his results as given in his Lehrbuch, 1906). Hinn has shown that at the cartn's surface three regular pariodic ariations are cstablished by observation, viz. the diuenal, semiodirinal and ter-diurnal. On the higher mountains these variations change their character with altitude. (I) At the cquator the diurnal variation is represented by the formula o. $30 \mathrm{~mm} . \sin \left(5^{\circ}+x\right)$, where x is the local hour angle of the sun. In higher latitudes cither north or south the coefficient $A_{1}=0.30 \mathrm{~mm}$. diminishes, but the phas angle, 5°, varies greatly, generally growing larger. It is therefore ident that this diurnal oscillation depends directly on the hour angle of the sun, and probably, therefore, principally on the amour: of heat and vapour reccived by the atmo${ }^{\text {s }}$ here from the ocean in it the ground at any locality and scason of theyear. It is apgarer but little affected by the wind, but bomewhat by alitude above sea; the amplitude diminishes to zero at a certain elevation, and then reappears and increases with the opposite sign; the phasc angle does not change. (2) Superimposed upon thls diurnal oscillation is a larger semi-diumal one, which goes through its maximum and minimum phases twice in the course of a civil day. The amplitude of this variation is largest in equatorial regions, and is expressed by the formula $A_{2}=(0.988 \mathrm{~mm} .-0.573 \mathrm{~mm}$. sin 4$)$ $\cos { }^{2} \phi$ as given by Hann, or $A_{t}=\left(092 \mathrm{~mm} .-0.495\right.$ sin $\left.{ }^{2} \phi\right) \cos$. 4 as revised by Trabert. This amplitude also may be considered as variable along each znne of latitude having a maximum value on certain central local meridians. The times at which the semi-diurnal phases of maximum and mimimum occur are suhject to laws different from those for the diurnal periot. Within the tropics the phase angle is 160° and at $50^{\circ} \mathrm{N}$. it is 147°, and between these limits it seems to be the same over the whole globe, so that the phase does not depend clearly upon the hour angle of the sun or on the local time. The amplitudes appear to depend on the excess of land in the northern hemisphere as compared with the watcr and cloud of the southern hemisphere. The amplitude also varies during the year. being greatest at perihelion and least at aphelion. Hann suggests that this is an indirect effect of the suin's heat on the earth, as the northern hemisphere is hotter when the earth is in aphelion than is the southern hemisphere when the earth is in perihelion. owing to the preponderance of land in the north and water in the south. (3) The ter-diurnal oscillation has the approximate value shown by the formula 0.04 mm , sin $\left(355^{\circ}+3 x\right)$. The phase angle is senaibly the same everywhere, and the amplitude varies slightly with the latitude. Both phase and amplitude have a pronounced annual period which is as remarkable as that of the seml-diurnal oscillation; the maximum amplitude occurs in January in the northern bemisphere, and in July in the southern.

The physics of the atmosphere has not yet been explored so exhaustively as to explain fully these three systematic barometric variations, but neither have we as yet any necessity for appealint to some unknown cosmic action as a possible cause of thelr existence. The action of the solar heat upon the ilfuminated hemisphere, and the many consequences that result therefrom, may be expected to explain the baromet ric periods. The variations of sunchine and cloud must inevitably produce periodic variations of temperat ure, moisture, pressurc and motion, whose cxact laws we have not as yet fathomed. Among the many methods of action that have been studied or auggested in conncxion with the barometric variations the most important of all is the so-called tidal wave of pressure due to temperature. Laplace applied his investigntions on the tides to the gravitational tide of the ocean, and when he passed to the corresponding solar and lunar gravitationsl tides of the atmosphere he was able to show that they must be inappreciable, unkes, indeed, certain remarkable relations existed between the circumference of the earth and the depth of the atmosphere. As these relations do not exist, it is generally conceded as certain that the gravitatlonal tides, both diumal and semi-diurnal, cannot exced a few thougandths of an inch of barometric pressure. On the other hand, the anme procest of mathematical reasoning enables us to investigate the action of the sun's heat in producing a wave of pressure that has been called a pressumal tide, due to the expansion of the lower layer of air on the muminated half of the globe. The baws that must govern thei presural tides have been invexigated by Kelvin, Rayleigh (Phil.

Mag, Peb. I0yo, and eapecially by Margules (Viensa Sifs Ber 8890-1893). The two latter have shown the truth of a proporition enunciated by Kelvin in 1882, without demonatration, to the effect that the free oacillation produted by a relatively amall amount of tide-producing force will have an amplitude that is langer for the half-day term than for the whole-day term. They theremre explain the diurnal and memi-diurnal variations of the berometric preseure ass eimple pressural tides or waves of expansion, originally produced by molar hopt, but magnified by the rewonance between forced and free waves in an atreopphere and on a globe baving the eppecific dimennsions of our own. The analytical processes by which Laplace and Kelvin arrived at this special solution of the tidal equation were objected to by Airy and Ferrel, but the matter has been, as we think. more fully cleared up by Dr G. H. Lipg, in 8 memoir published in the Ammols of Mashematics in 1896 . He seems to bave shown that, although a literally correct result was attained by Laplace in his frrt investigntion, yet his methods as presented in the Mfecanigut chesce were at fault from a rigorous analytical point of vew. The process by which a diurnal temperature wave prodices a semidiurnal preasure oucillation, as explained by Rayleigh and Margules, may be stated as follows: The ciurnal temperature wave having a twenty-four hours period is the generating force of a diurnal pressure tide, which is escentially a forced and small osciliation. The natural period of the free waves in the atmosphere agrees much more ncarly with twelve than with twenty-four hours. In so far as the forced and the free waves reinforce each other, the semi-diurnal waves are reiuforced far more than the other, so that a very small semi-diurnal term in the temperature oscillations will produce a pressure oscilation t wo or three times as large as the same term would in the diurnal period. These reinforcemente, however, depend upon the chastic pressure within the atmosphere, just as dbes the velocity of mound. If the prevailing barometric pressurcs were slightly increased, the adjustment of the twelve-hours free wave of pressure to the forced wave of temperature could be so periect that the barometric wave Fould incscase to an indefinite extent. For the act ual temperatures the periodicity of the free wave is about thirtecn hours, or somewhat longer than the forced wave of temperature, so that the barometric oscilation does not become excessive. It would seem that we have here a suggestion to the effect that it in past geological ages the average temperature at any time has been about $268^{\circ} \mathrm{C}$. on the absolute acale, then the pressure waves could have been so large as to produce remarkable and perhape disastrous consequences, involving the loss of a portion of the atmosphere. A modification of this idca o resonance has been developed by Dr Jaerisch, of Hamburg (Met. Zeit., 1907), but the general truth of the Kelvin-Margulce-Rayleigh theorem still abides.

The Thermodynamics of a Moist Atmosphere.-The preceding section deals with an incompressible gas, and therefore with simple, pare hydrodynamics. If now we introduce the conception of an atmosphere of compressible gas, whose density increases with altitude, so that rising and falling currents change their temperatures by reason of the expansion and compression of the masses of air, we take the first step in the combination of thermodynamic and hydrodynamic conditions. If we next introduce moisture, and take precipitation Into consideration, we pass to the difficult problems of cloud and rain that correspond mare nearly to those which sectually oceur in meteorology. This combination has been elucidated by the worko of Espy and Ferrel in America, Kelvin in England Hann and Margules in Austria, but especia!!y by llertz, Helmholtz. and von Bezold in Germany, and by Brillouin in France. A general review of the subject will be found in Professor Bigelow's report on the cloud work of the U.S. Wcather Burcau and his subsequent memoirs "On the Thermodynamics of the Atmosphere" (Monthly Weather Review, 1906-1909).
The proper treatment of this subject began with the memoir of Kelvín on convective equilibrium (sec Trans. Manchester Phil. Soc. 1861). The most convenient method of dealing approximately with the problems is graphic and numerical mather than analytical and in this field the pioncer work was done by Hertz, who published his diagram for adiabatic changes in the atmosphere in the Met. Zefl. in 1884. He considers the adiabatic changes of a kilogram of mixed air and aqueous vapour, the proportional weights of each being λ and μ respectively. In a subsequent elaborate treatment of the mane subject by von Bezold in four memoirs published during $\mathbf{8 8 9}$ and 1899 . the formalae and methods are arranged so as to deal easily with the ordinary cascs of nature which are not adiabatic; he therefore prepares diagrams and tables to illustrate the changes going on in a unit mass of dry air to which has been added a small quantity of aqueous vapour, which, of course, may vary to any extent. Both Hertz and von Bezold consider separately four stages or conditions of atmosphere: (A) The dry stage, where aqueous vapour to a limited extent only is mixed with the dry air. (B) The rain stage, where both saturated vapour and kiquid partieles are simultancously present (C) The hail stage, where saturated aqueous vapour, and water, and ice are all three present. (D) The snow stage, where ice vapour and mow itself, or crystals of ice, are present. The exprestions aqueous vapour and ice vapour do not occur in Hertz's article, but are now mecesary, since Marvin; Fischer and Juhlin have been able to show that vapour from water and vapour from ice exert different clastic pressures, and must therefore represcnt diferent modifications of
oquid vaters. Aecording to Hertz, we may cadily follow this masa of moist air as it rises in the atmosphere, if by expansion it coole adiabatically so as to go succescively through the four preceding stages. For a few thousand íeet it remains dry air. It then becomes cloudy and enters the sccond stage. Next it rises higher until the cloudy particles begin to freeze into snow, sleet or hail, which characterizes the third stage. When the water has frozen and the cloud has ascended higher it contains only ice particles and the vapour of ice, a condition which characterizes the fourth or snow stage. If in this condition we give it plenty af time the precipitated ice or snow may setted down, and the cloudy air, becoming clear, return to the first stage; but the ordinary process in nature is a circulation hy which both the cloud and the air descend together slowly, warming up as they descend, so that eventually the mixture returns to the first stage at some level lower than the clouds, though higher than the starting-point.

The exact study of the ordinary non-adiabatic process can be carried out by the help of Professor Bigelow's tables, and eqpectally by the very ingenious tables published by Neuhof (Berlin, 1900), but the approximate adiabatic study is so helpful that in fig. 10 wc have traced a few lines from Hertz's diagram sufficient to illustrate in use and convenience. The reader will perccive a horizontal line at the base representing sea-level; near the middle of thls line is zero centigrade ${ }_{i}$ as we ascend above this base into the upper regions of the air we come under lower pressures, which are shown by the figures on the left:hand side. The scale of pressures is logarithmic, so that the corresponding altitudes would be a scale of equal parts. The temperature and pressure at any height in the atmosphere are shown by this diagram. If the air be saturated at a given temperature, then the unit volume can contain only a definite number of grams of water, and this condition is represented by a set of moisture lines, indicated by short dashes, show-

atuer Eierts
Fic. io.-Diagram for Graphit Method of following Adiabati Changes. ing the temperature and pres sure under which 5 , 10 or 20 grams of water may be contained in the saturated air. Let us now suppose that we are following the behaviour of a kilogram mass of air rising from near sca-level, where it has a pressure of 750 millimetres, a temperature of $27^{\circ} \mathrm{C}$., and a relative humidity of 50% A pointer pressing down upon the diagram at 750 millimetres and $27^{\circ} \mathrm{C}$. will represent this initial condition. A line drawn through that point parallel to the moisturo lines will show that if this air were saturnted it would contain about 22 grams of water; but inasmuch as the relative humidity is only 50% therefore it actually contains only 11 grams of water, and an auxitiary moisture line may be drawn for this amount. If now the mass risca and cools by expansion, the relation between pressure and temperature will be shown by the line a a. When this line inter sects the inclined moisture line for 11 grams of water we know that the rising mase has cooled to saturation, and this occurs when the pressure is about 640 millimetres and the temperature $13.2^{\circ} \mathrm{C}$. By further ribe and expansion a steady condensation continues, but by reason of the latent heat evolved the rate of cooling is diminished and followe the line $\beta \beta$. The condensed vapour or cloud particles are bere supposed to be carried up with the cooling air, but the temperature of freezing or zero degrees centigrade is soon attained-as the diagram shows-when the pressure is about 472 millimetres. At this point the special evolution of tatent heat of freezing comes into play; and although the air rises higher and more moisture is condensed, the temperature does not fall because the water already converted into vapour and now becoming ice is giving out latent heat sufficient to counteract the cooling due to expansion. This illustration from Hertz's diagrem therefore shows that the curve for cooling temperature coincldes with the vertical line for freczing, and is represented on the diagram by the short piece $\boldsymbol{\beta} \boldsymbol{\gamma}$. By this expansion due to ascent the volume is increased while the temperature is not changed; therefore, the quantity of aqucoua vapour has increased. When the ascending mass has reached the level where the pressure is 463 millimetres it has also reached the moisture line that represents this increase in aqueous vapour. Aa this shows that the aqueous particles have now all been frozen, and as the anr is now continuously rising, while its temperature is always betow freezing-point, therefore at levels above this point the vapour that condenses from the air is supposed to pass direetly over into the condition of solid lce. Thercfore from this point onwards the falling temperatures follow along the line $\boldsymbol{\gamma} \boldsymbol{\gamma}$. and continue atong it indefinitely. From these considerations it follows that the cloudy above the altitude of íreezing temperatures are casentially anow crystals, and if the air rises alowly there may be time for the water and ice to settle down towards the ground; in this cat the quapilty
of snow left within the clouds must be very small, and the cloud has the delicate appearance peculiar to cirrus. Hertz's original diagram is quite covered by these systems ol a, β, γ and δ lines, and the mossture lines. The lines show the density of the moist air at any stage of the process. The improved diagram by Neuhoff, published in 1900, is reprinted in the second volume of Abbe's Mechrness of the Earth's Atmosplere, and its arrangements help to solve many problems suggested by the recent progress of aerial research.

In von Bezold's treatment of this subject only illustrative diagrams are published, because the accurate figures, drawn to scale, are necessarily too large and detailed. He presents graphically the exact explanation of the cooling by expansion, the loss of both mass and heat by the rainfall and snowfall, and the warmth of the remaining air when it descends as foehn winds in Switzerland and chinook winds in Montana. Even in the neighbourtood of a storm over low lands and the ocean, the warm moist air in front, after being carried up to the rain or snow stage, flows away on the upper west wind until a corresponding portion of the latter descends drier and warmer on the opposite side of the central low pressure. In order to have a convenient term expressive of the fact that two masses of air in different portions of the atmosphere having different pressures, temperatures and moistures, would, if brought to the same pressure, also necessarily attain the same temperature, von-Bezold introduced the expression "potential temperature," and devised a simple diagram by which the potential temperature may be determined for any mass of air whose present temperature, pressure and moisture are known. In an ascending mass of air, from the beginning of the condensation onwards, the potential temperature steadily increases by reason of the loss of moisture, but in a descending mass of air it remains constant at the maximum value attained by it at the highest point of its previous path. In general the potential temperatures of the upper strata of the atmosphere are higher than those of the lower. In general the so-called vertical temperature gradient is smaller than would correspond to the adiabatic rate for the dry stage. This latter gradient is $0.993^{\circ} \mathrm{C}$. per hundred metres for the dry stage, but the actual at mospheric observations give about 0.6°. Apparentiy this difference represents primarily the latent heat evolved by the condensation of vapour as it is carricd into the upper layers, but it also denotes in part the effect of the radiant heat directly retained in the atmosphere by the action of the dust and the aurfaces of the clouds. Passing from simple chances due to ascent and descent, von Eczold next investigated the results of the mixture of different massen of air, having different temperatures and humidities, or diffecnt potential temperatures. The importance of auch mixtures was exaggerated by Hutton, white that of thermodynamic processes was maintained by Espy, but the relative agnificance of the two was first clearly shown by Hann as far as it relates to the formation of rain, and further details have been considered by von Bezold. The practical tables contained in Professor Bigelow's report on clouds, and those of Neuhoff as arranged for the use of those who follow up von Bezold's train of thought, complete our methods of studying this subject.

A most important application of the views of von Besold. Hertz and Helmholtz was published by Brillouiv in his memoir of 1898. Just as we have lcarned that the motions of the atmosphere are not due either to the general distribution of heat or to local influences exclusively, but in gart to each, and just as we have learned that the temperature of the at is not clue cither to radiation and absorption or to dynamic procsasus exclusively. but to both combined, so in the phenomena of rain and cloud the precipitation is not always due to the cooling by mixt ure, or to the cooling by expansion, or to radiation, but is in general a complex resulis of all. The effect of the evaporation of eloudy particles in the production of descending cold currents has always been understood in a general way, but was first lirought to prominence by Espy in 1838, and perhaps equally forcibly by Faye in 1875 . Helmholtz, in his memoirs on billows in the atmosphere, showed bow contiguous currents may interact on each other and mix together at their boundary surface; but Brillouin explains how these mixtures produce cloud and rain-not heavy rins, of course, but light showers, and apits of snow a nd possibly hail. He says: "When the layers of clear or cloudy air are contiguous, but moving with very different velocities, their motion, ralative to the earth because of the rotation of our globe, assumes a much more complicated character than that which obtains when the air has no horizontal but only a vertical motion. We know in a gemeral manner what apparent auxiliary forces must be introduced in order to take into account this rotation, and numerous meteorologists have published important works on the subject since the first memoir by Ferrel. But their points of view have been very different ifom mine. The subjects that I desire to study are the surfaces of discontinuity as to velocity, temperature and cloudiness in one epecial case only. Analytical pethods permit us to resolve complex questions only for limited reas In longitude and for contiguous mones within which the movements are steady, but not necessarily uniform nor parallel. But it is evident that one can learm much as to the condition of permanence or destruction of annular zones laving uniform and parallel movementa. Thus simplified. the questions can be treated by elementary geometric methods, by means of which we at once pediacover and compleve the rewults given by

Helmholtz for zones of clear air and discover a whole series of thew results for zones of cloudy aur." Among Briltouin's results are the following theorems:-
A. If the atmosphere be divided into narrow sonal rings, each extending completely dround the globe, thus covering a narrow zone of latitude, and if each is within itelf in convective equilibrium so that the surfaces of equal prespure shall be surfaces of revolution around the axis of rotation, then within any auch complete ring in convective equilibnum the angular velocity of any particle of the air will vary in Inverse ratio of the square of its distance from the axis of rotation, or ar is constant ; that is to say, the air will not mowe like a rotating solid, but will have a variable angular velocity, maller far from the axis and greater near to it.
B. The wurfaces of equal pressure are more concave towards the centre than is the surface of the globe itself, and they are tangent to the latter only along the parallel where calms prevail.
C. A heavy gaseous atmosphere resting upon a rotating frictionleas globe divides itself into concentric rings whoee angular movements incresse as we pass from the polar refion towards the equa torial ring; the central globe rotates more rapidly than the equatorial atmospheric ring.
D. The surface of reparation between two contiguous concentric rings must be such that the atmospheric pressure shall have the same value as one approaches this surface from either direction, and the surface of separation is stable if the differences of pressure in different parts of this surface are directed towards the surface of equilibrium. As the distribution of preasure along a line parallel to the axis of rotation is independent of the velocity of rotation, the ordinary condition of stability, viz. that the gas of which the lower ring is composed shall be denser than that above, will hold good for this line. In general, any inclination of the surface of separation to the horizon amounting to 10° must be associated with very sunat differences of density and large differences of velocity; in practice the inclinations are far less than 10°.
. If the surlaces of equal pressure or isobars are nearly horizontal, as in ordinary cases, the calculations are comparatively easy to make. Let the inclination of the isobaric surface ascending towards the pole be $s ;$ let h_{1} be a distance counted along the axis of the earth, and H_{1} the distance measured in the direction of the attraction of gravity; then the angle of inclination of the isobaric surface is given by the equation

$$
\tan \phi=-\frac{H_{1}-h_{1} \sin \lambda}{h_{1} \cos \lambda}
$$

where λ is the complement of the angle betdeen the direction of gravity and the line drawn to the poles, or the axis of rotation of the carth. The surface of separation is that over which the pressure is the same in two contiguous masses or zones, and is identical with a vertical plane only when the densities and velocities in the two layers have certain specific relations to each other. It can never lic between the isobaric surfaces that Brillouin designates as 1 and 2 . In order that the equilibrium may be stable, it is necessary that when ascending in the atmosphere along a line parallel to the polar axis one should traverse layers of diminishing density. In the midst of any zone there cannot exist another zone of limited altitude; it must extend upwards indefinitely. Whenever there is any zone of limited altitude it must necessarily have, near its highest or lowest point, an edge by which it is attached to the surface of separation of two other neighbouring zones, In other words, the surfaces of separation of the three zones, of which one is limited and the other two are indefinite, must all run together at a com:am, int or edge, very much as in the problem of the equilibrium of thin films.
F. When the contiguous zones are cloudless the mixtures take place under the following conditions: Starting from the stable conditions, the cloudless mixture ascends on the polar sids when the west wiad which prevails on the equatorial side of the surface of separation is warmer but descends between the pole and the equa. torial dide of the horizon when the west wind ahich prevaile on the equatorial side of the surface of ecparation is colder. The mixtures of cloudless ajr rapidly occupy the u hole height of the two layere that are mixing: When they form along a surface that becomis unstable the whirlwind that is thus engerdered is sensibly cylindrical at frst. but finally becomes extremely conical. This whirlwisd may be limited as to height when the two contixuous masses that are mixing are surmounted by a third clear or cloudy layer which intersecta the other two and whose lower surface is stable. (Brillouin suggeata that possibly this corresponds to the (ormation of water-spoute and tornadoes.)
G. When the contiguous zones are cloudy and the mixtures produce decided condensations, and sometimes even precipitation, the study of theae must follow closely in the train of thought followed out by von Bezold. When the contiguous winds are feeble, but the temperatures are very different and the zones are near the equator, then the position of the mixture can be inverted by condensation, since the influence of difference of presure becomes predominant. At the equator, whatever may be the difference of temperature, a mixture that is accompanied by condensation always risee if the surface of separation is stable. The condensation increases by the expansion, each zone of mixture being an outburst of ascend. ing cumuli. At the equator, whatever may be the difference of
cemperature, a mixture accompanied by condensation always descends when the surface of separation is unstable: moreover, the adiabatic compression rapidly evaporatea the mixture.
In the last three chapters of his memoir, Brillouin applies these principles and other details to almost every observed variety of mistures due to the pressure of one current of air against another. Fig. 11, prepared lor the U.S. Monthly Weather Revirw (Oct.

Ather Brillouin.
Fig. 11.-Diagram illustrating Clouds due to Mixture.
1897), gives five of the cases elucidated by Brillouin. In each of these the left-hand side of the diagram is the polar side, the air being cold above and the wind from the east, while the right-hand side in the equatorial side, the air being warm above and the wind from the west. The reader will sce that in ench ease, depending on the relative temperatures and winds, layers of cloud are formed of marked individuality. As none of these clouds appear in the International Cloud Alizs or the various spsteme of notation for clouds, one is all the more impressed with the importance of their study and the success with which Brillouin has opened up the way for future investigators."We have no longer to do with permonal and local experience, but with an analytical description of a amall number of characteristics easy to comprehend and applicable at every locality throughout the globe."
From a thermodynamic point of view the most important study is that published by Margules, Ueber die Emergis der Sturme (Vienna, 1905). This work considers only the total energy and its adiabatic transformations within a mass of air constituting a closed system. Truly adiabatic changes in closed systems do not oceur within any special portion of the earth's atmoephere. neither can our entire atmosphere be considered as one such system-but Margules' rebults are approximately applicable to many observed cases and complete the demonstration of the general truth that we must not confine our studies to the simpler cascs treated by Espy. Reye, Sohncke. Peslin, Ferrel, Mohn. All Imaginable combinations of conditions exist in our atmouphere, and a method must be found to treat the whole subject comprehensively and rigorously.
The three equations of energy on which Margules bases his work are:-

$$
\begin{aligned}
& \mathrm{R}+\delta(\mathrm{K}+\mathrm{P})+\delta A=0 \\
& \mathrm{R}+\delta(\mathrm{K}+\mathrm{P}=\mathrm{P})+\delta \mathrm{A}=\mathrm{g}
\end{aligned}
$$

where \mathbf{R}-encrgy lost by friction or converted into heat; $\mathrm{K}=$ kinetic energy due to velocity of moving masses; P e potential energy due to location and gravity and pressure heat; $A=$ work done by internal forces when air is expanding or contracting: 1 -internal energy due to the existing pressure and temperature; Q = quantity of heat or thermal enengy added or lost during any operation and which is zero during adiabatic processes only.
These equations are applied to cases in which masees of air of different temperatures and moistures nre superposed and then left free to assume stable equilibrium. It rosulta in every case that there is no fres energy developed. Any cordensation of moisture by expan-
sion is counterbalanced by recistribution of poterntial energy and by the work dope in the interchange of locations. The idea that barometric pressure gradients make the storm-winds is seen to be erroncous and the primary importance of gravity gradients is brought to light. "The source of a storm is to be sought only in the potential energy of position and in the velocity of ascent and deacent. although these are generally lost sight of owing to the great horizonzal and small vertical dimensions of the storm arcas the horizontal distribution of preseure seems to be a forced transformation within the storm areas at the boundary surface of the earth, hy reason of which a small part of the mass of air acquires a greater velocity than it could by ascending in the coldest or sinking in the warment part of the storm areas. But here we come to problems that cannot be solved by considering the energy only."
This latter quotation emphasizes the necessity of returning to the equations of motion. The thermodynamics and hydrodynamics of the atmosphere must be studied in intimate connexion-they can no longer be studied separately. Apparently we may expect this next step to be taken in the above-mentoned work promised by V. Bjerknes, but meanwhile Professor F. H. Bigelow has successfully attacked some fentures of the problem in his "Studies on the Thermodynamics of the Atmosphere" (Monthly Weather Reviete. Jan.-Dec. 1906). In ch. iii. of his studies (Monihly Wealher Rewieto, March 1906) Bigelow establishes a thermodynamic formula applicable to non-adiabatic processes by introducing a factor n so that the pressure (P) and absolute temperature (T) are connected by the Cormula

$$
\frac{P_{6}}{P^{\prime}}=\left(\frac{T}{T_{2}}\right)^{\operatorname{an}(\cos -2)}
$$

In our fig. I aboye given, Cottier has assumed $m=1 \cdot 2$, but as the values have now been computed for all altitudes from the observations given by balloons and kites, and have a very general importance and interest, we copy them from Bigelow's Table 16 as below:-
The existence of such large values of n shows the great extent to which non-adiabatic processes enter into atmospheric physics. Heat is being radiated, absorbed, transferred and transformed on all occasions and at all altitudes. Knowing thus the thermodynamic structure of areas of high and low pressure we find the modifications needed in the energy formula for non-adinbatic processes-and Bigelow applies the resulting formula most satisfactorily to a famous waterspout of the 19th of August 1896 over Nantucket Sound, for which many photographs and measurements are available. The thermodynamic study of this waterspout being thus accomplished it was followed by a combined thermohydrodynamic atudy of all

Altituder.	Values of n between successive levels.						All.
	America.		Europe.		Both A. and E.		
	Winter.	Summer.	Winter.	Summer.	Winter.	Summer.	
$\underset{\text { kid. }}{\text { kid }}$	3.04	2.82	3.04	3.59	$3-04$	3.20	
14-12	4-39	2.82	4.39	$3 \cdot 4$	4.39	3.20 2.93	3.12
12-10	$2 \cdot 06$	$1 \cdot 72$	$2 \cdot 08$	1.64	208	1.68	1.88
$10-9$	1.52	1.47	1.53	1.41	1.52	1.45	1.48
9-8	1.39 1.41	1.41	1.41	x.32	1.40	1.36	1.38
8-7	1.41 1.45	1.52 1.67	I 4.41 1.41	1.41 1.52	1.41 1.43	1.46 1.60	1.44 1.52
6-5	1.52	1.52	1.45	1.62	1.46	1.57	1.52
5-4	1.79	1.42	1.67	$1 \cdot 70$	$1 \cdot 73$	1.56	1.64
${ }^{4-3}$	1.97 2.10	1.32 1.65	1.79 3.91	1.94	1.88	1.63	1.76
3-2	2.10 3.52 2.	1.65 1.83	2.01 2.24 2.4	2.30 1.67	2.06 2.88	1.98 1.75	2.02 2.32
1-0	$2 \cdot 30$	1.83	2.44 2.47	1.64	2.38	1.74	2.06

storms (Monthly Weather Review, November 1907-March 1909) with considerable success.
We have thus passed in review the steady progress of mathematical physicists in their efforts to unravel the complex dynamice of our atmosphere. The profound importance of this subject to governmental weather bureaus, and through them to the whole civilized world, stimulates diligent effort to overcome the inherent difficulties of the problems. An elaborate system of study and laboratory experimentation leading up to rescarch in meteorology has been devised by Cleveland Abbe, culminating in experiments on models of the atmosphere as a whole by which to clucidate both the local and the general circulations on globes whose orography and distribution of land and water is as irregular as that of the carth.
The Formation of Rain.-Not only has dynamic metcorology made the progress delineated in the previous sections, but one of the most important questions in molecular physice is in process of being cleared up. The study of at mospheric nuclei and condensation and the formation of clouds in their relation to daily meteorological work began with the appoint ment of Dr Carl Barus in 1891 as physicist to the U.S. Weather Bureau, and his work has been laboriously continued and extended in his laboratory at Providence, Rhode Island. The formation of rain, from a physical point of view,
is the ultimate step is the formation of cloud. The cloud consists, like fog, of extremely amall particles, wo light that they float indefinitely in the air; rain and snow represent those particles that have grown to be too large and heavy to be any longer sustained by the air-that is to say, their rate of fall through the air is greater than the ascending component of the air in which they float. The process by which larger drops are formed out of the lighter particles that constitute a cloud has not yet been satisfactorily explained. It is probable that either one of several processes contributes to bring about this result, and that in some cases all of these conspire together. The foliowing paragraphs represent the hypotheses that have marked the gradual progress of our knowledge:-
A. Cioud particles may be driven together by the motions imparted to them by the wind, and may thus mechanically unite into larger ones, which, as they descend more rapidly, overtake the smaller ones and grow into rain-drops.
B. The particles on the upper boundary of a cloud may at night. time, or in the shade, cool more decidedly than their neighbours below them, either by radiation or by mixt ure; then the air in their immediate vicinity becomes correspondingly cold, the particles and their envelopes of cold air sink more rapidly, overtaking, and therefore uniting, with other particies until the large rain-drops are formed.
C. Some cloud particles may be supposed to be electrified positively and others negatively, causing them to attract each other and run together into larger ones, or, again, some may be neutral and others charged, which may also bring a bout att raction and union.
D. When any violent agitation of the air, such as the sound waves due to thunder, or cannonading, or other explosions, sets the particles in motion, they may be driven together until brought into contact, and united into larger drops.
E. The air-or, properly, speaking, the vapour-between cloudy particles-that is to say, within fog or cloud, is generally in a slate of supersaturation; but if it is steadily rising to higher altitudes, thereby expanding and cooling. the supersaturation must increase steadily until it reaches a degree at which the molecular strain gives way, and a sudden violent condensation takes place, in which process both the vapour and the cloud particles within a comparatively large sphere are instantaneously gathered into a large drop The electricity that may be developed in this process may give rise to the lightning flash, instead of the reverse process described in the preceding paragraphs (C and D).
F. However plausible the preceding five hypotheses have seened to be, it must be conlessed that no one has ever yet observed precipitation actually formed by these processes. The laborious observations of C. T. R. Wilson of Cambridge, England, probably give us our first correct idea as to the molecular processes involved in the formation of rain. After having followed up the methods inaugurated by Aitken showing that the particles of dust floating in the air, no matter of what they may be composed, become by preference the nuclei upon which the moist ure begins to condense when air is cooled by expansion, Wilson then showed that in absolutely dustless air, having therefore no nuclei to facilitate condensation, the latter could only occur when the air is cooled to a much greater extent than in the case of the presence of dust; in lact. dustless air requires to be expanded more than dusty air in the ratio of 4 to 3 . or It times more. The amount of this larger expansion may vary somewhat with the temperature, the moist ure and the gases. More remarkable still, he showed that dustless air, having no visible or probable nuclei, acquired such nuclei when a beam of ultra-violet light, or of the rontgen mays, or the uramium radiation, or of ordinary ounlight (which possibly contains all of these radiations), was allowed to pass through the moist air in his experimental tube. In other words, these rays produce a change in the mixed gas-and vapour similar to the formation of nuclei, and condensation of aqucous vapour cakes place upon these invisible nuclei as readily as upon the visible dust nuclei. Further, the presence of certain metala within the experimental tube also produces nuclei; but the amount of expanston, and therefore of cooling, required to produce condensation upon these metallic nuclei is rather larger than in the case of dust nuclei. The nuclei thrown into the experimental tube by the discharge of electricity from a pointed metal wire produced very dense fogs by means of expansions slightly exceeding those required lor ordinary dust. Finally, Wilson has been able to show that when dust particles are electrified negatively their tendency to condense vapour upon themselves as nuclei is much greater than when they are clectrified positively, and he suggests that the descent of the rain-drops to the ground, carrying negative electricity from the atmosphere to the earth, may perhaps explain the negative charge of the earth and the positive electricity of the atmosphere.

At chis point we come into contact with the views developed by J. J. Thomson as to the nature of electricity and the prenence of negative and positive nuclei in the atmosphere. According to him, "Ihe molecules made up of what chemists call atoms must be still further subdivided, and the atoms must be conceived as made up of corpuacles; the mass of a corpuscle is the same as the mase of the negative ion in a gas at low pressure. In the normal atom this aspemblage of corpuscles forms a system which is electrical and neutral. Though the individual corpuscles behave like negative ions, yet when they are assembled in a neutral atom the negative effect is balanced by something which ca uscs the space through which
the corpuscles are opread to act as if it had a charge of positive electricity equal in amount to the sum of the negative charges on the corpuscles. I regard electrification of a gas as due to the splitting up of some of the atoms of the gas. resulting in the detachment of a corpuscle from such atoms. The detached corpuscles behave like negative ions, each carrying a constant negative charge which we shall call the unit charge, while the part of the atom left behind behaves like a positive ion with the units positively charged but with a mass that is large compared with that of the negative ion. In a case of the ionimation of the gas by rointgen or uranium rays, the evidence seems to be in favour of the view that not more than one corpuscle can be detached from any one atom. Now the ions by virtue of their negative charges act as nuclei around which drops of water condense when moist duat-free gas is suddenly expanded. . . . C. T. R. Wilson has shown that it requires a considerably greater expansion to produce a cloud in dust-free air on positive ions than on nesative enes, when the ions are produroed by rontgen rays." It would therefore appear that the moist aemosphere above us may, through the action of sunlight of the lightning flash as well as by other means, become ionized. The negative ions attract moisture to themselves more readily than the positive; they grow to be larger drops, and descending to the earth with their negatlve charges give it nexative electricity, while the atmosphere is left essentially Either positive or neutral. (See also Atmospherre Electaicity.)
IV.-Cosjncal Meteorolocy

Under this title have been included all possible, plausible or imaginary relations between the earth's atmosphere and interplanetary space or the heavenly bodies. The diffusion to and fro at the outer limit of the atmosphere, the bombardment by ions from the sun, the explanation of auroral lights and of magnetic storms, the influence of shooting stars and comet tails, the relation of the zodiacal light and the Gegenschein to the atmosphere, the parallelisms between terrestrial phenomena and the variations of the solar spots and protuberances, the origin of long or short cimatic periods, the cause of special widespread cold days, the existence of lunar or solar gravitation tides analogous to oceanic tides, the influence of slow changes in the earth's orbit or the carth's axis of rotation -all are grouped under cosmical meteorology.

But, in the writer's judgment these matters, while curious and interesting, have no appreciable bearing on the current important questions of atmospheric mechanics. There seem to be many widespread delusions and mistakes in regard to these probtems, analogous to the popular errors in regand to astrology, and it is hardly necessary to do more than allude to them here. The leading metcorologists have relegated such questions to the care of theoretical astronomers and physicists until our knowledge is moro firmly established. Undoubtedly the earth does come under other influences than that of the radiation from the sun; but in the present stage of dynamic meteorology ve consider only this latter, and, assuming it to be constant as regards quantity and quality, we find the variable selective absorptions and reflections within our own atmosphere, and its compler internal mechanism afford us a bewildering maze of problems such that 80 long as these are unsolved it would be folly to spend cime on those.

V.-Metrorological Organizations

During the latter half of the roth century the prosecution of work in metcorology gradually passed out of the hands of individuals into the control of large national organizations. This was the natural result of the discovery that, by the spread of the elcctric telcgraph and occan cables, it had become possible to compile daily weather-maps for large portions of the globe and make predictions of the weather and the storms for a day or two in advance, of sufficient accuracy to be of the greatest importance to the material interests of civilized nations. The development of wireless telegraphy since 1900 has even made it possible for isolated ships at sea to exchange weather telegrams, compile daily maps and study surrounding storms. One by one every civilized nation has established cither a weather bureau or a meteorological ofice, or a bureau of hydrography and marine meteorology, or an elaborate establishment for aerial explorations according as its special interests demanded. These governmental bureaus usually pursue both climatology and theoretical meteoroloyy in addition to their daily practical
mork of telegraphy, forecasting, and publication of charts. Although, of course, in most cases, the so-called practical work absorbs the greater part of the labour and the funds, yet everywhere it is recognized that research and the development of a correct theory of the motions of the atmosphere are essential to any important progress in the art of iorecasting. Among ocher important general works in which the official weather bureaus have united, wo may enumerate the International Meteorological Congresses, of which the first was held in 1853 at Brussels, the second in $\mathbf{8} 73$ at Vienna, and others more frequently since that date; the establishment of an International Committee, to which questions of general interest are referred; the organization of a systematic exploration of the polar regions in the years 1882 and 1883; the general extension of the meteorological services to include terrestrial magnetism as an essential part of the physics of the globe; the systematic exploration of the upper atmosphere by means of kites and balloons; and the universal co-operation with the U.S. Weather Bureau in the contribution of simultaneous data for its international bulletin and its daily map of the whole northern hemisphere. The hydrographic offices and marine bureaus of the principal commercial nations have united so far as practicable in the daily charting of the weather, but have especially developed the study of the climatology of the ocean, not only along the lines laid down by Maury and the Brussels Conference of 1853 , but also with particular reference to the tracks of storm centres and the laws of storms on the ocean. The condition of these governmental organizations was discussed in the annual address of the Hon. F. Campbell Bayard, delivered before the Royal Meteorological Society of London in January 1899, and in the text accompanying Bartholomew's Physical Allos, vol. iii.

The development of meteorology, in both its scientific and its practical aspects, is intimarely dependent upon the progress of our knowledge of physics, and its study offers innumerable problems that can be solved only by proper combinations of mathematical theory and laboratory experimentation. The professors in colleges and universities who have bitherto lectured on this subject have not failed to develop some features of dynamic meteorology, although most of their attention has been given to climatology. In fact, many of them have been engrossed in the study of general problems in molecular physics, and could give meteorology only a small part of their attention. The early textbooks on meteorology were frequently mere chapters or sections of general treatises on physics or chemistry. The few prominent early cases of university professorships devoted to meteorology are those of the eminent Professor Heinrich Wilhelm Dove at Berlin, Professor Adolphe Quetelet at Brussels and Professor Ludwig Friedrich Kaemtz at Halle and Dorpat. In modern times we may point to Professor Wilhelm von Bezold and George Hellmann at Berlin, Professor Julius Hann at Vienna and Gratz, Professor Josef Maria Pernter at Linz and Vlenna, Professor Alexander Woeik of at St Petersburg, Professors Hugo Hildebrand-Hildebrandsson at Upsala, Henrik Mohn at Christiania, Elins Loomis at New Haven, Connecticut, W. M. Davis and R. de C. Ward at Cambridge, Massachusetts, Alfred Angot and Marcel Brillouin at Paris, Hugo Hergesell at Strassburg, Arthur Schuster at Manchester, Peter Polis at Bonn, and Richard Bornstein at the School of Agriculture in Berlin. With these exceptions the great universities of the world have as yet given but little special encouragement to meteorology, it has even been stated that there is no great demand for higher education on the subject. On the other hand, the existence of thousands of voluntary observers, the profound interest in the weather actually taken by every individual, and the numerous schemes for utilizing our very limited knowledge of the subject through the activities of the large weather burcaus of the world demonstrate that there is a demand for knowledge perhaps even higher than the universties can offer It would be very creditable to a nation or to a wealthy patron oi science if there should be established meteorologlcal laboratones in connexion with important universities, at which not only instruction but especially investigation might be pursued, as is
done at the magnificent astronomical observatories that are so numerous throughout the world. Every atmospheric phenomenon can be materially elucidated by exact laboratory experiments and measurements. theory can be confronted with facts; and the student can become an original investigator in meteorology.

The great difficulties inherent to meteorology should stimulate the devotion of the highest talent to the progress of this branch of science. The practical value of weather predictions justifies the expenditure of money and labour in order to improve them in every detail.

Bubliograyhy.- Those who desire recent additions to our knowledge should consult first Hann's Lehrbuch der Meteorigie (2nd ed. Leiprig, 1906) as being a systematic encyclopaedia. (t equal impor: tance is the Meleorologische Zeitschrift (Berlin and Vienna, 1866 to date). The dillas of Metcorology (Bartholomew, 1 gor, the Quarierly Journal of the Royal Metcorological Sociciy (Lontion) and the Monihly Weather Review (Washington) are the wolle most convenient to English readers and abound wich references to current likerature The Physical Review Science Abstracts nid the Fort schrille der Physik contain short notices of all imporiant memoira and will serve to direct the student's aftention towaral any epecial topic that may interest him.
(C. A.)

METERR, ELECTRIC. In the puhlic supply of electric energy for lighting and power it is necessary to provide for the measurement of the electric energy or quantity by devices which are called electric meters. Those in use may be classified in several ways: (i) according to the kind of electric supply they are fitted to measure, e.g. Whether continuous current or alternating current, and if the latter, whether monophase or polyphase; (ii) according to whether they record intermittently or continuously; (iii) according to the principle of their action, whether mechanical or electrolytic; (iv) according to the nature of the measurement, whether quantity or energy ineters. The last subdivision is fundamental. Meters intended to measure electric energy (which is really the subject of the sale and purchase) are called joule meters, or generally watt-hour meters. Mcters intended to measure electric quantity are called coulomb meters and also ampero-hour meters; they are employed for the measurement of public electric supply on the assumption that the electromotive force or pressure is constant. Most of the practical meters in use at the present time may be classified under the following five heads: electrolytic meters, motor meters, clock meters, intermittent registering meters and induction meters.
Electrolytic Meters are exclusively ampere-hour meters, measuring electric quantity directly and electric energy only indirectly, on the assumption ihat the pressure of the supply is constant. The first electrolytic house meter in connexion with public electric supply was described by St. George Lane-Fox. He was followed by F. J. Sprague and T. A. Edison, the last-named inventor elaborating a type of meter which he employed in connexion with his systent of elecrric lighting in its early days. The Edison electric meter, like those of Sprague and Lanc-Fox, was based upon the principle that when an electric current flows through an electrolyte, such as sulphate of copper or sulphate of zinc, the electrodes being plates of copper or zinc, melal is dissolved off one plate (the anode) and deposited on the other plate (the cathode). It consisted of a glase vessel. containing a solution of sulphate of zinc, in which were placed two plates of pure amalgamated zine. These plates were connected by means of a german-silver shunt, their size and the distance between them being so adjusted that about rivo part of the current passing through the meter travelled through the electrolytic cell and potio of the current passed through the shunt. Before being placed in the cells the zinc plates were weighed. The shunted voltameter was then inserted in series with the electnc supply mains leading to the house or building taking electric energy, and the current whirh passed dissolved the zinc from one plate and deposited it upon the ocher, so that after a certain interval of time had elapeed the altered weight of the plates enahled the quantity of electricity to be determined from the known fact that an electric current of one amperf, flowing for one hour, removes 1.2133 grammes of zinc Irom a solution of sulphate of zinc. Hence the quantizy in amperehours passing through the electrolytic cell being known and the fraction of the whole quantuty taken by the cell bring known. the quantity supplicd to the house was determined. To prevent temperature from afterting the shunt ratio. Edison joined in series with the electrolytic cell a copper coil the resistance of which increased with a 1 ise of temperature by the same amount that the electrolyte decreazed. Owing to the cost and trouble of weighing a large number of zin plates, this type of meter fell into disuse.

A more modern type of electrolytic meter in that due to C. O. Bastian. ${ }^{1}$ The whole current supplied to the house flows through an electrolytic cell consisting of a glass tube containing two platinum electrodes; the electrolyte is dilute sulphuric acid covered with a thin layer of oil to prevent evaporation. As the current flows it decomposes the liquid and liberates oxygen and hydrogen gases, which escape. The quantity of electricity which is passed is estimated by the diminution in the volume of the liquid. A third electrolytic meter of the shunted voltameter type is that of A. Wright. In this meter the electrolyte is a solution of mercurous nitrate which is completely enclosed in a glass tube of a particular form, having a mercury anode and a platinum or carbon cathode. The current is determined by measuring the volume of the mercury delivered at the cathode. In the Long-Schattner electrolytic meter a solution of sulphate of copper is electrolyzed.

Motor Meters.-Amongst motor meters one well-known type belonging to the ampere-hour species is that of S. Z. Ferranti, who introduced it in 1883 . It consists of an electromagnet within the iron core of which is a flat disk-like cavity containing mercury, the sides of the cavity being stamped with grooves. The thin disk of mercury is therefore traversed perpendicularly by lines of magnetic force when the magnet is excited. The current to be measured is passed through the coils of the electromagnet, then enters the mercury disk at the centre, flows through it radially in all directions, and emerges at the periphery. The mass of mertury is thus set in motion owing to the tendency of a conductor conveying an electric current to move transversely across lines of magnetic force; it becomes in fact the armature of a simple form of dynamo, and rotates with a speed which increases with the strength of the current. The roughness of the surface of the cavity serves to retard it. The rotation of the mercury is detected and measured by means of a smail vane of platinum wire immersed in it, the shaft of this vane being connected by an endiess screw with a counting mechanism. The core of the electromagnet is worked at a point far below magnetic saturation (see MAGNBTISX) ; hence the field is nearly proportional to the square of the current, and the resistance offered to the rotating mercury by the friction against the sides of the cavity is aearly proportional to the square of the speed. It follows that the number of the revolutions the mercury makes in a given time is proportional to the quantity of electricity which is passed through the meter. In order to overcome the friction of the counting train, Ferranti ingeniously gave to the core of the electromagnet a certain amount of permanent magnetism. Another well-known motor meter, working on a somewhal similar principle, is that of Chamberlain and Hookham. In its improved form this meter consists of a single horseshoe permanent magnet formed of tungsten-steel having a strong and constant field. Two air-gape are made in this feld parallet to each other. In one of these a copper disk, caliod the brake disk, revolves. and in the other a copper armature disk. The latter is dit radially, and the magnetic field is so arranged that it perforates each half of the disk in opposite directions. The armature is immersed in a shallow vessel filled with mercury, which is insulated from the vessel and the armature, except at the ends of the copper stripa. The current to be measured passes transverscly across the disk and causes it to revolve in the magnetic field: at the same time the copper brake, geared on the same shaft, revolves in the field and has local or eddy currents produced in it which retard its action. The principle of the meter is to make the breaking and driving action 00 strong that the friction of the train becomes immaterial in comparison. This meter is an amperehour meter and applicable only to continuous current circuits. Another form of motor meter which is much used is that of Elihu Thomson. It takes the form of a small dynamo having an armature and ficld magnets without any iron core. The armature carries on its shaft a commutator made of silver slips, and the current is fed into the armature by meana of brushes of silver wire. The current to be measured passes through the fixed field-coils, whilst through the armature passes a shunt current obtained by connecting the brushes across the supply mains through a constant resistance. The driving force is balanced against a retarding force produced by the rotation or a copper disk fixed on the armature shaft, which rotates bet ween the poles of a permanent magnet. Induced or eddy currents are thus created in the copper disk, and the reaction of these againet the magnetic field offers a resistance to the rotation of the disk. Hence when a current is passed through the meter. the armature rotates and increases its speed until the driving force is balanced against the retarding force due to the eddy currents in the copper brake disk. In these circumstances the number of rotations made by the armature in a given time is proportional to the product of the strength of the current flowing through the armature and that fiowing through the field-coils, the lormer being the current to be measured. Hence the meter is a watt-hour meter and measurea electric energy. In order to overcome the friction of the train the field-coils are wound with an auxiliary shunt coil which supplics a driving force sufficiem to overcome the friction of the counting train. This last is geared 10 the shaft of the armature by an endless ecrew, and the number of revolutions of the armature is reckoned by the counting-dials, which are
${ }^{1}$ Sce Eladrician, 41, 112 , and Jours. Jnst. Elec. Eng. (London, 1898), 27, 547.
∞ arranged as to indicate the conmmption in Boand-of-Trade unita (1 Board-of-Trade unic $=1000$ watt-hours). A modification of the above meter with some mechanical improvements has been devised by S. Evershed.

Clock Melers.-Among clock metere the beat known is that of H. Aron, which is based upon a principle described by W. E. Ayrton and J. Perry in 1882. It can he constructed to be either an amperehour meter or a watt-hour meter, but is usually the latter. Its principle is as follows: Suppose there are two pendulum clocks, one having an ordinary pendulum and the other having a pendulum consisting of a fine coil of wire through which a current is passed proportional to the potential difference of the supply mains-in other words, a shuat current. Below this pendulum let there be placed another coil through which passes the current to be measured then when currents pass through these coils the pendulum of the second clock will.be either accelerated or zetarded relatively to the ocher clock, since the action of gravity is supplemented by that of an electric attraction or repulsion between the coils. Hence tbe second clock will gain or lose on the other. The two clock motions may be geared to a single counting mechanism which records the difference in the rates of going of the two clocks. It the difference of the number of oscilations made by the two pendulums in a given time is small compared to the number made by either of them separately, then it is easy to show that the power given to the circuit is measured by the gain or loss of one clock over the other in a given time, and can therefore be indicated on a counting mechanism or registering dials. By the use of a permanent magnet instead of a shunt coil as the bob of one pendulum, the meter can be made up at an ampere-hour meter. In this form it has the advantage that it can be used for either continuous or alternating currents.

In Intermillent Registering Meters some form of ampere-meter or watt-meter registers the current or power passing into the howes; and a clock motion electrically driven is made to take readings of the ampere-meter or watt-meter at definite intervals-say, every five minutes-and to add up these readings upon a set of registered diala The arrangement therefore integrates the amperc-hours or watt hours These meters, of which one well-known form is that of Johnson and Phillips, have the disadvantage of being unsuited lor the measurement of electric supply in those cases in which it it irregular or intermittent-as in a theatre or hotel.

Induction Melers are applicable only in the case of alternating curreni supply. One of the most widely used forms is the Westing house-Shallenberger. It consists of a disk of aluminium, the axs of which is geared to a counting mechanism and which runs bet ween the poles of permanent magnets that create eddy currents in it and therefore excrt a retarding force. In proximity to the upper side of the disk is placed a coll of wire having an iron core, which is a shunt coil, the ends of the coil being connected to the terminale of the supply mains. Under the disk are two other coils which are placed in series with the supply. When these last coils are traversed by an altermating current they induce local or eddy currents in the disk. The current in the shunt coil lags 90 degreet behind the impressed electromotive force of the circuit to be measured; hence if the main current is in step with the potential difference of the terminale of the supply mains, which is tbe case when the supply is given wholly to electric lamps, then the feld due to the main coil differs from that due to the shunt coil by 90 degrees. Since the eddy currents induced in the disk are 90 degrees in phase behind the inducing Geld, the eddy currents produced by the main coil are in step with the magnetic feld due to the shunt coil, and hence the disk is driven round by the revolution due to the action of the shunt coil upon the iaduced currents in the disk. Hence the disk will be accelerated until the driving force is balanced by the retarding force due to the induced currentu created in the disk by the permanent magnets. When this is the case, the number of revolutions of the meter in a given time is a measure of the wart-hours or energy which is passed through the meter. The counting mechanism and diais may be so arranged as to indicate this energy directly in watt-hours. The meter is made up also in a form suitable for use with two or three fixed electric curreats. (See Electroxinetics.)
Requirements of a good House Mcter.-A gas meter which has an error of more than 2% in favour of the seller or 3% in favour of the customer is not passed for use. An efectricity meter should therefore have approximately the same eccuracy. As a matter of fact, it is difficult to rely upon mout electric meters to register correctly to less than 4% even between quarter-load and full load. Out of nearly 700 current motor meters of various makes tested at Munich in 1902, only 319 had an error of less than 4%, whilst 259 had errors varying from $4 \frac{1}{3}$ to 10%. If possible, however, the departures fromt absolute accuracy should not he more than 2% at quarter-load, nor more than 3% at a full load. The accuracy of a meter is tested by drawing calibration curves showing the percenmage departure from absolute accuracy in its reading for various decimal fractions of full load. Such a test is made by determining with an accurate ammeter or watt-meter the current or power mupplied to a circuit for a period measured by a good clock and comparing with this the actual reading of the meter
${ }^{3}$ See Jowrn. Inst. Elec. Eng. Lomd. (1899), 29, 743-
during the same time. - A common source of trouble is the short circuiding of the shunt coils owing to the shellaced cotton covering of the wire becoming moist.

A good meter should start with a current which is not more than 2% of its full load current. With a supply presure of 200 volts a 5 c.p. carbon filament lamp takes anly $0 \cdot 1$ ampere; hence unicse a meter will begin to register with ry ampere it will fail to record the current consumed by a single small incandescent lamp. In a large supply system such failure would mean a serious loss of revenue. The resistance of the meter coils causes a fall in woltage down the series coil which reduces the supply pressure to the consumer. On the other hand the resistance of the shunt coil absorbs energy which generally varies from 1 to 3 watts and is a loss either to the consumer or to the supply company, according to the manner in which the shunt coil is connected. In those meters which are compounded-that is, have a shunt coil wound on the field magnets co compensate for the friction of the train-it is important to notice whether the meter will operate or continue operating when there is no current in the series coil, since a meter which "runs on the shunt "runs up a debt against the consumer for which it gives no corresponding advantage.

Generally speaking, the price of the meter is a subordinate consideration. Since the revenue-earning power of a supply station depends entirely upon its meters, inaccuracy in meter record is a serious matter. The cost of measuring cuirent by the aid of a meter is made up of three parts: (1) the prinue cost of the meter, which varies from $\{2$ to $\{6$ cor an ordinary 23 -light house electric meter: (2) the capital value of the energy absorbed in it, which if the cost of the cnergy is taken at 2d. per Board-ofTrade unit, with intcrest and depreciation at 6%, may amount to (10 per customer; and (3) the annual working costs for repairs and also the wages of the staff of meter men, who take the required monthly or quarterly readings. In the case of small and irregular consumers, such as the inhabitants of model dwellings and flats inhabited chiefly by working-class tenants, coin-in-t he-slot meters are much employed. The eustomer cannot obtain ertrent for electric lighting until he has placed in a slit a cerain coin-say, a shilling-entit ling him to a certain number of Board-of-Trade unitsmy, to 2 or 4, as the case may be. In the Long-Schatiner electrolytic meter, the insertion of the coin depresses a copper plate or platis into an electrolytic cell containing a solution of sulphate of copper; the passage of the current dissolves the copper off one of the plates, the loss in weight being determined by the quantity of the electricity passed. As moon as the plate has lost a certaint a mount of weight corresponding to the value of the electric energy represented by the coin, the piate rises out of the liquid and cuts of the current.
Autisorithes.-H. G. Solomon, Electricily Meters (London, tgo6) C. H. W. Gerhardi, Electricity Melers: their Consituclion and Maxagement (London, zgo6): L. C. Reed, American Meter Practice (New York, 1904): J. A. Fleming, A Handbook for the Electrical Laboratory and Testhng Room (London, 1904): T. P. Wilmshurst, - Electricity Meters." Electricion (1897). 39, 409: G. W. D. Ricks, - On the Variation of the Constants of Electricity Supply Meters, with Temperature and Current." Electricion (1897), 39, 573.

1ETHODIS風, a term ${ }^{1}$ denoting the religious organizations which trace their origin to the evangelistic teaching of John Wesley. The name " Methodist " was given in derision to those Oxford students who in company with the Wesieys used to meet together for spiritual Cellowship; and later on when John Wesley had organized his followers into "societies" the name was applied to them in the same spirit. It was however accepted by him, and in official documents he usually styles them "the people called Methodists." The fact that standards of Methodist doctrine are laid down as consisting of " Mr Wesley's Notes on the New Testament and the ist Series of his Sermons " (fiftythree in number), might seem to indicate a departure from existing aystems, but it was not so. He fully accepted the recognized teaching of the Church of England, and publicly appealed to the Prayer Book and the Thirty-nine Articles in justification of the doctrines he preached. Methodism began in a revival of personal religion, and it professed to have but one aim, viz. "to spread Scriptural holiness over the land." Its doctrines were in no sense new. It was the zeal with which they were taught, the clear distinction which they drew between the profession of godliness and the enjoyment of its power-added to the emphasis they laid upon the immediate influence of the Holy Spirit on the consciousness

1 "Methodism " is derived from "method ". (Gr. miposoy), rule. A "methodist" is one who follows a "" meihod," the term being applied not only to the Westeyan body, but earlier to the Amvraldists, and in the 17 th century to cortaln Roman Catholic apologista.
of the Christian-which attracted attention, gave them distinction, and even aroused ridicule and opposition. Wesley and his helpers, finding the Anglican churches closed against them, took to preaching in the open air; and this method is still followed, more or less, in the aggressive evangelistic work of all the Methodist Churches. As Iollowers rapidly increased they were compelled to hold their own Sunday services, and this naturally led them to appoint as preachers godly laymen possessing the gift of exhortation. These followed their ordinary avocations on week-days, but on Sundays preached to congregations in their own immediate neighbourthood, and hence were called local preachers as distinguished from travelling preachers. The extent to which the employment of the local preacher is characteristic of Methodism may be seen from the fact that in the United Kingdom while there are only about 5000 Methodist ministers, there are more than 18,000 congregations; some 13,000 congregations, chiefly in the villages, are dependent on local preachers.

In the organization adopted to foster spiritual life the very characteristic "Chass-mectings for Christian fellowship" take 2 prominent place. Membership in the church depends solciy upon being enrolled as a member of one of these meetings for Christian fellowship, and thus placing oneself under pastoral oversight.

The Westeyan Methodists now represent the original body as founded by John Wesley in Great Britain and Ireland; but in America those who looked upon him as their founder adopted the episcopal mode of Church government after the War of Independence, and have since that time been known as Episcopal Methodists (see below). It should be noted that the Welsh Calvinistic Methodists are only slightly connected with the original body. They were indirectly the outcome of the evangelistic efforts of Howell Harris and Rowlands. Their work received the sympathy of Wesley and liberal financial help from the Countess of Huntingdon (see Calvinisicic Methodists). For ${ }^{2}$ time Whitefield was leader, and we find a reference to the "Whitefieldian and Wesieyan Methocists" in the Supplement to the Gentleman's Magazine for 1747, p. 619. The theoiogical views of these teachers proved quite incompatible with the Arminianism of Wesley, and a definite hreach between them and him took place in 1770 . The Welsh Calvinistic Methodists are now a branch of the Presbyterian Church. Other divisions have been formed at various times by secessions from the Wesleyan Methodists (see separate articies). They are: Methodist New Connexion (founded 1797-1 798); Bible ChrisLians (\{815); United Methodist Free Churches ${ }^{2}$ (about 1836); Primitive Methodists (founded 1807-1810); Independent Methodist Churches (about 1806); Wesleyan Reform Union (1850, reorganized 1859). These bodies have separated solely on matters of Church government and not on points of doctrine. The Primilive Methodists in Ircland were a small body who in 8817 seceded because they wished to maintain that close connexion with the Church of England which existed at the time of Wesley's death, but in 1878 they rejoined the parent body. Methodism has always been aggressive, and her children on emigrating have taken with them their evangelistic metbods. (For the American hranches see below.)
The statistics given in the following table (not including Junior So icty Classes) are from the Nlinutes of the Conference of the Wesleyan Methodist Claurch for 1909 . A the death of Wesley the figures were: 313 preachers, 119 circuits and mission stations, and 76.968 members. In the United States: 7 circuits, 198 preachers and 43,265 members.

In 1837 the membership in Great Britait: and Ireland was 318.716; in forcign mission stations, 66,007: in Uj, er Canada, 14,000; while the American Confenences had charge of 550,678 members. Total for the world: $1.049,401$, with 4478 minis: $\mathbf{r s}$.

Three Occumenical Conferences havd been held-two et City Read, London, in 1881 and 1901, and one at Washington in 1891. The statistics presented at the last show J that the Church during the precedine decade had cained about a sillion members and three

${ }^{2}$ These first three were joined in 1907 under the name of the United Mothodist Church.
growing feeling in favour of union. Canada and Aestralasia led the way, for in these countries the Methodist Church was undivided, and the sentiment was greatly strengthered by the formation in the United Kingdom of the United Methodist Church in 1907.

Sce A New History of Melhadism, ed. W. J. Townsend, H. B. Workman, George Eayrs (2 vols, Londoh, 1909).
local and travelling preachers, and the organization of local societles with class leaders, stewards and trustees. The intention was to make American Methodism a facsimile of that in England, subject to Wesley and the British Conference-a society and not a Church. Pilmoor and others objected to Asbury's strict

Denomination.	Ministera	Lay Preachers.	Church Members and Probationers.	Sundiy Schools.	Officers and Teachers.	Sunday Scholars.	Cburches, $\& \mathrm{E}$.
Wesleyan Methodists :-							
Great Britain. ${ }^{\text {E }}$. .	2.454	19,886	520,868	7.589	132,186	987.953	8,6061
Ireland . . -	246	621	29.531	35.3	2,557	25.969	414^{2}
Forcign Missions	617	4,965	14,3.467	1.754.	7,65!	91,113	3.502
French Conterence - . .	35	89	1,675	$7{ }^{78}$	142 2893	1,996 39329	127
South African Conference . .	2538	5,797	117,146	\%88	2,893 59557	39,329 465.531	3.930
Primitive Methodists . ${ }^{\text {United Methodist Church }}$ -	1,178 891	16,158 6,183	212,168 186,905	4.155 2.404	59.557 43.169	465.531 323.675	5,148 3,188
United Methodist Church . -	891	6,183	186,905	2,404	43.169	323.675	3,188
Wesleyan Reform Union ${ }^{\text {a }}$ -	21	527	8.489	181	2,762	22,312	196
Independent Methodist Churches .	424	4.576	9,442 150,751	153 3.973	3.041 24.322	27.219	156 6.418
Australasian Methodist Church . - United States:-	975	4.576	150.751	3.973	24,322	231,553	6,418
Methodist Episcopal ${ }^{4}$: ${ }^{4}$. .	19,421	14.743	3,376,888	34,619	361,667	3,068,248	*9.765
Union American Methodist Episcopal	138	-	18,500				${ }^{2} 55$
African Methodist Episcopal . .	6,070	15,885	850,000	-	-	-	6,815
African Union Mcthodist Protestant	200	750	4,000	350	900	2,770	125
African Methodist Episcopal Zion.	3.912	1,520	578,310	2,034	14.404	122,467	3.241
Methodist Protestint	1.551	1,135	183.894	2.034	16.680	126,034	2,242
Weslcyan Methodist (Sín) Methodist Episcopal (South)	524 6.978	4,800	19,064 $1,673,892$.465 4.892		18,344 $1,084,238$	598 15406
\{ Methodist Episcopal (South) -	6.978 415	4,800	$1,673,892$ 24,000	14,892	11,137	1,084,238	15.496 425
$\{$ Congregational Methodist (coloured)	$\begin{array}{r}45 \\ \hline\end{array}$	-	24,9	-	-	-	4
New Congregational Methodist .	238	-	4.022	-	-	-	417
Zion Union Apostolic -	$3{ }^{30}$	78	3,346 219739	4,00	7008	6	63
Coloured Methodist Episcopal	2,673	2,786	219.739	4,007	7,098	79,876	2,619 104
Primitive Methodist Free Methodist .	1,126	1,299	35,435	1,175	7,376	40,660	1,117
Independent Methodist .	8	-	2,569		-	-	15
Evangelistic Missionary . -	92	27	5.014	-	-	1,200	47
Canadian Methodist Church. . Japan Methodist Church	2.384 47	3.809 35	329,904 4,083	3.556 121	$\begin{array}{r} 35,323 \\ 544 \end{array}$	305,649 11,136	3.789 28
Totals	52,978	105,669	8,713.434	84.781	833.409	7,089,023	98,820

Methodisy in tere United States

There are in the United States sixteen distinct Methodist denominations, all agrecing essentially in doctrine. John Wesley had been conducting his United Societies for more than twenty years before the movement took root in North America.

A.-Episcopal Melhodist Churches.

Philip Embury (1729-1775), a Wesieyan local preacher, emigrated in 1760 from Limerick to New York. Robert Strawbridge (?-1781), a local preacher and native of Ireland, settled in Maryland. In 1766 Embury was stimulated by his relative, Mrs Barbara Heck, to begin Methodist preaching, and a society was soon formed, which grew rapidly. Embury was reinforced by the arrival of Thomas Webb ($17^{24}-1790$), an English local preacher and a captain in the British army. Webb and Thomas Tayior, a layman of superior ability, appealed to Wesley to send over missionaries, and the 26th annual British Conference, held in 1768 , sent to the society in New York C 50 and furnished passage money for two missionaries, Richard Boardman and Joseph Pilmoor (1739-1825). Three years later Francis Asbury was sent over, and was made assistant superintendent. Meanwhile Strawbridge had been preaching with success in Maryland and in Virginia.
These "advance agents " of this spiritual propaganda brought with them Wesley's Arminian Theology. They brought also "the means of grace" on which Wesley placed the greatest atress; such as personal testimony in private and public, class and prayer meetings, watch-nights, love-feasts, the direct and fervent proaching of the Gospel and the singing of Wesleyan hymns, carried on by means of circuits and stations, cxhorters,

[^18]discipline, and Wesley, hearing of the disagreement, in 1773 appointed Thomas Rankin (c. 173^{8-1810}) superintendent of the entire work of Methodism in America.

The First American Conference.-The first American Conference was held in 1i73, and consisted of ten preachers, all of whom were born in England or Ireland. Asbury came to America to remain permanently; but Rankin, unable to identify himself with its people, to take the test oaths required in the Revolution, or to sympathize with the colonies, returned to England, as did all the English preachers except Asbury. By May 1776 there were 24 preachers and 4921 members; but in the first year of the Revolution there was a loss of 7 preachers and nearly 1000 members. The next year saw extensive revivals, in sections removed from the seat of war, which added more than 2600 to the number of members.
The preachers in the South determined upon administration of the sacraments, and a committee was chosen whose members ordained themselves and others. The Northern preachers opposed this step and for several years the Connexion was on the verge of disruption. An agreement was finally made to suspend the administration until Wesley's desires and judgment could be ascertained. He perceived that the society would disintegrate unless effective measures were speedily taken, and, aided by two presbyters of the Church of England, early in 1784 be ordained Thomas Coke (1747-1814), alrcady a presbyter of that Church, as superintendent. He likewise ordained two of his lay preachers as deacons and elders, to accompany Coke, whom Wesley sent to America as his commissioner to establish, for the Methodist Socity, a system of Church government, which should iaclude the administration of Baptism and of the Lord's Supper. Coke
above. The 1908 returns are: Bulgaria, 546 members: Denmark, 377: Finland and St Petersburg, 1367i Franoe, 221: Italy, 3669: North Germany, ${ }^{12.886 ; ~ N o r w a y, ~ 6054 ; ~ S o u t h ~ G e r m a n y, ~ 11,808 ; ~}$ Sweden. $15 \mathrm{H} 4 \mathrm{~K}^{\circ}$: 'Switzerland, 9419 .
${ }^{2}$ Weatern Conierence only.
was furnished by Wesley with a document setting forth the grounds on which he had taken this step. Wesley also appointed Thomas Coke and Francis Asbury " to be joint superintendents over our brethren in North America." Soon after Coke and his companions arrived they met Asbury and Gifteen preachers, and a special conference was called, which opened on the 24 ch of December 1784, in the suburbs of Baltimore, Maryland. This convention organized itself into a Methodist Episcopal Church, in which the liturgy sent by Wesley should be read, and the sacraments should be administered by superintendents, elders and deacons, these elders and deacons to be ordained hy a presbytery using the episcopal form. Coke and Asbury were unanimously elected superintendents, Coke, aided by his clerical companions from England, ordaining Asbury as deacon and elder and formally consecrating him a general superintendent. Several elders were ordained. This convention adopted the first Discipline of the Methodist Episcopal Church. It adopted the existing doctrinal standards, consisting chiefly of Wesley's Sermons and his Notes on the New Testament; also twenty-five of the Articles of Religion of the Church of England, modified so as to oradicate all trace of High Church ritualism, Anglican or Roman, and the distinctive doctrines of Calvinism.

The Church thus established began its ecciesiastical career with 18,000 members, 104 travelling preachers, about the game number of local preachers, and more than 200 licensed exhorters. There were 60 chapels and 800 regular preaching places.

The energy of Asbury, and the position of Coke in the Church of England, his wealth, culture, and preaching power, greatly reinforced the efforts of the preachers. The administration of the sacraments brought peace; and many who would not unite with the "Society" asked admission to the Church. Within five years the number of preachers swelled to 227, and tbe members to 45,949 (white) and 11,682 (coloured)

To bind the whole body the existing method required the concurrence of each Annual Conference with every proposition. This was inconvenient and occasioned much loss of time; therefore a General Conference was established to meet once in four years. The first was held in 1792, and therein arose a sharp confict. James O'Kelly (1735-1826), a Presiding Elder in control of a large district, proposed that, when the list of appointments was read in the Conference, if any preacher was not pleased with his assignment he might appeal to the Conference. The motion being lost, O'Kelly and geveral other preachers seceded. The Conference in 1804 limited the power of the Bishops by forbidding them to appoint any pastor for more than two consecutive years in charge of the same church. As all " travelling preachers" were eligible, without election, to seats in Gencral Conferences, widespread dissatisfaction prevailed among the distant Conferences. The era of the steamboat and the railway not having arrived, it was possible for two Annual Conferences, adjacent to the seat of the Ceneral Conference, to out-vote all others combined. This led to a demand for the substitution of a delegated General Conference, which was conceded by the Conference of 1808 to take effect four years later. The office then known as the Presiding Eldership had become powerful: Bishops appointed the pastors to churches, Presiding Elders to districts; but it was the purpose of the majority to transfer to the Annual Conferences the power of appointing Presiding Elders. The change, tbough discussed for many years, has not been accomplished.

Several issues had been settled; hut one, that of slavery, had to be faced. The storm burst on the Conference of 1844. Bishop James Osgood Andrew (1794-1871), a native of the South, had, by inheritance and marriage, become a slaveholder. After debates of many days, be was requested "to desist from the exercise of the office of Bishop while this impediment remained." The Southern members declared that the infliction of such a stigma upon Bishop Andrew would make it impossible for them to maintain the influence of Methodism in the South, and a tentative plan of separation was adopted by the Conference by an almost unanimous vote. The result was that the Methodist Episcopal Church was bisected, and when the General Conference
of 1848 convened it represented 780 teravelting preachers and 532,290 members fewer than it had numbered four years before.

After the Civil War the increase in membership was noteworthy. The quadrennial Conference of 1868 represented 222,687 members more than its predecessor; of this gain 117,326 were in the Southern States. In $\mathbf{1 8 7 2}$ lay representatives were admitted, the Constitution having been amended so as to make it legal. It was not, however, an equal representation, for though ministerial Confereaces were represented according to their number, in no circumstances could there he more than two lay representatives from one Annual Conference. Not till 1900 were lay and clerical representation equalized. In 1864 the time limit of pastorates wis lengthened to three years, and in 1888 to five years. This limit was taken off in 1900, and pastors can be reappointed at the will of the Bishop.
Five women presented credentials as lay delegates in 1888. Their eligibility was questioned; and they were denied admission. For the next four General Conferences the struggle for the admission of women recurred. In $1900-1904$ a general revision of the Constitution took place, and the words "lay members" were substituted for " laymen " in that part of the Constitution which deals with the eligibility of delegates to the General Conference.
The General Comerence has power to make rules and regulations for the Church, subject only to restrictions which protect the Standards of Doctrine, the General Rules, the disposition of the property of the Book Concern and its income, the income of the Chartered Fund, and the right of ministers to trial before a jury of their peers, an appeal, and similar rights of the laity. By a two-thirds vote of a General Conference, and two-thirds votes of the members of the Annual Conference, and of tho members of the Lay Electoral Conferences, present and voting, what is said in these "Restrictive Rules" can he altered or repealed, except that चhich deals with the Articles of Religion and "the present existing and established Standards of Doctrine." In the Annual Conferences the Bishop is the sole interpreter of law, subject to appeal to the General Conference. When presiding in the General Conference, Bishop has no authority to decide questions of law, but may decide questions of order subject to an appeal to the body. The district superintendent visits each charge several times annually, presiding in the Quarterly Conference, the highest local authority in the Church, and he is expected to conserve the unity of the denomination and a regard lor laws enacted by the supreme body. In the absence of a Bishop the district superintendent represents him, and may transfer any ministers within the bounds of his district.

- Connexional Institutions.-The Book Concern, established in 1789. publishes the necessary devotional books of the Church, such as hymnal, discipline, sheological works, religious experience, and numerous magazines and papers.
The Board of Foreign Missions carries on extensive operations in China, Japan. Korea, India and Malaysia, Italy, South America and Mexico. It assists the Methodist Churches organized in Norway, Sweden, Denmark, Finland, Germany and Switzerland, and has recently established missions in Russia and France.
The Board of Home Missions and Church Extension supplies the forcign peoples domiciled in the United States with ministers of their own tongue. It assists all English-speaking churches in need of help, and secures, by gifts and time loans, the erection of churches wherever needed. Invaluable coadjutors of these Boards are the Women's Foreign Missionary and the Women's Home Missionary societics.
The Board of Education, with the aid of a University Senate, assists young people to ohtain education, and raises the standard of seminarics, colleges and universities. The Church, in the United States, supports 54 colleges and universitics and 30 theological seminaries. The Freedmen's Aid Society is devoted to the edurational needs of the negro race in the United States, in which work it has been very successlul.
The Sunday School Union, Epworth League, Methodist Brotherhood, hospitals, homes for the aged, deaconess homes and children's institutions are maintained by an increasing army of workers.
The whoie number of ministers (exclusive of foreign missions) in 1907, was 17,694 ; churches, 27,695 ; communicants, 2,984,26i.

The Mathodist Episcopal Church Soulh.-After the adjournment of the General Conference of 1844 , the representatives of thirteen Conferences covering the states holding slaves appealed to their constituents to determine what should be done to prevent Methodism in the South from being deprived of its inftuence over the whites and of the privilege, till then fully accorded, of preaching the Gospel and teaching its precepts to slaves. In 1845 a representative Convention was called; this body, with the approval and participation of Bishop Andrew, organized the Methodist Episcopal Church South. At its first General Conference, in 1846, the senior Bishop of the Methodist Episcopal Church, Jeshua Soule ($1781-1867$), offered himself to the Church, which accepted him in his episcopal capacity. William Capers ($1790-$ 1855) and Robert Paine (1799-1882) were elected to the Episcopecy. The Church thus founded began with 460,000 members, of which 2972 were Indians, 124,961 coloured, and 1519 travelling ministers.
A difficulty arose on the division of the property of the Book Concerns, which the Methadist Episcopal Church maintained involved a change in the Constitution. A vote to authorize the division failed, and the Methodist Episcopal Church South, hopeless of relief, hrought two suits, one against the Book Concern in New York, and the other against the Book Concern in Cincinnati. The former was decided in favour of the Methodist Episcopal Church South, and the latter in favour of the Methodist Episcopal Church. In the latter case an appeal was taken hy the Methodist Episcopal Church South to the Supreme Court of the United States, which body unanimously decided that the Methodist Episcopal Church South was an integral part of the Methodist Episcopal Church which owned the Book Concerns, and ordered that the Southern Church should receive a proportionate part of the property of both Book Concerns. The amount ordered by the Court was in due time received.

The membership of the Church in 1860 was more than threequarters of a million; hut the Church was doomed to feel the force of the destructive elements of the Civil War. In April 1862 New Orleans was in possession of the Federal Government, rendering it impossible to hold the General Confcrence due at that time and place.

At the close of the war the Missionary Society of the Church was $\$ 60,000$ in debt, the Publishing House practically in ruins, and of the more than 200,000 coloured members in 1860 there remained fewer than 50,000 . The Conference of 1866 convened in New Orleans. Radical changes in polity were effected. Attendance upon class meetings, which, from the origin of the Church had been obligatory, was made voluntary, and the rule was repealed which required a probation of six months before admission into full membership. The time limit on the continuation of pastorates was extended from two to four years. The most radical change was the introduction into the General Conference of a number of lay representatives equal to the number of clerical, and the admission into each Annual Conference of four lay delegates for each Presiding Elder's district.

The coloured people, with the consent of the Church, withdrew in 1870, and formed a new Church called the Coloured Methodist Episcopal Church.

The most striking denominational effort in its history was the maintenance of the solvency of the Publishing House, which was scized by the Federal Troops, and used as a United States printing office; with the damage done, and debts incurred in rebuilding, after a fire, interest, \&ac., the liabilities were $\$ 35,000$, with debts $\$ 125,000$ in excess of assets. The concern was declared insolvent; but the necessary funds were fortbcoming, and the honour of the Church was maintained.

Education has received unceasing attention. The firles to 175 institutions are held by the Church. and the list of colleges and their character is a credit to the denomination. The most important it Vanderbilt Universily, at Nashville. Tennessee, founded in 1872, and largely endowed by members of the family whose name it bears. The chief foreign missions are in China, Mexico, Brazil, Japan, Korea and Cuba. Its mission in Japan and the mission of the Methodist Episcopal Church and the Methodict Cburch of

Canada were united in 1907 in a new organization entitled the Methodist Church of Japan. A distinguishing feature of this church is a practical veto power possessed by the bisbops. to be exercised when the conference adopts any measure which in their opinion is unconstitutional. They have the right to present written objections and should the General Conference, by twothirds vote adhere to its action, the proposal is sent down to the Annual Conference for ratification; otherwise it is void. Fraternal relations between the two great Episcopal Methodist Churches were fully established in 1876, and have broadened in spirit and scope from that time.
The Methodist Episcopal Church South in 1907 had 6774 ministers, 16,156 churches and 1.631 .379 communicants.

The African Mfeltodist Episcopal Church.-This body originated in strained relations between the white and coloured Methodists of Philadelphia, Pennsylvania, the result of which was, that the coloured people organized themscives, in 1816, into an independent body. They adopted as their standards the doctrines of the Methodist Episcopal Church, and, with a few modifications, its form of government. The Church steadily prospered, but for several years not peoportionately in the department of education. Daniel Alexander Payne (1811-1893), who had studied in the Gettysburg Theological Seminary, led a reform, which involved a marked elevation of the qualifications for ministers, and from that time the body has constantly rieen in puhlic estimation. One of its peculiarities is that the bishops are members of the General Conference. It sustains Wilberforce University (at Wilberforce. Ohio) and other educational institutions, and has missions in Africa, South America, the West Indies and Hawaii. Notable orators have risen up among its members who have added greatly to the respect lelt for their race and Church. The Airican Methodist Episcopal Church, the largest Christian denomination consisting wholly of the Negro race, in 1907 comprised 6190 ministers, 5321 churches, and 842,023 communicants.

The African Meliodis! Episcopal Zion Church.-Some of the coloured people in the city of New York. "feeling themselves oppressed by caste prejudice, and suffering the deprivation of Church privileges permitted to others," organized among themseives, in 1796. and in the year 1800 built a church and named it Zion. For twenty years the Methodist Episcopal Church eupplied this church with pastors. Then the members induced three white ministers to ordain as elders three of their brethren, already deacons. Since they had Methodist precedents for such ordination, these proceeded to ordain others, and established churches in Philadelphia and New Hampshire. The elders ordained one of their number a bishop. As late as 1863 the Church had only 92 ministers and 5000 members, but in twelle years it doubled its membership more than five times. In this Church the sexes are equally eligible to all positions. Its educational operations at first were failures, but gradually became succesful. Its forcign missions were made a separate deparment in 1884 . This Church had, in 1907, 3871 ministers, 3206 churches and 573,107 communicants.

The Coloured Methodist Episcopal Chwrch.-In 1866 the General Conference of the Methodist Episcopal Church South authorized the bishops to organize its coloured members into an independent ecclesiastical body, if it should appear that they desired it. The bishops formed a number of Annual Conferences, consisting wholly of coloured preachers. and in 1870 these Conferences requested the appontment of five cominissioners of the Caucasian part of the Church to meet five of their own number to create an independent Church. Two Bishops of the Methodist Episcopal Church South presided, and ordained to the Episcopacy two coloured elders, selected by the eight coloured conferences. The coloured people by vote named the organization the Coloured Mechodist Episcopal Church.

The Unzon American Methadist Episcopal Church agree? in doctrines and usages with other Methodist bodies. It is divided into Conferences and clects its Bishops for life. It had in 1907. 18,500 menbers, 138 ministers and 255 churches.

B.-Non-Episcopal Meltodis! Churches.

The Methodist Protestant Church.-In 1821 ministers and laymen of the Methodis: Episcopal Church began to criticize its polity, and when their utterances became aggressive the adherents to the regular order replied with equal vigour. During the General Conference of 1824, held in Baltimore, a Convention of " Reformers " met, and established a periodical entitled The Mutual Rights of the Ministers and Members of the Mchhodist Episcopal Church, and made arrangements to organize Union Societies. Travelling and local ministers and laymen were expelled for schism and spreading incendiary publications. Prior to the Conference those expelled, and their sympathizers, formed themselves into a society named "Associate Methodist Reformers." These sent memorials to the General Conference of 1828 , and issued addresses to the public. After a powerful and painiul discussion, the appeals of the expelied members of

Conferences were rejected. The controversy centred upon lay representation, the episcopacy and the presiding eldership.

A General Convention was heid on the and of Nóvember 1830, a Constitution was adopted, and a new organization was establisbed, styled the Methodist Protestant Church. Within eight years it had accumulated 50,000 members, the majority of whom were in the Southand bordering states. The Methodist Protestant Church has a presbyterial form of government, the powers being in the Conference. There is no episcopal office or General Superintendent; each Annual Conference elects its own chairman. Ils General Conference meets once in four years. Ministers and laymen equal in number are elected by the Annual Conferences, in a ratio of one delegate for 1000 members. The General Conference of the Methodist Episcopal Church of 1908 sent delegates to the Conference of the Methodist Protestant Church, making overtures toward an organic union, but formal negotiations have not been instituted. This Church had, in 1907i 1551 ministers, 2242 churches and 183,894 communicants.

The Wesleyan Methodist Connection or Church of America.-In the Methodist Episcopal Church slavery was always a cause of contention. In 1842 certain Méthodist abolitionists conferred as to the wisdom of seceding. Among the leaders were Orange Scott (1800-1847), Jotham Horton and Le Roy Sunderland(i8021885) and in a paper, which they had established, known as The True Wesleyan, they announced their withdra wal from theChurch, and issned a call for a convention of all like-minded, which met on the 3 rst of May 1843, at Utica, New York, and founded the Wesleyan Methodist Connection or Church of America. The enterprise started with 6000 laymen and 22 travelling ministers of the Methodist Episcopal Church, and nearly as many more from the Methodist Protestar: Church and other small bodies of Methodist antecedents. Its General Conference has an equal number of ministers and laymen. In less than eighteen months this body had gained in members $\mathbf{2 5 0} \%$; but as the Methodist Episcopal Church had purged itself from slavery in 1844 , and slavery itself was abolished in 1862, a large number of ministers and thousands of communicants, connected with this body, returned to the Methodist Episcopal Church. It had in 1907 539 ministers, 609 churches and 18,587 communicants.
The Comeregational Methodisls orivinated in Georgia in 1852; but in polity they are not strictly Congreyational. Appeals from the decision of the Lower Church may be taken to : District Conference, thence to the State Conference, and uhimitely to the General Conference. This Church hatl, in 1007, chictly in Southern states, 24.000 members, 425 ministers and 425 churchics.

The free Meihod ist Church.-This body was organized in August 1860, and was the result of ten years of agitation. A number of ministers and members within the bounds of the Genesce Conference. in Western New York, in 1850, began to deplore and denounce the decline of spirituality in the Methodist Episcopa! Church. The Rev. B. T. Roberts, the ablest among them, was reprimanded by the Bishop presiding in the Annual Conference, and next year he was expelled. Similar proceedings were taken against others, who appealed to the Gencral Conference of $\mathbf{1 8 6 0}$, but their expulsion was confirmed. It was the purpose of the founders to conserve the usage and the spirit of primitive Methodism. The government of the Church is simple, in all kut the Episcopacy and its adjunets resembling that of the Church whence it sprang. The Free Met hodist Church had, In 1907, 1032 ministers، 1106 churches, and 31,376 communicants.

Mimor Melkodist Churches.-The Primitioc Methodist Churck, as it exists in the United States, came from England. In 1907 it reported 7013 communicants. The Independent Methodisss are composed of congregations in Maryland, Tennessee and the District of Columbia. They had fewer than 3000 membere in 1907. The Evangelist Lissionary Charch comprises ministers and members in Ohio, who in I 856 withdrew from the Alrican Methodist Episcopal Zion Church. They had in 1907 about 5000 members. The New Congregotionel Methodists in 188 A withdrew from the Methodist Episcopal Church South, in Georgia. They had 4022 members in 1907. The ifricant Union Methodist Prolestant Church dates from 1816, and differed from the African Methoulist Episcopal Church in opposing itinerancy. "paid ministers." and episcopacy. In 1907 it had 3967 members in cichr states. 7 ile Zuon Unian A postolic Church was wotaicti in Isor. ...2 Virginia. It was repored in $\mathbf{8 9 9 0}$ to have 2346 communicants, and showe no gain at the present time.

Bibliography.--Gross Alexander, History of the Mfethodist Episcopal Church, South (New York, ${ }^{1894 \text {), being vol. Xi. of the }}$

Hissory of A merican Mchadism (New York, 1884): Francis Asbury Joupnal (3 vols. New York, 1852): Nathan Bangs. A History of the Methodist Epascopal Charch from its Crigin in 1706 to the Gencral Conference of 8. qa (2 vols., New York, 1830-1842): Henry B. Bascom, Mfeihodism and Slatery (Nashville); A. H. Bassen, History of the Methadist Protestant Church (Pittsburg, 1878, revised, 1882, 1887); Thomas E. Bond, Economy af Melkodism. Mifustrated and Defended: 1. M. Buckley, Mistory of Methadism in the United States (1897); H. K. Carroll, Redigious Forces of the United Stales (New York, znd ed. 1896); David W. Clark, Life and Times of Elijah Hedding (New York. 1855): Daniel Dorchester. Christianily in the Unifed States (New York, 1805): Edward J. Drinkhouse, Hisfory of Methodist Reform 2 vols. Baltimore, 1890): Robert Emory, History of the Discepdime of the Mcihodist Episcopal Church (New York, I843); William L. Harris. Constitutional Pewers of the General Conference (1860): 1. W. Hood. One Hundred Years of the African Methadist Episcopal Zion Church (New York, 1895) ; Jesse Lee, A Shart History of the Melhodists in the United States of America (Baltimore, 1810); John Lednum, History of the Rise and Progress of Methodism in America (1859); Alexander MeCaine, History and Mystery of Method:st Episcopacy (Baltimore, 1829) ; Holland N. MeTyeire, A Hislory of Mclhodism (Nashville, 1884); Joel Martin, The Wesleyan Mansal, or History of W'esleyan Methodism (Syracuse, N.Y., 1889); Lucius C. Matlack. Anti-Slasery Struggle and Trium oh in the Methodist Episcopal Church (New York, 1881); Stephen M. Merrill, A Digest of Methodist Law (New York, revised ed., 1888); Thomas D. Necly. A Mistory of the Origin and Decelopment of the Coverning Conference in Methodism (New York, 1892); id. The Evolution of Episcopacy and Organic Mehodism (New York, 1888); Robert Paine, Life and Times of William MCKendree (2 vols, Nashville, 1869; revised, 1874): Daniel A. Payne, Histary of the A frican Methadist Episenpal Church (1891): James Porter. Comprchensive RIsstory of Melhodism (Nicw York, 1876); A. H. Redford, Hislory of blie Organization of the 1 Whodist Episcopal Church Souhh (Nashille, 1871): J. M. Reid, MLsions and Missionary Soricty of the Mchhodist Episcopal Church (Now York, 1895), revised by J. T. Gracey, David Sherman, IIstory of the Rerisions of the Disciptine of the Mrethodist Episcopal Church (New York, 3rd ed., 1800); Abel Stevens, Hislory of Mcthodism (3 vols., New York, 1858); id. Itistory of the Melhodist E:piscopal Church (4 vols., New York, 1864); id. The Centenary of American Methodism (New York, 1866); John J. Tigert, A Comshitutional History of American Episcopal Melhodism (Nashville, 1894\}; \}. B. Wakeley, Lost Chaplers Recovered from the Early Ilistory of American Melhodism (New York, 1858); Thomas Ware, Sketches of llis Oum Life and Travels (New York, 1839); and the Discipline and Jonrmals of the various American Methodist Churehes. And the Pruceedings of the Centennial Methodist Conference (1884); of the irst Ecumenical Conference (1881); ; the second Ecumenical Conference (1891) ; and of the third Leumenical Conference (t 0 ot).
(J. M. Bu.)

EETHODIST NBW CONNEXION, a Protestant Nonconformist Church, formed in 1797 by secession from the Wesleyan Methodists, and merged in 1907 into the United Methodist Cburch ($q . v$.). The secession was led by Alexander Kilham ($q .0$), and resulted from a dispute regarding the position and rights of the laity, Kilham and his party desiring more power for the members of the Church and less for the ninisters. In its conferences ministers and laymen were of equal number, the laymen being chosen by the circuits and in some cases by "guardian representatives" elected for life by conference. Otherwise the doctrines and order of the Connexion were the same as those of the Wesleyans. At the time of the union with the Bible Chrislians and the United Methodist Free Church in 1907 the Methodist New Connexion had some 250 minlsters and 45,000 members.

METHODIUS (c. 825-885), the apostle of the Slavs, was a native of Thessalonica, probably by nationality a Graecized Slav. His father's name was Leo, and his family was sopially distinguished; Met hodius himself had already attained high official rank in the government of Macedonia before he determined to become a monk. His younger brother Constantine (better known as Cyril, the name he adopted at Rome shortly before his death) was a friend of Photius, and had earned the surname "the Philosopher " in Constantinople before he withdrew to monastic life. Constantine about 860 had been sent by the emperor Michael III. to the Khazars, a Tatar people living north-east of the Black Sea, in response to their request for a Christian teacher, but had not remained long among them; after his return to within the limits of the empire, his brother and he worked among the Bulgarians of Thrace and Moesia, baptizing their king Bogoris in 86 . About 863, at the invitation of Rastislav, king of "Great Moravia," who desired the Christianization of his subjects, but
at the same time that they should be independent of the Germans, the two brothers went to his capital (its site is unknown), and, besides establishing a seminary for the education of pricsts, successfully occupied themselves in preaching in the vernacular and in diffusing their translations of Scripture lessons and liturgical offices. Some conllict with the German priests, who used the Latin liturgy, led to their visiting Pope Nicholas I., who had just been engaged in his still extant correspondence with the newly converted Bulgarian king; his death (in 867) occurred before their arrival, but they were kindly received by his successor Hadrian II. Constantine died in Rome (in 869), but Mcthodius, after satisfying the pope of his orthodoxy and obedience, went back to his labours in "Moravia" as archlishop of Syrmia (Sirmium) in Pannonia. His province appears to have heen, roughly speaking, co-extensive with the basins of the Raab, Drave and Save, and thus to have included parts of what had previously belonged to the provinces of Salzburg and Passau. In 871 complaints on this account were made at Rome, nominally on behalf of the archbishop of Salzburg, but really in the interests of the German king and his Germanizing ally Swatopluk, Rastislav's successor; they were not, however, immediately successful. In 879, however, Methodius was again summoned to Rome by Pope John VIII., after having declined to give up the practice of celebrating mass in the Slavonic tongue; but, owing to the peculiar delicacy of the relatians of Rome with Constantinople, and with the young church of Bulgaria, the pope, contrary to all expectation, ultimately decided in favour of a Slavonic liturgy, and sent Methodius (880) back to his diocese with a suffragan bishop of Neitra, and with a letter of recommendation to Swatopluk. This suffragan, a German named Wiching, unfortunately proved the reverse of helpiul to his metropolitan, and through his agency, especially after the death of John VIII. in 882, the closing years of the life of Methodius were embittered by continual ecclesiastical disputes, in the course of which he is said to have laid Swatopluk and his supporters under the ban, and the realm under interdict. The most trust worthy tradition says that Methodius died at Hardisch on the March, on the 6th of April 885. He was buried at Welehrad (probably Stuhlweissenburg).

The Greck Cburch commemorates St Cyril on February 14 and St Methodius on May 11; in the Roman Church both are commemorated on March 9. Their canonization (by Leo XIII. in 188r) is noteworthy, in view of the fact that Gregory VII. and several other popes condemned them as Arians. After the death of Methodius much of his work was undone; his successorGosrad, a Slav, was expelled, with all the Slav priests, and the Latin language and liturgy supplanted the vernacular. On the 5 th of July 1863 a millennial celebration of the two brother apostles was held by the people of Bohemia and Moravia.
See Schafarik's Slawische Allerthumer; L. K. Gotz, Geschichte der Slavenapostel Konstantinus, und Methodius (Cotha 1897); N. Bonwetsch, Cyrill und Methodius, die Lehrer der Slaven (Erlangen, 1883), and art. in Hauck-Herzog's Realencyk. fur proh. Theol. iv. 384, where the literature is cited; G.F. Maclear, Compersion of the Slavs (London, 1879).

METHUEN, BARONY OF. The English title of Baron Methuen of Corsham (Wilts) was created ln 1838 for Paul Methuen (1779-1849), who bad been a Tory member of parliament for Wilts from 1812 to 1819, and then sat as a Whig for North Wilts from 1833 to 1838 . His father, Paul Methuen, was the cousin and heir of the wealthy Sir Paul Methucn (1672-1757), a well-known politician, courtier, diplomatist and patron of art and literature, who was the son of John Methuen (c. 1650-1706), Lord Chancellor of Ireland (1697-r 703) and ambassador to Portugal. It was the last-named wbo in 1703 negotiated the famous "Methuen Treaty," which, in return for the admission of English woollens into Portugal, granted diferential duties favouring the importation of Portuguese wines into England to the disadvantage of French, and thus displaced the drinking of Burgundy by that of port. He and his son were both buried in Westminster Abbey. The 1st baron was succeeded in the title by his son Frederick Itcary Paul Methuen (1818-1891), and the latter by his son Paul, 3 rd baton (b. 1845), a distinguished soldier, who became a nuajor-general in 1890 , and general officer
commanding-in-chief in South Africa in 1907. The 3rd baron joined the Scots Guards in 1864, served in the Ashanti War of 1874 and the Egyptian War of 1882, and commanded Methuen's Horse in Bechuanaland in $\mathbf{1 8 8 4}-85$, and the first division of the ist Army Corps in the South African War of 1899-1902. (See Transvaal.)
METHUSELAH, in the Old Testament, the seventh in descent from Adam, and facher of Lamech. According to Genesis v. 21 he lived 969 years (sce Bible: Old Testament, \& 5 , "Chronology "). The name itself has been much discussed. Holzinger interprets it as "man of the javelin ": Hommel prefers " man of Selah," Selah being the Hehraized form of the Babyionian Sarrahu (i.s. the god Sin), and identifies it with the ' $\AA \mu \mu \psi(0) 0$ of Berossus. The form Methushael, used by the author of Gen. iv. 18 and by some commentators preferred for Gen. v. 21, is variously explained as meaning "man of E1" (Bali), or as a transcription (Sayce) of the Babylonian Mutu-sa-ili (possibly, " man of the goddess ").

METHVEN, a village and parish of Perthshire, Scotland, 71 m. W. by N. of Perth by the Calcdonian Railway. Pop. of parish (1901), 1699. Only an aisle remains of the collegiate church founded in 1433 by Walter Stewart, earl of Atholl (d. 1437). One mile cast of the village, Methven Castle, dating partly from r680, occupies a fine situation in a park in which stands the Pepperwell oak, 18 ft . in circumierence. At Dronach Heugh near the banks of the Almond, which bounds the parish on the N., the carl of Pembroke defcated Robert Bruce in 1306. At Lynedoch, bis estate on the Almond, Thomas Grabam (17481843), the Peninsular general, afterwards Lord Lynedoch, carried on many experiments in farming and stock-breeding. He formerly owned Balgowan House, about 3 m . south-west of Methven, where many years alter his death the proprietor discovered, during certain alterations, the portrait of Lord Lynedoch's wife, the Hon. Mrs Graham (a daughter of the otb Lord Cathcart), one of Gainsborough's masterpieces, now in the National Gallery in Edinburgh; 4i m . north-west of Methven, occupying a beautiful position in Glenalmond, is Trinity College, a public school on the English model, the first of its kind in Scotland, founded in 1841 through the efforts of W. E. Gladstone, J. R. Hope-Scott, Dean Ramsay and others, and opened in 18.47. In 1851 Charles Wordsworth, the first warden, afterwards bishop of St Andrews, added the chapel. At Tibbermore, or Tippermuir, about 3 m . south-east of Methven, Montrose won the first of a scrics of batlles over the Covenanters on the 1st of September 1644.

METHYL ALCOHOL ($\mathrm{CH}_{3} \mathrm{OH}$), the slmplest aliphatic alcohal; an impure form is known in commerce as wood-spirit, being produced in the destructive distillation of wood. The name methyl, from Gr. $\mu i \theta v$, wine, $\Delta \lambda \eta$, wood, explains its origin. Discovered by Boyte in 1661, it was first carcfully studied by Dumas and Peligot in 1831; its synthesis from its elements (through methane and methyl chloride) was effected by Berthelot in 1858 . It is manufactured by distilling wood in iran retorts at about $500^{\circ} \mathrm{C}$., when an aqucous distillate, containing methyl alcohol, acetone, acetic acid and methyl acetic ester, is obtained. This is neutralized with lime and redistilled in order to remove the acetic acid. The distillate is treated with anhydrous calcium chloride, the crystalline compound formed with the alcohol being separated and decomposed by redistilling with water. The aqueous product is then dehydrated witb potash or lime. To obtain it perfectly pure the crude alcohol is combined with oxalic, benzoic or acetic acid, and the resulting ester scparated, purified, and finally decomposed with polash. Methyl alcohol is also obtained in the dry distilation of molasses. The amount of methyl alcohol present in wood spirit is determined by converting it into methyl iodide by acting with phosphorus iodide; and the acetone by converting it into iodoform by boiling withan alkaline solution of iodine in potassium iodide; ethyl atcohol is detected by giving acetyiene on heating with concentrated sulphuric acid, methyl alcohol, under the same circumstances, giving methyl ether.

Pure methyl alcobol is a colourlese mobile liquid, boiling at
$66^{\circ}-67^{\circ}$, and havigg a specific gravity of 0.8142 at $0^{\circ} \mathrm{C}$. It has \& berning taste, and generally a spirituous odoesr, hut when aboolutely pure it is said to be odourlese. It mixes in an proportions with water, alcohol and ether. Its compound with calcium chloride han the formula $\mathrm{CaCl}_{4} \mathrm{CCH}_{3} \cdot \mathrm{OH}$, and with barium oxide $\mathrm{B}=\mathbf{O} \cdot 2 \mathrm{CH}, \mathrm{OH}$. Oxidation gives formaldehyde, formic acid and carbonic acid; chlorine and bromine react, but less readily than with ethyl alcohol The chief indurtrial applications are for making denatured alcohol (q.v.), and as a solvent, e.g. in varnish manufacture; it is also used for a fuel; a purer product is extensively used in the colour and fine chemical industries.

Methyl chloride $\mathrm{CH}_{3} \mathrm{Cl}_{1}$ is a gas, boiling at -23°, obtained by chlorinating methane, or better, from methyl alcohol; wood spirit is treated with salt and sulphuric acid, or hydrochloric acid gas conducted into the boiling spirit in the presence of zinc chloride, the evolved gas being washed with potash and dried by sulphuric acid. It is also prepared by heating trimethylamine hydrochloride. Alcohol dissolves 35 volumes and water 4 Methyl bromide is a liquid. specific gravity 1.73 , boiling poink 13°; melkyl iodide has a specific gravity of $2 \cdot 19$, and boils at 43°.
YEIICULOUS (through Fr. meficuleux, from Lat. meticulasws, timid, cautious; metws, fear), a term meaning pedantically or excessively careful of details, over-scrupulous, laying too much stress on minuliae.
MEIOCHITA, TEBODORE [Thisodozos Metochites], a Byzantine author, man of learning and statesman, who flourished during the reign of Andronicus II. Palaeologus (1282-1328). After the deposition of his patron hy Andronicus III., Metochita was deprived of his office of great logothete (chancellor) and sent into exile. He was soon recalled, but retired from political life to a convent, where he died in 1332 . He was a man of very great learning, oaly surpassed hy Photius and Michael Psellus. His pupil Nicephorus Gregores, who delivered his funeral oration, calls him a "living library."
Only a few of his numerous works have been preserved. The
 philosophica ef historica (ed. C. G. Muller and T. Kiessling, 1821), containing some 120 essays; for a list of them see Fabricius, Bibliofhece graece (ed. Harles), X. 417; in these he chielly made use of Synesius. of his rhetorical pieces two have been published
 on religious subjects by M. Treu (1895). The poems, dealing mainly with contemporary and personal matters, are written in hexameter, not in the usual "political " verse. Metochita was also the author of works on philosophical and astronomical subjects.

IETONIC CTCLE, in chronology, a period of 19 years during which there are 235 lumations, so called because discovered hy Meton. Computation from modern data shows that 235 linnations are 6939 days, $16 \cdot 5$ hours; and 19 solar years, 6939 days, 14.5 hours. Tbe relation between integral numbers of months and years expressed by Meton's rule therefore deviates only two hours from the truth. Since rg Julian years make 6939 days, 18 hours, the relation errs by only 1.5 hour when the Julian year is taken. Meton was an Athenian astronomer (fl. 432 b.c.).

METONYMY (Gr. μ етaroula, change of name, from μ елa denoting change, and $8 v o \mu a$, name), a figure of speech, in which the name of one thing is changed for that of another, to whicb it is related by association of fdeas, as having close relationship to one another. Thus "sceptre," "tbrone," "crown," are used for royal power or authority, "hearth and home" is used for "country," ac.
"Synecdoche" (Gr. oowexboxt, from ouverot'teodan, to join in receiving) is a rhetorical figure similar to metonymy, in whicb the part is used for the whole or vice versa, thus " hands " is used for the members of the crew of a vessel; a regiment of infantry is said to number so many " bayonets," 2kc.

METOPE (Gr. цerban, a middle space), a term in architecture for the square recess between tbe triglyphs in a Doric fricze, which is sometimes filled with sculpture.

METRE ($\mu e r p u t$, sc. $\tau \dot{\varepsilon} \chi>\eta$, from Gr. $\mu k \tau \rho o p$, measure), in prosody, the harmonious and regulated disposition of syllables into verse. Metrical form is distingaished from prose by the uniformity of corresponding lines in relation to the number of syllables and the similarity of final sound (rhyme or
asconance), by the repetition of certala lettersat regular intervals (in alliterative measure), or merely by the regular succession of ups and downs of intonation. In encient classic poetry tho measare which creates the metrical form consists only of this last quantitative element, which is rhythm.

For the rules and divisions of the various metrical systems, see Verse. For the restricted use of "metre " as a unit of measurement, see Metric Systism below.

Miruld sytrili (adapted from Gr. Mirpop, measure), that system of weigbts and measures of which the metre is tbe fundamental unit. The theory of the system ts that the metre is a rovodrov part of a quandrtnt of the earth through Paris; the litre or unit of volume is a cube of to metre side; the gramme or unit of weight is (nominally) ros of the weight of a litre of water at $4^{\circ} \mathrm{C}$. The Idea of adopting scientific measurements had been suggested as early as the 17th century, particularly by the astronomer Jean Picard (1680-1682), who proposed to take as a unit the lengtb of a pendulum beating one second at sealevel, at a latitude of 45°. These suggestions took practical shape by a decree of the National Assembly in 1790 appointing a committee to consider the suritability of adopting either the lengtb of the seconds pendulum, a fraction of tbe length of the equator or a fraction of tbe quadrant of the terrestrial meridian. The committee decided in favour of the latter and a commission was appointed to mossure the arc of the mferidian between Dunkirk and Mont Jany, near Barcelona. Another commisslon was also appointed to draw up a system of weights and measures based on the length of the metre and to fix the nomenclature, which on the report of the commission was established in 1795. It was not matil 1799 that the report on the length of the metre was made. This was followed by the law of the roth of December 1799 fixing definitely the value of the metre and of the kilogramme, or weigbt of a litre of water, and the new system hecame compulsory in 1801. It was found necessary bowever to puss an act in $\mathbf{1 8 3 7}$, forbidding as and from the ist of January 1840, under severe penalties, the use of any other weights and measures than those established by the laws of 1795 and 1799. The metric system is now obligatory in Argentina, Austria-Hangary, Belgium, Brazil, Chile, France, Germany, Greece, Italy, Mexico, Netberiands, Norway, Peru, Portugal, Rumania, Servia, Spain, Sweden, Switzerland. Its use is legalized in Egypt, Great Britain, Japan, Russia, Turkeyand the United States. In 1875 there was constituted at Paris the International Bureau of Weights and Measures, which is managed by an international committee. The object of the Bureau is to make and provide prototypes of the metre and kilogramme, for the various subscribing countries.

In England action has frequethtly been taken both by individuals nnd by associations of commercial men for the purpose of endeavouring to make the metric system compulsory. A Decimal Association was formed in 1854 but did not make very much headway. A bill was introduced into partiament in 1864 to make the metric system compulsory for certain purposes, but owing to government objectiona a permisoive bill was aubstituted and subeequently became law as the Metric Act 1864. It was, however, reppaled by the Weights and Measures Act 1878. In 1871 another bill for compulsory adoption was rejected by the House of Commons on the second reading by a majority of five. In 1893 a representative delegation of business men pressed its adoption on the chancellor of the exchequer (Sir W. V. Harcourt), but he declined. But in 1897 a statute was passed, the Weights and Measures (Metric System) Act, which legalized the use in trade of the metric system, and abolished the penalty for using or having in one's posieasion a weight or measure of that system.
See also Decimal Coinage and Weights and Marsures.
MEYROCLEs, a Greek philosoper of the Cynic school, was a contemporary of Crates, under wbose persuasion he deserted the views of Theophrastus. It was his sister, Hipparchia, whose romantic attachment to Crates is a fascinating.sidelight on the aimost truculent asceticism of the Cynics. He was a man of peculiar strength of character, and esteemed tbe joys of life so low that he was deterred from an early suicide only by the in luance of Crates. His philosophical views, which were identical witb those of Crates (q.v), he expounded by precept and example with great success, and had among his pupils

Menippus of Sinope. Having weighed the probable pains and pleasures of approaching old age, he decided that life had nothing left for which he greatly cared, and drowned himself. He is gaid to have written several works, which he afterwards burnt. Of one, entitled Xpeia, Diogenes preserves a single line (vi. 6).
METRODORUS, the name of five philosophers:

1. Metrodorus of Athens was a philosopher and painter who flourished in the and century b.c. It chanced that Paullus Aemilius, visiting Athens on his return from his victory over Perseus in 168 b.C., asked for a tutor for his children and a painter to glorify his triumph. The inhabitants suggested Metrodorus as capable of discharging both duties, and it is recorded that Aemilius was entirely satisfied (see Pliny, Nat. Hist. xxv. 135).
2. Metrodorus of Chios was an important member of the Atomistic school. A pupil of Nessus, or, as some accounts prefer, of Democritus himself, he was a complete sceptic. He accepted the Democritean theory of atoms and void and the plurality of worlds, but held a theory of his own that the stsrs are formed fram day to day by the moisture in the air under the heat of the sun. His radical scepticism is seen in the first sentence of his Mepl фiarews, quoted hy Cicero in the Academics ii. 23 § 73. He says," We know nothing, no, not even whether we know or not!" and maintains that everything is to each person only what it appears to him to be. Mctrodorus is especially interesting as the teacher of Anaxarchus, the friend of Pyrrho, and, therefore, as the connecting link bet ween atomism proper and the later scepticism. It cannot be decided whether a work entitied the Tpwixa quoted hy Athenaeus (iv. 184 e) is by this, or another, Metrodorus. The same dificuity is found in the case of the Mepl ioropias referred to by the scholiast on Apollonius.
3. Metrodorus of Lampsacus was the disciple and intimate friend of Epicurus, and is described by Cicero (de Fin. ii. 28. 92) us " almost a second Epicurus." He died in 377 b.c. at the age of fifty-three, seven years before his master, who adopted his children and in his will commended them to the care of his pupils. The wife of Metrodorus was Leontion, herself, like many olher women of the time, a member of the Epicurean society. At henaeus (vii. 279 F.) quotes from the words of Metrodorus showing that he was in entire agreement with Epicurus, and was, if possible, even more dogmatic in his doctrine of pleasure. He censures his brother, Timocrates, who, though professedly Epicurean, maintained the existence of pleasures other than those of the body.
4. Another Metrodorus of Lampsacus was a pupil of Anaxagoras, and one of the earliest to attempt to interpret Homer allegorically. He explajned not only the gods but also the heroes Agamemnon, Achilles, Hector, as representing primary elements and natural phenomena.
5. Metrodorus of Siratonice was a pupil, first of Apollodorus, and later of Carneades. He flourished about 110 b.c., and is reputed to have been an orator of great power. His defection from the Epicurean school is almost unique. It is explained by Cicero as being duc to his theory that the scepticism of Carneades was merely a means of attacking the Stoics on their own ground. Metrodorus held that Carneades was in reality a loyal follower of Plato.
 instrument for denoting the speed at which a musical composition is to be performed. Its invention is generally, but falscly, ascribed to Johann Nepomuk Maelael, a native of Ratisbon (1772-1838). It consists of a pendulum swung on a pivot; below the pivot is a fixed weight, and above it is a sliding weight that regulates the velocity of the oscillations by the greater or less distance from the pivot to which it is adjusted. The silent metronome is impelied by the touch, and ceases to beat when this impulse dies; it has a scale of numbers marked on the pendulum, and the upper part of the sliding weight is placed under that number which is to indicate the quickness of a stated note, as M.M. (Maeisel's Metronome) $p=60$, or $p=72$, or $p=108$, or the
tite. The number 60 implies a second of time for each single
oscillation of the pendulum-numbers lower than this denoting slower, and higher numbers quicker beats. The scale at first extended from 50 to 160 , but now ranges from 40 to 208. A more complicated metronome is impelled by clock-work, makes a ticking sound at cach beat, and continues its action till the works run down; a still more intricate machine has also a bell which is struck at the first of any number of beats willed by the person who regulates it, and so signifies the accent as well as the time.
The earliest instrument of the kind, a weighted pendulum of variable length, is described in a paper by Etienne Loulie (Parit, 1696: Amsterdam, 1698). Attempts were also made by Enbrayg (1732) and Gabory (177!). Harrison, who gained the prize awarded by the English government for his chronometer, published a description of an instruntent for the purpose in 1775. Davaux (1784), Pelleticr, Abel Burja (1790) and Weiske (also 1790) described their various experiments for measuring musical time. In 1813 Gottfried Weber, the composer, theorist and essayist, proposed a weighted ribbon' graduated by inches or smaller divisions. which might be held or otherwise fixed at any desired length, and would infallibly oscillate at thesame speed so long as the impulse lasted. Stöckel and Zmeskall produced each an instrument; and Macizel made some slight modification of that hy the former, about the end of 1812, which he announced as a new invention of his own, and exhibited from city to city on the Continent. It was, as nearly as can be ascertained, In 1812 that Winkel. a mechanician of Amsterdam, devised a plan for reducing the ineonvenient length of all existing instruments, on the principle of the double pendulum. rocking on both sides of a cencre and balanced by a fixed and a variable weight. He spent three ycars in completing it, and it is described and commended in the Keport of the Netherlands A cademy of Sciences (Aug. 14, 1815). Maelzed thereupon went to Amsterdam, saw Winkel and inspected his invention, and, recognizing its great superiority to what he called his own, offered to buy all right and title to it. Winkel refused, and so Maelzel constructed a copy of the instrument, to which he added nothing but the scale of numbers, took this copy to Paris, obtained a patent for it, and in 1816 established there, in hia own name, a manufactory for metronomes, When the impostor revisited Amsterdam, the inventor instituted proceedings against him for his piracy, and the Academy of Sciences decided in Winkel's favour, declaring that the graduated acale was the only point in which the instrument of Macizet differed from his. Maelzel's scale was needlessly and arbitrarily complicated, proceeding by twos from 40 to 60 , by threes from 60 to 72, by fours from 72 to 120 , by sixcs from 120 to 144 and by eights from 144 to 208 . Dr Crotch constructed a time measurer, and Henry Smart (the violinist, father of the composer of the same name) made another in 1821, both before that received as Macizel's was known in England. In 1882 James Mitchell, a Scotsman, made an ingenious amplification of the Maelzel clock-work, reducing to mechapical demonstration what formerly rested wholly on the feeting of the performer.
Although " Maelzel's metronome" has universal acceptance, the silent- metronome and still more Weber's graduated ribbon are greatly to be preferred, for the clock-work of the other is liable to be out of order, and needs a nicety of regulation which is almost impossible; for instance, when Sir George Stnart had to mark the traditional times of the several pieces in the Dettingen Te Deum. he tested them hy twelve metronomes, no two of which beat toget her. The value of the machine is exaggerated, for no living periormer could executc a piece in unvaried time throughout, and no student could practise onder the tyranny of its beat: and conductors of music, nay, composers themselves, will conduct the same piece slightly slower or quicker on different occasions, according to the circumstances of performance.

METROPOLIS (Gr. $\mu \boldsymbol{j}^{\prime}$ mp, mother, moles, city), properly a mother-city, and so the name of the parent state from which colonies were founded in ancient Greece (sce Greece, sect. History, Aucicut). The word was used in post-classical Latin for the chief city of a province, the seat of the government, and in particular ecclesiastically for the seat or sec of a metropolizan bishop (see Metropolitan). It is thus used now for the capital of a country, which contains the various official buildings of the administrative departments, the Houses of Parliament, \&ic. In the case of London, the term "metropolitan" is sometimes applied to the wbole area including the "City of London," e.g. "Metropolitan Asylums Board"; and sometimes, as in "Metrapolitan Police," exciudes the City, which has its own police force (see LONDON).
 in the Christian church, the title of a bishop who has the oversight over bishope of subordinate sees. In the Western church
the metropolitan is practically the same as the archbisbop (q.o.); in the Eastern church he ranks above the archbishop, but below the patriarcb (q.v.). Metropolitans first appear in the East in the 4 th century as presiding over a province (provincia or $\varepsilon_{\pi} a \rho x i a$), and their see is fixed in the principal town ($\mu \eta \tau \rho o m b i s$) of the province, which remains the normal custom both in East and West. In Africa, however, the metropolitan jurisdiction was exercised by the senior bishop (primas, primas sedis episcopus, senex) for the time being, a custom which prevailed for a time also in Spain. Thus, too, in the Scottish Episcopal Church and the Protestant Episcopal Church of America there are no metropolitans, the primas being the senior hishop.

FETSU, GABRIBL ($1630-1667$), Dutch painter, was the son of Jacob Metsu, who lived most of his days at Leiden, where he was three times married. The last of these marriages was celebrated in 1625, and Jacomma Garnijers, herself the widow of a painter, gave birth to Gabriel in 1630. According to Houbraken Metsu was taught by Gerard Dow, though his early works do not lend colour to this assertion. It is certain, however, that he was influenced in turn by Jan Steen, Rembrandt, and Hals. Metsu was registered among the first members of the painters' corporation at Leiden; and the books of the gild also tell us that he remained a member in 1649. In 1650 he ceased to subscribe, and works bearing his name and the date of 1653 give countenance to the belief that he had then settled at Amsterdam, where he probably continued his studies under Remhrandt. One of his earliest pictures is the "Lazarus" at the Strassburg Museum, painted under the influence of Jan Steen. Under the influence of Rembrandt he produced the "Woman taken in Adultery," a large picture with the date of 1653 in the Louvre. To the same period belong the "Departure of Hagar," formerly in the Tboré collection, and the "Widow's Mite" at the Schwerin Gallery. But he probably observed that sacred art was ill suited to his temper, or he found the field too strongly occupied, and turned to other suhjects for which he was better fitted. That at one time he was deeply impressed by the vivacity and bold technique of Frans Hals can be gathered from Lord Lonsdale's picture of "Women at a Fishmonger's Shop." What Metsu undertook and carried out from the first with surprising success was the low life of the market and tavern, contrasted, with wonderful versatility, by incidents of high life and the drawing-room. In no single instance do the artistic lessons of Rembrandt appear to have been lost upon him. Tbe same principles of light and shade which had marked his schoolwork in the "Woman taken in Adultery" were applied to subjects of quite a different kind. A group in a drawing-room, a series of groups in the marketplace, or a single figure in the gloom of a tavern or parlour, was treated with the utmost felicity by fit concentration and gradation of light, a warm flush of tone pervading every part, and, with that, the study of texture in stuffs was carried as far as it had been by Ter Borch or Dow, if not with the finish or the brio of De Hooch.

Metsu went to Amsterdam hefore 1655, married in 1658, and became a citizen of that city in 1659 . One of the best pictures of Metsu's manhood is the "Market-place of Amsterdam," at the Louvre, respecting which it is difficult to distribute praise in fair proportions, 60 excellent are the various parts, the characteristic movement and action of the dramatis personae, the selection of faces, the expression and the gesture, and the texture of the things depicted. Equally fine, though earlier, are the "Sportman" (dated 1661) and the "Tavern" (also 1661) at the Hague and Dresden Museums, and the "Game-Dealer's Shop," also at Dresden, with the painter's signature and 1662 . Among the five examples of the painter at the Wallace Collection, including "The Tabby Cat," "The Sleeping Sportsman," which cost Lord Hertford f3000, 2 is an admirable example technically considered. Among his finest representations of home life are the "Repast" at the Hermitage in St Petersburg; the " Mother nursing her Sick Child " of the Steongracht Gallery at the Hague; the "Amateur Musicians " at the Hague Gallery; the "Duet "and the "Music Lcsson" at the National Gallery, and many more examples at mearly all the leading European galleries.
 Prince (1773-1859), Austrian statesman and diplomatist, was born at Coblenz on the 15 th of May 1773 . His father, Count Frans Georg Karl von Metternich-Winneburg zu Beilstein ${ }^{\text {: }}$ (d. 2818), was a diplomatist who had passed from the service of the archbishop-elector of Trier to that of the court of Vienna; his mother was Countess Maria Beatrix Aloisia von Kagenegg. At the time of Clemens Metternich's birth, and for some time subsequcntly, his father was Austrian ambassador to the courts of the three Rhenish electors, and the boy was thus from the first brought up under the influence of the tone and ideas which flourished in the small German courts that lay within the sphere of influence of the France of the arcien regime. In 1788 he went to the university of Strassburg, where he stud'ed German constitutional Law; but the outbreak of the French Revolution caused him to leave after two years. Metternich wa a witness of the excesses of the mob in Strassburg, and he ascribed his life-long hatred of political innovation to these early experiences of the victory of liberal ideas. In 1790, hy way of striking contrast, he was deputed by the Catholic bench of the Westphalian college of counts to act as their master of the ceremonies at the coronation of the Emperor Leopold II. at Frankfort, a function which he again performed at the coronation of Francis II. in 1792. The interveming time he spent at Mainz, attending the university and frequenting the court of the archbishopelectox, where his impressions of the Revolution weye strengthened by his intercourse with the French Emigres who had made it their centre. The outbreak of the revolutionary war drove him from Mainz, and he went to Brussels, where be found employment in the chancery of his father, at that time Austrian minister to the government of the Netherlands. Here, in August 1794, he issued his first publication, a pamphlet in which he denounced the "shallow pates" of the old diplomacy and argued that the only way to combat the French revolutionary armies was by a lede en masse of the populations on the frontier of France-singular views for the statesman who was destined to be the last great representative of the old diplomacy and the greater part of whose life was to be spent in combating the national enthusiasms by which the revolutionary power of France was ultimately overthrown.

After a long stay in England, where he made the acquaintance of the prince of Wales (afterwards George IV.), Metternich went to Vienna; and on the 27 th of September 1795 he married at Austerlitz the Countess Eleonore von Kaunitz, a grand-daughter of that Austrian chancellor who in many respects wis his prototype. This alliance not only brought him great estates in Austria, but introduced him into the most exalted circles of Viennese society. Here he was well qualified to held his own by reason of his handsome presence, the exquisite courtesy of his address and a certain reputation for gallantry. He was far, however, from being a mere carpet diplomatist. . His interests were many and varied, and be found time for the serious st udy of natural science and medicine. In December 1797 he was chosen by the West phalian counts as their representative at the congress of Rastadt, where be remained till r799. This was his first experience of the great world of practical politics and especially of those rough diplomatists of the Revolution of whom in his letters he has left so vivid a description. In January 1801 he was appointed Austrian envoy to the elector of Saxony. His two years' stay at the court of Dresden was mainly useful to him by bringing him into touch with the many Russian and Polish families of importance; his serious diplomatic career did not begin till his appointment, in November 1803, as amhassador at Berlin. His instructions at the outset were to

1 The family of Metternich, originally established in the county of Julich, can trace its descent to the middle of the 14th century. In 1637 they received from the archbishop of Trier the countships of Winneburg and Beilstein. These were confiscated in 1803, and the lands of the suppressed abbey of Ochsenhausen, with the title of prince of the Empire, were granted by the edict as compensation. The new principality was mediatized " in 1806 in favour of Worttemberg; but in virtue of their short tenure of it the descendants of Prince Metternich enjoy the privileges of mediatized princes.
prevent Prussia from jotning the alliance of Russia and Creat Britain against the French Repuhlic and to make himself agreeable to the representative of France; but shortly afterwards his part was exactly reversed, owing to the shifting of political forces which led to the war of the third coalition, and he laboared to secure the adhesion of Prussia to the alliance of Austria, Russia and Great Britain against Napoleon. His diplomacy was not successful; for though Prussia ultimately signed the treaty of the 5th of November 1805 with Austria and Russia, the infuence of the emperor Alexander and the wound given to her pride by Napoleon's contemptuous violation of her territory had more to do with Prussia's decision than Metternich's veiled threats. His reward was the grand cross of the order of St Stephen and the appointment of ambassador at St Petersburg; but his commission to make himself agreeable to the French ambassador at Berlin was carried out to such ercellent effect that, as a result of M. Laforest's reports, Napoleon requested that he might be appointed to represent Austria at tbe Tuileries, and in August 1806 Metternich took up his residence as ambassador in Paris.

This was the beginning of his ever growing influence in European affairs. Established in the diplometic character of an "honourable spy" in the very centre of Napoleon's power, he used his exceptional gifts of fascination not only to become a persona grata at the Tuileries, hut to estabdish relations with those elements in the society of the empire which were already intriguing against Napoleon's power. His intimacy with Talleyrand and with Caroline Murat, Napoleon's sister, was destined to produce notable results later. Though on the look-out, however, for any chance of weakening the French emperor's power, Metternich was not at first sanguine of success, for he believed Napoleon to be invincible. For Austria the best policy seemed to him to be to temporize; he was willing, therefore, to co-operate with France in the agreement made between Napoleon and Alexander I. of Russia at Tilsit for the partition of the Ottoman Empire; failing the success of the efforts of Austrian diplomacy to break the Franco-Russian alliance, this would at least secure for the Habsburg monarchy a share of the spoils. With the postponement of Napoleon's Oriental schemes, however, the situation was once more changed. During the summer of 1808 Metternich had reason to suspect fresh desigas of the French emperor against Austria, and his suspicions appeared to be confirmed when, during an interview on the asth of August, Napoleon indulged in one of his violent tirades, denouncing Count Stadion's action in strengthening the Austrian armaments. In November Metternich was at Vienna, urging the Austrian government to an early declaration of war-for which the moment seemed to him opportune owing to the French losses in Spain, of which he had received exaggerated reports. On the ist of January 1809 he was back in Paris, but no longer as a parsone grala. At the outhreak of the war he was placed under arrest, in retaliation for the action of the Austrian government in interning two members of the French embassy in Hungary; and in June, on Napoleon's capture of Vienna, he was conducted there under military guard. In July he was exchanged at Komarom for the French diplomatists, and he was present with the emperor Francis at the battle of Wagram. At a council held on the 7 th of July it was decided, on Metternich's initiative, to open negotiations for peace; next day Stadion tendered his resignation, which was provisionally accepted. Stadion was sent as diplomatic adviser to the headquarters of the archduke Charles, while Metternich took his place at the emperor's side. On the 4th of August Metternich was named minister of state, and soon afterwards was sent with Count Nugent to the peace conferenceat Altenburg, where Chamagny attended as Napolcon's representative. The conference, however, dragged on without result, and the emperor Francis decided to open negotiations with Napoleon direct. Count Bubna was accordingly sent to Schonbrunn; the result was the French ultimatum which issued in the treaty of Schonhrunn (Vienna), signed by Prince Liechtenstein on behalf of the emperor Francis on the 14th of October 1809. With the negotiation and signature of this humitiating
instrument Metternich therefore had nothing to do, though on the 8 th of October he had been definitely appointed minister for foreign affairs, an office he was destined to hold for nearly forty years.

The position of the new minister was no easy one. By the treaty of Schठ̈brunn Austria was reduced to the position of a second-rate power, and by secret articles undertook during the continuance of the maritime war to limit her force of all arms to 150,000 men, and to dismiss from her service all officers or civll officers born in the territorics of ancient France, Piedmont or the former Venetian republic. Weak as she had become, the menace of the future seemed even more disquieting. To the south she was divided from the French dominions by the Save; to the west and north the vassal states of France, traditionally her enemies, lay along the frontier; to the east was Russia, which as the reward for her alliance with Napoleon had received a portion of East Galicia as her share of the spoils, and to all appearance was frmly established in the Danubian principalities. Austria seemed hopelessly cut off by Napoleon from any chance of re-asserting her traditional preponderance in Germany, by Russia from any prospect of obtaining compensation at the expense of the Ottoman Empire. One false move on the part of those who guided its destinies, and the Habsburg monarchy might easily have ceased to exist altogether.

The saving factor in the situation was the improbability of the alliance between Napoleon and Alexander conlinuing, and the immediate task of Metternich was to hasten its dissolution, while securing Austria's safety in the East by bringing about the end of the Russo-Turkish War. It was a task of extreme delicacy; for any revelation of its true tendency might have thnown the emperor Alexander into the arms of France and plunged Austria into an unequal struggle for life and death with Russia on the banks of the Danube. Metternich was -helped by the rapid development of the causes of disagreement between the French and Russian emperors. Early in 1810 Europe was full of contradictory rumours of war between France and Russia, of a marriage of Napoleon with a Russian grand dichess. Then suddenly came Napoleon's formal request for the hand of the Austrian archduchess Marie Louise. A proposal so nicely calculated to forward Metternich's plans was suspected of being due to his inspiration; certainly it was his inffuence that decided the emperor Francis to agree to an alliance which could not but be distasteful to him and was resented as a crowning humiliation by the proud aristocrats of Vienna.

On the 13th of March 18 ro Metternich left Vienna for Paris in company with the archduchess. His object was to use so favourable an occasion for obtaining the ahrogation of some of the more onerous articles of the treaty of Schonbrunn, and for coming to some arrangement whereby the serious fnconvenience caused in Austria by Napoleon's coercion of the pope might be obviated. His'diplomacy, however, met with but slight success. His efforts to persuade Pits VII. to purchase a measurt of liberty of action by concessions to Napoleon broke down on the gentle old man's refusal to traffic with his principles. From Napoleon he extracted a lame apology for the execution of Andreas Hofer, tbe reversal of a few sequestrations and, as a crowning grace, the abrogatlon of the article of the Schonbrunn treaty limiting Austrian armaments. In the matter of restoring the access of Austria to the Adriatlc, Napoleon would make no concession; his answer to Metternich's representations was only a commercial treaty which failed to ohtain ratification at Vienna. Anything further, e.f. an exchange of the Illyrian provinces for Galicia, must depend on the attitude of Austria in the forthcoming Russian war which, in an interview of the 20th of September, Napoleon declared to be now inevitable.

On the 1oth of October Metternich was back in Vienna, where his presence was urgently needed. The policy of a FrancoAustrian entente was popular with the public and the army, resentiful of the treacherous attitude of Russia in the late war, but in the powerful circles of the court it had scarce an adherent. Prince Metternich himself, who had acted as foreign secretary during his son's absence, favoured an understanding with Rvaia,
and was even believed to be intriguing to retain the portfolio of foreign affairs, which would have meant the victory of the Rumian party. On the other hand, the French party were chmouring for the speedy conclusion of a definite alliance rith Napoleon. By an admirably clear expose of the situation Metternich won over the emperor Francis to that middie course, the policy of armed abstention, which was to be the beaic principle of his diplomatic action during the crisis of the coming years. An alliance with Rossia, be argued, would be worse than useless; Austria would at any time obtain better terms from the tsar's growing needs. An alliance with France mould be one with "e power whose exclusive object is the destruction of the old order of things, which has hitherto found Its defence in Austria." Alone of European Powers Austria still had the possibility of choice; let her work for the preservation of peace and at the same time remain free, sbould war break out, to make her own terms. It would little scrve Aust ria's firterests to become the ally of Russia, merely to serve as a barrier behind which the emperor Alaxander could carry out his designs on Turkey in aafety. In an interview with Count Shuvalov, the Russian agent, Metternich roundly declared that the maintenance of the integrity of Turkey was for Austria the question of supreme interest.

With the approach of the Ruseo-French War the situation became increasingly difficult. The partisans of Russian alliance remained powerful and chamorous; but Metternich did not share the doubts as to the outcome of Napoleon's invasion of Russia, which he believed would leave Austria, it she remained neutral, isolated amid a huge European confederation. To him the only safe course seemed to be to offer the French emperor substantial assistance, stipulating for some quid pro quo in the settlement to follow the war. The cmperor Francis shared this view; and on the rath of March a treaty of alliance was signed hy which Austria agreed to support the French army with an army corps of 30,000 men operating from Galicia. This treaty was ratified at Vienna on the 25 th of March, the day of Napoleon's passage of the Niemen. It was characteristic of Metternich's diplomacy that the Austrian generals in Galicia were ordered to act only on the defensive, and that the court of St Petersburg was informed that Austria would only take part in the war as a principal should Russia force her to do so.

This cautious attitude was soon justified by the astounding developments of the Moscow eampaign. When the full extent of the catastrophe that had overwhelmed Napolcon's army became known, Mettemich realized the advantageous position in which Austria lay for exploiting the changed situation. His first idea was that France should commission Austria to mediate a peace in Russia and in England (Despatch of Otto, November 10); but, as affairs developed, this was replaced by the policy of temporizing until Austria should be in a position to intervene with decisive effect. Napoleon's demand that Austria should raise her contingent from 30,000 to 100,000 men was, indeed, from Metternich's poimt of view doubly opportune: for it enabled him quietly to assume that the treaty of the 14th of March, which stipulated only for an "alliance limitee," had been abrogated by Napoleon's own act; that Austria had reverted to a position of neutrality; and that, should she take part in the war, it would no longer be in a subordinate character but as a principal. "Le passage de la neutralite à la guerre," said Metternich to the emperor Francis, " ne sera possible que par la mediation armee "; which meant in effect that Austria required time to complete her armaments. To gain this time was, during the weeks that followed, the object of his diplomacy. For this purpose he encouraged Napoleon to believe that Austria was prepared for a settlement on terms very favourable to the French emperor; with the result that Napoleon, though he would not hear of a " mediation," not only consented to, but pressed for, Austrian "intervention" (eniremise). But Metternich had made up his mind that the only chance of an effective restoration of the Habsburg influence in Europe lay in using this opportunity for destroying or limiting Napoleon's power,
and he had already operied neeotiations with the allied courts; with a view to enforcing a common agreement as to a basis of pesce, when the indecisive battle of Lützen (May 2) gave him the opportunity of making his policy of mediation effective. Count Stadion was now sent to the emperor Alexander to lay before him the terms on which Austria was prepared to mediate; he was also to " agree to the bases of an active military co-operation on our part, in the crent of the non-success of our efforts on behalf of peace." On the 20th of March Napoleon gained another indecisive victory at Bautzen, which still further strengthened Metternich's position; for Napoleon allowed himself to be persuaded into signing the ill-omened armistice of Pleiswitz (Poischwitz), on the 4th of June, and to become entangled in the insincere negotiations of the congress of Prague. Austria thus had time to complete her armaments. Meanwhile, on the 14th and 15th of June, were signed at Reichenbach the treaties of alhance between Great Britain, Russia and Prussia, by which the signatory Powers agreed neither to negotiate nor to conchude treaty or truce with Napoleon except by common consent. In an interviow with the emperor Alexander, Metternich now presented the terms which he proposed to offer to Napoleon, and on this basis a treaty between Austria, Russia and Prussia was agreed to, Austria contracting to put 150,000 men into the field, should Napoleon reject the uiltimatum, and not to make peace without the consent of Russia and Prussiawhich in effiect involved that of Great Britain also.
Before this second treaty of Reichenbach was signed (June 27), Metternich went on Maret's invitation to Dresden, where on the 26th he had the famous interview with Napoleon. The whole scene was on his part a masterpiece of Machiavellian diplomacy. The terms he offered to the emperor were so favourable that he has been denounced by every Prussian historian since as the enemy of Germany; while French historians have enlarged on Napoleon's infatuation in rejecting them. In spite of the fact that the draft of the treaty of Reichenbach was in his pocket, he posed as the impartial "mediator," with a leaning in favour of Napoleon, assuring the emperor "on his honour as a German count " that Austria was still "free from all engagements," which was true only in so far as the treaty was not signed till the next day. Metternich's object was, in fact, only to gain an extension of the armistice till the roth of August, on which date Schwarzenberg had declared that he would be ready to take the offensive. As for the terms offered to Napoleon his acceptance of them need not hamper the plans of the Allies; for the consent of Great Britain would have to be obtained, and, moreover, Napoleon was sure before long to provide an excuse for a fresh breach; his rejection of them, on the other hand, would be alow to his waning popularity in France. The interview was long and stormy; Napoleon struggled vainly in the toils; in his excitement he dropped his hat, which the imperturbahle Metternich did not condescend to pick up; "Napoleon," he records in his Memoirs, "seemed to me small." Metternich, however, gained his immediate point; the armistice was extended to the roth of August. At midnight on that date, Napoleon not having come to terms, Metternich gave orders for the lighting of the beacons that signalled to the Austrian army in Silesia the outbreak of the war.
Napolcon's victory at Dresden (Aug. 26 and 27) for the moment brought discord into the counsels of the Allies and threatened the ruin of Metternich and his plans; but the successive defeats of Vandamme at Kulm (Aug. 28), of Macdonald at Katzbach (Aug. 29) and Oudinot at Grossbeeren (Aug. 30) completely altered the aspect of affairs; and on the 9 th of September Metternich signed at Toplitz a treaty with Russia which committed Austria yet more closcly to the policy of the Allies. Then followed the battle of Leiprig (Oct. 16-18) and the advance of the Allies into France. The diplomatic situation throughout the campaign was, from the Austrian point of view, one of extreme delicacy. The necessity of curbing the power of Napoleon and rendering him for ever incapahle of again overscting the balance of Europe was practically the ondy object Austria had in common with her allies. She did not
share the implacable resentment with which Great Britain pursued Napoleon; she watched with alarm the development of the ambitions of Alexander I., which threatened to substitute a Russian for a French supremacy in Europe; she was far from sympathizing with the noisy enthusiasm of the patriots of the War of Liberation for a united Germany, in which the traditional influence of the Habshurgs would be balanced or overshadowed by that of Prussia. Metternich had no wish to see the husband of Marie Louise ousted in favour of the Bourbons, who had little reason to be grateful to Austria; still less did be desire to see on the throne of France Alexander's protege Bernadotte, whose name was being whispered in the Paris salons as the destined saviour of his native country. But if Napoleon was to remain sovereign of France, it must be not by his own force, but by grace of his father-in-law, and hedged round with limitations which would have made bim little more than the lieutenant of the Habsburg monarchy. This was the secret of the moderate terms of accommodation ostentatiously offered by Metternich to Napoleon at various stages of the campaign. From Frankfort he sent, through General de Saint-Aignan, a diptomatist on whose indiscretion he could rely, an informal offer of peace on the hasis of France's "natural frontier," the Rhine, the Alps and the Pyrenees. The famous manifesto of Frankfort, issued on behalf of the Allies (Dec. 4, 1813), contained no such offer of acceptable terms; but Metternich's object was attained; for Napoleon refused to be drawn into the trap, and the French people cursed the emperor's infatuation in refusing a settlement which, from what had leaked out of Saint-Aignan's mission, they believed would have satisfied the legitimate ambitions of France. On the other hand, Metternich did his hest to oppose a too rapid advance of the allied forces on Paris, which would have played into the hands of Russia and Prussia; and it was to his initiative that the conferences of Chatillon were due. Only when the breakdown of the negotiations made it clear that Napoleon had seen through his plans, and preferred the chances of war to the certainty of ruin or of surviving only as the puppet of Austria, did Metternich join with Castlereagh in pressing upon the tsar the necessity for restoring the Bourbons. On the ist of March 1814, he set his hand to the treaty of Chaumont, of which the immediate object was the restoration and preservation of the old dynasty in a France reduced to ber " legitimate frontier." In other respects, however, the treaty was a triumph for Metternich; for it laid down that at the final settlement Germany was to be reconstituted as a confederation of sovereign states, and it also did much to temper the fear of a Russian dictatorship by consecrating the principle of that concerted action of the Great Powers, in affairs of international interest, which after Napoleon's fall was to govern the European system. On the 1oth of April Metternich arrived at Paris, ten days after its occupation by the Allies. He was now at the height of his reputation; on the 20th of October 1813, two days after Leipzig, he bad been created an hereditary prince of the Austrian Empire; be now received from the emperor Francis a unique honour: the right to quarter the arms of the house of Austria-Lorraine with those of Metternich. At the same time (April 21) the countship of Daruvar was bestowed upon him. On the 3oth of May Metternich set bis signature to the treaty of Paris, and immediately afterwards accompanied the emperor Alexander and King Frederick William on a visit to England. On the 18th of July he was back in Vienna, where the great congress was to meet in the autumn. The dignity of a Hungarian magnate was bestowed upon him before it assembled,

At the congress Metternich's charm of manner and great social gifts gave him much personal influence; the ease and versatility with which he handled intricate diplomatic questions, too, excited admiration; at the same time be was blamed for his leaning to intrigue and finesse and for a certain calculated disingenuousness which led to an open breach with the emperor Alexander, who roundly called bim a liar. In the difficult questions of Poland and Saxony the honest and conciliatory attitude of Castlereagh was of morc aysil in reaching an accept-
able settliment than all Metternich's cheverness. If in the Italian and German questions, however, Austria's views triumphed, this was due to the foresight displayed in Metternich's diplomacy during the campaigns and to the address with which he handled the questions at issue at the congress. The complacency of Hardanberg had allowed Austria alone to negotiate with the states of the Confederation of the Rhine with a view to detaching them from Napoleon; and he had used this opportunity to render impossible the ides of a united Germany. On the 8th of October 1813 he had signed with Bavaria the ireaty of Ried, which in the event of the Jiberation of Germany guaranteed to Bavaria a sovercign and independent status. This instrument, which was reinforced by a secret tresty signed at Paris on the 3rd of June 1814, served as a model for similar agreements with other courts; and the principle invoived was, as mentioned above, included in the treaty of Cbaumont. Thus all the unionist ideals, represented at the congress by Stein, were sterilized from the outbet; and the Act of Confederation embodied in the Flnal Act of Vienna gave to Germany exactly the form desired by Metternich as best calculated to perpetuate Austrian preponderance (bee Germany: History). The same was true of the settlement of Italy. The question bere was complicated by the treaty of alliance signed by Metternich with Murat as the price of his treason to Napoleon. But Metternich from the first had known that the treaty was hut a temporary expedient; that Great Britain would never recognize " the person at the head of the government of Naples"; and that sooner or later Murat himself would afford excuse enough for tearing the treaty up. Not Murat's dream of an Italy united under his own rule, but the traditional Austrian policy of possession in the north and preponderance throughout the Peninsula was Metternich's goal, and this he secured at the congress. Murat, in view of Austria's engagements, was suffered to survive for the time being; he himself shattered the alliance during the Hundred Days; and the Bourbons returned to Naples, pledged by a secret agreement to attune their policy tothat of Vienna (see Naples: History).

Metternich, then, emerged from the congress of Vienne confirmed in the confidence of his sovereign, and. therefore supreme in Germany and in Italy. To him had been due the marvellous recovery of the Habshurg monarchy; in spite of Gentz's lament that in the latter stages of the campaign of 1814 "Europe" had been substituted for "Austria" in his diplomacy, Metternich had acted throughout first and foremost in the interests of Austria, as he was bound to do. This, too, gives the key to his policy after 1815, the policy of using the European concert, established by the treaty of Chaumont and the Paris treaty of the 20th of November 1815, as an instrument for ensuring the "stability" of Europe by suppressing any "revolutionary" manifestations by which the settlement made at Vienna might be endangered.

After the campaign of Waterloo and Napoleon's seconddowniall Metternich was again in Paris, where he co-operated with the emperor Alexander and Castlereagh in securing tolerable terms of peace for France. A few days after the signing of the two treaties of the 20th of November 18:5, he left Paris for Milan, where he met the crown prince Louis of Bavaria and Baron von Recbberg, with whom he came to terms on certain outstanding questions between Austria and Bavaria, terms embodied in the treaty of Munich of the 14th of April 1816. During his visit to Italy, which he repeated in 1816 and 1817 , Metternich could not but be impressed with the general signs of discontent with Austrian rule. Neither was be blind to the true causes of this discontent: the atrophy of the administration owing to its rigid centralization at Vienna, and the poiscy of enforcing Germanism on the Italians by a ruthless police system. He made half-hearted proposals for removing something of both these grievances; but his terror of revolution from below made him fearful of reforms from above. While thercfore in Prussia king and ministers were labouring hard to remodel and consolidate the monarchy, Metternich did next to nothing to reform the most obvious abuses of the Austrian Empire. Yet the fault
tra not wholly, or mainly, hin, Sir Robert Gordon, ${ }^{1}$ in a letter to Castlereagh (dated Florence, July 11, 1819), gives the true meason for this attitude: "How much is it to be desired that the superior talents of Prince Metternich were more occupied with the revision and improvement of the administration of affairs in his own country He is too enlightened not to perceive its most palpable defect . . . He migbt have courage to sacrifice himself for the institution of effective remedies, but be fears that the confiding benignity of his Sovereign might afterwards be discuaded from the just and vigorous application of them." (F.O. Austria. Gordon. Jan.-Dec., 1819.) Metternich's power, after all, was limited by the goodwill of his master, the eroperor Francis, and Francis trusted him precisely becuuse he seemed to share bis own fanatical hatred of all change. It is this fact that seems to explain Metternich's feverish anxiety to justify his obscurantist attitude to himself and to the work. It suited him to ascribe tbe general discontent, of which the causes were not obscure, to the wanton agitation of the "sects," and his agents all over Europe earned their pay by supplying him with pleatiful proof of the correctness of his contention. The result was well summed up in another letter of Gordon to Castlereagh (Ebid. No. 26, Florence, July 12, 1819). "Nothing." he writes, "can surpass Prince Metternich's activity in collecting facts and information upon the inward feelings of tbe people; with a habit of making these researches he has acquired a taste for them. . . . The secrecy with which this task is indulged leads him to attach too great importance to his discoveries. Phantoms are conjured up and magnified in the dark, which probably if exposed to light would sink into issignificance; and his informers naturally exaggerate their reports, aware that their profit is to be commensurate with the display of their phantasmagoria." The judgment is instructive, coming as it does from a diplomatist in intimate touch with Metternich and in general sympathy witb his views.

There was, none the less, method in this madness. Behind the agitations of the "sects" loomed the figures of the emperor Alexander and of his confidant Capo d'Istria, "the Coryphaeus of Liberalism," whose agents, official or unoffical, were intriguing in every country in Europe, and not least in Italy. The factor, then, that determined Metternich's attitude was not so much a dread of revolutions in themselves as of revolutions exploited by the "Jacobin" tsar to establish his own preponderance in Europe. Metternich's object, then, in respect of the revolutionary agitations, was twofold: he wished to impress Alezander with the peril of this imperial cocquetting with democratic forces; be wished to convince the "sects" that they could not rely on the tsar's support. He sncceeded in both these objects during the period from the congress of Aix-la-Chapelle in 1818 to that of Verona in 1822. (See Alexander I. of Russia; Eulopt: Hislory.)

On his way to the congress of Aix, Metternich spent a few days at Frankfort, where bis presence was sufficient to settie the difficult question of the constitution of the federal forces. It was a signal triumpb. "You can have no idea of the effect produced by my appearance at the diet," he wrote exultingly to his wife, "I have become a species of moral power in Germany and, perhaps, even in Europe" (Mcm. iv. 64). This selfcomplacency was characteristic of the man; but, if we accept his view of "morality," the boast scarce seems exagserated. In the main questions debated at Air, indeed, it was Castlereagb's influence rather than that of Metternich which prevailed; the abolition of the supervialon of French affairs by the committee of ambaseadors was, for instance, carried against his opinion. But it wes at Alx tbat Metteraich was not only reconciled with Alerander, but laid the foundations of that personal influence over the tsar that was to bear notable fruit later; from Aix, too, where he arrived at a complete understanding with King Frederick William III. and the Prusian ministers, dates his preponderant influence in Germen affairs.

The outlook in Europe at the beginning of 1829 seemed to
${ }^{1}$ Sir Robert Gordon (1795-1847), brother of the 4h earl of Aberdeen, was between 8815 and 182 s aceociated with Wellington at minister plenipotentiary at Vienna.

Metternich perticularly gloomy. In France the ministry of Decazes was, in his opinion, under the inspiration of the Russian ambassador Posso di Borgo, beading straight for a new revolution, in Italy Russian ageats were openty carrying on a Liberal propaganda; Germany, and notably the Prussian bureancracy, was honeycombed with revolutionary idens. Then came the news of tbe murder of Kotzeboe (March 23). Metternich was in Italy at the time; but he determined at once to take advantage of this senseless crime to carry his views in the matter of murxiling the Liberal agitation in Germany. In the summer be met King Frederick Willian and Prince Hardenberg at Toplitz; a conference that resulted in the indefinite postponement of the Prussian constitation and in a secret agreement (Aug. 1) on the proposals to be laid before a conference of German ministers to be beld at Carlsbad in the same montb. The result of this were the famous Carlsbad Decrees (q.o.), by which liberty of speech and of the press was abolished throughout Germany. The Vienna conferences that followed in November and issued in the Final Act of the I5th of May 1820, was not so complete a triumpb for Metternich; but bis diplomacy, none the less, had succeeded in riveting on Germany the yoke of the Austrian system, which it was to bear with but partial and temporary relazations for nearly thirty years (see Germany: History).

The year 1820 was marted by critical events which drew Metternich's attention once more from the affairs of Germany to those of Europe at large. The revolution in Spain, with which Austria had no immediate concern, interested bim littie; but his attitude towards it is characteristic and illuminating. The emperor Alexander for whom the idea of the confederation of Europe was an article of faith, proposed a European intervention and offered to march a Russian army through northern Italy into Spain. Metternich, to whom the remedy seemed far worse than the disease, covered his dissent from this proposal with a great display of principle. The ills of Spain were "material," those of Europe at large "moral"; and the European Alliance was there to deal with moral, not material, troubles. The revolution that followed in Naples, however, necessitated a difierent attitude. Strictly speaking, it concerned Austria alone; but Metternicb was anxious to range Alexander openly against Italian Liberalism, and be therefore conseated to the question being laid before a congress to be assembled at Troppau. The congresses of Troppau (1820) and Laibach (1821) are dealt with elsewhere (see Eurors: History; Italy: History, and the articles s. ө.). For Metternlch they represented a signal triumph. Not only did he complete his ascendancy over the emperor Alexander; but he openly committed all the Powers to an approval of the Austrian system in Italy, a success that outweighed his failure to win over Great Britain to tbe general principle of intervention enunciated in tbe Troppau Protocol. His attempt, bowever, to crown his system in Italy by setting up a central committee on the model of the Mainz commission was defeated at tbe congress of Verona (1822) by the opposition of the Italian princes headed by the pope and the grand duke of Tuscany.

The sort or moral dictatorship which Metternicb had acquired on the continent was shattered by the developments of the Eastern Question. At first, indeed, the peril of a Russian attack on Turkey had drawn Austria and Great Britain closer together, and in 2 meeting at Hapover in October 1821 Metternicb and Castlereagh had come to an understanding as to using the Holy Alliance to preveat Alexander from acting independently of tbe concert. But Metternicb's hope that tbe Greek revoit would burn itself out "beyond tbe pale of civilization" was belied by events; and even before Castlicreagb's death it was clear that Great Britain would have sooner or later to adopt a policy of intervention opposed to all Metternich's ideas. The breach was hastened by the accession to office of George Canning, who bated Metternich and all his ways. At Verona in 1822 the witbdrawal of Great Britain from the system of the comtinental Allies was proclaimed to all the world; in March 1823 Canning recognized the Greek flag. This opened up tbe whole Eastern Question in tbe precise form that Metternich had eought to
avoid; for the action of Great Britain involved a move on the part of Russia, jealous of her preatige in the Levant, and thus led ultimately to a rearrangement of the relations of the Powers which, so far as the affairs of the Ottoman empire were concerned, left Austria isolated. It is impossible bere even to outline Metternich's diplomacy during the eleven years between the outbreak of the Greek revolt and the signature of the treaty of London (1832) by which the kingdom of Greece was established. The principles that guided it are, however, sufficiently simple. In common with Great Britain he desired to maintain the integrity of the Ottoman Empire as a barrier against Russian domination in the Balkan peninsula; be wished also to avert a Russo-Turkish war, not only for the above resson, but also because this would involve the breakdown of the system by which he hoped to curb the revolutionary forces in the West. He therefore attempted, and for a while succesafully, to persuade the tsar that the Greeks were only "ordinary rebels against legitimate authority." But, when this expedient failed, he was the first to suggest the complete independence of Greece, which seemed to him less dangerous to Austrian interests than a tributary principality on the model of Moldavia and Wallachia. In the end his at titude was one of abstention and protest, since he rightly considered that the action of the Powers which culminated in the treaty of London was fatal to the doctrine of legitimacy, on which his system was based.
The Greek question was not finally settled when the outbreak of the revolutions of 1830 threatened the overthrow of the whole structure of 1815 in the West. Events which seemed to involve the complete ruin of Metternich's system gave it in effect, however, a new lease of life. Austria, inolated by the events in the East, was once more brought into touch with Russia by a crisis that concerned both Powers equally. On the receipt of the news of the July revolution in Paris Metternich hastened to meet Count Nesselrode at Carisbad; and, though the Russian statesman refused to coramit himself to the ides of an immediate reconslitution of a league of the three autocratic Powers, a common basis of action was agreed upon, and the foundations were haid for that cordial understanding that ripened in the meeting of Munchengratz three years hater. Meanwhile, though his language was still "European," Metternich's attitude towards the revolutions was wholly Austrian. He preached the sacred duty of intervention, but he refused to intervene, save where the interests of the Habsburg monarchy were directly concerned. He was even the first to recognize the revolutionary government of Louis Philippe (Sept. 8); be answered the appeal of the king of Holland for help with an ironical reference to the geographical situation of Austria; he did pot even ipterfere wlth the revolutions in Germany and Poland. But when in Italy revolts broke out that threatened the Austrian hegemony, he acted with promptitude and decision, in spite of the threatening attitude of France; in the spring of 183 i Austrian bayonets restored order in Parma, Modena and the Papal States. Yet even here Metternich showed an unwonted moderation: not only did he soon withdraw the Austrian troops from Ancona, but he took the initiative in impressing on the papal government tho urgent necessity for drastic reform. This atitude was, indeed, mainly determined by the uncertainty as to the relations of the three autocratic courts on whose co-operation the effectiveness of a policy of repression ultimately depended; and Metternich's next work was to attempt to re-cement the broken alliance. With Prussia he had little difficulty; the timidity of King Frederick William III. had increased with years and the events of 1830 , and the Prussian and Austrian governments came to complete understanding on a common policy in Germany. Its firse fruits were tbe sdditional articles appended by the Federal Diet (June 28, 1832) to the Vienna Final Act، by which the control of the diet over the state legislatures was increased. As for Ruasia, Count Nesselrode at first maintained the reticent attitude be had adopted at Carlsbad; hut finally, in 1833, Metternich met the emperor Nicholas I. himulf at Munchengratz and by adroit flattery won him over to his views. The Berlin canvention of the isth of October 1833 , which reaffirmed
the divine right of intervention, was a fresh triumph for Meternich's diplomacy. This had been rendered possible by the change in Russia's attitude towards the Turkish question after 1829, which made a co-operation of Austria and Russia possible in the East (see Mehemet Ali); and in its turn it made possible the maintenance for a while longer of the Austrian system in Germany.
The convention of Berlin marked the last conspicuous intervention of Metternich in the general uffairs of Europe. "The Holy Albance of the East," as Palmerston called it, served the immediate purpose of securing "stability" in the countries tmmediately subject to the Powers composing It; it made no attempt at more than "rioral" imtervention in questions, e.g. that of Spain, that lay beyond its own sphere of influence; and the development of the Eastern Question, leading to the rapprochement between Russia and Great Brituin, though Austria joined the Quadruple Alllance of 1840, tended to loosen the cordial ties between the courts of Vienna and St Petersburs. The Straits Convention of 1841, by which France was formally readmitted to the concert, was due largely to Metternich's initiative; 20 , too, was the ill-judged effore of the continental Powers in 1847 to interfere in favour of the Sonderbund in Switzerland. But, on the whole, the growing crisis within the Habsburg monarchy Itself was sufficient to deter Metteralch from foreign adventures. So long as the emperor Francis lived all question of reform was impossible, and when he died, in 1835 , the rusty machinery of the Austrian administration was too completely out of gear to be set right by anything short of a complete reconstruction, to which Metteraich was too old to set his hand, even had be had the inclination to do so. He was too experienced not to realize the.aickness of the state, but he was content to veil it from himself. end to attempt to veil it from others. The world was not deceived; but it was not until the Vienna mob, in 1848, was thundering at the door of his cabinet that Metternich himself realized the truth to which he had tried to blind himself. With his fell his system also fell; and his flight from Vienna was the signal for the revolutions by which in 1848 all the countries under Habsburg influence were canvulsed.

The resignation of Prince Metternich, handed in on the 13th of March 1848, was accepted by the emperor on the 18th, and the prince and his family at once left for England. Here he lived in great retirement, at Brighton and London, until October 1849; when he went to Brussels. In May 1851 he went to his estate of Johannesberg, where be was visited by King Frederick William IV. and Bismarck; in September he returned to Vienan. The events of 1848 hid not shakem his self-complacency; they scemed to him rather to confirm the soundness of his owu political principles, which would kave scotched the evil betimes had not the weakness of others ailowed the forces of disorder to gather strength. But thoogh, in his own opinion, triumphantly vindicated, he did not again take office; be maintained, none the leas, as a critic and adviser no mean infuence on the counsels of the Austrian court, though it was contrary to his advice that Austria signed the treaty of the and of December 1854 with France and Great Britain. He lived to see the beginning of the struggle of France and Italy against Austria, dying on the inth of June 1859 .
Probably no statesman of all time has, in his own day, beon more beslavered with praise and beappatered with abuse than Metternich. By one side he was severenced as the infallible oracle of diplomatic inspiration, by the other he was loathed and despised as the very incarnation of the spirit of obacuranism and oppremion. The victories of democracy braught the latter view into fashion, and to the Liberal historians of the latter part of the 1gth century the name of Met ternich was synonymous with that of a system in which they could recognize nothing but a senseless opposition to the forces of enlightenmeat. A juster estimate of the man and his work has, however. become possilite as the age has moved farther away from the amoke of controversy. On the whole, history has tended to endorse the sane judgrent on Metternich pronounced by Castlereagh when
he was fint beought into diplomatic contact with him. Writing from Chaumont to Lord Liverpool, on the a6th of February 1814, he said: "Austria both in army and goverament is a timid Power. Her minister is constitutionally temporizing-he is charged with more faults than belong to him, but he has his full shere, mixed up, however, with considerable means for carrying forward the machine, moze than ady other person I have met with at Head Quarters" (F. O. a France, From Lord Castlereagh). This gives the key to Metternich's character and policy: Austria was a timid Power, and Metternich was an Austrian minister. His policy of "stability," so necessary for the Habsburg monarchy, at least secured a long period of peace for Europe at large. Europe, her strength renewed, passed a severe judgment on the statesman who acted on the assumption that what the generality of people wanted was peace, not liberty; and justly, in so far as his pessimism led him to convert what might have been legitimate as a temporary counsel of expediency into an immutable principle. But, as Demelitsch points out, it will be time for Austrians to condemn bim when Austria shall have survived half a century of constitutional experiment under the dual monarchy.
Of the fechnique of diplomacy Metternich was a master. His despatches are models of diplomatic style. If they have any fault, it is that they are often over-ciaborate, the work of a man who evidently loves diplomacy for its own sake and glorics in thefine turn of a phrase. In this respect they are comparable to those of Canning, who modelled himself upon Chateaubriand; they are in vivid contrast to the crabbod businesslike letters of Castlereagh. Metternich almost invariably begins his despatches and his reports with a broad discussion of the principles involved in the case in point, and argaes from these down to the facts. In this again he is in sharp contrast with Castlereagh, who, with characteristic British practical sense, politely sweeps the principles aside and prefers to argue upward from the facts. Yet Metternich's phrase-making was often the result of astute calculation. His diplomatic genius was never so well displayed as in disguising perilous issues in phrases that soothed even then they did not convince; and, like Gladstone after him, when the occasion demanded it, he was master of the art of appearing to say mucb when in fact he said nothing. When he wished to make his meaning plain, no one could do so more clearly; when be wished to be reticent, no reticence could have been more pleasingly eloquent.
In private life Metternich was a kind, if not always faithful, husband and a good father, devoted to his children, of whom he had the misfortune to lose several before his death. He was three times married. His second wife, Baroness Antonic von Leykam, Countess von Beilstein, died in 1829; his third wife, Melanie, Countess Zichy-Ferraris, died on the 3rd of March 1854 . Of his sons three survived bim: Richard Clemens Lothar (18291895), his son by his sccond marriage, who was Austrian ambassador in Paris from 1899 to 1871; Prince Paul (1834-1906), and Prince Lothar (1837 -r904), his sons by his third marriage. His grandson Prince Clemens (b. 2869), son of Prince Paul, marcied in rgos Isabella do Sirva Carvajal, daughter of the marquis de Santa Crua.
Buglionrapay.-A vast mass of unpublished material for the life of Prince Metternich exists in public and private archives; to come of those in the F.O. Records references are given in the bibliography to chap. 1 . of vol. π. of the Cambridge Mod. Hist. Of pubished documents the most important are in the collection Aus Mathorichs meckgedassmen Papieren (8 vols. 1880-1884), edited by his son. Prunce Richand Nitternich. There is a complete French tranalation issued contermorancously, and an English version, of which only five volumes (down to 1835) have been published, under the title Memoirs, EC. (London, 1880-1882). These Memoirs, especially the autobiographical parts, must be read with considera ble reserve: even the official lotters and documents, which are their most valuable contents, have been to a certain extent "edited." See also Count Anton Prokesch-Osten (the younger) Aus dem Nachass mon Prokesch-Osten (2 vols.- Vienna, 1881) : the writings and correspondence of Friedrich von Gentz (q.v.), especially as collected under the, title Oesterreichs Theilnahoer an den Befreinngskriegen; Witheln Oncken, Osterreich wnd Preussen im Befreiungskriege (1876-1879): A. Beer, Zehn Jahre osterveichischer Politik, 180s-1810 (3877): Dis Pinameen Osterreiths (1883): Die oriewlalische Polilik

Osterreichs swit 1774 (1883); T. T. de Martens, Recueil det traiks, \&f.. vols iii. and iv.; Thers, Hish du consulat et de Γ empire, which was frequently commended by Metternich himelf as giving an accurate account of his policy, a statement, however, controverted by Albert Sorel, whoee lEwrope ef la rebolution frascaist, gives a detailed and masterly account of Metternich's share in the overthrow of Napoleon. Fedor von Demelitsch's Fūrsl Metlernich wnd seine asswärige Politik, vol. i., to 1812 (Munich, 1898), is an elaborate and useful analysis of Metternich's foreign policy, based on a large mass of umpublished archives. The bert short biography of Metternich is that by A. Beer in Der newe Plularch (1877), vol. v.; but both this and Colonel G. B. Malleson's Life of Mellernich (London, 1888) were written before the publication of the important worlas of Demelitsch and Sorel.
(W. A. P.)

HEYZ, a town, first-class fortress and episcopal see of Germany, in the imperial province of Alsace-Lorraine, capital of (German) Lorraine, on the Moselle, 99 m . N.W. of Strassburg by rail, and at the radiation of lines to Luxemburg, Coblenz and Noveant, on the French frontier (rot m. W.). Pop. (rgos), 60,396 . The general appearance of the town is quaint and irregular, but there are several handsome modern streets. The Moselle, which is here joined by the Seille, flows through it in several arms, and is crossed by fourteen bridges. In the southwest corner of the town is the esplanade, with an equestrian statue of the emperor William I., and monuments to Prince Frederick Charles and Marshal Ney, commanding a fine view of the "pays messin," a fertile plain lying to the south. Of the ten city gates the most interesting are the Porte d'Allemagne, or Deutsche Tor, on the east, a castellated structure erected in 1445 and still bearing traces of the siege by Charles V.; the Porte Serpenoise, or Römer Tor, on the south, and the Porte Francaise, or Französische Tor, on the west. Among its ecclesiastical edifices (nine Roman Catholic and four Protestant churches) the most noteworthy is the Roman Catholic cathedral, with huge pointed windows, slender columns and numerous fiying buttresses, which, begun in the r3th century and consecrated in 1546, belongs to the period of the decadence of the Gothic style. The Gothic churches of St Vincent and St Eucharius, and the handsome Protestant garrison church, completed in 1881, also deserve mention. Among secular buildings the most important are the town-hall, the palace of justice, the theatre, the governor's house, and the various buildings for military purposes. The public library contains 40,000 volumes, including an extensive collection of works relating to the history of Lorraine. In the same building is the museum, which contains a picture gallery, a numismatic cabinet, and a collection of specimens of natural history. Metz also possesses several learned societics, charitable institutions and schools, and a military academy. The cemetery of Chambière contains the graves of 7200 French soldiers who dicd here in 1870 . The chief industries are tanning and the manufacture of weapons, shoes, cloth, hats and artificial flowers. There is a trade in wine, beer, wood and minerals.
As a fortress, Metz has always been of the highest importance, anid throughout history down to 1870 it had never succumbed to an enemy, thus earning for itself the name of $L a$ prucelle. It now ranks with Strassburg as one of the two great bulwarks of the west frontier of Germany. The original town walls were replaced by ramparts in 1550 , and the citadel was built a few years later. By 1674 the works had been reconstructed by Vauban. Under Napoleon III. the fortress was strengthened by a circle of detached forts, which, after 8870 , were modified and completed by the Germans, who treated the fortress as the principal pivot of offensive operations against France. The plans in Foztipication and Siegecrafy (fig. 43) sbow Metz as it was about 1900; in the years following a new outer chain of defences was constructed, which extends as far as Thionville on the north side and has its centre in front of Metz on the Gravelotte battleground. The old enceinte (which includes Cormontaingne's forts-Moselle and Bellevroix) is doomed to demolition, and has in part been already removed. The garrison, chielly composed of the XVI. Army Corps, numbers about 25,000. (See Germany: Army.)

History.-Metz, the Roman Divodurum, was the chief town of the Modiomatrici, and was also called by the Romans

Mediomatrics, a name from which the present form has been derived by contraction. Caesar doscribes it as one of the oldest and most important towns in Gaul. The Romans, recognizing its strategical importance, fortified it, and supplied it with water by an imposing aqueduct, the remains of which still exist. Under the Roman emperors Metz was connected by military roads with Toul, Langres, Lyons, Strassburg, Verdun, Reims and Trier. Christianity was introduced in the 3rd century of our era. In the middle of the 5 th century the town was plundered by the Huns under Attila; suhsequently it came into possession of the Franks, and was made the capital of Austrasia. On the partition of the Carolingian realms in 843 Metz fell to the share of the emperor Lothair I. as the capital of Lorraine. Its hishops, whose creation reaches beck to the 4th century, now began to be very powerful. Metz acquired the privileges of a free imperial town in the isth century, and soon attained great commercial prosperity. Having adopted the reformed doctrines in 1552 and 1553, it fell into the hands of the French through treachery, and was heroically and successfully defended against Charles V. by Francis duke of Guise. It now sank to the level of a French provincial town, and its population dwindled from 60,000 to about 22,000 . At the peace of Westphalia in 1648 Metz, with Toul and Verdun, was formally ceded to France, in whose possession it remained for upwards of two centuries. The battles of August 1870, and the investment and capture of the army of Metz which followed, are described below. By the peace of Frankfort on the 10th of May 187I Metz was again united to the German Empire.
See Westphal, Geschichte der Stadt Mets (1875-5877); Georg Lang, Mets und seine Umgebungen (1883), the Statistisch-Lopograph isches Handbuck für Lothringen; Albers, Geschichte der Stade Mets (Metz, 1902); G. A. Prost, Eludes sur lhistoire de Mets (1897); and Tauber, Die Schlachifelder son Mels (Berlin, 1902). (Seealso FrancoGerman War: Bibjography.)

Batiles around Metz, in the Franco-Germar War, 1870

1. Colombey-Borny (Augusl 14).-The French army under Marshal Bazaine was in and about Metz. The German I. and II. armies, on the march from the Saar, were beading for the Moselle between Metz and Pont-i-Mouscon, and on the morning of the 14th of August the German I. Army (I., VII. and VIII. Corps, under General v. Steinmetz) lay on and east of the French, with outposts well to the front, watching the Freach camps east of Metz, which were little more than I m. to the front. Steinmetz had received from beadquarters overnight instructions that on the 14th of August the I. Army would maintain the positions occupied during the 13th, and merely passed on these orders to his corps commanders. In Metz, meanwhile, Bazaine had decided to retreat, and during the morning orders to that effect reached his corps commanders, who commenced preparations for their execution. The 2nd Corps (Frossard) and 6th (Canobert) began to retire about midday, the 3rd (Lebour), 4th (Ladmirault) and Imperial Guard (Bourbaki) were to follow. These preparations being observed, the German outposta got under arms. General von der Goltz, in command of the VII. Corps (7 battalions, 4 squadrons, 2 batteries) hearing from a passing officer that the I. Corps on his right was prepering to attack, and noting personally signs of retreat in the enemy's lines. determined at $3 \mathrm{p} . \mathrm{m}$. to advance his whole command to tbe ridge between Colombey and Borny (which was still occupied by Fiench outposts), in order to clear up the situation. The ridge was captured with little resistance, but the sound of the firing at once set all the neighbouring troops in motion, and fortunately so, for the French had immediately retaliated on von der Goltz's audacious attack. Bet ween 4 and 6 p.m. there was continuous beavy fighting on the front from Borny to Mey, as both sides hrought fresh troops into the field. The conver slopes falling from the Prussian position towards Metz gave plenty of cover to the Freach, and the setting sun shone full in the faces of the Prussian artillerymen. Thus the Prussian infantry encountered unusually obstinate resistance and the treope engaged rapidly slipped from all superior control. The above from was held by the French 3 rd Corpa. Shortly before 6.30 the 4 th Corpe (Ladmi-
rault) suddenily began to deploy on the high ground to the northwest beyond Mey, thus threatening the right flank of the Prussian I. Corps (General v. Manteuffe). To raeet this danger Manteuffel was compelled to direct his corps artillery and reserves, which were now rapidly coming up, away from the hard-pressed centre towards the oncoming infantry masses of Ladmirault. These, with tho sun now almost at their becks, were shooting better than usual, and Manteufiel was compelled to call on the VIII. Corps for assistance, which its commander, under positive orders from Steinmetz, refused to give. Meanwhile Steinmetz had been sending peremptory orders to the battlefield to stop the bettle, but neither of the corps commanders was able to enforce them. Fortunately for the Prussians, Baraine had issued similar orders to his subordinates, who, having their men better in hand, were able to obey; and as night began to close in the French broke of tbe action and retired under the guns of the Metz forts, convinced that at last they had " broken the spell " of German succens.

Finding that, in spite of his orders, the firing at the front continued increesing in intensity, Steinmetz at length rode to the front himself. Meeting Manteuffel near the Brasserie of Noisseville, he overwhelmed him with reproaches, and at the crisis of this scene the bands struck up "Hell dir im Sicgeskrans"I In this action the Germans brought 30,500 rifles and 150 guns on to the battlefield only out of more than 100,000 with 300 guns which could have been engaged before dartness. Bazaine actually deployed 50,700 rifies and 206 guns to oppose them. He might, bowever, had he been so minded, have struck with his whole army-nearly three times this force, and, judging from the course events act ually took, we can have little doubt as to the result of such a blow. The losses on either side were in killed and wounded-French about 3600 , Germans about 4800.

The chain of causation in this action is particulariy worthy of attention: A young reserve officer, seeing some troops of the I. Corps standing to arms, reported to von der Goltz that the corps was standing to arms and about to attack. Von der Coltz thereupon decided to go forward and discover what was actually going on, and this action unchained the whole battie power of all the troops within call. When, on the following morning, Steinmetz reported von der Goltz and the commander of the I. Corps for disobedience, the king thanked Manteufiel warmly for the part he had played, and then turned to the young brigadier who had disobeyed orders and congratulated him on having twice distinguished himself in the first fortnight of the war.
2. The Balle of Viowrille-Mars-la-Tow (August 16).On the following day (15 th) the II. German Army approached the Moselle above and below Pont-i-Mousson, with a view to overtaking and heading off Bazaine in his presumed retreat to the Meuse (see Franco-German War). So far, however, from being ahead of the Germans on the road to Verdan, the French were actually, late in the afternoon of the 15 th of August, bivouacked on the plateau of Rezonville, and there their outposts were placed, not where they could see the surrounding country, but at the regulation distances of 600 to 1000 paces from the bivouacs. Friendly inhabitants kept Bazaine well informed as to the magnitude of the danger threatening him from the south, and a special selegram from Paris, the true origin of which has never been traced, led him to believe that the I. German Army was crossing. the Moselle near Thionville and about to descend on him from the porth. This telegram might have exercised the most prejudicial influence on the course of the battle had not Ladmirault (4th Corps), nearer to the seat of the imaginary danger, taken upon himself to disregard the warning transmitted to him by headquarters. At daybreak on the 16th. no Prussians being reported in sight by the outposts, the troops began monchalantly to prepare for the resumption of the march.

On the Prussian side, von Alvensleben's Corps (III.) shortly after daybreak was meving north-west ward from the Moselle in two columns, on the right the gth division, via Gorze and Fievigny on Vionville, on the left the 6th division with corps artillery by Arnaville on Mars-la-Tour, von Avensleben himself riding
alltle in advasce between the two. The 6th cavalry division was ordered to precede the right column and scout towards Resonville. No one was aware of the dengerous proximity of the French array.
About 9 a.m. the gth cavalry division; reinforced by two horse artillery batteries (Gank guard of the X. Corps from Thiancourt), and accompanied by von Caprivi (chief of atafi, X. Corps, and afterwards chancellor of the German Empire), were trotiing up the western slopes of the ridge which runs between Tronville and Vionvilie. Reaching its summit they
from Gorse towards Vionville, whence be could overiook the whole country to the north and west, had met von Rheinbaben (commanding the sth cavalry division) and had seen the surprise of the French campa. The sound of the heavy firing coming from the east ward convinced him of what had been gradually dawnthg on him-that with barely 30,000 men he was in the presence of the whole French army, whose attitude at this moment suffciently indicated their determination to fight.

In a few moments bis decision was taken. Calling on the X. Corps, away to the south-west ward, for support, he det ermined

suddenty found themselves in face of at least 40,000 French troops, wbich were not under arms, but busied rith miscellaneous camp duties. The temptation proved too great for the artillery, who promptly fired into the midst of the cavalry camp (Forton's division) which lay nearest to them. The momentary result was a wild panic, especially among the horses; but this panic gave the alarm to the infantry all along the road, and these (Frossand's and Corps) at once stood to arms and moved forward, deployed for attack-one division to the west, anotherdivision, from Rezonville, to the south. The latter almost at once encountered the heads of the 6th cavalry division, at that moment fost clearing the defile leading up to the Rezonvillc plateau from Gorze. The Prussinn cavalry promptly bore away to cover to the westwand, and reported what they had scen to superior authorfty, hut not to the advanged guard of the sth infantry division, which, emerging in its turn from the defile, ran right against the deployed I'rench infantry moving to meet them. So sodden was the collision that the Prussian advanced guard battery had to fire case to clear its own front.

Meanwhije von Alvensieben himself, riding on the field track
to screen his own weakness by a vigorous attack. By universal consent this is approved as the boldest resolution arrived at by an independent commander throughout the war. Orders were forthwith despatched to the 6th infantry division, at that moment between Puxieux and Tronville, to wheel in to their right and attack, and, their movement being still hidden from the enemy, these troops were formally drawn up for action and sent forward as a whole. The Frencb meanwhile had occupied Vionville and Flavigny, and other troops were moving down the slopes from Rezonville to their support, but the united onsel of this whole German division overhore all resistance, and the French began to retire eastward, suffering terribly from the shell fire of the Prussian batteries.

Marshal Bazaine had meanwhile arrived on the scene, and ordering forward fresh troops to relieve (not to reinforce) those already cngaged, he rode forward with a horse artillery battery to watch the operations. The retreating French troops belonged to Frossard's command, and as they were in considerable confusion Frossard called on du Preuil's brigade of the imperial guard cavalry to charge. He gave no ot jective, and when the
brigedier pointed out that the enemy was sill beyond the striking radius of his borses, Froseard reiterated the order, which was obeyed to the letter.

The result was disastrons. The Prussians, having seen the cavalry whilst yet at a distance, ceased firing, formed their skirmishers into groups, and the closed supports standing in deployed lines, two deep, shattered the cavalry with volleys and file-firing, as with blown and exhausted horses they endeavoured to close with their adversaries. When in addition two hussar regiments struck them in lank they were driven back in wild disorder upon Rezonville. In the dust and confusion of the charge a group of the hussers approached Bazaine and his horse artillery battery, and almost carried off the marshal.

Alvensleben, mistaking the withdrawal of the French for the beginning of a retreat, had meanwhile sent orders to the 6th cavalry division to charge in pursuit towards Rezonville; but before it could reach the ficld the French relieving troops had forced their way through the stragglers and showed such a bold front to the Prussian horsemen that an attack held no promise of success, more especially since they had lost their intervals in

their advance and had no room for a proper deployment. To steady the young soldiers, the cavairy commander (Carl von Schmidt) halted his men, made them correct their intervals and dressing as in peace, though under a heavy fire from the French infantry, and then withdrew them behind the cover of the nearest hill at a walk.

The threat of the charge bad, however, induced caution on the French side, and for about two hours there was a lull in the Gighting, which the Prussians utilized on their right in hringing up reinforcements through the Bois des Ognons. On their left, however, no fresh troops were as yet available, and on being informed, about 2.30 p.m., that French cavalry seemed to be about to charge the exhausted 6th division, Alvensleben ordered Bredow's cavalry brigade to charge, and if necessary to sacrifice itself, to save the infantry. Bredow's command (six squadrons of the 16th Ulans and 7th Cuirassiers) was at that moment drawn up under cover about half a mile west of Vionville, and from its position could see nothing of the events in progress on the battlefield. Nettled hy the form in which the order was conveyed to him, Bredow drew his sword and ordered his trumpeter to sound the "trot," the brigade moving off in line of squadron columns at close interval in the direction in which they happened at the moment to be facing. Near Vionville they took ground to their left, opening to full intervala as they did 20 , and then
ascended the gentle faclise which still hid them from their enerny.

Arrived at the summit. Bredow sounded " line to the front," but at that moment a storm of French bullets swept down on them, and the men, no longer to be restrained, dasbed forward, before the line could be completed, almost due east against long lines of infantry and artillery which they now saw for the first time about 1200 yards in front of them.

This distance was covered at the fullest extended speed of the horses, and reaching the infantry they swept over them " like hounds over a fence"-in the words of an eyewitneas. So sudden had been their onset that very few were hit until the infantry had been passed; then the latter, recovering from the shock, turned and fired into the cavalry from behind, whilst a whole fresh division of French horsemun charged them in flank After a desperate melfe of some minutes, the rally was sounded, and the survivors of the charge, brenking their way a second time through the French infantry, eventually reached the shelter of their own lines, having lost rather more than half their numbers, but having saved the situation momentarily for their own army. Again there was a lull in the operations.

Meanwhile, unknown to Alvensleben, a fresh storm was hrewing on his left rear.

Ladmirault, commanding the French 4th Corps had seen, during the afternoon of the isth, the terrible crowd and confusion prevailing in the defiles leading to Gravelotte, and resolved to disobey his orders and to move direct from his bivouacs by the road from Woippy to St Privat, disregarding altogether the. alleged danger from the Prussians supposed to be advancing from Thionville. Thus, about noon on the 16 th he reached the high ground between St Privat and Amanvilkers, and still without instructions he determined to direct his corps on Bruville and Doncourt, whence he could judge from the drift of the smokeclouds whether he could fall on the Prussian left.

Much time was lost owing to the heat of the day and the fatigue of the trosps, but shortly after 3 p.m. he reached a position north of the Tronville copses whence his guns could fire into the left rear of the long line of Prussian guns (6th division and corps artillery) on the heights above Vionville and Flavigny. Their fire threw the latter into serious confusion and he had already decided to attack with his nearest division (de Cissey) in the direction of the steeple of Vionville, when his attention was caught by the outhreak of heavy firing in the copses below him, and the entry of fresh Prussian guns into action.

This diversion was brought about by the arrival of the corpe artillery of the X . Corps and of the 40 th brigade, which latter had been at once ordered into the Tronville copses to check portions of Tixier's division of the French 3rd Corps, which under cover of these copses had gradually worked round the Prussian flank. Seeing then that the troops before him could hold their own, Ladmirault continued his preparations for bis counterstroke, and Cissey's division had begun to move into its prescribed alignment, facing towards Vionville, when the sudden apparition of a closed mass of Prussian troops detaching itself from the low dust-cloud of a slow-moving infantry column, and forming to the south of Mars-la-Tour, again arrested his attention. Unanimously he and his staff agreed that this fresh enemy could only be the advanced guard of a large Prussian force, possibly, it was suggested, of the crown prince's army, from Alsace and Nancy, and a fresh dclay arose while the situation was investigated. Actually this body consisted only of the 38 th brigade (von Wedell), forming part of the X. Corpe It had no knowledge of the state of affairs on the battlefield, or in the direction of Bruville, though Prussian cavalry had been observing the approach of Ladmirault's corps for some hours It was now ordered to deploy and to co-operate with the 40 h brigade in an attack on the Tronville copscs. This meanwhile had been delivered, and had more or less failed.

The deployment completed, about 4 p.m. the 38 h brigade began its advance on the north-west corner of the Tronville copses, this direction taking them diagonally acroms the front
d Cisey's division, still eat of their sight but moving due soutk. Bardly had they stepped off when Cissey's first line, catching sight of them, opesed a devastating fire upon their teft flank, and to meet this fresh danger the Prussians endeavoured to change front half-left whilst still on the move. Without pausing to fire, the men raced onward, but the Freach striking their outer wing rolled up the whole line in succession, the actual collision occurring in and near the Bruville ravine, a deep-cut natural trench which, starting from the Tronville copses, bere intersects the plateau from west to east. Against the weight of French numbers, nearly three to one, the Prussians were unable to stand, and presently they broke and drifted backwards, completely routed. Then the ist Guard Dragoons (aince known as Queen Victoria's regiment), alter a brilliant manccuvre undet heavy fire, to get into the best position for delivering a charge, rode down the whole French line of pursuers from left to right, and by their heroic sel-sacrifice relieved the remnants of the infantry from further pursuit.

This was the sorne which for the moment held the attention of Prince Frederiak Charles when at length he reached the battlefield from Pont-a-Mousson. All along the rest of the line the Pruasians were still bolding their own, and on the extreme right fresh troops from the IX. Corps were streaming up through the woods against the French left wing. But on the left there was every sign of incipient disaster, and to avert this only the cavalry were at hand. Sending, therefore, hasty orders to the gth and 6th cavalry divisions to concentrate to the west of Mars-la-Tour, the prince ordered them from there to sweep round on the right rear of the French army. The same idea had, however, occurred to Ladmirault, and be had called on the two nearest French cavalry divisions to put it into exceution, and as the Prussians began to reach the platean west of Mars-la-Tour and the Yron brook from the south, the French were deploying acrose If some two thousand yards to the north.

Then followed a due-the one great cavalry duel of the warbeiween upwards of two thousand horsemen a side. But it was delivered by both sides in a series of regimental charges, and in result was singularly indecisive. For about half an hour great crowds of riders, hidden by dense clouds of dust, diffted aimlessly about the plain, till at length the charge of a single squadron of the Oddenburg Dragoons (who had joined in on their owo initiative) delivered on the outer French flank, brought the whole mass into motion north-eastward, and, both sides sounding the rally, the engagement gradually ceased.

It was now about 7 p.m. and night was coming on. Seeing the dust-clouds drifting away northward, and noting the lethargy which seemed to have settled over the whole French line, Prince Frederick Charles decided to assert his own independent will to conquer by a final assautt along his whoie front. Gums, cavalry, infantry, everything that could still stand were to take part in it. Weary as they all were, his indomitable will put fresh life into the whole army. With drums beating and colours flying, every unit within call went forward for the final effort. It was almost dark when the Prussians approeched the French position bet ween Rezonville and the woods to the northward, and the troops soon lost direction in the smoke and became involved in the direst confusion; the firing aggaln blazed out for a few moments, only to die away as utter exhaustion at length put an end to the Prussian advance. Then the wearied troops, for the most part, lay down and stept in the positions they had reached.

Thus closed the hardest fought battle of the Franco-German War. From 9 a.m. to 3 p.m. only 23,700 rifles, 8100 sabres and 126 guns had been brought into action by the Germans agatnst 59,100 rifles, 6700 sabres, and 300 guns on the French side, and even at the close of the day the former had only deployed 47,100 rifles, 8300 sabres and 232 guns against 83,000 rifles, 8000 sabres and 432 guns including 24 mitrailleuses. The chief characteristic of the day's fighting was the terrible effectivemess of the Prussian artillery, which was handled in masses and not, as on the French side, by batteries. The manceuvring power of the latter attracted the admiration of the Germans, but arriving singly on the fold they were generally reduced to silence
in a few matarte. Deprived of thalr support, not all the gallantry of the French infantry could avail anything. Again and again, particularly on their left wing, they chased the German inlantry before them, but the moment the retreat of the latter downhill uncovered the pursuing French to the Prussian guns, a tornado of shells shattered their order and compelled them to retreat. Though the cavalry were freely engaged, the training of both was so far bencath the standard of the present day that the most that can be credited to them in respect of results is that they from time to time averted imminent disaster, but failed altogether to achieve such a decision as was well within their potential capacities.
3. Groveloftc-S/ Prtat (August r8).-The position on to which the French army fell back from the field of Vionville is formed by a ridge some six miles long running from Rozerieulles almost due north to Roncourt, a little village overhanging the steep and wooded banks of the Orne, and connected with the general plateau hetween the Meuse and Moselle by a gentle saddle running from about Amanvillers nearly due west through the Bols de la Cusse towards Doncourt. North of this saddle the slopes show a slight concavity, but are passable by troops of all arms in close order. To the south the rivulet of the Mance soon forms a formidable cbstacle as its bed cuts its way through the sandstone. Scrub and woods with dense undergrowth line both its banks, and, except by the great chaussee from Metz to Verdun, access to the French side becomes impossible to troops in ordered bodies.

It does not appear that the position had been systematically examined, or apportioned to the scveral corps in accordance with any predetermined plan. The army merely swung backwards, pivoting on its left wing, the corps preserving their relatlve order as it had been on the 16th, with the exception that the Imperial Guard was withdrawn to the spur on which Fort Plappeville stands, and the 6th Corps (Marshal Canrobert) crossed the line of march of the 3rd and 4th Corps in order to gain St Privat ia Montagne. No lines of march were assigned to the several units, consequently the confusion became so great that though the distance to be traversed in no case exceeded six miles, only the night wing and centre reached their destinations as sight was falling. Many of them had so little idea of the general situation that they actually placed outposts to the north and east, whilst the whole of the enemy's army lay to the south and west. No attempt was made to entrench the position systematically, but on the left the 2nd and 3 rd Corps made some disconnected shelter trenches and gun-pits, while the 4 th Corps in the centre began to improve available cover about an hour before the battle began, and the 6th corps on the right, not yet having received any entrenching tools, could do no more than improvise a few loopholes in the walls of the villages of St Privat and Roncourt with such tools as the sappers could obtain from the inhabitants.

Fortunately for the French the Germans were too exhausted by the batule of the r6th to attempt to interfere with these movements. At daybreak on the morning of the 18 th the royal headquarters (which now for the first time arrived at the front) still bad no certain knowledge as to whether the French main army was in retreat-covered by the force which they could sce on the high ground north of the Met2 roed-or whether they had taken up a positlon in order to fight.

Hénce the orders issued overnight on the presumption that the maln force of the French was retreating to the north and west were allowed to stand, and the whole II. Army (Prince Frederick Charles) moved off in Echelon from left to right, the I. army under Steinmetr, consisting for the day of the I., II. and VII. Corps, heing left in observation of the troops visible on their front and of the garrison of Metz itself. The I. Corps was kept back beyond the Moselle on the east side of Metz, the II. was not due to arrive at Rezonville before 4 p.m., hence the VII. only was immediately available if the enemy counter-attacked. But Steinmetz had not ordered, nor had von Zastrow, the corps commander, undertaken, any preparations to meet an emergency. About to a.m. the corps bad reached the following ponitions:
VIII. Corps, Rezonville; XI. near St Marcel; Guterd approaching Doncourt; XII. towards Jarny; the III. and X., which had been so heavily ensaged on the 10 th , still in their bivouacs pteparing to move. The cavalry of the Saxons had established the fact that the French had not retreated nortbward, but though scouts from the Guard had already seen the enemy on the heights of St Privat, this information had not yet reached headquarters, nor had it been transmitted to the LX. Corpe, which it most closely concerned.

Sbortly after 10 a.m. Moltke, still under the impression that the French right extended no farther than La Folie (2 m . north of the Metz road), determined to altack with the IX. and VIII. Corps whilst the Guard executed a turning movement via Habonville against the French right. The IX. Corps was to engage, but not to push its attack home until the Guard could co-operate. The XII. Corps was left to its own devices, but fortunately the crown prince of Saxony, who commanded it, had ridden forward and, seeing the French in force towards Roncourt, had issued orders which in the event proved decisive.

In pursuance of his instructions von Manstein, commanding the IX. Corps, set his two divisions in motion towards La Folie and the Bois de la Cusse, and advanced to reconnoitre the French position. From the eastern edge of the above-named copses he suddenly descried the camp of a whole French Corps (the 4th), evidently ignorant of their danger, on the slopes trending westward from Amanvillers. Unmindful of the experience of the 16th, he decided to execute an artillery surprise on a grand scale, and sent orders to his corps artillery to come into action on the long spur overlooking the French carnps from the westward. At noon, just as the French infantry were falling in for midday roll-call, sufficient guns were in position, and suddenly opened firc. But the eflect was disappointing. The French infantry ran to their arms, piled along the front of their positions, and moved forward to attack, covering their advance by a hail of bullets. Simultaneously the French artillery also took up the challenge, and from the heights near St Privat the 6th Corps, whose presence bad been unsuspected by the Prussians, joined in the fight.

In a few minutes the batteries on the extreme Prussian left were completely overwhelmed, and suddenly dense lines of French skirmishers emerged from a fold in the ground upon their flank and front, and the gunners were compelled to resort to case-shot, so imminent was their danger. But at this critical moment the leading companies of the Hessian infantry arrived, re-established the equilibrium (though not before four Prussian batteries had been temporarily overrun by the enemy), and a most obstinate fight ensued.

Prince Frederick Charles now rode forward to a point northeast of Verneville, whence the southern boundary of St Privat could be seen. But the northern side of the village and the country towards Roncourt was hidden from his view by the high poplars bordering the Metz-Briey road. Seeing the Hessians hard pressed, he now brought forward the and division of the Guard to their assistance, sending in the zrd brigade immediately, and holding the atb brigade in reserve. The ist division, warned by their own scouts that French troops were in Ste Marie, deployed to attack this village, and were assisted in their endeavour by a brigade of Saxons detached by the crown prince of Saxony, who from his position could see behind the poplar screen that limited the view of the commander-in-chief. Hence he was already aware that the French position extended to Roncourt at least, and bad despatched a whole division down the valley of the Orne to oulfiank them. No news of this movement, however, appears to have reached Prince Frederick Charles.

The French troops in Ste Marie were only an outpost of the 6th corps, and seeing themselves outnumbered, they withdrew about 2.30 , the Prussians rushing the village immediately atterwards. Considerable confusion arose from the convergence of these three brigades upon one village, and more than an hour passed before the troops could be disentangled and massed for further operations. The leaders of the two Guard brigades, still ignoram of the extent of the French position, rallied their
men on the main bodies of their commands (which had not been engaged) and then lay down facing exactly as they had done when brought forward to the attack. Thus the 1st brigade lay, facing about east-south-east, south of the chausse and some five bundred yards west of the village. The and brigade lay south-west of the village about three hundred yards away from it and facing nearly north-east.

The Sazons were on the left rear of the ist brigade, but took longer to recover themselves than the Guards. With the Hessians and the IX. Corps the action still dragged; the 3rd brigade of the Guards had become involved in the fight, and notwithstanding the anival of the corps artillery of the III. Corps in the centre the situation was still critical. From the south also came the thunder of guns and no encouraging news from that quarter had as yet reached the prince's headquarters.

About $4.30 \mathrm{p} . \mathrm{m}$. the prince therefore had to conaider how long it would take to obtain a decision. To postpone it till the morrow seemed undesirable: to achieve it before nightfall was only possible at the cost of immediate effort.

He therefore decided to assault St Privat with all the Guards available, and called up the III., X. and Saxons to assist them

The 4th brigade of the Guards now received their orders to attack Jerusalem (a hamlet a little south of St Privat), and the ist division was ordered to assault St Privat itself.

Von Pape, commanding the latter division, pointed out that no artillery force adequate to prepare the way for him was as yet on the ground, and that the Saxons werestill a long way to the rear. But his orders were imperative, and the 4th brigade was already moving off and had to be supported at any cost. Actually all available batteries had already been sent for and were trotting forward from every quarter towards the objective. He accordingly transmitted his orders, and the and brigade was the first to attempt their execution. It had to wheel half-right in mass to bring it in the required direction, and then to advance till its rear was clear of the obstruction formed by the gardens of St Marie. By the time (5.30) it had sufficiently cleared this village it became apparent that the $4^{\text {th }}$ brigade in its extension for attack would overlap the front assigned to the 2nd, hence a further (half-left) wheed, still in mass, had to be undertaken before room for deployment could be obtained. Almost as the commands were given, the French suddenly opened an overwhelming long-range fire and their bullets swept like hail through the crowded mass of the German troops. Nevertheless the wheel was effected, the fresh direction taken, the troops extended for attack, and then the whole brigade dashed towards the houses assigned them as their objective. Meanwhile the ist brigade bad moved round the north of the village and carried out its extension without serious hindrance. But emerging from the hollow running north from St Maric, they came under a heavy fire not only from St Privat but also from Roncourt, which latter village they now saw for the first time. Instinctively a portion of their line worked to the left to face this new measce, and the front thus became dangerously extended. They were, bowever, now abreast of the and brigade, and the whole line raced forward to reach the effective range of their very inferior weapons, which were about equal at 200 yds, to the French rifle at 600 . But the losses of the 2nd brigade, particularly in officers, had been too heavy, and the rush died out whilst still 500 yds. from the two villagea
It was now about 6 p.m. and a long pause ensued, while the 320 guns, which by degrees had unlimbered behind them, brought St Privat and Roncourt under fire. About 7 p.m. the Saxon turning-movement took effect; their infantry from the Orne valley attacked Roacourt from the north, and about 7.15 the village was carried.

Neither Prince Frederick Charles nor the troops in the fightingline could see what had taken place; but the former seeing other Saxons moving towards Montois and the masies of the IIL. and X. Corps approsching, whilst the rain of shells into St Privat exceeded anyibing hitherto seen on any baltlefield, decided to call on the whole of his force to attack; He was in
the act of iscuing his orders when a psychological wave swept through the fighting-hne, and the men rose and rushed the village at the point of the bayonet. It was now about eight o'clock, and the light was rapidly falling.

The French artillery had already evaded the coming blow. and had changed position, "right back," to cover the flank of the rest of the army, and the Prussian and Saxon artillery trotting forward conformed to this new front, their shells sweeping the ground for 2000 yds. to the south of Amanviliers. The confusion in and around St Privat, where troopa from four several corps were all intermungled, became so extreme that no further infantry-advance could be attempted, so under cover of the fierce artillery duel the remnants of the unfortunate 6th corps drifted away towards Metz down the many ravines leading into the river valley. The "annihilation" of the Guard at St Privat has become historic. Yet, heavy as were the losses of the ist Guard division they were not excessive compared to those previously endured. In round numbers one-thurd of their effectives had fallen-most of them in the first great rush forward at $530 \mathrm{p} . \mathrm{m}$. ; but actually they had been more or less under fire since about 2 p m., and many were hit by French shells plunging into the turmoil about St Privat from 8 to io pm . But the legend cannot he justified when the facts are compared with the slaughter of the Seven Years' War, of Napoleon's battles, the Crimen, and the American Civil War, or with the horrible punishment of von Wedell's brigade (38th) only two days before.
It is now time to return to the southern theatre of the battlefield, where an entirely independent engagement had been raging all the afternoon. Von Goeben with the VIII Corps tas standing massed about Rezonville when von Manstein's guns opposite Amanvillers suddenly made themselves heard Wheeling his corps to face the French to the castward he immediately sent forward his artillery and prepared to support his comrade. Von Zastrow with the VII. Corps followed his example. Both corps took as their primary objective the farms of St Hubert and Point du Jour, standing just above the defile made by the Verdun-Metz road where it climbs out of the Mance ravine towards the French position. About 3.30 pm . St Hubert was carried by a confused mass of some 49 companies, and von Steinmetz, believing the main French position to have been pierced, ordered the 4th $^{\text {th }}$ cavalry division to cross the ravine by the chausse and pursue Simultaneously von Zastrow, under the same impression, had ordered his corps artillery to advance by the same road, and von Coeben, thinking his troops in front required support, had sent forward an infantry brigade by the same line of road

Presently all these catumas converged upon the defile and a bopeless entanglement ensued. Three batteries succoeded in struggling through the mass, and, in coming into action, their left resting on St Huhert. But the remander of the troops had to be withdrawn, and confusion breaking out in their rear, exposed to all the random bullets and shelis of the French, a panic ensued, thousands of men breaking away and fiying in wildest confusion through Gravelotte towards the west. Hardly had they melted away when the French made a most brilliant counter-attack from their main position between the farms of Leipzig and Moscow This was stopped almost entirely by the Prussian artillery fire, but the news of its coming spread through the stragglers in the ravine south of the great road, and a wave of panic again swept through the mass, many thousands bolting right upon the front of their own baltenes, thus masking their fre at the most critical moment, and something like a crisis in the bettle arose. Fortunately the II Corps was now rapidly approaching (about 6 pm), and the king, against Moltke's advice, now ordered von Steinmetz (to whom the II Corps had been allotted for the day) to attack again with all his forces Meanwbule a third panic broke out which delayed the pretiminary movements and it was now srowing dark in the ravine At length the II Corps, toget her with all of the VII. that could be collected, moved down into the valley. Just as the leading German troops were approaching

St Hubert the French agein began to fire, their bullets plunging down among the fresh arrivals, who knowing nothing of what had taken place about St Hubert (where the nemnant of their own infantry were still offering a desperate resstance) opened fire into the backs of their own men, and a fourth panic began which soon spread to the stragglers crowding the Mance ravine. Fortunately, by ithe superb gallantry of some of the company officers and men, the new arrivals were induced to recognize their mistake, and by degrees about 10 p.m. the whole of the II Corps succeeded in reaching the plateau between St Hubert and Point du Jour, where the débris of the VII and VIII. Corps had gathered. But in the darkness and confusion no forward movement against the French (only 400 yds. to their front) could be initiated, therefore the whole mass passed the mght where they stood until daylight disclosed that the French had retreated.

Meanwhile the King, Moltke, and Bismarck, had ridden back behind Gravelotto where they passed two hours of intense anxiety. From the flash of the rifics, it was clear that the French main posation was still intact, and as every body of troops within thirty-six hours' call had been engaged there seemed little prospect of renewing the struggle next morning. No news too had come in from Prince Frederick Charles. Ultimately about midnight the welcome tidings of the capture of St Privat arrived, and all anriety was at an end.
4. The Investment of Mets (Aug. 19-Ocl. 14).-During the night following the bettle of Gravelolte the French army withdrew within the line of the forts round Metz. The 6th Corps only was severely shaken, the 4th (the best in the whole army), though it had fought hard twice within fortyeight hours, losing nearly 30% of its strength, was still well in hand, and the 3rd, and and Imperial Guards were almost intact. A fresh issue of ammunition and food was all the men needed to make them a thoroughly efficient fighting force comprising some 100,000 troops capable, with a resolute leader and an efficient staff, of crossing over to the right bank of the Moselle, overrunning the I. German Corps, the only one in their direct path, and then fighting their way across the communications of the II and III. German Armies untul they regained touch with the French railways to the south-west about Troyes.
The mere fact of the effort being made would have given the battle of Gravelote the moral effect of a victory, and the reaction in the German ranks from the feeling of over-confidence, which had mastered them after the early successes of Spicheren and Woerth, must have had most far-reaching consequences.
Bazaine, however, withdrew entirely under cover of the forts, and set about the reorganization of his troops in the most lessurely manner The Metr forts, though neither sufficiently armed nor even completely fintshed in some cases, were nevertheless, with their deep ditches and self-protecting bastion trace, far too formidable for any field army to attempt without the aid of a siege train of some 200 guns. which for the moment were not available. Of this fact the Germans were well a ware, and hence they decided from the first to reduce the place by hunger, calculating that with the extra 150,000 men thrown back upon the fortress, its food supplies could not last very lqug On the morning of the 1gth the German army was far too exhausted for further efforts. Except the I Corps, which had been summoned overnught from its position about Courcelles towards the battlefield of Gravelotte and had almost reached the Moselle hefore this move could be counterordered, the remainder kept their places of the previous nught, only following the French retreat with a screen of outposts. They were sufficiently occupied in collecting the wounded and clearing up the confusion resulting from an accumulation of trains and transport in the defiles of Gorze and about Noveaut No eastward movement could have taken place that day. In the course of the afternoon of the igth the royal headquarters, creating a new army under the crown prince of Saxony (Guard, IV and XfI (Saxons) Corps) for field operations towards the Meuse, assigned the remainder of the II. Army, and the whole
of the I., to Prince Frederick Charles as commander-in-chief of the army of anvestment. This brought the strength of his command up to eight corps, numbering some 220,000 men, an enormous mass to feed in a district swept bare of supplies by the operations of the preceding week, and with only one railway lune, terminating at Courceiles, to depend upon.

For the moment the chuef care of the Pfince was to guard against an attempt of the French army to break out to the westward. The L. Army Corpe with Kummer's Landwehr division (which arrived during the night of the igth-zoth of August) were to occupy a position to cover the rall head at Courcelles-Rémilly, and the remainder were disposed in the following order: The X . Corps was on the north, with a bridge head at Hauconcourt-sur-Moselle, the II., VIII. and VII along the eastern slopes overlooking the Moselle valley, the latter having also a fortified bridge head at Ars-sur-Moselle. The III and IX. were cantoned almost on the battlefield of the $\mathbf{1 8 t h}$, between Caulre Farm and Roncourt, ready $t 0$ move off to the left and support the \mathbf{X}. Corps in the event of an attempt on the part of the French to break out towards Thionville.
The positions were fortified with a light outpost line, bebind which was drawn a main postion on which every art of the engineer was expended. Ample arrangements were made for obtaining and circulating intelligence, and all lateral communications were improved and supplemented to the utmost. A light field-rallway from Rémilly to Pont à Mousson (14 m) was also put in hand, but progress on thus was very slow. The water-supply of the town was promptly intertupted, but the river water was quite drinkable.
Meanwhile, the French in Metz had been dilagently at work. There was no real deficiency of ammunition and stores in the fortress, and provisions for forty days were reported in hand. Bazane was still in commumcation with the outside world, though return messages came in spanngly. On the afternoon of the 25 th he decided to break out to the northward by the right bank of the river, and orders to this effect were duly issued. Many delays arose in their execution, and it was not till a p.m. on the 20 th that the troops were formed up ready for action. But at the last moment the marshal wavered. Calling a council of war on the heights of Fort St Julten, he asked the opinion of his subordinates, who were unanimously aganst tbe proposed sortie, principally because the artillery "had only ammunition enough for a stngle battle!" Besides, the Germans had long since become aware of the movement in progress, and all chance of surprise was pest. It was also raming very heavily. Accordingly the scheme was abandoned.

On the 2gth of Augusi Bazaine received a despatch, dated the 27th. from MacMahon, according to which his army should have been at Stenay on the Meuse and farther to the south by the zoth The marshal accordingly determined to renew the attempt of the 26 th , and orders-almost a repetition of those of the previous occasion-were issued.

At this moment (Aug. 31) the positions of von Manteuffel's command (I Corps and 3rd Landwehr division) were most dangerously extended, and a surprise at daybreak might have had far-reaching results But the habit of excessive bugling and band-playing betrayed the French design even beiore daybreak Not until I 30 pm was the concentration completed, and Bazame again assembled his commanding officers to give them therr final instructions. This time he adhered to hus deciston, and about 4 p.m the attack opened (battle of Servigny or Nosseville), but his opportunity had been allowed to slip, and though his first onset overwhelmed the German outposts, their mann line held good, and masses of guns unlimbering over a front of some 4 m . rendered all further attempts to break the German cordon abortive. Firing only ceased as darkness fell, and mext mornng the fighting was again renewed But the whole French army was disheartened. It was obvious that what they had fauled in do by surprise was hopeless now that twenty-four hours had been given in which the Germans
${ }^{1}$ Steinmetz was shortly afterwards relieved of his command and returned to Germany
could make counter-preparations. Therefore about noon a general retirement under the guns of the forts took place, and the last serious hope of the French army Had vanished. Some 120,000 men with 528 guns had been engaged against 60,000 Germans with 222 guns, and had been beaten off with a loss of 3500 men. The Germans had lost about 3000 .

The investment now resumed its regular course. The Germans, secure in the strength of their position on the left bank of the Moselle, drew more troops over to the right, and added to thear defences and communicatuons. The idea was even mooted of damming up the river near Haucoocourt, and thus flooding out the whole of the civil population of Metz, but expert civil engineers, who were sent for from Germany, reported agninst the proposal.
As time wore on the conditions in Metr and the surrounding camps became deplorable. The hospitals and private houses had been crowded whh wounded from the first, and now, owing to the persistent wet weather, smallpox and dysentery became epidemic. Towards the close of September rations had to be reduced, and the troops began slaughtering the cavalry borses for food. Probably to cheer the men by a semblance of activnty, Marshal Bazaine attempted a sortic on a large scale on the ist of October in the direction of Ladorchamps, and fighting continued into the 2nd, but without prospect of success, and the profound depression following on defeat sent up the sick list rapidly. One other sortie towards Noisseville followed on the 7 th, the alleged reason for which was the hope of obtaining provisions in the neaghbouring villages. But it was beaten off with the utmost ease by the lnvesting troops, who were well fed and cared for, and as by this time even the gun-teams had followed the cavalry horses to the slaughter-house, the French army as an army-i.e. a combination of the three arms-had ceased to exist. On the recognition of this fact negotiations for the capitulation of Metz were begun on the $3^{\text {th }}$ of October, and on the $14^{\text {th }}$ the Army of the Rhine surrendered. Had it held out even forty-eight hours longer events before Parss and Orleans might have taken a different turn.

The investment of Metz had lasted 54 days, and the deathroll of the cival population had risen to $35^{8} 7$ agajnst 1200 in the corresponding period of a normal year. The army tself had only lost from sickness 2600 men, or barely 2% of its full effective
(F N. M.)
MRUDON. a town of northern France, in the department of Serne-et-Oise, 6 m . E of Versailles by ranl and about $2 \frac{1}{2} \mathrm{~m}$ S W of Paris. Pop. (1906), 9597 The remains of a castle (17th cestury) burned during the siege of Pans in 1871 have sunce been adapted as an observatory. Its terrace commands a fine view of Paris. The handsome Gallierz Instilutions, on the hill of Fleuty, were founded hy the duchess of Galliera for the reception of aged persons and orphans. The buildings were completed in 1885 , at a cost of f , 80,000 . The town has a monument of Rabelass, who was cure there in I553, and manufactures munitions of war for the artulery, and in the neighbouring park of Chalats is the Government military ballooning establishment In the 16th century the cardinal, Charles of Lorraine, built at Meerdon a magnificent chateau, which was destroyed in 1803. The present remains belong to a building erected by the dauphin, son of Louis XIV. The wood of Meudon lies for the most part to the west of the towa.

MEULEN, ANTONY FRANCIS VAN DER (1634-1690), Flemish painter, born in Brusmels, was called to Paris about 1666 by Colbert, at the.instance of Le Brun, to fll the post of battle painter to Louis XIV. His patntings during the campargns of Flanders (1667) so deirghted Louis that from that date Van der Meulen was ordered to accompany him In all his expeditions. In 1673 ha was received into the French Academy, attained the grade of couscillor in 1681, and died full of honours in Paris in 1690 . He is best represented by the series of twenty-three pauntings, mostly executed for Louis XIV , now in the Louvre. The show that he always retained his Flemush predbiections in point of colour, alibough his atyle was modified by that of the Freach school.

Mguntisk, Comstayini (1831-1905), Belgan painber and sculptor, was born at Etterbeek, Brusnels. His first exhibit was a plaster skotch, "The Garland," at the Brustels Salon in 1851. Soon afterwands, on the advice of the palnter Charles de Groux, he abandoned the chisel for the bruah. His first important painting, "The Salle St Roch" (1857), was followed by a series of paintings including "A. Trappist Funeral " (1860). "Trappists Ploughing " (1863), in colleboration with Alfred Verwet, "Divine Service at the Monastery of Le Trappe" (1871) and episodes of the Peasants' War (1878). About 1880 be was commiseioned to illastrate those parts of Comille Lemonnier's description of Betgiun in Le Towr du monde which referred to minen and factory-workers, and produced "In the Factory," "Smithery at Cockerill's," " Melciog Steel at the Factory at Seraing " (1882), "Retarning from the Pit," and "The Broken Crucible" (1884). In 1882 he was employed by the government to copy Pedm Campans's "Descent from the Cross "at Seville, and in Spain be painted such characteristic picturee as "The Cafe Concert," "Procemion on Good Fridny," and "The Tobacoo Factory at Seville" (Bruseels Gallery). On his return to Belgiom he was appointed profeseor at the Louvain Academy of Fine Arts. In 1885 he returbed to statuary and produced "The Puddier," "The Hammerer" (r886), "Firedamp" (1889, Brumels Gallery), "Ecce Homo" (1891), "The Old Mine-Horse " (189x), "The Mower" (18ga), "The Glebe " (1892), the monument to Pather Damien at Lowvein (1893), " Puddler at the Furnace " (I893), the scheme of detoration for the Botanic Garden at Brussels in collaborationswith the eculptor Charles van der Stappen (1893), "Tho Hosse at the Pond," in the square in the north-east quarter of Brumela, and two unfinished works, the "Momument to Labour " and the Zols monument, in collaboration with the Prench sculptor Cbarpentier. The " Monument to Labbour," which was acquired by the State for the Brussels Gallery, comprises four stone bae-reliefs, "Industry," "The Mine," "Harvest," and the "Harbour "; four bromze statere, "The Sower," "The Smalth," "The Miner," and the "Ascentor"; and a bronve group, ${ }^{\kappa}$ Maternty," Meurier died et Brusels on the 4 th of April rgos.
 was born in Paris on the 7th of Pebruary 1818. In 1848 be became the editor of the Eutnement, founded by Victor Hugo, and in 2869 he was one of the promoters of the Ropped, a journal on cimilar linea. He was the literary executor of Victor Hugo, and edited his works (1880-1885). In collaboration with Augusto Vacquerfe and Theophile Gautier, he prodnced Fabtajf (1842), 2 play in imitation of Shakespeare, and in 1843 an imitation of the Autigonc; and with Alexandre Dumas a Hambes (1847). He also wrote Bembendo Cellin! (1852)، Sehamyl (1854), Siruenste (1893), and dramatic versions of Let Mistrables (r878), Notre Dome de Paris (1876), Quatro-Singhtraive (1881). He died on the 12th of December 1905.
misursius [Jotannes van Mruzs] (1579-1639), Dutch classical scholar and antiquary, was born at Loosduinen, near the Rague. He was extremely precocious, and at the age of shxteen produced a commentary on the Cassandra of Eyco. phron. In 1610 he was appointed professor of Greek and history at Leiden, and in the following year historiographer to the states-general. In consequence of the distorbed state of his country be welcomed the offer (1625) of Christian IV. of Denmark to become professor of history and politios at Sors, in Zealand, combined with the office of historiographer royal. He died at Sord on the 20th of September 1639. Meursius was the author of classical editions and treatises, many of which are printed in J. F. Gronovias's Thesawrus antiquicotwo groecorwo. Their lack of arrangement detracts from their value, but they are a storehouse of information, and Meuralus does not deserve the eptithets of "pedant" and "ignoramus" which Scaliger applied to him. Meursius also wrote on the troubles in the Netherlands and the history of Denmark.
Complete edition of his works by J. Lami (1741-1763). See Van der Aspst Biographisch Woordenboek der Nederlandem (i869), and J. E. Sendya, Hise. of Cless. Scholurship (1908). ï. 31 I.

METRTHEEMTHOCEHLB, a depertment of morth-anstern Prance, formod in 1871 out of those parts of the old departments of Meurthe and Mosells which continued French. Before 1790 it belonged to Lorraine, or to one ot other of the bishoprics of Toul, Metz and Vertun. Pop. (5060), 517.508. Area 2038 sq. \mathbf{m}. It is bounded E. by Lorraine, N. by Belgium and the grand-duchy of Luxemburg, W. by the department of Mouse, and S. by that of Vouges. Meurtbert-Moselle is of a hilly, cheracter, the highest elevation, the Grand Rougimont (2041 ft.), being in the Vouges. The villey of the Moselle tuns through it from south to north. Ertensive forests, the chiof of which is the Forest of Haye, are found in the south-western region. Only a suall part of the drimage of Meurthe-et-Moselie flowe into the Meuse, by far the greater part reaching the Rhine by way of the Moselle. The priocipel affluenss of the Moselle are the Madon and the Orne on the left, and on the right, besides the Meurthe, the Seille, which in one part of its course forms the boundary of Alsace-Lorraine. The pfincipel tulbutary of the Meuse within the department is the Chiers. Climatologically Meurthe-et-Moselle belongs to the Vosgian region, and has hot summers and severe wrinters. Its mean annual temperteture is between 48° and $49^{\circ} \mathrm{F}$., being 2° lower than that of Paris (which has the same latitude). The annual raunfall averages between 28 and 32 in. The department posesses mach fertile land, the chief crepa being cereals and potatoes, together with clover, mangel-wurzela, tobacco, hops and beetroot. The vine is also cultivated, its best producta being those of the Toul district. The most coramon fruit trees are the pear, the apple, the walnat, the cherry and the plum. Of forest trees the oak and the wych-elm are most frequent in the west of the department, the beech and the fir in the Vouges. The French achool of forestry has its seat at Nancy. The saltworkings (the chief of which lie between Nancy and St Nicoles,) and the iron-mines (round Nancy and Longwy) of Meurtho-etMoselle are the most productive in Frasce. Other importent industries are the manufacture of boots and shoes, straw and felt hats, pottery, and tanring and brewing (at Tantonville). Cotton and wool spioning, and the manufacture of cotton goods, hosiery, embroidery, chemicals (at Dombusle, close to Nancy), soap, tobacco, matches, crystal (at Paccarat, which has a population of 56:7), mirrors (Clrey), glass, army clothing and paper may also bo mentioned. The department is served by the Eastern railway, the thief line being that from Paris to Strassburg through Nancy. The main materway is formed by the canal between the Marne and the Rhine. This canal communicates with the Moselle, which is navigable from Frouard downwerds, and with the Eastern canal, which unites the Meose and the Moselle with the Sadne and the Rhone. The department constitutes the diocase of Nancy, has its court of appeal at Nancy, and forms a part of the district of the VI. army corpt (Chalohs-sur-Marne), and of the achdemie (educational division) of Nancy. There are 4 arrondisecments (Nancy, Briey, LunGville and Toul), 99 cantors and 598 communee. The principal towns of the department are Nancy, the capplal, Luneville, Toul, Longwy, Pont-d-Mousson and St Nicolas. Other places of interest are Preny, with ruins of an lmportant strongbold (1 ath and 13th centuries) of the dukes of Lorraine; and Vaudsmone, seat of a femous countship, with ruins of a stranghold of the 12 th and 24 th centuriea.

MEUSE (Flem. Maes, Du. Macs), a Iver rising at Pouilly, in the deparment of Haute Marne, France, After pesaing through a great part of Belgium and Holland it flowe into the Waal channel of the Rhine at Fort Loovenstein A few miles below Gorinchem the Meuse, or Waal as it is then called, divides into two branches. The northern flows almost due west, and foins the Lek (Rhine) above Rotterdam, and enters the North Sea at the Hook of Holland. Ocean-going steamers for Rotterdam use, however, the Now Waterway (Niewae Waterweg), a little north of the Meuse. The southern branch turns south, crosees the marsh of Biesbosch by the canalized channel of New Mervede, enters the Hollandsch Diep, and reaches the sea by the arms called Haringviet and Erammar.

Jorullo (4262 ft .) is said to date from 1759 . When its cone was formed, and Ceboruco (7 I 00 ft .) in the territory of Tepic, shows occasional signs of activiry. Near the coast in the state of Vera Cruz is San Martin, or Tuxtla (9708 ft .) which has been quiescent since its violent eruption of the 2nd of March 1793. Orizaba is somet imes included among the semi-active volcanoes, but this is a mistake. It has been quiescent since 1566, and is w w completely extinct. Earthquakes are common throughout the gre iter part of the republic, especially on the western coast. They are most violent from San Blas southward to the Guatemala frontier, and some of the Spanish towns on or near this coast have suffered severely. Chilpancingo. in Guerrero, was badly shattered in 1902, and in 1907, and in 1909 was reduced to a mass of ruins. The earthquake shocks of the 3oth and 3ist of July 1909 were unusually severe throughout southern Mexico, reducing Acapulco and Chilpancingo to ruins and shaking the city of Mexico severely. In Acapulco a tidal wave followed the shock. Slight shocks, or temblores, are of almost daily occurrence. According to Humbuldt's theory there is a decp rent in the earth's crust about the r9th parallel through which at different periods the underground fires have broken at various points between
the largest of this class, and has the town and port of Carmen at its western extremity. On the northern coast of Yucatán is the small, inhabited island of Holbox or Holboy, and on tho eastern const the islands of Mujeres. Cancum and Cozumel, of which the fit tan! last have a considerable population and good ports. On the Patitic coast there are a number of islands off the rocky shores of Loubt Califormia and in the Gulf of Calitorata -most of them berren and uninhabitable like the adjacent coast. The largest of these, scine of them inhabited, are: Cuadalupe about 75 m . west of the clast on the 29th parallel, which is fertile and stocked with cartle; trros, off Viscarno Bay, and Santa Margarita, which partly shelters fagdalena Bay, on the Pacific side; and Angel de la Guarda, Tiluron. San Marcos, Cármen, Monserraice, Santa Catalina, Senta Cruz, Sin Josf. Espiritu Santo and Cerralvo in the Gulf. Lying of San las in ihe broad entrance to the Gulf are the Tres Marias, and directly west of Colima, to which it belongs, is the scattered velcanic group of Revillagigedo.

The puculiar surface formation of Mexico-e high platean shue in by mountain barriers, and a narrow lowland region between it and the coast-does not permit the development of large river

the Gulf of Mexico and the Revillagigedo Islands. "Only on the supposition that these volcanoes, which are on the surface connected by a skeleton of volcanic rocks, are also united under the surface by a chain of volcanic elements in continual activity, may we account for the earthquakes which in the direction mentioned cause the American continent, from the Gulf of Mexico to the Pacific Ocean, to oscillate at the same time" ($E_{\text {glof steina }} \mathrm{p} .37$).
The lowland or tierra caliente region, which lies between the sierras and coast on both aides of Mexico, consists of a sandy zone of varying width along the shore-line, which is practically a tidewater plain broken by inland channels and lagoons, and a higher belt of land rising to an elevation of about 3000 ft . and formed in great part by the debris of the neighbouring mountain slopea. On the Pacific side there are places where the mounkin spurs extend down to the coast, but in general this lowland region ranges from 30 to 40 m . in width, except in southern Vara Cruz, Tabasco, Campeche and Yucatan, where it extends farther into the interior. The talus zone of this region, especially at elevations of 1000 to 3000 ft., is noted for its great fertility and the luxuriance of its vegetation.
There are no large islands on the coast of Mexico, and most of the smaller ones are uniniportant. Many of those that fringe the Gulf coast are sand-keys, or parts of a new coast formation. They are commonly barren and uninhabiteble. The lsla dei Cirmen, which partly shute in the Laguna de Ttrminos (Campeche), is one of
basine. Add to this the light rainfall on the plateau and a lack of forests, and we have conditions which make large rivers imposaible. The hydrography of Mexico, therefore, is of the simplest description -a number of small streams flowing from the plateau or mountain slopes castward to the Gulf of Mexico and westward to the Pacific. Most of these are litule more than mountain torrents, but one hat a course exceeding 500 m. , and few have navigable channels. The principal watershed is formed by the sierras of the state of Mexico from which streams flow north-east to the Gulf of Mexico, northwest to the Pacific and south-west to the same coast below fts great eastward curve. The Rio Grande del Norte, or Rio Bravo, on the morthern frontier, is practically an American river, as it rises in American territory and receives very little water from the Mexican side. Its larger Mexican tributaries are the Rio de tos Conchos, Salado and Pesqueria. Of the Suchiate and Hondo, which form part of Mexico's southern boundary, the first is a short, impet uous mountain torrent flowing into the Pacific, and the other a duggish lowland stream rising in north-eastern Guatemata and flowing north-cast through a heavily forested region to Chetumal Bay. The peninsula of Yucatín has no rivers, and that of Lower California only a few insignificant streams in the north. This is due to the porosity of the soil in the former, and the very limited rainfall in the latter. The largest rivers of Mexico are: the Rio Grande de Santiggo, called the Lerma sbove Lake Chapala, rising in the atate of Mexico and flowing westward across Guanajuato, Jalisco and

Tepie to the Pacific coast, with a total length of 340 m ., celebrated for its deep canyons and waterfalls; the Riode las Balsas, or Mescala, which rises in Tlaxcala and flows south and west to the Pacific with a course of 426 m . ; the Yaqui, which rises in western Chihuahua and, after breaking through the northern ranges of the Sierra Madre Oecidental, fows south-wetterly across Sonora to the Gulf d California, with a length of 390 m ; the Grijalva, almo called the Chiapas on its upper course, which has its sources in the state of Chiapas and flows north-west and north across Tabasco to the Gulf of Mexico, with a total length of 350 m .; the Fuerte, which rises in southern Chihuahua and, after breaking through the sierma, Cows south-west across Sinaloa to the Gulf of California, with a course of 340 m . ; the Usumacinta, which is formed by the confluence of the Chiwoy and Pasión on the east frontier of Chiapas, and flows north-west acrose Tabasco to the Grijalva, with a course of 330 m .; and the Panuco, which has its source in the north-west of the state of Mexico and llowe north-castward to the Gulf of Mexico. The rivers of the Pacific coast have no navigable channels worth mention. ing, but many on the Gulf coast are navigable for considerable distances. The more important of these are in Tabasco-the Grijalva, navigable for about 93 m ., and the Usumacinta, for about $27^{\circ} \mathrm{m}$. The country about the Laguna de Terminos is low and fat. and is traversed in alt directions by deep, sluggish streams. Many of the rivers crossing the lowlands bordering the Gulf have short navigable channels, the most important of which is the Penuco and its tributaries. The Rio Crande is navigable for small veseels up to Matamoros (31 m .), and for smaller craft 65 m . farther. Nearly all the Gulf coast rivers. however, are obstructed by bars owing to the quantity of silt brought down from the sierras and the prevailing winds and currents on the coast.

The lakes of Mexico are small and few in number. They may be divided into two classes; those of the plateau region which occupy lacustrine depressions and recoive the drainage of the surrounding country: and the tide-water lagoons of the coast formed by the building up of new sand beaches across the indentations in the coast-line. Of the former, the best known are the lakes of the Valley of Mexico-Texcoco. Chalco, Xochimilco, Zumpango, Xaltocán and San Cristobal-which are probably the remains of a lake once occupying the whole valley. They receive considerable curface drainage, but are slowly diminishiog in area. Some of them, like Xochimilco. will eventually disappear. The largest, Texcoco, has an area of about $11 / \mathrm{sq}$. m . (30 sq - kiloms.), but it covered a much darger area at the time of the Spanish conquest. Its surroundings are bleak and sterile and its waters brackish and polluted with the drainage of the neighbourng city for nearly four centuries. The other lakes ane wholly different in character and surroundings, especially Chalco and Xochamilco. Texcoco is now connected with the new drainage works of the capital and is no longer a menace to its population through inundations and pestilential fevers Another group of lakes is to be found in the laguna district of south-western Coahuila, where the Tlahualiln, Mairan, Parras and others occupy a large lacustrine depression and receive the waters of the Nazas and Aguanaval rivers from the south-west (Durango). The size of this isolated drainage basin is very large, the Nazas River alone having a length of about 370 m . The great Mapimi desert of western Coahuila is another lacustrine depresion, but only marbhy lagoons remain. In eastern Coahuila, near Monclova, are the Agua Verde and Santa Maria lakes, and in eastern Chihuahua there is a simitar group. The largest and most attractive of the plateau lakes is Chapala, in the state of Jalisco. about 80 m . long by to- 35 m . wide, which receives the waters of the Lerma and discharges into the Pacific through the Santiago. On the lower terraces of Michoacán are Patzcuaro and Cuitzé Lakes, and elsewhere among the sierras are numerous other small bodies of water. Among the tide-water ligoons, of which there are many along the Gulf const, the best known are the Laguna de Terminos in Campeche, Tamiabua in Vera Cruz, Madre (130 m, iong), Pesquerias (21 m long) and Chairel (near Tampico) in Tamaulipas. All these lagoons are navigable, and those of northern Vera Cruz and Tamaulipas, when connected and improved, will afford a safe inland route for some hundreds of miles along the coast. The north coast of Yucatán is remarkable for the extensive banks built up by the Gulf current from 5 to 7 m . from the shore-line. Inside the present sandy coast is a peculiar tide-water channel called the Rio lagartors, which follows almost the whole northern shore, with occasional openings or bocas, connecting with the open cea. It is apparently of the same character as the lagoons of Tamautuas. There are a number of thene lagoons on the Pacifc coast-such as Superior and Interior near Salina Crun, Papacayo, but they are usually shallow, sometimes swampy, and have no value for commerec.

Thare is a marked difference between the Gulf and Pacific coastlines of Mexico in regard to their minor indentations and harbours. The south-west part of the Gulf of Mexico is called the Gulf of Campeche (Campeachy). but no distinction is necessary. This coast has no bays of importance, ins rivers are obstructed hy eandbars, and it has only one natural harbour-that of Carmen and the Laguna de Términos, which has suffecent depth for the tanger chases of vercels and is sbeltered by the inlands of Chrmen and

Puerto Real. Of the principal ports on this coast, Matamoros. Tampico, Tuxpan, Coatzacoalcos and Frontera are on rivers, which are obstructed by bars. Tampico and Coatzacoalcos, however, have been improved by breakwaters or jetties, and the deepening of the Channele across the bars, into safe and commodious harbours. Vera Cruz is an open anchorage inside a series of reefs which afford no protection to vessels from the "northers." A breakwater has remedied this defect and Vera Cruz is no longer considered a dangerous port. Campeche has a small artificial harbour, which is so silted up that vessels drawing 9 ft. must anchor 1 m . outside and larger vessels still farther away. Progreso, Yucatán, has only an open roadstead, and large vessels cannot $\sqrt{2} p p r o a c h ~ i t s ~ l a n d i n g-p l a c e ~ n e a r e r ~ t h a n ~ 6 ~ m . ~ O n ~ t h e ~ e a s t ~ c o a s t ~ o f ~$ Yucatán there are two deep, well-sheltered bays, Ascensión and Espiritu Santo, which afford good anchorages, and at the morth end of the island of Cozumel the bay of Santa Maria offers an excellent harbour. The Pacific coast has several deep and wellsheltered bays; but they are separated from the interior by the rough and difficult ranges of the Sierra Madre Occidental. There are two large indentations of the coast-the Guifs of Tehuantepec and California. The former is opposite the Gulf of Campeche, and possesses no distinguishing characteristic. The Gulf of California, on the other hand, penetrates the continent for a distance of 739 m ., from south-cast to north-west, with a maximum breadth of 190 m . Its area is usually restricted to the waters north of the latitude of Cape San Lucas, but it should be extended to the outer watera enclosed by a line from Cape San Lucas to Cape Corrientes. Its upper waters are not much navigated because of the aridity of ita coasts, but there are two or three important ports towards the south. The Gulf has a considerable number of islands, most of them near the peninsulas cass1, and several deep, well-protected bays-those of La Paz and Sania Inés in Lower Califomia, Guaymas in Sonora, Agiobampo. Topolobampo and Alıata Salinas in Sinaloa. On the Pacific coast of Lower California are the Ensenada de Todos Santos and the bays of San Quentin. Viscaino and Magdalera. The principal bays o., ,te mainland coast are Olas Atlas, which is the harbour of Mazatlán, San Blas, Banderas, Manzanillo, Acapulco, Salina Cruz and Tonalá. Several of these are being improved.
Geology. - By far the greater part of Mexico is covered by deposits of Cretareous and later date, the pre-Cretaceous rocks occurring only in comparatively small and isolated patches. At the southern extremity of the great table-land, however, in the atate of Puebla, there is a considerable mass of crystalline rocks which is believed to be of Archaean age, Similar rocks occur also in Chiapas, Oaxaca, Gucrero and elsewhere: but owing to the absence of any early forsilifenous deposits, the age of these rocks is very uncertain. Silurian and Devonian fossils have been reported at-one or two localities, hut for the present the observations are open to doubt. The earlicst fossilifcrous beds which have been proved to cxist in Mexico belong to the Carboniferous system. They are found on the borders of Guatemala and consist of limestones and dolomites with Productus.
The Mesozoic beds are of greater importance. The Triastic and Jurassic systems are met with only in scattered patches. The former consists of sandstones and clays, and the fossile found in them are chiclly plants, including Gangamopteris and Macrolaeniopleris, two characteristic genera of the Indian Gondwa na system. The Jurassic beds are marls, sandstones and limestones, which contain marine fossils. The Cretaccous rocks take a far larger share in the formation of the country. They form the greater part of the Sierra Madre Oriental and also cover most of the central piateau. They contain many fossils, including Hippurites and Ammonites. The sedimentary deposits of the Tertiary era do not occupy a very wide area. They occur, however, along the coasts, where they are marine, and also on the central platean, where they are of lacustrine origin. But by far the most important of the Tertiary rocks are the solcanic lavas, agglomerates and ashes, which cover so much of the country. It is in the western half of Mexico that they are most fully developed, but towards the southern extremity of the plateau they spread nearly to the eastern coast. The eruptions are said to have begun wish the ejection of syenites. diorites and diabases, which probally took place at the close of the Cretaceous or the beginning of the Eocene period. In the Miocene period andesites of various kinds were erupted, while at the close of the Pliocene began the great eruptions of basalt which reached their maximum in Quaternary times and continue to the present day.
(P. La.)

Climate.-Mexico stretches across 17 parallels of latitude, with the Tropic of Cancer crossing hes territory about midway. This implies tropical and sub-tropical conditions. The relief of the land and varying degrees of rainfall and vegetation, however, serve to modify these conditions in many important particulars. The clevation and extent of the great central plateau, which penetrates
${ }^{1 S c e}$ J. C. Aguilera, Sinopsis de grologia mexicana; "Bosquejo treolúgico de México." segunda parte. Bol. inst. geol., Mexico. Nos 4-6 (1897). Pp. $189-270$, with map- summary of 1 his paper witl Fee also the Livel-gents of the Teath Cong. Geoi. Internat. (1906).
deeply into the tropical half of the country, carry with thēm tēn̄̄̄̄rte and sub-tropical conditions over much the greater fart of the republic. Above the plateau rise the marginal sierras, while a few isolated peaks in the region of perpetual snow give to Mexico a considerable area of cold temperate and a trace of arctic conditions. Descending to the lowlands on either side of the plateau, the temperature rises steadily until the upper limit of the tropical region. called fierras calientes, is reached, where the climate is hot. humid and unhealthy, as elsewhere in the forested coastal plains of tropical America.

The ticrras colientes (hot lands) of Mexico include the two coastal zones, the isthmus of Tehuantepec, the states of Tabasco, Campeche, and part of Chiapas, the peninsula of Yucatán and a part of castern Oaxaca. The mean temperature ranges from 77° to $82^{\circ} \mathrm{F}$., eeldom falling below 60°, but often rising to 105°, and in the sultry districts of Vera Cruz, Guaymas and Acapulco to and even above 110°. The rainfall is heavy in the south. except Yucatán, but diminishes gradually toward the north, until on the Pacific and Gulf of California coasts it alrose disappears. These lowland districts are densely lorested in the south, except Yucatan, and large areas are covered with streams, swamps and lagoons, the abode of noxious insects, pestilential fevers and dysentery. On both coasis yellow fever epidemics appear at frequent intervals. The great fertility of these regions and the marvellous wealth of their forests are irresistible attractions to industrial and commercial enterprise, but their unhealthiness restricts development and is a bar to any satisfactory increase in population. The heavy tainfall on the Gulf coast, however, which reaches a maximum of go to 100 in . in the Huatusco district of Vera Cruz, causes the Hooding of large areas of lowlands, and will make improvement very difficult. The peninsula of Yucatán, whose general level doe not rise above 130 to 200 ft, above the sca, consists almost wholly of an open, dry, calcarcous plain. The temperature ranges from 66° to 89°, but the heat is tempered by the cool sca-breczes which sweep unobstructed across its plains. The rainfall is abundant in the rainy season, but in the long dry season it is extremely rare. In the wet season the rain is quickly absorbed by the dry, porous soil; consequently there are no rivers and no lakes except near the forested region of the southeast. These exceptional conditiony give to Yucatan a moderately hot, dsy, and comparatively healthfu climate. Another hot, dry climate is that of the tierres calientes of Sonora. The coast is low and extremely arid, and would h uninhabitable were it not for the proximity of the Sierra Madre where a light rainfall is experienced, and for the numerous river that cross the arid belt between the mountains and the sea. Thit
maximum temperatures in this region are 98° at Hermosillo and 119° at Guaymas.

To a large extent the climate of Mexico is determined by vertical zones. According to H. H. Bancroft (Resources of Mexico, pp $3-4$., the lierres colienies, which include a coastal zonc 30 to 40 m . widi. and the low-lying states already mentioned, rise from sea-level to an elevation of 3280 ft. The tierra templada, or sub-tropical zone, rises to an elevation of 5577 [t., and comprises "t the greater portion of Coahuila, Nuevo León, San Luis Potosh, nearly half of Tamaulipas, a small part of Vera Cruz, nearly the whole of Chiapas, nearly al! of Oaxaca, a large portion of Guerrero, Jalisco, Sinaloa and Sonora, together with small parts of the inland states of Puebla, Mexico. Morelos and Michoacan. The mean annual temperature is about 75°. Above this is the tierra fria, which ranges from 5577 to 8200 ft , and includes all the higher portions of the Mexican plateau, and States where frosts are very rarely experienced. Even here the high sun temperatures give a sub-tropical character to the country., In the sierras, above the tierras frias, which are not "cold lands" at all, are the colder climates of the temperate zone, suitable for cereal. grazing, and lorest industrics, and. farther up, the isolated peak: which rise into the regions of snow and ice.
Speaking generally, the four scasons are clearly marked north of lat. $28^{\circ} \mathrm{N}$. only. South of that parallel they merge in the esto. ción de las aguas, or rainy season, from May to October. and the estacion seca, or dry scason, which prevails for the rest of the year
The rains generally begin on the east coast and gradually move aorthwards. The windward slopes of the Sierra Madre Oriental receive the greater part of the rainfall, and the winds, deprived of their moisture, pass over the northern plateau without further precipitation. On the Pacific coast the belt of calms, known ab the northern horse latitudes, crosses the northern parts of Lowrr California and Sonnra, which accounts for their extreme aridity: The southern terraces of the plateau have no high mountain barricr between them and the moist winds of the Caribbean, and they too receive an abundant rainfall in the wet season, especially during the prevalence of heavy "northers" on the Guif coast. The precipithe tion varies widely, that of the western side of the northern platcau (Chihuahua and Durango) being about 39 in., that of the Valley of Mexico about 25 in., and that of the whole republic 59 is, Loig
droughts are common in many parts of the country, and on the droughts are common in many parts of the country, and on the barren surfaces of the plateau the rains drain away rapidly, leaving but slight beneficial results.

Flora and Fama-The types of animal and vegetahice life foucd in Mexico belong, in a general sense, to those of the northem temper-
ate region, and those of the tropical regions of Central and South America. The great central plateau and its bordering lowlands form an intermediate territory in which these dissimilar types are found side by side, the tropical species extending northward along the coast to the United States, while the northern species bave found their way to the southern limits of the plateau. The jaguar and puma have found their way into the United States, while the wolf, coyote, bear and beaver have gone far southward on the plateau, and the buflalo was once found in large numbers on its more favoured northern plains. This intermingling of types does not apply to south-eastern Mexico, where animal life is represented by many of the genera and apecies lound in the foreated lowlands of the great Amazon basin.

Aside from its origin, the fauna of Mexico includes at least five species of monkey. the jaguar, puma, ocelot (Felis pardalis), wolf, coyote, lynx, bedger, oiter (Lutra felina), beaver, muckrat, bear, raccoon (Procyon), coati (Naswa), tapir, two speciea of peccary (Drootyles lorgwatus and D. Labratus), skunk (Mephitis, Spilogale and Conepotus), marten, several apecies of opossum (including a pigmy species of the Tres Marias islands), sloth, two species of ant-bear (Myrmecophaga tetradactylus and Cyclothurus dedectyws), armadillo (Desypms monemcinctus). a small arboreal porcupine (Symotheres mexicanss), the kinkajou (Cercoleples candivolvulus), three species of deer-the white-taled Caracus toltecus, the little black-faced brocket. Coassus rufinus, which is also found in Brazil, and the Sonora deer (Odocodems cowesi)-the Mexican bighorn (Owis mexicantws) of Chihuahua, at least two species of hare (Lepus calotis and L. palustrus), rabbits, black. gray, red and ground squirrels, gophers, and many small rodents. Alligators and crocodiles are numerous in the lagoons and rivers of the coast and the jguana is to be found everywhere throughout the tropical lowlands, the large black Ctanoswes acanthaserus being partly arboreal in habit when full grown. Mexico is a paradise of lizards, which are noted for their diversity in form as well as for their remarkable colouration. Frogs and toads are represented by acores of species, some of which, e.g. the tree-frogs (H yidae), are extromely interesting. The ophidians are also very numerous, ranging from the comparatively harmless boa-constrietor to the deadly "palanca" or "fer de lance" (Lachesis lanceolatws) and ratilesnake (Crotalus), of which there are several species. In southern Mexico in 1902 and 1904 Hans Gadow collected specimens of 44 different kinds of snakes, which he estimated to be only about 45% of the species in the states visited. The arboreal life of the cropical forests has developed the treeclimbing habit among snakes as well as among frogs and toads, and also the habit of mimicry, their colour Deing in harmony with the foliage or bark of the trees which form their "hunting-grounds." Bats are numerous, both in species and individuals. The sanguinary vampire (Desmodus rufus) has an extensive range through the tierras calientes and trerras tenepladas of the southern states. The coasts of Mexico, together with their accessible lagoons and rivers, afford innumerabie breeding-places for turtles, which include the large green and cortoise-Ehell species In mome places the capture of the latter is the source of a considerable export trade in tortoisesheli. The coast of Lower Californla is a favourite resort for the fur-bearing seal, and pearl oysters find a congenial habitat in the oouth waters of the Gulf. There are some good fishing-grounds on the coasts, but fishing as an organized industry does not exist. The inland waters, with the exception of Lake Chapala, have comparatively few epecies, but the government bats introduced carp. brook-trout and almon trout.

The avifauna of Mexico inciudes mont of the species of the tropical and temperate regions of America-much as parrots (chiefly the yeilow-headed Chrysolis), parakeets (Consertus catwicula), macaws (Are macao and A. miliforrs), toucans, trogons, herons, egrets, ibis, spoonbilts, boat-bills (Cancroma), ducke, pelicans, cormorants, bitterns, stilt s, as indpipers, curlews, grack les, kingfishers, motmots, "Chachalacas:" (Orialsda poliocephala), woodpeckers, jays, cuckoos, "garrapateros" (Crolophaga sulciroslras), the ingenious weaver-bird (/Clerws), and another species (Cassucws), whose curiously woven, sack-fike nests are suspended from the slender limbe of trees, and sometimes even from telegraph-wires, scarlet-crested fy-catchers (Muscsoerc mexicame). tanagers, mocking-birds (called "zensont!"'). turkeys, partridge, quail (Colinus, Lophorlyx, Calljpepla and Cyt comyx), doves, pigeons, eagles, caracara hawke (Polyborms), fishhawks, falcons. crows, and turkey-buzzards (both the red-faced "anra " of North America and the black-faced "zopilote" of the tropics), which are the acavengers of the country. The most numerous, perhapa, are the humming-birds, of which there are many genera and species, each one distinct in form and colour. They are called " huitilin "(spikelet) by the 'Azteca, and "colibri," "chupaflor" and "chupa-miel " (fiower- or honey-oucker), and "pajaso-
moes" (fy-bird) by the Spanish-epealang Mexicans. Thete descriptive names are highly poetic, as aleo that of the Portuguene, "beija-flor " (flower-kisoer); but the humming-bird is Insectivorous, and thrusts his long bill into fowers in easch of insects Instead of honey. Mexico is credited with a great variety of song-birds, but these are to be found chiefly in the partly-forested country of the sierras sempladas and herras frias. Her chiel distinction, however. Is in birds of varied and gorgeous feathering. The wonderful plu. mage of the "quetral " (Trogon resplendens) wras, it is 筑id, reeerved
by the Astec rulers for their own exclusive nee. Of the indigenome birds. the turkey has been fully domesticated, and the musk-duck and " chachalaca " are casily reared. Sea-fowl are most numerous on the coaste of Lower Calfiornia, where certain islands in the arid beit are frequented at night by countless numbers of them. It should be added that many of the migrating birds of North America pass the winter in Mexico.
The insect fauna of Mexico covers a very wide range of genera and species which, like the other forms of animal life, is fargely made up of migratory types. No complete study has ever been made of this fauna, but much has been, and is being done by the U.S. Biological Survey and Plant Industry Bureau. To the traveller, the most conspicuous among the Mexican insects, perhape, are tbe butterfies, beetles, ants and the myriade of mosquitoes. midges, floas and chinches. Anong the mosquitocs, which are exiraordinarily numerous in some of the hot lowland districts, are the species credited with the spread of malarial and yellow fevers. The midges are even more numerous than the mosquitoes. In pleasing contrast to such pests are tbe butterfites of all sires and colours, beetles of an inconceivable variety of sixe, shape and colouration, and ants of widely diseimilar appearance and habits. An interesting species of the last is the leaf-cutting ant (Eciton) which lives in large underground colonics and feeds upon a fungus produced by leal-cuttings stored in subterramean pessages to promote fermentation. These ants will strip a tree in a few hours and are very destructive to Iruit plantations, Same of the native trees have developed ingenious methods of defence, one of which is that ol attracting smal colonies of another spectes to drtve awny the marauders. Most destructive, also, are the termites or white sits, whose ravages are to be seen in the crumbling woodwork and fis aiture of all habitations in the hot zones. Some species build thefr nests in trees-great globular masses sometimes three foct in diameter. supported on the larger branches, and connected with the ground by covered passages on the outside of the tree. These insects are blind and avoid the light. Bees find a highly concenial habitat in Mexico, and some honey is exported. Spiders arc also represented by a large number of genera and species. the sugt
dreaded being the venomous "tarantula "and the savage " dreaded being the venomous "tarantula "and the savage " mygntis" life as Mexico. This is due not only to it seographical posion and its vertical climatic zones, which give it a range from tropint to arctic types, but also to its peculiar combination of humid and arid conditions in which we find an extensive barren table-ind interposed between two tropical forested coastal sones. These widely divergent conditions give to Mexico a flors that includes the fenera and species characteristic of neariy all the zones of plant fife on the western continents-the tropical jungle of the humid coastal plains with lts rase cabinet-woods, dye-woods, lianas and palms; the semi-tropical and temperate mountain slopes where oak forests are to be found and wheat supplants cotton and augar-cane; and above these the region of pine forests and pasture lands. Then, there are the mangrove-fringed coasts and the dripping wooded alopes where rare orchids thrive, and above these, on the inland cactus, yucca, and other coarse vegetation of the dewert can thrive without irrigation.

For convenience of description, the flora of Mexico may be divided into four great divisions: that of the comparatively barren plateau and the arid coast regions, the humid bierras calientes, the intermediate tierpas templadas and tionras frias, and the higher regions of the sierras. The line of demarcation cannot be very charply drawn, as the zones everywhere overlap each other end local climatic conditions greatly modify plant types in general. the aspect of the great central plateau north of the Anshuac sierras is that of a dusty, trecless plain. There is but little natural vegetation to be seen-ragged yucca trecs, many species of agrave and
cactus, scrubby mesquite bushes, sage bushes and occasional cactus, scrubby mesquite bushes, sage bushes and occational
clumps of coarse grasses. The rainy season completely changes the appearance of these plains, new grass appears, and wineat and Indian corn are cultivated. The rains do not last long, however, and sometimes fail altogether. The most commos plapts of the Mexican plateau are the agaves, yuccas and cacti, each of which is repreented by a number of species. The first is chiefly known in the wuth by the "magueys," from which the national drinks "pulque" and " mescal" are extracted. There is some confusion in the apecific names of these agaves; the "pulque "producing plant is usually described as the Agave ampricara, though A. adropirens and several others are also credited with the product. The mescalproducing magueys have a thinner leaf and are not cultivated, with the exception of the species producing the "tequils" mescal. The chief value of the agaves, however, it in their fibres, of which a great variety is produced. The principal plateau agaves producing Gbre are the A. lechuguilla and A. lophontho and A. wnitittala of the Jaumave Valley, Tamautipas, which furnish whnt may be termed the genuine ixtle fibre. The "tapemete "fibre of western Mexico ls credited by Mr E. W. Nelson to the A. vivipara, which is found chiefly in the warmer and lower elevations of the Pacific slope. There nre many other fibre-producing agaves, including tome of those from which pulque is derived. The cactus is unquastionably the characteristic plats of Maxico About one
thousand apecien have been deacribed, a very large percentage of which are to be found on the Mexican plateau.

Explorations by botanists of the United States Department of Agriculture have been made in many localities, in Jalisco, Zacatecas, Michoachn and Tamaulipas, but many years must clapse before the Whole ground can be covered. In central and suthern Mexico the mountain slopes are forested up to 12,500 to $\$ 3,500 \mathrm{ft}$., juniper bushes continuing up to $14,000 \mathrm{ft}$. The forests consist of several species of evergreen and deciduousoales, "oyamel " (A bies religiosa), the arbutus or strawberry tree, the long-leaved Pinus liophylla and the short-leaved "ocote" or Pinus montesumoe and the alder, with an undergrowth of elder (Sambucus mexicana), broom and shrubby, heach. In the Southern Sierra Madre, the "oyamel" and "ocote" pine are the giants of the forest, sometimes rising to a height of 100 ft. Oalcs are to be found over a wide area and at lower elevations of the sub-tropical zone as well. They are represented by a number of species, and are called "roble" and "encina" by the natives.

In the intermediate sonea between the higher sicrras a ad the sierras calsember the flora is very largely composed of species characteristic of the bordering hot and cold regions. Oaks are everywhere common and the "coote" plne on the Gulf coast is found as lar down as 6300 ft In sonthern Mexico the pine is found at even lower elevations where the tropical growth has been destroyed by cultivation and fire. The lower slopes of the sierras, especially those of southern Mexico, are well forested nad include an immente number of epecies. The most comanon lamilics nn the eastern slopes, where the precipitation is heavy, are the magnolias, crotons, mimosas, acacias, myrtles, oaks, plane-trees and bamboos. Palms are common, the chestnut abounds in many places, the cacti are almost as numerous as on the open plateau. On the southern slopes of the Ajisco and other sjerras considerable forests of the "ahuchuete" or cypress (Taxodium distichum) are to be found. The "higuerilla ${ }^{\text {st }}$ or castor-oil plant (Ricinus communis) is widely distributed throughout the plateau and the open plains of the lower zones. In come localities the characteristic types of the two climatic extremee, the palm and the pine, are to be found growing side by side.

No brief description can adequately portray the marvellous variety and magnificence of the flora of the tierres calientes. Its foresta are not composed of one or a few dominating species, as in the cold temperate sone, but of countless genera and species closely interwoven together-a confused mass of giant trees, lianas and epiphytes struggling to reach the sunlight. This struggle for existence has completely changed the hablits of some plants, turning the palm and the cactus into climbers, and even some normal species into epiphytes. Among the more important and conspicuous trees of these tropical forests are mahogany, rosewood, Spanish cedar (Cedrela), cassias, ceibas (Bombax), rubber (Castilloa), palmi of many species including the oil-producing AHalea of Manzanillo and Acrocomia of Acapulco, guryacan (Guciacum), logwood (Hacmotoxslos compechiantim), braxifood (H, boreale) which should not be confounded with the Brazilian Caesolprinio, palo blanco (Lysiloma candida), the cascalote and divi-divi trees (Caesolpinia Cacalaco and C: coriaria), the "zapote chico" (Achros sapola) (rom which chicle is extracted," mpote prieto" (Drospyros ebenosler), wild fig, myrtles, bamboos and many of the types already mentioned in connexiop with the sub-tropical zone. Of the 114 specics of trecs and cabinet-woods, 17 of oil-bearing plants, and over 60 of medicinal plants and dyewoods indigenous to Mexico, by far the larger part are repreaented in the tierras calientes. Among the well-known forest products of this sone are arnotto, jalap, ipecacuanha, sarsaparilla, rubber, orchids and a great variety of gums.
Of the economic plants and products of Mexico, the list is surprisingly long and intereating. The cercals, Iruits and vegctables of Europe have been introduced and some of them have done well. Wheat is widely cultivated and a considerable part of tbe population depend upon it for their bread. Indian corn, which is believed to have had its origin in Mexico, also provides food for a large part of the populntion. "Tunas " or cactus fruit, red peppers, "zapotes " (the fruit of various trecs), "arrayan " (Myrtus arayan), "ciruelas" " or Mexican plums (Spondias), guavas, "huamuchil" (Pilhecolobiu* dulce), tamarinds, aguacates (Persea gratissima), bananas, plantains, pineapples, frapes, oranges, lemons, limes, granadillas, chirimoyas, mammees (Hammea americana), coco-nuts, cacao, mangoes, olives, gourds and melons, are mong the iruits of the country, and rice, "heat, Indian corn, beans, yams, sweet potatocs, onions and "tomatoes" (Physalis) arc among its better-known food products. The food of the common people is chicfly made up of Indian com, epecies of beans (Phasediss) in Mexico and Central America, and probably a dozen species of red peppers (Capsicum) which are used both in seasoning and in making chili savce. The "tomato" or "tomatillo" mentioned, is the fruit of the Physalis ixocarpa, sometimes called the " trawberry tomato" and the "Mexican ground. cherry," which is used with red peppers to make chili nunce. The common potato (Solamwin iuberatwm), of which wild varietied are found, is not commonly used as a vegetable. but as a flavouring for soups and other dishes. Among other economic plants are the Gbre-producing agaves, the best known of which is the A. rigida
var. elongala which produces the "henequen" fibre, or tisal hemp, of Yucatan, silk or tree-cotton (Ceiba casearits), sugar-cane, cotton (Gossypium), indigo and "canaigre" (Rumex hymemosepahus) whose root contains a large percentage of tannin.

Mexico has suffered much from the reckless destruction of her forests, not only for industrial purposen but through the careless burning of grassy areas. The denuded mountain alopes and plateaus of southern Mexico are due to the prehistoric inhabitants who cleared away the tropical forest for their Indian corn fields, and then left them to the erosive action of the tropical rains and subsequent occupation by coarse grasses. Fire was generally used in clearing these iands, with the result that their arboreal vegetation wat uitimately killed and their fertility destroyed, In the valleys of some of these denuded slopes oak and pine are succeeding the tropical species where fires have given them a chance to get a good foothold.
Population.-According to the census of 1900 the population of Mexico numbered $13,607,259$, of which less than one-fifth (19%) were classed as whites, 38% as Indians, and 43% as mixed bloods. There were 57,507 foreign residents, including 2 few Chinese and Filipinos. Since then the Japanese have acquired an industrial footing in Mexico. Under the constitution of 1824 all race distinctions are abolished, and these diverse ethnic elements are nominally free and equal. For many years, however, the Indians remained in subjection and took no part in the political activities of their native country. Since about 1866, spurred on by the consciousness that one of their own race, Benito Juares, had risen to the highest positions in the gift of the country, they' have taken greater interest in public affairs and are already making their influence felt. In southern Mexico the Zapotecas furnish schoolmasters for the village schools. Peonage, bowever, is still prevalent on many of the larger estates, and serious cruelties are sometimes reported. The government itself must be held partly responsible, as for the transportation of the mountain-bred Yaquis to the low, tropical plains of Yucatino (see Herman Whitaker's The Planter, 1009), hut the influence of three and a half centuries of slavery and peonage cannot he shaken off in a generation.
According to Humboldt, the census of 1810 gave a total population of $6,122,354$, of which the whites had 18%, the mestizos 22% and the Indians 60%. The census of 1895 increased the whites to 22%, which was apparently an error, the mixed bloods to 47%, and reduced the Indians to 31%. It is probahle that the returns have never been accurate in regard to the mixed bloods and Indians, hut it is the general conclusion that the Indians have been decreasing in number, while the mixed bloods have been increasing. Neglect of their children, unsanitary hahits and surroundings, tribal intermarriage and peonage are the principal causes of the decreasing Indian population. Recent observers, however, deny the assertion that the Indians are now decreasing in number except where local conditions are exceptionally unfavourable. The death rate among their children is estimated at an average of not less than 50%, which in families of five and siz children, on an average, permits only a very small natural increase. The larger part of the population is to be found in the southern half of the republic, owing to the arid conditions prevailing in the north. The unhealthrulness of the coastal plains prevents their being thickly populated, although Vera Cruz and some other states return a large population. The most favourable regions are those of the tierras templadas, especially on the southern slopes of the great central plateau which were thickly populated in prehistoric times.
The dissimilar races that compose the population of Mexico have not been sufficiently fused to give a representative type, which, it may be assumed, will ultimately be that of the mestizos. Mexico was conquered hy a small body of Spanish adventurers, whose success in despoiling the natives attracted thither a large number of their own people. The discovery of rich deposits of gold and silver, together with the coveted commercial products of the country, created an urgent demand for labourers and led to the enslavement of the natives. To protect these adventurers and to secure for itself the largest possible share in these new sources of wealth, the Spanish crown forbade the admission of foreigners into these colonies, and then harassed
them with commercial and industrial restrictions, burdened them with taxes, strangled them with monopolies and even refused to permit the free emigration thither of Spaniards. Out of such adverse conditions has developed the present population of Mexico. It was not till after the middle of the 19th century that a long and desperate resistance to foreign intervention under the leadership of Benito Juares infused new life into the masses and initiated the creation of a new nationality. Then came the long, firm rule of Porfirio Diaz, who first hroke up the organizations of handits that infested the country, and then sought to raise Mexico from the state of discredit and disorganization into which it had fallen. Susplcion and jealousy of the foreigner is disappearing, and habits of industry are displacing the indolence and lawlessness that were once universally prevalent,

The white race is of Spanish descent and has the characteristics common to other Spanish-American creoles. Their political record previous to the presidency of Porfirio Diaz was one of incessant revolutionary strife, in which the idle, unsettled half-breeds took no unwilling part. The Indian element in the population is made up of several distinct racesthe Aztec or Mexican, Misteca-Zapoteca, Maya or Yucateco, Otomi or Othomi, and in smaller number the Totonac, Tarasco, Apache, Matlanringo, Chontal, Mixe, Zoque, Guaicuro, OpataPima, Tapijulapa, Serl and Huavi. As the tendency among separated trihes of the same race is to develop dialects and as habitat and customs fend still further to differentiate them, it may be that some of these smaller familics are branches of the others. In 1864 Don Manuel Orozco y Berra found no fewer than 51 distinct languages and 69 dialects among the Indian inhabitants of Mexico, to which he added 62 extinct idioms-making a total of 182 idioms, each representing a distinct tribe. Thirty-five of these languages, with 69 dialects, be succeeded in classifying under it linguistic families. A later investigator, Don Francisco Belmar (Lenguas indigenas de Mexico, Mexio0, 1905), has been able to reduce these numerous idioms to a very few groups. None of them were written except through the use of Ideographs, in the making of which the Aztecs used colours with much skill, while the Mayas used an ahbreviated form, or symbols.

The Aztecs, who called themselves Mejica or Mexicans after they had established themselves on the high table-land of Mexico, helong to a very large family or group of tribes speaking a common idiom called Nahua or Nah6a. These Nahua-speaking trihes were called the Nahuatlaca, and compose a little more than one-fourth of the present Indian population. They inhahit the western Sierra Madre region from Sinaloa southward to Chiapas, the higher plateau states, which region was the centre of their empire when Cortes conquered them, and parts of Vera Cruz, Tabasco, Oaxaca, Morelos, Aguascalientes and San Luis Potosi. They were energetic and warlike and evidently had not reached the zenith of their power when Cortes came. They had been pregeded on the same plateau by the Chichimecs, possibly of the same race, who were conquered by the Aztecs sometime in the isth century after a supposed occupation of the territory about 400 years. The characteristic civilization of prehistoric Mexico, however, antedates both of these periods.
An Aboriginal race called the Toltecs is said to have occupied Vera Cruz and Tabasco and to have extended its empire westward on the plateau to and perhaps beyond the present capital. They were the huilders of the pyramids of Cholula and Teotihuacan, near the city of Mexico, and of Papantla, Huatusco and Tuzapan, in Vera Cruz. One of their towns was Tollan (now Tula) 50 m . north of the national capital, and it is not improbahle that the people of Cholula, Texcoco and Tlaxcala at the time of the Spanish invasion were occupying the sites of older Toltec towns. There has been much discussion in regard to the origin of the Toltecs, some assuming that they were a distinct race, and others that they belonged to the Nahuatlaca. Another and perhaps a better supposition is that they belonged to the Maya group, and represented a much earlier civilization than that of the huilders of Palenque, Quirigua and Copan. Confirmatory
evidence of this is to be found, not only in the character of their constructions, but in the circumstance that a tribe closely akin to the Mayas (the Huastecos) still oceupies a retired mountain valley of Vera Cruz, entirely separated from their kinsmen of the south, and that a dialect of the Maya language is still spoken in northern Vera Cruz. There is evidence to show that the Aztecs adopted the civilization of the Toltecs, including their religion (Quetzalcoatl being a god of the Toltecs and Mayas), calendar and architecture. Perhaps the most remarkable of the Mexican races are the Mayas, or MayaQuiche group, which inhabit the Yucatín peninsula, Campeche and parts of Tabasco, Chiapas, and the neighbouring states of Central America (q.v.). The remarkahle ruins of Palenque, Uxmal, Chichenitza, Lorillard, Ixinché, Tikal, Copan and Quirigua, with their carved stonework and astonishing architect ural conceptions, show that they had at tained a high degree of civilization. They were agriculturists, lived in large, wellhuilt towns, cultivated the mountain sides by means of terraces, and had developed what must have been an efficient form of government.

The Mistecas, or Mixtecas, and Zapotecas, who occupy the southern slopes of the central plateau, especially Puebla, Morelos, Oaxaca and Guerrero, form another distinct race, whose traditional history goes back to the period when the structures now known as Mitha, Monte Alban, Xochicalco and Zaachila were huilt. Their prehistoric civilization appears to have been not inferior to that of the Mayas. They were an energetic people, were never subdued by the Azters, and are now recovering from their long subjection to Spanish enslavement more rapidly than any other indigenous race. The Otomis comprise a large number of tribes occupying the plateau north of the Anáhuac sierras. They are a hardy people, and are the least civilized of the four principal native races.
The Totonacs inhabit northern Vera Cruz and speak a language related to that of the Mayas; the Tarascos form a small group living in Michoacin; the Matianzingos, or Matlaltzincas, live near the Tarascos, the savage Apaches, a nomadic group of tribes ranging from Durango northward into the United States; the Opata-Pima group, inhahiting the western plateau region from Sonora and Chihuahua south to Guadalajarn, is sometimes classed as a hranch of the Nahuatlaca; the Seris, a very emall family of savages, occupy Tihuron Island and the adjacent mainland of Sonora; and the Guaicuros, or Yumas, are to be found in the northern part of the peninsula of Lower California. In southern Mexico, the Chontales, Tapijulapas, Mixes and Zoques inhahit small districts among and near the Zapotecas, the first heing considered hy Belmar a branch of that family. The Huavis inhabit four small villages among the lagoons on the southern shore of Tehnantepec and have been classed by Belmar as belonging to the Maya stock. The census of 1895 gave these Indian races an aggregate population of nearly $4,000,000$, of which nearly $3,450,000$ belonged to the first four groups Three of these four had made important progreas toward civilization. Some of the others had likewise made notahle progress, among which were the Tarascos, Totonacs and Zoques.
The builders of Casas Grandes (q v.), in Chihuahua, evidently belonged to the Puehlo trihes of Arizona and New Mexico. As for the huilders of Quemada, in Zacatecas, nothing positive is known. The ruins apparently are of an earlier period than those of Mitła and Xochicalco, and have no inscriptions and architectural decorations, but the use of dressed stone in the walls, rather than adobe, warrants the conclusion that they belonged to the civilization of southern Mexico.
From the records made at the time of the Spandsh conquest, and from the antiquities found in the abandoned cities of prebristoric Mexico, it is certaln that the Indians lived in subatantint housen, sometimes using dressed stone, inscriptions and ornamental carvings on the more pretentious edifices; they cultivated the soil, rudely perhaps, and produced enough to make it possible to live in latge towns; they made woven labrtes for dress and hangings, using colours in their manufacture; they were skeilfut in making and ornamenting pottery, in making gold and silver ornaments, and in festherwork: they used the fibres that Nature lavishly provided
in weaving basketa, hanginga, mats, screens and various household utensils. Copper was known to them, and it is possible that they knew how to make cutting instruments from it, but they generally used stone axes, hammers and picks, and their most dangerous weapon was a war-club into which ehips of volcanic glass were set. Many of these primitive arts are stih to be found in the more secluded districts, and perhape the best work in pottery moulding in Mexico to-day is that of uneducated Indian artists.

Of the half-breed clement which has become so important a part of the Mexican population, no safe estimate can be made. Education, industrial occupation, commercial training and political responsibility are apparently working a transformation in a class that was once known chicfly for indolence and criminal instincts, and many of the leaders of modern Mexico have sprung from this race. Settled government, settled habits, remunerative employment and opportunities for the improvement of their condition are developing in them the virtues of the two parent races. Brigandage was formerly so common that travel without an armed escort was extremely dangerous; under President Diaz, however, not only has such lawiessness been repressed hut the brigands themselves have heen given regular employment as rural guards under the government. This class is also furnishing the small traders of the towns, oversects on the plantations and puhlic works, petty officials, and to some extent the teachers and professional men of the provincial towns.

Poditical Dibisions.-The republic of Mexico is politically divided into 27 states, one federal district, and three territories. The states are generally subdivided into distritos (districts) or partidos, and these into manicipios (municipalities) which correspond to the townships of the American system. The state of Nuevo Leon, however, is divided into municipios only, while some other states use entirely different titles for the divisions, the larger being deseribed as departamentos, cantons and mutricipios, and the smaller as partidos, directorias and pecindarios rurales. The Federal District consists of thirteen municipalities. The territory of Lower California is divided into two large districts, northern and southern, and the latter into partidos and municipios-the larger divisions practically forming two distinct territories.

The states and territorics, with their areas, capitals and populations, are an follows:-

Name.	Area, sq. m.	Pop. 1900.	Capital.	Pop. 1900.
			${ }^{\text {A }}$	35,052
Campech	18,087	86,542	Crmpeche	17,109
Chiapas.	27,222	360,799	Tuxta Gutierez	9.395
Chibua	87,802	327,784	Chihuahua	30,405
Coahuila	63,569	296,938	Col	23,996 20.698
Cotrme	2,272 38,009	67115 370294	Durango	
Guanajuato.	11.370	1,061,724	Guanajuato	41,486
Guerrero	24,996	479,205	Chilpancingo	$7 \cdot 497$
Hidalgo	8,917	6051051	Pachuca.	37,487
Jalisco	31,846 9.247	1,153,891	Cuadalaja	101,208
Mexico	9,247 $\mathbf{2 2 , 8 7 4}$	935.808	Alorclia	25,940 37,278
Morelos	2.773	160,115	Cuernavaca	9.584
Nuevo	23.592	327.937	Monterrey	62.266
Oaxaca	35,382	948.633	Oaxaca	35.049
Puebla	12,204	1,021,133	Puebla	93,152
Queréta	3.556	232,389	Querétaro	33,152
Si	25	575,432 296,701	San Culi	19
Sonora	76,900	221,682	Hermosillo	10,613
Tabasco.	10,072	159,834	$\underset{\text { Sista }}{\text { San }}$ Juan Bau-	10,543
Tamauhpes.	32,128	218,948	Cindad Victoris	10,086
Tlaxeala	1,595	172,315	Thaxcala.	2,715
Vera Cruz	29,209	981.030	lalapa	20,388
Yucatín Zacatecas	35,203 24.757	309,652 $\mathbf{4 6 2 . 1 9 0}$	Marida	43,630 32,866
Distrito Federal	$4{ }^{463}$	541,516	Mexico	344,721
Territories:Baja California			La Paz	
Tepic.	11,275	150,098	Tepic	15,488
Quintana Roo		-	Santa Cruz de	76
tslands.	1.420	-		

The aren and population of Yucatan include thooe of the territory of Quintana Roo, which formed part of chat state at the time of the census.
Baja, or Lower California, is divided into two districts for administrative convenience. The Distrito del Norte is credited with a population of 75^{83} and has its capital at Ensenada (pop. 1026) : the Distrito del Sur has a population of 40,041 and has its capical at La Par.
Tepic was detached from the north-west part of Jalisco and organized as a territory in 1889.
Quintana Roo was detached from the state of Yucation in 1902 and received a territorial cruemment.
The principal citics of Mexico. other than the capitals above mentioned, are as follows, the populations being those of 1900 except when otherwise stated: Acapulco (pop. 4932), a famous port on the Pacific coast in Guerrero, which was wrecked by the earthquake of rgo9; Carmen, or Laguna de Términos (about 6000), a thriving commercial town and port on the Gulf coast in Campoche; Celaya (25.565) a railway centre and manufacturing town of Guanajuato; Ciudad Guzman, or Zapotlán (about 17.500), an interesting old town of Jalisco; Cholula (about pooo), an ancient native town of Puebla. widely known for its great pyramid; Comitán (9386), the commercia! centre of Chiapas; Cordoba (7974 in 1895), a picturesque Spanish town in the sierras of Vera Cruz; Cuautla (6269), the centre of a rich sugar-producing district of Morelos; Guaymas (8648), a fourishing port of Sonora on the Gulf of California; Leon (62,623), the largest city in Guanajuato and distinguished for its commercial activity, manufactures and wealth; Linares (20,690), the second city of Nuevo Lebn in size and importance; Matamoros (8347), a prominent commercial centre and river port of Tamaulipas; ; Mazatlán (17,852), the foremost Mexican port on the Pacific coast; Oritaba $(32,894)$, a city of Vera Cruz famous for its delightful climate and picturesque surroundings; Parral (14,748) a well-known mining centre of southern Chihuahua; San Cristobal (about 16,000), once capital of Chiapas and rich in historical associations; Tampico (16,313), a Gulf port and railmay terminus of Tamaulipas; Tehuantepec (10,386), che largest town on the Tehuantepec railway in Oaxaca; Vera Cruz (29,164), the oldest and best known Gulf port of Mexica
Communications.-Railways began in Mexioo with a line of four kilometres between the capital and Guadalupe, which was finished in 1854 and afterwarde became a part of the Ferrocarril Mexicano. The latter dates from 1857 , when a concession was granted for the construction of a railway from the city of Mexico to Vera Cruz The French invasion of 1862 found only 10 m in operation outside of Vera Cruz and military needs led to its immediate extersion to Paso del Macho, at the foot of the sierras, about 35 m . At the same time the English company holding the concession extended the Guadalupe line to Puebla. Nothing more was accomplished until after the downfall of Maximilian, and with a liberal subsidy from the Mexican government the Ferrocarril Mexicano way pushed to its completion in 1873. It is celebrated because of the difficulties overcome on the precipitous eastern slopes of the Sierra Madre, the beauties of the mountain scenery through which it pasees, and the rapid transition from the hot, humid coastal plain to the cool, arid plateau, 7924 ft . above the aea at Boca del Monte. The railway extende 263 m. between Vera Cruz and Mexico City, to which 58 m . were added in branches from Apizaco to Puebla, and from Ometusco to Pachuca. The line was capitalized at $\$ 46,000,000$ and has paid a good profit on the investment. The period of active railway construction, however, did not begin until 1878 , during the first term of President Porfirio Diaz. In 1874 a concession was srantad for a line from the port of Progreso to Mérida ($22 \frac{1}{2} \mathrm{~m}$.), and in 1878 four conceasions were added under which 806 m . were constructed. The priacipal of these four concessions was the Ferrocarril interoceanico running from Vera Cruz to Mexico City and across the republic toward Acapulco. In 1880 concessions were granted to the F.C. Occidental, F.C. Central Mexicano, F.C. Nacional Mexicano and three others of less importance, aggregating nearly 3500 m The firet three of these have become important factors in the development of Mexico. The first runs southward from the capital to Oaxaca through the rich sub-tropical states of Puebla and Oaxaca, and the other two run northward from the same point to the Americen fronticr. These two lines, popularly called the Mexican Central and Mexican National, have their northern termini at Ciudad juárez and Laredo on the Rio Grande and connect with American trunk lines at EI Paso and Laredo. These two great linea were merged in 1908 , with an aggregate capital of $\$ 460,000,000 \mathrm{Mexi}$ can money, of which the Mexican government holds $\$ 230,004.580$, or a controlling interest. Important branches of these lines extend to Tampico on the Gulf coast, to Manzanillo on the Pacific coast and weatward and southward into Michoackn and Guerero, with a coast terminus at or near Acapulco. The next importsnt line is the F.C. Internacional Mexicano, zunning from Ciudad Poriinio Diaz, on the Rio Grande, south-westward acrome the plateau to Durango, and is to be extended to Mazatian, on the Pacific coast. This lime was built with American capital and without a subsidy. Another line built with American capital and In connexion with American railway interests extends southward from Nogales, on the northern frontier, to Hermosillo, Guaymas and Mazatian; lt is to be extended to Guadalajara and possibly to other pointe in eouthern

Mexico. Monterrey as coanected with Tampico by a Belgian line known as the F:C. de Monterrey al Goilfo Mexicana, and the capital is to have direct connexion with the Pacific, other than the F.C. Interoceanico, hy a line through Cuernavaca and Iguala to the coast. Indirectly the capital has a Pacific coast connexion by way of Cordobe and the F.C. Vera Cruz al Pacifico to a junction with the Tehuantepec line. One of the most important railways in Mexico is the F.C. Nacional Interocean nico de Tehuantepec, also called the Tehuantepec National, and the Mexican Isthmus railway, which is 192 m long and was formally opened in 1907 . This line croowet the Isthmus of Tehuantepec lrom Coatracoalcos (officially Puerto Mexico) on the Gulf coast to Salina Cruz oa the Pacific coast, and has been under construction many years. The railway was first completed in 1894 , but light and defective construction, together with lacik of shipping tacilities at its terminal points, rendered it useless To correct these defects the line was completely rebuilt and terminal ports constructed. In 1909 the porta were ready to receive large ocean steamships, and regular traffic was begun, Including carrocs of Hawaiian sugar for New York. The highest point on the line (Chivela Pasu) is 735 ft , above sca-jevel. The raijway has been buit by the Mexican government as a cranscontinental route for international commerce. Its inal construction together with that of ita two ports were executed by S. Pearson \& Sons, Lud., of London, who also undertook the working of the line when open. It was eatimated in 1907 that the total cost of the rilway and ports when completed would be about fir,000,000. The line is connected at the station of Santa Lucrecia (iopm. (rom Salina Cruz) with the Vera Cruz and Pacific railway which givea an all-rail connexion with Vera Cruz and Mexico City, the distance between the latter and Salina Cruz being 520 m . According to the President's Message of April 1909, there were 14.857 m of rilway in operation, of which $11,85 \mathrm{~m}$. belonged to or were controlled by the government. It is the evident policy of the Mexican government to prevent the abworption of its railways by private monopolics, and this is effected by state ownership of a controlling share in most of the trunk lines
Mexico is well provided with tramway lines in its larger cities A British consular report for 1904 stated that Mexico City and Torreon only were using electric traction, but that Guadalajara, Monterrey, Aguascalientes, Lagos, Colima, Vera Crux and San Luis Potool would soon be using it. Nooficial reports are available. The telegraph lines had an aggregate length of $\mathbf{3 5 , 9 8 0} \mathrm{m}$. at the end of 1907, of which $33,000 \mathrm{~m}$. belonged to the nationat government. The President reporta an addition of 1666 m . in 1908 . Wureless telegraphy was represented in 1908 by a connexion bet ween Mazatlán and Lower California, which was in succeseful operation. Telephone lines were in use in all the large cities and in connexion with the large industrial enterprises and estates, beaide which the government had 500 m . of its own in 1908 .
Commerca.-In 1905 the mercantile marine of Mexico comprised only 32 steamers, of 13,199 tons, and 29 sailing veasels, of 8451 tons The ocean-carrying trade was almost wholly in the hands of foreigners, the government wisely refraining from an attempt to develop an occupation for thich its citizens had no natural aptitude. The coastwise trade is principally under the Mexican flag, but the steamers are owned abroad. An official publication entited "Mexico: Yesterday and To-day, 1876-1904," alates that while the number of steamers engaged in the foreign trade increased from 841 to 969 in the 17 years from 1886 to 1903 , the number of Mexican ateamers decreased from 55 to 4 . For the year 1906-1907 the entries of vestels from loreign ports numbered 1697. of $3,282,125$ tons, and the clearances were 1669, of 3.257.932 tons. Subventions are paid for regular steamship mervice at the principal ports, the total expesditure in $1907-1008$ being $£_{42,876 \text {. These porta are well served by a }}$ large aumber of lorcign steamship companies, which give direct comrmunication with the principal ports of the United States, Europe, and the west coest of South America, and the initiation of a Japanese lipe in 1008 also brings Mexico into direct comminication with the far East. The larger ports for foreign trade are Vera Cruz, Tampico, Progreso, Carmen and Coatzacoalcos on the Gulf const, and Guaymas, La Paz, Mazatlán, Manzanillo, San Blas, Acapulco and Salina Cruz on the Pacific coast. Some of theseVera Cruz, Tampico, Coatzacoalcos, Salina Cruz, Manzantillo and Mizatlén-have been greatly improved with costly pora worle. Atnong the smaller ports, some of which are open to foreign trade, are Malamoros, Tuxpan, Alvarado, Tlacotálpan, Frontera. Cam: perce and the island of Mujeres (coast of Yucatán) on the Gulf Eide, and Ensenada, Altata, Santa Rosalia and Soconusco an the Pacific.

The foreign trade has shown a steady increase during the period of industrial development, to which better means of transfort have bein an invaluable aid. In 1906-1907 the imports were valued at \$111,234,968 U.S. Gold, and the exports at \$123.512,969, of which very nearly one halí consisted of precious metals. According to an oflicial report issued early in 1909 there had been a heavy decrease in looth imports and exports, the former being reaurned at $\$ 34195-469$ and the latter at $\$ 34,300.896$ for the six months ending the 31 gt of December tgos. Too rapid development and overtrading were given * reasons for this decline. Import and export duties are levied, the former in many cases for the protection of national indurtriea. The imports hargely consibt of railway material, industrial nuschinery.
cotton, woollen and tinen textiles and yarns for mational factories, hardware, furniture, building material, mining supplies, drucs and chemicals, wincs and spirits, wheat, Indian corn, paper and military supplies and equipment. The exports include gold, silver, copper, colice, henequen or sisal, ixtle and other fibres, cabinet woods, chicle, rubber and other forest producta, hides and acins, chickpeas, cobaceo and sugar.
Agricultupe.-The agricultural resources of Mexico are large and unusually varied, as they comprise some of the cereals and other food products of the temperate zone, and most of the keading products of the tropics. Agriculture, however, received slight attention. owing to the early development of the mining industries. An indirect result of the industrial development of Mexico, which began during the last quarter of the 19th century, has been an increased interest in agriculture, and especially in underakincs requiring large inveatments of capital, such as cofiee, sugar and rubber plantas tions. A large part of the country is too stid for agriculture, and even with irngation the water supply is sufficient for only a small part of the dry area. This region has, for the most part, a temperate climate, and produces wheat, barley, Indian corn and forage cropa Long droughts of ten destroy the wheat and Indian corn and compel their importation in large quantities to supply the people with food. This uncertainty in the wheat crop extende to the southern limits of the higher plateau, and is a serious obstacle to the increased production of this cereal. Indian corn, also, is a comparatively uncextain product on the plateau, and for the game reason. As it is a staple food with the poorer classes, the deficiency is made up through importation. These drawbecks tend to restrict agriculture on the plateau to comparatively limited areas, and the country people are, ta general, extremely poor and badiy nourished. A comperatively new product in this region is that of canaigre, which is grows for the tannin found in its root. It is a native of the arid regions and is now cultivated with success. The district about Parras in southera Coahuila, produces grapes, which are principally used in the manufacture of wine and brandy. An important product of the plateau and of the open districts of the tierras calientes, growing in the most arid places, is the "nopal "' or prickly pear cactus (Oprontic ficws indica). Its fruit, called "tuna" by the natives, is refreshing and wholesome and is a staple food in spite of its spiny covering. In the fierras calientes of Mexico, bowever, better conditions prevain. A fertile soil, abundant rainfall and high temperatures have covered these mountain slopes and lowland plains with a wealth of vegetation The problem for the agriculturist here is not irrigation, but drainage and reeping down spontaneous growths. In these regions, sugar, tobacco, indigo, cacao, rice, sweet potatoes, alfalfa, beans and caseava are produced, and Indian corn yields two and three crops a year. Fruits also are plentiful, both wild and cultivated. Among them are the banana, plantain, tuna, chili pepper, olive, coco-nut, orange, lemon, lime, mango, pomegranate, "piria" or pineapple (wild and eultivated), 6g, ahnacad (Persea gratissima), chirimoya (Anons chirimelia), papaya, gourd, melon, guava, cincla (plum), and the several "zapote" iruits, including " chico sapote "from the Acherss sapola, which produces the "chicla" or chicle-gum of commerce " "zapote blanco" (rom the Casimiroa odulis" "zapotebarracho" (or "amarillo") from the Lucmma salicifolia, ", zapoteprieto " (or "aegro") from the Diospyros obiusifolia, and " zapotemamey." The production of rubber is becoming an important industry, large plantations having been set with both Hevea and Castilloa rubber trees. Lying between these two regions is the subtropical belt where coftee of an excellent quality is produced, and where cotton is cultivated. Coffee has become an important article of export, but cotton does not yield enough for the domestic factories. Better cultivation would probably increase the output and make it an article of export. A peculiar and highly profitable branch of Mexican agriculture is the cultivation of the Agape for two widely different purposeg-one for its fibre, which is exported. and the other for its sap, which is manufactured into intoxicating liquors called "pulque" and "mescal." In Yucatán immense plantations of the Agave rigida var. elongala are caltivated, from which large quantities of "henequén" or " sisal," as the fibre is called, are exported. It is produced on light shallow soils overlying calcareous rock. It is also cultivated in Campeche and Chiapas. The pulque industry is located on the plateau surtounding the city of Mexico, the most productive district being the high, sandy, arid plain of Apam, In the state of Hidalgo, where the " maguey " (Agate americama) finds favourable conditipns for its growth-a dry calcarcous surface with moisture sufficiently near to be reached by its roota. Its cultivation is the chief industry of the states of Mexico, Hidalgo, Puebla and Thaxcala. Of the 208 plantations in the etate of Hidalso in 1897,129 were devoted to maguey, Tbe piant transplanting to the field where it is to remain, but it takes six to eight years to mature and then yields an average of ten gallons of sap during a period of four or five months, after which it dies. "Pulaue" he the fermented drink made from this map: "mescal" is the diatiled apirit made from the leaves and roots of the plant. There are other agaves used both in the production of drinks and fibres, but they are not cultivated. The "ixtle" fibres shipped from Tampico and Chiapas arc all obtained Irom the agaves and yuces found growing wild.

The natural and forest products of Merico include the agave and yucca (ixtle) Gibres already mentioned; the " ceibon" Gibre derived from the silk-cotton tree (Bonbas peniandria); rubber and vanilla in addition to the cultivaced products; palm oil: castor beans; ginger; chicle, the gum extracted from the " chico-sapote" tree (Achyas sappola); logwood and other dye-woods; mahogany, nosewood, ebony, cedar and other valuable woods; "cascalote" or divi-divi; jalap root (Ipomece); sarsaparilla (Smilax); nuts and iruits.

Stock-raising dates from the earliest Spanish settlements in Mexico and received no slight encouragement from the mother country. For this reason much importance has always been attached to the industry, and stock-raising of some eort is to be found in every sunte of the republic, though not always to a great extent. The Spaniards found no indigenous domestic animels in the country. apd introduced their own horses, cattle, sheep and swine. From these are descended the herds and flocks of to-day, with no admixture of sew blood until toward the end of the 19th century. The horves and cattle are of a degenerate type. small, ungainly and inured ta neglect and hard usage. The horse is chiefly used for saddle purposes and is not reared in large numbers. The mule is more generally used in every part of the country, being hardier, more intelligent and better adapted for service as a draft and pack animal. The transport of merchandise and produce was wholly by means of pack animals before the advent of railways, and is still the common means of transport away from the railway lines For this purpose the sure-footed mule is invaluable. In some districts, however, owen and ox-carts are employed, eapecially in the southern atates, and alway in the open, level country. The varying climatic conditions of Mexico have produced breeds of cattle that have not only departed from the original Spanish type, but likewise present strikingly different characteristics among themselves. Those of the northern plateau are mall, hardy and long-lived, being bred on extensive ranges in a cooler atmosphers, and accustomed to long journeys in scarch of water and pasture. In the south they are larger and better nourished, owing to the permanent character of the pasturage, but are less vigorous because ol the heat an! insect plagues. In Iucatán the open plains. rich pasture, and comparative freedom from moist heat, insects and vampire bais. bave been particularly favourable to cattle-raising, and the animals are generally rated among the best in Mexico. Notwithstanding the frequency of long, destructive droughts, cattle-raising is a preferred industry among the lanjowners of the northern states, and especially near the American frontier. Almost total losses are fnquently experienced, but the profits of a favourable year are so grat that losses seldom deter ranchers Irom trying again. In the sierra regions of western Chihuahua and Durango, Nuevo León, Ctahuila, Aguascalientes, San Luis Potosi, and the plaveau states farther south, the rainfall is more abundant and the conditions more Gavourabic. The largest herds are to be found in Chihuahua and Durango. Above 5000 ft . the wild pasturage is short. tender and reproduces itself annually. It is exceptionally nutritious, but it disappears altogether in the dry season because of its short roots. The lowland pasture, from 2000 to 5000 ft., is composed of more vigorous grasses, with an undergrowth of an exceptionally sueculent character. The stock-raiser on the border pastures his herds on the uplands during the rainy scason, and on the lower pastures during the remainder of the year. Next in importance is the breeding of
sheep. which is largely confined to the cooler sierra districts. They are commonly of the Spanish merino breed, and suffer in many localities on account of insufficient pasturage. Some attention is given to the breeding of goats because of the local demand for their skins, but the industry is apparently stationary. The raising of swine, however, is increasing. In the last decade of the 19th century the capital invested in these live-stock industries was estimated (by Bancroft) to exceed $\$ 700,000,000$, but an official return of the With of June 1902 gave an aggregate valuation of only $\$ 120 . \$ 23.158$ (Miexican), or about $£ 12,052.316$. According to this report, which is nut strictly trustworthy, there were in the republic 5.142 .457 cattle. 859,217 horses, 334,435 mules, 287.991 asses, $3,424,430$ shecp, 4, 206,011 goats and 616,139 swine. Two years later home consumpCinn returns noted the slaushter of 958,058 cattle (129.938 in the Federal District): 568,982 sheep, 992.263 goats and 887.130 hogsthe last item being larger than the census return of 8902 . The gteater part is consumed in the country, but, there is a considerable export of cattle to the United States, Cuba and Central America, atid of hides and skins to the United States and Europe. A few mules are sent to Central America, but the home demand usually exceeds the supply.

Oincr Iudustries.-There are no fisheries of importance except the pearl fisheries on the eastern coast of Lower California, and the tortoise isheries on the coasts of Campeche, Yucatín, and some of the stases facing the Pacific. The pearl fisheries have been worked since the arrival of the Spaniards, and were once very productive notwithstanding the primitive methods employed. Since the closing years of the last century pearl fishing in the Gulf of California has been carried on with modern appliances and better results by an Engtish company under a concesaion from the government. Motherof -pearl or abalome and ot her shells are also found, and, with spongee. are exported. Fishing for the tortoineahell turtle gives employment
to a large number of natlves in the season, and considerable ฤुnantities of the shell are exported. Other industries of a desultory character include the collection of archil, or Spanish moss, on the western side of the Californian penissula, bunting herons for their plumes and alligators for their skins, honey extraction (commonly wild boney), and the gathering of cochineal and ni-in insects. The cochineal insect was once an important commercial product, but the industry has fallen into decay. The "ni-in " (also known as "axe") is a small scale insect belonging to the genus Coccus, found in Yucatán, Oaxaca, Vera Cruz, Michoacán and other southern states, where it inhabits the spondia trees and produces a greasy substance called " ni-inea," which is much used by the natives as a varnish, especially for domestic utensils, as it resists fire as well as water.

Mining. - The best-known and most productive of the industrics of Mexico is that of mining. It was the chief object of Spanish ex. ploration, and the principal occupation of European residents and capital during three centuries of Spanish rule. Agricultural and pastoral industries gradually gained footholds here and there, and in time became important, but mining continued far in advance until near the end of the 19th century. Mines of some description are to be found in 26 of the 3^{2} states and territories, and of these the great majority yield sitver. According to the official records, there were registered in September $1906,23,192$ mining properties, of which very nearly five-sixths were described as producing sitver, cither by itself or in combination with other metals. The propertics were classed as 1572 gold, 5.461 silver, 970 copper, 383 iron, 151 mercury, 94 lead, 86 sulphur, 52 antimony, 49 zinc, $40 \mathrm{tin}, 2 \mathrm{I}$ opals, 9 manganese, 6 "sal gema." 5 tourmalines, ! bismuth and Iturquoisethe remainder being various combinations of these minerals. The absence of coal from this list is due to the cireumstance that coal mines were at that time considered as privatc property and were not registered under the general mining laws. A comparison with 1888-1889, when 897° properties were registered, will show how rapidly the mining industries have been developed during that period. Besides the above, the mineral resources of Mexico include coal, petroleum, asphalt, platinurn, graphite, soda and marble. In 1906 the productive mines numbered 1786 , of which 491 were in Sonora, 282 in Chihuahua, 211 in Durango, 113 in Oaxaca and 105 in Nuevo León. Gold is found in Chihuahua, Durango, Guanajuato, Guerrero, Jalisco, Mexico, Morclos, Oaxaca, Puebla, Sinaloa, Sonora, Vera Cruz, Zacatecas, and to a limited extent in other states; silver in every state and territory except Campeche, Chiapas, Tabasco, Tlaxcala and the Yucatán peninsula: copper in Lower California, Guanajuato, Guerrero, Jalisco, Michoacán, Sonora, Tamaulipas and some other states; mercury chiefly in Guanajuato, Guerrero, San Luis Potosf, Vera Cruz and Lacatecas; tin in Guanajuato; coal, petroleum and asphalt in 20 states, but chiefly in Coahuila, Hidalro, Michoscan, Oaxaca, Puebla, Sonora, Tabasco. Tanaulipas and Vera Cruz; iron in Durango, Hidalgo, Oaxaca and other states; and lead in Hidalgo, Querctaro and in many of the silver-producing districts. The most celebrated iron deposit is that of the Cerro del Mercado, in the outskirts of the city of Durango -a mountain 640 ft . in height, 1100 in breadth, and 4800 in length. reputed to be almost a solid mass of iron. Large masses of the metal are also said to exist in the sierras of Lower California. The principal coalfields that have been developed are in the vicinity of Sahinas, Coahuila. They have been opened up by American capitalists and the coal is used on the rallways passing through that region. Mexican coal is of a low grade-similar to that found in Texas, but as an official geological report of 1908 estimates the supply in sight at $300,000,000$ tons its industrial value to the country cannot be considered inferior to that of the precious metals. The same is erue of the petroleum deposits in Tamaulipas, near Tampico, and in southern Vera Cruz. An investigation by the U.S. Geological Survey in 1909 finds that the crude Mexican oils are of low: grade, but that while not equal to those found in the upper Mississippi basin for refining purposes, they furnish an excellent fuel for raslway en, and other industrial purposes Many of the Mexican railuan are using these fuel oils, which are superseding imported coal. In 1909 a well was opened in the southern oilficlds whose yield was equal to the best American product.
Manufactures.-Although Mexico is ugually described as a nonmanufacturing country, its industrial development under President Porfirio Diaz will warrant some modification of this characterizatian. Manufacturing for international trade has not been and may now be reached, but the indust ry certainly has reached the stage of mevte ing a great part of the home demand for manufactured goods, where the raw matcrial can be produced in the country. There were of course some crude industries in existence before the arrival of the Spaniards, such as weaving and dyeing of fabrics made from various fibres, and making earthenware utensils, images, \&c. The Spaniards introduced their own industries, including sugar-naking, weaving, tanning, and leather and metal-working, some of which still exist. The early methods of making cane sugar, clarified with elay and dried in conical moulds, are to be lound all over Mexico, and the annual output of this brown or muscovado sugar (called "panela" by the natives) is still very large. The sugar crop of 1907 -1908 ws reported as 123,285 metric tons, in addiaion to which the molnat outpul was estimated at $70,947 \cdot 5$ metric tons, and" "panela" th
50,000 tons. Unher estimates make the "panela" output nosch
larger, the product being largely consumed in the rural districts and never appearing in the larger markets. The estimated number of sugar mills in 1904 was about 2000 , of which only about 300 were important for size and equipment. Merino sheep were introduced in 1541 and woollen manulactures date from that time. Large factories are now to be found in all parts of Mexico, and good and gerviceable grades of broadcloths, cassimeres, blankets and other fabrics are turned out. There is also a considerable quantity of carpeting, underwear and hosiery manufactured. An important branch of this industry is the nianufacture of "zarapes " (called "ponchos " in other parts of Spanish America)-a blanket slit in the centre for the head to pass through, and worn in place of a cont by men of the lower classes. The most important textile industry is cotton manufacture, which has become a highly successful feature in the industrial life of the republic. There were 146 factories in 1905, of which i9 were idle, and these were distributed over a very large part of the country. About one-half the raw cotton consumed was produced in Mexico, and the balance imported in fibre or as yarn. The industry is protected by a high tariff, as is also the production of raw cotton, and further encouragement is offered through a remission of internal revenue taxes where Mexican fabrics are exported for foreign consumption. The cotton factories of 1905 were equipped with 22,021 looms having 678,058 spindles, and with 3^{8} stamping machines, employed 30,162 operatives, and turned out \$3,73!,638 pieces of cloth. Statistical returns, however, are somewhat incomplete and conflicting, and cannot be used with confidence. Coarse fabrics chiefly are manulactured, but the product also comprises percales, fine calicoes, ginghams, shirtings, towelings, shectings and other kinds of goods. Considerable attention is given to the manulacture of "reboros," the long shawls worn by women. Another very important manufacturing industry is that of tohacco. the consumption of its various products being large among all classet of the population. There were 467 tobacco factories reported in $\$ 905$ to be engaged in the manufacture of cigars, cheroots, cigarertes, snuff and cut tobaccos for the pipe. The number of factories reported for $t 899$ was 743 , but as the consumption of leaf tobacco increased from $5.546,677$ to $8,587,356$ kllogrammes, it may be assumed that the decrease in factories is due to the absorption or disappearance of the small shops using old-fashioned methods, Other important manufactories are four millis, of which there were over 500 in 1904 ; iron and steel works, of which there are 7 large establishments, including the immense plant at Monterey: 90 smelters for the reduction of precious metals; tanneries, potteries, and factories for the manufacture of hats, paper, linen, hammocks, harness and saddles, matches, explosives, aerated waters, soap. furniture chocolate and swcetmeats. There are also a large number of distillerics, brewerics, and establishments for the manufacture of "pulque," "mescal," and imitation or counterfeited liquors. In addition to these are the many small domestic industries, such as the making of straw hats, mats, baskets, pottery, ropes and rough textiles. The policy of the Mexican government is to encourage national manufactures, and protective duties are levied for that purpose. Other favours include exemption from taxation and exemption from import duties on machinery and raw. materials These inducements have attracted large sums of foreign capital and have brought into the country large numbers of skilied operatlves, especially in the cotton, iron and steel, and smelting industries.

Constiution.-Under the Constitution of the 5th of February 1857, subsequently modified in many important particulars, the government of Mexico is described as a federation of free and sovereign states tnvested with representative and democratic institutions. Practically it is a Federal Republic with centralized executive powers. Its political divisions consist of 27 states (originally to) having Independent local governments, 3 territories and y federal district in which the national capital stands. The central government consists of three co-ordinate branchesexecutive, legissative and judicial-each nominally iadependent of the other. The executive branch consists of a president and vice-president, assisted by a cabinet of 8 secretaries of state: (1) foreign affairs; (2) interior; (3) justice; (4) public instruction and fine arts; (5) fomento, colonization and industry; (6) communications and public works; (7) finance and public credit; (8) war and marine. The president and vice-president are elected indirectly through an electoral college chosen by popular vote, and serve for a period of six ycars (the term was four years previous to 1904), the vice-president succeeding to the office in case of the death or permanent disability of the president. The office of vice-president was created on the 6th of May, tgo4, and that official serves as president of the senate. A constitetional amendruent of 1890 permits the re-dection of the president without limit, the original clause prohibiting such a re-election A candidate for the presidency must be a native-born Mexican
citizen in the full exercise of his political rights, 35 years of age, not an ecclesiastic, and a resident of the republic at the the of the elcction. Although the authority of the president is carefully defined and limited by the Constitution, the exercise of dictatorial powers has been so cornmon that the executive may be considered practically supreme and irresponsible. Previous to the presidency of General Porfirio Diaz in 1877 political disorders and changes in government were frequent.

The legislative branch of government consists of a Congress of two chambers-a senate and a chamber of deputies. Two ordinary congressional sessions are held each year-April ito May 31 and September 16 to December 15 -and a permanent committee of 29 members (14 senators and 15 deputies) sits during recess, with the power to confirm cxecutive appointments, to give assent to a mobilization of the national guard, to convene extra legislative sessions, to administer oaths, and to report at the next session on matters requiring congressional action. The senate is composed of 56 members-or two from each state and from the federal district-who are elected by popular vote for a term of four years, one-half the number retiring every two years. A senator must be not under 30 ycars of age, a Mexican citizen in the full enjoyment of his rights, a resident of the state he represents, and not an ecclesiastic. The chamber of deputies is composed of popular representatives, in the proportion of one deputy for each 40,000 inhabitants or fraction over 20,000 , who are elected for a term of t wo years. A deputy must be not less than 25 years of age, other qualifications being the same as those for a senator. The salary for either senator or deputy is $\$ 3000$ and that of the president $\$ 50,000$. Federal officials and ecclesiastics are ineligible for election to either chamber.
Mexican citizenship includes all persons born of Mexican parents, all naturalized aliens, and all foreigners owning real estate in the republic or having children by Mexican mothers unless formal declaration is made of an intention to retain the citizenship of another country. In some cases exemptions are granted fron specified taxes and military duties, otherwise naturalized citizens are treated the same as native-born. Aliens are granted the civil rights enjoyed by Mexicans, but the government reserves the right to expel those guilty of pernicious conduct. Suffrage is extended to all Mexican citizens who possess honest means of livelihood, the age limit being 18 for the married and 21 for the unmarried.
The judicial branch of the government consists of a supreme court of justice, three circuit courts, and 32 district courts. The supreme court is composed of in "ministros" or justices, four alternates, a "fisen" or public prosecutor and the attorney-general-all elected by popular vote for a term of six years. It has jurisdiction in cases arising from the enforcement of the federal laws, except cases involving private interests, in admiralty cases, in cases where the republic is a party, in those between two or more states, or between a state and the citizens of another state, in those originating in treaties with foreign states, and in those affecting diplomatic and consular officials. There are likewise supreme and inferior courts in most of the states, govemed by the civil and criminal codes in force in the federal district. The territories are governed by federal laws. The department of justice has oversight in matters relating to the enforcement of the federal laws and the administration of justice through minor courts. The police service is both monicipal and federal in character. In some states a local police service is maintained, but in most states the federal government maintains a very efficient force of mounted " rorales."
The states are organized very much like the federal government, each with its own governor, legislature, laws and judiciary. Elections are generally indirect, like those for the national executive, and official terms correspond closely to those of similar offices in the national organization. The state is nominally sovereign within its own boundaries, and the authority of its officers and courts in local questions is supreme except in cases where federal intervention or supervision is provided for by the federal constitution. The larger political divisions of the state
(partidos, distrilos, \&c.) are governed by a jefe politico, or prefect, and the smaller by a municipal council called an ayuntamicnio.

Defence.-The Mexican army consisted in 1908 of 2474 officers and 24.132 men, organized on modern linem and commanded by a general staff at the capital. There were 30 battalions of infantry and 4 battalions cadres with an effective strength of 730 officers and 14,898 men: 14 regiments of cavalry and 4 regimental cadres with 493 officers and co58 men; 2 regiments and 3 cadres of field artillery; one regiment and one cadre each of horse and mountaio artillery, 4 sections of garrison artillery, and one mitrailleuse company. ia all 147 officers and 1647 men; and the remainder divided among other services. Administration and headquarters staffs comprised 885 officers and 531 men. This force represented the peace footing of the army, which is recruited in part by voluntary enistments and in part by a lorm of conscription that might be called impressment. Mauser rifies (1901 model) and carbines are used by the infantry and cavalry, and Schneider Canet quick-firing guns by the field and horse artilery. The nominal war strength of the army is rated at 2510 offioers and 81,984 men. Factories for arms and ammunition have been established with modern machinery; and uniforms and other equipment are made in the country. The military school in the cepital occupies a part of the historic castle of Chapultepec and has been thoroughly reorganized on modern lines. There is also an artillery school at Vera Crux and subondinate schools in other parts of the republic. The national guard, to which reference is sometimes made, has no effective organization.

Mexico may be said to have no navy, the tea small vessels in com. miskion in 1908 hardly nteriting such a designation. There were 2 old despatch boats and 2 old unarmaured gunboats, a steel training cruiser, the "Zaragoza," and 5 small modern gunboats. The per" sonnel consisted of 198 officers and 965 men. Six new cruisers were projected, but the republic has no pressing need of a navy. Small naval schools are maintained at Campeche and Mazatlín.
Educalion.-Education in Mexico may he said to have entered upon a progressive phase. The institutions founded by the Spaniards were wholly under ecclesiastical control. The first college in Mexico was founded during the administration of Viceroy Mendoza ($1535-1550$), but it taught very little beyond Latin, rhetoric, gramt mar and theology. The university of Mexico, planned by Mendoza and founded on the 21st of September 1551, was formally opened on the 25th of January 1553. with faculties of law, philosophy and theology. Practically nothing was done for the natives beyond oral instruction in the catechism. The university of Mexico received much support from both church and state, but it never gained a position comparable to the universities of South America-Cordobe, Lima (San Maroos) and Bogota. The overthrov of Spanish rule in Mexico was the beginning of a new period, and eflorts were made to introduce educational reforms, but the colonists and ecclesiastics were atill governed by their fears and prejudices, and little was accomplished. In 1833 the university of Nexico suspended work, and in 1865 passed out of existence altogether. In 1857 the adoption of a more liberal and democratic constitution paved the way for a new period in the educational history of the country. Its realization was delayed by the wars that devastated the country down to the overthrow of Maximilian, but the leaven was at work and with the return of peace a marked increase in the number of primary and secondary sechools was noted. Colleges of law, medicine and engincering were created in Mexico City in 1865 in place of the old univeraity and were successful from the beginning. Profescional schools were also established in several of the more important provincial capitals, and everywhere increasing interest in educational matters was apparent. The best proof of this was to be found in the development of the primary achools, of which there were 8226 in 1874. with an attendance of 360,000 pupils. Of these, 603 were supported by the national government, 5240 by municipalitiea, 2260 by private enterprise, $: 17$ by the Catholic church, and the remainder by Protestant denominations. Handsome schools were built in the cities and larger towns, and achools were opened in all the villages and hamlets. In some parts the natives made most creditable progress in all branches of learning. This was especially true of the Mixtecos and Zapotecas of Oaxaca, from whom have come some of the leading men of the republic. The national school laws now in force had their origin in the recommendations made by a national congress of public education convened on the est of December 1889, and again on the ist of December 1890. The first result was a law regulating free and compulsory educatioa in the federal district and national territories, which came into effect on the 17 th of January 1892. From 1822 to this time the government primary schools had been under the supervision of the Compafia Lancasteriana, bue they were now placed under charge of the Department of Public Education. On the 19th of May 1896 a general pubtic education law was promulgated, which provided further regulations for the public schools, and outlined a comprehensive system. Compulsory attendance had been adopted In 1888, but did not come into effect until after the enactment of the law of 1896. It provides for uniform, free and non-sectarian primary Instruction, and compulsory attendance for children of 6 to 12 years of age. Preparatory courses for professional training in the government schools were atoo made free and socular. At the
statcs have control of the schools within their own boundaries there was at first a great lack of uniformity, but the national system is being generally adopted. In the official report for 1904 the number of public schools, exclusive of infant schorls, was returned at 9194 (against 5843 in 1874), with an enrolment of 620,476 . Of these 6488 were supported by the national and state governments and 2706 by the municipalities. The private, religious and association schools numbered 2281, with 135,838 pupils. For secondary instruction the sational and stare schools numbered 36 with 4642 pupils, and for professional instruction 65 with 9018 students, of whom 3790 were women. Normal schools for the training of teachers are also maintained at public expense and are giving good results. Besides these, the government maintains schools of law, medicine, agriculture and veterinary practice, engineering! mining, commerce and administration, music and fine arts. There is also a mechanics' training school (artes y oficios) for men and a similar school for women, schools lor the blind and for deaf-mutes, reform schools, and garrison schools for soldiers. Early estimates were that 90% of the population were illiterate. In 1895 this percentage was reduced to about 84% and the work of the schools is slowly cutting it down. Mention must be made of the National Library in Mexico City with about 225,000 volumes, and 138 public libraries (in 1904) in other parts of the republic, 34 museums for scientific, educational and art purposes, and 11 meteorological observatories, Newspapers and periodicals, whose educational value varies widcly, numbered 459 in 1904, of which 439 were in Spanish and 12 in English.

Religion. - The people of Mexico are almost wholly of the Roman Catholic faith, the census of 1900 returning $13.533,013$ communicants of that church. 51.795 Protestants (in great part foreigners), 3811 of other faiths, and 18,640 of no faith. The constitution of 1857 grants toleration to all religions, and since 1868 several Protestant denominations have established missions in the towns, but their numbers are still comparatively small. The Roman Catholic religion was enforced at the time of the conquest, but a large percentage of the natives may still be considered semi-pagan, the gods of their an: estors being worshipped in secret, and the forms and tenets of the dominant laith, which they but faintly comprehend, being largely adulterated with superstitions and practices of pagan origin. The church hierarchy consists of 3 archbishops and 23 suffragan bishops. It dates from the creation of the bishopric of Mexico in 1530 , with Fray Juan de Zumarraga as bishop, although two previous creations had been proclaimed at Rome, that of Yucatán in 1518 and Puebla in 1525 . In 1545 the bishopric of Mexico was elevated to an archbishopric, which in 1863 was divided into three archdioceses-Mexico, Michoacán and Guadalajara. An Inquisition tribunal was established in the capital in 1571 , and in 1574 its first auto-da-fe was celebrated with the burning of "twenty-one pestilent Lutherans." The Inquisition was active in Mexico during two and a hall centuries, and was finally suppressed on the 31 st of May 1820 . The great power exercised by the Roman Catholic church during the colonial period enabled it not only to mould the spiritual belief of the whole people, but also to control their education, tax their industries, and shape the political policies governing their daily life. In this way it ac. quired great wealth, becoming the owner of extensive estates in every part of the country and of highly productive propertics in the towns. It was said in 1859 that the church owned one-third of the real and personal property of the republic. The reform laws of that year nationalized its property, abolished its numerous orders and institutions and deprived it of state support and of all participation in political affairs. Subsequent legislation removed clerical influence from public instruction. made marriage a civil ceremony and closed all conventual establishments. The church still exercisen a boundless induence over the Mexican lower classes, and is still the most influential onganization in the republic.

Finance.-The national revenucs are derived from import and export duties, port dues and other taxes levied on foreign commerce; from excise and stamp taxes and other charges upon internal business transactions: from direct taxes levied in the federal district and national territories, covering a land tax in rural districts, a house tax in the city, commercial and prolessional licences, water rates, and sundry taxes on bread, pulque, vehicles, saloons, theatres, \&c.; from probate dues and registry fees; from a surcharge on all taxes levied by the states, called the "federal contribution," which is paid in federal revenue stamps; from post and telegraph reccipts; and from some minor sonrces of income. The most fruitful revenue is the duty on imports, which is sometimes used for the protection of national industries, and which yields from $40 \mathrm{to} 45 \%$ of the total receipts. The excise taxes in 1905 were levied on tobacco, alcohol and alcoholic beverages, and on cotton goods. Mining taxes, which are subject to periodic changes, consjst of an initial or registry tax on the claim (pertenencta), an annual or rental tax on cach claim, and a tax of 3% (igos) on the export of unrefined gold and silver, 2% on partially refined ores, and 11% on pure silver. The expenditures are chielly for the services of the public debt, military expenses, public works and internal aflairs (Department of the Interior) : The public debt service alone required $\$ 26,201,873$ ($2,620,187$) in 1908 .
For the fiscal year 1906-1907 the revenue produced a total of $114,286,122$ pesos (doilars), or, approximately, $\mathrm{L}_{11} 428,612$, and the erpenditure wes 85.076,641 pasos, or $88.507,664$. The etimaten far

1908-1909 show a mariked decline owing to the commercial depression, the revenue being computed at $101,385.000$ pesos, and the expenditure at $103,203.830$ pesos. Of the former $46,500,000$ pesos are credited to import dutics, $31.930,000$ pesos to stamps, excise taxes, \&c., $10,930,000$ pesos to direct taxes, and the balance to various cources. Owing to the circumstance that the great majority of the Mexican people own no property, carry on no industry, and are not even to be considered regular productive labourers, the revenues are small in relation to the population and are comparativcly inelastic.
The revenues and expenditures of the states and municipalities in 1904, the latest date available, aggregated as follows:-

$$
\begin{array}{cccc}
& \text { Revenue. } & \text { Expenditure. } \\
\text { States } & .24,519,926 \text { pesos } & 23.557,968 \text { pesos } \\
\text { Municipalitie } & \cdot 14,605,022 & 14,160,132
\end{array}
$$

The tazes cover a great variety of oceupations and property, often to a minute and vexatious degree, and the expendit ure includes the expenses of local administration, schools, police, streets and other objects of purely local interest.
The public indebtedness of Mexico includes a foreign debt payable in gold, an internal debt payable in silver, and a floating debt covering unpaid balances on appropriations, unpaid interest, and other credits and obligations. The paper money issues are by banks and not by the government, and the national treasury keeps no cash in its vaults and has no sinking funds to offset this indebtedness. The foreign debt dates from $\mathbf{1 8 2 5}$, when $\{10,000,000$ were borrowed in London through two loans. Interest defaults led to a conversion of the debt in 1851 , the interest rate being reduced from 5% to 3% Further defaults followed and in 1888 another adjustment was made by the issue of 6% gold-bearing bonds. From this time the Mexican government has met its obligations promptly, in consequence of which its credit is rated high and its bonds have even been quoted at a premium. In 1899 the government placed a loan of $\mathbf{2 2 . 7 0 0 , 0 0 0}$ in Europe at 5% for the conversion of its 6% bonds, securing it by the hypothecation of 62% of its import and export dutics. Further loans have considerably increased the deht since then, but it is still within the normal resources of the country. According to Matias Romero (Mexico and the United Shies, 1898), a new type of indebtedncss was inaugurated in 1850 in the shape of an internal debt payable in silver. Other loans and obligations contracted during periods of disorder were afterwards consolidated under this type, and later on unpaid railway subsidics were also included. The rate of intercst is from 3% to 5%, and both principal and interest are payable in silver. The rapid development of railway construction has largely increased this part of the publie debt, the revenues of the country being insufficient to meet the subsidy obligations, but as the railways are built for the development of valuable resources and the opening of needed trade communications, the increase has occasioned no loss of credit. At the end of 1908 the total public indebtedness of the republic was:-

The fiscal or tar valuation of property throughout the republic in 1904 was computed to be-the bscal value being two-thirds of the real value:-

Previous to 1905 all monetary tfansactions in Mexico were based in practice on a fuctuating silver standard and free coinage. By a Law of the 9 th of December 1904, promulgated by an executive decree of the $25 t h$ of March 1905, the gold standard was adopted, and the silver peso, 9027 fine and containing 24.438 grammes of pure silver, was made the monetary unit with a valuation of 75 grammes of gold. At the mane time the free coinage of silver was suspanded, the government reserving to itself the cole privilege of coining money. The coinage of Mexico, now concentrated at the mint in the capital (all others having been closed) is based (since November 28, 1867) on the decimal system-the peso being divided into 100 cemlovos-and consists of gold, silver, nickel and bronze coins, whowe wright and fineness are determiaed by the mopetary law of 1904. The coins minted under this law are:-

Gord: 10 pesos, 900 fine, weighing $8 \cdot 333$ grammes.
5 peros

Silver: I paso, -9027 fine, containing 24.438 grammes of pure silver. so centadas, 800 fine.
20 $\ddot{\square}$

Nicerl: 5

"
Bronzs: 1 and " 2 centanos, 95 parts copper, 4 tin. 1 zinc.
Provisions are also made for continuing the coinage of "trade dollars " for export, which have a wide circulation in the Orient but are not current at home. Fractional silver coin is not kgal tender above 20 pesos, and hronze and nickel coins not above i peso, but the government maintains conversion offces where such coins can be converted into silver pasos without loss. The amount of gold in circulation ss small. the bank notes convertible into gold taking its place. Foreign coins are permitted wo curculate in the republic.
There were 34 chatrered banks in Mexico in 1908, of which 29 enjoyed the privilege of issuing bank notes, the total note circulation on the 31st of December 1906 was 97.987 .878 pesos. These note issues are everywhere cuprent at full nominal valuc, being secured under the provisions of the national banking law of 1896 by metallic reserves. The notez are not legal tender, and it is fortidden to count them as "cash on hand in bank returns, but ample safe. guards both as to issue and redemption inspire full confidence in their employment as a substitutc for gold. Restrictions on speculative operations in real estate and on the use of hypothecated and discounted paper as sed urity for other transactions, together with the publication of detailed noonthly halance shects, have kept these banks. free from unsound methods, and their record thus far (1909) has been conspicuously good. llort gage and loan banks have aloo been established in accordance with the Law of 1896, and are subject to official supervision. Private banks are numerous, but foreign banks are not eniēoúrāgea tò open agencies. The use of cheques is very limited because of the stamp tax.
Weights and Measures.-Mexico adopted the metric system in 1862, and it is used in all official transactions, Land measurements, railway calculations and pullic school work. The old Spanish weights and measures, modified in many particulars, continued in private use, however, and in 1895 it became necessary to declare the metric system the only legal system and to make its use compulsory alter the 16th of September 1806.

BIELIOGRAPHY.-The historical student will find valuable material in Bernal Diaz del Castillo. Crónica de la conquista de Nueva Espana (Madrid, 1632, and other dates); Antonio Herrera História generdl de los hechos de los Castellúnos en las islas y tierra firma del mar oced́no (4 vols., Madrid, 1601) ;F. C. Mac Nutt, Letters of Cortés to Chaples V. (London, 1908): W. H. Prescott. Conquest of Afexico (3 vols., London, 1845): and the works of Gomara, Helps. Kingsborough, Las Casa3, Sahagun and Justin Winsor.
Among the more popular works on Mexico are Baedeker's Ths United States, wilh Excursions to Mcxaco, Gc. (Leipzig, 190g); H. H. Bancroft, Resources and Development of Mexico (San Francisca 1893): M. Chevalier, Le Mexique ancien et moderne (Paris, 1886): A. Garcia Cybas, Elude géographique. slofistique. descriplive ai historique des Elafs-Unis Merrcains (Mcxico. 1889 ; in English, 1893); . B. Dahlgreen, Minas históricas de la República Mexicana (tr. from Eng., 1887): J. Domenech. Guia general descriptiva de La Repuibliec Mexicana (vol. i., Mexico, 1899): F. W. Eploftstein, Contribufions to the Geology and Physical Geography of Mexico (New York, 1864): C. Reginald Enock, Mexico, its Ancient and Moderm Civilizotion, \&e. (London, 1909); Hans Gadow, Travels in Southern Mexico (London, 1908): Ernst von Hesse-Wartegs. Mexteo. Land und Leule (Vienna. 1890); W. T. Hornaday, Camp Fires on Desert and lera (London, 1908): Alex. von Humboldt, Voyage aux rigroms équinaxiales du norpear continert (Paris, 1807 sqq.): A. H. Kicane, Mexico " in Stanford's Compendium of Gcography and Traved (London, 1904): H. Kessler, Nohien über Mexico (Berlin, 1898): Carl Lumholtz, Unknown México (New York, 1902): C. F. Lummis, The Awchening of a Nation (New York, 1898); 1', F. Marin, Mexico of the Twentieh Century (London, 1907): A. H. Noll, A Short History of Mexico (Chicago, 1003); Santiago Ramircz, Noticia histórico de la riguezs mineira de Mexico (Mexico, 1884); Friedrich Ratzel, Aus Mexico: Rtiseskizzen aus den Jahren 1874-1876 (Breslau, 1878): Matias Romero, Geographical and Statistica! Notes on Mexico (New York, 1898): idem, Jexico and the United Slates (New York, 1898); E. Seler, Mexico und (iualemala (Bcrlin. 1896): Justo Serra (editor), Mexico: Ils Social Evolution, Ec. (2 vols., Mexico, 1904); J. R. Southworth, Mines of Mexico(9 vols., Mexico, 1905); Fredericl:Starr. Indians of Southerm Mexico (Chicago. 1899); Sara V. Stevenson, Maxımilian in Mexico (New York. 1899) T. Philip Terry, Mexico (Boston, Igo9: an excellent guide) ; David A. Wells, A Study of Mexico (New York, 1887): W. E. Weyl, Lobor Conditions in Maxico (Wachiagton, Ioaz). Buli. No 38, Bureau of Labor; Nevin O. Winter, Mexico and her Pcople of To-day (Boston, 1907); Marie R. Wright, Pıcturesque Mexico (Philadelphia, 1898): and Rafael de Zayas Enriquez, Les Elats-xnis mexicains (Mexico, 1899).

Important works of reference are: Anvario estadistica de la República Mexicane (Mexico); Mexican Year-booh (London. 1908); Biological and botanical publications of the U.S. Department of

Agriculture (Washinqton); Slalesman's Year-book (London): Handbook of Maxico (Washington). published by the Bureau of American Republics: Monthly Bulletin of the Bureau of American Republice (Washington): British Foreinn Office Diplomatic axd Consular Reports (London): and the U.N. Consular Repors (Washington).
(A. J. L)

History

1.- Ancerns Mexico.

The name Mexico is connected with the name of the group of American tribes calling themselves Mexica (sing Mestcall) or Asicca. The word is related to or derived from the name of the Mexican national war-god, Mexitl, better known as Huitzilopochtli. The Aztecs from the 12 th century appear to have migrated from place to place over the mountain-walled plateau of Anaiuac, the country " hy the water," so called from its salt lagoons, which is now known as the Valley of Mexica. About 1325 they founded on the lake of Tezcuco the permanent seltlement of Mexico Tenochtitlan, which is still represented by the capital city, Mexico. The name Mexico' was given by the Spanish conquerors to the group of countries over which the Aztec pawer more or less prevailed at the time of the Eusopean invasion. Clavigero (Storia antica del Messico, vol. 1.) gives a map of the so-called "Mexican empire," which may be roughly described as reaching from the present Zacatecas to beyond Guatemala; it is noticeable that both these names are of Mexican origin, derived respectively from words for "straw" and "wood." Eventually Mexico and New Mexico came to designate the still vaster region of Spanish North America, whtch (till cut down by changes which have limited the modern republic of Mexico) reached as far as the Isthmus of Panama on the south and took in California and Texas on the nort h. Mexico in this wide sense is of high interest to the anthropologist from the several native American civilizations which appear within its limits, and which conveniently if loosely group themselves round two centres, the Mexican proper and the Central American.

When early in the 16th century the Spaniards found their way from the West India Islands to this part of the mainland of America, they discovered not rude and simple tribes like the islanders of the Antilfes, but nations with armies, official administrators, courts of justice, high agriculture and mechanical arts, and, what struck the white men especially, stone buildings whose anchitecture and sculpture were often of dimensions and elaborateness to astonish the builders and sculptors of Eumpe. Here was a problem which exclied the liveliest curiosity and gave rise to a whole literature. Hernandez and Acosta shared the opinion of their time that the great fossil bones found in Mexico were remains of giants, and that, as before the deluge there were giants on the earth, therefore Mexico was peopled from the Old World in antediluvian times. On the other hand the multitude of native American languages suggested that the migration to America took place after the building of the tower of Babel, and Siguenza arrived at the curiously definite result that the Mexicans were descended from Naphtuhim, son of Mizraim and grandson of Noah, who left Egypt for Mexico shortly after the confusion of tongues. Although such speculations have fallen out of date, they induced the collection of native traditions and invaluable records of races, languages and customs, which otherwise would have been lost for ever. Even In the 19th century Lord Kingsborough spent a fortune in prinling a magnificent compilation of Mexican picture-writings and documents in his Antiquilies of Mexico to prove the theory advocated by Garcia a century carlier, that the Mexicans were the tost tribes of lsrael. Modern archacologists approach the question from a different standpoint, but the origin of the American aborigines and of Mexican civilization remaim extremely obscure (see America, where the primitive Mexican cultures are fully ilustrated, rind Central America).

Real laformation as to the nations of Mexico before Spanish
I In this, as in all other Aztec names. the x (or f) represents the English sound sh: hence Mexilli and Mexico should be properly pronounced Meshilli. Meshico. But they do not appear to have ever been so pronounced hy the Spaniards, wha naturally gave to the x its ordinary Spanish sound of the German ch.
times is very imperfect, but not altogether wanting. The accurate and experienced Alexander von Humboldt considered the native Americans of both continents to be substantially similar in race-characters. Such a generalization will become sounder, if, as is now generally done by anthropologists, the Eskimo with their pyramiclal skulls, dull complexion and flat noses are removed into a division by themselves. Apart from these polar nomads, the American indigenes group roughly into a single division of mankind, of course with local variations. If our attention is turned to the natives of Mexico especially, the unity of type will be found particularly close. The native population of the plateau of Mexico, mainly Azters, may stin be scen by thousands without any trace of mixture of European blood. Their stature is estimated to be about 5 ft .3 in., but they are of muscular and sturdy build. Mensurements of their skulls show them mesocephalic (index about 7^{8}), or intermediate between the dolichocephalic and brachycephalic types of mankind. The face is oval, with low forehead, high cheek-bones, long eyes sloping outward towards the temples, fleshy tips, nose wide and in some cases flattish hut in others aquiline, coarsely moulded features, with a stolid and gloomy expression. Thick. ness of skin, masking the muscles, has been thought the cause of a peculiar heaviness in the outlines of body and face; the complexion varies from yellow-brown to chocolate (about 40 to 43 in the ant hropological scale); eyes black; straight coarse glossy black hair; beard and moustache scanty. Among veriations from this type may be mentioned higher stature in some districts, and lighter complexion in Tehuantepec and elsewhere. If now the native Amcricans be compared with the races of the regions across the oceans to their east and west, it will be seen that their unlikeness is extreme to the races eastward of them, whether white Europeans or black Africans. On the other hand they are considerably like the Mongoloid peoples of north and east Asia (less so to the Polynesians); so that the general tendency among anthropologists has been to admit a common origin, however remote, between the tribes of Tartary and of America. This original connexion, if it may be accepted, would seem to belong to a long-past period, to juidge from the failure of all attempts to discover an affinity bet ween the languages of America and Asia. At whatever date the Americans began to people America, they must have had time to import or develop the numerous families of languages actually found there, in none of which has community of origin heen satisfactorily proved witb any other language-group at home or abroad. In Mexico itself the languages of the Nahua nations, of which the Aztec is the best-known dialect, show no connexion of origin with the language of the Otomi tribes, nor cither of these with the languages of the regions of the ruined cities of Central America, the Quiche of Guatemala and the Maya of Yucatan. The remarkable phenomenon of nations so similar in bodily make but so distinct in language can hardly be met except hy supposing a long period to have elapsed since the country was first inhabited by the ancestors of peoples whose language has since passed into so different forms. The original peopling of America might then well date from the time when there was continuous land between it and Asia.

It would not follow, however, that between these remote agea and the time of Columbus no freah immigrants can have reached America. We may put out of the question the Scandinavian sea-rovers wbo sailed to Greenland about the roth century. But at all times communication has been open from east Asia, and even the South Sea Islands, to the west coast of America. The importance of this is evident when we consider that late in the 19th century Japanese junks still drifted over by the ocean current to California at the rate of about one a year, often with some of the crew still alive. Further north, the Aleutian ialands offer a line of casy sea passage, while in north-cast Asia, near Bering's Strait, live Chukchi tribes who carry on intercourse with the American side. Moreover there are details of Mexican civilization which are most easily accounted for on the supposition tbat they were borrowed from Asia. They do not seem ancient enough to bave to do with a remote Asiatic origin of the
nations of America, but rather to be results of comparatively modern intercourse between Asia and America. Humboldt (Vues des Cordilleres, Pl. xxiii.) compared the Mexican calendar with that in use in eastern Asia. The Mongols, Tibetans, Chinese and other neighbouring nations bave a cycle or series of twelve animals, viz. rat, buil, tiger, hare, dragon, serpent, horse, goat, ape, cock, dog, pig, which may possibly be an imitation of the ordinary Babylonian-Greek zodiac familiar to ourselves. The Mongolian peoples not only count their lunar months by these signs, but they reckon the successive days by them, rat-day, bull-day, tiger-day, \&e., and also, by combining the twelve signs in rotation with the elements, they obtain a means of marking each year in the sixty-ycar cycle, as the woodrat year, the fire-liger year, \&c. This method is highly artificial, and the reappearance of its principle in the Mexican and Central American calendar is suggestive of importation from Asia. Humboldt also discussed the Mexican doctrine of four ages of the world belonging to water, earth, air and firc, and ending respectively by deluge, earthquake, tempest and conflagration. The resemblance of this to some versions of the Hindu doctrine of the four ages or yuga is hardly to be accounted for except on the hypothesis that the Mexican theology contains ideas learnt from Asiatics. Among Asiatic points of resentblance to which attention has since been called is the Mexitan belief in the nine stages of heaven and hell, an idea which nothing in nature would suggest directly to a barbaric people, but which corresponds to the idea of successive heavens and hells among Brahmans and Buddhists, who apparently learnt it (in common with our own ancestors) from the Babylonian-Greek astronomical theory of successive stages or concentric planetary spheres belonging to the planets, \&c. The Spanish chronicles also give accounts of a Mexican game called patolli, playtd at the time of the conquest with coloured stones moved on the squares of a cross-shaped figure, according to the throws of beans marked on one side; the descriptions of this rather complicated game correspond closely with the Hindu backgammon called pactrisi (see Tylor in Jour. Anthrop. Inst., viii. 116).

The native history of Mexico and Central America is entitled to more respect than the mere recollections of savage tribes. The Mexican pictures so far approached writing proper as to set down legibly the names of persons and places and the dates of events, and at least helped the professional historians to remember the traditions repeated orally from generation $t \rho$ generation. Thus actual documents of native Aztec history, or copies of them, are still open to the study of scholars, while after the conquest interpretations of these were drawn up in writing by Spanish-educated Mexicans, and histories founded on them with the aid of traditional memory were written by Ixtilxochitl and Tezozomoc. In Central America the rows of complex hieroglyphs to be seen sculptured on the rained temples probably served a similar purpose. The documents written by aatives in later times thus more or less represent real records of the past, but the task of separating myth from history is of the utmost difficulty. Among the most curious documents of carly America is the Popol-Vuh or national book of the Quiche kingdom of Guatemala, a compilation of traditions written down by native scribee, found and translated by Father Ximence about 1700, and published by Scherzer (Vien na, 1857) and Brasseur de Bourbourg (Paris, 1861). This book begins with the time when there was only the heaven with its boundaries towards the four winds, but as yet there was no body, nothing that clung to anything else, nothing that balanced itself or rubbed together or made a sound; there was nought below but the calm sea alone in the silent darkness. Alone were the Creator, the Former, the Ruler, the Featbered Serpent, they who give being and whose name is Gucumalz. Then follows the creation, when the creators said "Eartb," and the earth was formed like a cloud or a fog, and the mountains appeared like lobsters from the water, cypress and pine covered the hills and valleys, and their forests were peopled with beasts and birds, but these could not speak the na me of their creators, but could only chatter and croak. So man was made first of clay, but be was strengtbleas and scnselese
and melted in the water; then they made a race of wooden mannikins, but these were useless creatures without beart or mind, and they were destroyed by a great fioad and pitch poured down on them from heaven, those who were left of them being turned into the apes still to be seen in the woods. After this comes the creation of the four men and their wives who are the ancestors of the Quichés, and the tradition records the migrations of the nation to Tulan, otherwise called the Seven Caves, and thence across the sea, whose waters were divided for their passage. It is worth while to mention these few early incidents of the national legend of Guatemala, because their Biblical incidents show how native tradition incorporated matter learnt from the white men. Moreover, this Central American document, mythical as it is, has an historical importance from its bringing in names belonging also to the traditlons of Mexico proper. Thus Gucumatz, "Feathered Serpent "corresponds in name to the Mexican deity Quetzalcoat; Tulan and the Seven Caves are familiar words in the Aztec migration traditions, and there is even mention of a chief of Toltecat, a name plainly referring to the famed Toltecs. Thus the legends of the Popol-Vuh confirm what is learnt from comparing the culture of Central America and Mexico proper, that, though these districts were not connected by ianguage, the intercourse between them had been sufficient to justify the anthropologist in lnclading both districts in one region. Historical value of the ordinary kind may be found in the latter part of the Popol-Vuh, which gives names of chiels down to the time when they began to bear Spenish names and the great city of Quiché became the deserted ruin of Santa Cruz. The Maya district of Yucatan has also some vestiges af native traditions in the manuscripl translated by D. Pio Perez (in Stephens, Incidents of Troved in Yucatan) and in the remarkable 16th century Relacion de las cosas de Yucatan by Diego de Landa, published by Brasseur de Bourbourg (Paris, 1864). As in the Guatemala traditions, we hear of ancient migration from the Mexican legendary region of Tula; and here the leaders are four famous chiefs or ancestors who bear the Aztec name of the Tutul-Xiu, which means "Bird-Tree." Unfortunately for the historical standing of these four ancestors, there are in the Aztec picture-writings representations of four trees, each with a bird perched on it, and placed facing the four quarters, which make it probable that the four Tutul-Xiu of tradition may be only mythic personifications of the four cardinal points (see SchultzSellack in Zcilschr. f. Eltn., 1879, p. 209). Nevertheless, part of the later Maya records may be genuine-for instance, when they relate the war about three centuries before the Spanish conquest, when the king of Chichen-Itza destroyed the great city of Mayapan. Though the Central American native kings have too little interest for traditions of them to be dwelt on here, they bring into view one important historical point-that the ruined cities of this region are not monuments of a forgoten past, but that at least some of them belong to history, having been inhabited up to the conquest, apparently hy the very nations who built them.

Turning now to the native chronicles of the Mexican nations, these are records going hack to the 12 th or 13 th century, with some vague but not worthless recollections of national events from times some centuries earlier. These tradtions, in some measure borne out by linguistic evidence of names, point to the immigration of detachments of a widespread race speaking a common language, which is represented by the Aztec, still a spoken language in Mexico. This language was called nahuatl, and one who spoke it as his native tongue was called nahuallacall, so that modern anthropologists are following native precedent when they use the term Nahua for the whole series of peaples now under consideration. Earliest of the Nahua nations, the Toltecs are traditionally related to have left their northern home of Huchuetlapallan in the 6th century; and there is other evidence of the real existence of the nation. Their name Tollocall signifies an inhahitant of Tollon (land of reeds), a place which has a definite geographical site in the present Tulan or Tula, north of the valley of Anahuac, where a Toitec klngdom seems to have had its centre. To this natiom was due the introduction
of maize and cotton into Mexico, the skilful workmanship in gold and silver, the art of building on a scale of vast ness still witnessed to by the mound of Cholula, said to be Toltec work, and the Mexican hieroglyphic writing and calendar. With the Tolters is associnted the tradition of Quetzalcoatl, a name which presents itself in Mexican religion as that of a great deity, god of the air, and in legend as that of a saintly ruler and civilizer. His brown and beardless worshippers describe him as of another race, a white man with noble features, long black hair and full beard, dressed in flowing robes. He came from Tulan or from Yucatan (for the stories differ widely), and dwelt twenty years among them, teaching men to follow his austere and virtuous life, to hate all violence and war, to sacrifice no men or beasts on the altars, but to give mild offerings of bread and flowers and perfumes, and to do penance by the votaries drawing blood with thorns from thelr own bodies. Legend tells storics of his teaching men picture-writing and the calendar, and also the artistic work of the silversmith, for which Cholula was long famed; but at last he departed, some say towards the unknown land of Tlapallan, but others to Coatzacoalcos on the Atlantic coast on the confines of Central America, where native tradition still keeps up the divine names of Gucumatz among the Quichés and Cukulcan among the Mayas, these names have the same meaning as Quetzalcoatl in Aztec, viz. "Feathered Serpent." Native tradition beld that when Quetzalcoatl reached the Atlantic he sent back his companions to tell the Cholulans that in a future age his hrethren, white men and bearded like himself, should land there from the sea where the sun rises and come to rule the country. That there is a basis of reality in the Toltec traditions is shown by the word toltecall having become among the later Aztecs a substantive signilying an artist or skilled craftsman. It is further related by the Mexican historians that the Toltec nation all but perished in the rith century by years of drought, famine and pestilence, a fow only of the survivors remaining in the land, while the rest migrated into Yucatan and Guatemala. After the Tollecs came the Chichimecs, whose name, derived from chici, dog, is applied to many rude tribes; they are said to have come from Amaquemecan under a king named Xololl, names which being Aztec imply that the nation was Nahua; at any rate they appear afterwards as fusing with more cultured Nahua nations in the neighbourhood of Tezcuco. Laslly is recorded the Mexican immigration of the seven nations, Xochimilca, Chalca, Tepaneca, Acolbua, Tluhuica, Tlascalteca, Azteca. This classification of the Nahuatlac tribes has a meaning and value. It is true that Azllan, the land whence the Aztecs traced their name and source, cannot be identified, but the later stages of the long Aztec migration seem historical, and the map of Mexico still shows the names of several settlements recorded in the curious migration map, published by Gemelli Careri (Giro del mondo, Venice, 1728) and commented on by Humboldt; among these local names are Tzompanco, "place of skulls," now Zumpango in the north of the Mexican valley, and Chapultepec, "grasshopper hill," now a suhurb of the city of Mexico itsclf, where the Aztecs are recorded to have celehrated in 1195 the festival of tying up the "bundic of years " and beginning a new cycle.

The Aztecs moving from place to place in Anahuac found little welcome from the Nahua peoples already setiled there. One of the first clear events of the Aztec arrival is their being made tribntary by the Tepanecs, in whose service they showed their warlike prowess in the fight near Tepeyacac, where now stands the famous shrinc of Our Lady of Guadalupe. Thus they overcame the Acolhuas, who had made Teacuco a centre of prosperity. By the 13th century the Aztecs by their fcrocity had banded their veighbours together against them; some were driven to take refuge on the reedy lake shore at Acoculco, while others were taken as captives into Culhuacan. The king of this district was Coxcoxtl5, whose name has gained an undescrved reputation even in Europe as "Coxcox, the Mexican Noah," from a scene in the native picture.writing where his name appears together with the figure of a man floating in a dug-out tree, which has been mistaken even by Humboldt for a representation of the

Mexican deluge-myth. Coxcoxtli used the help of the Aztecs against the Xochimilco people; but his own nation, horrified at their bloodthirsty sacrifice of prisoners, drove them out to the islands and swamps of the great salt lagoon, where they are said to have taken to making their chirampos or floating gardens of mud beaped on rafts of reeds and brush, which in later times were so remarkable a feature of Mexico. As one of the Aztec chiefs at the time of the founding of their city was called Tenoch, it is likely that from him was derived the name Tenochtitlan or "Stone-cactus place." Written as this name is in pictures or rebus, it probably suggested the invention of the well-known legend of a prophecy that the war-god's temple should be built where a prickly pear was found growing on a rock, and perched on it an eagle holding a serpent; this legend is still commemorated on the coins of Mexico. Mexico-Tenochtitlan, founded about 1325, for many years afterwards probably remained a cluster of huts, and the higher civilization of the country was still to be found, especially among the Acolhuas in Texcuco. The wars of this nation with the Tepanecs, which went on into the $15^{\text {th }}$ century, were merely destructive, but larger effects arose from the expeditions under the Culhua king Acamapichtli, where the Aztec warriors were prominent, and which extended far outside the valley of Anahuac. Especially a foray south ward to Quauhnahuac, now Cuernavaca, on the watershed between the Allantic and Pacific, brought goldsmiths and other craftsmen to Tenochtitlan, which now began to rise in arts, the Aztecs laying aside lheir rude garments of aloe-fibre for more costly clothing, and going out as traders for foreign merchandise. In the 14 th century the last great national struggle took place. The Acolhuas had at first the advantage, but Ixtlilxochid did not follow up the beaten Aztecs but allowed them to make peace, whercupon, under professions of submission, they fell upon and sacked the city of Tezcuco. The next king of Tezcuco, Nezahualcoyoll, turned the course of war, when Azcapuzalco, the Tepanec stronghold, was taken and the inhabitants sold as slaves by the conquering Acolhuas and Aztecs; the place thus degraded became afterwards the great slave-market of Mexico. In this war we first meet with the Aztec name Moteuczoma, afterwards so famous in its Spanish form Montezuma. About 1430 took place the triple alliance of the Acolhua, Aztec and Tepanec kings, whose capitals were Tezcuco, Mexico and Tlacopan, the latter standing much below the other two. In fact the rest of native history may be fairly called the Aztec period, notwithstanding the magnificence and culture which make Tezcuco celebrated under Nezahualcoyotl and his son Nezahualpilli. When the first Moteuczoma was crowned king of the Aztecs, the Mexican sway extended far beyond the valley plateau of its origin, and the gods of conquered nations around had their shrines set up in Tenochtitlan in manifest inferiority to the temple of Huitzilopochtli, the war-god of the Aztec conquerors. The rich region of Quauhnahuac became tributary; the Miztec country was invaded southward to the Pacific, and the Xicalanca region to what is now Vera Cruz. It was not mercly for conquest and tribute that the fierce Mexicans ravaged the neighbourlands, but they had a stronger motive than either in the desire to obtain multitudes of prisoners whose hearts were to be torn out by the sacrificing priests to propitiate a pantheon of gods who well personified their bloodthirsty worshippers.
(E. B. T.)

Ancient Civilizallon.

While the prairie tribes of America lived under the loose sway of chiefs and councils of old men, the settled nations of Mexico had oevers- attained to a highly organized government. This may aovara- attained to a highly organized government. This may
be seen by the claborate balance of power maintained
in the federation of Mexico, Tercuco and Tacopan, where each king was absolute in his own country, but in war or ot her public interests they acted jointly, witb powers in something like the proportion in which they divided conquered lands and spoit, which was Iwo-fifths each to Mexico and Tezcuco and one-fifth to Tlacopan. The successor of the Aztec king was customarily a chosen brother or nephew, the eldest having the first claim untese set aside as incompetent; this mode of succession, which has been louked on as an elaborate device for securing practical advantages. eems raiher to have arisen out of the law of choice among the descendants of the female line. found in American tribes of ruuch tower culture. Something like this appoara in the auccession of
kiggs of Tezcuco and Tlacopan, which went to sons by the principal wife, who was usually of the Aztec royal family. The Mexican chronictes, however, show instances of the king's son succeeding or of powerful chiefs being' elected to the kingship. The term republic is sometimes used to describe the little state of Tlascala. hut this was in fact a federation of four chiefs, with an assembly of nohles. In the Zapotec district the Wiyatao or high priest of Zopaa was a divine ruler before whom all prostrated themselves with faces to the ground: he was even too macred wo allow his loot to touch the earth, and was only seen carried in a litter.
The accounts of the palaces of the native kings must be taken with some reserve, from the tendency to use descriptive terms not actually untrue, but which convey erroneous ideas taken Irom European architecture; thus what are called Pelaces, ets columns of porphyry and jasper cupporting marble balconies might perhaps be better described as piers carrying slabs, while the apartments and terracea must have been more remarkable for number and extent than architectural grandeur, being but low one-storied buildinges. The principal palace of Mexico consisted of hundreds of rooms ranged round three open squares, of such extent that one of the companions of Cortes records having four times wandered about till be was tired, without seeing the whole. Not less remarkable was the palace of Tezcuco, surrounded with its grovea and pleasuregardens; and, though now herdly amything remains of the buildings above ground, the neighbouring hill a Tezcotzinco still has its stone steps and terraces; and the immense embankment carrying the aqueduct-channel of hewn stone which supplied water to basins cut in the solid rock still remains to prove that the chroniclers' deccriptions, if hishly coloured, were at any rate genume. Till the 18 ch century the gigantic figures of Axayacall and his son Montezuma were to be seen carved in the porphyry hill of Chapultepec, but these as well as the hanging gardens have been descroyed. and only the groves of ahuchmete (cypress) nemain of the ancient beauties of the place. That in the palace gardens flowers from the lierra caliente were transplanted, and waterfowl bred near fresh and salt pools fit for each kind, that all kinds of birds and beasts were kept in well-a ppointed zoological gardens, where there were homes even for ailigators and snakes-all this, testifies to a cultivation of natural hiseory which was really beyond the Europena icvel of the time. From the palaces and retinues of thousands of servants attached to the royal service may be inferred at once the despotic power of the Mexican rulers and the heavy taxation of the people; in fect some of the most remarkable of the picture-writing: are tribuse-rols enumerating by hundreds and thousands the mantics, ocelot-skins, bags of gold-dum, bronze hatchete, loads of chocolate, \&c., furnished periodically by the towns Below the king was a numerous and powerful class of nobles, the highest of whom (ilatooni) were great vassals owing littte more than homage and tribute to their ceudal lord, while the natural result of che uarallineas of the noble class was that the king to keep them in check increased their numbers, brought them to the capital as councillora, and balanced their influence by military and houschold officers, and by a rich and powerful merchant class. The nobles not only had privileges of rank and dignity, but mbotantial power over the plebeian or peesant clase (macehwalli). The greatere extater belonged to the king, or had been granted to military chief́s whose sona succeeded them, or were the endowments of temples. but the calpulti or village community still survived, and each fremman of the tribe held and tilled his portion of the coramon lands. Below the freemen were the slaves, who were war-captives, persone enslaved for punishment, or children sold by their parents. Prisoners of war were mostly doomed to sacrifice, but other classes of slaves were mildly treated, retaining civil rights, and their children were born free.

The superior courts of hw formed part of the palace, and there were tribunals in the principal cities, over each of which presided a supreme judge or cinuacoall, who was irremovable, and whose criminal decisions not even the king might reverse; he appointed the lower judges and heard appeals from them: it is doubtful whether he judged in civil capes, but both kinds of suits were heard in the court below, by the tlecatecall and his two amociatcs, below whom were the ward-magistrates. Lands were set apart for the maintenance of the judges. and indced nothing gives a higher idea of the elaborate civilization of Mexico than this judicial system. which culminated in a general court and council of state presided over by the king. The laws and records of suits were set down ip piclure-writungs, of which some are still to be seen; sentence of death was recorded by drawing a line with an arrow across the portrait of the condemned, and the chronicles describe the barbaric solemnity with which the king passed sentence sitting on a golden and jewetled chrone in the divine tribunal, with one hand on an ornamented acull and the golden arrow in the other. Among the resemblances to old world law was the use of a judicial oath, the witness rouching the ground with his finger and putting it to his lips, thus swearing by Mother Earth. The crimunal laws were of extreme severity, even petty theft being punished by the thief being enslaved to the person he had robbed, while to stcal a tobacco pouch or twenty ears of conn was death; he who pilfered in the market was then and there beaten to death, and he who insulted Xipe. the god of the gold- and silversmiths. by stealing his precious melal. was skimned alive and sacrificed to the oflended deity. Though aloe-beer or "pulque " wate allowed
for leasta and to invalids in moderntion, and oid people over seventy reem to be represented in one of the picture-writings as having liberty of druakenness, young men found drunk were clubbed to death and young women stomed. For such offences as witcheraft, fraud, rernoving landmarks, and adultery the criminal had his heart cut out on the altar, or his bead crughed between two stones, while even lesger punishments were harsh, such as that of slanderers, whoee hair was singed with a pune-torch to the ecalp.

Baged on conquest as the Aztec kingdom was, and with the most bloodthirsty religion the world ever saw, the netion was, above all, wer. a fighting community. To be a tried cohdicr was the road to honour and office, and the kang could wot be enthroned till he had with his own hand taken captives to be butchered on the war-god's altar at his corontion. The common soldiers were promoced for acts of daring, and the children of chuefs were regularly trained to war, and initiated by being sent into battle with vererans, with whose aid the youth took his first prisoner, but hie future rise depended on how many captives he took unaided in fight with warlike enemies; by such feats be gained the dignity of weaning coloured blankets, tasmela and bip-jewets, and reached such mailitary tities as that of "guiding eagle." The Mexcan military cootume are to be seen in the picture-writings, where the military orders of princes, eagles and tigers are known by their braided hair, eagles' beaks and aported armour. The common soldiers went into bettle brilliant in savage war-paint, but those of higber rank had helmets like birds and beasts of prey, armour of gold and silver, wooden greaves, and especially the sichcaprlle, the quilted cotton tunic two fingere thick, so serviceable as a protection from arrows that the Spanish invaders were glad to adopt it. The archers shot well and with strong bows, though their arrows were generally tipped only with stone or bone; their shields or targete, mostly round, were of ordinary barbaric forms; the spears or javelins had heads of obsidian or bronze, and were sometimes hurled with a spear-thrower or allaff, of which pictures and specimens still exist, showing it to be similar in principle to those used by the Australuans and Eskimo. The most characteristic weapot of the Mexicans was the maqwohmith or " handwood," a club set with two rowe of large sharp obsidian flakes, a well-directed blow with which would cut down man or borse. These two last-mentioned weapons have the look of highly developed gevage forms, while on the other hand the military orgenization was in some respects equal to that of an Asiatic nation. With its remelar conpanies commanded each by its captain and providrd with its standard. The armies were very large, an expedition of ten consisting of several divisions, each numbering eight thousand men; but the tactics of the commanders were quite rudimentary, consisting merely of attack by arrows and javelins at a distance, gradually closing into a hand-to-hand fight with clubs and spears, with an occasional feigned retreat to draw the enemy into an ambust le. Fortification was well understood, as may still be seen in the restatins of walled and escarped strongholds on hills and in steep ravines, while lagoon-cities like Mexico had the water approaches defended by fleets of boats and the causeways protected by towers and ditchers; even after the town was entered, the pyramid-temples with their surrounding walls were forts capable of utubborn resistance. It was held unrighteous to invade another nation without a solemn embassy to warn their chiefs of the miseries to which they exposed themselves by refusing the submistion demanded, and this again was followed by a declaration of war, but in Mexico this degenerated into a ceremonial farce, where tribute was claimed or an Aztec god was offered to be worshipped in order to pick a quarrel as a pretext for an invasion already planned to satisfy the soldiers with lands and plunder, and to meet the priests' incessant demands for more human sacrifices.

Among the accounts of the Mexican religion are some passages referring to the belief in a supreme deity. The word leoll, god, has been thought in tome cases to bear this signification. but its meaning is that of deity in general, and it is applied not only to the sun-god but to very interior gods. It is related that Nezahualcoyotl, the poet-king of Teacuco, built a ninestoried temple with a starry roof above, in honour of the invisible deity called Thoquenahuaque " he who is all in himself," or Ipalnemoani, " he by whom we live," who had no image, and was propitiated, not by bloody tacrifices, but by incense and fowers. These divinities, however, seem to have had little or no place in the popular faith. which was occupied by polytheistic gods of the ordinary barbaric type. Teacatlipoca was held to be the highest of these, and at the lestival of all the gods his footsteps were expected to appear in the flour strewn to receive this sign of their coming. He was plainly an ancient deity of the race, for att ributes of many kinds are crowded together in him. Between him and Quetzalcoatl, the ancient deity of Cholula, there had been old rivalry. As is reloled in the legends, Quebzalcoall came into the land to teach men to till the soil. to work metals and to rule a well-ordered state; the two gods played their famous match at the ball-game, and Tezcatlipoca persuaded the weary Quetzalcoatl to drink the magic pulque that sent him roaming to the distaat ocean, where he embarked in his boat and disappeared from among men.' These deities are not easily
${ }^{1}$ One of the most important source for the ancient Mexican traditions and myths is the so-called "Codex Chimalpopoca," a traditions and myths Mexican language discovered by the Abbd
analysed, but on the other hand Tonatiuh and Metztli, the sun and moon, stand out distinctly as nature gods, and the traveller still sees in the huge adobe pyramids of Teot ihuacan, with their sides oriented to the four quarters, an evidence of the importance of their worship. The war-god Huitzilopochtls was the real head of the Aztec pantheon: his idol remains in Mexico, a huge block of basalt on which is sculptured on the one side his hideous personage, adorned with the humming-bird feat hers on the left hand which signify his name, while the not les frightful war-goddess Teoyaomiqui, or " divine war. death," cccupies the other side. Centeotl, the goddess of the allnourishing maive, was patroness of the earth and mother of the gods, whike Mictlanteuctli, lond of dead-land, ruled over the departed in the dim under-worid. There were numbers of lesser deities, such as Tlazolseotl, goddess of pleasure, worshipped by courtesans, Tezcat moncatl, god of strong drink, whose garment in grim irony clothed the drunkard's corpee, and Xipe, patron of the goldsmiths. Below these were the nature-spirits of hills and groves, whose shrines were buite by the roadside. The temples were called teocalli or "god"s bouse," and rivalled in size as they resembicd in form the temples of ancient Babylon. They were pyramids on a square or oblong bese, rising in succescive terraces to a small summit-plat form. Tho great teocalli of Huitzilopochtli in the city of Mexico stood in an immente square, whence radiated the four principal thoroughfares. its courtyard being enclosed by a square, of which the stone wall. called the coalepantli or serpent-wall from its sculptured serpents, measured nearly a quarter of a mile on each side. In the centre, the oblong pyramid of rubble cased with hewn stone and cemented $375 \times 300 \mathrm{ft}$. at the base, and rising steeply in five terraces to the height of 86 ft ., showed conspicuously to the city the long processions of priests and victims winding along the terraces and up to corner fights of sreps. On the paved platform were three-storcy tower temples in whose ground-foor stood the stone images and altars, and before that of the war-god the green stone of sacrifice, humped so as to bend upward the body of the victim that the priest might more easily slash open the breast with his obsidian knife, tear out the heart and hold it up before the god, while the captor and his friends were wairing below for the carcase to be tumbled down the Beps for them to carry home to be cooked for the feast of victory. Belore the shrines reeking with the stench of slaughter the eternal fires were kept burning, and on the platform stood the huge drum, covered with snakes' skin, whose fearful sound was heard for miles, From the terrace could be seen seventy or more other temples within the enclosure, with their images and blazing fires, and the trompanti or "skull-place," where the skuils of victims by tens of thousands were skewered on cross-sticks or built into towers. There also might be seen the flat circular temalacall or "" spindle-stone," where captives armed with wooden weapons were allowed the mockery of a gladiatorial fight against well-armed champions. The great pyramid of Choluta with its hemispherical temple of Quetzalcoatl at the top, now an almost shapeless hil! surmounted by a church, was about thrice as long and twice as high as the teocalli of Mexico. A large Iraction of the Mexican population were set apart as priests or attendants to the services of the gods. The rites performed were such as are found elsewhere-praycr, sacrifice, processions, dances, Brasseur de Bourbourg. It is the incerp:tation of different mythological and historical Mexican picturswritings, composed by an a nonymous author some time alter il conquest and copied by Fernando de Alva (1xtlilxochiti, 1568-1 48). It belonged to the priceless collection of Mexican documen brought together in the 18th century by Lorenzo Boturini (sec ins "Cathlogo del Museo hisrorico indiano," a ppendix of his Idea de una nuepa historia general de la America septentrional. Madrid. 1746,5 vili., No. 13). It is named there Historia de los reymos de Coll: acen y de Mexico. Other copies of the same manuacript. made by lun y Gama, José Pichardio, Aubin and Brasseur, exist in the Paris Nat: nnal Library in the AubinGoupil collection. Brasseur died before to publish the whole MS. in Nahuatl extracts are to be found in his Histoin Mexique, and in Leon y Gama, Dos Pie Mricue, and in Leon y Gama, Dos Piciras.... ed. Bustamente (Mexico, 832), Larger fragments of tic Ixifilxochitl copy were published in the Anales del museo nat: mal de Mexica, tom. iii., appx. pp. $7-70$; but in this edition th: Mexican text is very corrupt, and the two Spanish translation are by no means exact. The Paris MSS. and the IxtliJxochitl coyy were carefully collated by Dr Walter Lehmann (see Zeuschrift fur Ethnologie, 1906, pp. 752-760; Jowrnal de la Société des A merretintster de Paris, nowo. ser. Nol. iii. No, 2: Dr E. Seler, Verhandiungel des XVI. Imkernationalen Amerikanisten-Kongresses, Vienna, 1900, 11.: pp. 129-150). The precious Ixtlilxochitl copy was found lig Lehmann in the tibrary of the National Muscum of Mexico, and arrangements were made for the publication of the whole MS. by him in conjunction with Professor E. Seler. Another very important MS. was discovered b. Dr Lehmann, in Guatemala. It is the MS. of Father Francisco Ximenez. Historia de la Provencia de San Vicente de Chiapa y de $\boldsymbol{G}_{\text {talemala, }}$ in thpce lsig volumes in folio. which contain the farnous Spanish translation of the Quiche myths or the "Popol-Vuh." The MS. was bought at the expense of the duke of Loubat, who decided to present it, after the death of Wr Lehmann, to the Royal Library at Berlia.
chants, fasting and other austeritics, but there are some peculiaritics of detail. Pravers and oiher formulas have been copied down by Suhisun and other chroniclers, of endless prolixity, but not without occasional touches of pathos. These prayers seem cessentially genuine; indeed there was no European model lrona which they could have been imitated; but at the same time it must be remembered that they come down in Spanish writing, and not untouched by Spanish influence, as in one passage where there is a mentiod of sheep, an animal unknown to she Mexicans. As to sacrifice, maize and other vegctables were offered, and occasionally rabbits. quails, \&c., but, in the absence of cattle, human sacrifice was the chief rite, and cannibalism prevailed at the feasta. Incense was constantly used, especially the copalli (copal) well known to us for varnish: little terra-cotta censers are among the commonest of Mexican antiquities. Long and severe religious fasts were customary at special seasons, and drawing blood from the arms, legs and body. by thrusting in aloe-thorns, and passing sharp sticks through the tongue, was an habitual act of devotion recalling the similar practices of devotees in India. The calendar of religious festivals for the Mexican year has been preserved. Each 20 -day period had one or more such celebrations. In the month of the "diminishing of waters" the rain gods or Tlalocs were propitiated by a procession of priests with music of flutes and trumpets carrying on plumed litters infants with painted laces, in gay clothing with coloured paper wings, to be sacrificed on the mountains or in a whirlpool in the lake. It is said that the people wept as they passed by, but if so this may have been a customary formality, for the religion of these nations must have quenched all human sympathy. In the next month the god Xipe-totec, already mentioned, had his testivat called the " flaying of men "from the human victims being flayed, after their hearts were torn out, for young men to dress in their skins and perform dances and sharn fights. The succeeding festival of Camaxtli was marked by a severe fast of the priests, after which stone knives were prepared with which a hole was cut through the tongue of each, and numbers of sticks passed through. For the great lestival of Tezcatlipoca, the handsomest and noblest of the captives of the year had been chosen as the incarnate representative of the god, and paraded the strcets for public adoration dressed in an embroidered mantle with feathers and garlands on his head and a retinue like a king; for the list month they married him to four girls representing four godd wis; on the last day wives and pages escorted him to the little ten gic of Tlacochealco, where he nounted the stairs, breaking an carth n ware fute against each step; this was a symbolic farewell to the joys of the world, for as he rached the top he was scized by the priests, his heart torn out and held up to the sun, his head spitted on the tzompanth, and his body eaten as sacred food, the people drawing from his late the moral lesson that riches and pleasure may turn into poverty and sorrow. The manner of the victim's death in these festivals afforded scope for varietyi they dressed them and made them dance in character, threw them in to the fire for the fire-god, or crushed them between two balanced stones at the harvest-festival. The ordinary pleasures of festivals were mingled with all this, such as dances in beast-masks, sham fights and children's games, but the type of a religious function was a sickening butchery followed by a cannibal feast.

The Mexican priesthood were much concerned with the art of picture-writing, which chey used systematically as a means of record-Pleture- ing religious lestivals and legends, as well as keeping
wraterg.
which occurred in the recording the historical eventi interesting documents, with their translations, may be seen ia Kingsborough: splendid reproductions of the beautiful Mexican and Mixteco-Zapotecan coxices have also been published at the expense of the duke of Loubat and by the "Junta Colombina (Mexico, 1892). Gods are represented with their appropriate attributes-the fire-god husling his spear, the moon-goddess with a shell, \&c.; the scenes of human life are pictures of warriors fighting with club and spear, men paddling in canoes, women spinning and weaving, \&c. An important step towards phonetic writing appears in the picture-names of places and persons. The simplest lomms of these depict the objects signified by the name, as where Chapubtepec or "grasshopper-hill" is represented by a grasshopper on a hill, or a stone with a cactus on it stands for Tenoch or "stongcactus," the lounder of Tenochtitlan. The system had, however, risen a stage beyond this when objects were drawn to represent, not themselves, but the syllables forming their names, as where a trap, an eagle, a pricker, and a hand are pus together not 10 represent these objects, but in order that the syllables of their names mo-quauh eo-ma should spell the word Moquauhzoma (see Aubin's introduction to Braseeur, Hist. du Mexique, i. 68.). The analogy of thio to the manner in which the Egyptian hieroglyphs passed into phonetic sigos is remarkable, and writing might have been invented anew in Mexico had it not been for the Spanish conquest. The Aztec numerals, which were vigesimal or reckoned by scores, wet depicted by dots or circles up to 20, which was represented by a it ${ }_{4}$ 400 (a score of scores) by a feather, and 8000 (a scure of scores it
scores) by a purse: but for convenience these $5 y m b o l s$ might he hatwod and quartered, so that 534 might be shown by one feather, ore quarter of a feather, one hag, one-half of a flag, and four dots. The Mrexican calendar depended on the combination of nurabers with
picture-signe, of which the four principal were the rabbit, reed, fint, house-tochdi, ecaN, tecpall, calli. The cycle of 52 years was reckoned by combining these gigns in rotation with numbers up to 13, thus: I rabbit, 2 reed, 3 fint, 4 house, 5 rabbit, 6 reed, \&c. By accident this calendar may be exactly illustrated with'a modern pack of cards laid out in rotation of the four suits, as, ace of hearts, 2 of spades, 3 of diamonds, 4 of clubs, 5 of hearts, 6 of spades, \&c. In the Mexican ritual calendar of the days of the year, the same method is carried further, the series of twenty day-signs being combined in rotation with numbers up to 13 ; as this cycte of days only reaches 260 , a series of nine other signs are affixed in addition, to make up the 365 -day year. It is plain that this rotation of signs served no useful purpose whatever, being less convenient thar ordinary counting such as the Mexicans employed in their other calendar already mentioned, where the 20-day periods had each a mame like our months, and their days had signs in regular order. Its historical interest depends on its resemblance to the calendar-aystem of central and eastern Asia, where among Mongols, Tibetans, Chinese, dec., eries of signs are thus combined to reckon years, months and days: Lor instance, the Mongel cycle of 60 yuars is recorded by the zodiac or series of 12 gigno-mouse, bull, tiger, \&oc, combined in rotation with the five male and femate elements-fire, earth, iron, water, wood, as " male-fire bull" year, dec. This comparison is worted out in Humbolde's Fues des Cordillires, as evidence of Mexican civilization being borrowed from Asia Naturally the Mexican calendar-system lent itself to magic in the same way as the similar zodiac-signs of the Old World, each person's fate being affected by the qualities of the signs he was born under, and the astrologerpriests being called in to advise on every event of life. Of all Mexican festivals the moat solemn was that of the xtohmolpilli, or "year-binding," when the $\mathbf{5 2}$-ycar cycle or bundle of years came to an end. It was believed that the destruction of the world, which after the Hindu manner the Mexicans held to have already taken place three or four times, would happen again at the end of a cycle. As the time drew near, the anxious population cleansed their houses and put out all fire, and on the last day after gunset the priests dressed in the garb of gods, sct out in procession for the hill of Huixachila, there to watch for the approach of the Pleiades to the zenith, which gave the auspicious signal for the lighting of the new Gire. The finest of the captives was throwa down and fire kindled on his breast by the wooden drill of the priest; then the victim's beart was torn sut, and his body fung on the pile kindled with the new fann: The people watching from theit flat housetops all the country round saw with joy the flame on the sacred hill, and hailed it with a thank-offering of drops of blood drawn from their ears with sharp stone-flakes. Swift runners carried burning brands to re-kindle the fires of the land, the sacred fire on the teocalli of the war-god blated up again, aad the people began with feasting and rejoicing the new cycle.

Mexican education, at any rate that of the upper class, was a systematic discipline much under the oontral of religion, which here presents itself under a more favourable light. After the birth of a child, the conalpowhqwi or "sun-calculator" Ederellas. drew its horoscope from the signs it was born under, and fixed the time for its solemn lustration or baptism, performed by the nurse with appropriate prayers to the gods, when a toy shield and bow were provided if it was a boy, or a toy spindle and distaff if it was a girl, and the child received its name. An interesting pict ure-writing. to be seen in Kingsboroush, shows the details of the boy's and gin's education, from the early time when three small circles over the child show it to be three years old, and a drawing of half a tortilla or corn-cake show's its allowance for each meal. as they grow older the lads are seen beginning to carry burdens, paddle the canoe and fish, while the girls learn to spin and weave, grind maize, and cook-good conduct being enforced by punishments of increasing severity, up to pricking their bodies with aloethorns and holding their faces over burning chillies. The schools were extensive buidings attached to the temples, where from an early age boys and girls were taught by the priests to sweep the sanctuaries and keep up the sacred fires, to fast at proper seasons and draw blood for penance, and where they received moral teaching in long and verbose formulas. Those fit for a soldier's life were trained to the use of weapons and sent early to learn the hardships of war; children of craftsmen were usually taught by their fathers to follow their trade; and for the children of nobles there was elaborate instruction in history, picture-writing, astrology, religious doctrines and laws. Marriages depended much, as they do atill in the East, on comparison of the horoscopes of the pair to ascertain if their birth-sisne were compatible. Old wene were employed as go-betweens and the marriage ceremony was conducted by a priest who after moral exhortations united the young couple by tying their garments together In a knot, after which they walked seven times round the fire, casting incense into it; after the performance of the marriage ceremony, the pair entered together on a lour days' fast and penance before the marriage was completed. The funeral rites of the Mexicans are best seen in the
ceremonies at the death of a king. The corpsc laid out fumerthe in state was provided by the pricst with a jul of water for his journey, and with bunches of cut papers to pass him aafely through each daager of the road-the place where the two mountains strike
together, the road guarded by the gretet gmate and elopgreat alligator, the eight degerts and the eight hills; tive gave him garments to protect bim from the cutting wind, and buried a tittle dog hy his side to carry him acroas the mine waters. Then the royal body was invosted in the mantles of his petron-gods, especially that of the war-god, for Mexican kings were warriors; on his face was phaced a mask of turquoise mosaic, and a green chalchihuite-stone as a heart between his lips. In older times the dead king was buried on a throne with his property and dead attendants round him. But after cremation came in a mourning procession of eervants and chiefs carrying the body to the funeral pyre to be bumt by the demondressed priests, after which the crowd of wives nad slaves were exhorted to serve their lord faithfully in the next world, were sacrificed and their bodies burnt. Common people would not thus be provided with a ghostly retinue, but their simpler funeral ceremonies were as far as they went similar to those of their monarch.

The staple food of the Mexdcans before the conquest has continued with comparatively little change among the native race, and has Archerthere even been adopted by those of European blood. Maize or Indian corn was cultivated on patches of ground where, as in the Hindu $\bar{j} 1 m$, the trees and bushes were barnt and the seed planted in the soil manured by the ashes. A sharp-pointed planting stick, a wooden shovel, and a bronze-bladed hoe called a coatl were the simple implements. The Mexicars understood digging channels for irrigation, especially for the cultivation of the cacahual, from which they taught the Europeans to prepare the beverage chocollat; these native mames passed into Enghish as tho words cacao, or coco and chocolate. Other vegetables adopted from Mexico are the tomato (tomath) and the chilli, used as flavouring to native dishes. The maize was ground with a stone roller on the grinding stone or mellalt, still known over Sparish Americe as the metast, and the meal baked into thin oval cakes called by Aztecs thaxcalli, and by Spaniards tortilla, which resemble the chapoti of India and the oatcake of Scotland. The Mexicans were also skilful makers of earthen pots, in which were cooked the native beans called by the Spanish frajoles, and the vanious savoury stews stil] in vogue. The juice extracted bry tapping the great aloe before flowering was fermented into an intoxicating dripk about the strength of beer, oclli, by the Spaniards called pulque. Tobacco; smoked in leaves or cane-pipes or taken as snuf, was in use, Crohber and especiatly at feasts. In old times Mexican clothing Oramants was of akins of woven aloe and palm fibre, but at the rime of the conquest cotton was largely cultivated in the hot lands, spun with a spindie, and woven in a rudimentary loom without a shuttle into the mantles and breech-cloths of the men and the chemises and skirts of the women, garments often of fine texture and embroidered in colours. Ornaments of gold and silver, and jewels of polished quartz and green chalchinuite werc worn-not only the ears and nose but the lips being pierced for metaf-rorty ornaments. The artificers in goid and silver melted solid or hollow, and were also skilled in hammered work and chasing, as some fine specimens remain to show, though the famous animals modelled with gold and silver, fur, feathers and scales have disappeared. Iron was not known, but copper and tin ores were mined, and the metals combined into bronze of much the same alloy as in the Old World, of which hatchet blades and other instruments were made, though their use had not superseded that of obsidian and other sharp stone flakes for cutting, shaving, \&c. Metals had passed into a currency for trading purposes, especiaily guillg of gold-dust and T-shaped pieces of copper, while coco-beans furnished small change. The vast size of the market-squares with their surrounding porticos, and the importance of the caravans of merchants who iraded with other nations, show that mercantile had risen into some proportion to military interests. Nor was the wealth and luxury of Mexico and surrounding reyions wit hout a correAtsen sponding development of art. The stone sculptures such as that remaining of Xochicalco, which is figured by Humboldt, as well as the ornamented woodwork, feather-mats, and vases, are not without artistic merit. The oftencited poems attributed to Nezahualcoyotl may not be quite genuine, but at any rate poetry had risen above the barbaric level, while the mention of ballads among the people, court odes, and the chants of temple choirs would indicate a vocal cultivation above that of the instrumental music of drums and horns, pipes and whistles, the latter often of pottery. Solemn and gay dances were frequent, and a sport called the bird-dance excited the admiration of foreigners for the skill and daring with which groups of performers dressed as birds let themselves down by ropes wound round the top of a high mast, so as to fly whirled in circles far above the ground. The baltgame of the Mexicans, called H achtli. was, like tennis, the pastime of princes and nobles; special courts were built for it, and the ball of india-rubber (perhaps the first object in which Europeans became acquainted with this valuable material) might not be touched by the hands, but was driven against the walls by blows of the knee or elbow, shoulder or buttock. The favourite game of patolli has been already mentioned for its similarity to the pachisi of modern india.
The accounis given by Spanish writers of the Central Americant in their stak after the Spanish conquest are very weanty in come
parison with the voluminous descriptions of Aztec life. They bring out perfectly, however, the fact of clowe connexion between the two civilizations. Some Central-American peoples vitre actually Mexican in their language and culture, Cemirat opecially the Pipils and a large pangag Amertcao of Nicaragua. The investigations made by Dr Walter Lehmann in Central America (r907-1909), prove that these Mexican elements were extended through Guatemala, Salvador, a small part of Nicaragua (the territory of the Nicarzos) and on several places in the peninsula of Nicoya (Costa Rica) amongst the autocinthonous Chorotega or Mangue. It is an error of the Spanish authorities to pretend that the Pipil civilization in Guatemala and Salvador is not older than the time of King Ahuitzot (c. 1482-1486). The language apoken by the Pipils of Salvador (Balsam Coast) is a very old dialect of the Mexican language of the highland of Mexico. It has preserved in the conjugation and in the formation of the plural older forms than the classical Nahuatl itself. The separation of the Pipils from the chiel tribes of the Nahuat branch happened centuries Lutore the conquest, and they developed a singular and characteristic civilization, which can be seen in the wonderful stone-reliefs and sculptures of Sta Lucia de Cozumalhuapa on the Pacific coast of Guatemala.

Dr Lehmann's archaeological and linguistic researches, especially in Salvador and Nicaragua, also enabled him to prove another very important fact, vir. that these Pipils, who may be descendants from the peoples of the Mexican Plateau, migrated into territories previousiy occupied by an older race of Mayan origin. The archaeological and linguistic evidence proves also that a great parr of Salvador and Honduras was once occupied by peoples of the Maya race-Pokomam, Chorti and perhaps other unknown tribes. They left typical Mayan ruins in Honduras (Tenampua) and in Salvador (Opico near Tehuacan, Quelepa near San Miguel), which seem, however, to be destitute of Mayan hieroglyphic inscriptions. The easternmost limit of prehistoric Mayan civilization, on the Pacific coast of Central Apperica, is Fonseca Bay, with the island of Zacate Grande.

It is roteworthy that archaeological objects of the type characteristic of northern Honduras (Ulloa Valley) have been found on the Pacific coast of Salvador. A strange stone sculpture of the so-called Chac-Mol type, known before only from the country of the Tarascs. from Tlaxcala and Chichen Itza, was discovered in Salvador (Ahuachapan).
In the nearly unexplored central part of Nicaragua Dr Lehmann found fragments of painted polychrome clay pottery similar to objects known from the Ulloa Valley (Honduras) amongst other ceramic pieces which seem to have been teft by the ancestors of the Sumo Indians, now extinct in that territory. It is possibie that these remains of Mayan pottery came into censral Nicaragua as articles of commerce.

It is significant that Nayan civilization cannot be traced in any Other part of Nicaragua or Costa Rica.

The above-mentioned prehistoric Maysn peoples lived in contact with "barbarous" nations and with anuther little-known civilized race. The barbarians belonged to the creat family of the Sumo Misquito Indians, the civilized race was that of the Chorotega or Mangue (Dirian, Orotiman, \&e.). The Sumo-Misquito Indians occupied the Atlantic coast and the interior of Nicaragua and Honduras, where they still live in small tril es; a dialect of the hitherto unknown Sumo languages is the Matagat ran, now extinct in Nicaragua, and nearly identical with the Matage! pan is the language spoken by the Indians of Cacaopera in Salvadn (Ulira-Lempa territory) There is no doubt that, at the time of the Pipil invasion, tribes of the Sumo-Misquito family were the imnediate neighbours of the Pipils towards the east and north. This foct is proved by the names of some places in Salvador, e.g. Santinto Nonohuakco, San Juan Nonohualco and San Pedro Nonohuali. The word Nonohualco signifies in the Mexican language a place where a language changes, where another idiom begins. To the eat of the three places whose na mes are compounded with "Nonohnico," must have dwelt, in the time of the Pipil Indians, the Nonpuica, called also by Mexican tribes Chontales or Popoloca. The western neighbours of the Sumo Indians were and are (though few still survive) whe Lenca Indians, who formerly occupied large parts of Honduras. A linguistic relationship can be established between all ithe Indian languages spoken on the Atlantic coast and in the interior of Nicaragua and Hondurast Several tribes, such as the Paya (or Poya) ald the jicaques, form together with the Lenca, Sumo (Matagalpa, Tauakhca and Ulua) and Mirquito one great family.

The position of the isolated Xinca (or Sinca) Indians, regarded from this point of view, becomes very interesting. There are scientific reasons to believe that the Xinca also belong to the same great family as the Lenca, Jicaques, Paya, Misquito-Sumo. It may be possible either that these tribes are the autochthonous inhab Itants who dwelt in Guatemala, Salvador, Honduras and Nicaracua before the immigration of the prehistoric Maya peoples; or else that they invaded this region after in had been deserted by a prehistoric oriental branch of the Maya family.

The Chorotega race had its centre in Nicaragua (Pacinic coast) and at one Line extended lhence as far as Guanacance (Cuata Rica). at
another time it extended as far as Honduras (actual department of Choluteca) and into eastern Salvador as far as the state of Chispas in Mexico, where the Chorotega penetrated amongst the Mixe. The Chorotega or Mangue language, so closely affiliated to the Chiapanec, is now extinct, but its former cxtension is to be recognized by many Indian local names. It seems that there was formerly a mutual interpenetration between Lenca, Sumo and Chorotega tribes. The territories of all these tribes can be, more or less exactly, calculated by the existence of Indian local names. The Misquito country is characterized hy names terminating in Laya, water, or awala, river; the Sumo and Ulua country by names in was, water; the Matagalpan by names in h_{i}, water; the Lenca hy names in lique, lique, isque and (ai) quis. Such Lenca names cocur on the northeastern boundary of the Ultra-Lempa country of Salvador. It is strange that there is not a single place-name in Salvador either of Mayan origin, or, as it scems, of Chorotegan origin. Probably the Mexican elements superseded the Maya so completely that there remained no trace of the Maya except archaeological objects; it is to be supposed that the Lenca and Sumo tribes superseded the Chorotega in Salvador. If we can be sure-and the linguistic evidence admits of no doubt-that the Chorotega had their centre in Nicaragua and thence extended north-westwards, it may be hoped that Chorotegan remains will be found in the vast territory occupied for many centuries by the Maya peoples in the Pacific part of Guatemala. These remains would, of course, bearchacological or place-names.
How closely related some of the Central-American nations were in institutions to the Mexicans appears, not only in their using the same peculiar weapons, but \ln the similarity of their religious rites; the connexion is evident in such points as the ceremony of marriage by tying together the garments of the couple, or in holding an offender's face over burning chilfics as a punishment; the native legends of Central America make mention of the royal bald-play. which was the same as the Mexican game of thachtli already mentioned. At the same time many of the Central-American customs differed from the Mexican; thus in Yucatin we find the custom of the youths slecping in a great bachelor's house, an arrangement common in various parts of the world, but not in Mexico: the same remark applies to the Maya exogamous law of a man not taking a wife of his own family name (see Diego de Landa, Relacion de Yucatan, ed. Brasseur de Bourbourg, p. 140), which does not correspond with Mexican custom. We have the means of comparing the personal appearance of the Mexicans and Central Americans by their portraits on early sculptures reses, \&c.; and, though there docs not appear any clear distinction is race-type, the cxtranrdinary back-sloping foreheads of such fiyuris as those of the bas-reliefs of Palengue prove that the custom of lat:'ning the skull in infancy prevailed in Central America to an extcit quite beyond any such habit in Mexico. The notion that the ruined cities now buried in the Central-American forests were of great antiquity and the work of extinct nations has no solid evidence; some of them may have beenalreadyabandoned before the conquest. but others were inhabited by the ancestors of the Indians who now build their mean huts and till their patches of maize round the relics of the grander life of their ancestors. In comparing these ruins in Yucatan, Chiapas, Guatemala and Honduras, it is cyident that, though they are the work of two or more nations highly distinct in language, yet these nations had a common ystem of pietorial or written characters. One specimen of a Central. American inscription may give a general idea of them all, whether it befrom the sculpt ured facade of a termple sketched by Cathervood, or from the painted deerskin called the Dresden Codex (reproduced In Kingsborough), or from the chapter of Diego de Landa where he prolesses to explain and translate the characters themselves. These consist of combinations of faces, circles, bines, \&c., arranged in compartments in so complex a manner that hardly two are found alike. How they conveyed their meaning, how far they pictorially represented ideas or spelt words in the different languages of the country, is a question not yet answered in a complete way; Landa's description ($\mathbf{p} \cdot \mathbf{3 2 0}$) gives a table of a number of their elementa as phonetically representing letters or syllables, but. though there may be a partial truth in his rules, they are insufficient or too erroncous to serve for any general decipherment. One point as to the CentralAmerican characters is clear, that part of them are calendar-signs recording dates. From the accounts given by Landa and other writers it is plain that the Central-American calendar, reckoning the year in twenty-eight periods of thirteen days, was the came in ite principle of combining signs as that of Mexico. The four leading Maya signs ealled han, muluc, ix, cauac corresponded in their position to the four Aztec eigns rabbit, reed, flint, house, but the meaningt of the Maya signs are, unlike the Aztec, very ohscure. A remarkinle feature of the Central-American ruins is the frequency of truncated pyramus built of hewn store, with fighte of ateps up to the temple built on the phatlorm at top. The resemblance of these structuret to the ofd deacriptions and pictures of the Mexican teocallis is 80 striking that this name is habitually given to them. The teocallis built by the Nahua or Mexican nations ha ve been moetly destroyed, but two remain at Huatueco and Tusapan (fisured in Bancrolt, lv. 443. 456), which bear a atrong resemblance to those of Palenque. In style, the beat means of juiging what the temples and galaces
of Merice were fllat is to be gained from the actual ruing in Central Armerica. On the other hand, there are features in Central-Arnerican architecture which ecarcely appear in Mexican. Thus at Uxmal there stands on a terriced mound the long narrow building known as the povernor's bouse (Cest del Gobernador), 322 ft . iong, 39 ft . wide, 26 ft. high, built of rubble stone and mortar faced with square blocks of stonc, the interior of the chambers rising into a sloping roof formed by courses of atonework fradually overlapping in a "false arch." The same construction is eeen in the buildings forming the sides of quadrangle and bearing the equally imaginary mame of the nunnery (Casu de Monjas); the resemblance ol the interior of one of its apartmenta to an Etruacan tomb has often been noticed (gec Fergiseon, History of Architecture, vol. i; Viollet-le-Due, in Charmay).

The explorations made by Dr Lehmann in 1909 in the famous muins of Tcotihuacan, near Mexico city throw new light upon certain chronological problems. Like the excavetions made by Dr Max Uhle in Pcru, they tend to determine the relative antiquity of the different periods of the ancient civilization. They aloo thow that these various culture-periods followed one another among the Mexicans in much the same sequence as among the Peruvians. At a considerable depth below the foundations of a ternple-palace at Teotihuacan, Dr Lehmann discovered certain ceramic fragmente of a type quite different from any hitherto clamod as Mexican. These are painted on a fine stucco in beautiful colours (nocably a kind of rurquoise-green) and represent archaic forms of fowers and hutterflies. The relation between the wall paintinge of Teotihuacan and ornaments at Chichen Iiza, as also the existence of sculptured stone yokes in Teotihuacan, in the country of the Totonacs, in Guatemala and in Salvador, furnish important material for the invertigation of the obscure problems of the Toltecs and Olmecs, and of the extension of Maya peoples on the Atlantic const of the Mexican Gulf Irom Campeche as far as Tabasco and VeraCruz.

Attempts to trace the architecture of Central America directly from Old. World types have not been succesaful, while on the other hand its decoration shows proof of original invention, especially in the imitations of woodwork which passed into aculptured ornas. ment when the material became stone instead of wood. Thus the architectural remains, though they fail to polve the problem of the culture of the nations round the Gulf of Mexico, throw much light on it when their evidence is added to that of religion and customs At any rate two things seem probable-first, that the civilizations of Mexico and Central America were pervaded by a common influence in religion, art, and custom; second, that this common element shows traces of the importation of Asiatic ideas into America.

Brbliography.-The most illuminating and fundamental work on Mexican archacology is the Gesammele A bhardlungen, of Eduard Seler (vol. i. Berlin, 1902 ; vol. if., 1904). For the earliest deacripuions of the ancient cities of Mexico the writings of Cogolludo, Landa, Antonjo del Rio, Sahagun, Torquemada and otbers are of the greatest value. The account by Antonio de Leon y Gama, Descripcion historica y cronologica de las dos priedras gue. . . ie hallaron en 40 plasa principol de Mexico el año de 179° (Mexico, 1792; 2nd ed. by C. M. de Mustamentel), may be specially mentioned. Much of this material is to be found in Lord Kingsborough's monumental work in 9 vols., seq., on the Antiquities of Mexico (London, 18311848). Alexander von Humboldt's Vues des Cordilleres ef monwments des peuples indigenes de CAmerique was published in Paris in 1816. At the beginning of the 19th century the colonial government undertook a comprehensive exploration of the best known groups of ruins and three expeditions were made in $1805-1808$ under the direction of Captain Guillaume Dupaix, accompanied by Luciano Castanteda as artist. The report, were not published, however, until Kingsborough included them in his work, though some of the drawIngs appeared in other works. In many respects these reports are the best of the early accounts. Another early explorer was the French artist Frederic de Waldeck, who published Voyage gilloresque a ancheologuque dans la prooince d'Yucafan (Paris, 1838), and whose collection of drawings appeared in 1866 , with the deacriptive text by Brasseur de Bourbourg, under the title Monuments anciexs da Merique. Among other and later works, including some who have devoted themselves more especially to Maya inscriptions, are: Arnold and Frost, The American Egypt (London. 19og): H. H. Bancroft, The Native Races of the Pacific Stakes (5 vols., New York. 1874-1876, vol. iv. Is deveted to "Antiquitics "); A. F. Bandelier, Report on an Archacological Tow in Mexico. 1881 (Archacol. Inst. of America, papers, Am. Ser. II.); Leopoldo Batres, Cwadro argued. ifgico y etmográfico de la Regrublica Mexicona (Mexico, n.d.); W. W. Blake, Catalogue of the Bristorical and Archacological Coltections of
the Natonal Mnsenm of Mexico (Mexico, 188 $)$; Eug. Boban, Cuadro arguedogeco y etnogrdico de la Republica Nexicana (Paris, 1885); Daniel G. Brinton, The American Race (New York, 1891) And A ncrent Phonets Alphobets of Yucatan; Desire Charnay, The Ancient Cities of the New World (Transl. New York 1887); Charnay and Violet-le-Duc, Cilds el raines amfricatnes (Paris, 186j); Alfredo Chavero (ed.) Astiguedades mexucanas (Mexica, 1892); Dupaix, Artiquilts wifxicasnes (Paris, 1834-1836); E. Forstemann (Numerous articles In Glatus and other Cerman publlcations, 1893-1897, on Maya inscriptions); E. T. Hamy, Decodes americamae (Paria, 1888, 1ego, 190e); Wm. H. Holmes, Archacolegical Studier amorg the

Aseiont Cilies of Mexico (Parts I. and II. Field Columbian Museum Chicago, 1895-1897): W. Lehmann, Ergebwisss und Aufgaben der mexikanischen Forschung (Archiv. für Anihropologia, newo Falge, iii., 2: 1907), Eng. trans: Mefhods and Results in Mexican Researck, by Seymour de Ricci (Paris. 1909); Theobert Maler, Nawe Entdechwag won Ruinen-Sladion in Mittol-A meriba (Glabus, lxx. 149-150. Braunschweig, 1896), and also contributions to American archacological publications; A. P. Maudslay, Biologia Centrali-Americana-Archaeoloty (London, 1897): J. F. A. Nadaillac. Prehisforic Amerca (Ncw York, 1895); Zelia Nuttall, Tha Fundomentol Principles of the old sad New World Civilachions (Arch. and Ethn. Papers, Peabody Museum, Cambridge, 1901); Antonio Penafiel, Monsmenlos del arle mexicano aniguo (vol text, 2 vols. plates; Berlin, 1890); Carl Sapper, Dos nördliche Mitted-Amerika (Braunschweig, 1897); Caecilie Saler, Awf allen Wegen in Mexico and Guatemala (Berlin, 1900); Edaard K. Seler, "Der Charakter der aztekischen und Maya-Handzchriften " (Zeisschrift fär Ethnologie, Berlin, 1888), and other papers in various German publications; John L. Stephens (F. Catherwood, artist), Trasels in Central America (2 vols., New York, 1841), and Incidents of Trivel in Y'acatar (2 vols., New York, 1843).
(E. B. T.; W. L.")

11.-Colonial Period. 1520-1825.

The conquest of Mexico by the Spanish forces under Hernando Cortes (q.v.) in 1520 , and the death of the last Aztec emperor, Guatemozin, introduced what is known as the colonial period of Mexican history, which lasted down to the enforced resignation of the last viceroy, O'Donoju, in r82r. During these three centuries, after a brief but most unsatisfactory experience of government by audiencias (1521-1535), sirty-four viceroys ruled over New Spain. Of these a few were ecclesiastics: two had two terms of office; only two or three were of native birth, and their previous official life had atways been passed in otber parts of the Spanish dominions.

New Spain was one of four great viceroyalties, the other three being New Granada, Buenos Aires and Peru. Its viceroy ruled over districts difiering in status and with over-

Naw Spata:

 lapping and conflicting authoritics, some of these being appointed directly by the king of Spain, and responsible to him. New Spain in its widest meaning includes the audiencias or judicial districts of Manila, San Domingo and Guatemala, and the viceroy had some sort of authority over them; but in its narrower meaning It comprised the audiencia district of Mexico and the subordinate audiencia district of Guadalajara, which together extended from Chiapas and Guatemala to beyond the eastern boundary of the modern state of Texas and nothwards, eventually, to Vancouver's Island. In the course of the 18 th century this came to consist of the followfing divisions: (1) the kingdom of Mexico, which included the peninsula of Yucatan but not the present state of Chiapas or a part of Tabasco, these belonging to Guatemala. Approximately its south border ran from a point slightly east of Tehuantepec to the bay of Honduras, and its north limit was that of the modern states of Michoacan and Guanajuato, then cutting across Sen Luis Potosi to a point just above Tampico. (2) The kingdom of New Galicia, including the present states of Zacatecas, Jalisco and part of San Luis Potosf. (3) The Nuevo Regno de Leon (the present state of that name). (4) The Provincias Internas, i.e. "interior" regarded from the capital, vir. Nuevo Santander (Tamaulipas, and Texas to the bay of Corpus Chritti, founded 1749), the several provinces of Nuevo Biscaya or Chihuabue, Durango, Sonora with Sinaloa, Coahuila, Texas (from Corpus Christi Bay to the mouth of the Mermenton in the present state of Louisiana), and the two Calliomias.The audiencia councils also advised the viceroy in matters of administration; and, as with otber officiale, his career was ooveramear subject at its close to a formal examination by a andorant commission-a process known as "taking his zation. residencia." Local government till 1786 was largely in the hands of alcaldes majores and corregidoras, the latter established in 1531 to look after the Indians, and both appointed by purchase. Towns, which were to some extent founded after the conquest as centres of civilization for the Indians, were governed by civic officials appointed in the first instance by the governor of the province, but subsequently as a rule purchasing their posts.

The church rapidly supplemented the work of the conquerors. The first Franciscan mission arrived in 1524; other orders followed. The announcement of the apparition of The charch the Virgin to an Indian near Merico City provided a and ane place of pilgrimage and a patroness in Our Lady of Peoph. Guadalupe; and the friars ingeniously used the bieroglyphic writing for instruction in Christian doctrine, and taught the hatives trades, for which they showed much aptitude. The university of Merioo was founded in 1553 . The Jesuits established themselves in 1572, devoting themselves actively to the education both of whites and of natives, and were a powerful factor in the exploring and civilizing of the northern districts. The Inquisition was introduced in 1575. With the natives couth of the latitude of Tampico there was little trouble after the Mixton War (in Guadalajara) in $\mathbf{1 5 4 0 - 1 5 6 2 ,}$ save for occasional risings in Yucatan, Tebuantepec, and in $771 r$ in the Nayarit mountain region west of Zacatecas, and Tamaulipas was conquered in 1748; but the wild Indians of Sonora and New Mexico gave constant trouble to the missions and outlying settlers There were occasionally riots due to scarcity of corn (notably in Mexioo itself in robz). As in other Spanish possessions, Indian labour was replaced or supplemented by that of negro slaves, but these were almost wholly confined to the coast regions of Vera Cruz and Acapulco, and early in the 1gth century there were only some ro,000 in all.

As the Spanish conquerors brought few women, there was much mixture of races. Among the pure whites-who were practically all of Spanish extraction-there were two well-defined classes, the Gachupines or chapetones, Spaniards born in Europe, said to be so named in allusion to their spurs, from Aztec words meaning "prickers with the foot," and the native-born or creoles: the former, though a small minority, bad almost all the higher positions both in the public services and in commerce. Besides these there were five well-defined castas: mestizoes (Indian and white); mulat toes (negro and white); Zambos (negro and Indian), who were regarded as specially vicious and dangerous; native Indians and negroes. But there were about a dozen intermediate "named varieties," of which the sallo-airas (tending away from white) and lente en l'aire (tending towards white) may be mentioned; and many of the last named eventually passed into the Creole class, sometimes by the decree of a court. The fact that the trade route to Manila passed through Vera Crus, Mexico City and Acapulco entailed the settlement also of a few Chinese and Malays, chiefly on the Pacific coast.

The natives were suhject to tribute and kept in perpetual tutelage: divided at the conquest, with the land, as serfs of the conquerors, in repartimiontos or encomiendas, they were gradually freed at an early date from their posilon of seriage, and allowed to sell their labour as they pleased; they were, bowever, to a great extent kept in villages or settlements, compelled to cultivate land which they held for their life only, and strietly controlled by the friars or the priests. Their numbers were several times seriously reduced by the motloshwad, apparenily analogous to yellow fever, but not attacking the whites, and unknown before the congucst. The negrocs were allowed to buy their freedom gradually at rates fixed by the judicial authorities, and slavery seems never to have taken much hold except in the coast region.

Of the events of this period only a bare outline can here be given. The term of office of the first viceroy, Antonio de Mendoza, was marked by the Mixton War, hy an Losdiar altempt to suppress the encomienda system, and by everiaz a violent epidemic among the natives. Under fin $1533-1822$. successor, Velasco, the measures taken for the relief of the nstives provoked the landowners to a conspiracy (repressed with great severity) to set up Cortes' som as king of New Spain. In 1568 the island of Sacrificios, near Vera Cruz, was selsed by John Hawkins (g.v.), who was surprised by the Spanish fleet accompanying the new viceroy, de Almansa, and escaped with Sir Francis Drake (q.0.), but without the remaining ships of his squadron. In $15 j^{2}$ and 1578, however, Drake toot abuindant
vengeance, and in 1587 Cevendish captured the Manila galleona success repeated in the next century.

For the next sixty years an urgent question was the prevention of floods in the capital. Situated on the lowest of four lakes, The brato whose waters had only one amall outlet from the geo ofter valley, it was only 4 ft . above the level of the caphat jowest, and was flooded on an average once in every twenty-five years. It had been protected under the native kings by a system of dikes, which were added to under the earlier viceroys, hut serious inundations in 1553 and 3580 flooded the city, and the latter suggested the relief of the highest lake, that of Zumpango, hy a tunnel carrying its chief affuent into a tributary of the Panuco, and so to the Atlantic. This, however, was not then undertaken, and when mooted again in 1603 was opposed as certain to involve a heavy sacrifice of Indian life. Another inundation, in I6o4, suggested the transfer of the city to Tacubaya, hut the landowners opposing and the city being again Inundated in 1607, the Nochistongo tunnel was begun under the auspices of a Jesuit, Enrico Martinez, and roughly completed in eleven months. It paseed under a depression in the mountains of the extreme north of the valley. Humboldt states that it was 6600 metres long, $3 \frac{1}{2}$ wide and 4 high. But it did nothing for the southern lakes, so that a further system of dikes was recommended in preference, in 1614, by the Dutch engineer Adrian Boot; it was inadequate for its work and, not being lined with masonry, it was liable to be choked by falls. Repairs were suspended in 1623 , and a further inandation, with great losses of life, occurred from 1629 to 1634 . The removal of the city was again mooted and, though sanctioned by the king of Spain, successfully opposed by the landowners. Another flood occurred in 1645. After a disastrous attempt to enlarge the tunnel in 1675 , it was eventually converted into an open cutting, hut the work was not finished till $\mathbf{2 7} 99$, and the bottom was then 29 ft .6 in . above the level of the lowest lake. The drainage was only satisfactorily eccomplished at the end of the agth century. (see below).

A negro revolt in the Vera Crus region (1609) and an Indian rebellion in Sinaloa and Durango may be mentioned among the events of the earlier part of the $17^{t h}$ century. The Churct and regular and secular clergy had early come into con-
Stota flict, particularly over the tithe and the contral of the Indians; and in I621, the marguis de Gelves, an energetic reformer, who as viceroy favoured the appointment of the regulars to deal with the natives, came into conflict with Archhisbop Serms of Mesico, who placed the city under interdict, excommunicated the viceroy and constrained him to hide from the moh. Some years later the bishop of Puebla, Juan de Palafox y Mendora, transferred many native congregations from the friars to secular priests, end subsequently, in 1647, came into conflict with the Jesuits, whom he excommunicated, hut who eventually triumphed with the ald of the Dominicans and the archhishop. The power of the church may be judged from the petition of the Ayuntamiento of Mexico to Philip IV. (1644) to stop the foundation of religious houses, which beld half the property it the country, to suspend ordinstions because there were 6000 unemployed priestr, and to suppress feast days hecause there were at least two per wreek.

To chack the Dutch and British corsairs the Barlovento (" windward") squadron had been get up in 1635 ; but the

Buccumeer Ralds. British capture of Jamaica (1655) aggravated the the century the ports of Yucatin and Central America were frequentiy raided, and in $\mathbf{I 6 8 2}$ Tampico suffered a like disaster; in May 1683 Vera Crus itself was captured through stratagen by two buccaneers, Van Horn and Liurent, who plundered the town for ten days, committed shocking outrages, and escaped as the Spanish fleet arrived. In 1685-86 the Pacific coast was ravaged hy Dampier and Swan, and in rgo9 Woodes Rogers, with Dampier as pilot, captured the Manila treasure galleon, a feat repested by Anson in 1743. But the European wars of the r8th century had little effect on Mexico, seve that the privileges of Lade given to Great Britain
hy the treaty of Utrecht facilitated smuggling. In the first half of the s 8th century we may note the appearance, intermittently at first, of the first Mexican periodical-the Gaceto de Mexico-in 1722 , a severe epidemic of yellow fever in 1736 , and the establishment about 1750 of a standing army with a nucleus of Walloons and Swiss, negroes and Indians being excluded and the half-breeds admitted under restrictions. But the great event of the 18th century was the expulsion of the Jesuits from Mexico, as from the other Spanish dominions, in 1767, under orders from Charles III. They were arrested en masse on the night of the 26th of June; their goods were sequestrated, and they themselves deported to Havana, then to Cadix, Genoa, and eventually Corsica. They had done much to civilize the natives and to educate the whites, and their expulsion, which was greatly resented by the Creoles, probahly tended to increase the popular discontent and prepare for the overthrow of Spanish rule.

In I769 Don Jasé de Galvez was sent out as special commissioner to devise reforms, with powers independent of the then viceroy, hut without much immediate result. It was, hoppever, a consequence of his work that in certratized 1786 the provinces and kingdoms were replaced by
twelve intendencias (Guadalajara, Zacatecas, Durango, Sonora, Puebls, Vera Crus, Merida, Oaraca, Valladolid, Guanajato, San Luis Potosi, Meaico), whose governors and minor officisls wert directly dependent on the viceroy, the former alcildes, mayores and corregidores, who were very comupt, being abolished. Possibly it is from this reform that we may date the antithesia of Federals and Centralists, Which is so conspicuous in the history of republicen Mexico. Among the later viceroys the Conde de Revillagigedo (1789-1794) deserves mention as a progressive ruler who developed commerce and improved administration, and took the first, but very imperfect, census, on which Humbaldt based his eatimate of the population in 1803 at $5,840,000$.

The European wars of the French revolutionary period interfered with the traffic with Spain, and so relazed the bonds of a commercial system Fhich hampered the manu- Bonnmes factures of Mexico and drained away its wealth. ofsever Already in 1783 the Conde de Aranda had suggested ance. to the Spanish king, the scheme of retting up three SpanishAmerican kingdoms bound to Spain by perpetual treaties of alliance and reciprocity and by frequat royal intermarriages, and with the king of Spain as overlard. The plan was devimed as a means of rivalling Anglo-Saron supremacy, but was rejected through fear of the mixed races predominating over the whites. A similar fear helped to keep down the tendencies inspired hy French revolutionary literature, though plots occurred against the viceroy Branciforte in $\mathbf{x} 798$ and 1799 . But the real csuses of the revolution were local. The chief was the Creole jealousy of the Spanish immigrants. There was oppressive taxation, restriction on commerce and manufacture in the interest of Spain, even vineyands having been prohibited; and the courts were very corrupt. But to these grievances was adided in 1804 the sequestration, to provide for Spain's needs, of the benewolent funds (obras pias) in Mexico, amounting to about $\$ 45,000,000$, and nearly all invested on mortgage. The mortgeges wert called in: forced ales were necessary, the mortgagens were frequently ruined, and less than a fourth of the total wes realined. Other confiacations and exactions followed; and when the rule of Fernondo V1L was succeeded hy that of Joseph Bonaparte, the municipality of Mexico invited Iturrigaray, the vicoroy, to declare the opuntry iadependent. He propoeed the convocation of a national congress, but was overthrown hy a conspiracy of Spaniards under one Yermo, who feared that they would lose their privileged position through severance from Spain. The two next viceroys were incompetent; further demands from the Spanish authortties in revolt against Joseph Bonaparte increased the diouffection, which was not allayed by the grant of reprementation in the Spanish Cortes to the colonies; and, on the demands being repeated hy a third viceroy, Venegat, Creole conspiracies arose in Querftaro and Guanajato. Their discovery in 1810 was followed hy the outbreal of the revolution. Hidalgo, a parish priest, and Allende, a captain of cavalry, with forces
cousiating largely of Indians, captured a stronghold at Guanajato and even threatened the capital; bat the revolutionists wure defeated in 18 II at Calderon, and the leaders executed. Another priest, however, named Morelos, continued the movement, and, despite defeat in the terrible sioge of Cuatla (now Morelos) on the 2nd of May 1812, raised the south, so that in the next year his forces overran most of the kingdom of Mexico and held its southern parts, and he was able to convoke a congress and issue a constitution. But he also was captured, and execused at Mexico City in 1815. Though revolutionary movemearts still continued, by 1817 only one leader, Vincente Guersero, was left in the field. But in March 1820 the Spanish constitution, repudiated by King Fernando VIL. soon mfter his restoration, was restored after a milltary rising in Spain It was promulgated in Mexico, and the ecclesiastics and 8paniards, feariag that a Liberal Spanish government would force on them disendowment, toleration and other changes, induced Augustin de Iturbide, who bed already been conspicuous in suppressing the risings, to take the fied in order to effect what may be called 2 reactionary revolution.

III.-Independent Mexico.

Thenceforward, till the mecond election of Porfirio Diaz to the presidency in 1884, the history of Mexico is ene of almost

arserat

charection mice continuous warfare, in which Maximilian's empise is a mere episode. The conflicts, which may at first sight seem to be merely between rival generals, are seen upon closer examination to he mainly (i) between the privileged classes, i.e. the church and (at times) the army, and the mass of the other civilized population; (2) between Centradists and Federalists, the former being identical with the army, the church and the supporters of despotism, while the latter represent the desire for republicanism and tocal self-government. Similar confficts are exhibited, though less continuously, by most of the other Spanish-American states. On both sides in Mexico there was an element consisting of honest doctrinaires; but rival military leaders exploited the struggles in their own interest, sometimes taking each side successively; and the instability was intensified by the extreme poverty of the peasantry, which made the soldiery reluctant to return to civil life, by the absence of a regular middle class, and by the concentration of wealth in a few hands, sothat a revolutionary chief whas generally sure both of money and of men. But after 1884 under the rule of Diaz, the Federal system continued in name, but it concealed in fact, with great benefit to the nation, a highly centralized administration, very intelligent, and on the whole both popular and succesful-a modern form of rational despotism.

Iturbide eventually combined with Guerrero, and proclaimed the "Plan of Iguala," which laid down, as the bases of the new
chererat
Nurble
beopane Binperor 4t23-1832. - state, the maintensace of the Roman Catholic religion and the privileges of the clergy, the establishment of a limited monarchy, and equality of rights for Spaniards and native-borm Mexicans. Iturbide sought the co-operation of the viceroy Apodaca, who, however, refused; but he was presently superseded by General O'Donoja, who, Deing unable to get beyond Vera Cruz, recognized the independence of Mexico. O'Donojú shortly afterwards died; the Spanish government repudiated his act; and Spanish troops held the fortress of San Juan de Ulía, off Vera Crur, till 1827. A provisional Junta, nominated by Iturbide, issued a declaration of independence (Oct. 1821), and nominated a regency of five, with Iturbide as its president. The first Mexican Congress met on the 24th of February 1822. A section of it favoured a republic; another, monarchy under Iturbide; another, which was broken up by the refusal of Spain (continued until 1836) to recognize Mexican independence, monarchy under a Bourbon prince. A conflict now arose bot ween the republican pajority and Iturbide, which was settled by a military pronuncia. miento in his favour, and the Congress elected him emperor. He was crowned on the 21st of July 1822. Fresh conflicts brake out between him and the Congress, and Antonio Lopez de Santa Anna, captain-general of Vera Crus, proclaimed a republic,
peomiaing to support the Plan of Iguale. He was defrated at Jalapa and Ariven to Vere Crus; but the army deserted Iturbide, who was compelled to abdicate (April 19, 1823). The Congress deported him to Italy, and granted him a pension. He returned almost immediately, on the pretent that Spain was intriguing against Mexcican miependence, and on landing (having been previously outlawed) was arrested and executed (July 1, 1824).

The Congress had meanwhile undone much of his work, and had divided into Federaliats and Centralists, the latter largely Monarchista and Freemanons. The Federalists were atsong enough to secare the adoption of a constitution (Oct. 4, 1894) modelled on that of the United States, with additional clauses, notably one declaring the Roman Catholic religion to be alone recognized. A mource of abundant discond was opened by the provision that each state should contribute its quots to the Federal revenues. No proper statistical basis for estimatiag the quotas enisted, and the device gave each state a plansible reason for attempting secession on occasion. Moreover, the capital and some territory townd it was made into a "Federal district "-another grievance intensifying the antagonism of the state to the central power. The Freemasons had been largely instrumental in overthrowing Iturbide; they now divided into the Escoceses (lodges of the Scottioh ritual), who were Monarchist and Centralist, and the Yorkinos, who took their ritual trom New York, and their cue, it was alleged, from the American minister, Joel Poinsett. An attempt at revolt, headed hy Nicolas Bravo, vice-prasident, the Grand Master of the Escoceses, was suppressed, but dissensions ensued in the Yorkino party between the followers of President Guerreso (a man bargely of native hlood, and the last of the revolutionary leaders) and of Gomer Pedraza, the promene wrar minister. A conflict broke out, the Guerrerists omernow were victorious, and the pillage of fareign shops in 1825-1631. Mexico City ($\mathbf{2 8 2 8}$), among them that of a French baker, gave a basis for the foreign claims which, ten years later, caused the "Pastry War" with France Meanwhile, attacks on Spanish ships off Cuba by a Mexican squadron, comb manded by an American, David Porter, had induced Spain to send an expedition to reconquer Mexico (1829) which was checked at Tampico by Santz Anna. During the invesion Viec-President Antonio Bustamante declared against President Guerrero; the bulk of the army supported hint. Geverrero was deposed, and his partisans in the south were defeated at Chilparcingo (Jan. 2, 1831); and Guetrero, retiring to Acapuko, was enticed on board an Italian merchant-ship, and treacherously seized, tried and executed (Jan-Feb. 1831). Next year, however, a revolt broke out against Bustamante, which was joined by Santa Anna, and eventually resulted in a pronunciamiento in favour of Gomes Pedrasa. He, and his successor, Vice-President Gomez Farias (1833), assailed the exemption of the clergy and oi military officers from the jurisdiction of the civil courts, and the latter attempted to laicize higher education and to relaz monastic bonds. Santa Anna took advantage of the situation to assume the presidency. He eventually became samtanana, dictator, dissolved Congress (May 31, 1834) and the Dhateros; state legislatures, and substituted creatures of his 1834
own for the governors of the states and mayors of towns, then retiring into private life. A new Congress, having resolved itself into a constituent assembly, followed up this Centralist policy (Dec. 30, 1836) by. framing a new constitution, the Siete Leyes or Seven Laws, which converted the states into departments, ruled by governors appointed by the central euthority, and camsiderably reduced popular representation. Antonio Bustamante became the first president under it. amemmanten The French claims set up by the pillage of foreign Prowdens shops in Mexico had, however, remained unsatisfied, 1837. and in 1838 a French fieet blockaded the coast, bombarded the fortress of San Juan de Ulua, ofl Vera Cruz, and occupied the town. The Mexican government gave way, threatened by Federalist risings and secessions of states, which culminated in 184I. ,Santa Anna appeared, nominally as a
mediator, and put formard the bases of Tacubeya (Sept. 28, 1841), abolishing all the Siete Leyes except the purt roSmana anen lating to the judicial system, arranging for a new Rastarod constituent assembly, and reserving for the presisod. dent (himself) full power of re-organizing the administration. The Centralist government, after a vain attempt to defeat him by professing a more thorough Federalism, gave way to force, and Bustamante was allowed to leave the coantry. But the new Congreas was too Federalist for Santa Anns, and he retired, leaving the reins to Nicolas Bravo, under whom a new Centralist constitution was established (1843). This expressly retained the privileges of the clergy and army, and was in some respects more anti-Liberal than thet of 1836 .
But new complications were now introduced by the question of Texas. Though a state of the Mexican Union, it had been settled from the United States in consequence of a The Terase
gettied from the United States in consequence of a Austin in 1820, and had been estranged from Mexico partly by the abolition of slavery under a decree of President Guerrero, and partly by the prospect of the Centralist constitution of 1836. It then seceded. Santa Anma attempted to reduce it, showing great severity, but was eventually defeated and captured by Houston at the batte of San Jacinto, and compelled to sign a treaty recognizing Texan independence, which was disavowed on his return to Mexico. A state of war thus continued nominally between Mexico and its seceded member, whose independence was recognized by England, France and the United States. The slaveholders in the United States favoured annexation of Texas, and pressed the claims due from Mexico to American citizens, partly perhaps with the aim of forcing war. Most of these' claims were settled by a mixed commission, with the king of Prussia as umpire, in 1840-1841, and a forced loen was raised to pay them in 1843 , wich stimulated the revolt of Paredes against Santa Anna, who had returned to power in 1844- It resulted in Santa Anna's downfall, imprisonment at Perote and eventual exile (Dec. 1844 to Jan. 1845), and the election of General José Joaquin Herrera as president. But Herrera was displaced in the last days of 1845 by a pronunciamiento in favour of Paredes, who undertook to uphold the national rights against the United States, and whe was elected president on the 3rd of January 1846. Texas had meanwhile applied for admission into the American Union. The annezation, rejected in 1844 by the United States Senate, was sanctioned on the ist of March 1845, and carried out on the 2and of December 1845. The Mexican minister withdrew from Washington, and both sides made active preparations for war.

The United States forces were ordered by President Polk to advance to the Rio Grande in January 1846. They eatablished a Wrowhs depot at Point Ysabel (behind the opening of Brazos Ureboof Santiago), and erected a fort in Teman territory, comStitos, manding Matamoros, on the Mexican side of the nio 1846-48.

Grande. This provoked the Mexican forces into a defensive invasion of Texas, to cut the American communications with Point Ysabel. They were, however, defeated at Palo Alto (May 8) and Resaca de la Palma (May 9). There was an outburst of warlike feeling in the United States (with a countermovement in the North), and an invasion of Mexico was planned by three routes-from Matamoros towards Monterty in New Leon, from San Antonio de Berar to Chihuahua, and from Fort Leavenworth to New Mexico. Importance attaches chiefly to the movements of the first force under General Zachary Taylor. During the war preparations President Paredes, suspected of intriguing to overthrow the Republic and set up a Spanish prince, had to give place to his vice-president Bravo, who in his turn gave way before Santa Anna, who was hastily recalled from his exile at Havana to assume the presidency and the conduct of the war (Aug. 1846). He was allowed by the American squadron blockading Vera Crus to pass in without hindrance. Probably it was thought his presence would divide the Mexicans.
The preparatlons of the United States took some months. It was not till the 5 th of September 1846 that General Zachary Taylor could leave his depore at Cemargo on the Rio Grande,
and march on Monterey. It was taken by assault on the 23rd of September; Santa Anms was defeated at Buena Vista (near Saltillo) on the a3rd of February 1847, and forced back on San Luis Potosi. New Mexico was occupied without opposition; Chihuahua was occupied, but not held, owing to the difficulties in maintaining communications; and Upper California was seized in the autumn of 1846 by John C. Fremont, who had been exploring a route across the continent, and by the United States Pacific squadron, and made secure by the aid of the New Mexico expedition. But as Merico still continued to fight, it was determined to reach the capital via Vera Cruz. That city was taken by General Scott after a siege and bombardment (March 7 to 29, 1847); and after winning the battle of Cerrogordo (April 18), and a long delay at Puebla, Scott marched on Mexico City, stormed its defences agalntt greatly superior forces, and effected an entrance after severe fighting on the 13th of September 1847. This virtually ended the war; Santa Anna was deprived of his command, and the treaty of Guadslupe Hidalgo, concluded on the and of February 1848, ceded to the United States Texas, New Mexico and Upper California, in return for a payment of Proaty of $\$ 15,000,000$ by the United States to Mexico, and the assumption of lisbility by it for the claims of its subjects which it had hitherto been preasing aqainst Mexico. This payment was doubtless intended to strengthen the United Stateas title to the conquered territory. It is generally admitted that Mexico was provoked into aggression in order that additional territory might be available for the extension of slavery.

The American forces were withdrawn in May and June $\mathbf{7 8 4} 8$ after the ratification of the-treaty by Merico. Under the presidency of Herrera (1848 -1851) attempts were made to Firnora, restore order and the public credit. An arrangement prasiones was effected with English holders of Mexican atock; 184-asir. an attempt was made to carry out a consolidation of the Internal debt, which failed; the army was reduced and reorganised, and the northern frontier wes defended by military colonies, formed partly of civilized Seminole Indians from the United Staten But the financial situation was desperate; the federal revenue, mostly from customs-which were evaded by extensive smag-gling-was not half the expenditure; and Indian rewolts in Yucatan (1847-1850) and in the Sierra Gorda had added to the strain. Arista succeeded Herrera as president (Jan. 1851), bot resigned (Jan. 1853).
After a sort of interregnum (Jan.-March 1853) Santa Anna wist recalled (by a vote of the majorty of the states under the Plan of Arroyozarco, on the $4^{\text {th }}$ of February 2853 , the result seats Aeme of a pronunciamiento), and made dictator in the mennorb interests of fediration. His measures, partly in- unct-LESK apired by an able Conservative leader, Lucas Alaman, proved strongly Centralist: one is especially noteworthy, theoestablishment of the ministry of "fomento," or encouragement to public works, education, and intellectual and economic development, which is a conspicuous aid to Mexican welfare to-day. He also negotiated (at the end of 1853) the sale of the Mesilla valley (now Arisona) to the United States, but the purchase money was soon dissipated. On the 16th of December 1853 Senta Anna issued a decree making himself dictator, with the title of serene highness. On the rit of March 1854, at Ayutha in Guerrero, a section of the army under Colonel Vilareal proclaimed the Plan of Ayutha, demanding Santa Anna's deposition and the establishment of a provisional government to secure a new constitution. Among the lemders in the movement were Generals Alvarez and Comonfort, and it is said that Porfirio Dlas, subsequently president, then a young soldier, made hil way to Benito Juares, then in prison, and armanged with him the preliminaries of the revolt. It spread, and Santa Anna left the country (Aug. 1854). ${ }^{1}$
Two filibustering expeditions at this time-one by William Walker, afterwards notorious in Nicaragia, in Lower Californin

[^19](Dec. 1853), the other by Count Raousset de Boulbon in Sonora (July 1854)-added to the general disorder.
The provisional president, General Carrera, proving too Centralist, was replaced by Alvarez (Sept. 24, 1855), two of whose ministers are conspicuous in later history-Ignacio Comonfort, minister of war, and Benito Juarex, minister of finance. Juarez (b. 1806) was of unmixed Indian
bloone. The son of a Zapotec peasant is a mountaln finance. Juarez (b. 1806) was of unmixed Indian
blood. The son of a Zapotec peasant is a mountaln village of Oaxaca, he was employed as a lad by a bookbinder in Oaxaca city, and aided by him to study for the priesthood. He soon turned to the law, though for a time he was teacher of physics in a small local college; eventually went into politics, and did excellent work in 1847 as governor of his native state Juarez almost immediately secured the enactment of a law (Ley Juarez, Nov. 23, 8855) suhjecting the clergy and the army to the jurisdiction of the ordinary courts. "Benefit of clergy" was the curse oi Mexico. Officers and soldiers could be tried only by courts-martial, the elergy (including numbers of persons in minor orders, who were practically laymen) only by ecclesiastical courts. The proposed reform roused the Clericals to resistance. Alvarez gave place (Dec. 8, 1855) to his war minister Comonfort, who represented the less anti-Clerical Liberals. He appointed a commission to consider the question of draining the valley of Mexico, which adopted the plan ultimately carried out in $1890-$ 1900; suppressed a Clerical rising in Puebla (March 1856), which was punished by a considerable confiscation of church property; sanctioned a law releasing church land from mortmain, by providing for its sale, for the benefit, however, of the ecclesiastical owners (called after its author Migucl Lerdo de Tejada, brother of the subsequent president), and a new draft constitution, largely modelled on that of the United States (Feb. 5, 1857). The clergy protested violently, and the Plan of Tacubaya (Dec. 17, 1857), which made Comonfort dictator, provided for the construction of a new constitution under his auspices. He was presently displaced by a thorough reactionary, General Zuloaga, and expelled from Mexico early in 1858; and for three years Mexico was a prey to civil war between two rival governments -the Republicans at Vera Cruz under Juarez, who, as Chicf Justice of the Supreme Court, succeeded Comonfort; and the reactionaries at the capital. The latter were at first presided over hy Zuloaga, who, proving incompetent, was replaced at the end of 1858 hy Pezuela, who early in 1859 gave place to Miguel Miramon, a young, able and unscrupulous soldier who was shortly afterwards accepted as "constitutional "president by his party. The Juarists were defeated outside the city of Mexico twice, in October 1858 and on the 11th of April 1859. ntramon. On the second occasion the whole body of officers, authortty, if not by his express orders, together with several surgeons (including one Englishman, Dr Duval) (the fifty-three "martyrs of Tacubaya"). This atrocity caused great indig. nation in Mexico and abroad: the reactionists were divided, their financial straits were extreme, as the Juarists held all the chief ports. Juarez was recognized by the United States, and allowed to draw supplies of arms and volunteers thence; and in July 1859 he published laws suppressing the religious orders, nationalizing ecclesiastical property (of the estumated value of $\$ 45,000,000$), establishing civil marriage and registration, transferring the cemeteries to civil control, and, in short, disestablishing the church. But the apparent hopelessness of any ending to the conflict, together with the frequent outrages of both parties on foreigners, afforded strong reasons for foreign intervention. Early in 1859 President Buchanan had recommended the step to Congress, which did not respond. On the 12 th of December 1859 the M'Lean-Juarez treaty was concluded, which gave the United States a sort of disguised protectorate over Mexico, with certain rights of way for railroads over the Isthmus of Tehuantepec and between the Rio Grande and Pacific. The American Senate, however, did not ratify the treaty, and a motion for its reconsideration fate in $\mathbf{8 6 0}$ came to nothing, owing to the approach of the War of Secession.

When Napoleon III. was in captivity at Ham he dreamed of
a Central Ametica civilised and opened ap to modem enterprise by a transoceanic canal ; and the clerical refugees in Paris, among them Labastida, archbishop of Mexico, easily influenced the Empress Eugenie, berself a Spaniard, to intereat her husband in the cause of centralized monarchy and the church: it is said that even in 1859 they had thoughts of aetting up the Archduke Maximilian as zuler of Mexica.

The question of a joint intervention of Great Britain, France, Spain and Prussia was moated between those powers in 1860. Early in 1859 the outrages on British subjects had orontwow caused the British minister to break off diplomatic of Mmanan, relations. Forced contrihutions had been levied by 18 sa.
both sides on goods or bullion, being European property, the reactionaries being tbe worst offenders; and there were numerous cases of murder and robbery of Europeans. At last, on tbe 17th of November 1860, Miramon, under the plea of necessity, seized $\$ 330,000$ in specie which had been left under seal at the British Legation and was intended for the bondholders. On the and of December 1860 his forces were routed by the Juariat general Ortega at Arroyozarco, and his government was overthrown.

Juarez entered Mexico City on the inth of January 1861. He soon found that his government was held responsible to Europe for the excesses of its rival as well as its own. Miramon's government had violated the British Legation; the Spanish minister, the papal legate and the representatives of Guatemala and Ecuador were expelled from the country for undue interference on behalf of the reactionaries; the payments of the British loan were suspended by Juarez's Congress in Jatoprome. July 1861; and various outrages had been committed chom 186 L on the persons and property of Europeans for which no redress could be obtained. The French cherge d'afaires, Dubois de Saligny, who had been sent out in November 1860, urged French intervention, and took up the Jecker claima Jecker, a Swiss banker settled in Mexico, had lent Miranon's government in 1859 $\$ 750,000$ (suhject, however, to various deductions): in return, Miramon gave him 6% bonds of the nominal value of $\$ 15,000,000$ which were ingeniously disguised as a conversiou scheme. Jecker had failed early in 1860 , Miramon was overthrown a few months later. Jecker's creditors wero mostly French, but he still held most of the bonds, and there is reason to believe that be won over Dubois de Seligny by corrupt means to support his claims. Intercepted correspondence (since confirmed from the archives of the Tulleries) showed that the Duc de Morny promised Jecker his patronage in return for 30% of the profits (De la Gorce, Hist. du Seiond Empire, IV c. 1) An imperial decree naturalued Jecker in France, and Napoleon III took up his claim. A convention between Great Britain, France and Spain for joint interference in Mexico was signed in London on the 3 ist of October 186x. A separate errangement of the British claims was negotiated hy Juarca, but rejected by the Mexican Congress, November 186r; and the assistance of the Unted States with a small loan was declined, Mexican territory being demanded as security. On the 14th of December Vera Crus was occupied by Spanish troops under General Prim, the French fleet and troops arrived soon alter, with instructions to seize and bold the Gulf ports and collect the customs for the three Powers till a settlement was effected, Great Britain seat ships, and landed only 700 marines In view of the unhealthiness of Vera Crux, the convention of Soledad was concluded with the Mexican government, permitting the foreign troops to advance to Orizaba and incidentally recognizing Mexican independence. But as the French harboured leaders of the Mexican reactionaries, pressed the Jecker claims and sbowed a disposition to interfere in Mexican domestic politics, which lay beyond the terms of the joint convention, Great Britain and Spain withdrew their forces in March 1862.
More troops were sent from France. Their advance was checked by Zaragoza and Porfitio Diaz in the battle of Cinco de Mayo, on the 5th of May 1862, and In September of that year 30,000 more French troops arrived under General Forey Winteriagrat Orizaba, they recommenced their advance
(Feb. 17, r863), besleged and reduced Puebla, and entered Mexico City on the 7 th of June. A provisional government of Mexicans, frrech nominated directly or indirectly by Dubois de Expenana, Saligay, adopted monarchy, ofiered the crown to
$1865-43$ Maximilian of Austria, brother of the Emperor Francis Maximilian of Austria, brother of the Emperor Francis Joseph, and shoald be refuse, left its disposal to Napoleon III.

Maximilian, after some difficulty as to renouncing his right of succession to the throne of Austria, accepted the crown mexiamen suhject to the approval of the Mexican people, and Bugoner reached Mexico city on the 1 ath of June $\mathbf{1 8 6 4}$. Juarez sase meanwhile had set up his capital, first in San Luis Potosi, then lo Chihuahua. The new empire was unstable from the first. Before Maximilian arrived the provisional government had refused to cancel the sales of confiscated Church iands, as the clericals demanded. When be carne, a host of new difficulties arose. A new loan, nominally of about eight millions sterling. but yielding little more than four, owing to discount and commission, was raised in Europe, but no funds were really available for lts service. Maximilian carried the ciaborate etiquette of the court of Vienna to Mexico, but favouring toleration of Protestantism, and the supremacy of the Crown over the Church, he was too liheral for the clericals who had set him up. As a foreigner he was unpopular, and the regiments of Austrians and Belgians which were to serve as the nucleus of his own army were more so. His reforms, excellent on paper, could not be carried out, for the trained bureaucracy necessary did not exist. For a time be nominally held sway over about two-thirds of the country-roughiy, from lat. 18° to 23°, thus excluding the extreme north and south. Oaxaca city, under Porfirio Diaz, ${ }^{2}$ capitulated to Bazaine-who had superseded the too pro-clerical Forey in October 1864-in Fehruary 1865 , and by the autumn of that year the condition of the Juarists in the north seemed desperate. But the towns asked for permanent French garrisons, which were refused, as weakening their own power of self-defense. Instead, the country was traversed by fying columas, and the guerillas dealt with by a French service of "contre-guerills," who fought with much the same savagery as their foes. Directly the French troops had passed, Republican bands sprang up, and the non-combatant Mexicans, to save themselves, could only prafess neutrality. Yet on the 3rd of October 186 s , Maximilian, misled by a false report that Juarez had left the country, issued a decree declaring the Juerists guerillas, who, whenever captured, were to be tried by courtmartial and shot. Mexican generals on botb sides had done as much. But Maximilian's decree prepared his own fate.

The American Civil War ended in the spring of 1865 , and a strong popular feeling was at once manifested in favour of asserting the Monroe doctrine against Maximilian's government. In the summer there were threatening movements of United Maximina States troops towards the Rio Grande; early in 1866 deortod by Napoleon III. announced his intention of withdrawing Prames. his forces; in response to a note of Seward, the United States secretary of state, of the 1 ath of February 1866, he was induced to promise their return by tbree instalmentsin November 1866, March and November 1867. Maximilian now turned for support to the Mexican clericals; meditated abdication, but was dissuaded by his wife Charlotte, the daughter of Leopold I. of Belgium (and "the better man of the $t w o$," as he had once jestingly said), who went to intercede for him with the emperor of the French. Finding him obdurate, she went on to appeal to the pope; while at Rome she went mad (end of September 1866).

Maximilian had meanwhile drawn nearer to the clericals and farther from the French, and, to protect French Interests, Napoleon III. had decided to send out General Castelnau to supersede Bazaine, arrange for the withdrawal of the French forces in one body, and restore the Republic under Ortega, who had quarrelled with Juares, and was therefore, of all republicans, least unacceptable to the clericals. But iearing the prospect, they induced Maximilian, who had retired to Orizaba for his
${ }^{2}$ Diaz refused parole, and was confined at Puebla for some months.
health, to remain. Fie yielded on condition that a congress of all parties should be summoned to decide the fate of the empire. Hereupon he returned to the capital; the Juarist dominion extended rapidly; the French troops left (in one body) on the 5th of February 1867, and shortly after Maximilian took command of the army at Querétaro. Here, with Miramon, he was besieged by the Juarists under Escobedo, and the garrison, when about to make a last attempt to break out, was betrayed ${ }^{2}$ by Colonel Lopez to the besiegers (May 15,1867). Execrion of Maximilian, with the Mexican generals Miramon and Maximultan. Mejia, was tried by court-martial, and, refusing (or 1867.
neglecting) to avail himself of various opportunities of escape, was convicted on charges which may be summarized as rebellion, murder and brigandage, on the 14th of June, and shot, with Miramon and Mejia, on the 1gth of June 1867, despite many protests from European governments and prominent individuals, including Garibaldi and Victor Hugo. (An effort to save him made by the U.S. Government was frustrated by the dilatorinesa of the U.S. Minister accredited to Juarez's Government.) After considerable difficulty with the Republican Government, his body was brought to Europe.

Meanwhile Porfirio Dias had captured Puebla (Aprl 2) and besieged Mexico City, which fell on the 21st of June. The last anti-Juarist stronghold (Inayarit) submitted on the 20th of July 1867. A good deal of discontent existed among the republican rank and file, and Juarez's election in October to the presidency was opposed by Diac's friends, but without success. But so soon as Juarez was elected, insurrections broke out, and brigandage prevailed throughout the following year. There were unsuccessful insurrections also in 1869 (clerical) and 1870 (republican), but an amnesty, passed on the 13th of October 1870, helped to restore peace; trouble again arose, however, at the 1871 election, at which the candidates were Juarex, Sebastian Lerdo de Tejada and Diac. Juarez's continued re-election was regarded as unconstitutional, and no party obtaining a clear majority, the matter was thrown into Congress, which elected him. Diaz's supporters refused to recognize him, and a revolution broke out, which went on sporadically till Juarez's deatb on the r8th of July Doateof 1872. Sebastian Lerdo de Tejada;, as president of cheras, the Supreme Court, succeeded him, and amnestied 1073. the rebels, but made no further concessions. In the next year, however, laws were passed repeating in a stronger form the attacks of 1857 on the supremacy of the Cburch, and probihiting monastic life. The first day of 1873 was marked by the opening of the Vera Cruz \& Mexico railway. Protestant missions established themselves (with some opposi. tion) in the country, and diplomatic relations were renewed with France and Spain (1874). But towards Adminh
tratloa of
Lerdo do
Telacts the close of Lerdo de Tejada's term he was suspected of aiming at a dictatorship, and Diaz, wbom he had proscribed, made preparations for a rising, then retiring to Texas. At the begraning of 1876 the revolution broke out in Oaxaca with the plan of Tuxtepec, which was adopted by Diaz, and proclaimed as the plan of Palo Bianco (March 21). Diaz's attempt to raise the north, however, failed, and, trylng to reacb Vera Cruz by sea, he was recognized on the steamer, and recaptured while attempting a four-mile swim ashore. The purser, however, made it appear that he had again jumped overboard, concealed him for some dayz-generally inside one of the saloon sofas-and belped him to get ashore in disguise at Vera Cruz. He then escaped to Oaxaca and raised a force. Lerdo was declared re-elected, but was overthrown by Dipa after the battle of Tecoac (Nov. 16, 1876) and forced into exile (Jan. 1877), and Diaz was declared president on the 2nd of May portito 1877. A law forbidding the re-election of a presi- Dlat dent till four years had elapsed from his retirement preskone. from office was passed in the autumn of that year.
' Lopez sard he acted as Maximillan's agent, but his story rested on an alieged letter from Maximilian which was disercdited as a forgery: The evidence of his treason was published in E! Nacional of Mexico. Sept. 11, 1887.

Diss's firat presidency ($1870-1880$) was marked by some unsuccessful attempts at revolution notably by Escobedo from Teras in 1878 , and by a more senous conspiracy in 1879 Diplomatic relations were resumed with Spain, Germany, ILaly and some South American states (1877), and France (1880) There were some frontier difficulties with the United States, and with Guatemaia, which revived a chaim dropped aince 8858 to a portion of the state of Chiapas, and there was considerable internal progress, aided by a 100 liberal policy of subsidies to railwaysand even to linesof steamships. The boundary questions were settled under President Gonzalez (1880-1884), relations with Great Britain were renewed in 1884 . The claims of the railways, howewer, necessitated retrenchment on official solaries, and the president's plan for conversion of the debt roused anexpected and successful opposition in an ordinarily subservient Congress. At the end of 1884 Porfirio Diaz was again elected president, and was continually re-elected, the constitution being modified expressly to allow him to contunue in office.

The history of Mexico from 1884 to 1010 was almost void of political strife President Diaz's policy was to tecip down disorder with a strong hand; to enforce the law, to Mexko eader Dias. foster railway development and economic progress, to develop native manufactures hy protective tariffs. to introduce new industries, a.g. the production of silk and wine, of coca and quinine; to promote forestry; to improve elementary and higher education-for all which purposes the Ministerio del Fomento is a potent engine, to encourage coloniza. tion; and, above all, to place the national credit on a sound basis. The first step in this process was a settlement of the Paranctst British debt by direct arrangement with the bond-reopeatas-holders. In 1890 the Spanish bondholders' claims ulan. were aetisfactorily arranged also. In 1891 the tariff was made more protectionist. In 1893 the deprecistion of silver necessitated stringent retrenchment; but the budget balanced for the first time during many years, the floating debt was converted, and a loan raised for the completion of the Tehuantepec Reilway. After 1896 substantial anvzal surpluses were spent in reducing taxation and in the extunction of debt. In 1895 the 6% external debt was converted into a 5% debt, the bonds of which remained at a premium for 1902; in 1806 the alcabajas or interstate customs and mumicipal octrois were sbolished, and replaced in part by direct taration and increased stampduties.

The instlitution by Diaz of the guardias rupales, a mounted gendarmerie composed of the class who in former days drifted pacricatlon into revolution and brigandage, was a potent means ofthe of maintaining order, and the extension of railways Coualry. and telegraphs enabled the govemment to cope at once with any disturbance. The old local revolutions practically disappeared. In $\mathbf{1 8 8 6 - 1 8 8 7}$ there were some distorbances in Coabuila, New Leon, Sinaloa and Tumaulipas; subsequently hardly anything was heard of such disorders except on the Texan frontier, where in 1890 Francisco Rulz Sandoval and in $189 r$ Catarino Garza made incursions into Mexico. Occessionally the Church gave trouhle-tbe presence of foreign priests was complained of; attempts to evade the law prohibiting conventual life were detected and foiled (1891, 1894); and there were Indian risings, repressed sometimes with great severity, among the Mayes of Yucatan, whose last stronghold was taken in i8gi, and the Yaquis of Sonora ($1899-1900$). Under federal and democratic forms, Diaz exercised a strictly centralized and personal rule He was invited to approve the candidates proposed for state governorships; in all law cases affecting the Government or political matters the judges asked his opinion; he drafted bills, and discussed their text with individual members and committees of congress. Similarly, the state legislatures, as well as the judges and municipal officers, were actually or virtually selected by the state governors. who were practically agents of the president. Now and then the old passions broke out: in September 1898 an absurd attempt to assassinate President Diaz was made by a countryman named Arroyo, but disconten! with Diaz's rule was epparently confined
to a wnall minority.' In 1909 inded there were some disquieting symptoms. Owing to Diati's age the vice-presidency had been revived in 1904, and Don Ramon Corral elected to it; but at the elections of 1909 a movement arose in favour of replacing him by General Bernardo Reyes, Governor of Nuevo Leon, but he was disposed of by an official commission to study the military systems of Europe. It -was, therefore, regarded as certann that, should President Diaz die in office, Señor Corral would succeed him without serious difficulty.

In foreign affairs the rule of Diaz was uneventiul. There were transient disputes with the United Statcs (1886, 1888). In 1888-1890 and 1894-1895 a boundary dispute with Gunternala became serious. But Guatemala gave way at the threat of war (Jan. 389s) and a new

Forelge

Alrats.
treaty was made (April 1, 1805). Again in 1907 there was some inction owng to the murder of a Guatemalan ex-president by a compatnot in Mexico. later in the year, however, the Mexican government was active in stopping a war between its Central American neughbours In the difficulty between England and the United States over the Venezuelan boundary (Dec. 1895) Mexico expressed strong adherence to the Monroe doctrine in the abstract. and suggested that its maintenance should not be left whoily to the Unicd States, but should be undertaken by all American Powers. The first Pan-American congress met in Mexico City in 1901 a and the country was represented at the second, held in Rio Janeiro in 1go6. Mexico also took part in establishing the permanent Central American Court of Arbitration. inaugurated on the 2 gth of May 1908 at Cartago, Costa Rica, under the Washangton treaties of December 1007, and showed readiness to associate herself with the Government of her great northern neighbour in preserving peace among the Central American States. On the 17th of October 1909 President Taft and President Diaz exchanged visits at the frontier at El Paso, Texas.

In brief, under President Diaz's rule the history of Mexico is mainly economic. In the six financial years $1893-1894$ to 1890-1900 inclusive the yield of the import duties increased by upwards of 80%; the revenue from stamps over 60%, though the duties were reduced; the postal revenue from $1895-1896$ to $1809-1900$ rose 60%; the telegraph reveuue over 75%. Again, in 1898-1899 the total ordmary revenue of the state was $66.0 \times 3,921$; in 1006 1907 it had increased to fas.428.632, or hy more than 90%, and though 1907-1908 was a year of depression its total revenue ($\mathbf{f} 1 \mathrm{I}, 177,186$) exceeded that of aoy year save its immediate predecessor. The great dreinage scheme which completed the works of the 17th century by taking out the surplus waters of the southern lakes of the valley of Mexico was devised in 1856 , begun under Maximilian, proceeded with intermittently till 1885, then taken up with improved plans, practically completed by 1806. and inaugurated in 1900, ${ }^{3}$ the harbour of Vera Cruz was finished in 1002; the Tehuantepec railway, likely to prove a formidable rival to any interoceanic canal, was opened on the 24th of January 3 go6 All three were the work of an English firm of contractors. the head of which was Sir Weet man Pearson. American. and later Canadian, capital and enterprise have also been very largely concerned in the development of the country; and its progress was not permanently interfered with hy the great earthquakes of April 1907 and July 1909 at Acapulco, and the floods in August 1009 at Monterey. In 1891 clementary education was reorganized, and made rompulsory, secular and gratuitous. Great attention has been paid to higher education, and-at least in the hospitals-to modern sanitation and hygiene.

Authonrtiss.-For English readers the standard work is H. H. Bancroft, Collected Works (Histones of the Pacific Statos. Central America, \&c., vols. x.-xiv (Mexico. 15a1-1887) with vals. xv, xva.
${ }^{2}$ Don Augutin lturbide. grandeon of the emperor, godson and (perhaps) at one time the destined heir of Maximilian. was turned out of the army and imprisoned in 1890 for abusing President Diaz ${ }^{\text {\& }}$ For a fult account of the works gee J. B. Body in Praceedings of the Itrstitubion of Civil Enginters. cxitit. 286, 599.
(Texas), and vol. xvil. (New Mexico, \&c.). Mention may also be made of Caston Routier's Historre de Mexique (1895). Standand Mexican authorities are C. M. de Bustamante, Quodro hustorica de la retolucion mexscma, 6 vols. (Mexico, 18,3z-18,46); Lucas Alaman, Historia de Mexuco (Mexico, 1849-1852). N. de Zamacots, Historia de Mesnco desde sus hempos mas remolos hasta nosiras diasa 19 vols. (Barcelona, $1876-1882$). J E Hernindez y Davalos, Coleccion de documentos para la historia de la Independencra (Mexuco, 6 vols). A huge and informative illustrated work, ediled by Justo Sierra (3 vols large 4to), sumptuously produced and badly translated, is Mexico, its Social Evolution (Barcelona, 1900-1904). a useful and handy chronicle 15 Nicolas Leon's Compendro de la historis general de Mexico hasta el aito de 1900 (Mexico and Madrid, 1902). For the colonial period, Alexander v Humboldt. Essai politique sur la royaume de le Nouwtle Espagne (Paris, 1811, 2 vols., and atlas; also an English translation). Fos the war with the United States see R. S. Rupley. The Wor with Mexuo (New York, 1849); E. D. Marse Geld, The Merican War (New York, 1849), and Winfield Scott's Memors For Maximilan, the Blue-books on Mexican affairs contained in Accomets and Papers (presented to parliament), vol. Lxv 1862, and vol. Uxiv 1863, are valuable; E. de Kératry, La Creance Jecker. lempereur Moximilien. son élevatron et sa chule (Iranslated into English by Venables) ; La Contre-guerilla francarse au Mexique, are specially noteworthy, Prince Felix Salm-Salm's Drary gives valuable information as to Maximilıan's decline and fall. Also Dela Corce, Hisferfe du second empere. vols iv v I I F. Domenech, L'Empire mexicom (Mexico, 1866), and Le Mexugue tel gu' 1 est (Paris, 1867) : Daran, El General Mıguel Miromon (in French) (Rome, 1886). Schmidt von Tavera, Gesch d Regicrung d. Kaisers Maximpian I. (Vienna, 1go3). Ulick Ralph Burke's Life of Bento Juares (London, 1894) is of considerable value and interest. For the period since 1887 information in English must be sought chiefly in magazine afticles. Matins Romero," The Garza Raid and its Lessons" North American Reszew (Sept. 1892): Don Agustin Ifurbide, "Mexico under Duaz," ibid (June 1894): Romero, "The Philosophy of Mexican Revolutions.". ibud. (Jan. 1896); and C.F.Lummis, "The Awakening of a Nation" (New York. 1898 , previously in Harper's Magazane), are valuable as giving information (especially the last named) and points of view. Van Dyke, "Polifics in Mexico," Harper's Magazine (1885), vol |xxi., gives particulars of the opposition to Conzalez"\$ debt conversion scheme of 1884. President Diaz's message of November 1896, giving an account of his stewardship from 1884 to that year, has been iranslated into French (Rappori du Ginécel Porfirio Dues d ses compatriotes sup les actes de son admenistration. Efc.), edited by Auguste Genin (Paris, 8897) The early constitutions of the K.public have been publashed (in Spanish) in three volumes; a study of that of 1857 by B Moses (of the University of California) is in the Amnals of the Amerscon Academy of Polutical Science. 1t. i. 1891 . Various books, chiefly Amertcan, have been wriiten on Mexico of late years from a tourist's standpoint. Mrs Alec Tweedie's Mexuco as I saw if (London, 1901) and Life of Porfirio Diaz (1906) contain valuable information personally obtained from good authorities in Mexico. See also Perry F. Martin, Mexico of the Twentueth Cemtury, 2 vols (London, 1907) ; and C. R. Enock, Mexico (1909). (J.S.MA.)'

MEXICO, state of the republic of Mexico, bonnded N. by Hidalgo, E. by Tlaxcala and Puebla, S. by Morelos and Guerrero, and W. by Michoacin. Pop. (1900). 934,468, largely Indian Area, 9247 sq. m.. a large part of which lies within that great depression of the Mexican plateau known as the Valley of Mexico. Enclosed within its boundaries, except on the south. is the Federal District and capital city of Mexico with an area of $463 \mathrm{sq} . \mathrm{m}$., which is not included in that of the state. The state is divided into two unequal parts by the Sierra de Ajusco and Montes de las Cruces, which form a wooded ridge across it from east to west, with a general clevation of about $10,000 \mathrm{ft}$. shove sea-level, or about 2500 above the plateau level. These ranges are part of a broken irregular chain which sometimes bears the name of Anahuac. A considerable part of the northern plateau consists of a broad plan, once the bed of a great lake but now covered with swamps, sodden meadows and lakes The surrounding country drains into this depression, but an artificial outlet has been created by the opening of the Tequixquiac tunned Beyond its margin the plateau drains west ward to the Pacific through the Lerma, and norih-east to the Gulf through the San Juan and Panuco. South of the Sierra de Ajusco the country is roughly mountainous and dralns to the Pacific through tributaries of the Balsas. Within the lacustrine depreasion of the north are the lakes of Zumpango. San Cristobal. Xaltocin. Chalco. Xochimilce, and Texcoco, the latter three lying partly or wholly in the Federal District. Texcoco has the lowest level and its water is hrackish and undrinkable, though that of the streams fowing into it and of the other lakes is sweet.

Lake Xochimilco is celebrated for its "flosting gardens" or chinampas (see Mexico, Federal Disteict or). The principal industries of the state are agricultural, and the principal products are cereals, sugar, maguey (from which "pulque" is made), coffee, and fruit. Stock-ratsing has also had a profitabie development, owing to the proximity of the national capital. The manufacturing industries are important; among the manufactures are cotton and woollen fabrics, flour, dairy products, glass-ware, pottery, bricks, wines and spirits. The making of "pulque" from the sap of the maguey plant (Agore americana) is the chief industry of the state, and the product is exported in large quantities to the national capital. The state is traversed by the Central, National, Mexican International and Interoceanic railways, and by sbort lines from the national capital to neighbouring towns. The capital is Toluca, and other important towns are Zumpango (pop. 5942 in 2900), $30 \mathrm{~mm} . \mathrm{N}$. of the national capital, Tenango del Valle (588i in 1900), is m. S.E. of Toluca, and Lerma (estimsted, 7200), near the western fromier of the state.

MEXICD, a city and the county-seat of Audrain county, Missouri, U.S.A., N.E. of the centre of the state, and about 110 m. N.W. of St Louis Pop. (1890), 4789; (1900), 5099 , including 948 negroes and III foreign-born; (1gro), 5939. It is served by the Chicago \& Alton, the Chicago, Burlington \& Quincy, and the Wabash railway systems. Mexico is the seat of Hardin College and Conservatory of Music (Baptist, 1873), for young women, an institution founded and endowed hy
 1874, and of the Missouri Military Academy (1889). The city ia situated in the blue grass region of Missouri, and is a shippingpoint for borses and muies. Among the manulactures are flour, shoes and fre-clay products. Mexico was iaid out as "New Mexico" in 1836, and became the county-seat under its present name in 1837. It was incorporated as a town in 1855 , was entered by the Wabash road in 1858 and by the Alton in 1872, and was first chartered as a city in 1874.

MEXICO CITY, capital of the Republic of Mcsico and chiet town of the Federal District, near the southern margin of the great central platean of Mexico, in lat. $19^{\circ} 25^{\prime} 45^{\circ} \mathrm{N}$., Jong. $99^{\circ} 7^{\prime} \mathrm{W}$. It is about 200 m . in a direct line W. by N. of Vera Cruz. its nearest port on the Gulf of Mexico, with which it is connected by two railway lines, one of which is 264 m . long; and about 181 m . in a direct line N.N.E. of Acapuico, its nearest port on the Pacific, with which it is connected partly by rail and partly by a rough mountain trail (the camino real) to the coast. Pop. (1900), 344.721.

The city stands on a small plain occupying the south-western part of a large lacustrine depression known as the Valley of Mexico (El Valle de México), about 3 m . from the western shore of Lake Texcoco, whose waters odce covered a considerable part of the ground now occupied by the city. The Valley, including the drainage basin of Lake Zumpango, has an area of $2219 \mathrm{sq} . \mathrm{m}$. (1627 sq . m. without that basin). The elevation of the city above sea-level is 741 s ft., only a few feet above the level of Lake Texcoco The general elevation of the Valley is about 7500 ft , that of Lake Zumpango being 7493 ft ., and of Lake Chalco 7480 ft The rim of the Valiey is formed by spurs of the transverse cordillera on the north and south sidesthe Sierra de Guadalupe (650 to 750 ft . above the city) on the north, and the Sierra Nevada with its snow-clad peaks of Poporatapetl and Ixtaccihuatl farther away to the south-eastand by a part of the Sierra de Ajusco, known as the Montes de las Cruces, from which the greater part of the city's water supply is derived. Lake Texcoco (Tecoco or Tercwco) is a comparatively shallow body of brackish water, with an area of about 11) sq m., and is fed by a numher of small streams from the neighbouring mountains, and by the overflow of the other laket. Its shores are swampy and desolate and show considerable betts of saline incrustations with the fall in its level. The Aztecs settled there because of the security afforded by its islands and shallow watera-their city, Tenochtillin, being so compietely surrounded by water that a handful of warriors could easily
defend its approaches aginat id greathy superior force. The Chatco and Xochimilco lakes, 8 or 9 m . to the southwerd, which are separated by a narrow sidge of land, are connected with the lower part of the city by an artifcial canal, called "La Viga," 16 m . long and 30 ft . wide, which serves as an outlet for the overflow of those lakes and as a waterway for the natives who bring in flowers and vegetables for salc. Lake Xochimiloo, celebrated for its chinampas, or "floating gardens" (see Mrxico, Federal Distajct of), is supplied very largely by fresh-weter springs opening within the lake itself, which the city has partially diverted for its own water supply. Lake Chaloo is also greatly reduced in size by railway fillings and irrigation works, to the great distress of the natives who have gained their living by fishing in its waters since long before the Spanish conquest.

The climate of the city is temperate, dry and healthful. The temperature ranges from a minimum of $35^{\circ} \mathrm{F}$. in winter to a maximum of 79° in summer. The winter range is 35° to 68°, and the summer 50° to 79°. The nights are alweys cool. The year is divided into a wet and dry season, the former from April to September, the latter from October to March. The rainfall, however, is light, about 20 to 25 in., but, with the assistance of irrigation, it serves to sustain a conalderabla degree of cultivation in the neighbourhood of the city. The bealth of the city, unfortunately, does not correspond with its favourable climatic conditions. With a wet, undrained subsoil and a large population of Indians and half-breeds living in crowded quarters, the death rate has been notoriously high, though the completion of the Valley drainage works in 1900 , supplemented by underground sewers in the better parts of the city, and by better sanitation, have recently improved matters. The annual deathrate per 1000 was 54 per 1000 for the Federal District in 1901, 50 in 1902; 48 in 1903, 46 in 1904, and 56 in 1905; the increase for the last-mentioned year being due to an epidemic of typhus fever.

The city is laid out with almost unbroken regularity and is compactly huilt-the streets running nearly with the cardinal points of the compass. The new and better residence sections are on the western side; the poorer districts are on the eastern side nearey the swampy shores of Lake Texcoco. As the name of a street changes with almost every block, according to the old Spanish custom, a list of street names is sometimes mistakenly accepted as the number of continuous thoroughfares in the city, to that it has been said that Mexico has 600 to 900 streets and alleys. An attempt was made in $\mathbf{8 8} 9$ to rename the streetsall running east and west to be called coemidas, all running north and south calles, and all continuous thoroughfares to have but one name-but the people clung so tenaciously to the old names that the government was compelled to restore thern in 1907. Outside the Indian districts of the eastern and southern outskirts, the streets are paved with asphalt and stone, lighted with electricity and gas, and served with an efficient street railway service. The poitical and commercial centre of the city is the Plaza Mayor, or Plaza de la Constitucion, on which face the cathedral, national palace, and municipal palace. Grouped about the Plaza de Santo Domingo are the old convent and church of Santo Domingo, tbe court of the Inquisition now occupied by the School of Medicine, the offices of the Department of Cotmmunicaciones, and the old custom-house (aduana). Close by are the old church of the Jesuits and the mechanics' school (arles y oficios) with its large and well-equipped shops. Among other well-known plasas are: Loreto, on which faces the great encloeed market of the city; Guardiola, in the midst of handcome private residences; San Fernando, with its statue of Vicente Querrero; and Morelos, with its marble statue of the nitional hero of that iname. The Paseo de la Reforma, the finest avenue of the city, is a broad boulevard extending from the Avenida Juirez south-west to Chapultepec, a distance of nearly three miles. At intervals arecircular speces, called "glorietas," with statues (t he famous bronze equestrian statue of Charles IV., and monuments to Columbus, Cuauhtemoc the last of the Aztec emperons, and Juírez). Other notable avenues are Bucareli and Julires, and the Avenida de la Viga, which skirts the canal of
that mame. The principal breinesa streets runs weatward from the Plaza Mayor toward the Alameda, and is known as the Calle de los Plateros (Silversmiths' Street) for two squares, Calle ds San Francisco for three squares, and Avenida Juarez along the south side of the Alamede to its junction with the Pasea. The Alameda, or public garden, $\frac{1}{1} \mathrm{~m}$. west of the Plaza Mayor, covers an area of 40 acres, and occupies the site of the old Indian market and place of execution, where occurred the first auto-defe in Mexico in 1574.

The great cathedral mands on or near the site of the Axtec temple (tacoalli) destroyed by Cortes in 1521. The foundations were haid in 1573, the walls were completed in 1615, the roor was finiaked in 3623 , its consecration took place in 1645 and its dedica. tion in 1667 the towers were completed in 1791 , and the great chureh was finished about 1811 . It is 426 ft . in length by 197 ft . in widch, and ite towers rise to a height of 204 ft . Ite seneral plaz is that of a Greek croms, with two great naves and three ainles, twenty side-chapels and a magnificent high altar supported by marble columns and surrounded by a tumbego belustrade with sixty-two tumbago statues carrying elaborate candelabra made fropa a rich alloy of gold, wilver and copper. The elaborately carved choir is also encloced by tumbego railinge prede ia Macao, weighing 26 tons. The vaulted roof is supported by twenty Doric columns, IBO ft. in height, aad the whole interior is richly carved and gilded. The wails are covered with rare paintings. Standing clowe beside the cathedrat is the highly ormamented façade of a smaller church cailed EI Sagrario Metropolitana. The city has about sixty church edifices, inciuding La Profiem, Loreto, Santa Terean, Santo Domingo and San Hipolito. At the time of the secularization of Church properties there were about. 120 religious edifices in the cityehurches, convente, monasteries, \&c.-many of which were tarned over to mecular usen.
The national palace, also on the Plana Mayor, has a frontage of 675 ft . on the east of the Plaza, and covers a square of $47,840 \mathrm{zq}$ yds., or nearly 10 acres. It contains the executive offices of the government and thoce of five cabinet mininters (interior, forcign affairs, treasury, war and juatice), the senate chamber, the geperal archives, national muteum, observatory and meteonolofical bureau. The palace occupies the site of the residence of Moctezuma, which was deatroyed by the Speniards, and that of Hernendo Corths, which was also deatroyed in 8092 . It has three entrances on the Plaza, and over its anain gateway hanga the " liberty bell " of Mexion, firat rung by the humble parish pricst Hidalgo, on the nigbt of the 16 th of September 18 so , to call the people of Dolores to arms, and now rung at midnight on each recurriag anniveryary by the president himself. The national mupeum. which occupise the east side of the national palace, is rich in Merican antiquitien, among which are the famous "calendar stone," ${ }^{1}$ suppowed to be of Toltec origin, and the "sacrificial stone " found in the ruips of the great leacalli dentroyed by Cortis. Near the cathedral is the monle de plieded, or government pawnshop, endowed in 1775 by Pedro Romero de Terferom (conde de Regh) with $(75,000$, and at one time carrying oa a regular banking business including the issue of banknotes. Its buainess is aow lisnited to the isuce of small loane on personal property-the aggregate sometime: reaching nearly L50,000 a month. The netional library, which hat upwards of 225,000 volumes, occupics the old St Augustine Church, dedicated in 1692 and devoted to its present use by Juarez in 1867. It contalns an intereating collection of the busts of Mexican celebritie: The academy of San Carlos and school of fine arts (founded in 1778) likewiee containa good collections of paintinge and statuary.

Among oher inatikutions are the new post office, bergun in agoz and finished in 1907; the Minerta, occupied by the schools of mining and engineering; the mifitary school, occupying a part of the castie of Chapultepec; the Iturbide palace, now occu pied as a hotel; the Iturbide theatre, occupied by the chamber of deputies, for which a new legislative palace to cont $2,500,000$ pesos was under construction in 1909; the new palace of justice; the old mint. dating from 1537; the new penitentiary, completed in 1900; the Panteon, with its monuments to the most celebrated Mcxicans: the new general houpital : the jockey clubon Plazi Guardiola, a new university (1910) and new school edifices of modern desigh. The city in likewise generously provided with bospitals and asylums.
The old Spanish edifices were very solidly constructed of stone. and private residences were provided with iron gatee and window guards strong enough to withstand an ordinary aseault. Private houses were aloo provided with flat roofs (asoleas) and battlemente, which gave them great defenaive strength, as well as a cool, recluded retreat for their inmates in the evening. The odd Mooriah style of building about an open court, or palio, prevails, and the livingrooms of the family are on the pecond foor. The better residenoes of the old atyle wert commonly of two storeys-the ground-Acor being occupied by shopa, offices, atables and cervants' quarters. The more modern conatructione of the Colonia Jufrea and other new residence dietricts are more sttractive and preteatious in appearance, but are loes solldly built.
Bandelier thinks it should be called the "scone of the Sun.

Mexico was formerly one of the worst drained large cities of the New World, its subsoil being permanently saturated and its artificial drainage being through open ditches into the San Lazaro Canal which nominally discharged into Lake Texcoco. The difference in level between the city and the lake being less than six feet and the hake having no natural outlet, typhus fever became a common epidemic in its lower and poorer sections. The carliest effort to correct this evil was by the Dutch enginecr Maartens (Span., Martinez). who planned a deep cutting through Nochistongo Hill, north of the city, to carry away the overflow of Lake Zumpango (7493 ft. elevation) to the river Tula, a tributary of the Panuco. The cutting was 13 m . long and is known as the Tajo de Nochistongo. It was begun in $1607-a$ year when the city was completely flooded-but was not completed until 1789, and then it was found that the city was still subject to partial inundations, although an enormous sum of money and 70,000 lives of Indian labourers had been expended upon it. The worst inundation in the history of the city occurted in 1629, when its streets were covered to a depth of 3 ft . and remained flooded until 1634 . In 1856 President Ignacio Comonfort invited tenders for drainage works conditional on the use of watete watere for irrigation purposes, and the plan executed consists of a canal and tunnel 43 m . long, starting from the east side and $4^{\frac{2}{4}} \mathrm{ft}$. below the mean level of the city and running north to Zumpango and thence eastward into a tunnel over 6 m . long, which discharges into a small tributary of the Panuco river near the village of Tequixquiac. The greatest depth of the tunnel is 308 ft . below the eurlace. The works were inaugurated in 1900.

For the water supply the Aztecs used the main causeway through their city as a dam to separate the fresh water from the hills from the brackish water of Texcoco, and obtained drinking waler from a spring at the base of the hill of Chapuliepec. The Spaniards added three other springs to the supply and const ructed two long aqueducts to bring it into the cisy. Three other sources were added during the 19th century, and in I899-1900 sleps were taken to secure a further supply from the Rio Hondo. Besides these there are II public and I 375 private artesion wells in the city. All these sources are estimated to yield about 220 to 230 litres per head.

Considerable attention has always been given to education in Mexico, but in colonial times it was limited in scope, and to the dominant classes. The old universily of Mexico, with its faculiies of theology, law and medicine (founded i55I and inaugurated 1553), ceased to exist in 1865 and was succeeded by schools of enginecring. law and riedicine, which have been signally successful. The government also maintains schools of agriculture, comnierce, fine arts, music. pharmacy, technology, and an admirable preparatory or high school, besides a large number of primary and secondary schools for which modern school huildings have been crected. Normal and industrial schools for both sexes are maintained, the latter (aples y oficios) performing a very important service for the poorer classes. In 1908 there were 353 government schools in the city, including is professional and technical schools, and nearly 200 private schools. There are also everal scientific organizations, and societies. The Mexican Geographical Society (Sociedad mexicana de geagraftes y estadistica), founded in 1833, has renderid invaluable eervices in the work of exploration and publication; there are also the Geological Society, the Association of Enginecra and Arebitects, and the Society of Natural History.
Through lack of water-power and cheap fuel Mexico has never been rated as a manufacturing city. However, the development of electric power, and the possibility of transmitting it for long distances, have worked a noteworthy change in this respect, and a large number of industries have been added in recent years. The largest of these electric•power plants is on the Necaxa and Tenango rivers, in the state of Puebla, 92 m . from the city, which is designed to furnish 40,000 horse-power for industrial and lighting purposes, and a duplicate plant was decided upon in Igas. Another plant is in the suburb of San Lazaro, the current being distributed by over 100 m . of underground maina in the city and many miles of overhead wires in its outskirts and suburbs. Other plants are at San IIdefonso, 12 m . distant, and on the Churubusco river. 16 m . wouth. According to a British consular report for Igo4 there were 553 manufacturinte establishments in the city producing cotton, linen and silk textiles, leather, boots and shoes, alcohol and alcohotic beveragen, beer, flour, conserves and candied fruits, cigars and cigarettes, Italian pastes, chocolate, etarch, hats, oiis, ice, furniture, pianos and other musical instruments, matches, beds, candles, chemical, iron and steel, printing-type, paint and varnish, glass, looking-glass, cement and artificial gtone, earthenware, bricks and tiles, momp cardboard, papier michb, cartridges and explosives, white lead, perfumery, carriages and wagons, and corks. To these should be added the foundries and iron-working shops thich add to much to the prosperity of modern Mexico. Perhaps the most important of these manufactorics are the cotton mills, of which there are 13 , and the cigar and cigarette factorics, of which there are 10 . In the subutb, oils, chemicals, cigarettes and bricks are made at Tacuba: cotton texziles at Contreras, San Angel and Tlalpam; paper and boots at Tacubaya, and bricks at Mixcoac and Coyoacan. A little farther a way are the woollen mills of San Ildefonso, the paper-anills of San Rafaci, and important works for the manufacture of railway rolling atock.

The railway connexions include direct communication with one port on the Gull coast and with two on the Pacific-lines were under construction in 1909 to two other Pacific ports-and indirect communication with two on the Gulf. The Mexican and Interoccanic lines connect with Vera Cruz, the Mexican Central with Manzanillo, via Guadalajara and Colima, and the Vera Cruz \& Pacific (from Corduba) with the Tehuantepec line and the port of Salina Cruz. The last-mentioned line also gives indirect connexion with the port of Coatzacoalcos, and the Mexican Central, via San Luis Potosf, with Tampico. A southern extension of the Mexican Central, via Cuemavaca, has reached the Balsas river and will be extended to Acapulco, once the chiel Pacific port of Mexico and the depot for the rich Philippine trade. A Mexican extension of the (American) Southerm Pacific which has been completed from Nogales to Maratlon is to be extended to Guadalajara, which will give the national capital direct communication with the ehriving ports of Mezatlín and Guaymas. In addition to thesc, the Mexican Central and Mexican National, now consolidated, give communicaton with the northern capitals and the United Siates. and the Mexican Southern runs southward, via Puebla, to the city of Oaxaca. These railways, with the shorter lines radiating from the city, connect it with nearly all the state capitals and principal ports.

The population by the census of 1900 was 344.721 -an increase of 14.947 over the returns of 1895 . The great majority of the inhabitants is composed of Indians and half-breeds. from whom come the factory workers, Labourers, servants, porters and other menial wage-arners. In former times Mexico was overrun with meadicants (pordioseros), ragrants and criminals (rateros), and the "Portales de las Flores" on the cast of the Plaza Mayor was a favourite " hunting-ground" for them because of its proximity to the cathedral; but modern conditions have largely reduced this evil. The foreign population includes many capitalists and industrial managers who are doing much to develop the country; the American colony being concentrated in a fine modern residential district on the south-western side of the city.

History.-The City of Mexico dates, traditionally, from the year 1325 or 1327 , when the Aztecs settled on an island in Lake Texcoco. The Aztec name of the city was Tenocht it linn, derived either from Tenoch, one of their priests and leaders, or from teruch, the Indian name for the "nopal," which' is associnted with its foundation. The modern name is derived from Mexitli, one of the names of the Aztec god of war Huitzilopochti, which name was Iater on applied also to the Aztecs themselves. The island settlement, which was practically a lake-village built on islets-some of them undoubtedly artificial, and perched on stakes-grew rapidly with the increasing power and civilization of its inhabitants, who had the remains of an carlier civilization (Tula, Teotibuacán, Cholvla, and other older towns) to assist in their development. About the middle of the 1 sth century their mud-and-rush dwellings were partiy replaced by stone structures, grouped around the central enclosure of the great teocalli, and bordering the causeways leading to the mainland. The town had reached its highest development when the Spaniards appeared in 1519 , when it is said to have had, including suhurban towns, a total of 60,000 dwellings, representing about 300,000 inhabitants. It was at that time about 12 m . in circumference, everywhere intersected hy canals, and connected with the mainland hy six long and solidly constructed causeways, as shown in the plan given in the edition of Cortes's letters published at Nuremberg in 1524 (reproduced in vol, 1. of H. H. Bancroft's History of Mexice, San Francisco, 1883, p. 280). Allowance should be made for the habit of exaggeration among the Spanish adventurers of that time, and also for the diplomacy of Cortes in magnifying his exploits to win the favour of his king. The truth ls, without doubt, that the dwellings of the lower classes were still built of reeds and mud, and covered the greater part of the city's aren, otherwise it is impossible to understand how a mere handful of Spanish soldiers, without tools and explosives, could so easily have levelled it to the ground. After its almost lotal destruction in November 1521, Cortes empioyed some 400,000 natives in rebuilding the city on its former site. Since then the lake hes decreased greatly in extent, its area being reduced to it $\$$ sq. m. and its shore-line being more than 3 m . distant from the city it once aurrounded. During Spanish rule the only brealt in the ordinary course of events was the revolt of 1692, which resuited in the destruction of the municipal buildings. The cily was not much disturbed by the struggle for independence,
but it was afterwards the scene of many a revolution until the dictatorial authority of Porfirio Diaz put an end to petty pronunciamentos and partisan intrigues.

In the war between Mexico and the United States the most decisive campaign was that of General Winfield Scott directed against the Mexican capital. With the advanced guard of an army of about 10,000 men he arrived on the roth of August 1847 at Ayolta, on the national road 16 m . south-east of the city; but as the approaches from this direction were very strongly fortified he cut a new road southward along the eastern shore of Lake Chalco and westward along the southern shore of lakes Chalco and Xochimilco to San Augustin, where his army arrived on the 17th and 18th of August. The city was now 10 m . distant by a direct road to the northward, but as the village of San Antonio, only 3 m . ahead, was strongly fortified, another short detour was made to the westward by cutting a road through a field of broken lava. This movement brought the Americans to the hill of Contreras, whieh was held by General Valencia with a force of some 7000 and 22 pieces of artillery, while President Santa Anna was in the neighbourhood with reinforeements numbering 12,000 or more. The Mexicans were routed on the morning of the 20 th of August after suffering heavy losses. San Antonio was easily taken abort noon of the same day, and in the afternoon the main division of the Mexican army was driven from the stone church and intrenchments at Churublasco. Three days later General Scott agreed to an armistice, but Mcxico rejected the terms of peace, and hostilities were resumed on the 7 th of September. During the armistice the American troops were quartered in and about the village of Tacubaya, about $2 \frac{1}{3} \mathrm{~m}$. west by south of the city. Near Tacubaya, on the north by west, were some massive stone buiidings known as El Molino del Rey, or the King's Mill. When attacked by the Americans under the immediate command of General W. J. Worth in the early morning of the $\overline{\mathrm{B}} \mathrm{th}$ of September these buildinge were defended by more than 10,000 Mexicans under Generals Leon, Alvarez and Perez, and they were captured only after a most desperate fight, which cost the Americans 787 killed and wounded and the Mexicans at least 2000 kiiled, wounded, and prisoners. To enter the city by way of the Tacubaya causeway it was still necessary for the Americans to capture Chapultepec. This hill, defended by about 4000 Mexicans under General Nicolas Bravo, was bombarded on the rath of September, and was carried by escault on the- 13 tb . On the following day the City of Mexico surrendered. It was then occupied by the American army under General Winfield Seott, and held by them until the signing of the treaty of Guadalupe-Hidalgo (Mey 1848).
The French intervention of 1861 led to a second occupation by a foreign power-a French militery force under General Forey taking possession in June 1863. Maximilian, archduke of Austria, was crowned emperor of Mexico in the cathedrat in June 1864, and held possession of the capital until the 21st of June 1867, when it was captured by General Porfirio Dias. Earthquake shocks are of frequent occurrence, but the city rerely suffers any material damage. The great carthquake sbocks of the 3oth and 31st of July 1909, however, caused considerable damage in the city, and a few lives were lost.

For furcher description see H. H. Bancroft. History of Maxico (6 vols, San Francisco. 1883); Robert S. Barrets, Slandard Cuide to the City of Mexico and Vicinky (Mexico, 1900): Thomas A. Janvier, The Mexican Guide (5th ld.. New York, 1890); D. Charnay, Ancient Cities of the New World (Eng. ver., New York. 1887); and the Plano de la ciudad de Mexico. in the Diccienario exciclopddico kispono-americano (Barcelona, 1893), xii. 740.

MBXICO, PEDERAL DISTRICT OP, a territory sel apart for the independent and exclusive use of the Mexican Federal Government, occupying the south-eastern part of the Valiey of Mexico, and taken from and lying witbin the State of Mexico, which forms its boundaries on all sides except the south where it touches the state of Moreros. Pop. (1900), 540,478, largely Indian and half-breeds; area, 463 sq . mo., or accordingiy to later compettation 14981 sq . kilom. (s) 8 sq. m .). The district is very irregular in outline, its greatesk leagth (N.W. to S.E.) being 50 m .,
and its greatest breadth $\mathbf{2} \mathrm{s} \mathrm{m}$. It was formerly divided into one urban municipality and four rural prefectures, but under the law of the 26th of March 1903 it is divided into 13 municipalities, Mexico, Guadalupe-Hidalgo, Atzcapotzalco, Tacuba, Tacubaya, Mixcoac, Cuajimalpa, San Angel, Coyoacan, Tla!pam, Xochimilco, Milpa Alta and Ixtapalapa; the first of these comprises the national capital and its immedinte suburbs, and the other 12 the unequal divisions of the district with a considerable number of towns and villages. Indians and half-breeds form more than onehall of the rural population erigaged in agriculture and gardening, beside which there is a large percentage employed in manufacturing industries. The government of the district is excreised by the national executive in accordance with the organic law of rgo3, though some measure of popular government is vested in municipal councils (ayuntamicntos) elected by popular vote for terms of four years. These councils have lost much of their original legislative character, but they must be consuhed in matters of local importance, such as water supply, sanitary works, and the exploitation or sale of municipal property, and in regard to all contracts affecting the municipality. They can veto by a two-thirds vote the execution of any contract or administrative project, which then, at the end of four months, if agnin vetoed must be taken before the President of the Republic for adjudication. The administrative officers, who are appointed by the mational execulive, consist of a governor of the federal district, the director-general of public works, and the president of the superior board of health. The three form a superior council of district government which exerrises a supervisory and advisory power, "revising, confirming, reforming or revoking the acts of each one of the members of the council, whenever these acts are called in question." The councii also exercises a general supervision of the making of contracts. The governor represents the national govermment, and has special charge of the fire and police departments, prisons, imposition of penaities for violation of ordinances, public diversions and festivities, civil registry, street traffic, inspection of weights and measures, and the sale of intoxicating liquors. The director-general of public works has epecial charge of the water suppiy, streets and roads, parks, monuments, public lighting, drainage, street cleaning, public buildings not under federal control, cemeteries, slaughter-houses and markets, building operations, and all municipal or communal property. The president of the superior board of healit has charge of all stanitary works, general sanitary inspection, the sanitary administration of markets, slaughter-houses and cemeteries, and the introduction of meats from other localities. The government of the district is copied, in part, from that of the District of Columbia in the United States, but its citirens are not disfranchised. They elect the aywntamientos, which exercise no slight influence in local affairs, and, the any state, clect senators and depulies to the National Congress,
The principal towns of the district, some of which are merely suburbs of the capital, are Guadalupe, Tacubaya, Thalpam and Xochimilco. Within the municipal limits of Mexico City are Chapulecpec, Santa Anita and the hot aprings of El Pentn. which are popular suburban resorts easily reached by the ordinary urban tramway service. Chapultepec (Grasehopper Hill) is an isolated rock nearly 200 ft . high surrounded by a beautiful park and surmounted by a fortified structure called the "Casile," containing the summer residence of the president and the national military school. A Gnely gradod noad leads to the sumanit. The park contains a grove of old cyprese trees (Taxodimm distichom, called "ahuchuetes" by the natives), one of which is 45 ft . in circumference and nearly 200 ft . high. The hill is ncarly 3 m . south-wrst of the city and once commanded one of its principal causeway approaches. It was astaulted and captured by ithe American forces uader General Winfeld Scott on the 13th of September 1847, after a seubborn resistance. A monument to the cadets of 1 he military chool who died in this battle stands in the park. The eastle, which was built by the viceroys, was greatly embellished by the emperor Maximilian, who planned for it the drive kaown as the Peseo de la Reforma. Of the neighbouring towns Guadatupe or Guadalupe-Hidalgo (pop. 5834 in 1900), 2 m m_{g} porth by east from Mexico City, near the shore of Lake Texcoco. Is chicfly known for ite shrine to Our Lady of Guadalupe, who is smid to have appeared there the Indian Juan Diefo in 1531. The shripe tatads on the
principal plaza and is viaited by many thoumade of pilgrims during the year, whose pious contributions have so enriched the church that its sacred veseels, altar-rails, candelabra and other accessoriea are estimated to contain fifty tons of silver. The treaty of peace between Merico and the United Scates was signed here on the and of February 1848. Tacubaya (pop. 18,342 in 1900), on the lower slopes of the Montes de las Cruces; about 5 m . west-couth-west of the city, with which it is connected by rail, is noted for its fine old residences and beautiful gardens. The National Astronomical Obeervatory occupies a fine moderr edifice. At Popotla is an aged tree under which, according to tradition, Cortes sat and wept after his ternble retreat from the Aztec capital on the noche triste. Farther south on the lowest siopes of the mountain range are San Angel and Tlalpam. the latter (pop. 4732 in 1900) standing partly on tbe plain 12 m . south by west of the capital. In both much attention is given to floriculture, and both are favourite country residences of the richer citizens Xochirailco (field of flowers), (pop. 10,712 in 1900) on the west shore of the lake of that name and 10 m . south by east of the city, is an Indian town dating long before the discovery of America. It lies in the midst of a fertile plain devoted to the production of fruit, vegetables and. fowers for the city markets. Its gardens are carried out on the shallow lake by floating masees of water-plants covered with soil and secured by poplar stakes, which. taking root, soon surround them with living boundiaries. These remarkable and productive gardens, called chinampas have so increased in number and extent that the lake is practically covered by them, with the exception of the waterways, which are kept open by ecooping up mud from the bottom. From the lake a broad canal runs northward to the eastern suburbs of the city; It is known as the Viga, and is believed to have been opened by the Aztece for the transportation of garden produce to their istand capital.

MESICO, GULF OP, a mediterranean gulf almost eurrounded by the coasts of the United States and Mexico, and forming the porthem division of the extension west ward of the west Atlantic trench (see Arbantic OcEan). Its southerm boundary is defined hy the partly submerged ridge which extends eastwards from the peninsula of Yucatán, and on which the istand of Cuba is situated: to the east it communicates directly with the Atlentic by the Strait of Florida. On the western side of Yucatín a sutherly embayment is formed by the Gulf of Campeachy. The United States coast closely follows the perallel of $30^{\circ} \mathrm{N}$. , while the parallel of $20^{\circ} \mathrm{N}$. cuts across the Gulf of Campeachy: the sreatest length-Vera Crus to Florida-is 1120 m ., and greatest width-Galveston to Camperchy- 680 m . The total area is approximately 716,000 sq. m.

The deepest part of the Gulf of Mexico, the so-called "Sigsbee" deep, lies below the line of 2000 fathoms, between 23° and $25 \frac{1}{3}^{\circ} \mathrm{N}$., and $84 \frac{1}{2}^{\circ}$ to $95^{\circ} \mathrm{W}$. It is widest to the west, where the breadth is about 120 m. , and narrows to 25 m . at jts greatest depth (21:9 fathoms) between 86° and $88^{\circ} \mathrm{W} .$, widening again to some 80 m . farther east ward. The continental shelf is for the most part narrow: its breadth is 6 m . at Cape Florida, 120 m. along the west coast of Florida, 10 m . et the south pass of the Misaissippi, 130 m. near the boundary of Texas and Louisiana, and 15 m . off Vera Cruz. The shores are low, sandy and marshy, the coast-line being frequently doubled by lagoons. There are no islands except the "Keys" of Florida and Yucatan, and Cuba. The tides in the Gulf of Mexico are of comparatively small range (springs rarely exceed 4 ft . and neaps 21 ft .), but a remarkable feature is the exaggeration of the diurnal jnequality to such an extent as almost to extinguish the semi-diurnal tide In the inner parts of the gulf, giving high and low water only once daily. The mean level of the water ia the Gulf of Mexico was formerly given as about 40 in . above that of mean sea-level at New York, but later reports on precise levellings from New York to Biloxi through St Louis describe it vaguely as "somewhat higher." The current movement in the Gulf of Mexico consists of a rotational movement in.the direction of the hands of a watch, the branch of the equatorial current which enters the Caribbean Sea passing into the Gulf by the Strait of Yucatin and issuing from it by the Slrait of Florida as the Gulf Stream, which unites with the remainder of the northward moving water, forming the Antillee current.

From March to September the prevailing winds are the north. enst trades; these undergo considerable modification on account of the confguration of the surrounding land, and the rains which accompany them are interrupted by spells of calm thick
weather, and rarely by northerly winds known as Nortes del hweso colorado and Chocolateros. In the colder dry seasan, from October to April, the climatic situation is dominated by the relatively high temperature of the surface of the gulf, causing acyonic infow of air which is associated with the strong northerly winds or "porthers" prevailing on the western side, more particularly along the Mexican coast. The northers sometimes blow with terific force and are at times accompanied by rain. The form and position of the Gulf of Mexico exercise a profonnd influence on the climate of the whole of the southern and south-eastern states of the Union, and indeed of the greater part of North America.
(H. N. D.)

TEYER, CHRISTLAN ERICH HERYANN VON (1801-1869), German palneontologist, was born at Frankfort-on-the-Main, on the 3rd of September 1801. In 1832 he issued a work entitled Palacalagica, and in course of time be published a series of mernoirs on various fossil organic remains: mollusca, crustacea, fishes and higher vertebrata. His more elaborate recearches were those on the Carboniferous amphibia, the Permian reptiles, the Triassic amphibia and reptiles, and the reptiles of the Lithographic slates; and the results were embodied in his great work Zur Fasma der Vormell (1845-1860), profusely illustrated with plates drawn on stone by the anthor. He was associated with W. Dunket and K. A. Zittel in the publication of the Palacontographica, which began in 185 I . He was awarded the Wollaston medal by the Geological Society of London in 1858 . He died on the 2nd of A pril 1869.

MEYER, HELNRICH AUGUST WILHELT ($1800-1873$), Cerman Protestant divine, was born at Gotha on the soth of January t800. He studied theology at Jena, and eventually became (1841) pastor, member of the consistory, and superintendent at Hanover. He died on the 2 rst of June 1873. He is chiefly noted for his valuable Kritischeregetischer Konmentor sum Newen Testamen (16 vols.), which began to appear in 1832 , was completed in 1859 with the assistance of J. E. Huther, Friedrich Dísterdieck and G. K. G. Lunemann, and has been translated into English. New editions have been undertaken by such scholars as A. B. Ritschl, B. Weiss, H. Wendt, E. F. G. Heinrici, W. Beyschlag and F. A. E. Sieffert.

Meyer also published an edition of the New Testament, with a transiation (1829) and a Latin version of the symbolical books of the Lutheran Church (1830).

He is not to be confounded with Joharn Firedrich von Meyes (1772-1849), the sengtor of Frank(ort, who published a translation of the Bible in 1819 (Die heilige Schrift in berichtigter Obersetinns mit kurses Asmerkumgen; and ed., 1823: 3rd ed., 1855).

HEYER, JULTUS LOTAAR (1830-1805), German chemist, Fas born on the rgth of August 1830, at Varel in Oldenburg. He was the son of a physician, and went to study medicine first at Zorich University in 18 gI , and then, two years later, at Wureburg, where he had R. Virchow as his teacher in pathology. The influence of C. F. W. Ludwig, under whom be studied at Zorich, decided him to devote his attention to physiological chemistry, and therefore be went, after bis graduation (1854), to Heidelberg, where R. Bunsen held the chair of chemistry. There he was so influenced by G. R. Kirchhoff's mathematical teaching that he took up the study of mathematical physics at Konigsberg under F. E. Neumann. In 8859 be became privat-docent in physics and chemistry at Breslau, where In the preceding year he had graduated as Ph. D. with a thesis on the action of carbon monoxide on the blood. In 1866 he accepted a post in the Schonl of Forestry at Neustadt-Eberswalde, but soon moved to Carlarube Polytechnic. During the Franco-German campaign the Polytechnic was used as a hospital, and he took an active part in the care of the wounded. Fipally, in 1876 , be became professor of chemistry at Tubingen, where be died on the 1 th of April 5895 . His name is best known for the share be had in the periodic classificalion of the elements. He noted, as did J. A. R. Newlands in England, that if they are arranged in the order of their atomic weights they fall into goups in which similar chemical and physical properties are repeated at periodic intervals; and in particuiar be showed that if the atomic weights are plotted
sordinates and the atomic vohumes ass abocimen the curve obtaimed presents a series of mavima and minima, the mouk electro-positive elements appearing at the peaks of the curve in the order of their atomic weights. His book on Die modernom Theorien der Chemia, which was first published in Brealan in 1864, contains a discustion of relations between the atomic weights and the properties of the elements. In 1882 be received from the Royal Society, at the same time as D. J. Mendelteff, the Davy medal in recogrition of his work on the Periodic Law. A younger brother, O. E. Meyer, becasne professor of phynica at Breslau in 1864
MEYER, FONRAD FERDINAND (1825-1898), Swise poet and novelist, was born at Zurich on the IIth of October 1825. Alter studying law at the university, he went for considerable periods to Lausanne, Geneva and Paris, and in Italy interested himseli in historical research. In 1875 he settled at Kilchberg near Zarich, was created in 1880 a doctor philosophise honoris causa by that university, and died at Kilchberg on the 28th of November 1898. After Gottfried Keller, Konrad Meyer is the moat important Swiss poet of modern times, though as a novelist he was perbaps more successfuL. His poetical worls include Balladers (1867); Romanten und Bilder (1870); the epic poem, Hudtens levse Tage (1871); and Gedichte (1882; yoth ed., 1901). Among his novels must be specially mentioned Jurg Jewalsch (1876; 20th ed., 1894); Det Schurs vorn der Kamal (1878); Der Heilige (1880; 1 2th ed., 1894; English by M. von Wendheim, Thomas a Becket, the Saint, 1885); Die Richterin (1885); Die Versuchoms des Pescara (1887); Angeia Bargia (r8gr). Hia shorter stories were collected in two volumes in 1885 (5th ed., 1892).

See A. Reitler. Konrad Ferdinand Meyer (288s); Lina Frey, K. F. Meywis Gedichte wad Nowillen (1892); K. E. Kranzoe, K. F. Meyer (1890): A. Frey, K. F. Moyer (1900); H. Kraeger, K. P. Moyer: Qmellem wnd Wardlungen seixer Gedichte (1901): B. Meyer, K. F. Iever in der Erinnerung seiner Schwester (1904); Briefwechsel surischen Luise won Proncois und K. F. Meyer, herausg. von A. Bettelheim (1905) ; A. Langmesser, K. F. Meyer (1905).

MEYER, [MARIE] PAUL HYACLITHE (i840), French philologist, was born in Paris on the 17th of Jamuery 18\&o. He was educated as the Ecole des Chartes, and in 1863 was attached to the ranuscript department of the Bibliotheque Nationale In 1876 be becarne professor of the languages and literatures of southern Europe at the College de France. In 1882 he was made director of the Ecole des Chartes, and a year later was nominated a member of the Academy of Inscriptions. He was one of the counders of the Revee critique, and a founder and the chief contributor to Romania (187_{2}). Paul Meyer began with the study of old Provencal literature, but subsequently did valuable work in many different depertments of romance literat ure, and ranks is the chief modern authority on the French language. He is the author of Rapports sur les docwments manuscrits de Fancienne billirature de la Prance consernds dans les bibliotheques de la Grande Bretagne (1871); Recueil d'anciens tartes bas-lations, provencaux ab francais (2 parts, 1874-1876); Alexaxdre ke Grand dans la lilldretupe frongaise dx moyen age (2 vols., 1886). He edited a great number of old French texts for the Sociffe des anciens lextes frangesis, the Socide de l'histoire de France and independently. Among these may be mentioned Aye d'Avigoon (i86r), with Guessard; Flamenga (1865); the Histoire of Guillatume le Marechal (3 vols, 1892-1902); Raoul de Cambrai (1882), with A. Longnon; Fragments d'sane vie da Saint Thomas de Cantorbliry (1885); Guillamine de la Barre (1894).
METER, VICTOR (1848 - 1897), German chemist, was born at Berlin on the 8th of September 1848, and studied at Heldelberg Universit y under R. W. Bunsen, H. F. M. Kopp, G. R. Kirchhoff and H. L. F. Helmboltz. At the age of twenty be entered J. F. W. A. Baeyer's laboratory at Berlin, attacking among orber prohlems that of the composition of camphor. In 1871, on Baeyer's recommendation, he was engaged by H. von Fehling as his assistant at Stuttgart Polytechnic, but within a year he left to succeed J. Wislicenus at Zurich. There be remained for thirteen vears. and it was during this period that he devised his
well-known method for deternining vapour densities, and carried out his experiments on the dissocialion of the halogens. In I882. on the death of W. Weith (1844-1881), professor of chemistry at Zalrich Univernity, bo undertook to continue the lectures on benzese derivatives, and this lod him to the discovery of thiophen. In 1885 he was chowen to succeed Hans H0bner (1837-2884) in the profesorship of chemistry at Gbttingen, where stereochemical questions eapecially engeged bis attention; and in 1889, on the resimation of his old master, Bunsen, he was appointed to the chair of chemiatry in Heidelberg. He died on the 8 th of August 2897 . In recognition of his brilliant experimental powers, and his numerous contributions to chemical science, be was avarded the Davy medal by the Royal Society in 189 t .
HEYERBEFR, GIACOITO (1791-1863), German compoeer, first known as Jakob Meyer Beer, was born at Bertin on the sth of September 1791, of a wealthy and talented Jewish family. His father, Herz Beer, was a banker; his mother, Amalie (ne Wulf), was a woman of high intellectual culture; and two of his brothers distinguished themselves in astronomy and literature. He stadied the pianoforte, first under Lauska, and afterwards under Lauska's master, Clementi. When seven years old he played Mozart's Concerto in D Minor in pablic, and at nine he wes pronounced the best pianist in Berlin. For composition be was placed under Zelter, and then under Bernand Weber, director of the Berlin epera, by whom he was introduced to the Abbe Vogler. Vogler invited him to Darmstadt, and in 28 ro received him into his bouse, where be formed an intimate friendship with Karl Maria von Weber, who also took daily lessons in counterpoint, fugue and extempore organ-playtng. At the end of two years the grand duke appointed Meyerbeer composer to the court. His first opera, Jeplitha's Golubde, failed lamentably at Darmstadt in 1811, and his socond, Wirth sand Gast (Alimelek), at Vienne ia 1814. These checks discouraged him 80 cruelly that he feared be had mistaken his vocation. Nevertheless, by advice of Salieri he determined to-study vocalization in Italy, and then to form a new style. But at Venice be was so captivated by Romini that, renouncing all thought of originality, he produced a succession of seven Italian operas-Romilda e Castansa, Semiramide ricomosciude, Edxardo e Cristina, Emma di Resburgo, Margherila d'Anjow, L'Esule di Granata and II Crociato in Egillo-which all achieved a success as brillinat as it was unexpected. Against this act of treason to German art Weber protested most earnestly; and before long Meyerbeer himself grew tired of his defection. An invitation to Paris in 1826 ied him to review his position dispassionately, and he came to the conclusion that he was wasting his powers. For several years be produced nothing in public; but, in concert with Scribe, he planned his first French opera, Robert le Dialle. This gorgeous spectacle was produced at the Grand Opera in $\mathbf{1 8 3}$ s. It was the first of its rece, a grand romantic opera, with situations more theatrically effective than any that had been attempted either by Cherubini or Rossini, and with ballet music such as had never yet been heard, even in Paris. Its popularity exceeded all expectations; yet for five years Meyerbeer appeared before the public no more.

His next opera, Ler H ugmenots, was first performed in 1836. In gorgeous colouring, rhetorical force, consistency of dramatic treatment, and careful accentuation of individual types, it in at least the equal of Robert le Diable. In two points only did its inferest fall short of that inspired by the earlier work. Meyerbeer had shown himsolf so eminently successful in his treatment of the supernatural that one regretted the omission of that element; and, more important still, the fifth act proved to be an anti-climax. The true interest of the drama culminates at the close of the fourth act, when Raoul, leaping from the window to his death, leaves Valentine fainting upon the ground. The opera now usually ends at the fourth act.

After the production of Les Buguenols Meyerbeer spent many years in the preparation of his next greatest works-L'Africaine and Le Prophate. The librettio of both these operas were furnished
${ }^{1}$ Or, aceording to some accounts, 1794 -
by Seribe; and both were subjected to conntless changes; in fact, the story of L'Africaine was more than once entirely rewritten.

Meamwhile Megerbeer accepted the appoiniment of kapellmeister to the king of Prussia, and apent some years at Berlon, where he produced Ein Feldiager in Schlesien, a German opera, in which Jenny Lind made her first appearance in Prussia. Here also he composed, in 1846, the overture to his brother Michael's drama, Strwensee. But his chief care at this period was bestowed upon the worthy presentation of the works of others. He began by producing his dead friend Weber's Euryanthe, with scrupulous attention to the composer's original idea. With equal unselfishness he procured the acceptance of Rienti and Der fiegende Holldnder, the first two operas of Richard Wagner, who, then languishing in poverty and exile, would, but for him, have found it impossible to obtain a hearing in Berlin. With Jenny Lind as prima donna and Meyerbeer as conductor, the opera flourished brilliantly in the Prussian capital; but the anxieties materially shortened the composer's life.
Meyerbeer produced Ls Prophele at Paris in 1849. In 1854 he brought out L 'Eloile du nord at the Optra Comique, and in 1859 Le Pardon de Plodrmal (Dinorah). His last great work, L'Africaine, was in active preparation at the Académie when, on the 23rd of April 1863, he was seized with a sudden illness, and died on the and of May. L'Africaine was produced with pious attention to the composer's minutest wishes, on the 28 th of April 1865.
Meyerbeer's genius was criticized by contemporaries with widely different results. Mendelssohn thought his style exaggeraled; Fetis thought him one of the most original geniuses of the age; Wagner ungratefully calls him " a miserable music-maker," and "a Jewish banker to whom it occurred to compose operas." The reality of his talent has been recognized throughout all Europe; and his name will live so long as intensity of passion and power of dramatic treatment are regarded as indispensable characteristics of dramatic music. But his workshows that these qualities, with the aid of an experienced stage-writer, may be entirely independent of genuine musical insight.

LEBYNELL, ALICE CHRISTIANA (1850), English poet and essayist, was the daughter of T. J. Thompson. Her early life was spent chiefly in Italy, and she was educated by her father. Her first volume of verse, Preludes (1875), illustrated by her sister Elizabeth, afterwards Lady Butler, attracted little public notice, but the delicacy and beauty of the poems and especially of the sonnct " Renunciation,".were warmly praised by Ruskin. She married in 1877 the well-known Roman Catholic journalist and author Wilfrid Meynell, who became proprietor and editor of the Weekly Register. Under W. E. Henley's editorship she wrote regularly in prose for the National Observer, and also later for the Pall Mall Gazelle, the Salurday Review, \&c. Her Poems (1893), including much of the earlier volume of Preludes, hrought her at last more definitely hefore the public; and this was followed in rgoi by another slender book of delicate verse, Later Poems. Mrs Meynell also showed herself a fine critic of poetry by her admirable selection, The Flower of the Mind (1897), an ant hology of English verse. She edited the Sclected Pooms (1894) of T. G. Hake, the Poctry of Palhos and Delight (18g6) of her intimate friend Coventry Pat more, and the selections from Patmore in tbe " Muses' Library." Her prose essays, remarkable for fineness of culture and peculiar restraint of style, appeared in successive volumes as The Rhylhm of Life (1893), The Colour of Lifa and other Essays (1896), The Children (1897), and The Spiril of Place (1898). Later books are London Impressions (1898) and The Work of John S. Sargent (1903).

See W. Archer, Poets of the Younger Generation (1902).

MEYR, MELCHOIR ($1810-1871$), German poet, novelist and philosopher, was born at Ehringen oa the 28Lh of June 1810, and died at Munich on the a2nd of April 187 r . He read law and philosophy at Heidelberg and Munich. His greatest success was the Ersuliungen aus dem Ries (4th ed. Leipzig, 1892), remarkable as an accurate and sympathetic picture of rural life and
character. He wrote also tragedies (Hernog Albrecht, 1851 ; Kas der Kizhne, 1862), novels (Vier Deuische, 1861 ; Expige Liebe, 1864), and, in later life, philosophical works with a strong raligious tendency. Among these were Emilie (philosophical dialoguea, 1863), Die Religion des Geisles (1871), Die Fortdower nach dent Tode (1869), Dis Religion und ihre jetut gebotence Fortind dong (1871), and Gedanken uber Kuast, Religion and Philosophic (1874). In these works he altempted to develop a Deistic system of philosophy. He was the author of an anonymous work entitled Gesprache mit cinem Grobien (1886).

See Melchior Meyr. Biogrophisches, Briefe und Gedichte, edited by Gra/ Bothmer and M. Carritre (Leiprig, 1874).

MIYRIFAB, a small semi-nomad tribe of Africans of Semitic stock, settied on the east bank of the Nile near Berber. Contrary to Arab custom, it is said they never marry slaves.
mezeray, FRANcOIS EUDES DE (1690-1683), Freach historian, was born at Rye near Argentan, where his father was a sargeon. He had two brothers, one of whom, Jean Eudes, was the founder of the order of the Eudists. Frangois atudied at the university of Caen, and completed his education at the college of Ste Barbe at Paris. His \boldsymbol{H} istoire de France depuis Faramond $j u s q u u^{\prime} d$ Louis le $J u s t e$ (3 vols., 1643^{-1651}), is a fairly accurate summary of French and Latin chronicles. Mézeray was appointed historiographer of France, and in 1649, on the death of Vincent Voiture, was admitted to the Acadernie Française. His Abrtge clronologique (3 vols., 1667-1668) weat tbrough fifleen editions between 1608 and 1717; but he did not hesitate in this work to attack the financiers, with the result that his salary as historiographer was diminished by Colbert. Méseray succeeded Conrart as permanent secretary to the Académie Francriso (1675), and died at Paris on the 1oth of July 1683. He translated Grotius's Traite de la religion chretienne (1640), and a Histoire des Turcs depuis 1612 jusqu'en 1649 (1650), which is an addition to a continuation of Chalcondyles.
See Daniel de Larroque, Vie de Frangois Eudes de Mararay (1720); vol. xiti. of Causeries du lundi by Sainte- Beuve, and Levavasscur's Notice sur les trois freres: Jean Eudes, Francois Eudes, et Charles Eudes (1855).

Mfrateres, PIILIPPE DE (c. 1327-1405), French soldier and author, was born at the château of Méziéres in Picardy. He belonged to the poorer nobility, and first served under Lucebino Visconti in Lombardy, but within a year he entered the service of Andrew, king of Naples, who was assassinated in September 1345. In the autumb of that year he set out for the East in the French army. After the battle of Smyrna in 1346 he was made a knight, and when the French army was disbanded he made his way to Jerusalem. He realized the advantage which the discipline of the Saracens gave them over the disorderly armies of the West, and conceived the iden of a new order of knighthood, but his efforts proved fruitless. The first sketch of the onder was drawn up by him in his Nova religio passionis (1367 -1368; revised and enlarged in 1386 and 1396). From Jerusalem be iound his way in 1347 to Cyprus to the court of Hugo IV., where he found a kindred enthusiast in the king's 80n, Peter of Lusignan, then count of Tripoli; but he soon left Cyprus, and had resumed his career as a soldier of fortune when the accession of Peter to the throne of Cyprus (Nov. 1358) and his recognition as king of Jerusalem induced MExieres to return to the island, probably in 1360, when he became chancellor. He came under the influence of the plous legate Peter Thomas (d. 1366), whose friend and biographer he was to be, and Thoras, who became patriarch of Constantinople in 1364 , was one of the chief promoters of the crusade of 1365. In 1362 Peter of Cyprus, with the legute and Mérières, visited the princes of western Europe ia quest of support for a new crusade, and when the king returned to the east he left Mézières and Thomas to represent his case at Avignon and in the cities of northern Italy. They preached the crusade throughout Germany, and later Mezières accompanied Peter to Alexandria. After the capture of this city he received the government of a third part of it and a promise for thecreation of his order, but the Crusaders, satisfied by the immense booty, refused to continue the campaign. In June 1360 Méxières was
sent to Venice, to Avignon and to the princes of western Europe, to obtain help against the Saracens, who now threatened the kingdom of Cyprus. His efforts were in vain; even Pope Urban V. advised peace with the sultan. Mérières remained for some time at Avigaon, seeking recruits for his order, and writing his Vita S. Petri Thomasii (Antwerp, 1659), which is invaluable for the history of the Alexandrian expedition. The Prefacio and Epistola, which form the first draft of his work on the projected order of the Passion, were written at this time.
Mézières returned to Cyprus in $\mathbf{1 3 6 8}$, but was still ai Venice when Peter was assassinated at Nicosia at the beginning of 8369 , and be remained there until 1372, when he weat to the court of the new pope Gregory XI. at Avignon. He occupied himself with trying to establish in the west of Europe the feast of the Presentation of the Virgin, the office of which he translated from Greek into Latin. In 1373 be was in Paris, and he was thenceforward one of the trusted counsellors of Charles V., although this king had refused to be dragged into a crusade. He was tutor to his son, the future Charles VI., but after the death of Charles V. be was compelled, with the other counsellors of the late king, to go into retirement. He lived thenceforward ln the convent of the Celestines in Paris, but nevertheless continued to exert an influence on public affairs, and to hiz close alliance with Louis of Orleans may be put down the calumnies with which the Burgundian historians covered his name. When Charies VI. freed himself from the domination of his uncles the power of Mézieres increased. To this period of his life belong most of his writings. Two devotional treatises, the Condemplatio horae mortis and the Soliloguixm peccoloris, belong to :386-1387, In 1389 he wrote his Songe du vieil peferin, an elaborate allegorical voyage in which he described the customs of Europe and the near East, and advocated peace with England and the pursuit of the Crusade. His Oratio tragedica, largely autobiographicai, was written with similar aims. In 1395 he addressed to Richard II. of England an Epistre pressing his marriage with Isabella of France. The Crusade of 1396 inspired Mézières with no enthusiasm. The disaster of Nicopolis on the 28th of September 1306 justified his fears and was the occasion of his last work, the Epistre Iamentable ef consolatoire, in which he put forward once more the principles of his order as a remedy against future disasters. Mézières died in Paris on the 29th of May 1405.

Some of his letters were printed in the Revue hislorigue (vol. adix.); the two epistres just mentioned in Kervyn de Lettenhove's edition of Froissart's Chroniques (vols. xv, and xvi.). The Songe du rergier or Somnsum varidorii, written about 1376, is cometimes attributed to him, but without definite proofs.

Sce Antoine Becquet, Galizae ooelestizorum congregationis momasteria, fundutiones.... (1719): the Abbe Jean Lebeuf's Memoires in the Memoires of the Academy of Inscriptions, vols xvi. and xvii. (1752 and 1753): J. Delaville le Roulx. La France en Orient at xiv. sidele (1886-1890); A. Molinier. Manuel de bibliographte kistorique vol. iv. (i904): and especially the researches of N. Jorga, published in the Bibliotheque de l'teole des hanles etudes vol. 110 (Paris 8896); and the same writer's Philippe de Mexitres, of la cronsade au xio. sǘcle (1896). Jorga gives a list of his works and of the MSS. in which they are preserved. and analyses many of them. On the Songe du vergier. sce P. Paris, in Memoires vol. xv. (1843) of the Academy of Enscriptions
mfalizass, a town of northern France, capital of the department of Ardennes, 55 m . N.E. of Reims by the Eastern railway. Pop. (1006), town, 7007; commune, 9393. The town itsclf, the streets of which are narrow and irregular, is situated on the neck of a peninsula formed by a loop of the Mcuse. The river separates it from its suburb of Arches and the town of Charleville on the north and from the suburb of Pierre on the south. Adjoining Pierre is Mohon (pop. 5874), with metallurgical works. The fortifications of Mezières, as well as the citadel still dominating the town on the east, were built under Vauhan's direction, but were dismantled in 1885 and 1886. Immediately to the east of the citadel runs a canal, which provides river-traffic with a short cut across the isthmus. The parish church (16 th cerit.) contains inscriptions commemorating the raising of the siege of Mezières in 1521 and the marriage of Charles 1X. with the
daughter of the emperor Maximition II. (1570). The north and south porials, the Renaissance tower at the west end, and the lofty vaulings, are worthy of remark. The church, which suffered severely in $8870-71$, has since been restored. The prefecture and the hotel de ville, which contains several interesting pictures relating to the fistory of the town, belong to the 18th century Mézières is the seat of a prefect and of a court of assizes, and there are manufactures of bicycles, and iron and steel castings for motors, railway-carriages, \&c.

Founded in the gth century, Mézières was at first only a stıonghold belonging to the bishops of Reims, which afterwards became the property of the counts of Rethel. The town was increased by successive immigrations of the people of Liége, flying first from the emperor Otto, and afterwards from Charles the Bold; and also by concessions from the counts of Rethel. Walls were built in the 13th century, and in 152 I it was defended against the Imperialists by the Chevalier Bayard, to whom a statue was erected in 1893 . The anniversary of the deliverance is still observed yearly on the 27 th of September. In 1815 the Germans were kept at hay for six weeks, and in 1871 the town only capitulated after a bombardment during which the greater part of it was destroyed.

MEZOOTUR, a town of Hungary, in the county of Jász-Nagykun-Szolnok, 88 m . S.E. of Budapest by rail. Pop. (1g00), $\mathbf{2 5 , 3 6 7}$. It possesses important potteries. Large herds of cattle are reared on the communal lands, which are productive also of wheat, rapeseed and maize. Several well-attended fairs are held here annually.
mezzaning (It. mexsano; Fr. eniresol; Ger. Zwischengeschoss), in architecture, a storey of small height introduced het ween two lofty storeys, or sometimes employed to allow of the introduction of two storeys equal together in height to lofty rooms on the same floor.

MEZZOFANTI, GIUSEPPBE CASPAR (1774-1849), Italian cardinal and linguist, was born on the i7th of September 1774, at Bologna, and educated there. He was ordained priest in 1797, and in the same year became professor of Arabic in the university, but shortly afterwards was deprived for tefusing to take the oath of allegiance to the Cisalpine Republic. In 1803 he was appointed assistant librarian of the institute of Bologna, and soon afterwards was reinstated as professor of oriental languages and of Greek. The chair was suppressed by the viceroy in 1808, but again rehabilitated on the restoration of Pius VII. in 1814, and continued to be held by Meztofanti until his removal from Bologna to Rome in 183y, as a member of the congregation de propaganda fide. In 1833 he succeeded Angelo Mai as chief keeper of the Vatican library, and in 1838 was made cardinal and director of studies in the Congregation. He died at Rome on the 15 th of March 1849. His peculiar talent, comparable in many respects to that of the so-called "calculating boys," was not combined with any exceptional measure of intellectual power ${ }_{1}$ and produced nothing of permanent value. It seems certain, however, that he spoke with considerable flaency, and in some cases even with attention to dialectic peculiaritics, some fifty or sixty languages of the most widely separated families, besides having a less perfect acquaintance with many others.
See Russell. Life of the Candinal Mezeofanti (London, 1857); A. Bellesheim, Gixseppe Cardinal Mestofanli (Worzburg, 1880).

MEZZOTINT. During the 1gth century two revolutions occurred in the British art of mezzotinto engraving-"la manitre anglaise." The original defect of the method was the incapacity of the mezzotint "burr " on copper to yield as many fine impressions as other forms of engraving. To this defect was attributable the introduction, in 1823, of steel instead of the soft copper previously used-a change which, with the endeavour to avold technical difficultics, led to the " mixed style," or combination of mezzotint with etching, and a general departure from the traditional form of the art, " pure mezzotint" on copper. The affinity of the method to paining in black and white which differentiates it from other kinds of engraving, and was the dis. tinguishing charm of the mezzotints of the 17 th and 18 th centuriea, was for a time lost, but a revival of pure mezzotint on
copper, beginning in $1880-8$ return, in fact, to the mode in which the classics of the art were engraved in the time of Sir Joshua Reynolds-was made possible by the invention of steel-facing. By this process engraved copper plates are electroplated with a film of steel, renewable when.worn in course of printing; and a mezzotint on copper, so protected, yields more fine impressions than if it had been engraved on steel, whilst the painter-like quality remains unimpaired.
In "pure mezzotint " the design is evolved from dark to light entirely by scraping away more or less of the previously laid "ground," the original "burr " of which is left untouched in the extreme darks, and no acid, etching or line-work is used in it at all. The usual short descriptions of the method are misleading. because they fail to explain that it is the "ground," and not the "burr " of it only, which is scraped away in greater or smalter degree to produce the varying tones of the design. The necessity of realizing that there are two constituents of the "ground," the "burr "and the indentations out of which the "burr"' is raised, will be appreciated later. The " rocking-tool," with which the "ground " is laid, somewhat resembles a carpenter's chisel, but the blade is 3 in. wide and only about ${ }^{2 \frac{1}{4}} \mathrm{in}$. long, whilst the cutting edge, instead of being straight, is curved in the segment of a circle. One side of the blade is decply engraved with lines from edge to handie, and the ridges which reman between these lines form teeth at the cutting edge when the unengraved side of the tool is bevelled as an ordinary chisel is sharpened.

The tools contain from 35 to 120 teeth to each inch of their width, those with the most teeth producing grounds of the finest texture. The operator rocks the curved edge of the tool from side to side on the bare copper plate, causing the tool to travel forward, whilst each tooth makes an indentation in the copper and throws. up a corresponding particle of metal, which is called the "burr." When the whole plate has been so rocked across in 45 to 60 different directions, so that no visible speck of the original bright copper surface remains unfretted by the teeth of the "rocking-tool" the "ground" is termed "full" and is ready for scraping the design. The innumerabie particles of copper forming the raised "burr " give to a "full ground " much the appearance of copper-coloured plush, and a print from it, taken before any scraping has been done on it, looks not unlike a piece of black velvet. The lights and semi-tones of the design are produced by subsequent scraping and burnishing.
Assuming that a mezzotint is to be scraped from a lady's portrait by Sir Joshua Reynolds in which a piece of black drapery crosses a white dress-t the engraver begins to work on a previously laid "ground " which would print uniformly black before scraping commences. In the extreme darks of the black drapery the raised "bur" is left. untouched by the "scraper "-a two-edged steel instrument resembling an ancient Roman sword-blade in miniature, but having a longer point. Working from dark to light, the engraver produces the varying toncs of the folds of the black drapery by scraping the raised "burr" down more or lesa, lowering it in fact so that it will not hold so much ink as where it is lert untouched in the extreme darks; will the hiphest lights of the the original surface of the plate reached, but as yet the engraver has not produced any tone lighter than middle tint (although he has completely modelled up the black drapery), because the indentations out of which the "burr" was raised still remain in the plate and hold ink in printing. In order to produce the infinite gradation of delicate tones in the white dress, or in a sky, the scraping is continued, the indentations being thus made shallower in the passages scraped, and therelore tess capable of holding ink, whilst they are obliterated almost entirely in the highest hights. When the mezzotint is finished the black drapery will stand higher than the surface of the plate modelled in a relief composed of the raised "burr," whilst all the tones of the white dress, from middle tint to pure white, will be so many actual depressions in the plate, the highest lights being the decpest. The speck of light in the eye, for instance, is a pit in the plate, surrounded by a tract of more or less raised "t burt." which provides the intense black of the pupil and the hall-tints of the iris. The difference of surface levels is very appreciable where high-lights impinge on strong darks, but it exists in varying degree all over the plate, and the greatest technical dificulty in pure mezzotint is to obtain adequate " edge " and definition, because the tendency is to remove too much "ground " from the edges of adjacent darks in the course of the constant scrapings necessary to smooth and polish the depressed lights.

In printing a mezzotint a non-fluid ink is thoroughly worked into every part of the plate, and the superfluities wiped of again; leaving as much ink as possible in the darks, the raised "' burr." If the bottom of the small lights is not quite smooth, the ink sticks in the roughness and they print dark instead of light. or the printer has to wipe so hard to get the ink out of the depreseed lights that be removes too much from the raised darks. In either case loss of definition and contrast of effect resulta. This inherent difficulty of scraping to a sharp edge caued the use of the "mired" methode,
in which the details were sharpened by outlining them with atipple or line etching.
Mezzotint is the best form of engraving for completeness of repreventation, but etching is better adapted for sketching from nature or for the expression of any fleeting idea. The two arts have distinct uses and limitations. The art function of true etching as practised by Rembrandt lies in economy of expressive line to suggest the artist's meaning, and that of mezzotint in completion of tonality to explain it. Artistic suggestion, which is not inherent in the solid tones of mexzotint, has to be imparted to the work entirely hy the free play of the "scraper" on the "ground,' much as the painter attains it on canvas with the brush.

The first reputed mezzotint was produced at Amsterdam in 1643 by Ludwig von Siegen, an officer in the service of the Landgrave of Hesse, and an amateur artist; hut the work mistory. was a direct drawing on copper with an instrument of comparative precision resembling the roulette rather than a mezzotint, ground laid with the rocking-tool and scraped from dark to light in the present manner of the art. Siegen's innovation was led up to by the previous stipple work of Giulio Campagnola and Janus Lutma: the roulette appears to have been used before his time; and though he shared in the evolution of the rocking-tool, he was not the sole inventor of it. The earliest works referable to the method at the print room of the British Museum afford evidence, though inconclusive, that Prince Rupert, to whom Siegen showed his mode of work in 1654, and possibly also their common friend, Th. Caspar von Furstenberger, and Rupert's assistant. Vallerant Vaillant. were more or less concerned in the gradual development of mezzotint engraving. The rocking-tool was apparently improved by Abraham Blooteling, a Dutch painter and engraver of fine portrait mezzotints, who worked in Holland and in England about the year 1680.

Rupert brought the new art over to England at the Restoration, and the portrait of Charles 11., dated 1669 , by William Sherwin. the first English mezzotinter, bears the engraver's acknowledgment of his indebtedness to Rupert for the secnets of the method. Mezzotint continued to be practised for a while on the Continent, but the successors of Sherwin in England so excelled in it that it early acquired abroad the title of "la manicre Anglaise," and has since become an exclusively British art. Though used for wranscribing the subject-pictures of the great Italian masters, and of Rembrandt, Vandyck and Rubens, almost every, kind of subject Leeing later engraved in it, the staple production in mezzotine has always been the portrait. Until the middle of the 18th century the cools continued somewhat archaic, causing in the prints an appearance of warp and woof, like that of ill-woven material, which detracted from reality of representation. The coarseness and unequal depth of the "grounds" offered so much resistance to freedom of execution with the "scraper" that, though the early engravers were quite as good artists as their succeseors, painter-like touch was not conspicuous in the work until M.Ardel and the interpreters of Sir Joshua Reynolds had improved the tools and technique.

Except for the collector, therefore, the chief attraction in the prints of F. Place and Luttrell, Beckett and Williams, and later those of John Simon, John Smith and John Faber, jun., who were the principal exponents of mezzotint in the last years of the seventeenth and first half of the eighteenth centuries, lies in their long series of portraits after Vandyck, Lely, Kneller and the Dutch painters then practising in England, representing such interesting personages as Charles II. and Nell Gwyrn. Addison and Pope. Congreve and Wycherley, Locke and the great duke of Marlborough
The classics of merrotint engraving are to be found a mongat the best plates after Sir Joshua Reynolds by James M•Ardell. J. R. Smith and Valentine Green. the Watsons, Dickinson, Fisher. Dixon and some others, who worked during the last half of the 18th century. The brushwork of Reynolds was more in harmony with the mezrotint method than the slighter painting technique of Gainsborough and Romney, who were much lese freguently engraved, perhaps because it is the highest technical difficulty in mezzotint to render the sharp edges of a sketch. For this reason a typical Gainsborough was never succeserully engraved in the method. Though professional "publishers and printers existed at this time and earlicr, the word "excudit" on an old print, implying "published," not "engraved," the authors of the "Sir Jochua mezzotints in most cases printed, publighed and sold their own works, and pure mezzotirit, unmixed with etching. was almonat exclusively the method they employed. Mezzotints were occasionally printed in colours, notably those engraved later after George Morland, the primary object being to conceal the worn-out condition of the plates.

The departure from pure mezzotint and temporary decay of the art began when, towards the end of the 18th century, Richard Earlom, otherwise a fine artist is the traditional method, notably in translations of Vandyck and Wright of Derby, began to outline the details of his plates with stipple etching in order to avoid the lalour and difficulty of scraping them to a charp edge, using the yround " alone. Earlom, however, did not destroy the myatery of we sich velvety darks by etching into them. A demand then arose for larger editions than the soft copper plater would yiefd, and the exgravent attempted to meet it by combiaing mervotiat with
poaitive line-etching throughout the work, thus shortening the labour of scraping the details, and fortifying the darks with lines sunk below the surface of the plate. The harmony of line and tone in some of the prints in this style by S. W. Reynolds and Charles Turner, after Sir Joshua. Hoppner and their contemporaries, wats more convincing than the later " mixed style" of Samuel Cousins, because there was a certain artistic significance in the etched line itself apart from the mezzotint tone, but every touch of line in a mezzotint does something to destroy the painter-like quality, and a decadence was in progress.
The same mixed method oa copper was used by J. W. M. Turnes in his Liber Studiorum series of landscape plates, his object being to rival the pen-and-wash drawings of Claude's Liber Veriatis. Turner, however, was not so practised in etching or mezzotint as the engravers before mentioned, and the etched foundation of the Liber plates was too itrong for the mezzotint tone, destroying the breadth of the light, the richncss of the darks, and the artistic "keeping," of the whole effect. it is the grand design of Turner reflected in the plates, rather than any quality of mezzotint or etching in them, which appeals to the artist and the connoisecur. Perhape the greatest aucceas in harmonizing, line and tone in one plate was achieved by David Lucas in his "English Landscape" seriea of mezzotint alter John Constable, in which be sharpened his details with the roulette, or with a slight line put in with the point of the scraper as scraping proceeded, retaiaing the pure "burr "in his darks Lucas, like Samuel Cousins and his contemporaries, was handicapped by being compelled to work on the sted plates introduced in 1823, and this was the cause of the chief defect of his plates, the excessive opposition of black and white. The warm general tone which assisted the picturesqueness of the 18 th century mezzotints was lost by the use of steel, because the ink did not cling to it as it does to the more porous copper. Steel bcing harder than copper, the rocking-tool penetrated less deeply, raising less "burr." and the consequent loss of force in the darks necessitated the scraping up of the lights to a higher key to force contrast of effect, which was also enhanced by the use of very white paper and a coarse black ink. it was soon found that the unfortified "hurr." even on steel. would not yield the constantly increasing numbers of impressions demanded. The labour of scraping sharp lights was greatly enhanced, and though some pure mezzotints were engraved on steel, painter-like touch was practically unattainable on it, and the general effect was cold and uninteresting.

The early work of Samuel Cousins after Lawrence in the comparatively puremethod, and the final development of the "mixed etyle " on steel in his later plates after Reynolds, Milais and Landseer, are referred to in the article on Samuel Cousins.
For nearly forty years pure mezzotint ceased to be praetised altogether, and the revival of it, which began in 1880, was led up to by the invention of steel lacing. The competition of photogravure, which eteel-facing made a commercial possibility, for a time checked the new movement, but a photogravure, despite a mere surface resemblance to a mezzotint, is a photograph manipulated to imitate an engraving, entirely devoid of artistic individuality. In 1898 for the first time a Society of Mezzotint Engravers was formed to foster the art.

Authozities. - British Mezsotinlo Porbraifs, by John Challoner Smith (London, 1878), a standard book of reference, contains a long list of others at p. xiv., pt. i. See also Lectures on Etching and Messotint, by Hubert von Herkomer, R.A. (London, 2890), the most useful work on the technique. Etching. Engraving and other Methods of Printing Pictures, by H. W. Singer and William Strang (London. 1897); On the Making of Etchings, by Frank Short (London, 1808), containing as slight reference to mezzotint technique; Art of Eycraping, by T. H. Fielding (London, 1854); Alfred Whitman, Masters of Mrezotint (London, 1898), Valentine Green (1902), Samed William Reynolds (1903), Samuel Cousins (1904), Charles Twrwer (1907); Gordon Gordain, James McArdell (1903), Thomas Watson, James Walson, Elizabeth Judkins (r904): W. Ge Rawlinson, Turner's Liber Studiorum, a Description and a Calalogue (2nd ed., 1906); F. Wedmore's catalogue of the David Lucas mezzotint A little anonymous book, X History of the Art of Engraving in Mestotinto. from Its Origin to the Present Times by Dr James Cheloum] (Winchester, 1786), is of considerable interest. Works on the technique are somewhat elementary, and no complete history α the art exists.

TPUMBIRO, or KIRUNGA; general names for a chain of volcanic mountains extending across the Central Airican, or Albertine, rift valley immediately porth of Lake Kivu. The range, the result probably of recent geological changes, completely blocks the valley at this point, forming a divide between the rivers dowing north to the Nile and the waters of Lake Kivu, connected through Tanganyika with the Congo system. The chain consists of two groups of mountains, surrounded by a vast lava field. The western group lies directly north of Lake Kivu, and contains two active volcanoes, Kirunga-cha-gongo, the pearest to the lake (11,194 It. high), and Kirunga-namiagira
(9711 ft.), some 10 m . further north. The eastern group contains several higher peak-some rising to needle-like points, others being truncated cones. The mosl lofty, Karissimhi ($14,683 \mathrm{ft}$.), lies in $29^{\circ} 27^{\prime} 20^{\prime \prime} \mathrm{E} ., 1^{\circ} 30^{\prime} 20^{\prime \prime} \mathrm{S}$. Mikeno, a few miles north and west of Karistimbi, is 14.385 ft . high. The most easterly of the peaks, Muhavaru (13.562 ft .), in $29^{\circ} 40^{\prime} 30^{\prime \prime} \mathrm{E} . \mathrm{I}^{\circ}{ }^{\circ} 23^{\prime} \mathrm{S}$., is an isolated sugarloaf-shaped mass with a crater filled with water on its summit. This is the mountain to which the names Mfumbiro and Kirunga were originally applied. Some 6 m . west and a little north of Muhavuru is Sabyino (Sabinjo), 11,88y ft. high. The eastern peaks are snowctad for a part of the year. North of these high mountains is a district, extending towards Albert Edward Nyanza, containing hundreds of low peaks and extinct volcanoes. It is to this region that the name:Umfumbire or Mfumbiro is said properly to belong.
Mfumbiro, i.e. Muhavuru, wes first seen by 2 white man in 1861, J. H. Speke, in his journey to discover the source of the Nile, obtaining a distant view of the cone, which was also seen hy H. M. Stanley in 1876. By its Baganda name of Mumbiro (cook-house mountains) it figured on the maps somewhat east of its true position, first ascertained by Franz Stublmann in 1891. In 1894 Count von Grtxen travelled through the voicanic region, and the range was subsequently explored by E. S. Grogan, Major St Hill Gibbons, Captain Herrmann, Dr R. Kandt and others, the principal heights being determined in 1903. In 1907-1908 the range was geologically and topographically examined by the duke of Mecklenberg's expedition. By-the Anglo-German agreement of the ist of July 1890 "Mount Mfumbiro" was included in the British sphere in East Africa.

See Captain Hermanan, "Vulkangebiet des zentralafrikanischen Grabens," in Mitleil. B. Forsch, u. Gelehrten a. d. deulschen Schutz. gabielen, vol. xvii. (Berlin, 1904). and Adolf Friedrich, duke of Mecklenburg, Ins Innerste Afrika (Leipaig, 1909); both give mape.

MHOW, a town of Central India, with British military cantonment, within the native state of Indore, on the Malwa branch of the Rajputana railway, 13 m. S. of Indore. Pop. (1901), 36,039. It is the headquarters of the 5 th division of the southern army, and one of the chief military stations of India. There are two high schools, 2 Zoroastrian and a Canadian mission, the Dorabji Pestonji dispensary, and a gaol.

MIAGAO, a town on the southern coast of the province of Iloilo, island of Panay, Philippine Islands, about 25 m . W.S.W. of the town of Iloilo, the capital. Pop. (1903), 20,656; in the same year the neighbouring town of San Joaquin (pop. 1903, 14,333) was incorporated with Miagao. It has a cool and healthful climate. The neighbouring country is hilly and sterile, but produces sibucao in considerable quantities. The weaving of fabrics of aback (Musa fextilit), or Manila hemp, and pineapple fihre is the most important local industry. The language is Panay-Visayan.

HALh EDWARD (r809-r88i), English Nonconformist divine and journalist, was born at Portsmouth on the 8th of May 1809 . He was Congregational minister at Ware (1831) and Leicester (1834), and in 184 I founded the Nonconformist, a weekly newspaper in which he advocated the cause of disestablishment. Miall saw that if the programme of Nonconformity was to be carried through it must have morc effective representation in Parliament. One of the firsefruits of his work was the entrance of John Bright into parliamentary life; and by 1852 forty Dissenters were members of the House of Commons. This was due largely to the efforts of the Anti-State Church Association, afterwards known as the Liberation Society, which Miall had founded in 8844 . The long fight for the abolition of compulsory church-rates was finally successful in 1868, and then in 1870 Miall was prominent in the discussions aroused by the Education Bill. He was at this time M.P. for Bradford (18691874). having previously (185^{2-1867}) sat for Rochdale. In 1874 he retired from public life, and received from his admiters a present of ten thousand guincas. He died at Sevenoaks on the agth of April 1881.

See the Life, by A. Miall (1884).
mianin, a city and the county-seat of Dede county, Florida, U.S.A., in the S.E. part of the state, on the N. bank of the Miami river and on Biscayne Bay. Pop. (1900), 1681; (1905), 4733; (1910), 547 I . It is served by the Florida East Coast railway and by lines of coastwise steamships, and is the point of departure of the P. \& O. steamships for Nassau and Havana. Miami is the centre of a farming country in which citrus fruits, especially grape-fruit, pineapples and winter vegetables are raised for northern markets. There is excellent rod-fishing; Spanish and king mackerel and blue-fish are shipped from Miami in large quantities; and in Biscayne Bay there are important sponge fisheries. An alligator "farm" and the Subtropical Laboratory of the U.S. government are points of interest. In the city is Fort Dallas (now abandoned), where American troops were quartered during the Seminole War; and Miami is still the trading point of the Seminole Indians, being immediately south of the Everglades, their home. In 1909 a project was on foot to cut a channel from Miami to Lake Okechobee and from the other side of that lake west to the Gulf at Fort Myers, thus providing an inland waterway and draining much swampy but fertile land. In 1896 there were only two dwellings and one storehouse within the present corporate limits, but in that year the place was chosen as the southern terminal of the Florids East Coast railway, which was afterwards extended towards Key West. Soon afterwards Henry M. Flagler (b. 1830), the owner of the railway, began the construction of the magnificent Royal Palm hotel, and Miami became a popular winter resort. Then came the development of commerce by the improvement of the harbour, by donations from Mr Flagler and grants by the United States government.
MIANI, a tribe of North American Indians of Algonquian stock. The English called them Twightwees, a corruption of the native name, which meant the cry of the crane. They were first found in south-eastern Wisconsin, and in 5764 numbered about 1750 . Their civilization was advanced and they lived in stockaded towns. They took part in Pontiac's conspiracy in 1764 and in the American War of Independence and American War of 1812 they fought on the English side. At the close of this war they were greatly reduced in numbers. A few Miami still live on a reservation in Oklahoma and in Wabash county, Indiana.
MIANTONOILO (? -1643), chief of the Narraganset tribe of North American Indians, nephew of their grand sachem, Canonicus (d. 1647). He seems to have been friendly to the English colonists of Massachusetts and Connecticut, though he was accused of being treacherous. In 1636, when under suspicion, he went to Boston to prove his loyalty to the colonists. In the following year he permitted John Mason to lead his Connecticut expedition against the Pequot Indians through the Narraganset country, and in 1638 he signed for the Narraganset the tripartite treaty between that tribe, the Connecticut colonists and the Mohcgan Indians, which provided for a perpetual peace between the parties, and be agreed to take under bis jurisdiction eighty of the two hundred troublesome Pequot. In 1643 a quarrel broke out between the Mohegan and the Narraganset, and Miantonomo led his warriors against those of Uncas, the Mohegan sachem. He was defcated and captured at what is now Norwich, Conn., was turned over to the Connecticut authorities, and was later tried at Boston by the commissioners of the United Colonics of Ncw England. A committee of five clergymen, to whom his case was relefred, recommended that he be executed, and the commissioners accordingly sentenced him to death and chose Uncas as his executioner. Miantopomo, who was kept in Ignorance of this sentence, was taken to the ecene of his defeat and was there tomahawked in cold blood by Wawequa, the hrother of Uncas. There is a monument to Miantonomo in Sachem's Park, Norwicb, Conn.
MIANWALI, a town and district of India in the Multan division of the Punjab. The town is situated on the left bank of the Indus, 655 ft . above sea-level. Pop. (1901), 359I. The district was formed in zgor, after the creation of the North-West Frontier Province, out of the Cis-Indus portions of Bannu and

Dera Ismail Khan districts. Area $7816 \mathrm{sq} . \mathrm{m}$. Pop. (roor), 424,588 , showing an increase of 6.1% in the decade. About three-quarters of the district lies to the east of the Indus. Along the river is a low fertile tract, liable to floods. The remaining upland, known as the Thal, is barren and sandy, cultivable only where irrigation is possible. In the northeast the district includes the western lank of the Salt Range. The part of the district west of the Indus is a level and fairly fertile plain, enclosed by the Chichali and Maidani hills. The chief agricultural products are wheat and other grains and oil-seeds. Hides and wool are also exported, together with small quantities of alum (abundant in the Salt Range), salt (from the Salt and Maidani ranges), and coal of poor quality, which is found at several points. Petroleum has been discovered. The district is served by the Multan-Rawalpindi line of the North-Western railway.

MILOTSZE, or MInvTSE, one of the aboriginal tribes of southern China. At one time they occupied a considerable portion of the fertile lands which now form the central province of the empire, but as the Chinese advanced southwards they were driven into the mountain districts of the provinces of Yunnan, Kwei-chow, Kwang-si and Kwang-tung, where they are found at the present day. As early as the reign of King Suan (about 800 B.c.) we read of an expedition having been sent to drive them out of Hu -nan. The last important campaign against them was undertaken by the emperor K'ien-lung, who, having completely subjugated the Eleuths, attacked the Miaotsze, who suffered a crushing defeat, and were compelled to purchase peace by swearing allegiance to their conquerors. They still maintain a semi-independence in their mountain-homes, hut are a decaying race, gradually giving way before the Chincse. They are allowed to govern themselves on their own patriarchal system. The Miaotsze of both sexes are shorter and darker-complexioned than the Chinese, their faces are rounder and their features sharper.
See Sketches of the Mricu-tsze, trans. by E. C. Bridgman; J. Edkint. The Mizulssi Tribes, wheir History; and "Quaint Customs in Kweichow," Corrhill Magasine (Jan. 1872); Playiair, The Maotw of Kwei.chors and Yunnan (London, 1877); A. K. Colquboun, Acrass Chrysé (1883).
minOULIS, ANDBEAS VOKOS or Bokos ($1768-1835$), Greek admiral and politician, was born in Negropont. The surname Miaoulis, which was added to his family name of Vokos, or Bokos, is said to be derived from the Turkish word miaoul, a felucca. He settled in the island of Hydra on the cast of the Morea, and when the Greek War of Independence began was known among his fellow townsmen as a trader in corn who had gained wealth, and who made a popular use of his money. He had been a merchant captain, and was chosen to lead the naval forces of the islands when they rose against the government of the Sultan. The islanders had enjoyed some measure of exemption from the worst excesses of the Turkish officials, but sufficred severely from the conscription raised to man the Turkish ships; and though they seemed to be peculiarly open to altack by the Sultan's forces from the sea, they took an early and active part in the rising. As early as 1822 Miaoulis was appointed navarch, or admiral, of the swarm of small vessels which formed the insurgent fleet. He commanded the expedition sent to take revenge for the massacte of Chio (see Kanaris) in the same year. He continued to be the naval chief of the Grecks till Lord Dundonald entered their service in $\mathbf{1 8 2 7}$, when he retired in order to leave the English officer free to act as commander. In the interval he had had the general direction of the naval side of the Greek struggle for freedom. He had a share in the successful relief of the first siege of Missolonghi in December 1822 and January 1823. In 1824, after the conquest of Psara hy the Turks, he commanded the Greek forces which prevented the further progress of the Sultan's fleet, though at the cost of the loss of many fire ships and men to themselves. But in the same year he was unable to prevent the Egyptian forces from occupying Navarino, though he harassed them with some success. During 1825 he succeeded in carrying stores and reinforcements into Missolonghi, when it was besieged for the second time, though he could not avert its fall. His efforts to interrupt the sea communications of the Egyptian forces failed, owing to the enormous disproportion of
the two squadrons in the siege and strength of the ships. As tho war went on the naval power of the Greeks diminished, partly owing to the penury of their treasary, and partly to the growth of piracy in the general anarchy of the Eastern Mediterrancan. When Miaoulis retired to make room for Dundonald the conduct of the struggle had really passed into the hands of the powers. When independence had been obtained, Miaoulis in his old age was entangled in the civil conflicts of his country, as an opponent of Capodistrias and the Russian party. He had to employ his skill in the employment of freships against them at Poros in 1831 . He was one of the deputation sent to invite. King Otho to accept the crown of Greece, and was made rear-admiral and then viceadmiral by him. He died on the 24 th of June 1835 at Athens.

MICA, a group of widely distributed rock-forming minerals, some of which have important commercial applications. The principal members of the group are muscovite, hiotite, phlogopite and lepidolite (q-v.). The name mica is probably derived from the Latin micare, to shine, to glitter; the German word glimmer has the same meaning. The mineral was probably included with selenite under Pliny's term lapis specularit.

Mineralogical Characters.-The micas are characterized by a very easy cleavage in a single direction and by the high degree of flexibility, elasticity and toughness of the extremely thin cleavage flakes. They all crystallize in the monoclinic system, often, however, in forms closely resembling those of the rhomhohedral or orthorhombic systems. Crystals have usually the form of bexagonal or rhomb-shaped scales, plates or prisms, with plane

Fig. I.

Fig. 2.
angles of 60° and 120°, and, with the exception of the basal planes, are only rarely bounded by smooth and well-defined faces. The crystal represented in fig. I is bounded hy the basal pinacoid $c(\infty 1)$ parallel to which is the perfect cleavage, the clinopinacoid b (oio) parallel to the plane of symmetry, and the pyramids m (22r) and σ (II2). The angles hctween these pyramids and the basal plane are 853° and 73° respectively. The prism (iIO) at 90° from the basal plane is not developed as a crystal face, but is a plane of twinning, the two individuals of the twin being united parallel to the basal plane (fig. 2). The different species of mica have very nearly the same forms and interfacial angles, and they not infrequently occur intergrown together in parallel position. The best developed crystals are those of Vesuvian biotite.
When a cleavage flake of mica is strack a sharp blow with a blunt needle-point a six-rayed star of cracks or "percussion figure". is developed: the rays intersect at angles of approximately 60°, and the pair most prominently developed are parailel to the plane of symmetry of the crystal. A similar six-rayed system of cracks, bisecting the angles between the rays of the previous set, is produred when a blunt punch is graduaily pressed agalnst a sheet of mica; this is known as the ", pressure figure." These cracks coincide with planes of easy separation or of gliding in the crystal; they are especially uscful in helping to determine the crystallographic orientation of a cleavage flake of mica when crystal faces are absent. Sheets of mica which have been subjected to earth-movements are frequently cracked and ridged parailel to these directions, and are then valueless for economic purposes.

In their optical characters the micas exhibit considerable variations. The indices of refraction are not high. the mean index being about $1 \cdot 58-1 \cdot 60$, but the double refraction is very strong ($0.04-0.05$) and is negative in wign. The angle between the optic axes varies from $70^{\circ}-50^{\circ}$ in muscovite and lepidolite to $10-0^{\circ}$ in biotite and phlogopite; the latter are thus frequently practicaliy uniaxial. The acute bisectrix of the optic axes never deviates from the normal to the besal piane by more than a degree or two, hence a cleavage fake of mica will always show an optic figure in convergent light When placed on the stage of a polarizing microscope. The plane of the optic axes may be cither perpendicular or parallel to the plane of symmetry of the crystal, and according to its position two classes of mica are distlnguished. To the first class, with the optic axial plane perpendicular to the plane of symmerry, belong muscovite, lepidolite, paragonite. and a rare variety of biotite called anomite: the second class includes zinnwaldite, phlogopite, lepidomelane and
most biotites. Dark coloured micas are strongly pleochroic. Accurate determinations of the optical orientation, as well as the symmetry of the etching figures on the cleavage planes, seem to suggest that the micas, except muscovite, may be anorthic mather than monoclinic in crystallization.

The different kinds of mica vary from perfectly colourless and transparent-as in muscovite-through shades of yellow, green, red and brown to black and opaque-as in lepidomelane; the former have a pearly lustre and the latter a submetallic lustre on the cleavage surfaces. Sheets of mica very often show coloured rings and bands (Newton's rings), due to the interference of light at the surfaces of internal cleavage cracks. The spec. grav. varies between 2.7 and 3.1 in the different species. The bardness is 2-3; smooth cleavage surfaces can be just scratched with the finger-nail. The micas are bad conductors of heat and electricity, and it is on these properties that many of their technical applications depend.

Inclusions of other minerals are frequently to be observed in mica. Flattened crystals of garnet, films of quartz, and needles of tourmaline are not uncommon. Cleavage sheets are frequently disfigured and rendered of little value by brown. red or black spots and stains, often with a dendritic arrangement of iron oxides. Minute acicular inclusions, probably of rutile, arranged paralled to the rays of the percussion figure, give rise to the phenomenon of "asterism" in some micas, particularly phlogopite: a candle-flame or apot of light viewed through a cleavage sheet of such mica appears as a six-rayed star.

Chemical Composition.-The micas are extremely complex and variable in composition. They are silicates, nsually orthosilicates, of aluminium together with alkalis (potassium, sodium, lithium, rarely rubidium and caesium), basic hydrogen, and, in some species magnesium, ferrous and ferric iron, rarely chromium, manganese and barium. Fluorine is also often an essential constituent, and titanium is sometimes present.

The composition of the several species of mica is given by the following formulae, some of which are only approximate. It wilh be seen that they may be divided into two groups-alkali-micas (potash-mica, acc.) and ferromagnesian micas-which correspond roughly with the division into light and dark micas.

> Muscovite
> Paragonite
> Lepicolite - - $\mathrm{H}_{3} \mathrm{Na} \mathrm{Al},\left(\mathrm{SiO}_{3}\right)$,
> Lepicolite. - . . $\mathrm{KLI}\left[\mathrm{Al}\left(\mathrm{OH}_{2} \mathrm{~F}\right)_{2}\right) \mathrm{Al}\left(\mathrm{SiO}_{3}\right)_{2}$
> Zinnwaldite . . - (K,Li) $\left(\mathrm{AN}(\mathrm{OH}, \mathrm{F})_{2} \mathrm{FeAl}_{3} \mathrm{Si}_{1} \mathrm{O}_{4}\right.$
> Biotite - - - ($\mathrm{H}, \mathrm{K})_{2}(\mathrm{Mg}, \mathrm{Fe})_{2}\left(\mathrm{Al}, \mathrm{Fe}_{3} \mathrm{SiO}_{4}\right)_{1}$
> Phlogopite . . . $\left.[\mathrm{H}, \mathrm{K})_{2}(\mathrm{Mg})_{3}\right]_{3} \mathrm{Mg}_{2} \mathrm{Al}\left(\mathrm{SiO}_{4}\right)_{4}$

The water which is present in muscovite to the extent of 4 to 6%, and rather less in the other species, is expelled only at a high temperature ; it is therefore water of constitution, existing as basic hydrogen or as hydroxyl replacing fluorine.
Roscoelite is a mica in which the aluminium is largely replaced by vanadium ($\mathrm{V}_{3} \mathrm{O}_{2}, 30 \%$); it occurs as hrownith-green scaly aggregates, intimately associated with gold in California, Colorado and Western Australia.

Various attempts have been made to explain the variations in composition of the micis. G. Tachermak, in 1878, regarded them as isomorphous mixtures of the following fundamental molecules: $\mathrm{H}_{2} \mathrm{KAl}_{s}\left(\mathrm{SiO}_{4}\right)_{1}$ corresponding with muscovite: $\mathrm{MgSi}_{2} \mathrm{O}_{12}$ a hypothetical polymer of olivine: and $\mathrm{H}_{4} \mathrm{Si}_{1} \mathrm{O}_{12}$, a hypothetical silicic acid. F.W. Clarke ($1889-1893$) supposes them to Le substitution derivatives of normai aluminium orthosilicate $\mathrm{Al}_{(}\left(\mathrm{SiO}_{4}\right)_{1}$, in which part of the aluminium is replaced by alkalis, magnesium, iron and the univalent groups (MFF), (AlF), (AlO), ($\mathbf{M g O H}^{2}$) an excess of silica is explained by the isomorphous replacement of $\mathrm{H}_{4} \mathrm{SiO}_{4}$ by the acid $\mathrm{H}_{4} \mathrm{Si}_{3} \mathrm{O}_{3}$.

Artificially formed arystals of the various species of mica have becn observed in furnace-slags and in silicate fusions.

Occurrence.-Mica occurs as a primary and essential constituent of igneous rocks of almost all kinds; it is also a common product of alteration of many mineral silicates, both by weathering and by contact and dynamo-metamorphic processes. In sedimentary rocks it oocurs as detrital material.
Muccovite and bioctite are commonly found in silicepos rocks, whilst phlogopite is characteristic of calcaneous rocka. The best crystallized specimens of any mica are afforded by the small brilliant crystals of biotite, which encrust cavities in the limestone blocks ejected from Monte Somma. Veauvius. Large shcets of muscovite, such as are of commarctal value, are found only in the very coarsely crystallised pegroatite veins traversing granite, greiss or micaschist. These veins consist of felspar, quartz and mica, of ten with smaller amounts of other crystallized minerala, such as tourmaline. beryl and garnet; they are worked for mica in India, the United

States (South Dakota, Colorado and Alabama), and Brazil (Goyaz, Bahia and Minas Geraes). The commercially valuable micas of Canada and Ceylon are mainly phlogopite (q.0.), which has a rather different mode of occurrence. The mica mined in India is practically all muscovite. The principal mining districts are those of Hazsiribagh in Bengal and Nellore in Madras: in the former district the mica has unually a nuby tint, whilst in the latter it is more often greenish. In the Inikarti mine, Nellore, "books" of mica measuring to ft . acrose, and up to 15 ft . acrose the folia have been found, and rectangular sheets measuring 30 by 24 in . and free from cracks and fiaws have frequently been obtained.

Uses.-On account of its transparency and its resistance to fire and sudden changes of temperature, mica has been much used for the windows of stoves and lanterns, for the peep-holes of furnaces, and the chimneys of lamps and gas-burners. At one time it was used for window panes of houses and the port-holes of Russian men-of-war, being commonly known ns "Muscovy glass." Spangles of mica are much used for decorative-purposes of various kinds, and the mineral was formerly known as glacies Marioe (Ger., Frauenglas) because of its use for decorating statues of the Virgin. The lapis specularis of Pliny, scattered over the Circus Maximus to produce a shining whiteness, was probably mica. Large quantities of ground mica ure used in the manufacture of wall-paper, and to produce a frosted effect on toys, stage scenery, \&c. Powdered mica is also used in the manufacture of paints and paper, is a lubricant, and as an absorbent of nitro-glycerine and disinfectants. Sheets of mica are used as a surface for painting, especially in India; for lantern slides; for cerrying photographic films; ds a protective covering for pictures and historical documents; for mounting soft and collapsible natural history specimens preserved in spinit; for the vanes of anemometers; mirrors of delicate physical instruments; for various optical and many other purposes. Being a bad conductor of heat it is used for the packing and jackets of boilers and steam-pipes. Other applications depend on the strength of its resistance to acids.

The most extensive application of mica at the present day is for electrical pupposes. Being a bad conductor of electricity it is of value as an insulator, and the smooth flexible sheets are much used in the construction of armatures of dynamos and in other electrical machinery. For various purposes a manulact ured material known as "micanite" or " micanite cloth" is much used; this consists of small sheets of mica cemented with shellac or other insulating cement on cloth or paper.

Muscovite and phlogopite are practically the only species used commercially, the former being the more common. Phlogopite is rarely found as colourless transparent sheets and is therefore almost exclusively used for electrical purposes. Many other uses of mica might be mentioned. The potassium it contains renders it of value as a manure. The species iepidolite is largely used for the manufacture of lithium and rubidium salts.

Mining, Preparation and Value.-Mica mining is an industry of considerabie importance, especially in India; but here the methods of mining are very primitive and wasteful. In working downwards in open quarries and in tortuous shafts and passages much of the mica is damaged, and a large amount of labour is expended in bauling wnste material to the surface. Slnce the mineral occurs in definite veins, a more satisfactory and economical method of working would be that adopted in metalliferous mines, with a vertical shaft, cross-cuts, and levels running along the strike of the vein: the mica could then be extracted by overhead stopping, and the waste matcrial used for filling up the worked-out excavations.
In dressing mica the "books" are split along the cleavage into sbeets of the required thickness, and the sheets trimmed into rectangles with a sharp knife, shears or guilfotine, stained and darnaged portions being rejected. The dreswed sheets are sorted according to size, transparency, colour and freedom from spots or stains. Scrap mica is ground to powder or used in the manufacture of micanite.

The price of mica varies very considerably according to the sise, transparency and quality of the sheets. An average price for cut sheets of all sizes is about 4s. per lb , but for large sheets it may be as high as 54 s . per ib.

Refrrences.-For the mineralogical characters sce the textbooks of $\mathrm{J}_{\text {. }}$ D. Dana and C . Hintze; for economic questions, the following: T. H. Holland, "The Mica Deporits of India," Memoirs of the Geological Swrvey of Inder (1902), voxiv. 11-121; G. P. Merrill The Non-Melallic Minerals (New York, 1904), pp. 163: 180: "The Mining and Preparation of Mica for Commercial Purposes," Bulletin of the Imperial Instisute (London, 1904), it. 27-291; F. Cirkel, "Mica; its Occurrence, Exploitation, and Usee" (Canadian Dept. of the Interior, Mines Branch, Ottawa 2905, $14^{8} \mathrm{pp}$.).
(L. J. S.)

IICAE (O), in the Bible, the name prefixed to the sixth in arder of the books of the minor prophets. ${ }^{1}$ He wes a contemporary and fellow-worker of Isaiah. The name in various modifications-Micdidhin, Micaidhal, Kicaidah-is common in the Old Testament, expressing ns it does a fundamental point of Hebrew faith: Who is like Yahweh ? ${ }^{2}$ It was also borne among others by the Danite whose history is given in Judges xvii. seq(see separate article), by the prophet who opposed Ahab's expedition to Ramoth-Gilead (I Kings xxii.), ${ }^{3}$ and by the son of Jonathan (see SaUL).

The editorial title of the book of Micah declares that Micah prophesied "in the days of Jotham (739-734), Ahar (733-721) and Hezekiah (720-693), kings of Judah." Nothing in the book itself can claim to belong to the reign of Jotham, but the prophecy against Samaria (i. 5-8) may have been uttered originally before the fall of Samaria in 722, i.e. in the reign of Ahaz. In its present form, however, it has been incorporated in a prophecy against Judah, belonging, most probably, to the years 705-701, when a new Palestinian rising provoked Sennacherib's campaign of 701 (Nowack; cf. Marti). This prophetic activity of Micah under Hezekiah is confirmed by the direct statement of Jer. xxvi. 17 seq.; where Mic. iii. 12 is quoted ("Zion shall be plowed as a field," \&c.). The verse quoted forms the climar of Mic. L-iii., from which chapters only any certain conclusions as to the prophetic message of the historic Micah can be drawn; the remaining sections of the present book (iv.-v., vi.-vii.) consist, in whole or in greater part, of writings belonging to a later period.

Chs. 1.-iii. (with the exception of two verses, ii. 12, 13)4 are a prediction of judgment on the sins of Judah and Ephraim. In a majestic exordium Yahweh Himself is represented as coming forth in the thunderstorm (ci. Amos i. 2) from His heavenly palace, and descending on the mountains of Palestine, at once as witness against His people, and the executer of judgment on their sins. Samaria is sentenced to destruction for idolatry; and the blow extends to Judah also, which participates in the same guilt (ch. i.). But, while Samaria is summarily disminsed, the sin of Judah is analysed at length in cha. ii. and iff., in which the prophet
${ }^{2}$ A confusion between the two prophets of the name has led to the insertion in the Massoretic text of 1 Kings xxil. 28 of a citation from Micah i. 2, rightly absent from the LXX.
${ }^{2}$ See, however, Gray, Hebrew Proper Namas, p. 157 : "In later times they were perhaps virtualiy synonymous: but this is not to be assumed for carly times. The shorter forms may well have had a purely secular reference, signif ying,' who is like this child '?"
${ }^{3}$ He is called "the Morashtite" (Mic. i. I; Jer. xxvi. 18) from his birthplace, Moresheth-Gath. That Micah lived in the Shephelah or Judaean lowland near the Philistine counnry is clear from the local colouring of i . to seq.i where a number of places in this quarter are mentioned together (in connexion wilh the war in Philistia), and their names played upon in a way that could hardly have suggested itself to any but a man of the district. The peronomasia makes the verses difficult, and in i. 14 none of the ancient versions recognizes Moresherh-Gath as a proper name. The word Morashtite (MÖrashai) was therefore obscure to them; but this only gives greater weight to the traditional pronunciation with θ in the first syllable, which is as old as the LXX., and goes against the view, taken by the Targum both on Micah and on Jeremiah, and followed by some moderns (including Cheyne, E.B., ${ }^{1198)}$, that Micah came frome Mareshah. When Eusebius placed Mapandai near Eleutheropolis it is not likely that he is thinking of Mareshah (Maresa), for be speaks of the former as a village and of the latter as a ruia 2 m . from Eleutheropolis. Jerome too in the Epit. Pautae (E p. cvii.). speaking as an eyc-witncss; distinguishes Morashtim. with the church of Micah's sepulchre from Maresa. This indeed was after the pretended miraculous discovery of the relics of Micah in A.D. 385; but the name of the village which then existed (Praef. in $1 / \Sigma c h$.) can hardly have been part of a pious fraud.
${ }^{4}$ These two verses are a prophecy of restoration; they are admitiedly an interruption in their present context (so, e.g., Driver, G. A. Smith); they belong in eubstance to the second eection of the brow (iv. v.).
no loager denle with idolatery, but with the corruption of socioty. and particularly of its keaders-the grasping aristocracy whose whole energies are concentrated on devouring the poor and depriving them of their little boddings, the unjuat judgreand pricets who for gain wreat the law in favour of the rich, the bireting and gluttonous prophets who mabe war against every one "that puttecth not into their mouth," but mete ever ready with assurances of Yahweh's favour to their pacrons, the wealthy and noble alinners that fatten on the ftesh of the poor. The internal dieorders of the realm depicted by Micah are atho prominent in lminh's prophecies; they were closely connected, not only with the foreign complicationa due to the approach of the Assyrinas, but with the break-up of the old agrarian sytuem within larael, and with the rapid and uncompensated aggrandisement of the noblez during thooe prosperocas years when the conquex of Edom by Amariath and the occupation of the port of Elath by his son (2 Kings xiv. 7, 22) placed the lucrative trade between the Mediterranean and the Red Sca in the hands of the rulers of Judah. On the other hand the democratic tone which distinguiater Micah from Isaiah, and his announcement of the impending fall of the captal (the deliverance of which from the Assyrian appears to leainh as the necessenry condition for the preservation of the seed of a new and better kingdom), are ex. plained by the lact that, whice laxiah lived in the centre of affairs, Micah, a provincial prophet, sees the cupital and the aristocracy entiredy from the side of a man of the oppresead people, and foretelle the utter ruin of both. But this ruin does not present itself to tim as involving the captivity or ruin of the nation as a whole; the congregation of Yahweh remains in Judacea when the oppremors are cast out (il. 5); Yahweh's words are sttll good to them that nalk uprighty; the glory of lerael io driven to take refuge in Adullam, ${ }^{\text {as }}$ as in' the days when David's band of broken men was the true hope of the nation, but there is no hine that it is banished from the land.
Our only evidence as to the reception of Micah's message by his contemporarics is that afforded by Jer. xxvi. 17 seq., both directly, in the recorded effect on Hezekiah and the people; and indirectly, in the fact that the impression created was remembered a century afterwards. Micah resembles Amos, both in his country origin, and in his general character, which expresses itself in strong emphasis on the ethical side of religion. As the last of the four great prophets of the 8 th century he undoubtedly contributed to that religious and ethical reformation whose literary monument is the Book of Deuteronomy. ${ }^{2}$
The remainder of the book bearing the name of Micah falls into two main divisions, viz. iv., v. and vi., vii. Each differs from the first division (i.-iii.) in a marked degrec. The second consists mainly of prophecies of restoration including eschatological (iv. 1 seq) and Messianic ($\mathbf{v} .2$ seq.) hopes. The third is formed of three or four apparently unrelated passages, on the spinituafity of true worship (vi. 1-8), social immorality and its doom (vi. o26; vii: $1-6$), and Israe's future recovery from present adversity through Divine grace (vii $7-20$). It is improbable that much, if any, of these chapters can be ascribed to Micah himself,' not only because their contents are so different from his undoubted work (i.-iii.), for which he was subsequently remembered (Jer. xxvi. 18), but because they presuppose the historic outlook of the Exile, or a later age (e.g. iv. 6 seq.; vii. 7 seq.). It is neither psychologically nor historically impossible for a prophet of
${ }^{1} \mathrm{i}$ i5; the reference is, however, obscure and uncertain.
'Sce the Introduction to the Century Bible, "Deuteronomy and Joshua," by H. Wheeler Robinson.
Mic. iv. 1 - 3 and lsa. ii. $2-4$ are but slightly modified recensions of the same text, and as lisa. ii. is older than the prophecy of Micah, while on the other hand Mic. iv. 4 weems the natural completion of the paesage, it is common to uuppose that both copy an older prophet. But the words have litele connexion with the context ti lsaiah, and may be the quotation of a copyist suggested by ver. 5 On the other hand It has been urged chat the passage belongs to a later stage of prophetic thoughe than the 8 ch century B.C. Reasons making this view the more probable one are given by Wellha usen (P. 142) and Marti (p. 281).

- Nowack thinks that iv. 9, ro, 14 and v. ro-14 may possibly belong to Micah; Wellihausen recognizes the same possibility. which he extends, however, to vi. $1-8$. Marti, who (like Cheyae in Ency. Bib.) Gindo nothlag by Micah in iv.-vii., thinks these chaptera have crystallized round two central passages, viz. iv. 1-4, and vi. $6-8$, whose addition to the first three chapters formed the second stage in the growth of the present book. More conservative views as to authorship are taken by Driver and G. A. Smith, ehe former engeeating, however, that "the exirting Book of Micab connista only of a collicetion of cxterpls, in somx gases fragmentary excerptse, from the entire series of the prophet's discourec:" (L O.T., ch. vi. ${ }^{6}$ 6).
judgment to be also a prophet of comfort; but the internal evidence of composite and (in whole or part) later authorship must out weigh the traditional attachment of these passages to a MS. containing the work of Micah.

The sequence of thought in chs. iv. v. is really difficult, and has given rise to much complicated discuesion. Thus iv. it-13 stands in direct contradiction to iv. 9. 10, and indeed to iti. 12. The last two passages agree in speaking of the capture of Jerusalem, the first declares Zion inviolable, and its capture an impossible profanation. Such a thought can hardly be Micah's, even if we resort to the violent harmonistic process of imagining that two quite distinct sieges, separated by a renewal of the theocracy, are spoken of in consccutive verses. Another difficulty lies in the words " and thou shalt come even to Babyion " in iv. 10. Micah unquestionably looked for the destruction of Jerusalem as well as of Samaria in the ncar future and by the Assyrians (i. 9), and this was the judgment which Hezckiab's repentance averted. If these words, therefore, belong to the original context, they mark it as not from Micah's hand; though they might be a later gloss. The prophetic thought is that the daughter (population) of Zion thall not be saved by her present rulers or defentive strength; she must come down from her bulwarks and dwell in the open field; there, and not within ber proud ramparts, Yahweh will grant deliverance from her enemies. Opposition to present tyranny expresses itself in recurrence to the old popular ideal of the first simple Davidic kingdom (iv. 8). These old days shall return once more. A new David, like him whose exploits in the district of Micah's home were still in the mouths of the common people (? i. 15). goes forth from Bethlehem to feed the flock in the strength of Yahweh. The kindred Hebrew nations are once more united to their brethren of Isracl (cf. Amos ix. 12, Isa. xvi. I seq.). The remnant of Jacob springs up in fresh vigour, inspiring terror among the zurrounding peoples, and there is no lack of chosen captains to lead them to victory against the Assyrian foe. In the rejuvenescence of the nation the old stays of that oppressive kingship which began with Solomon, the strongholds. the fortified cities, the chariots and horses so foreign to the life of ancient Isracl, are no more known: they disappear together with the divinations, the soothsayers, the idots, the mazzebah and asherah of the high places. Yahweh is king on Mount Zion, and no inventions of man come between Him and His peopic.

The sixth chapter of Micah presents a very different situation from that of chs i-iij. or iv., v. Yahweh appears to plead with His pcople for their sins, but the sinners are no longer a careless and oppressive aristocracy buoyed up by deceptive assurances of Yahweh's help, by prophecies of wine and strong drink; they are bowed down by a rchgion of terror, wearied with actempts to propitiatc an angry God by, countless offerings, and even by the sacrifice of the first-born. Micantime the substance of true religion - justice, charity and a humble walk with God-is forgotten, fraud and deceit reign in all classes, the works of the house of Ahab are observed (worship of foreign gods). Yahweh's judgments are multiplied against the land, and the issue can he nothing else than its total desolation. All these marks may be held to fit exactly the evil times of Manasseh as described in 2. Kings xxi. Cp. vif. $\mathbf{1}-6$, in which the public and private corruption of a hopetess age is bitterly bewailed, possibly beloags to the same context.

Micah may very well have lived into Manasseh's reign, but the title in i. I does not cover a prophecy which certainly falls after Hezekiah's death, and the style has nothing in common with the earlier part of the book. It is therefore prudent to regard the prophecy, with Ewald, as anonymous. Ewald ascribed the whole of chs. vi., vii. to one author. Wellhausen, however, remarks with justice that the thread is abruptly broken at vii. 6 , and that verses $7-20^{1}$ represent Zion as already fallen before the heathen and her inhabitants as pining in the darkness of captivity. The hope of Zion is in future restoration after she has patiently borne the chastisement of her sins. Then Yahweh shall arise mindful of His oath to the fathers, Israel shall be forgiven and restored, and the heathen humbled. The faith and hope which breathe in this passage have the closest affinities with the book of Lamentations and Isa. xl--Lxvi. Indeed, as Marti points out (p. 259) the triple division of the book of Micah (i.-iii.; iv., v.; vi., vii.) corresponds with that of the book of Isaiah (i.-xxix; ; xl.-iv.; Ivi.-|xvi.) in the character of the three divisions (judgment; coming rescoration; prayer for help in adversity) respectively, and in the fact that the fifst alone gives us pre-exilic writing in the actual words of the prophet to whom the whole book is ascribed. In both eases, it need hardly be said, the great literary and spiritual value of the later passages ought in no way ${ }^{1}$ Regarded by Stade (Z.A.T.W., 1903, p. $\mathbf{I 6 4} \mathbf{s c q}$.) aa an indpendent psalm.
to suffer prejudice from critical conditions as to their date, and authorship.

Literature. -The chief modern commentanies are those of Nowack (Die Kleinen Propheten, 1897; 2nd ed., 1904) and Mari (Dodekapropheton, 1904), where detailed references to the older literature may be found; cl. Wellhausen, Die Kleinen Propheten (3rd ed., 1898). In English, reference may be made to Cheyne ("Micah," in the Cambridge Bible, 1882 ; 2nd ed., 1895), and to G. A. Smith ("The Book of the Twelve,"' vol. i., in The Erpoositor's Bible, 1896); also to the articles on "Micah "' by Nowack in Hastings's Dicl. of the Bible (1900), iii. 359. 360, and by Cheyne in the Ency. BiUl. (1902), iii. c. $3068-3074$, the latter incorporatling most of the original articie (Ency. Brif. gth ed.) by W. Robertson Smith, which has been revised above. For a review of recent criticism see Cheyne, introduction to W. R. Smith's The Prophets of Isreel, and ed., pp, xxiii,-xxvii., also Ency. Bib. Loc. cif. I. M. P. Smith discusses "The Strophic Structure of the Book of Micah ", in a volume of Old Tesl. and Semitic Sludies: in memory of W. R. Harper (Chicago، 1908).
(W. R.S.; H. W. R.*)

HICAH, in the Bible, a man of the hill-country of Ephraim whose history enters into that of the foundation of the Israclite sanctuary at Dan (Judges zvii. seq.). He had stolen from his mother eleven hundred pieces of silver (for the number cf. Judges zvi. 5), and when she uttered a curse upon the unknown thief he restored the money and she consecrated it to Yahweh. A carved image was made and set up in his private temple together with an ephod-idol and teraphim (objects used in divination, cf. Gen. xxxi. 19, 30; Hos. iii. 4). He employed one of his sons to serve as priest, hut when a Levite from Bethlehem in Judah came along he gladly installed him as "father and priest." When the tribe of Dan subsequently sought new territory and sent men to search for a suitable district they passed by Micah's house, recognized the Levite and requested an oracle from him. When, later, they migrated, they despoiled the sacred place and carried off the gods and priest to their newly won bome at Laish.

MICA-SCHIST, in petrology, a rock composed essentially of mica and quartz, and having a thin parallel-banded or foliated structare, with lamellae rich in mica alternating with others which are principally quartz. They split readily along the micaceous films, and have smooth or slightly uneven surfaces covered with lustrous plates of muscovite or biotite; the quartzose lamellae are often visible only when the specimens are looked at edgewise. Mica-schists are very common in regions of Archean rocks accompanying gneisses, crystalline limestones and other schists. Some have a flat handing yieiding smooth slabs; others are crumpled or contorted with undulating foliation. Occasionally the quartz forms elliptical lenticles or "eyes." In some cases mica composes nearly the whole of the rock; in others quartz preponderates so that they approach quartz-schists and quartzites.

The mica may be muscovite or biotite; both are often present, while paragonite and green fuchsite or chrome-mica are not so common. In addition to quartz there may be a small amount of feldspar, usually albite. A great number of accessory minerals are known in mica-schists, and when these are cónspicuous or importsnt they may be $⿴$ regarded as constituting special varictics receiving distinetive names. Garnet, in rounded red crystals, not uncommonly idiomorphic, is the most frequent. Brown staurolite, pinkish andalusite, and grey or blue lyyanite occur in some kinds of micaschist, separately or together. The white mica-schist of the St Gothard contains kyanite and staurolite. Graphite (or graphitoid) is also a very frequent ingredient of these rocks, giving them a lea len grey colour and causing them to soil the fingers when handled. In some mica-schi:ts there is much calcite (calc-mica-schists); and homblende, scapolite and augle are often seen in rocks of this sort. Tourmaline oa u5s. sometimes in large black prisms but more commonly in minute crystals visible only in microscopic sections Rutile in tiny prisms, itmenite and hematite in black or brown caies. zircon, apatte. granules of epidote or zoisite chlorite, chloritoid nd pyrites occur with more or less frequency in the roeks of this group.

Mica-schista ere in nearly all cases sedimentary rocks whicb have been recryatallized and lave obtained a schistose structure during the process. This can be proved by their chemical composition, which is very much the same as that of clays, shales and slates. In wome districts it is possible to trace every gradation from a alate (q, Δ.) to a mica-achist, the intermediate etages being represented by phyllites ($Q . D_{2}$) which consist of quartz, muscovite and chlorite, and are neither so eryutalline nor so well foliated as the schisss. In a few places, e.e. Bergea in Norway, fossils have been found in mica-
schists. The amociation of quartzitea and quartz-achists, graphiteachists and cryztailine limestones with mica-schists in the fieid is explained by the fact that all these rocks are altered sediments, viz. sandstonce, carbonaceous ahsles and limeatones.
Under the microscope the appearance presented by mica-echiste differs according to whether the rock is cut parailel to or acrose the plancs of foliation. In the latter case thin alternating bands composed of black or brown mica, and of quartz, cross the fictd of view (see Petrolog y, Plate 4. fig. 8). The mica scales have their cleavages and their fat sides paralel; the quartz occurs in rounded, elliptical or irregular grains, with usually a small admixture of feldspar (albite. oligoclase, orthoclase); apatite and iron oxides are rarely absent from these rocks, If garnet is present it may form large well-ahaped crystals containing innumerable enclosures of quarts; biotite and iron ores; in zome cases the garnets are cracked as if they had been hroken by the pressurcs to which the rock had been subjected. Often the garnets are surrounded by amall "eyes "of quartz, and they may be embedded in green chlorite, which is probably a pecondary or decomposition product. Some mica-schists are rich in iron oxides end pass into haematite-schists (itabirites). When graphite occurs in mica-schists its crystals are small flat plates perfectly opaque even in the thinnest sections.

Like all metamorphic rocks, mica-achists are principally found in Archean areas: the great majority of them are of pee-Cambrian age. There are, however, in the Alps, Himalayas, dec., many rocks of this sort which are believed to be secondary or even tertiary; the evidence for this is not in all cases satisfactory, as of course the fossils, which if preserved would be eufficient to prove it, are nearly always destroyed by the metamorphism. Mica-schists are rarely of economic value, being too fissile for building-stones and too brittle for roofing-slates. They are of wide-spread distribution in the Scottish Highlands, Norwa y and Sweden, Bohemia, Saxony, Brittany, the Aips, many parts of Nurth America, \&c.
(J.S.F.)

MICCA, PIETRO, Piedmontese soldier (d. 1706), was born at Andorno, and achieved fame by his death in the defence of Turin. During the siege of that city by the French in 1706 a party of the besiegers had succeeded in penetrating by surprise into the moat of the fortress on the night of August 29-30, and would undoubtedly have captured it had not Micea, a soldier in the engineers, fired a mine, with the result that they were hlown into the air and the rest of the force driven back with heavy losses. Micca's heroism has been the subject of poems, plays and romances. But, according to Count Giuseppe Solaro della Margherita, the commander of the Turin garrison at the time, it was through a miscalculation of the pace of the fuse. and not by deliberate intent, that he sacrificed his life.
See A. Manno Pietro Micce ed in gonerale confe Solero sella Margherita (Turin, $\mathbf{1 8 8}_{3}$).

InchaEl (Hebrew Skep, "Who is like Godp"), an Old Testament name, synonymous with Micaiah or Micah (Num. xiii. 13; 1 Chron. v. 13 ef passim). In the book of Daniel the name is given to one of the chief "princes " of the beavenly host, the guardian angel or "prince" of Israel (Dan. x. 13, 2x; xii. 1; cf. Enoch xx. 5 and possihly Mal. iii. 1), and as such he naturally appears in Jewish theosophy as the greatest of all angels, the first of the four (or seven) who surround the throne of God, and the antagonist of Sammael, the enemy of God. He bolds the secret of the mighty "word" by which God created berven and earth (Enoch lxix. 14), and was "the angel who spoke to Moses in the Mount " (Acts vij. 38). It was through Babylonian and Persian influence that names were given to the angels, and acconding to Kohut (Jud. Angel. p. 24) Michael is paraliel to Vohumano, "Ahura's first masterpiece," one of the Zoroastrian Amesha-spentas or archangels. It is as guardian angel of Israel, or of the Church, the true Israel, that Michacl appears in Jude 9 and Rev. zii. 7. This latter passage is of distinetly pre-Christian origin; it is not the Child that overthrows Satan, the figure of the Messiah is ousted by that of Michael. There is also here a relic of the primeval Bahylonian myth of the struggle between the light god Marduk and the forces of chaotic darkness. In the Weatern Church the festival of St Michael and All Angels (Michaelmas) is celebrated on the 2gth of September; it appears to have grown out of a local celebration of the dedication of a church of St Michael either at Mount Garganus in Apulin or at Rome, and was a great day by the beginning of the gth century. The Greek Church dedicates the 8th of November to St Michsel, St Gabriel and All Angela.

FIGIIAPE ($1596-1645$), tsar of Russia, was the first tsar of the house of Romanov, being the son of Theodore Nekitich Romanov, afterwards the Patriarch Philaret (q.0.), and Xenia Chestovaya, afterwards the nun Martha. He was elected unanimously tsar of Russia by a national assembly on the 2 rst of Febrasry 1613 , hut not till the eqth of March did the delegates of the council discover the young tsar and his mother at the Ipatievsky monastery near'Kostroma. At first Martha protested that her son was too young and teader for so difficult an office in such troublesome times. At the last moment, however, Michael consented to accept the throne, but not till the weeping boyars had solemnly declared that if he persisted in his refusal they would hold him responsible to God for the utter destruction of Muscovy. In so dilapidated a condition was the capital at this time that Michael had to wait for several weeks at the Troitsa monastery, 75 m . off, before decent accoas modation could be provided for him at Moscow. He was crowned on the 22nd of July. The first care of the new tsar was to clear the land of the rohbers that infested it. Sweden and Poland were then got rid of respectively by the peace of Stolbova (March 10, 1657) and the truce of Deulina (Feh. 13, 1619). The most important result of the truce of Deulina was the return from exile of the tser's father, who henceforth took over the government till bis death in October 1633, Michacl oocupying quite a subordinate position. He was a gentle and pious prince who gave little tronhle to any one and effaced himself behind his counselors. Fortunately for him they were relatively honest and capable men. Michael's failure to wed his daughter Irene with Prince Waldemar of Denmark, in comsequence of the refusal of the latter to accept orthodoxy, so deeply afficted him as to contribute to bring about his death on the rath of July ${ }^{16} 4$ S.
See R. Nisbet Bain, The First Romanoss (Lond., 1905). (R.N. B.)
MICHAEls, the name of nine East-Roman emperors.
Michael I. Reangages (d. 845) an obscure nobleman who had married Procopia, the daughter of Nicephorus I., and been made master of the palace. He was made emperor in a revolution against his brother-in-law, Stauracius (8ri).
Elected as the tool of the bigoted orthodox party in the Church, Michael diligently persecuted the iconoclasts on the northern and eastern frontiers of the empire, hut meanwhile allowed the Bulgarians to ravage a great part of Macedonia and Thrace; baving at last taken the field in the spring of 853, he was defeated near Bersinikia, and Leo the Armenian was saluted emperor in his stead in the following summer. Michael was relegated as a monk to the island of Prote, where he lived unmolested till his death in 845 .
Micanel II., called Pselius, "the stammerer," emperor 820-829, was a native of Amorium in Pbrygia, who began life as a private soldier, but rose hy his talents to the rank of general. He had favoured the enthronement of his old companion in arms Leo the Armenian (813), but, detected in a conspiracy against that emperor, had heen sentenced to death in December 820; his partisans, however, succeeded in assassinating Leo and called Michacl from the prison to the throne. The principal features of his reign were a struggle against his brother general, Thomas, who aimed at the throne (822-824); the conquest of Crete by the Saracens in 823; and the beginning of their attacks upon Sicily (827). In spite of his iconoclastic sympathies, be endeavoured to conciliate the image-worshippers, but incurred the wrath of the monks by entering into a sccond marriage with Euphrosyne, daughter of Constantine VI., who had previously taken the veil.
Micearl III. (839-867), "the drunkard," was grandson of Michaet II., and succeeded bis father Theophilus when three years old (842). During his minority the empire was governed by his mother Theodora, who in spite of several defeats inflicted upon her generals maintained the frontiers against the Saracens of Bagdad and Crete. The regent displayed her religious zeal by restoring image-worship (842) and persecuting the Paulician beretics, hut she entirely neglected the education of her son. As a result Michael grew up a debauchee, and lell under the
sway of his uncle Bardas, who induced him to bamsh Theodora to a convent and practically assumed the chief control (8_{57}). Bardas justified this usurpation by introducing various internal reforms; in the wars of the period Michaet himself took a more active part. During a conflict with the Saracens of the Euphrates ($856-63$), the emperor sustained a personal defeat (860), which was retrieved by a great victory on the part of his uncle Petronas in Assia Minor. In 86I Michael and Bardas invaded Bulgaria and secured the conversion of the king to Christianity. On sea the emplre suffered under the ravages of the Cretan corsairs; and in 865 the first pillaging expedition of the Russians endangered the Booporus, In 867 Michael was assassinated hy Basil the Macedonian, a former groom, who had overthrown the infinence of Bardas and in 866 been associated in the Empire.

Miczarl IV. (d. 1041), "the Paphlagonian," owed his elevation to Zoe, daughter of Constantine VIII., who was the wife of Romanus III, but becoming enamoured of Michael, her chamberlain, poisoned her husband and married her attendant (ro34). Michael, however, being of a weak character and suhject to epileptic fits, left the government in the bands of his brother, John the Eumuch, who had been first minister of Constantine and Romanus. John's reforms of the army and financial system revived for a while the strength of the Empire, which beld its own successfully against its foreign enemies. On the eastern frontier the important post of Edessa was relieved after a prolonged siege. The western Saracens were almost driven out of Sicily by George Maniakes (1038 -40); hut an expedition against the Italian Normans auffered several defeats, and after the recall of Maniakes most of the Sicilian conquests were lost (1041). In the north the Serbs achieved a successful revolt (ro40), but a dangerous rising hy the Bulgarians and Slavs which threatened the cities of Thrace and Macedonia was repressed hy a triumphant campaign which the decrepit emperor undertook in person shortly before his death (1045).
Micianel V. Calapleates, or "the caulker" nephew and successor of the preceding, surnamed after the carly occupation of his father. He owed his elevation (Dec. ro41) to his uncle John, whom along with Zoe he almost immediately hanished; this led to a popular tumult in consequence of which he was dethroned after e hrief reigp of four months, and relegated to a monastery. His unpopularity seems largely due to his attempts at administrative reform, which were strongly resented by the dominant classes.

Micharl VI., "the warlike," was already an old man when chosen hy the empress Theodora as her successor shorily before her death in 1056. He was unable to check the disaffection of the feudal aristocracy, who comhined with an officer named Isaac Comnenus to depose him. After a successful battle in Phrygia, the rebels had no difficulty in dethroning Michael (1057), who spent the rest of his life in a monastery.

Michael VII. Docas, or Parapinaces, was the eldest son of Constantine X. Ducas. After a joint reign with his hrothers, Andronicus I. and Constantine XI. (1067-1071), he was made sole emperor through his uncle John Ducas. The feehleness of Michael, whose chief interest lay in trifling academic pursuits, and the avarice of his ministers, was disastrous to the empire. As the result of anarchy in the army, the Byzantines lost their last possessions in Italy (1071), and were forced to cede a large strip of Asia Minor which they were unable to defend againat the Seljuk Turks (ro74). These inisfortunes, which were hut partially retrieved hy the suppression of a Bulgarian revolt (1073), caused widespread dissatisfaction. In 1078 two generals, Nicephorus Bryennius and Nicephorus Botaniates, simultaneously revolted. Michael resigned the throne with hardly a struggle and retired into a monastery. His nickname Parapinaces ("starver ") was due to his causing the price of wheat to rise.
Micharl VIII. Palaeologus (1234-1282) was the son of Andronicus Palaeologus Comnenus and Irene Angela, the granddaughter of Alexius Angelus, emperor of Constantinople. At an early age he roce to distinction, and ultimately became
commander of the French mercenaries in the employment of the emperors of Nicaea. A few days after the death of Theodore Lascaris II. in 1259, Michael, by the asassination of Muzalon (wnich be is believed but not proved to have encouraged) became joint guardian with the patriarch Arsenius of the young emperor, John Lascaris, then a lad of eight years. Aiterwards invested with the title of "despot," be was finally proclaimed joint-emperor and crowned alone at Nicaea on the rst of January r260. In July 1261 Michael, who had attacked Constantinople with the help of the Genoese, conquered the town through his general Strategopoulos. He thereupon had John Lascaris blinded and banished. For this last act he was excommunicated by Arsenius, and the ban was not removed until six years afterwards (1268) on the accession of a new patriarch. In 1263 and 1264 respectively, Michael, with the belp of Urban IV., concluded peace with Villehardouin, prince of Achain, and Michael, despot of Epirus, who had previously been incited by the pope to attack him, but had been decisively beaten at Pelagonia in Thessaly (1259); Villehardouin was obliged to cede Mistra, Monemvasia and Maina in the Morea. Subsequently Michaed was involved in wars with the Genoese and Venetianss whose influence in Constantinople be sought to diminish by maintaining the balance of strength between them. In 1269 Charles of Sicily, aided by John of Thessaly, made war with the alleged purpose of restoring Baldwin to the throne of Constantinople, and pressed Michael so hand that he consented to send deputies to the council of Lyons (1274) and there accept the papal supremacy. The union thus brought about between the two Churches was, bowever, extremely distasteful to the Greeks, and the persecution of his "schismatic" subjects to which the emperor was compelled to resort weakened his power so much that Martin IV. was tempted to enter into allance with Charles of Anjou and the Venctians for the purpose of reconquering Constantinople. The invasion, bowever, failed, and Michael so far had bis revenge in the "Sicilian Vespers," which le belped to bring about. He died in Thrace in December 1282. In reconstituting the Byzantine Empire Michael restored the old administration without endeavouring to correct its abuses. By debasing the coinage he hastened the decay of Byzantine commerce.

Michail IX. Palabologos, was the eon of Andronicus II. and was associated with him on the throne from 1295, but predeceased him ($\mathbf{1 3 2 0}$). He took the field against the Turks (1301, 1310) and against the Grand Catalan Company (1305), but was repeatedly defeated.

See Gibbon's Decline and Fall (ed. Bury. 1896): G. Finlay, Hisf. of Greece (ed. 1877); G. Schlumberzer, l'Epophe byeantime (i896); J. Bury, in Eng. Hist, Rep. (1889); Meliarakes, Ioropla tof Barinelov т角 Nuxalasкal roî дegrotarou th̆' 'Hralpou, pp. 539-627 (Athens, 1898).

MICHAEI, OBRENOVICH III. ($1823-1868$), Prince of Servia, was the youngest son of Prince Milosh, the founder of the Obrenovich dynasty. After the abdication of his father (t839) and the death of bis elder brother Milan Obrenovich II. (1840) he ascended the throne of Servia. He wished to continue the work of his father, in liherating all the Servian people, and if possible all other Balkan Christians, from direct Turkish rule. But while this programme made the Sultan hostile, it also failed to win the support of Austria, which did not wish the Eastern Question to be opened by the ambitious Servian. The support which his aspirations found in Russia increased Turkey's and Austria's suspicions of the prince's activity. At the same time the political situation at bome was not favourable to his antiTurkish policy. The power was in the hands of men who had forced Obrenovich I. to abdicate, and feared that Obrenovich 111. might avenge his father. They thought it safer for them to replace him on the throne hy a man who was net an Obrenovich, and who would be personally obliged to them for his elevation. These motives were at the bottom of the revolt, started and led by Vuchich in August 1842, the outcome of which was that Prince Michael ieft the country and that his equerry, Alexander Karageorgevich, was elected Prince of Servia. As an exite Itince Michacl lived principally in Yienon, improving his educa-
tion by studies and travels, and frequently visiting Engiand. He constantly refused to agree to suggestions for his restoration by forcible means. His device was Tonpus at mewm jus, "Time and my right." He supported Servian authors and artists, and wrote himself a book in defence of his father Milosh against the attacks of Cyprian Robert. He wrote poetry too, and some of bis songs, set to beautiful music, were very populas amongst the Servians. He married in 1856 the beaniful Julia, Conntess Hunyadi.

In 1858 the Servians, having dethroned Prince Karageorgevich, recalled Michael's father Milosh Obrenovich I. Michael returned to Servia, and on his father's death (1860) ascended the Servian throne for the second time. His proclamation "that henceforth the law is the highest will in Servia," opened a new era of strict legality and at the same time of entire emancipation from foreign influences, and more especially from Turkey's interference with the internal affairs of Servia. The old constitution, granted to Servia by the sultan as the suzerain and the tsar as the protector of Servia as far buck as 18j9, was discarded and replaced by one which limited the power of the oligarchic senate and gave a certain share in legislation to the "Narodna Skupshtina" (the National Assembly). He established the Servian national army and increased the resular army. Reforms ia all branches of public administration were iniroduced, and Servia, until then a palf-oriental and half-patriarchal state, was resolutely led to become a civilized country in a European sense. When in 1862 the Turkish garrison bombarded the town of Belgrade from its citadel, Prince Michnel, supported by the European diplomacy, succeeded in obtaining evacuation of some of the smaller forts in Servia, hut the strong fortress of Beigrade still remained garrisoned by the Turkish troops. Prince Michael now made vigorous political and military preparations for war against Turkey. He made secret arrangements with the Bulgarian, Bosnian and Albanian ieaders, an alliance with Montenegro and an understanding with Greece, with the object that they all should rise if Servia declared war on Turkey. He even succeeded in obtaining Austria's promise, that it would observe an attitude of friendly neutrality and would have pothing against an eventual annexation of the largest part of. Boania to Servia, and be secured to bimself the sympathies of Napoleon III. and his government. In the beginning of 2867 be formally asked the Porte to withdraw the Turkish garrisons from the fortress of Belgrade, as well as from other two fortresses of minor importance (Shabats and Smederevo (Semendria)). For some time the chances were that a war would take place that spring (1867) between Servia and Turkey, but peace was kept by the action of Grest Britain, who advised the sultan to withdraw the Turkish garrisons from the Servian fortresses; and this advice, backed by Russia, France and Austria, prevailed at last with the sultan. On the 261 h of April 1867 the fortresses were delivered over to Prince Michael, who shortly afterwards went to Constantinople to thank the sultan personaily.

Prince Michacl's policy had triumphed. But his success was short-lived. A group of young men, mostly educated in France and Germany, now started a liberal movement under the leadership of Yovan Ristich (or Ristitch). They wanted a more liberal constitution than that which Prince Michacl had given; aad this movement tended to qualify his popularity. Meanwhile the prince contemplated divorse from his wife Princess Julia, by whom be had no children, and marriape with the daughter of his cousin Madame Anks Constanitinovich; and the adherents of the exiled Karageorgevich dynasty were alarmed at the prospect of his eventually having legal heirs to the throne. A former privale secretary to Prince Alexander Karageorgevich, and two of the same prince's hrothers-in-law, formed a conspiracy, which resulted in the brutal assasmination of Prince Michael on the 2pth of May (June 10 (0.S.), 1868), whilst be was walking in the park of Kochutnyak, a few miles distant froms Belgrade.
(C. Mr.)

MlCBAELIS, JOHABI DAVID (1717-1791), German biblical scholar and teacher, a nember of a family which had the chief part in majntaining that solid disctolitge in Hebrew and the
cognate languages which distinguished the mivenity of Halle in the period of Pietism. Johann Heinrich Michaelis (1668-1738) was the chief director of A. H. Francke's Colleginmm oriontals theologicum, a practical school of biblical and oriental philology then quite unique, and the author of an annotated Hebrew Bible and various exegetical works of reputation, especially the Adnotationes uberiores in hagiagraphos (2720). In his chief publications J. H. Michaclis had as fellow-worker his sister's son Christian Benedikt Michaelis (1680-1764), the father of Johann David, who was likewise influential as professor at Halle, and a sound scholar, especially in Syriac. J. D. Michaelis was trained for academical life under his father's eye. At Halle he was influenced, especially in philosophy, by sigmund J. Baumgarten (1706-1757), the link between the old Pietism and J. S. Semler, while he cultivated his strong taste for history under Chancellor Ludwig. In 1739-1740 he qualified as university lecturer. One of his dissertations was a defence of the antiquity and divine authority of the vowel-points in Hebrew. His scholarship still moved in the old traditional lines, and he was also much exercised by religious scruples, the conflict of an independent mind with that submission to authority at the expense of reason encouraged by the Lutheranism in which he had been trained. A visit to England in 174r-1742 lifted him out of the narrow groove of his earlier education. In passing through Holland be made the acquaintance of Albert Schultens (r6861750), whose influence on his philological views became allpowerful a few years later. At Halle Michaclis fele himself out of place, and in 1745 be gladly accepted an invitation to Göttingen as privaldazant. In 1746 he became professor extraordinarius, in 1750 ordinarius, and in Gottingen be remained till his death in 1792.

His intellect was active in many directions; universal learning indeed was perhaps one of his loibles. Literature-modern as well as ancient-occupied his attention; one of his warks was a translation of four parts of Clarissa; and translations of some of the then current English paraphrases on biblical books manifested his sympatby with a school which, if not very learned, attracted him by its freer air. His oriental studics were reshaped by diligent perusal of the works of Schultens; for the Halle school, with all its learning, had no conception of the principles on which a fruitful connexion between Biblical and Oriental learning could be established. His linguistic work indeed was al ways hampered by the lack of manuscript material, which is felt in his philological writings, e.g. in his valuable Supplementa to the Hehrew lexicons ($1784-1$ 792). ${ }^{1}$ He could not become such an Arabist as J. J. Reiske (1716-1774); and, though for many years the most famous teacher of Semitic languages in Europe, be had little of the higher philological faculty, and neither his grammatical nor his critical work has left a permanent mark, with the exception perhaps of his text-critical studies on the Peshitta. ${ }^{2}$ His tastes were all for such studies as history, antiquities, and especially geography and natural science. He bad in fact started his university course as a medicince cullor, and in his autobiography he half regrets that he did not choose the medical profession. In geography he found a field hardly touched since Samuel Bochart, in whose jootsteps he followed in the Spicilegium geographiae hebracorwm exterac post Bocharlmm ($1760-1780$); and to his impulse we owe the famous Eastern expedition conducted by Carsten Niebuhr. In spite of bis doctrinal writings-wbich at the time made no little noise, so that his Compendium of Dogmatic (2760) was confiscated in Sweden, and the knighthood of the North Star was afterwards given him in reparation-it was the natural side of the Bible that really attracted him, and no man did more to introduce the modern method of studying Hebrew antiqulty as an integral part of ancient Eastern life.
The personal character of Michaelis can be read between the lines

[^20]of his autobiography with the aid of the other materials collected by J. M. Hassencamp (1743-1797) the editor (J. D. Michaelis Lebensbeschreibung. \&c. 1793). The same volume contains a full list of his works. Besides those already mentioned it is sufficient to refer to his New Testament Introduction (the first edition, 1750, preceded the full developrment of his powers, and is a very different book (rom the later editions), his reprint of Robert Lowth's Praelectoomes with important additions ($175^{8-1762 \text {), his German translation }}$ of the Bible with notes (1773-1792), his Orientatische and exegetasche Brbliotheh (1775-1785) and Newe O. and E. Bib. ($1786-1791$), his Mosassches Recht (1770-1771) and his edition of E. Castle's Lextcon syruacum (1787-1788). His Litucraruscher Briefwechsel (1794-1796) contains much that is interesting for the history of learming in his time.

EICHADD, JOSEPFG FRANCOIS ($1767-1839$), French historian and publicist, was born of an old family on the sgth of June 1767, at Albens, Savoy, was educated at BourgenBresse, and afterwards engaged in literary work at Lyons, where the events of 1780 first called out the strong dislike to revolutionary principles which manifested itself throughout the rest of his life. In 1791 he went to Paris, where, not without danger, he took part in editing several royalist joumals. In 1796 he became editor of La Quolidienne, for his connexion with which he was arrested after the 13th of Vendémiaire; he succeeded in escaping his captors, but was sentenced to death par contumace by the military council. Having resumed the editorship of his newspaper on the establishment of the Directory, he was again proscribed on the 18th of Fructidor, but at the close of two years returned to Paris when the consulate had superseded the Directory. His Bourbon sympathies led to a brief imprisonment in 1800, and on his release he for the time abandoned journalism, and began to write or edit books. Along with his brother and two colleagucs he published in 1806 a Biographie moderne, ou diclionnaire des hommes qui se sont fait un nom en Europe depuis 1789 , the earliest work of its kind; and in 18.1 appeared the first volume of his Histoire des croisades and also the first volume of his Biographic wniverselle. In 18 r 4 he resumed the editorship of La Quolidienne, and in the same year was elected Academician. In 18 r 5 his brochure entitied Histoire des quinse semaines ou le dernier règne de Bonaparle met with extraordinary success, passing through twentyseven editions within a very short time. His political services were now rewarded with the cross of an officer in the Legion of Honour and the modest post of king's reader, of which last he was deprived in 1827 for having opposed Peyronnet's "Loi d'Amour " against the freedom of the Press. In 1830-183I he travelled in Syria and Egypt for the purpose of collecting additional materials for the Hisloire des croisades; his correspondence with a fellow explorer, J. J. F. Poujoulat, consisting practically of discussions and elucidations of various points in that work, was afterwards published (Correspondance d'orient, 7 vols., $\mathbf{1 8 3 3 - 1 8 3 5}$). Like the Histoire, it is more interesting than exact. The Bibliotheque des croisades, in four volumes more, contained the "Pięces justificatives" of the Histoire. Michaud died on the 3oth of September 1839, at Passy, where his home had been since 1832.
His Histoive des croisades was published in its final form in six volumes in 1840 under the editorship of his friend Poujoulat (9 th ed., with appendix, by Huillard-Bréholles, 1856). Michaud. along with Poujoutat, also edited Noupelle collection des memoires pour servir ${ }^{\text {a }}$ l'histoirs da France (32 vols., 1836-1844). See Sainte-Beuve, Cawseries du lundi, vol. vin.

MICHAUX. ANDRE ($1746-1802$), French botanist and traveller, was born at Versailles on the 7th of March 1746. In 1779 he spent some time botanizing in England, and in 1780 he explored Auvergne, the Pyrenees and the north of Spain. In 1782 he was sent by the French government on a botanical mission to Persia. His journey began unfavourabiy, as he was rohbed by Arabs of all his equipment except his books; but he gained influential support in Persia, having cured the shah of a dangerous illness. After two years he returned to France with a fine herbarium, and also introduced numerous Eastern plants into the botanic gardens of France. In 1785 he was sent by the French government to North America, and travelied with his son Francois Andre (1770-1855) through Canada,

Nove Scotia and the United States. On his return to France in 1797 he was shipwrecked and lost most of his collections. In 1800 he went to Madagascar to investigate the fiora of that island, and died there on the 16th of November 1802 . His work as a botanist, was chiefly done in the field, and he added largely to what was previously known of the botany of the East and of America.
He wrote two valuable works on North American plants-the Histoire des chenes de l'A metrigue septentrionale (180 ot), with 36 plates, and the Flora Boreali-Americana (2 vols., 1803), with 51 plates. His son Francois published a Histoire des arbres forestuers de ${ }^{2}$ A merique septentrionale (3 vols., 1810-1813), with 156 plates, of which an English translation appeared in 1817-1819 as The North American Syloa.
miciels, CLAUDE, known as Clodion (1738-1814), French sculptor, was born on the 20th of December 1738 in Nancy. Here and probably in Lille he spent the earlier years of his life. In 1755 he came to Paris and entered the workshop of Lambert Sigisbert Adam, his maternal uncle, 2 clever sculptor. He remained four years in this workshop, and on the death of his uncle became a pupil of J. B. Pigalle. In 1759 be obtained the grand prize for sculpture at the Académic Royale; in 1761 he obtained the first silver medal for studies from models; and in 1762 he went to Rome. Here his activity was considerable between 1767 and 1771. Catherine II. was eager to secure his presence in St Petersburg, but he returned to Paris. Among his patrons, which were very numerous, were the chapter of Rouen, the states of Languedoc, and the Dircction gentrale. His works were frequently exhibited at the Salon. In 1782 he married Catherine Flore, a daughter of the sculptor August in Pajou, who subsequently obtained a divorce from him. The agitation caused by the Revolution drove Clodion in 1792 to Nancy, where he remained until 1798, his energies being spent in the decoration of houses. Among Clodion's works are a statue of Montesquieu, a "Dying Cleopatra," and a chimneypiece at present in the South Kensington Museum. One of his last groups represented Homer as a beggar being driven away by fishermen (i8io). On the 29th of March 1814 Clodion died in Paris, on the eve of the invasion of Paris by the allies.
Thirion's Les Adam et Clodion (Paris, 1885) contains a list of the sculptor's works sold between 1767 and 1884 . See also A. Jacquot, Les Adam et les Michel et Clodion (Paris, 1898).

MICHEL, CLÉmeNCE LOUISE ($1830-1905$), French anarchist, called la Vierge rouge de Montmartre, was horn at the chateau of Vroncourt (Haute-Marne) on the 29th of May 1830, the daughter of a serving-maid, Marianne Michel, and the son of the house, Etienne Charles Demahis. She was hrought up hy her father's parents, and received a liberal education. After her grandfather's death in 1850 she was trained to teach, but her refusal to acknowledge Napoleon III. prevented her from serving in a state school. She found her way in 1866 to a school in the Montmartre quarter of Paris, where she threw herself ardently into works of charity and revolutionary politics. She became violently anti-Bonapartist, and is said to have meditated the assassination of Napoleon. During the siege of Paris she joined the amhulance service, and untiringly preached resistance to the Prussians. On the establishment of the Commune she joined the National Guard. She offered to shoot Thiers, and suggested the destruction of Paris by way of vengeance for its surrender. She whs with the Communards who made their last stand in the cemetery of Montmartre, and was closely allied with Théodore Ferré, who was executed -in November 1871. This ardent attachment was perhaps one of the sources of the exaltation which marked her career, and gave many handlea to ber enemies. When she was hrougbt before the oth council of war in December 1871 she defied ber judges and defended the Commune. Sbe was sent as a convict to New Caledonia, among her companions being Henri Rochefort, who remained her friend till the day of her death. The amnesty of 1880 found her revolutionary ardour unchanged. She travelled throughout France, preaching tevolution, and in 1883 she ted a Paris moh which pillaged a baker's sbop. For this she was condemned to six years' imprisonment, hut was released in 1886, at the same
time as Prince Kropockin and other prominent anarchists. After a short period of freedom she was again arrested for making inflammatory speeches. She was soon liberated, but, hearing that her enemies hoped to intern her in a lunatic asytum, she fled to England. She returned to France in 1895, and in 1002 was back in London. She was touring France and lecturing on behalf of anarchist propaganda when she died at Marseilles on the roth of January 1905.

Her M/tmoires (Paris, 1886) contain accounts of her trials. See also La Bonne Lowise (Paris, 1906), by E. Giraule.

MICEELI, FRANCISQUE EAVIER ($1809-1887$), French antiquary, was born at Lyons on the 18th of January 1809. He became known for his editions of French works of the middle ages, and the French Government, recognizing their value, sent him to England (1833) and Scotland (1837) to continue his researebes there. In 1839 he was appointed professor of foreign literature in the Faculle des lellires at Bordeaux. Between 1834 and 1842 he published editions of a large number of works written between the eleventh and fourteenth centuries in French, English and Saxon, including the Roman de la rose and the Chanson de Roland. Subsequently he published French translations of Goldsmith, Sterne, Shakespeare and Tennyson. He died in Paris on the 18th of May 1887.

His original works include Bistoire des races maudites de la Fronct at de t'Espagne (1847); Recherches sur le commerce pendant Le noyen dge (1852-1854); Les Ecossais an France el les francais en Ecosse (1862); Eludes de phitologie comparte 1ur l'argal (1856); Le Pays basque (1857); Hisioure du commerce et de la navigation a Bordeaux (1867-1871); and, in conjubction with Edouard Fournier, Hisfoiva des hitidlteries, cabarets, hôtels garnis ($1851-1854$).
micerlangelo (Michelagniolo Boonarroti) (1475 1564), the most famous of the great Florentine artists of the Renaissance, was the son of Ludovico Buonarroti, a poor gentleman of that city, and of his wife Francesca dei Neri. The Buonarroti Simom were an old and pure Florentine stock of the Guelf faction: in the days of Michelangelo's fame a connexion of the family with the counts of Canossa was imagined and admitted on both sides, but has no foundation in fact. Iudovico was barely able to live on the income of his estate, but made it his boast that he had rever" stooped to add to it by mercantile or mechanical pursuits. The favour of the Medici procured him temporary employment in minor offices of state, among them that of podesta or resident magistrate for six months, from the autumn of 1474, at Castello di Chiusi and Caprese in the Casentino. At Caprese, on the 6th of March 1475, his second son Michelagniolo or Michelangelo was born. Immediately afterwards the family returned to Florence, and the child was put to nurse with a marble-worker's wife of Settignano. His mother's health had already, it would seem, begun to fail; at all events in a few years from this time, after she had borne her husband three more sons, she died. While still a young boy Michelangelo determined, in spite of his father's opposition, to be an axtist. He had sucked in the passion, as he himself used to say, with his foster-mother's milk. After a sherp struggle his stuhborn will overcome his father's pride of gentility, and at thirteen he got hiraself articled as a paid assistant in the workshop of the brothers Ghirlandaio Domenico Chirlandaio, bred a jeweller, had become hy this tlme the foremost painter of Florence. In his service the young Michelangelo laid the foundations of that skill in fresco with which twenty years afterwards he confounded his detractors at Rome. He studied also, like all the Florentine artists of that age, in the Brancacci chapel, where the frescoes of Masaccio, painted some sixty years before, still victoriously held their own; and here, in reply, to a taunt he had flung at a fellow-student, Torrigiano, he received the blow on the nose which disfigured him to his dying day.

Though Michelangelo's earliest studies were directed towards painting, he was by nature and predilection much more inelined to aculpture. In that art he presently received encouragement and training under the eye of an illustrious patron, Lorenso dei Medici. On the recommendation, it is said, of Ghirlandaio, he was transferred, before the torm of his apprenticeship as
a painter had expired, to the school of sculpture established by Lorenzo in the Medici gardens. Here he could learn to match himself against his great predecessor, Donatello, one of whose pupils and assistants, the aged Bertoldo, was director of the school, and to compare the works of that master and his Tuscan contermporaries with the antiques collected for the instruction of the schoiars. Here, too, he could listen to discourses on Platonism, and steep himself in the doctrines of an enthusiastic philosophy which sought to reconcile with Christian faith the lore and the doctrines of the Academy. Michelangelo remained a Christian Platonist to the end of his days; he was also from his youth up a devoted student of Dante. His powers of mind and hand soon attracted attention, and secured him the regard and favour of his patrons in spite of his rugiged exterior and scornful unsociable temper.

- Michelangelo had been attached to the school and household of the Medici for barely three years when, in 1492, his great patron Lorenzo died. Lorenzo's son Piero dei Medici inberited the position but not the qualities of his father; Florence soon chafed under his authority; and towands the autumn of 1494 it became apparent that disaster was impending over him and his adherents. Michelangelo was constitutionally subject to dark and sudden presentiments: one such seized him now, and without awaiting the popular outbreak, which soon followed, he took horse with two companions and fled to Bologna. There, being now in his twenticth year, he was received with kindness by a member of the Aldovrandi family, on whose commission he executed two figures of seints and one of an angel for the shrine of St Dominic in the church of St Petronitus. After about a year, work at Bologna failing, and his name having been included in his absence on the list of artists appointed to provide a new hall of assembly for the great council of Florence, Mlebelangelo returned home. The strange theocracy established by Savonarola was now in force, and the whole character of civic life at Florence was for the time being changed. The influence of the fervent Dominican upon the mind and character of the young Michelangelo became as profound as that of the Platonists and of Dante. He was not left without employment. He found a friend in another Lorenzo, the son of Pierfrancesco dei Medici, for whom he at this time executed a statue of the boy St John. Having also carved a recumbent Cupid in imitation of the antique, it was suggested to him hy the same patron that it sbould be so tinted and treated as to look like a real antique, and sold aecordingly. Without increasing the price he put upon the work, Michelangelo fur amusement lent himsclf to the counterfeit, and the piece was then actually sold for a large sum, as a genuine work of antiquity, to a Roman collector, Raffaclle Riario, cardinal di San Giorgio; the dealer appropriating the profits. When the catdinal discovered the fraud he caused the dealer to refund; but as to Mlchelangelo himself, it was represented to the young sculptor that if he went to Rome the amateur who had just involuntarily paid so high a tribute to his skill would certainly befriend him. He set forth accordingly, and arrived at Rome for the first time at the end of June 1496. Such bopes as be may have entertained of countenance from the cardinal di San Giorgio were quickly dispelled. Neither did the banishod Piero dei Medici, who also was now living at Rome, do anytbing to help him. On the other hand Michelangelo won the favour of a Roman nobleman, Jacopo Galli, and through him of the French cardinal Jean de Villiers de la Grolaie, abbot of St Denis. From the former he received a commission for a "Cupid " and " Bacchus," from the latter for a "Pietà "or "Mary lamenting over the body of Christ "-works of which the two last named only are preserved. Equal originality of conceptlon and magnificence of technical executlon mark the two contrasted subjects-one as noble and the other as nearly ignobie as anything Michelangelo ever did-of the mother with the dead son on her lap, indicaling with a contained but eloquent gesture of ber left hand a tragedy too great for outcries, and the titubant sensual young wine-god (a condition in which ancient art would mever have exhihited the god himsell, but only his satellites).

Michelangelo's stay in Rome at this time lented five pears -from the sammet of 1496 till that of 1 gon. The interval had been one of extreme political distraction at Florence. The excitement of the French invasion, the mystic and ascetic regimen of Savonarola, the reaction which led to his overthrow, and finally the external wars and intermal diasidences which preceded a new settlement, had all created an stmosphere most unfavourable to art. Nevertheless Ludovico Buonarroti, who in the troubles of 1494 had lost a small permanent appointment be held in the customs, and had come to regard his son Michelangelo as the mainstay of his bouse, had been repeatedly urging him to come home. A spirit of family duty and family pride was the ruling principle in all Micheiangeto's conduct. During the best years of his life be suhmitted himself sternly and without a murmur to pinching hardship and almost superhuman labour for the sake of his father and brothers, who were ever selfishly ready to he fed and helped hy him. Having now, after an illness, come home in 1501, Michelangelo was requested by the cardinal Francesco Piccolomini to adorn with a number of sculptured figures a shrine already begun in the cathedral of Siena in honour of the most distinguished member of his house, Pope Plus II. Four only of these figures were ever executed, and those not apparently, or only in small part, by the master's hand. A work of greater interest in Florence itself had diverted him from his engagement to his Sienese patrons: This was the execution of the famous colossal statue of David, popularly known as "the Giant." It was carved out of a huge block of marhle on which another sculptor, Agostino d'Antonio, had begun unsuccessfully to work forty years before, and which had been lying idle ever since. Michelangelo had here a difficult problem before him. Without much regard to the traditional treatment of the subject or the historical character of his hero, he carved out of the vast hut cramped mass of material an adolescent, frowning colossus, tensely watchful and self-balanced In preparation for his great action. The result amazed every beholder hy its freedom and science of execution and its victorious energy of expression. All the best artists of Florence were called in council to determine on what site it should he set up, and after much debate the terrace of the palace of the Signory was chosen, in preference to the neighbouring Loggia dei Lanzi. Here accordingly the colossal "David" of Michelangelo took, in the month of May 1504 , the place which it continued to hold until in $\mathbf{1 8 8 2}$ it was removed for the sake of protection to a hall in the Academy of Fine Arts, where it inevitably looks crushed and cabined. Other works of sculpture belong to the same period: among them a second "David," in bronze and on 2 smaller scale, commissioned by the marechal Pierre Roban and left by the young master to be finshed by Benedetto da Rovezrano, who despatched it to France in 1508; a great rough-hewn "St Malthew" begun hut never completed for the eathedral of Florence; a "Madonns and Child "executer on the commission of a merchant of Broges; and two unfinished bas-reliefs of the same subject.
Neither was Michelangelo idle at the same time as a painter. Leaving disputed works for the moment out of sight, be in these days at any rate painted for his and Raphael's common patron, Angelo Doni, the "Holy Family " now in the Uffizi at Florence. In the autumn of 1504 , the year of the completion of the "David," be received from the Florentine state a commission for a work of monumental painting on a heroic scale. Leonardo da Vinci had been for some months engaged on his great cartoon of the "Battle of Anghiari," to be painted on the wall of the great hall of the municipal council. The gonfaloniere Piero Soderini now procured for Michelangelo the commission to design a companion work. Michelangelo chose an incident at the battle of Cascins during the Pisan war of 1364, when the Florentine soldiery had been surprised hy the enemy in the act of bathing. He dashed at the task with his accustomed fiery energy, and had carried a great part of the cartoon to completion when, in the early spring of 1505 , he broke off the work in order to obey a call to Rome which reached him from Pope Julius 11. His unfinished cartoon, in its power over the varietles and contrasts
of energetic and vitally significant action, showed how greatly Michelangelo had profted by the example of his elder rival, Leonardo, little as, personally, he yielded to Leonardo's charm or could bring himself to respond to his courtesy. The work oi Michelangelo's youth is for the most part comparatively tranquil in character. His early sculpture, showing a degree of science and perfection unequalled since the antique, has also something of the antique serenity. It bears strongly the stamp of intellectual research, but not by any means that of storm or strain. In the cartoon of the " Bathers " the qualities afterwards proverbially associated with Michelangelo-his furic, his lerribilitd, the tempest and hurricane of the spirit which accompanied his unequalled technical mastery and knowledgefirst found expression.

With Michelangclo's departure to Rome early in 1505 the firt part of his artistic career may be said to end. It will be convenient here to recapitulate its principal results in sculpture and paintins both those preserved and those recorded but lost.

Sculpture. - Florence, $1489-1494 .-"$ Head of a Faun," marble: lost. Condivi describes Michelangelo's Earst essay in sculpture as a head of an aged faun with a front tooth knocked out, this lattur point having been an afterthought suggested by Lorenzo dei Medici The head is sometimes identified with one in the National Museun at Florence, which however bears no marles of Michelangelo's early style and is in all probability. spurious. -"Madonna seated on Step," bronze; Casa Buonarroti, Florence. This bas-relief, execut d in imitation of the technical style of Donatello, is a genuine example of Michelangelo's early work in the Medicean school under Ber-toldo.-"Centauromachia," marble; Casa Buonarroti. A fine and genuine work in Iull relief, of probably somewhat later date than the fast-mentioned. The subject occurs often in ancient sarcophagus relicfs: Michelangelo has followed the antique in his conception and treatment of the nude, but the arrangement of the subject is his own.

Bologna, I404-r405.-Statucttes of "St Petronius," "St Proculus," and a "Kneeling Angel," marble; part of the decorations of the shrine of St Dominic in the church of that saint at Bologna: the style of all three much influenced by the work of Jacopo della Quercia in the same church; the attitude of the kneeling angel with the candelabrum imitated from an ancient bas-relief.

Florence, 1495-1490.-" St John in the Wilderness," executed for Lorenzo di Pierfrancesco dei Medici, marble; probably lost. Declared in 1874 to have been found again in the possession of Count Gualandi-Rossalmini at Pisa. Vehement and prolonged discussion arose'as to the authenticity of this newly-found S. Giovannino, and at last it was bought for the Berlin Museum, where its genuineness is stitl stoutly maintained. But the finicking and affected elegance of the conception denote a different temperament from Michelangelo's and probahly a later date. With this figure must be given up also the restoration of an antique group of "Bacchus and Ampelus" at the Uffizi, which is clearly by the same hand and is claimed also at an early work of Michelangelo.-" Recumbent Cupid," bought by the cardinal San Giorgio as an antique, marble; lost. The attempts to recognize it in certain extant copies or servile imitations of the antique, especially one now at Turin, must be held mistaken.

Rome, ${ }^{1495-1508 .-" V i r g i n ~ l a m e n t i n g ~ t h e ~ d e a d ~ C h r i s t, " ~ c o m . ~}$ missioned by the abbot de la Grolaie; marble, St Peter's, Rome-"Bacchus and young Faun," commissioned by Jacopo Galli; marlic, National Museum, Florence. (Of these two mastergieces of Michelangelo's youth enough has been said above).--"Cupid," commissioned by the abbot de la Grolaie; marble; lost; has been commonly identified as the "Kmecling. Cupid" of the Victoria and Albert Muscum, but this, if by Michelangelo at all, which is not quit certain, must in all likelihood belong to a later time.

Florence. 1501-1506-"Fjve Saints, in niches decorating th: shrine of Pius 11." commissioned by the Piccolomini family: marble; cathedral of Siena. The contract for the sculptured decoration of this shrine was one of those which the pressure of other work privented the artis! from ever taking seriously in hand. Of the fint saints in niches, traditionally reputed to be his work, the St Perer alone shows any clear marks of his style; the ot her four were probath? designed, and certainly catried out, by weaker hands. "David " (the "Gigante"). commissioned for the city of Florence by Pier, Soderini; marble: Florence Academy. Besides what has been said above, it has only to be added that a wax model in the Casa Buonar: roti, showirg nearly the same design with a different movement of the legs, is probably Michelangelo's original sketch for the subject. "David," commissioned by Pierre Rohan: bronze, lost; a clay model in the National Museum, Florence. may probably be a sketch for it : more than one bronse has been brought forward with claimi to be the original, but none has etood the cest of criticism. "Virgia and Child," commissioned for Taddeo Taddei; cincular relief, unfinished marble; London, Royal Academy. The molive of the Christ-child frightened by the flutterings of the bird held ous liw St John is the most playful in all Michelangelo's work; the whot design shows the influence of Leonardo in his gentler, as much as the cartoon of the " Bathers "shows it in his more violent, muods,
"Virgin and Child with Se John," oommissioned by Bartolommeo Pitti; nearly circular relief, unfinished, marble; Florence, National Museum: a more tranquil and very charming presentment. " Madonna and Child," sold to the Mouscron family of Brugea (known in Italy as Moscheroni), and by them presented to the church of Notre Dame in that city; group in the round, marble; church of Notre Dame, Bruges. A meditative seated Virgin with upright head, the naked child seated between her knees, his smoothly rounded form in strong contrast with her complicated draperies "St Matthew"; one of a set of twelve statucs of Aposties commissioned by the consuls of the Arte della Lana for the cathedral at Forence; marble; National Museum. Florence. Unfinished (only roughly blocked out), the other figures of the set never having been so much as begun; the contract was signed in 1503 and cancelled in 1505 . There is an early drawing by Raphael from this statue.

Painting.-"Holy Family," painted for Angelo Doni; tempera, circular: Florence, Ufizi. The only perfectly welf-attested panel painting of Michelangelo which exists. His love of restless and somewhat straiaed actions is illustrated by the gesture of the Madonna, who kneels on the ground holding up the child on her right shoulder; his love of the nude by the introduction (wherein he follows Luca Signorelli) of some otherwise purposeless undraped figures in the background. "Virgin and Child with Four Angels ; tempera; National Gallery, London. This unfinished painting, strongly marked by the influence of Michelangelo in his work at this period, has been confidently claimed for him, but lacks his strength and mastery, and is far more probably the work of his imitator and intimate associate, Francesco Granacci. "Cartoon of the Bathers ": lost and utterly perished. The only authentic records of it are Contained in a few early engravings by Marcantonio and Agostino Veneziano and a certain number of sketches and studies by the master himeelf, chiefly at the Albertina, Vienna, the British Museum and the University Galleries, Oxford. An elaborate drawing of many figures th Holkham Hall, well known and often engraved, rems to be a later ceriso destitute of real authority.

Michelangelo had not been long in Rome before Pope Julius devised fit employment for him. That capacious and head: strong spirit, on fire with great enterprises, had conceived the idea of a sepulchral monument to commemorate his glory when he should be dead, and to be executed according to his own plans while he was still living. He entrusted this congenial task to Michelangelo. The design being approved, the artist spent the winter of 1505-1 506 at the quarries of Carrara, superintending the excavation and shipment of the necessary marbles. In the spring he returned to Rome, and when the marbles arrived fell to with all his energy at the preparations for the work. For a while the pope followed their progress cagerly, and was all kindness to the young sculptor. But presently his disposition changed. In Michelangelo's absence an artist who was no friend of bis, Bramante of Urhino, had been selected by Julius to carry out a new architectural scheme, commensurate with the usual vastness of his conceptions, viz, the rebuilding of St Peter's church. To the infuence and the malice of Bramante Michelangelo attributed the unvelcome invitation be now received to interrupt the great work of sculpture which he had just begun in order to decorate the Sixtine chapel with frescoes. Soon, however, schemes of war and conquest interposed to divert the thoughts of Julius, not from the progress of his own monument merely, but from artistic enterprises altogether. One day Michelangelo heard him say at table to his jeweller that he meant to spend no more money on pebbles, either small or great. To add to the artist's discomfiture, when he went to apply in person for payments duc, he was first put off from day to day, and at last actually with scant courtesy dismissed. At this his dark mood got the mastery of him. Convinced that not his employment only but his life was threatened, he suddenly took harse and left Rome, and before the messengers of the pope could overtake him was safe on Florentine territory. Michelangelo's flight took place in April 1506 . Once among his own people, he turned a deaf ear to all overtures made from Rome for his return, and stayed throughout the summer at Florence, how occupied we are not distinctly informed, but apparently, among other things, on the continuation of his great battle cartoon.

During the same summer Julius planned and executed the victorious millitary campaign which ended with his unopposed entry at the head of his army into Bologna. Thither, under strict sale-conduct and promises of renewed favour, Michelangelo
was at last persuaded to betake himself. Julius received the truant artist kindly, as indeed between these two volcanic natures there existed a natural affinity, and ordered of him his own colossal likeness in bronze, to be set up, as a symbol of his conquering anthority, over the principal entrance of the church of St Petronius. For the next fifteen-months Michelangelo devoted his whole strength to this new task. The price at which he undertook it left him, as it turned out, hardly any margin to subsist on. Moreover in the technical art of metal casting be was inexperienced, and an assistant whom he had summoned from Florence proved insubordinete and had to be dismissed. Nevertheless his genius prevailed over every hardship and difficulty, and on the arst of February 1508 the majestic bronze colossus of the seated pope, robed and mitred, with one hand grasping the keys and the other extended in a gesture of benediction and command, was duly raised to its station over the church porch. Three years later it was destroyed in a revolution. The people of Bologna rose against the authority of Julius; his delegates and partisans were cast out, and his effigy hurled from its place. The work of Michelangelo, after heing trailed in derision through the streets, was broken up and its fragments cast into the furnace.

Meanwhite the artist himself, as soon as his work was done, had followed his reconciled master back to Rome. The task that here awaited him, however, was after all not the resumption of the papal monument, but the execution of the series of paintings in the Sixtine chapel which had been mooted before his departure. Painting, he always averred, was not his business; be was aware of his enemy's hopes that a great enterprise in fresco-painting would prove beyond his powers; and be entered with misgiving-and reluctance upon his new undertaking. Destiny, however, so ruled that the work thus thrust upon him remains his chief title to glory. His history is one of indomitable vill and almost superhuman energy, yet of will that hardly ever had its way, and of energy continually at war with circumstance. The only work which in all his life he was able to complete as he had conceived it was this of the decoration of the Sixtine ceiling. The pope had at first deaired a scheme including figures of the twelve apostles only. Michelangelo began accordingly, but could rest content with nought so meagre, and soon proposed instead a design of many hundred figures embodying the story of Genesis from the Creation to the Flood, with accessory personages of prophets and sibyls dreaming on the new dispensation to come, and, in addition, those of the forefathers of Christ. The whole was to be caclosed and divided by an claborate framework of painted architecture, with a multitude of nameless human shapes supporting its several members or reposing among them-shapes mediating, as it were, between the features of the inanimate framewort and those of the great dramatic and prophetic scenes themselves. The pope bade the artist do as be pleased. By May 1508 the preparations in the chapel had been completed and the work begun. Later in the same year Michelangelo summoned a number of assistant painters from Florence. Trained in the tradtions of the earlier Florentine school, they were unable, it seems, to interpret Michelangelo's designs in fresco either with sufficient freedom or sufficient uniformity of style to satisfy him. At any rate be soon dismissed them, and carried out the remainder of his colossal task alone, except for the necessary amount of purely mechanical and subordinate help. The physical conditions of prolonged work, face upwards, upon this vast expanse of ceiling were adverse and trying in the extreme: After four and a half years of toil the task was accomplished. Michelangelo had during its progress been haraseed alike by delays of payment and by bostile intrigue, his ill-wishers casting doubts on his capacity, and vaunting the superior powers of Raphael. That gentle spirit would by nature have been no man's enemy, but unluckily Michelangelo's moody, self-concentrated temper prevented the two artists being on terms of amity such as might have stopped the mouths of mischief-makers. Absolute need of funds for the furtherance of the undertaking constrained him at one moment to break off work and purmue his inconsiderate pation
as far as Bologna. This was between September 1510, by which time the whole of the great series of subjects along the ceatre of the vault were completed, and January 1511, when the master set to work again and began filling the complicated lateral spaces of his decorative scheme.
The main field of the Sixtine ceiling-in form a depressed barrel vault-is divided in Michelangelo's scheme into four Larger, alternating with five smaller felds. The following is the order of the subjects depicted in them: (r) the dividing of the light from the darkness; (2) the creation of sun, moon and stars; (3) the creation of the waters: (4) the creation of man; (5) the creation of woman; (6) the temptation and expulsion; (7) the sacrifice of Noah; (8) the deluge; (9) the drunkenness of Noah. The figures in the last three of these scenes are on a smaller scale than those in the first six. In numbers 1,3,5,7 and 9 the field of the picture is reduced by the encroachments of the architectural (ramework with its seated pairs of supporters, commonly known as "Slaves "or "Atlases." Flanking these smaller compositions, along the lateral spaces between the crown of the vault and the walls on either side, are seated figures of prophets and sibyls alternately: two other prophets are introduced at each extremity of the serics-making seven prophets and five sibyls in all. In the triangles to right and left of the prophets at the two extremities are the death of Goliath, the death of Holofernes, the brazen serpent and the punishment of Haman. In the twelve lunettes above the windows are groups of the ancestors of Christ, their names designated by inscriptions, and in the twelve triangles above them (between the prophets and sibyls) other kindred groups crouched or sitting. These last are all shown in relatively simple human actions and houschold relations, heightened but not falsified by the artist's genius, and rising into majestic significance from roots deep in daily human mature. The work represents all the powers of Michelangelo at their best. Disdaining all the accessory allurements of the painter's art, he has concentrated himself upon the exclusive delineation of the human form and face at their highest power. His imagination has conceived, and his knowledge and certainty of hand have enabled him to realize, attitudes and combinations of unmatched variety and grandeur, and countenances of unmatched expressiveness and power. But he has not trusted, as he came later to trust, to science and acquired knowledge merely; neither do his personages, so far as they did titerwards, transcend human possibility or leave the facts of actual life behind them. The profoundest knowledge and the most searching realism serve to embody all this inspiration and sustain all this sublimity; the sublimity, moreover is combined with the noblest elements of grace and even of tenderness. As for the intellectual meanings of his vast design, over and above those which reveal themselves at a first glance or by a bare description, they are from the nature of the case inexhaustihle, and can never be perfectly defined. Whatever the soul of this great Florentine, the spiritual heir of Dante, with the Christianity of the middle ages not shaken in his mind, but expanded and transcendentalized, by the knowledge and love of Plato;-whatever the soul of such a man. full of suppressed tenderness and righteous indignation and of anxious questionings of coming fate could conceive-that Michelangelo has expressed or shadowed forth in this great and significant echeme of paintings. The powers of the artist seem to have expanded with the progress of his work. He seems to have begun (as the spectator entering the chapel has to begin) with what is chronologically the last subject of the series, the drunkenness of Noah, and to have worked backwards, increasing the scale of his figures for their better effect from the fourth subject (the Temptation and Expulsion), and rising in ascending scale of majesty through the successive acts of creation from the last to the first.

The Sixtine chapel was no sooner completed than Michelangelo resumed work upon the marbles for the monument of Julius. But four months only had passed when Julius died. His heirs immediately entered (in the summer of 1513) into a new contract with Michelangelo for the execution of the monument on a reduced scalc. What the precise nature and extent of the original tesign had been we do not know, only that the monument was to be detached from the wall, and to stand four-square and free-a thing hitherto unk nown in Renaissance sepulchral architecture-in one of the chapels of St Peter's. But the new design was extensive and magnificent enough. It was to consist of a great three-sided structure, two courses high, projecting from the church wall, and decorated on its three unattached sides with statues. On the upper course was to be placed the colossal recumbent figures of the pope, with a vision of the Virgin and Child above him, angels mourning at the sides, and prophetic and allegoric personages at the angles-sixteen figures in all. The lower course was to be enriched with twentytour figures in niches and on projecting pedestals: in the niches, Vietories; in front of torminal pilasters between them,
slaves or captivea denoting, it would seem, either conquered provinces or arts and aciences in bondage after their patron's death. A much injured and not indisputable sketch by the master at Berlin, with a copy of the same by Sacchetti, are supposed to show the design at this atage of its reduction. The entire work was to be completed in nine years' time. During the next three years, it would seem, Michelangelo brought to completion three at least of the promised figures, for which the blocks had reached Rome from Carrara as early as July 1508; and they are among the most famous of all existing works of the sculptor's art-namely, the "Moses," now in the church of S. Pietro in Vincoli at Rome and the two "Slaves" at the Louvre.

The " Moses," originally intended for one of the angi. so the upper course, is now placed at the level of the eye, in the centre of the principal face of the monument as it was at last finished, on a deplorably reduced and altered scile, by Michelangelo and his assistants in his old age. The prophet, supposed to have just come down from Mount Sinai and found the Israelites worshipping the golden calf, sits, heavily bearded and draped, with only his right arm bare, his left foot drawn back, his head raised and turned to the left, his keft hand haid on his lap and his right grasping the tables of the haw-an incarnation of majestic indignation and menace. The work, except in one or two places, is of the utmost finish, and the tatue books tike one of the prophets of the Sixtine ceiling done in marble. The "Slaves" at the Louvre are youthful male figures of equally perfect execution, nude but for the band which passes over the breast of one and the right leg of the other. One, with his left hand raised to his head and his right pressed to his bosom, his eyes almost closed, seems succumbing to the agonies of death; the other, with his arms bound behind his back, looks upwand still hopelessly struggling. All three of these figures were finished between I513 and 1516.

By 1516 Michelangelo's evil star was again in the ascendant. Julius II. had been succeeded on the papal throne hy Cardinal Giovanni de' Medici under the title of Leo X. The Medici, too, had about the same time by force and fraud re-established their sway in Florence, overthrowing the free institutions that had prevailed there since the days of Savonarola. Now, on the one hand, this family were the hereditary friends and patrons of Michelangelo; on the other hand he was a patriotic son of republican Florence; so that henceforwand his personal allegiance and his political sympathies were in conflict. Over much of his art, as has been thought, the pain and perplexity of this conflict have cast their shadow. For the present the consequence to him of the rise to power of the Medici was a fresh interruption of his cherished work on tbe tomb of Julius. Leo X. and his kinsmen were full of a vast new scheme for the enrichment and adomment of the facade of their own family church of San Lorenzo in Florence. Michelangelo, carried away by the idea and forgetful of his other still great and onerous task, offered his services for the new fagade. They were eagerly accepted, although for a moment the idea had been entertained of entrusting the work to Leonardo da Vinci. The heirs of Julius on their part showed an accommodating temper, and at the request of Leo allowed their three-years'old contract to be cancelled in favour of another, whereby the scale and sculptured decorations of the Julian monument were again to be reducod by nearly a half. Michelangelo soon produced for the San Lorenzo fagade a design of combined sculpture and architecture as spiendid and ambitious in its way as had been that for the original monument of Julius. The contract was signed in January 1518, and the artist weat to Carram to superintend the excavation of the marbies.
Michelangelo was now in his forty-fourth year. Though half his life was yet to come, yet its best days had, as it proved, been epent. All the hindrances which be had encountered hitherto were as nothing to those which began to beset him now. For the supply of materials for the facade of San Lorenzo be had set a firm of masons to work, and had himself, it seems, entered into a kind of partnership with them, at Carrara, where he knew the quarries well, and where the industry was bereditary and well understood. When all was well in progress there under his own oge, rensons of state induced the Medici and the Fiorentine magiatracy to bid hine resort instead to certain now quarries
at Pietrasanta, near Serravalle in the territory of Florence. Hither, to the disgust of his old clients at Carrara and to his own, Michelangelo accordingly had to transfer the scene of his labours. Presently be found himself so impeded and enraged by the mechanical difficulties of raising and transporting the marbles, and by the disloyalty and incompetence of those with whom he had to deal, that he was fain to throw up the commission altogether. The contracts for the fagade of San Lorenzo were rescinded in March 1518 , and the whole magnificent scheme came to nothing. Michelangelo then returned to Florence, where proposals of work poured in on him from many quarters. The king of France desired something from his hand to place beside the two pictures be possessed by Raphael. The authorities of Bologna wanted hinl to design a facade for their church of St Petronius; those of Genoa to cast a statue in bronze of their great commander, Andrea Doria. Cardinal Grimani begged hard for any picture or statue he might have to spare; other amateurs importuned him for so much as a pencil drawing or sketch. Lastly his friend and partisan Scbastian del Piombo at Rome, ever eager to keep up the feud between the followers of Michelangelo and those of Raphael, besought him on Raphael's death to return at once to Rome, and take out of the hands of the dead master's pupils the work of painting still remaining to be done in the Vatican chambers. Michelangeto complied with none of these requests. All that we certainly know of his doing between 1518 aad 1522 is the blocking out in the rough of four more of the "Slaves" for the tomb of Julius, and carrying out a commission, which he had received from three citizens of Rome as early as 1514 , for a statue of the risen Christ. The roughed-out "Slaves" now stand immured in a grotto in the Boboli Gardens, Florence; the Christ, practically finished by the mester hut with the last touches added by pupils, stands in the church, for which it was destined, of Sta Maria sopra Minerva at Rome; there is little in it either of devotional spirit or imaginative power, although, in those parts which Michelangelo himself finished, there is extreme acoomplishment of design and workmanship.

The next twelve years of Michelangelo's life (1522-1534) were spent at Florence, and again employed principally in the service of his capricious and uncongenial patrons-the Medici. The plan of a great group of monuments to deceased members of this family, to be set up in a net sacristy or mortuary chapel in San Lorenzo, was first broached to Michelangelo in 1520 by Cardinal Giulio de' Medici. No practical impulse, however, was given to the work until Giulio, aiter the death of Leo X. and the brief pontificate of the puritanical and iconoclastic Adrian VI., had in his turn become pope ia 1523 under the title of Clement VII. Even then the impulse was a wavering one. First Clement proposed to associate another artist, Sansovino, with Michelangelo in his task. This proposal being on Michelangelo's peremptory demand abandoned, Clement next distracted the artist with an order for a new architectural design-that, namely, for the proposed Medicean or "Lqurentian " library. When at last after many changes of scope and scheme the plans for the sepulchral chapel or "Sagrestia nuova" took shape, they did not include, as had been at first intended, memorials to the founders of the house's greatness, Cosimo (pater patriac) and Lorenzo the Magaificent, or even to Pope Leo X. himself, but only to two younger members of the house lately deceased, Giuliano, duke of Nemours, and Lorenzo, duke of Urbino. Michelangelo brooded long over various designs for this work, and was atill engaged on its executionhis time being partly also taken up by the building-plans for the Medicean library-when political revolutions Interposed to divert his industry. In 1527 came to pass the sack of Rome by the Austrians, and the apparently irretricvable ruin of Pope Clement. The Florentines seized the occasion to expel the Medici from their city, and set up a free republican government once more. Naturally no more funds for the works in San Lorenzo were forthcomirg, and Michelangelo, on the invitatios of the new signory, occupied himelf for a while with designs for a group of Hercules and Cacus, and another of Samson
and the Philistines-the latter to be wrought out of a block of marble which had been rough-hewn already for another parpose by Baccio Bandinelli. Soon, however, he was called to help in defending the city itself from danger. Clement and his enemy Charles V. having become reconciled, both alike were now bent on bringing Florence again under the rule of the Medici. In view of the approaching siege, Michelangelo was appointed engineer-in-chief of the fortifications. He spent the early summer of 1529 in strengthening the defences of San Miniato; from July to September he was absent on a diplomatic mission to Ferrara and Venice. Returning in the middle of the latter month, he found the cause of Florence hopeless from internal treachery and from the overwhelming strength of her encmies. One of bis dark seizures overcame him, and he departed again suddenly for Venice. There for a while he remained, negotiating for a future residence in France. Then, while the siege was still in progress, he returned once more to Florence; but in the final death-struggle of her liherties he bore no part. When in 1530 the city submitted to her conquerors, no mercy was shown to most of those who had taken part in her defence. Michelangelo believed himself in danger with the rest, but on the intervention of Baccio Valori he was presently taken back into favour and employment hy Pope Clement. For four years more he continued to work at intervals on the completion of the Medici monuments, with the help from 1532 of Giovanni Montorsoli and other pupils, and on the building of the Laurentian library. In 1531 he suffered a severe illness; in 1532 he made a long stay at Rome, and entered upon yet another contract for the completion of the Julian monument, to be reduced now to a still more shrunken scale and to be placed not in St Peter's but in the church of San Pietro in Vincoli. In the autumn of 1534 he left Florence for good. What remained to be done in the Medici chapel was done hy pupils, and the chapel was not finally opened to view until 1545 .

The statues of the Medici monument take rank beside the " Moses" and the "Slaves" as the finest work of Miehelangelo's central time in seulpture. They consist of a Madonna and Child and of the two famous monumental groups, each composed of an armed and scated portrait-etatue in a niche, with two emblematic figures reclining on each side of a sarcophagus below. The "Madonna and Child" (left unfinished because the marble was short in bulk) combines astonishingly the divers qualitics of realistic motive and natural animation with learned complexity of design and imposing majesty of effect. It was set up finally-not at all in accordance with the artist's first intention-against a blank wall of the chapel, and flanked at wide intervals by statues of Sts Cosmo and Damian, the work of pupils. The portraits are treated not realistically but typically. In that of Lorenzo seems to be typified the mood of crafty brooding and concentrated inward thought; in that of Giuliano, the type of alert and confident practical survey immediately preceding action. To this contrast of the meditative and active charicters correnonds a contrast in the emblematic groups accompanying the portanits. At the feet of the duke Giutiano recline the stapes of "Night "and "Day"-the former a female, the latter a male, personification; the former sunk in an aut: ude of deep but uneasy slumber, the latier (whose head and face tre merely blocked out of the marble) lifting himself in one of wraliful and disturbed awakening. But for Michelangelo's unfailing grandeur of style, and for the sense which his works convey of a compulsive heat and tempest of thought and feeling in the spurit biat thus conccived them, both these attitudes might he charged with extravagance. As grand, but far less violent, are those of the two companion figures that recline between sleep and waking on the earcophagus of the pensive Lorenzo. Of these, the male fagure is known as "Evening," the female as "Morning" (Crepuscxlo and Aurora). In Michclangelo's original idca, partly founded on antique precedent in pedimental and sarcophagus groups, figures of "Earth" and "Heaven" wow- to be associated with those of "Night "and " Day " on the monument of Giuliano, and others-no doubt of a corresponding nature, with those of the Morning and Evening Twilight on that of Loremzo. These figures witerwards fell out of the scheme and the recesses designed for them remain empty. Michelangelo's obvious and cunda mental idea was, as some words of his own record, to exhibit the elements and the powers of carth and heaven lamenting the denth of the princes. River-gods were to rediae on the broad bases at the foot of the monumenta. These too are lacking. They were never finished, but a bronze cast from a amall model of one of them, and the torso of a large model, have lately been identified, the former in the National Museum and the latter in the Acaderny at Florence.

Other works of r523-1534.-" Victory " marble (National Museum, Florence). A youthful conqueror standing over a bearded enemy,
whose shoulders be crushes down with his left knee. Fine and Gnished work: whether intended for one of the emblematic Victories of the Julian monument, or having anme connexion with the "Hercules and Cacms" and "Samson and the Philistine," subjects undertaken for the Signory in 1528, must remain uncertain. For the former of these two subjects a wax model at the Victoria and Albert Mumeum, for the latter a plaster model at the Casa Buorarroti, are claimed, pertape rightly, as original. "David" (Iormerly called "Apollo"), marble, unfinished (National Museum, Florence). Both the authenticity and the approximate date of this fine work are beyond doubt: of its origin and destination we are uninformect. "Crouching boy," marble, unfinished (the Hermitage, Petersburg). Another masterly sketch in marble; the seated lad stoops lorward between his parted knees, having both hands occupied with his left foot; the figure blocloed out of the marble, with the least possible sacrifice of the material; the subject and motive enigmatical " Cupid," leneeling, apparently in the act of shooting downward with bow, marble (Victora and Albert Museum). Probably. but not quite certainly, authentic; if 80 , then of 1530 or thereabouts; its identification with the early Cupid done for Jacopo Galli at Rome in 1496 is untenable. "Leda." painting, done for the duke of Ferrara, but withheld because of the misconduct of his messenger, and given by the master to his pupil Antonio Mini in 1531; lost. A fine injured tempera painting of the subject in the store-rooms of the National Galbery in London may presumably be an early copy.

Michelangelo had fully purposed, as soon as he could get free of his task on the Medici tomhs, to devote all his powers to the completion of the Julian monument in accordance with the new contract of 1532 . But his intention was again frustrated. Pope Clement insisted that he must complete his decorations of the Sixtine Chapel by painting anew the great end wall above the altar, adorned until then by frescoes of Perugino. The subject chosen was the Last Judgment; and Michelangelo began to prepare sketches. In the autumn of 1534 , in his sixtieth year, be settled finally, and for the remainder of his life, at Rome. Immediately afterwards Clement died, and was succeeded by a Farnese under the title of Paul III. Even more than his predecessor, Paul insisted on claiming the main services of Michelangelo for himself, and forced him to let all other engagements drift. For the first seven years after the artist's return to Rome, his time was principally talsen up with the painting of the colossal and multitudinous "Last Judgment." This being completed in 1541, he was next compelled to undertake two more great frescoes-one of the Conversion of Paul and another of the Martyrdom of Peter-in a new chapel which the pope had caused to be built in the Vatican, and named after himself - Capella Paolina.

The fresco of the "Last Judgment" in the Sixtine Chapel is probably the most famous single picture in the world. In it Michelangelo shows more than ever the omnipotence of his artistic science, and the fiery daring of his conceptions. But the work, so far as its deplorably deteriorated condition admits comparison, is hardly comparabie in the qualities of colour and decorative effect to the earlier and far more nohly inspired frescoes of the ceiling. It is to these and not to the "Last Judgment" that the student must turn if he would realize what is best and greatest in the art of Michelangelo.

The frescoes of the Pauline Chapel are on their part so injured as to be hardly susceptible of useful study or criticism. In their ruined state they bear evidence of the same tendencies that made tbe art of Michelangelo in its latest phase so dangerous an example to weaker men-the tendency, that is, to seek for unqualified energy and violence of action, both in place and out, for "terribleness" quand memc, and to design actions not by help of direct study from nature, but by scientific deduction from the abstract laws of structure and movement. At best these frescoes can never have been happy examples of Michelangelo's art.

Other Work of the years 1534-1549. Sculpture.-During the fifteen years when Michelangelo was mainly engaged on these paintings, he had also at last been enabled to acquit himself, although in a manner that can have been satisfactory to none concerned, of his engagernents to the heirs of Julius. Once more the influence of the pope had prevailed on them to accept a compromise altogether to their disadyantage. By a final contrast dated 1542, it was agreed that the "Moses" executed thirty years before, seated on a low plinth in a central recese, should be the chief figure of the new
acheme; in niches at either side of him were to be standing fisures of "Leah "and "Rachel." These Michelangelo himself executed hastily with the help of ascistants. To pupils entirely was left the carrying out of the upper cornice, with the recumbent effigy of the pope occupying the centre of a weak and incongruous architectural cheme, a Madonna and Child in a niche above, and a prophet and a sibyl in recesses at either side. Meantime all Idea of incorporating any of the "Slaves" in the new design had been abandoned. The master gave the two that had been finished in 1513-1516 to Robert Strozzi, who gave them to Francis 1.; while the four that had been roughed out bet ween 1518 and 1522 remained at Florence. "Brutus," marbie (National Museum, Florence). Probably executed soon after 1539. in memory of the tyrannicide Lorenzino de' Medici. To the end of this period or to a year or two later belongs the infinitely pathetic unfinished sketch in marble of 2 life-size "Pietd " (Palazzo Rondini, Rome)-the mourning mother, standing on an elevation behind her son, hoids his body upright in front of her by the shouiders. Still later, after 1550 , is the more complicated and more finished group of the "Pieth," with the corpse of Christ collapsing in utter relavation through the arms of those who try to uphoid it: this Michelangelo destined for his own sepulchre; it stands now in the cathedral at Florence.

Paintina.-"The Entombment of Christ " (National Gallery, London). This unfinished painting bears all the marks of Michelangelo's design, and must have been begun from a cartoon by him, probably of about 1535^{-1540}. The touch of his own hand seems evident in come parts, particularly the body of Christ; other parts, in various degrees of incompletion, are apparently the work of various pupils or imitators.

For nearly all his great lifeworks mentioned above, preparatory akctches and studies by the master's hand exist. These, with a large number of other drawings, finished and unfinished. done for their own sakes and not for any ulterior use, are of infinite value and interest to the student. Michelangelo was the most leamed and scientific as well as the most inspired and daring of diraughtsmen, and from boyhood to extreme old age never ceased to practise with pen, chalk or pencil. He is said to have burned vast numbers of his drawings with his own hand and caused others to be burned by friends and pupils to whom he had given them; so that what we possess must be less than a tithe of what he executed. But there are some 250 genuine sheets-enough to let us follow and understand his modes of conceiving ${ }_{1}$ preparing and maturing his designs at all periods of his life. They are scattered amongst various collections, chiefly public; those in England (at the British Museum, the Universiry Galleries, Oxford, and the Royal Library, Windsor), are quite half the whole number; other important examplea remsin still ot what was for centuries the home of his heirs, the Cast Bumnarruti at Flurence; others at the Uffizi, Florence; the Venice Academy; the Albertina, Vienna: the Louvre; the Conde Museum at Chantilly; the Berlin Museum; and, not least, the Teyler Museum at Haarlem. By means of these drawings and the many published facsimiles we are best able to trace the progress of the master's genius and its secrets. We see him diligently copying in youth from the frescoes of Giotto, Masaccio, and his own master Ghirlandaio. At this date his instrument was the pen only, used in a manner of hatching: sometimes extremely careful and close, at others fiercely bold and free, and in cither case all his own. Sketches and studies thus drawn with the per exist for the "David." the Barhers Susprised," the accessory figures for the tomb of Julius as first conceived, and the great serics of the Sixtine Chapel decorations. By, or even before, the darc of the Sixtine Chasel, chalk, red or black, comes into use along with the pen, and many of the finest studies for the "Slaves " or " \AA_{1} lases " a nd other decorative figures of the cciling are in the latter matcrial (many more st udies are preserved for these subordinate figures than for the main compositions). After the Sixtine Chapel period the pen gives way to red or black chalk almost entirely. Sketches are rare for the great abortive scheme of the dulius monument; almost non-existent for the equally abortive San Lorenzo façade; fairly abundant for the various stages of the Medici monument scheme in its architectural parts, but not for the great figurea. About the time of Michelangelo's final change of domicile from. Florence to Rome ($1532-1535$) he began the practice of making highly gnished and fully shaded drawings of classic or symbolic subjecis in red or black chalk for presentation to his friends, especially to young Tommaso Cavalieri, the object of his passionate Platonic affection, from about 1532. The "Fall of Phaeton," the "Tityos," the "Ganymede," the " Men sbooting at a Mark,"are well-known examples; in this chass of work the Windsor collection is lar the richest. At the same time or soon afterwards, were produced drawings little less powerfui and finished of Christian subjects, especially the " Crucifixion," ". Entombment " and " Resurrection." Then comes the greal (resco of the "Last Judgment," for which there exist both general sketches and particular studies. In the few extant drawings for the Cappella Paolina a faltering Loth of the imagination and of the hand lecome dixcernille. To the same or to still later yeprs belong many beautilul but somewhat tentative drawings done either directly for, or nearly in the spirit of, the famous "Crucifixion" which he is recorded to have painted with so much devotion for Vittoria Colonna. About many of these, for all their intensity of feeling, there is a wavering tourch betraying the approach
of infirmity; to there is about many of the architectural studien done for the buildings of which he had charge in his last years at Rome; but signs of the old impressive power and penetration are not wanting in some even of the latest drawings that have come down to us

During his later years the long-pent human elements of fervour and tenderness in Michelangelo's nature had found vent and utterance such as they had never found before. He had occasionally practised poetry in youth, and there are signs of some transient love-passages during his life at Bologna. But it was not until towards his sixtieth year that the springs of feeling were fairly opened in the heart of this solitary, this masterful and stern, life-wearied and labour-hardened man. About 1533-1534 we find him beginning to address impassioned sonnets-of which the sentiment is curiously comparable to that expressed in some of Shakespeare's-to a beautiful and gifted youth, the young Roman noble Tommaso Cevalieri. Soon afterwards he made the acquaintance of the pious, accomplished, and high-souled lady, Vittoria Colonna, widow of the Marquess Pescarc. For ten years until her death, which happened in 1547, her friendship was the great solace of Michelangelo's life. On her, in all loyalty and reverence, he poured out all the treasures of his mind and all his imprisoned powers of tenderness and devotion. She was the chief inspirer of his poetryof which, along with her praises, the main themes are the Christian religion, the joys of Platonic love, and the power and mysteries of art. Michelangelo's poetical style is strenuous and concentrated like the man. He wrote with labour and much self-correction; we seem to feel him flinging himself on the material of language with the same overwhelming energy and vehemence with which contemporaries describe him as finging bimself on the material of marble-the same impetuosity of temperament combined with the same ferce desire of perfection, but with far less either of innate instinct for the material or of trained mastery over its difficulties.

And so the mighty sculptor, painter, and poet reached ofd age. An infirmity which settled on him in 1544, and the death of Vittoria Colonna in 1547 , left him hroken in health and beart. But his strength held on for many a year longer yet. His father and brothers were dead, and his family sentiment concentrated itself on a nephew, Leonardo, to whom he showed unremitting practical kindness, coupled with his usual suspiciousness and fitfulness of temper. In aimost all his relations the old man continued to the end to manifest the same loyal and righteous heart, accompanied by the same masterful, moody, and estranging temper, as in youth. Among the artiats of the younger generation he held a position of absolute ascondancy and authority; nor was his example, as we have said, hy any means altogether salutary for them. To artists, and to a certain number of chosen friends, belonging chiefly to the lettered, diplomatic, and secretarial classes, he was more accessihle and affable than he had been to any one in earlier days, though still formidahie in moods of scorn and scoftng. His great age and fame made him tbe most honoured citizen of Rome, to whom the highest, both of his fellow countrymen and forcigners, were eager to do homage. During the last years of his life he made but few more essays in sculpture, and those not successful, hut was much employed in the fourth art in which he excelled-that of architecture. A succession of popes demanded his services for the embellishment of Rome. Between 1536 and 1546 he was engaged on plans for the rearrangement and reconstruction of the great group of buildingis on the Capitolplans which were only partially and imperfectly carried out during his lifetime and after his death. For Paul III. he finished the palace called after the name of the pope's family the Farnese. On the death of Antonio da San Gallo be succeeded to the onerous and coveted office of chief architect of St Peter's church, for which he remodelled all the designs, living to see some of the main features, including the supports and lower portion of the great central dome, carried out in spite of all obstacles, according to his plans. The dome as it stands is his most conspicuous and one of his noblest monuments: the body of the church was completed in a manner quite difierent from his devising. Other

MICHELET; JULES

great architectural tasks on which he was engaged were the reconstruction of the Porta Pia, and the conversion of a portion of the baths of Diocletian into the church of Sta Maria degli Angeli; the great cloister with its hundred columns, now used as the Musco delle Terme, is the only part of this reconstruction which remains as he designed it. At length, in the midst of these vast schemes and responsibilities, the heroic old man's last remains of strength gave way. He died on the threshold of his ninetieth year, on the 18 th of February $=564$.
Authorities.-For the earlier bibliography of Michelangelo, which is extensive, see the useful though wery imperfect compilation of Passerini, Bibliografia di Mickelangelo Buonarroli, \& c . (Florence, 1875). The most important works, taken in chronological order, are the following: P. Giovio, supplement to the fragmentary Dialogus de viris tillerss illustribus, written soon after 1527 , first published by Tiraboschi, Storia della letteratura italisna (Modena, 1871): G. Vasari, in Vite degli pit eccellenth architeltori pillori, e seullori, \&c. (Florence, 1550); A. Condivi, Vita di Michelangelo Buonarroti (1553); this accuunt, for which the author, a pupil and friend of the master's, had long been collecting materials, was much fuller than that of Vasari, who made use of it in rewriting his own life of Michelangelo for his second edition, which appeared after the master's death (1568). The best edition of Vasari is that by Milanesi (Florence 1878-1883); of Condivi, that by Gori and Maricte (Pisa, 1746); for English readers there is a uselul translation with notes, by Sir Charles Holroyd. The first additions of importance were published by Bottari, Raccolla di teltere sulla pitlura, 8 c . (Rome, 1754: 2nd ed. by Ticozzi, Milan, 1822); the next by Gaye, Carteggio inedito (1840). Portions of the correspondence preserved in the Buonarroti archives were published by Guasti in his notes to the Rime di Michelo ngelo Buonarroli (1863), and by Daelli is Carle Michelangelsche inedite (Milan, 1865). Complete biographies of Michelangelo had been meanwhile attempted by J. Harford (London, 1857), and with more power by Hermann Grimm, Leben Michel angelos (Hanover, 5 th ed., 1879). A great increment of biograpnical material was at length obtained by the publication, in the fourbundredth year after Michelangelo's birth, of the whole body of his letters preserved in the Buonarroti archives, Lettere di Michelangelo Buonayroti, ed. G. Milanesi (Florence, 1875). This material was frst employed in a connected but too trivial narrative by A. Gotti, Vita di Michelangelo (Florence. 1875). Next followed C. Heath Wilson, Life and Works of Michelangelo Buonarroli (Florence, 1876). the technical remarks in which, especially as concerns the fresco paintings. are still valuable. Other lives of Michelangelo are by Anton Springer, in his Michelangelo u. Raphael (Leipzir, 1883); ; A. Symonds, The Life of Michelangelo (London, 1893), Iull of valuable matter on the history and spirit of Michelangelo's times, but not trustworthy in the criticism of his works: H. Mackowksy, Michelagniolo (Berlin, 1908), excellent in all respects, and in moderate compass: Emile Gebharde, Michel-Ange, scelpleus el pesintre (1808) is a handsome volume of reproductions with text. Michelangelo. by Friz Knapp. in the Klassiker der Kunst series (Stuttgart, 1900) is a very useful compendium. For the early works of Michelangelo the standard authority is H. Wolfflin, Die Jugendwerke Mitchelangelos (Munich, 189 I , and later editions), a masterly work, though at variance with Berlin official opinion. The most elaborate study of the Sixtine frescoes. magnificently illustrated, is by E. Steinmann, Die Sixtinische Kapelle, vol. ii. (Munich, 1905). Consult also C. Justi, Michelangelo (Leipzig. 1903), and with caution H. Thode, Michelangelo u. das Ende der Renaissance (Berlin, 1902-1903). Of the poems of Michelangelo the first sound edition is that already referred to, G. Guasti, Rime di Michelangelo Buowarroti (1863); in earlier editions the text had been recklessly tampered with, and the rugged individuality of the master's style smoothed down. An edition with German translations was published by Hasenclever (Leipzig, 1875): and a thorough critical edition by Karl Frey (Berlin, 1897): for the English student the translations by I. A. Symonds, in Sonnets of Mrchelangelo and Campanella (London, 1878) are invaluable. On the drawings of Michelangelo see especially B. Berenson, The Drawoings of Florentine Painters (London, 1903). A comprehensive work on the same subject, in which the most important examples are reproduced and discussed, unfortunately not arranged chronologically, is Karl Frey, Die Zeichnungen Michelangelos (Berlin, 1908 seq.), still in progress. An elaborate life by the same author (Kart Frey, Michelagniolo Buonarroti, sein Leben and seine Werke) is also in progress, but is more to be prized for documentary fuliness and accuracy than for critical insight.
(S. C.)

MCHELET, JULES (1798 -1874), Freach historian, was bom at Paris on the 2 Ist of August 1798, of a family which had Huguenot traditions. His father was a master printer, not very prosperous, and the son at an carly age assisted him in the actual work of the press. A place was offered him in the imperial printing office, but his father was able to send him to the famous Collège or Lycéc Charlemagne, where he distinguished
himself. He passed the university examination in 182x, and was shortly after appolnted to a professorship of history in the College Rollin. Soon after this, in 1824, he married. The period of the restoration and the July monarchy was one of the most favourable to rising men of letters of a somewhat scholastic cast that has ever been known in France, and Michelet had powerful patrons in Villemain, Victor Cousin and others. But, though he was an ardent politician (having from his childhood embraced republicanism and a peculiar variety of romantic free-thought), he was first of all a man of letters ard an inquirer into the history of the past.

His earliest works were school-books, and they were not written at a very early age. Between 1825 and 1827 ho produced divers sletches, chmonologigal tahles, \&c., of modern history. His Prtcis of the subject, published in the last-mentioned year, is a sound and careful book, far better than anything that had appeared before it, and written in a sober yet interesting style. In the same year be was appointed maltre de conférences at the Coole normale. Four years later, in 1831, the Introduction a l'histoire suiverselle showed a very different style, exhibiting no doubt the idiosyncrasy and literary power of the writer to greater advantage, but also displaying the peculiar visionary qualities which made Michelet the most stimulating, hut the most untrust wort by (not in facts, which be дever consciously falsifies, but in suggestion) of all historians. The events of 1830 had unmuxaled him, and had put him in a better position for study by obtaining for him a place in the Record Office, and a deputy-professorship under Guizot in the literary faculty of the university. Very soon afterwards he began bis chief and monumental work, the Histoire de France. But he accompanied this with nomerous other books, chiefly of erudition, such as the Evares choisies de Vico, the Memoires de Luther ecrits par lati-meme, the Origines du droit francais, and somewhat later the Procts des templiers. 1838 was a year of great importance in Michelet's life. He was In the fullness of his powers, his studies had fed his natural aversion to the primciples of authority and ecclesiasticism, and at a moment when the revived activity of the Jesnits caused some real and more pretended alarm he was appointed to the chair of history at the College de France. Assisted by his friend Edgar Quinet, he began a violent polemic against the unpopular order and the principles which it represented, a polemic which made their lectures, and especially Michelet's, one of the most populer resorts of the day. He published, in 1839, his Hisloire romaine, but this was in his graver and earlier manner. The results of bis lectures appeared in the volumes Le Pratre, la femmes, et la famille and te peuple. These books do not display the apocalyptic style which, partly borrowed from Lamennais, characterizes Michelet's later works, hut they contain in miniature almost the whole of his curious ethico-politico-theological creed-a mixture of sentimentalism, communism, and anti-sacerdotalism, supported by the most eccentric arguments, but urged with a great deal of eloquence. The principles of the outhreak of 1848 were in the air, and Michelet was not the least important of those who condensed and propagated them: indeed his original lectures were of so incendiary a kind that the course had to be interdicted. But when the actual revolution broke out Michelet, unlike many other men of letters, did not attempt to enter on active political life, and merely devoted himself more strenuously to his literary work. Besides continuing the great history, he undertook and carried oat, during the years between the downiall of Louis Philippe and the final establlshment of Napoleon III., an enthusiastic Histoire de la ritolution francaise. Despite or because of its enthusiasm, this was by no means Michelet's best book. The events were too near and too well known, and hardly admitted the picturesque sallies into the blue distance which make the charm and the danger of his larger work. In actual pieturesqueness as well as in general veracity of picture, the book cannot approach Carlyle's; whlle as a mere chronicle of the events it is inferior to half a dozen prosaic histories older and younger than itself.

The coup d'Elat lost Michelet his place in the Record Office, as, though not in any way identified with the republic administratively, he refused to take the oaths to the empire. But the new regime only kindled afresh his republican zeal, and his second marriage (with Mlle Adele Maiairet, a lady of some literary capacity, and of republican belongings) seems to have further stimulated his powers. While the history steadily held its way, a crowd of extraordinary little books accompanied and diversified it. Sometimes they were expanded versions of its episodes, sometimes what may be called commentaries or companion volumes. In some of the best of them natural science, a new subject with Michelet, to which his wife is believed to have introduced him, supplies the text. The first of these (by no means the best) was Las Femmes do la rtoolution (1854), in which Michelet's natural and inimitable faculty of dithyramhic too often gives way to tedious and not very conclusive argument and preaching. In the next, L'Oiseas (8856), a new and most successful vein was struck. The subject of natural history was treated, not from the point of view of mere science, nor from that of sentiment, nor of aneodote nor of gossip, but from that of the author's fervent democratic pantheism, and the result, though, as was to be expected, unequal, was often excellent. L'Insecte, in the same key, but duller, followed. It was succeeded by L^{\prime} 'A mow (1859), one of the author's most popular books, and not unworthy of its popularity, but perhaps hardly his best. These remarkable works, half pamphlets half moral treatises, succeeded each other as a rule at the twelve months' interval, and the succession was almost unbroken for five or sir years. L'A mokr was followed by La Femme (r860), a book on which a whole critique of French literature and French character might be founded. Then came La Mer (1861), a return to the natural history class, which, considering the powers of the writer and the attraction of the subject, is perhaps a little disappointing. The next year (1862) the most striking of all Michelet's minor works, La Sorcière, made its appearance. Developed out of an episode of the history, it has all its author's peculiarities in the strongest degree. It is a nightmare and nothing more, but a nightmare of the most extraordinary verisimilitude and poetical power.
This remarkahle series, every volume of which was a work at once of imagination and of research, was not even yet finished, but the later volumes exhibit certain falling off. The ambitious Bible de $l^{\prime} h u m a n i l d$ (1864), an historical sketch of religions, has but little merit. In La Montagne (1868), the last of the natural history series, the tricks of staccato style are pushed even farther than hy Victor Hugo in his less inspired moments, though-as is inevitable, in the hands of such a master of language 2s Michelet-the effect is frequently grandiose if not grand. Nos fils (1869), the last of the string of smaller books published during the author's life, is a tractate on education, written with ample knowledge of the facts and with all Michelet's usual sweep and range of view, if with visihly declining powers of expression. But in a book published posthumously, Le Banqued, these powers reappear at their fullest. The picture of the industrious and famishing populations of the Riviera is (whether true to fact or not) one of the best things that Michelet has donc. To complete the list of his miscellaneous works, two collections of pieces, written and partly puhlished at different limes, may be mentioned. These are Les Soldats de la resolution and Legendes democratiques dx mord.

The publication of this series of books, and the completion of his history, occupied Michelet during both decades of the empire. He lived partly in France, partly in Italy, and was accustomed to spend the winter on the Riviera, chiefly at Hyères. At last, in 1867, the great work of his life was finished. In the usual edition it fills nineteen volumes. The first of these deals with the early history up to the death of Charlemagne, the second with the flourishing time of feudal France, the third with the 13 th century, the fourth, fifth, and sixth with the Hundred Years' War, the seventh and eighth with the establishment of the rural power under Charles VII. and Louis XI. The 16th and s7th centuries haye four volumes
apiece, much of which is very distantly connected with French history proper, expecially in the two volumes entitled Renaissance and Rdforme. The last three volumes cerry on the history of the 8 8th century to the outbreak of the Revolution. Michelet was perhaps the first historian to devote himself to anything like a picturesque history of the middle ages, and his account is still the most vivid that exists. His inquiry into manuscript and printed authorities was most laborious, but his lively imagination, and his strong religious and political prejudices, made him regard all things from a singularly personal point of view. Circumstances which strike his fancy, or furnish convenient texts for his polemic, are handled at inordinate length, while others are rapidly dismissed or passed over altogether.

Uncompromisingly hostile as Michelet was to the empire, its downfall and the accompanying disasters of the country once more stimulated him to activity. Not only did he write letters and pamphlets during the struggle, hut when it was over he set himself to complete the vast task which his two great histories had almost covered hy a Histoire du XIX* sizcle. He did not, however, live to carry it farther than Waterioo, and the best criticism of it is perhaps contained in the opening words of the introduction to the last volume"J'age me presse." The new repuhlic was not altogether a restoration for Michelet, and his professorship at the College de France, of which he contended that he had never been properly deprived, was not given back to him. He died at Hyères on the 9th of February 1874.
Almost all Michelet's works, the exceptions being his translations, compilations, \&c., are published in unitorm size and in about fifty volumes, partly by Marpon and Flammarion, partly by Calmann. Levy. He has not received much recent attention from critics and monographers, but his Origznes du droil fransais, cherchtes dans Les symboles el for mules du droul universel was edited by Emile Faguet in 1890 and went into a sccond edition in 1900 . See G. Monod, Jules Michecet; Eludes sur la vie et ses atwores (Paris, 1905),
(G. SA.)

GICHELET, KARL LUDWIG ($1801-1893$), German philosopher, was born on the 4th of December 5801 , at Berlin, where he died on the r6th of December 1893. He studied at the gymnasium and at the university of his native town, took his degree as doctor of philosophy in 1824, and became professor in 1829, a post which he retained till his death. Educated in the doctrine of Hegel, he remained faithful to his eatly teaching and spent his life in defending and continuing the Hegelian tradition. His Girst notable work was the System der philosophischen Moral (Berlin, 1828), an examination of the ethical theory of responsibility. In 5836 he published, in Paris, a treatise on the Melaphysics of Aristotle, written in French and crowned by the Académie des Sciences Morales et Politiques. He wrote also two other treatises on Aristotle. Nikomachische Elhik (2nd ed., r848) and Die Ehih des Aristoteles in ihrem Verhallniss zum System der Moral (1827). His own views are best expressed in his Vorlesungen uber die Persontichkcil Golles (1841) and Die Epiphanie der ewigen Personlichkeit des Gottes. The philosophical theology developed in these works has been described as a "Neo-Christian Spiritualism."
Among his other publications may be mentioned Geschichte dep leitens Systeme der Phulos, in Deulschland won Kant bis Hegel (18371838); Anthropologie und Psychologie (1840); Esquisse de logique (Paris 1856): Nalurpecht oder Rechisphilosophie (i866); Hegel der unwiderlegte Wellphilosoph (1870), Wahrheit aus meinem Lebes (1886). From 1832 to 1842 Michelet was engaged in pubiishing the complete works of Hegel, and in 1845 he lounded the Bertin Philosophical Society, which has continuously represented the Hegelianism of Germany. He was the first editor of Der Gedanke ($\mathbf{1 8 6 0}$), the official organ of the society

MICHELL. JOHA (1724-1793), English natural philosopher and geologist, was born in 1724, and educated at Queens' College, Cambridge. His name appears fourth in the Tripos list for 1748-1749; and in 1755 he was moderator in that examination. He became M.A. in 1752, and B.D. in 1761. He was a fellow of his college, and was appointed Woodwardian professor of geology in 1762, and in 1767 rector of Thornhill is Yorkshire, where he died on the 29th of April 1793. He wis
elected a fellow of the Royal Society in the same year as Henry Cavendish (1760). In 1750 he published at Cambridge a work of some eighty pages entitled A Treatise of Artificial Magnets, in rokich is showe an easy and expeditious method of making them superior to the best natural ones. Besides the description of the method of magnetization which still bears his name, this work contains a variety of accurate magnetic observations, and is distinguished by a lucid exposition of the nature of magnetic induction. He was the original inventor of the torsion balance, which afterwards became so famous in the hands of its second inventor Coulomh. Micbell described it in his proposal of a method for obtaining the mean density of the earth. He did not live to put his method into practice; hut this was done by Henry Cavendish, who made, by means of Michell's apparatus, the celebrated determination that now goes by the name of Cavendish's experiment (Phil. Trans., 1708). His most important geological essay was that entitled Conjectures concerning the Cause and Obsertations upon the Phaenomena of Earthquakes (Phil. Trans., Li. 1760), which showed a remarkable knowledge of the strata in various parts of England and abroad.

Michell's other contributions to science are: "Observations on the Comet of January 1760 at Cambridge, Phil. Trans. (1760): "A Recommendation of Hadley's Quadrant for Surveying.' ibid. (1765); "Proposal of a Method for measuring Degrees of Longitude upon Parallels of the Equator," ibid. (1766); "An Inquiry into the Probable Parallax and Magnitude of the Fixed Stars," ibid. (1767): "On the Twinkling of the Fixed Stars," ibid. (I767) " On the Means of Discovering the Distance, Magnitude, \&e., of the Fixed Stars," ibid. (1784).

MICHEL OP NORTHGATE, DAN (A. 1340), English writer, the author of the Ayenbite of Inwyl. Nothing is known of him ercept what can be gathered from his work. It is a literal translation in the Kentish dialect of a French treatise entitled Le Somme des vices at des vertues (also known as Le Mivoir du monde or Le Livre des commardemens, \&c.), which was written in 1279 by Laurentius Gallus, a Dominican monk and confessor to Philip III. of France. This work was translated into Flemish. Catalonian, Spanish and Italian, and appears in no less than six English translations. Dan Michel's autograph MS. is preserved in Arundel MS: 57, which states that the work was completed in the year 1340 on the eve of the aposties Simon and Jude by Dan Michel of Northgate, a brother of the cloister of St Austin of Canterbury. The value of the book is chiefly philological as an authenticated and dated example of the southern dialect.
The Ayenbice of Invoyl was edited for the Roxbiurghe Cluh by the Rev Joseph Stevenson in 1855, and for the Early English Text Soc. by Richard Morris in 1876.

MICHELOZZO DI BARTOLOMMEO (1391-1472?), Italian sculptor, was.a Florentine by birth, the son of a tailor, and in carly fife a pupil of Donatello. He worted in marble, bronze and silver. The statue of the young St John over the door of the Duomo at Florence, opposite the Baptistery, is by him; and he also made the beautiful silver statuette of the Baptist on the altar-frontal of San Giovanni. Michelozzo's great friend and patron was Cosimo dei Medici, whom he accompanied to Venice in 1433 during his short exile. While at Venice, Michelozzo huilt the library of San Giorgio Maggiore, and designed ot her buildings there. In 1428 , together with Donatello, he erected an open-air pulpit at an angle of the cathedral of St Stephen at Prato. The magnificent Palazzo dei Medici at Florence built by Cosimo. was designed by him; it is one of the noblest specimens of Italian Isth-century architecture, in which the great taste and skill of the architect has combined the delicate lightness of the earlier Italian Gothic with the massive stateliness of the classical style. With great engineering skil Michelozzo shored up, and partly rebuilt, the Palazzo Vecchio, then in a ruinous condition, and added to it many important rooms and staircases. When, in 1437, through Cosimo's liberality, the monastery of San Marco at Florence was handed over to the Dominicans of Fiesole, Michelozzo was employed to rehuild the domestic part and remodel the
church. For Cosimo I. he designed numervus other buildinga, mostly of great beauty and importance. Among these were a guest-house at Jerusalem for the use of Florentine pilgrims. Cosimo's summer villa at Careggi, and the strongly fortified palace of Cafagiuolo in Mugello. For Giovanni dei Medici, Cosimo's son, he built a very large and magnificent palace at Fiesole. In spite of Vasari's statement that he died at the age of sixty-eight, be appears to have lived till 1472 . He is buried in the monastery of San Marco, Florence. Though skilled both as a sculptor and engineer, his fame chiefiy rests on his architectural works, which claim for him a position of very high honour even among the greatest names of the great isth-century Florentines.
See Hans Stegmann, Micheloxzo di Bartolommeo, cins hunst geschichlliche Studie (1888); Fritz Wolf., Míchelozso di Baplolommeo (1900); cf. also Hans Semper, Donatello (1887).

MICHIGAN, a north central state of the United States, situated between latitudes $41^{\circ} 44^{\prime}$ and $47^{\circ} 30^{\prime}$ N. ${ }^{1}$ and longitudes $82^{\circ} 25^{\prime}$ and $90^{\circ} 31^{\prime} \mathrm{W}$., and consisting of two peninsulasthe upper or northern and the lower or southern-separated by a strait. The upper or northern peninsula is bounded N. by Lake Superior; E. by lakes Superior, George, Huron, and Michigan, and by St Mary's River, which separates it from the Province of Ontario, Canada; S. by lakes Huron and Michigan and the Straits of Mackinac, which separate it from the lower peninsula; and S. and W. hy Wisconsin, and the Menominee, Montreal and Brule Rivers, which separate it in part from Wisconsin. The lower or southern peninsula is bounded N. by lakes Michigan and Huron and the Straits of Mackinac, E. by lakes Huron, St Clair and Erie, and the St Clair and Detroit Rivers, which separate it from Ontario; S. by Ohio and Indiana, and W. hy Lake Michigan. In size Michigan ranks eighteenth among the states of the Union, its total area being $57,980 \mathrm{sq} . \mathrm{m}$., of which $500 \mathrm{sq} . \mathrm{m}$. are water surface. ${ }^{?}$
Physical Features.-Physiographically the history of the state is similar to that of Minnesota. The northern part is rugged mountainous "old land," not completely worn down by erosion; and the southern part is a portion of the old coastal plain, whose layers contain salt. gypsum and some inferior coal. Lake Huron on the east and Lake Michigan on the west of the lower peninsula are each 581 ft. above sea-level, and Lake Superior on the north of the upper peninsula is 602 ft . above sea-level. For the most part the surface of the state is gently undulating and at a slight elevation above the lakes, hut low marsh lands are common to many sections; the north part of the lower peninsula is occupied by a plateau of considerable dimensions, and the north-west part of the upper peninsula is rugged with hills and mountains. Crossing the lower peninsula from Saginaw Bay west by south through the valleys of the Saginaw, Maple and Grand rivers, is a depression-the former channel of an old glacial river-in which elevations for a considerable area are less than 100 ft . above the lakes. To the south-east of this depression a water-parting with summits varying from about 400 to 600 ft. above the lakes extends from 2 point between Saginaw Bay and Lake Huron south by west to the south border of the gtate and beyond. The east slope descends quite rapidly ro a low flat belt from 5 to 40 m . wide along the east border of the state south from lake Huron. From Lake Huron to the southeast shore of Saginaw Bay a wide sandy beach is followed northward by precipitous shores abounding in rocks and bluffs. West of the divide and wouth of the depression, south.west Michigan is occupied by the valleys of the St Joseph, Kalamazoo and Grand rivers, by the gently rolling uplands that form the parting divides between them, and by sand dunes, which here and there rise to a height of from 100 to 200 ft . or more along the shore of Lake Michigan, and are formed on this side (but not on the Wlsconsin side) of the lake by the prevailing west winds. The north and north-west portions of the lower peninsula-including the counties of Roscommon and Missaukee. parts of Wexford and Ogemaw, and those to the north and northwest of these-are occupied by a rolling plateau which attaine an clevation at its highest point, north of its centre, of upwards of 1100 ft . above Lake Michigan; to the south of this plateau the land slopes gently down to the depression and to the fow shores of Lake Michigan and Saginaw Bay. The surface of the upper

[^21]peninasula is more irregular than that of the lower peninsula. A portion extending through the middre from east to west and south, from west of the centre to Green Bay, is cither fát and even swampy or only gently undulating. East ward from Green Bay are two ranges of hills: the one lining the south shore and ranging from 100 to 300 It. in height, the other close to or touching the north shore and reaching in places an elevation of 600 ft . above Lake Superior. The famous Pictured Rociks in Alger county on the lake shore, east of Munising. lorm the west portion of this north range: they are of sandstone formation, extend for several miles along the coast, rise almost perpendicularly from the water's edge, and display an iateresting diversity of shapes as well as a great variety of tints and hues, especially of gray, blue, green and yellow. The most rugged portion of the state is larther west. South and south-east of Keweenaw Bay, in the Marquette iron district, is an irregular area of mountains, hills, swamps and lakes, some of the mountain peaks of the Huron Mountains (in Marquette county) rising toan elevation of 1400 ft. or more above the lake. These and a peak in the Porcupine Mountains (2023 It. above the sea) in the north-west part of Ontonagon county are the highest in the state. To the south of this is the Menominee iron district, marked somewhat regularly by east and west ridges. Extending in a gencral north-cast and south-west direction through Keweenaw peninsula to the Wisconsin border and beyond is the middle of three approximately parallel ranges. separated from each other by flat lends, with here and there an isolated peak (in the Porcupine Mountains) having an elevation of from 900 to 1400 ft . above the lake. The north portion of these ranges, together with Isle Royale some distance farther north, which is itself traversed by вeveral less elevated parallel ridges, contains the Michigan copperbearing rocks: while to the south, along the Wisconsin border, is another iron district, the Gogebic. The rivers of the entire state consist of aumerous small streams of clear water. In the interior of the upper peninsula, along the east border of the lower peninsula south from Lake Huron, and in Saginaw valley, they are mather sluggish; but many of the larger streams of the lower peninsula have sufficient fall to Iurnish a large amount of water-power, while the small streams that flow into Lake Superior Irom the central portion of the upper peninsula as well as some of the larger ones farther west, have several falls and rapids; in places also they are lined with steep. high banks. Most of the larger rivers of the statethe Muskegon, Grand, St Joseph, Manistee and Kalamazoo-are in the west portion of the lower peninsula. Several thousand lakes of clear water, formed by glacial action, dot the surface of the state, and many of them are lined with picturesque woodland shores. Islands in lakes Superior, Michigan and Huron are scarcely less numerous.

Fauna and Flora.-Michigan, especially the north portion, still abounds in game. The mammals include black bear, deer, lynx, porcupine, fox, equirrels, hares, rabbits, musk rets, minks, weasels, akunks and woodclucks, Among the game birds are quails (" Bob White"), "partridges" (ruffed grouse). ducks, geese. woodcocks, snipes and plovers. Of song birds the favourites are the robin. thrushes, bobolink, oriole, chickadee, meadow.lark. cat-hird, bluebird, wrens and warblers. Among fishes, white fish, lake trout. perch, herring, sun-fish, bass, sturgeon, pickerel, suckers, German carp and fresh-water drum abound in the lakes. The speckled trout thrives in many of the streams.

Before it was settled by the whites the area now included in Michigan was a forest, except in the south-west, where there were a few small prairies, possibly cleared by the Indian. The remainder of the south part of shis area for about 60 m . along the ssuthern boundary was a part of the great bardwood lorest of the Ohio Basin with woods varying with soil and drainage: on the drics gravel lands were oak forests consisting of red, black and white oak, hickory. ash, cherry, basswood and walnut; in depressions there were smaple, elm. ash, beech, sycamore, poplar and willow; and in the southeast there were a few chesinuts and tulip trees. North of this zouthern hard wood forest there were pine forests on the sandier land, mixed hardwoods and conifers on the loam and clay, and tamaracks and cedar in the swamps. The sandy lands were in part burnt over by Indians, and there was a growth of scrub oak, espens and huckleberry bushes. The tamarack and cedar swamps now have a growth, especially on their edges, of spruce, balsam. white pine, solt maple, ash and aspens. "In Igo9 about 25% of the area was "cut over " or "burned over " lands, mostly the old pine woods, the region of the old hardwood forest was almost entircly farmland, and about 40% of the state was still in woods. Red oak, birch, elra, ash, white cedar. hemlock, basswood, spruce, poplar. balsam, fir and several other kinds of trees are found in many sections; but a large portion of the merchantable timber, especially in the lower peninsuia, has been cut. ${ }^{1}$ Among forest shrubs are the willow, hasel, alder. shrub maple, birch, hawthom, dogwood, elderberry, viburnum and snowberry. Yews are common in the north, and dwarf juniper in the south. In 1900 the woodland area, including stump lands, was estimated at $38,000 \mathrm{sq} . \mathrm{m}$., or nearly two-thirds of the entire state. Huckleberry. blackberry and raspberry busbes are common in the north sections. Smilax, clematis, honeysuckle and woodbine are the commoner forest vines.
I Under the revised constitution of 1908 the legidature is author-
ised to provide for che reforestation of atate lands.

Soil.-The soil of soutb-weat and south-east Michigan is for the most part a dask clay loam or muck; in the north cencral part of the lower peninsula it is a light sandy loam, along the Huron shore it is heavy with blue clay, in the mining districts of the north-west the rocks are usually either barren or very thinly covered; and elsewhere in the state the soil is generally rich in a variety of mineral elements, and varies chiefly in the proportions of vegetable loam. sand or gravel, and clay.

Climate.-Although the temperature of the entire lower peninsula is considerably influenced by the lakes, yet, the prevailing winds being westerly, it is in the west portion of that peninsula that the moderation is greatest, both the summer and winter isotherms being there deflected more than half the length of the peninsula. On the other hand, the prevailing winds of the upper peninsula being northwesterly, the lakes have little effect on the temperature there; and so, while in the south-west the extremes are not great, in the reat of the state they have ranged within two years from $104^{\circ} F$. at points in the south-east to $49^{\circ} \mathrm{F}$. in the north-west. Throughout the state July is invariably the warmest month, February the coldest. the mean annual temperature is about $45^{\circ} \mathrm{F}$. The mean annual precipitation is not far from 3 i in., a little more than one-hall a which falls during the five growing months from May to October; the rain is evenly distributed over all parts of the state, but the snow is exceptionally heavy along the north shore nf the upper peninsula.

Productions.-Of the total land surface of the state in $190048 \cdot 08 \%$ (in 1904. 47.1%) was included in larms and 67.2% (in 1904 66.9% of the farm land was improved; the total number of farma was 203,261 (in 1904, 189, 167), of which T43.688 contained less that 100 acres, 54.556 others contained less than 260 acres, and 136 contained 1000 acres or more, the average size being 86.4 acres (in 1904, 91.5 acres). Of the total number of farms $\mathbf{1 6 8 , 8 1 4}$ were operated by the owners (in 1904, 101,037 by owner and 914 by managers), 22.482 (in 1904, 19.525) by share tenanta 9731 (in 1904, 7685) by cash tenants; and 312,462 of the inhabitante of the state, or $34: 5 \%$ of all who were engaged in gainful occupations were farmers. Of the total acreage in 1900 of an crops 58.3% was in cereats and 28.8% in hay and forage; of the acreage of cereals 40.8% was in wheat, 31.8% in Indian corn, 21.6% in oats and 3.7% in rye. In 1907 the buckwheat crop was 852,000 bushels; rye 5,452,000 bushels; the hay crop. 3.246,000 tons; oats, 30,534,000 bushels; bariey, 1,496,000 bushels; wheat 12.731,000 bushels; and Indian corn 57,190,000 bushels. Of livestock, sheep are the most numerous ($2,130,000$ in 1907), and Michigan's wool clip in 1907 was $14,080,500 \mathrm{lb}$. The number of neat cattle in 1907 was $1,852,000$ (849,000 dairy cows). The number of hogs was $1,388,000$; and of horses 704.000.
Michigan produces the builk of the peppermint crop of the United States, and it is in the front rank as a fruit-producing state.
Barley and buckwheat are grown chicfly in the cast part of the lower peninsula south of Saginaw Bay. Potatoes are grown in considerable quantities in the north-west part of the lower peninsula in the vicinity of Grand Traverse Bay as well as throughout the soutbera portion of the state; the largest crops of beans are grown in the south central part of the lower peninsula, and of peas in the countiea bordering on Lake Huron. Kalamazoo, Jackson, Washtenaw Lenawee, Ingham, Bay and Muskegon are the leading celery-produc ing counties; the peppermint district is in the south-west corner of the state; and market gardening is an important industry both in the south-west and in the south east counties. All the principal fruite are grown in largest quantities in what is commonly known as the iruit belt in the south q.west, particularly in Berrien, the corner county.

The fresh-water fish caught in the Great lakes by residents in Michigan exceed in value those caught by residents of other states and in 1907 the catch was valued at $\$ 1,806,767$. Nearly one-hal both in quantity and value are taken from Lake Michigan, and. although as many as twenty kinds are caught in considerable quantities, more than 90% of the value of the catch consists of trout. herriats, white fish and perch. Both the atate goverament and the national government have established hatcheries within the state and state laws protect the industry. by regulating the size of mesh in the nets usod, prescribing the size of fish that may be taken and ke t, establishing cloee eeasons for several kinds of fish, and by other Enitations.

Minerals.-Of the mineral products (for which the state is noted) iron is the most valuable. This mineral was discovered in the Marquette district along the shore of Lake Superior carly in the 18th century, but active operations for mining it did not begin untiu 1845: in 1877 mining of the same mineral began farther south is the Menominee district. and seven years later farther west along the Wisconsin border in Gogebic couraty. The annual product stcadily increased from 3000 long tons in 1854 to $11.830,342$ in 1907; from 1890 to 1901 Michigan ranked first in the union as an irooproducing state. but after 1 gol its product was exceeded by that of Minnesota. Up to 1909 it was estimated that $380,417,085$ tons of ore were shipped from the Lake Superior region. Next in value among the mineral products is copper; there are about twenty copper mines in Keweenaw peninsola and its viciniry. The Calumet and Hecla mine. in the ceptral pert of that penineula, is probably the mect profitable copper mine in the world: up to 1909 it had prid
-
ebopt \$107,850,000 in dividende Copper mining in the state began bbout the same cime as iron mining, and the quantity mined increased from 12 long tons in 1845 to 102,543 in 1906 (in 1907, 97,175 long tons). From 1847 to 1887 the product of Michigan exceeded that of any other sale; from 1847 to 1883 its copper product was more than one-half that of all the states, but after 1887 (except in 189s) more of that mineral was mined in Montana than in Michigan, and In 1906 and in 1907 the yicld in both Arizona and Montana was greater than in Michigan. Fields of bituminous coal extend over an area of over $10,000 \mathrm{sq}$. m. in the central portion of the lower peninsula; but its quality is inferior. The mining of coal began in fackson county in 1835 and there was a slow increase in the output until 1882 (135.339 short tons); then there was a tendency to decrease until 1897, from which time the product increased from 223.592 bhort tons to $2,035,858$ short tons in 1907 . The principal mines are in Saginaw, Bay, Eaton, Jackeon, Huron and Shiawasee counties. Salt wells are numerous in the middle and south-enst sections of the lower peninsula; the first successful one was drilled in Saginaw county in 1859 and 1860 . For a number of years prior to 1893 Michigan was the leading ealt-producing state, and, though her output was subsequently (except in 1901) exceeded by that of New York, it continued to increase up to 1905, when it was 9492,173 barrels: in 1907, the product was 10,786,630 harrels. Gypsum is obtained from deposits along the banks of the Grand river in Kent county and in the vicinity of Alabaster along the shore of Lake Huron in Ioaco county. Operations on the deposit near Grand Rapids were begun in 1841 , and although that near Alabaster was opened in 1862, it was not until 1902 that it became of much importance; in that year the output of the state was 208.563 short tons; in $1907,317,261$ short tons were mined. Marl is found in the south part of the state; limestone most largely in the north part of the lower peninsula, and the east part of the upper peninsula; and the production of Portland cement increased rapidly from 77,000 barrels in 1898 to $3.572,668$ in 1907. Besides limestones and dolomites, the only building stone of much commercial importance is the Potsclam sandstone, extensive beds of which lie in the north part of the upper peninsula. Grindstones are produced in considerable quantity in Huron county. A small quantity of petroleum is ootained from thirteen wells in St Clair county in the east part of the lower peninsula; and the mineral waters at Mount Clemens, Beaton Harbor and Alma are of considerable commercial value for medicinal purposes.
Mant, ociures.-In 1900 the value of the manufactured products of Michigan amounted to $\$ 356,944,082$, which was an increase of 28.4% over that of $\mathbf{1 8 9 0}$, and by 1904 there wes afther incrense of 20.19% During the same period, howev: 5 , the value of the products of the lumber and timber industry, which in 1870.1880 and 1890 was greater than that of any other stite, and in 1900 was still more than twice as great as that of the products of any other manulacturing industry in the state and was exceeded only by that of the product of Wisconsin. decreased from $883,121,969$ in 1890 to $\$ 53.915,647$ ($35-1 \%$) in 1900 , and to $\$ 40.569 .335 \mathrm{in}$ 1904, this clecrense being due to the fact that the large quantitics of raw material (both hard wood and pine) formerly found in the forests of Michigan had become so far exhausted that much of it had to be brought in from other states and from Canadis. The value of the products of the furniture factories and of the planing mills, nevertheless, has steadily increased; that of the furniture factories (of which Grand Rapids is the leading centre not only in Michigan but in the United States) rising (rom $\$ 10.767 .038$ in 1890 to $\$ 14.614 .506 \mathrm{~m}$ 1900 and $\$ 18,421,735$ in 1904. and that of the planing mills from $\$ 10,007,603$ in 1890 to $\$ 12,469.532$ in 1900 and $\$ 14,375,467$ in 1904 , The total value of the Jumber and timber products, the furniture products, and the planing-mill products amounted in $1 g 00$ to \$80.999,685; the value of those manufactures based upon minerals mined or quarried amounted in the same year to $\$ 8,730,93^{\circ}$.

Another important class of manulactures is that based on agricutture: the value of flour and grist mill products amounted to $\$ 21,643.547$ in 1900 , and $\$ 26,512,027$ in 1904; that of lood prepara. tions, for which Battle Creek is noted, to $\$ 1,891.516$ in 1900 and 86.753,699 in 1904 ; that of agricultural implements to 66.339 .508 in 1900 and $88,719,719$ in 1904 ; and of malt liquors to $\$ 5,296,825$ in 1900 and $86,999.251$ in 1904

Among other manulactures in which the state ranks high and in which there was a large increase in valuc during the same period
The 1904 census, taken by the Federal Bureau of the Census in co-operation with the secretary of state of Michigan, covered the year ending on the 30th of June 1904, and is thus not strictly comparahle with the " 1905 " census of manufactures for other states, which were for the year ending on the 31 st of December 1904, But Hike the special census of manufactures in other states, it is confined to estahlishmente under the factary system, and bence its figures are considerably less than they would have been had it been taken on the same basis as that of the 1900 census, which included hand trades and other custom work; for example, on the basis of the 1904 census the value of the manufactured products in 1900 was only \$319.691,856, and as that of 1904 was $8429,120,060$, the reat increase was $34: 2 \%$ instad of $20 \cdot 19 \%$ In the above text from this point the statistics given for 1900 are for factory producta only.
aro: leather, carriages and wrygons, chervicala, paper and mood polp and beet sugar. In 1904 Michigan manufactured automobiles valued at $\$ 6,876,708$.
The ten leading mantufacturing centres are. in the order of the value of their products in 1904 : Detroit, Grand Rapids, Kalamaroo, Battle Creek, Saginaw, Jackson, Lansing. Muskegon, Bay City and Port Huron, all in the south half of the lower peninsula.

Commanmacotions.-The building of railways in Michigan began in 1830, but litcle progress hed been made in 1837 when the state began the condruction of three railways and two canals across the south half of the lower peninsula. The Michigan Central was completed Irom Detroit to Ypsilanti in January 1838, a portion of the Michigan Southern was in operation in November 1840 , and considerable work was done on the proposed Michigaa Northern and the two canals. By 1846, however, the state had proved itself incompetent to carry on the work and sold its interests to private companies. In 1850 there were 342 m . completed, and from then until 1880 the milcage increased to 3938 ; but the great period of railway building in Michigan was in the decade from 1880 to 1890 , when the mileage was increased to 7108-48. By the close of 1908 it had further increased to 8629.35 . The principal lines are the Michigan Central, the Père Marquette, the Lake Shore \& Michigan Southern, the Grand Rapids \& Indiana, the Ann Arbor, the Grand Trunk, the Chicago \& North-Western, the Duluth South Shore \& Aclantic, the Minncapolis, St Paul \& Sault Ste. Maric, and the Chicago, Milwaukee \& St Paul. A board of railway commissioners, which in 1907 succeeded a commissioner (whose office was created in 1873) hears complaints, has power to issue various orders and permits of minor importance to railway companies, and reports annually to the governor. ${ }^{2}$ The legistature is empowered to appoint a commission to fix transportation rates for railways and express companies. Besides railway communicetion Michigan has a coast line of about 1600 m ., along which vessels of 2000 tons can sail and find several good harbours, the water communication having been extended and improved by several canals, among which are the Sault Ste Marie, which passes the rapids of St Mary's River; the St Clair Flats, at the north end of Lake St Clair, by which a deeper channel is made through shallow water; and the Portage Lake, in the copper district, which connects that lake with Lake Superior. The state undertook to construct that at Sault Ste. Marie in 1837 but little had been accomplished in 1852 when the national government granted 750,000 acres of land to the state in aid of the enterptise, and three years aiter that the canal was completed. Since its completion, the national government has enlarged its locks so as to make it navigable for vewels drawing 21 ft . of water. The national government con. atructed the canal at the St Clair Flats in 1871 and contributed land for aid in the construction of that connecting lakes Portage and Superior, which was completed in 1873 and passed under national control in 1891 .

Population.-The population of Michigan in 1880 was $1,636,937$; in 1890 it was $2,093,889$, an increase of 27.9% within the decade; in 1900 it was $2,420,982$, a further increase of 15.6% and in 1910 , according to the preliminary returns of the U.S. census, it was $2,8 \mathrm{ro}, 173$. Of the total population in $1900,2,393,563$ or 99.07% were whites, 15,861 were negroes, 6354 were Indians, 240 were Chinese, and 9 were Japanese. $1,879,329$ or 77.6% were native born and 541,653 were foreignborn, 184,398 of the foreign-born being natives of Canada (151,915 English; 32,483 Frencb), 125,074 of Germany, 43,839 of England, and 30,406 of Holland. In I 906 982,479 communi: cants of different denominations were reported: of these 492,135 were Roman Catholics, 128,675 Methodists. 105,803 Lutherans, 50,136 Baptists, 37,900 Presbyterians, 28,345 membere of Reformed bodies, and 26,349 members of the Protestant Episcopal Church. In $r 90039.3 \%$ of the total population lived in places having at least 2500 inhabitants.

Administration.-The constitution under which Michigan is now governed was first adopted in 1850 , when it was felt that the powers which the first one, that of 1835 , conferred upon the executive and the legislature were too unrestricted. In 1908 it was revised, and many changes were made.

The constitution admits of amendment by an affirmative vote of two-chirds of the members of each house of the legislature, fol. howed at the next succeeding spring or autumn election by an affirmative vote of a majority of the electors voting upon the question; or an mmendment may be proposed hy an initiative petition signed by more than 20% of the total number of electors who voted for secretary of state at the preceding election, and such an amendment (unless disapproved by a majority vote in a jolnt mesting of the two houses of the legislature) is submit ted to popular

In 1909 telegraph and telcphone companies were put under the supervicion of the same board.
vote at the next election and comes into effect only if it receives a favourable majority of the popular vote. Amendments enggested by the legislature have been frequently adopted, and one, adopted in 1862, provided that the question of a general revision of the constitution whall be submitted to a popular vote once every sixteen years and at such other times as may be provided by law. When this question was so sulmitted for the first time, in $\mathbf{8} 86$, the vote was to revise: but the revision prepared by a convention celled for the purpose was rejected at the polts The revision by the Constitutional Convention of 1907-1908 was adopeed by popular vote in 1908.

In its present form the constitution confers suffrage upon every male citizen of the United States who is twenty-one years of age or over and has resided in the state sir months and in his township or ward twenty days immediately preceding an election; and any woman may vote in an election involving the direct expenditure of public money or the issue of bonds if she bave the qualifications of male electors and if she have property assessed for taxes in any part of the district or territory affected by the election in question. At the head of the erect. tive department is the governor, who is elected for two years, and who at the time of his election must be at least thirty years of age and must have been for five years a citizen of the United States, and for the two years immediately preceding a resident of the state. A lieutenant-governor, for whom the same qualifications are prescribed, is elected at the same time for the same term. Under the first constitution the secrelary of state, treasurer, auditor-general, attorney-general, commissioner of the land office, superintendent of public instruction and the judges were all appointed hy the governor, but under the present one they are elected and only minor officers are appointed. In 1893 the legislature created a board of four members to be appointed hy the governor, one of whom must' be a physician, another an attorney, and made it its duty to investigate the case of every convict for whom a petilion for pardon is received and then report and recommend to the governor what it deem expedient. The governor's salary is fixed by the revised constitution of 1908 at $\$ 5000$ a year. The lieutenant-governor succeeds the governor in case of vacancy. and next in order of succession comes the secretary of state.

The legislature, consisting of a Senate of 32 members, and a House of Representatives of 100 members (according to the constitution not less than 64 and not more than 100), meets biennially, in odd-numbered years, at Lansing. Both senators and representatives are elected for a term of two years by single districts, except that a township or city which is entitled by its population to more than one representative elects its representatives on a general ticket. Beginning in 1913 and at each subsequent tenth year, the legislature, under the revised constitution of 1908 , rearranges the senatorial districts and reapportions the representatives among the counties and districts, using as a basis the returns of the next preceding decennial census; the taking of a state census between the decennial periods is discontinued.

No bill can pass ether house except by an affirmative vote of a majority of the members eleeted to that house, and on its third readlng the ayes and noes must be taken and recorded; for appropriation bills a two-thirds majority of all members elected to each house is required. All legislation must be by bill, legislation by joint and concurrent resolutions thus being prevented. No bill may be passed at a regular session until it has been printed and in posses. sion of each house for five days; no bill may be passed at a apecial session on any subject not expreasly stated in the governor's proclamalion or subuitted by special message. The governor has ten days (Sundays not being counted) in which to exrecise his veto power (which may be applied to any item or items of any bill making appropriations of money and embracing distinct items), and an aftrmative vote in each house of two thirds of the members elected is required to pasa a bill over his veto. Under the revised constitu. tion of 1908 any bill passed by the legislature and approved by the governor, except appropriation bills, may be referred by the legislature to the qualified electors: and no bill so referred shall become law unlews approved by majority of the electors voting thereon: no local or epecial act, pasaed by the legislarure, takes effect until it is approved by majority vote of the electors in the affected district.

The administration of justice is entrusted to a supreme court, a continually increasing number of circuit courts (thirty-eight
in rgog), one probate court in each count y, and not exceeding four justices of the peace in each township. The supreme court is composed of one chief justice and seven associate justices, all elected for a term of ten years, not more than two retiring every two years; it holds four sessions annually, exercises a general control over the inferior courts, may issue, hear and determine any of the more important writs, and has appellate jurisdiction only in all other important cases. There is only one circuit court judge for a circuit, unless the legislature provides for the election of more; the term of office is six years. Circuit court judges have original jurisdiction In most matters civil and criminal, hear appeals from the lower courts, and must hold at least four scesions annually in each county of the circuit. Each county elects a judge of prohate for a term of four years; he has original concurrent jurisdiction with the circuit court in matters of probate, and has original jurisdiction in all cases of juvenile delinquents and dependents. The legislature may provide for the election of more than one judge of probate in 4 county with more thar 100,000 inhabitants. Justices of the peace are elected by the townships for a term of four year-there are not more than four in each township; in civil matters they have exclusive jurisdiction of cases in which the demand does not exceed $\$ 100$ and concurrent jurisdiction with the circuit courts in contract eases in which the demand does not exceed $\$ 300$.

For purposes of local government the state is divided into eighty-three counties, each of which is in turn divided regularly by N. and S. and E. and W. lines into several townships. In the more sparsely inhabited counties of the upper peninsula and in the N.E. section of the lower peninsula the townships are much larger than in other parts of the state. The officers of the township are a supervisor, clerk, treasurer, highwaycommissioner, one overseer of highways for each highway district, a justice of the peace, and not more then four constables, all of whom are clected at the annual township meeting in April. The supervisor, two of the justices of the peace and the clerk constitute the township board, whose duty it is to settle claims against the township, audit accounts, and publish annually an itemired statement of receipts and dishursements. The supervisor is also the township assessor, and the several township supervisors constitute the couaty boand of surpervisors who equalize property valuations as between townships, authorize townships to borrow money with which to build or repair bridges, are entrusted with the care and management of the property and business of the county, and may borrow or raise by tax what is necessary to meet the more common expenses of the county. Other county officers are a treasurer, clerk, sheriff, register of deeds, attorncy, surveyor and two cononers, each elected for a term of two years, a school commissioner elected for a term of four years, and onc or more notaries public appointed hy the governor.

Under the revised constitution of 1908 the former classification of cities into four classes and the practice of granting special charters were abolished, and the legislature is required to provide by general laws for the incorporation of cities and villages; " such general laws shall limit their rate of taxation for municipal purposes and restrict their powers of borrowing money and contracting debts." Cities and villages are permitted -upon authorization by the affirmative vote of three-fifths of the electors voting on the question-to own and operate, even outside their corporate limits, public utilities for supplying water, light, heat, power and transportation, and may sell and deliver, outside their corporate limits, water, heat, power and light to an amount not more than one-fourth that furnished hy them in each case wichin their corporate limits; but no city or village of less than 25,000 inhabitants may own or operate transportation facilities. Under the revision of 1908 corporate franchises cannot be granted for a longer term than thirty years.

Law.-A wife in Michlgan has the same right to her property acquired cither before or aiter marriage as she would have if angle, except that she cannot under ordinary circumstances give, grant or
tell it to another without her husband's consent. Grounds for a divorce are adultery, physical incapacity at the time of marriage, sentence to imprisonment for three years or more, desertion for two ycars, habitual drunkenness, extreme cruelty, or, in case of the wife, refusal of the husband to provide for her maintenance when sufficiently able to do so; but in case the parties were married outside of Michigan the party seeking the divonce oust reside within the state at teast one year before peritioning for the same. An insolvent debtor's homestead-consisting of not more than 40 acres of land with a house thereon, or a house and lot in a city or village not exceeding $\$ 1500$ in value, together with not less than $\$ 500$ of his personal property-is exempt from execution. For several years previous to 1876 a clause of the constitution prohibited the sale of intoxicating liquors within the state. Since then the whole liquor business has been subjected to a heavy tax, and since 1887 the prohibition of it has been left to the option of each of the several counties. A state court of mediation and arbitration, consisting of three members eppointed by the governor with the consent of the senate, was created in 1859 to inquire into the cause of grievances threatening or resulting in any strike or lock-out and to endeavour to effect a settlement.
Charilable and Penal Instilutions.- The state supports the Miehigan Asylum for the Insane (opened 1859), at Kalamazoo; the Eastern Michigan Asylum for the Insane (opened 1878), at Pontiac; the Northern Michigan Asylurn for the Insane (opened 1885), at Traverse City: the Michigan Asylum for the Dangerous and Criminal Insane (established 1885), at Ionia; the Upper Peninsula Hospital for the Insane, at Newberry; a Psychopathic Hospital (established 1907), at Ann Arbor; a State Sanatorium (established 1go5), at Howell: the Michigan State Prison (established 1839), at Jackson; the Michigan Reformatory (established 1887), at lonia; the State House of Correction and Branch Prison (established 1885), at Marquette: the Industrial School for Boys, at Lansing; the Industrial Home for Girls (established 1879), near Adrian; the State Public School (opened 1874), at Coldwater, a temporary home for dependent children until homes in families can be found for them: the School for the Deaf (established 1854), at Flint; the School for the Blind, at Lansing: an Employment Institution for the Blind (established 1903), at Sapinaw; the Home for the Feeble Minded and Epileptic (established 1893), at Lapecr; and the Michigan Soldiers' Home (established 1885), at Grand Rapids. Each of these institutions is under the control of a board of three or more members appointed by the governor with the approval of the Senate, and at the head of the department is the Slate Board of Corrections and Charities, consisting of the governor and four other members appointed by him, with the approval of the Senate, for a term of eight years, one retiring every two years. This board is required to visit each of the institutions at least once a year to ascertain its condition and needs, and all proposed appropriations for thelr support, plans of buildings, proposed systems of sewerage, ventilation and heating must be submitted to it.

Education.-Michigan was a pioneer state in creating the American educational system; she began, the organization of it at the time of her admission into the Union in 1837 , and has since been noted for the bigh standard of her schools. Each township operating under the District Act has two school inspec-tors-one being elected at each town meeting for a term of two years-who with the township clerk constitute the township board of school inspectors, and to this board is given authority to divide the township into school districts and to exercise a general supervision over the several schools within their jurisdiction; a township nay be organized as a single district, called a "township unit district." The qualified electors of each district having an ungraded school elect a moderator, a director and a treasurer-one at each annual school meeting -for a term of three years, who constitute the district school board, and this board is entrusted with ample power for directing the affairs of the school. In a district having more than 100 children of school age a graded school under the control of five trustees is formed whenever two-thirds of the electors vote for it at a lown meeting, and the trustees of a graded school may establish a high school whencver a majority of the electors authorize them to do so. A high school may also be established in any township in which there is no incorporated village or city if when the question is submitted to the electors of that township a majority of the votes cast are in the affirmative. Eaciz county has a county school commissioner, clected for a term of four years, who exercises a general supervision over the schools within his jurisdiction, and a board of examiners, consisting of three menibers (including the commissioner) and appointed by the several boards of county supervisors, from whom teachers receive certificates. Finally, at the head
of all the public elementary and secondary schools of the state is the state superintendeat of public instruction, elected for a term of two years; he is ex officio a member and secretary of the state board of education, and a member, with the right to speak but not to vote, of all other boards having control of public instruction in any state institution. In every district having as many as 800 children between the ages of five and twenty tbe state requires that the school be taught not less than nine months a year; and a compulsory education law requires the attendance of all children between the ages of eight and fifteen for four months each year, in cities all between the same ages for the full school year, and between the ages of seven and sixteen if found frequeating public places without lawful occupation.

The higher state institutions of learning consist of a university, to which graduates of high schools on an accredited list are admitted without examination, four normal schools, an agricultural college, and a school of mines. The university (at Ann Arbor) was established in 1837, and is under the control of a board of regents elected by the people for a term of eiglit years, two every two years; the president ol the institution and the superintendent of public instruetion are members of the board but without the right to vote. The state normal schools are: the Michigan State Normal College at Ypsilanti (organized in 1849); the Central Michigan Normal School at Mount Pleasant (cstablished in 1895); the Northern State Normal School at Marquette (established in 1899); and the Western State Normal School at Kalamazoo (established in 1904). All of them are under the state board of education, which consists of the state superintendent of public instruction and threc other members clected, one every two years, for a term of six years. The agricultural college, at East Lansing, 3 m . east of Lansing, is the oldest in the United States; it was provided for by the state constitution of 1850 , organized in 1855 and opened in 1857, and is under the control of the state board of agriculture, consisting of the president of the college and six other members elected by popular vote for a term of six years. two every two years. The college of mines, at Houghton, was established in 1885 and is under the control of a board of six members appointed by the governor with the approval of the Senate, two every two years. In 1908 it had 35 instructors, 253 students, and a library of 22,000 volumes. Other important institutions of learning within the state but not maintained by it are: Albion College (Methodist Episcopal; opened in 1843), at Albion; Hillsdale College (Free Baptist, 1855), at Hillsdale; Kalamazoo College (Baptist, 1855), at Kalamazoo; Adrian Callege (controlled by the Methodist Protestant Church since 1867), at Adrian; Olivet College (Congregational, 1859), at Olivet: Hope College (Reformed, 1866), at Holland; Detroit College (Roman Catholic, 1877), at Detroit: Alma College (Presbyterian; incorporated 1886), at Alma; and some professional schools at Detroit (q, v).

Finance. -The revenue of the state is derived almost wholly from taxes, about 87% from a direct or general property tax and the rest from various specific or indirect taxes, such as the liquor tax and the inheritance lax. The direct tax, other than that on the property of corporations, is assessed by the township supervisors, or, in cities and incorporated villages by the officer named in the charter for that service, on what is supposed to be the full cash value of the property. The assessment roll thus prepared is reviewed by a local froard of review; an equalization between the assessing distriess in a counly is made annually by the counly board of supervisors, and between the countics in the state every five years (and at such other times as the legislature may direct) by the state board of equaliza. tion, which is composed of the lieutenant-governor, auditor-generai, secretary of state, treasurer, and commissioner of the land office, But at the head of the whole taxing system is the board of state tax commicsioners and ex offrio state bourd of assessors, consisting of three members appointed by the governor with the approval of the senate for a termi of six ycars. It excrcises a gencral supervision over all other taxing officers and is itself the assessor of the property of railroads, express companies and certain car companies. Mainly through the efficiency of this board the assessed value of the taxable property of the state was increased from \$968,189,087 in 1899 to $\$ 1,418,251.858$ in 1902 , or 46.4% and the taxes levied on railways, which had hitherto been asscssed on their gross eamings, were in creased from $\$ 1,483,907$ in 1901 to $\$ 3,288,162$ in 1902 , or 121.6% In entering upon the work of publie improvements in 1837 the state borrowed $\$ 5,200,000$, and the greater portion of the bonds were sold to the Morris Canal and Banking Company and to the Pennsylvanit United States Bank, both of which failed when they had only in part paid for the bonds. About this time it was seen that the cost of the improvements undertaken mould be much greater than the original estimate and that several of them were impracticabla. The difficulyy of meeting the interest as it became due soon threate ened to be insurmountalle, but the state finally sold the improven ments made and came out of the experience with good credit although with a large debt -about two and a half millions of dollart This was further incmased during the Civil War, but after the clos of that war it was rapidly diminished and finally wasextinguished i
the last decade of the century. The prewent constitution (as revised in 1908) [orbids the contraction of a state debt exceeding \$250,000 except for repelling an invasion or suppressing an insurrection, and the borrowing power of the minor civil divisions is restricted by a general law.
The early experience of the state with banks was scarcely less serious than that with public improvements. Although there were already fifteen banks in the state in 1837 yet the cry against monopoly was loud, and so in that year a general banking lav was passed whereby any cen or more freeholders might establish a bank with a capital of not less than fifty thousand nor more than three hundred thousand dollart and begin business as soon as 30% of the capital was paid in in specie. Only a few provisions were made, and those ineffectual, for the protection of the public: later in the same year tho legislature passed an act for the suspension of specic paymente until the 6th of May 1838, and the consequence was that the state was focoled with irredeemable paper currency. But most of the " wild cat "' banks had paseed out of existence by 1839. and in 1844 the bank act of 1837 was declared unconstitutional. Profiting by this experience, the framera of the constitution of 1850 inserted a provision in that document whereby no general bankiag law cas have effect until it has been submitted to the people and has been approved by a majority of the votes cast on the question. This provision is included in the revised constitution adopted in 1908, with an additional provision that no amendment shall be made to any banking law unless it shall receive an affirmative two-thirds vote of both branches of the legistature. The present banking law provides that the capital stock of a state banik shall be not less than $\$ 20,000$ in a city of not more than 1500 inhabitants, not less than $\$ 25,000$ in a city of not more than 5000 , not less than $\$ 50,000$ in a city of between 5000 and 20,000 , not less than $\$ 100,000$ in a city of between 20,000 and 110,000 , and not less than $\$ 250,000$ in all larger cities. Commercial banks and savings banks are required to keep on hand at least 15% of their total deposita. Every stockholder in a bank is made individually liable to the amount of hiss stock at its par value in addition to the said stock. And all banks are subject to the inspection and supervision of the commissioner of the state baniding department, who is appointed by the governor with the approval of the Senate for a term of four years.

History.-From 1613 until r760 the territory now within the borders of Michigan formed a part of New France, and the first Europeans to found missions and settlements within those borders were Frenchmen. Two Jesuits, Raymbeult and Jogues, visited the site of Sault Sainte Marie as early as 1641 for the conversion of the Chippewas; in 1668 Marquette founded there the first permanent settlement within the state; three years later be had founded a mission among the Hurons at Michilimackinac; La Salie huilt a fort at the mouth of the Saint Joseph in 1679; and in 1701 Cadillac founded Detroit as an important point for the French control of the fur trade. But the missionaries were not interested in the settlement of the country by Europeans, the fur traders were generally opposed to it, there was bitter strife between the missionatics and Cadillac, and the French system of absolutism in government and monopoly in trade were further obstacles to progress. Even Detroit was $s 0$ expensive to the government of the motber country that there was occasional talk of abandoning it; and so during the last fifty-nine years that Michigan was a part of new France there were no new settlements, and little if any growth in those already established. During the last war between the English and the French in America the Michigan settlements passed into the possession of the English, Detroit in 1760 and the others in 1761, but the time bad not yet come for much improvement. The white inhabitants, still mostly French, were subjected to an English rule that until the Quebec Act of 1774 was chiefly military, and as a consequence many of the more thrify sought homes elsewhere, and the Indians, most of whom had been allies of the French, were so ill-treated, both by the officers and traders, that under Pontiac, chief of the Ottawas, a simultaneous attack on the English posts was planned. Detroit was besieged for five months and both Michilimackinac and Saint Joseph were taken. Moreover, the English policy, which first of all was concerned with the profits of trade and manufactupe, gave little more encouragement to the settlement of this section of the country than did the French. By the Treaty of Paris, in 1783; which concluded the American War of Independence, the title to what is now Michigan passed to the United States, and in 1787 this region became a part of the North-West Territory; but it was not mill 1796 that Detroit and Mackinac (Michilmackinac), is
accordance with Jay's Treaty of 1794 , were suarendered by Great Britain. In 1800, on the division of the North-West Territory, the west portion of Michigan became a part of the newly-established Indiana Territory, into which the entire ares of the present state was embodied in 1802, when Ohio was admitted to the Union; and finally, in 1805, Michigal Territory was organized, its south boundary being then described as a line drawn east from the south extremity of Lake Michigan until it intersected Lake Erie, and its wrest boundary a line drawn from the same starting point through the middle of Lake Michigan to its north extremity and then due north to the north boundary of the United States. In 1812, during the second war between Great Britnin and the United Statea, Genesal William Hull, first governor of the Territory, although not greatly outnumbered, surrendered Detroit to the British without a struggle; in the same year also Mackinac was taken and Michigan again passed under British rule. This rule waa of shiort duration, however, for soon after Commodore Oliver H. Perry's victory on Lake Erie, in September of the next year, Detroit and the rest of Michigan except Mackinac, which was not recaptured until July 1885; were again taken into the possession of the United States. Up to this time the Territory had still remained for the most part a wilderness in which the fur trade reaped the largest profits, its few small settlements being confined to the borders; and the inaccurate reports of the suiveyors sent out by the national government described the interior as a vast swamp with only here and there a fittle land fit for cultivation. The large number of hostile Indians was also a factor in making the Territory unattractive. But during the efficient administration of Lewis Cass, governor of the Territory from 1813 to $\mathbf{1 8 3 1}$, the interference of the British was checked and many of the Indians were removed to the west of the Mississippi; printing presses, established during the same period at Detroit, Ann Arbor, Monroe and Pontiac, became largely instrumental in making the country better known; the first steamboat, the "Walk-in-the-Water," appeared at Detroit in 1818; the Erie canal was opened in 1825; by 1830 a daily boat line was running between Detroit and Buffalo, and the population of Michigan, which was only 4762 in 1810 and 8896 in 1820, increased to 31,639 in 1830 and 212,267 . in 1840. In 1819 the Territory had been empowered to send a delegate to Congress. By 1832 the question of admission into the Union had arisen, and in 1835 a convention was called in Detroit, a constitution was framed in May, that constitution was adopted by popular vote in October, state officers were elected, and application for admixcion was made; but a dispute with Ohio ovet the boundary between the two censed a delay in the admission by Congress until carly in the year 1837. Although the ordinance creating the North-West Territory fixed the boundary line as chaimed by Michigan, yet that line was found to be farthet south than was at the time expected and when the constitution of Ohio was adopted it was accompanied with a proviso designed to secure to that state a north boundary that was north of the mouth of the Maumee River. The territory between the two proposed lines was unquestionably of greater economic importance to Ohio than to Michigan, and, besides, at this particular time there were forcible political reasons for not offending the alder state. The oonsequence was that after the bloodless "war" between the two states for the possession of Toledo, Congress settled the dispule in Ohio's favour and gave to Michigan the territory since known as the upper peninsula. The boundaries as fixed by Congress were rejected by a convention which met on the 4 th of September at Ann Arbor, but they were accepted by the convention of the Jackson party, which met, also at Ann Arbor, on the 6th of December; the action of this latter convention was considered authoritative by Congress, which admitted Michigan into the Union as a state on the 26th of January 1837. Since admission into the Union the more interesting experiences of the state have been with internal improvements and with banking, which together resulted in serious financial distress; in the utili; zation of its natural resources, which have been a vast source of
wealth; and in the development of its educational system, in which the state has exerted a large indluence througho: the Union. From the beginning of its government under its first state constitution in 1835 until 1855 Machigan had a Demw. cratic administration with the exception of the years 18.0° 1842, when opposition to the financial measures of the Democrat 4 placed the Whigs in power. But it was in Michigan that the Republican party received its first official recognition, at a state convention held at Jackson on the 6th of July 1857, an 1 from the beginning of the following year the administration has been Republican with the exception of two terms from $198 ;$ to 1885 , and from 1891 to 1893 , when it was again Democrati:,

Governors of MiciltGaN

William Hull
Lewis Ca :
Secvens Thompson Mason (acting) George Bryan Porter
Stevens Thompson Mason (acting)
John Scotl Illorner (acting)
Sicvens Thompson Mason William Woodbridge
james Wright Gordon (acting)
John Steward Barry
State.

Ajhteus Felch
William L. Greenly (acting)
Epaphroditus Ransom
John Steward Barry
Robert MicClelland
Andrew Parsons (acting)
Kinsley S. Bingham
Moses Wisner
Austin Blair
Henry Howland Crapo
Henry Porter Baldwin
John Judson Bagley
Charles Miller Croswell
David Howell Jerome
Josiah W. Begole
Kussell Alexander Alger
Cyrus Gray Luce
Edwin Baruch Winans
John T. Rich
Hazen Smith Pingree
Aaron Thomas Bliss
Fred M. Warner

Chase S. Osborn

Authorities.-The Publications of the Michigan Geological Surtey (Detroit, Lansing and New York, 1838 scq.) deal largely with the mining districts of the upper peninsula. Alexander Winchecl, Michigan: Being Condensed Popular Sketches of the Topograf' Climule and Geology of the State (1873), is in large measure restrict d to the south halif of the state. W. J. Beal and C.F. Wheeler, Michigin Flora (Lansing, 189z), contains the resulte of an extensive study of the subject. Sce also the Tweffeh Census of the United States (Washingion 1901-1902): Silas Farmer, Michigan Book: a Stuke Cyclopaedia will Sectional County Mops (Detroir, 1901); Bela Hubbard, Memorials of a Half-Cenlury (New York, 1887), a well written account of obsert vations, chiefly upon scenery, fauna, flora and climate: Webstcr Cook, Michigan: ifs Mistory and Government (New York, 1905). written primarily for use in schools and contilining a reference bithiography; A. C. Mclaughlin, Itistory of Higher Education in 3 Fichigant, in Circulars of Information of the United Stales Burean of Education (Washington, 1891), being an account of the oriyin of the public school system and an individual account of each his ar institution of learning: T. M. Cooley, Machigan : © Ifistory of Gorvernt ment (Boston, 1885), a critical but popular narrative by an eminent jurist ; J. V. Camplbell, Oullines of the Polliscal II islory of Ahichigun (Detroit, 187(), atso by a jurist of the state; 1 lemry M. Ulley and Byron M. Cutcheon, Michisan os a Protince, Territory and Swa (4) vols. New York, (906); Nichigan Pioneer and Ilistorical Sociely, Hisstorical Collections: Collections and Researches (Lansing, 18;7 seq.): and Publications of the Michigan Political Science Associatiun (Ann Arbor, 8893).
MICHIGAN, LAKE, the only one of the great lakes of Norib America wholly willhin the boundaries of the Urited Statest and the second largest body of fresh water in the world. It lies S. of Lake Superior and W. of Lake Huron, betwee $41^{\circ} 37^{\prime}$ and $46^{\circ} 05^{\circ} \mathrm{N}$. and $84^{\circ} 45^{\prime}$ and $88^{\circ} \mathrm{W}$.; is bounded on the N. and E. by the state of Michigan, on the W. by Wisconsin, while Illinois and Indiana touch its S . end. It is 320 m . long, and has an average width of 65 m . Th maximum depth recorded by the United States Lake Survey if

870 ft .; the mean level of the surface is 5811 ft . above mean seatevel, being the same as that of Lake Huron and 21 ft . below that of Lake Superior. Its area is 22,400 sq. m., and it has a basin 68, roo sq. m . in area.
The shores of Lake Michigan are generally low and sandy, and the land slopes gradually to the water. The northern shore of the lake is irregular and more rugged and pieturesque than the other shores, the summit of the highest peak being about 1400 ft . above the sea. On the eastern side are numerous sand hills, formed by the wind into innumerable fantastic shapes, sometimes covered with stunted trees and scanty vegetation, hut usually hare and rising to heights of from 150 to 250 ft . The soutb-western shore is generally low, with sand bills cowered with shrivelled pines and bur oaks. Along the western shore woods and prairies alternate, interspersed with a few high peaks. The cliffs on the east shore of Green Bay form a bold escarpment, and from this ridge the land slopes gradually to the lake. With the exception of Green and Traverse bays, Lake Michigan has few indentations of the coast line, and except at the north end it is frce from islands. The waters near shore are shoal, and as there are few harbours of refuge of easy accese navigation is dangerous in heavy storms. Around the lake the climate is equable, for, though the winter is cold and the summer hot, the waters of the lake modify the extremes, the mean temperature varying from 40° to $54^{\circ} \mathrm{F}$ The average annual rainfall is 33 in . The finest agricuttural land in the United States is near the lake, and there is an immense trade in all grains, fruits, livestock and lumber, and in products such as flour, pork, hides, leather goods, furniture, \&c. Rich lead and copper mines abound, as also salt, iron and coal. Abundant water power promotes manufactures of all kinds. Beer and distilled liquors are largely manulactured, and fine building stone is obtained from numerous quarrics.

The lake is practically tideless, though true tidal pulsations amounting to 3 in . in height are stated to have been observed in Chicago. In the water of the lake there is a general set of current towards the outlet at the strait of Mackinac, following the east shore, with slight circular currents in the main portion of the lake and at the northern end around Beaver island. These currents vary in speed from 4 to 10 m . per day. Surface currents are set up by prevailing winds, which also seriously affect water levels, lowering the water at Chicago and raising it at the strait, or the reverse, so as greatly to inconvenience navigation. The level of the lake is subject to seasonal fluctuations, reaching a maximum in midsummer and a minimum in Fehruary, as well as to alternating cyeles of years of high and low water. Standard highwater of 1838 was 3.36 ft . above niean level and standard low-water of $1895,2.82 \mathrm{ft}$. below that datum, giving an extreme recorded range slightly over 6 ft .

The northern portion of the lake only is covered with ice in winter, and ice never reaches as far south as Milwaukec. Milwaukee River remains closed on an average for one hundred days-from the beginning of December to the middle of March. The average date of the opening and closing of navigation at the strait of Mackinac, where the ice remains longest, is the aptb of April and the gtb of January respectively. ${ }^{\text {I }}$ Regular lines of steamers specially equipped to meet winter conditions, most of them being car ferries, cross the lake and the strait of Mackinac all winter between the various ports.

No notable rivers flow into Lake Michigan, the largest being the Big Manistee and Muskegon on the east shore, and on the west shore the Menominee and the Fox, both of which empty into Green Bay, the most important arm of the lake. The numerous harbours are chielly artificinl. usually located at the mouths of streams, the improvements consisting of two parallel piers extending into the lake and protecting a dredged channel. Sand bars keep filling up the mouths of these channels, necessitating frequent dredging and extension of the breakwaters, work undertaken by, the Federal government, which also maintains a most comprehensive and complete system of aids to navigation, including lighthouses and lightships, fog alarms, gas and other buoys, tife-saving, storm signal and weather report stations.
${ }^{1}$ Report of Deep Waterways Commission (1896).

Chicago, the principal port on the lake, is at its south-west extremity, and is remarkable for the volume of its trade, the number of vessels arriving and departing exceeding that of any port in the United States. though the wnnage is less ihan that of New York It is a large railway centre, and the number and size of the grain elevators are noticeable. The port is protected by breakwaters enclosing a portion of the lake front. The level of the city above the lake being only 14 ft ., much difficulty arose in draining it. A sanitary and ship canal 34 m . long was therefore completed in 1900 to divert the Chicago river, a small stream that fows into the mike, into the head waters of the Des Plaines river and thence through the river Joliet into the Mississippi at St Louis. The discharge of water is by law so regulated that the maximum flow shall not exceed 250,000 cub. (t. per minute. The effect upon the permanent level of the lakes of the withdrawal of water through this artificial outlet is receiving much attention. Milwaukee, situated on the shore of Miluaukee Bay, on the western side of the lake, is, next to Chicags. the largest city on the lake, and has a large comucrese and a harbour of refuge Escanaba, on Little Bay de Noc (Noquette). in the northern part of the lake, is a natural harbour and a large iron shipping port. Green Bay and Lake Michigan are connected by a canal extending from the Lake to the head of Sturgeon Bay. Lake Michigan is connected at its north-east extremity with lake Huron by the strait of Mackinac, 48 m . long, with a minimura width of 6 m : the water is generally deep and the shoals lying noar the usually travelled routes are well marked.

Bibliography.-Sailing directions for Lake Michigan, Grcen Bcy, and the Strait of Mackinac. U.S. Navy Hydroyraphic office publication No. 108 B (Washington, 1906): Bullelin No. 17 : Survey of Northern and North-vestern Lakes, U.S. Lake Survey Office (Detroit, Michigan. 1907): St Lawrence Pilot, 7th ed., Hydrographic Ollice Admiralty (Londcn, 1906); Effect of Withdrawal of Water from Lake Michigen by the Samitary District of Chicago, U.S. House of Representatives' Document No. 6, 59th Congrese, 1et session (Washington, 1906).
(W. P.A

MICHIGAN, UNIVERSITY OF, one of the principal educalival institutions of the United States, situated at Ann Arbor, Michigan. It embraces a department of literature, science and the arts (including industry and commerce), opened in 1841, and including a graduate scbool, organized in 1892; a department of medicine and surgery, opened in 1850 ; a department of law, opened in 1859; a school of pharmacy, opened as a separate department in 1876 ; a homoeopathic medical college, opened in 1875; a college of dental surgery, opened in 1875; and a department of engineering, separately organized in 1895, which includes courses in marine engineering, architecture, and architectural engineering. The university was one of the first to admit women, having opened its doors to them in 1870 as a natural consequence of its receiving aid from the state (since 1867), and since 1900 they have constituted nearly one-half of the student body in the department of literature, science and the arts. In 1907-1908 there were in all departments 350 instructors and 5013 students (1796 in the department of literature, science and the arts; 1354 in the department of engineering; 391 in the department of medicine and surgery; 791 in the department of law; roy in the school of pharmacy, 83 in the homoeopathic medical college; 168 in the college of dental surgery; and 1070 in the summer sessions). Besides the several main department buildings there is a library building, a museum building, several laboratories, 2 gymnasium for men, and a gymnasium for women. The general library in 1908 Contained 172,940 volumes, 3800 pampblets, and 3370 maps, and the several department libraries brought the total up to 222,600 volumes and 5000 pamphlets. The general museum contains large zoological collections, geological and anthropological collections, including the exhibit of the Chinese government at the New Orleans Exposition, which was given by the government to the university in 188s; there are besides several special collections in some of the laboratories. The astronomical observatory is surmounted by a movable dome in which is mounted a refracting telescope having a thirteen-inch object slass. The several laboratories are equipped for use in instruction in physics, chemistry, mineralogy, geology, roology, psychology, botany, forestry, actuarial work, engincering, histology, physiology, hygiene, electrotherapeutics, patbology, anatomy and dentlsiry.

The university is governed from without hy a board of eight regents elected hy popular suffrage, two hiennially, at the sarne time as the election of. judges of the supreme court; from
within the government is to a large extent in the hands of a university senate, in which the faculty of eacb department is represented. The university is maintained by a permanent annuity of $\$ 30,000$, derived from the land set apart for it by the Ordinance of 1787 , hy the proceeds of a three-eighths mill tax, and by small fees paid by the students. Its organic relation to the other public schools of the state was well established in 1870 , when it was provided that graduates from such bigh schools as had been examined and approved by a committee of the university should be admitted without examination; one of the most important functions of the university is to prepare students for teaching in the high schools.

The first charter for a university within what is now the state was granted by the governor and judges of the Territory of Michigan in 1817, for a "Catholepistemiad," or University of Michigania, with a remarkable "Greek " system of nomenclature for its courses and faculties; this institution did practically no teaching. A second charter was granted in 1821, for a University of Michigan in Detroit; but little was accomplished until the admission of Michigan into the Union as a state in 1837, when by the third charter the aim was to model the institu. tion after the German university minus the theological department, and the university was entrusted to a board of regents and a chancellor appointed by the governor. Branches to correspond to the German gymnasia were established in the principal towns before any money was spent on the University proper, but the question of the constitutionality of their estahlishment and maintenance arose, and they were soon discontinued. Plans for building at Ann Arbor were begun in 1838 . The first class graduated in 1845 . The department of literature, science and the arts was at first much like a New England college. For some time the prospects did not seem promising; but in 1851 a new state constitution provided that the regents should be elected, and directed them to choose a president; and it was under the administration ($18{ }_{5} 2-1863$) of the first incumbent of that office, Henry Philip Tappan (1805-1881), that the present broad and liberal basis was established, Alubough he was a Presbyterian clergyman, he endeavoured at the outset to substitute the tests of scholarship for those of religion; at the same time a scientific course was introduced, courses in pedagogy followed, and in 1878 the elective system, which has since rapidly expanded, was established. President Tappan was succeeded in 1863 by Erastus Ocis Haven (18io1881), who resigned in 1869, and was succeeded temporanily (1869-1871) by Professor Henry S. Frieze (1817-1889), and in 1871 by Jamea Burrill Angell (h. 1829),' who resigned in 1900. In $1871-1872$ the German seminar method was introduced in graduate work in history, hy Prof. Charles Kendall Adams ($1835-$ 1902), afterwards president of Cornell University ($\mathbf{1 8 8 5}^{-1892 \text {) }}$ and of the University of Wisconsin (1892-1902).

See B. A. Hinsdale and I. N Demmon, History of the Unipersity of Michigan (Ann Arbor, 1906); Elizabeth M. Farrand, History of Ohe University of Mifichigan (Ann Arbor, 1885): and The Quarter Centemaial of the Presidency of James Burrill Antell (Ann Arbor. 1896).

MICHIGAN CIIY, a city of Laporte county, Indiane, U.S.A., on the S.E. shore of lake Michigan, about 40 m . E. by S. of Chicago. Pop. (1890) 10,776 ; (1900), 14,850 , of whom 3602 were foreign-bom; (19r0 census) 19,027. Michigan Cily is served by the Cbicago, Indianapolis \& Louisville, the Lake Erie \& Western, the Michigan Central and the Pere Marquette railways, by interurban electric lines, and by several lines of lake ateamships. The city conlains a United States Life Saving Station and the Indiana State Prison, and is the seat of a Protestant Episcopad bishop. It transportation

[^22]advantages make it one of the principal commercial cities in the state. Its shipments of lumber are of special importance, and it bas also a large transshipment trade in salt and iron ore. The total factory product in 1905 was valued at $\$ 6,314,226$. The municipality owns and operates its water-works system. Michigan City was first setuled about 1830, was incorporated as a village in 1837 , and was first chartered as a city in 1867.

MICHMASH, a place in Benjamin, about 9 Roman miles north of Jerusalem (Onom, ed. Lag., p. 280), the scene of one of the most striking episodes in Old Testament history (1 Sara xiv.). Though it did not rank as a city (not being mentioned in Joshua rviii. 21 seq.), Michmash was recolonized after the exile (Neh. xi. 31), and, favoured by the possession of excellent wheat-land (Mishna, Men. viii. i), was still a very large village (Maxpts) in the time of Eusebius. The modern Mukhmas is quite a small place.
The historical interest ol Michmash is connected with the strate ical importance of the position, commanding the north side of the Jass of Michmash, which mille it the headquarters of the Phifistines and the centre of their forays in their attempt to quell the first rising under Saul, as it was also at a later date the headquarters of Jonathan the Hasmonaean (1 Mace- ix. 73). From Jerusalerp to Mount Ephraim there are two main routes. The present caravan road keeps the ligh ground to the west near the watershed. and avoids the Pasy of Michmash altogether. But another route, the importance of wheh in antiquity may be judged of from Isa. x. 28 sqq.. led southwards from Ai over an undulating platcau to Michmash. Thus far the road is easy, but at Michmash it descends into a very steep and rough valley, which has to be crossed belore reascending to Geba. ${ }^{1}$ At the botlom of the valley is the Pass of Michmash, a noble gorge with precipitous craggy sides. On the north the crap is crowned by a sort of platcau sloping backwards into a round-topped hill. This little plateau, about a mile east of the present village of Mukhmas, seems to have been the post of the Phifistines, lying close to the ceatre of the insurrection, yet possessing unusually good communication with their establishments on Mount Ephraim by way of Ai and Bethel, and at the same time commanding the routes leading down to the Jordan from Ai and from Michmash itscll.
See further C. R. Conder, Tentuork ii. 112 seq. ; and T. K. Cheyne in Encyc. Bib., s.v.
(R.A.S. M.)
michoacín, or Michoncín de Ocampo, a state of Mexico touching on the Pacific, bounded N. by Jalisco and Guanajuato, E. by Mexico and Guerrero, S. by Guerrero and the Pacific, and W. by the Pacific, Colima, and Jajisco. Pop. (1900), 935,808, chiefly Indians and mestizos. Area, 22,874 sq. m . Its territory is divided into two nearly equal parts by the eastern branch of the Sierra Madre Occidental, the northern part belonging to the great central plateau region. and the southern to an extremely broken region formed by the diverging beanches of the Sierra Madre, with their wooded terraces and slopes and highly fertile valleys. The-general slope of the southern part is southward to the river Balsas, or Mescala, which forms its boundary-line with Guerrero. The narrow coastal zone on the Pacific is only 101 m . long and has no ports or towns of importance, the slopes of the Sierra Madre del Pacifico being precipitous and heavily wooded and the coastbelt saridy, hot and malarial. The Lerma, on the northern frontier, and the Balsas on the southern, are the only rivers of importance of the state, their tributaries within its boundaries being small and swift-flowing. There are several harge and beautiful lakes in the state, the best known of which are Patzcuaro and Cuitzto. Lake Chapala lies on the northern boundary. Michoactin lies within the most active volcanic region of Mexico: Jorullo ($\mathbf{4 2 6 2} \mathrm{ft}$.) is near its southern line, and Colima ($12,750 \mathrm{ft}$.) is northwest of it in the state of Jalisco. Earthquake shocks are numerous, and Colima was in violent eruption in 1908-1909. The highest summit in the state is Tancitaro ($12,660 \mathrm{ft}$.). The climate is for the most part temperate and healthy, but it is hot and unhealthy on the coast. Michoacan is essentially a mining region, producing gold, silver, lead and cinnabar, and having rich deposits of copper, coal, pet roleum and sulphur. The natural products include fine cabinet and construction roods, rubber, fruit, palm oil and fibres. The soil of the valleys is highly fertile, and produces cereals in the higher
${ }^{\text {i }}$ So ha. $x .28$ describes the invader as leaving his heavy baggage at Michmash before pushing on chrough tbe pasco.
regions, and sugar-cane, tobacco, coffee and tropical fruits in the lower. Though the platcau region was settled soon after the arrival of the Spaniards in Mexico, there are large districts on the southern and Pacific slopes that still belong almost exclusively to the Indians. Besides Morelia, the capital and largest city, the principal towns of the state are: La Piedad (pop. 15,123), an important commercial town on the Lerma river and on the Mexican Central railway, 112 m . N.N.W. of Morelia; Zamora (10,373), 75 m . W.N.W. of Morclia; Uruapan (98 c 8), on the Mexican National, 55 m . S.W. of Morelia in a mountainous district celebrated for the fine quality of its coffee; Puruandiro (7782), a commercial and manufacturing town $49 \mathrm{~m} . \mathrm{NW}$. of Morelia; Patzcuaro (7621), on Patzcuaro lake, with a station on the Mexican National, 7550 ft . above sca level; Sahuayo (7408), 103 m . W. hy N. of Morclia near Lake Chapala, Zitacuaro (605^{2}), 60 m . S.E. of Morelia on a branch of the Mexican National, which also passes through the mining town of Angangueo (0115) in the same district; and Tacambaro (5070), 46 m . S.S.W. of Morelia in a fertile valley of the Rio de las Balsas basin.

MICKIEWICZ, ADAM (1798-1855), Polish poet, was born in 1798, near Nowogrodek, in the present Russian government of Minsk, where bis father, who belonged to the schlachta or lesser nobility, had a small property. The poet was educated at the university of Vilna; but, becoming involved in some political troubles there, he was forced to terminate his studies abruptly, and was ordered to live for a time in Russia. He had already published two small volumes of miscellaneous poetry at Vilna, which had been favourably received by the Slavonic public, and on his arrival at St Petersburg he found himself admitted to the leading literary circies, where he was a great favourite both from his agreeable manners and his extraordinary talent of improvisation. In 1825 he visited the Crimea, which inspired a collection of sonnets in which we may admire both the elegance of the rhythm and the rich Oriental colouring. The most beautiful are The Storm, Bakckiserai, and Grave of the Comniess Polocka.

In 1828 appeared his Komrad Wallenrod, a narrative poem describing the baties of knights of the Teutonic order with the heathen Lithuanians. Here, under a thin veil, Mickiewicz represented the sanguinary passages of arms and burning hatred which had characterized the long feuds of the Russians and Poles. The objects of the poem, although evident to many, escaped the Russian censors, and it was suffered to appear, although the very molto, taken from Machiavelli, was significant: "Dovete adunque sapere come sono duo generazioni da combattere . . . bisogna essere volpe e leone." This is a striking poem and contains two beautiful lyrics. After a five years' exile in Russia the poet obtained leave to travel; he had secretly made up his mind never to return to that country or Poland so long as it remained under the government of the Muscovites. Wending his way to Weimar, he there made the acquaintance of Goethe, who seceived him cordially, and, pursuing his journey through Germany, he entered Italy by the Splugen, visited Milan, Venice, and Florence, and finally took up his abode at Rome. There he wrote the third part of his poem Daiady, the subject of which is the religious commemoration of their ancestors practised among Slavonic nations, and Pon Tadeuss, his longest poem, by many considered his masterpiece. A graphic picture is drawn of Lithuania on the eve of Napoleon's expedition to Russia in 1812. In this village idyll, as Bruckner calls it, Mickiewicz gives us a picture of the homes of the Polish magnates, with their somewhat boisterous but very genuine hospitality. We see them before us, just as the knell of their nationalism, as Brickner says, seemed to be sounding, and therefore there is somet hing melancholy and dirgelike in the poem in spite of the pretty love story which forms the main incident. Mickiewicz turned to Lithuania with the loving eyes of an exik, and gives us some of the most delightful descriptions of Lithuanian skies and Lithuanian forests. He describes the weird sounds to be heard in the primeval woods in a country where the trees were secred. The cloud-picturts
are equally striking. There is nothing finer in Shelley or Wordsworth.
In $\mathbf{I B}_{32}$ Mickiewicz left Rome for Paris, where his life was for some time spent in poverty and unhappiness. He had married a Polish lady, Selina Szymanowska, who became insanc. In 1840 he was appointed to the newly founded chair of Stavonic languages and literature in the College de France, a post which he was especially qualifed to fill, as he was now the chief repregentative of Slavonic literature, Pushkin having died in 1837 . He was, however, only destined to hold it for a little more than three years, his last lecture having been given on the 281h of May 1844. His mind bad become more and more disordered under the influence of religious mysticism. He had fallen under the influence of a strange fanatic named Towianski. His lectures became a medley of religion and politics, and thus brought him under the censure of the Government. A selection of thern bas been published in four volumes. They contain some good sound criticism, but the philological part is very defective, for Mickiewice was no scholar, and he is obviously oniy well acquainted with two of the literatures, viz. Polish and Russian, the latter only till the year 1830 . A very sad picture of his declining days is given in the memoirs of Herzen. At a comparatively carly period the unfortunate poet exhibited all the signs of premature old age; poverty, despair and domestic affliction had wrought their work upon him. In I849 he founded a French newspaper, La Tribunce des pexples, but it only existed a year. The restoration of the French Empire seemed to kindle his hopes afresh; his last composition is said to have been a Latin ode in honour of Napoleon III. On the outbreak of the Crimean War he was sent to Constantinople to assist in raising a regiment of Poles to take service against the Russians. He died suddenly there in 1855، and his body was removed to France and buried at Montmorency. In 1900 his remains were disinterred and buried in the cathedral of Cracow, the Santa Crece of Poland, where rest, besides many of the kings, the greatest of ber worthies.

Mickiewicz is held to have been the greatest Slavonic poet, with the exception of Pushkin. Unfortunately in other parts of Europe he is but litule known; he writes in a very difficule language, and one which it is not the fashion to learn. There were both pathos and irony in the expression used by a Polish lady 102 foreigner, "Nous avons notre Mickiewicz à nous." He is one of the best products of the so-called romantic school. The Poles had long groaned under the yoke of the classicists, and the country was full of legends and picturesque stories which only awaited the coming poet to put thern into shape. Hence the great popularity among his countrymen of his ballads, each of them being connected with some national tradition. Besides Konrad Wallenrod and Pan Tadeuss, attention may be called to the poem Grazyna, which describes the adventures of a Lithuanian chieftainess against the Teutonic knights. It is said by Ostrowski to have inspired the brave Emilia Plater, who was the heroine of the rebellion of 1830 , and after having fought in the ranks of the insurgents, found a grave in the forests of Lithuania. -A fine vigorous Oriental piece is Farys. Very good too are the odes to Youth and to the historian Lelewel; the former did much to stimulate the efforts of the Poles to shake off their Russian conquerors. It is enough to say of Mickiewicz that he has obtained the proud position of the representative poet of his country; her customs, her superstitions, her history, her struggles are reflected in his works. It is the great voice of Poland appealing to the nations in her agony.

His son, Ladislas Mickiewicz, wrote Vis d'Adam Mickiewics (Posen, $1890-1895.4$ vols.). aiso Adam Mickiewics, sa pie ed son
 Konrad Wallenrod and Pan Tadeuss were made by Miss Biggs. See also (Euvres pottiques de Mfickıswict, trans, by Christien Ostrowski (Paris. 1845).
(W. R. M.)

MICKLE, WILLAM JULIUS (1735-1788). Scotish poet, mon of the minister of Langhotm, Dumfries-shire, was born on the $\mathbf{2 8 t h}$ of September 1735 -. He was educated at the Edinburgh high achool, and in his fifteenth year entered busincss as a
brewer. His father purchased the business, and on his death William Mickle became the owner; but he neglected his affairs, devoting his time to literature, and before long became bankrupt. In 1763 he went to London, where in 1765 be published "a poem in the manner of Spenser" called the Concubinc (afterwards Syr Marlyn); was appointed corrector to the Clarenion Press, and translated the Lusiad of Camoens into beroic couplets (specimen published 1771 , whole work, 1775). So great was the repute of this translation that when Mickle-appointed secretary to Commodore Johnstone-visited Lisbon in 1779, the king of Portugal gave him a public reception. On his return to London he was appointed one of the agents responsible for the distribution of prise-money, and this employment, in addition to the sums brought him by his translation of the Lusiad, placed him in comfortable circumstances.

It has been euggested that the Scottish poen "There's nae luck aboot the hoome " was Mickle's. It is more likely, however, that Jean Adams was the author. Scott read and admired Mickle"s poems in his youth, and founded Kenilworth on his hallad of Cumnor Hall, which appeared in Thomas Evans's Old Bullods some of Modern Date (1784).

MICMAC, a tribe of North American Indians of Algonquian stock. They formerly occupied all Nova Scotis, Cape Breton and Prince Edward Islands, and portions of New Brunswick, Quebec and Newioundland. They fought on the French side in the colonial wars. They are now civilized and almost all profess Catholicism. They number some 4000 in setlled communities throughout their former territory.
There is an excellent account of the Micmac Indians in J. G. Millais's Neufoundland and is Untrodden Ways (1908).

MICON, a Greek painter of the middle of the fifth century s.c. He was closely associated with Polygnotus of Thasos, in conjunction with whom he adorned the Painted Stoa, at Athens, with paintings of the battle of Marathon and other battles. He also painted in the Anaceum at Athens.

MICROCLINE, a rock-forming mineral belonging to the feldspar group (see Felspar). Like orthoclase it is a potashfeldspar with the formula $\mathrm{KAlSisO}_{n}$, hut difiers from this in crystallizing in the anorthic system. The name (from Greek $\mu \mu \rho \delta s$, small, and $\kappa \lambda i v e t y$, to incliae) was given by A. Breithaupt in 1830 , and has reference to the fact that the angle ($89^{\circ} 30^{\prime}$) between the two perfect cleavages differs but lit tle from a right angle: the species was, however, first definitely established hy A. Des Cloizeaux in 1876. The crystals and cleavage masses are very like orthoclase in appearance, and the hardness (6) and specific gravity ($2 \cdot 56$) are the same for the two minerals; there are, however, important differences in the twinning and in the opLical characters. In addition to being twinned according to the same laws as orthoclase, microcline is repeatedly twinned according to the albite-law and the pericline-law, producing a very characteristic grating or cross-hatched structure which is especially prominent when thin sections of the mineral are examined in polarized light. This lamellar structure is often on a very minute scale, sometimes so minute as to be almost indistinguishable: it bas therefore been suggested that orthoclase is really a microcline in which the twin-lamellae are ultramicroscopic. In a section parallel to the besal plane \boldsymbol{c} ($\mathbf{(0 1)}$) of a microcine crystal the lamellae do not extinguish optically parallel to the edge $b c$ as in orthoclase, but at an angle of 15° 30'; further, tbe obtuse bisectrix of the optic axes in microcline is inclined to the normal of the plane b (o10) at an angle of 15° 26'. Green microcline is distinctly pleochroic.

Microcline occurs, usually with orthoclase, as a constituent of pegmatites, granites and gneisses; it is rare in porphyries and is not known in volcanic rocks. A beautiful crystallized variety of a bright verdigris-green colour is known as amazonstone (g.t.). Chesterlite is a variety occurring as crystals on dolomite in Chester county, Pennsylvania.

Closely allied to microcine is the anorthic soda-potash-leldspar knowa as anorthoclase or natron-microcline. Here sodium predominates over potassium and a little calcium is also often prescnt. the formula being (Na, K) $\mathrm{AiSi}_{2} \mathrm{O}_{4}$. It resembles mierocline in having a cleavage angle of very nearly 90° and in the cross-hatehed struc. ture, the latter being usually very ainute and giving rise to a mottled
extinction. It is the characteristic feldepar of volcanic rocks which are rich in soda, and is typically developed in the lavas of the island of Pantelleria aear Sicily and those of Kilimanjaro and Mount Kenya in East Africa: the rhomb-shaped porphyritic feldspars of the "rhomb-porphyry" of southern Norway also belong here.
(L. J. S.)

MICROCOSM, a term often applied in philosophical and in general literature to man regarded as a "little world " (Gr. $\mu \times р$ ós кbouos) in opposition to the "macrocosm," great world, in which he lives. From the dawn of speculative thought in Greece the analogy between man and the world has been a common-place, and may be traced from Heraclitus and Empedocles, through Plato, Aristote, the Stoics, the Schoolmen and the thinkers of the Renaissance down to the present day. Thus Lotze's comprehensive survey of mental and moral science is termed Microcosmus The most systematic expression of the tendency indicated by the term is the monadology of Leibnitz, in which the monad is regarded as containing within its own closed sphere an expression of the universe, the typical created monad being the human soul.

HICROCOSMIC SALT, or ammonium sodium hydrogen orthophosphate, $\mathrm{NH}_{4} \mathrm{NaHPO}_{4} .4 \mathrm{H}_{2} \mathrm{O}$, so named by the alchemists because it is contained in the decomposing urine of man (the " microcosm "). It is interesting historically as being the rew material from which Brand prepared phosphorus, whence it is also called "salt of phosphorus." It may be obtained in large transparent crystals from a mixture of solutions of salammoniac and disodium phosphate, or by saturating a solution of monosodium phosphate with ammonia. When heated to redness, it leaves a transparent glass of sodium metaphosphate, NaPO_{3}, which like borax dissolves most metallie oxides, with formation of glasses that often exbibit characteristic colours, and which may be used in the qualitative analysis of substances. (See Chemistry, 8 Aralytical.)

MICROMETER (Írom Gr. $\mu t n \rho \delta s$, small, μ urpoy, a measure), an instrument generally applied to telescopes and microscopes for measuring small angular distances with the former or the dimensions of small objects with the latter.

Before the invention of the telescope the accuracy of astronomical observations was necessarily limited by the angle that could be distinguished by the naked eye. The angle between two objects, such as stars or the opposite limbs of the sun, was measured by directing an arm furnished with fine "sights" (in the sense of the "sights" of a rifle) first upon one of the objects and then upon the other ($q . v$.), or by employing an instrument having two arms, each furnished with a pair of sights, and directing one pair of sights upon one object and the second pair upon the other. The angle through which the arm was moved, or, in the latter case, the angle between the two arms, was read of upon a finely graduated are. With such means no very high accuracy was possihle. Archimedes concluded from his measurements that the sun's diameter was greater than 27^{\prime} and less than 32'; and even Tycho Brahe was so misled by his measures of the apparent diameters of the sun and moon as to conclude that a total eclipse of the sun was impossible. ${ }^{1}$ Michacl Maestlin in 1579 determined the relative positions of cleven stars in the Pleiades (Historia coelestis Lucii Barelli, Augsburg, 1666), and A. Winnecke has shown (Monthly Notices R.A.S., xxxix. 146) that the probable crror of these measures amounted to about $\pm 2^{\prime}$. ${ }^{2}$
Tbe invention of the telescope at once extended the possihilities of accuracy in astronomical measurements. The planets were shown to have visible disks, and to be attended by satelites whose distance and position angle relative to the planct it was desirable to measure. It became, in fact, essential to invent a " micrometer" for measuring the small angles which were thus for the first time rendered sensible. There is now no doubt that William Gascoigne, a young gentleman of Yorishire, was the first
' Grant. History of Physical Astronomy, p. 449.
: This is an astonishing accuracy when the difficulty of the objects is considered. Few persons can see with the naked eyemuth less measure-more than six stars of the Pleiades, although all the stars measured by Maestlin have been seen with the naked eye by a few individuals of exceptional powers of eyesight.
iaventor of the micrometer. William Crabtree, a friend of his, takıng a journey to Yorkshire in 1639 to see Gascoigne, writes thus to his friend Jeremiah Horrocks. "The first thing Mr Gascoigne showed me was a large telescope amplified and adorned with inventions of his own, whereby he can take the diameters of the sun and moon, or any small angle in the heavens or upon the earth, most exactly through the glass, to a second." The micronteter so mentioned fell into the possession of Richard Townley of Lancashire, who exhibited it at the meeting of the Royal Society held on the 25th of July 1667.

The principle of Gascoignes mierometer is that two pointers having parallel edges at right angles to the measuring crew. are moved in opposite directions symmetrically with and at ritht angles to the axis of the telescope. The micrometer is at zero when the two edges are brought exacily together. The edges are then separated till they are tangent to the opposite limbs of the disk of the planet to be measured. or till they respectively bisect two stars, the angle between which is to be determined. The symmetrical eparation of the edges is produced and measured by a single screw; the fractions of a revolution of the screw are obtained by an index attaclied to one end of the screw, reading on a dial divided into 100 equal parts. The whole arrangement is elegant and ingenious. A stecl cylinder (about the thickness of a goosc-ŋुuill), which forms the micrometer screw, has two threads cut upon it, onc-half being cut with a thread double the pitch of the other. This screw is mounted on an oblong box which carries one of the neasuring edges; the other edge if moved by the coarser part of the screw relatively to the edge attached to the box, whilst the box isself is moved relatively to the axis of the telescope by the finer screw. This produces an opening and closing of the edges symmetrically, with respect to the telescope axis. Flamateed, in the firs volume of the Historia coclestis, has inserted a secies of measurements made by Gascoigne extending from 1638 to 1643 These include the mutual distances of some of the stars in the Pleiades, a few observations of the apparent diameter of the sun, others of the distance of the moon from neighbouring stars, and a great number of measurements of the diameter of the moon. Dr John Bevis (Phil. Trosis. (1773), p. 190) aliso gives results of measurements by Gascoigne of the diameters of the moon, Jupiter, Mars and Venus with his micrometer.

Delambre gives ${ }^{2}$ the following comparison between the results of Gascoigne's measurements of the sun's semi-diameter and the computed results from modern determinations:-

Gascoigne, Irom his observations, deduces the greatest variation of the apparent diameter of the sun to be 35°; according to the Connaissance des temps it amounts to $32^{\circ} \cdot 3$. ${ }^{\text {. }}$. These results prove the enormous advance attained in aceuracy by Gascoigne, and his indisputable title to the credit of inventing the micrometer.
Huygens, in his Systema saturnium (1659), describes a micrometer with which he determined the apparent diameters of the principal planets. He inserted a slip of metal, of variable breadth, at the focus of the telescope, and observed at what part it exactly covered the object under examination; knowing the focal length of the telescope and the width of the slip at the point obscrved, he thence deduced the apparent angular breadih of the object. The Marquis Malvasia in his Ephemerides (Bologna, 1662) describes a micrometer of his own invention. At the focus of his telescope he placed fine silver wires at rigbt angles to each other, which, by their intersection, formed a network of small squares. The mutual distances of the intersecting wires he determined by counting, with the aid of a pendulum clock, the number of seconds required by an equatorial star to pass from web to web, while the telescope was adjusted so that the star ran parallel to the wires at right angles to those under investigation. ${ }^{4}$ In the Phil. Trans. (1667), No. 21, p. 373, Adrien Auzoul gives the results of some measures of the diameter of the sun and moon made by himself, and this communication led to the letters of Townley and Bevis above referred to. The micrometer of Auzout and Picard was provided with silk fibres or silver wires instead of the edges of Gascoigne, but one of the silk fibres remained fixed while the other was moved by a screw. It is beyond doubt that Huygens independently discovered that an object placed in the common focus of the two lenses of a Kepler telescope appears as distiact and well-defined as the
${ }^{1}$ Delambre, Fist. ast. moderne, ii. 590.

- Mfm . acad. des sciences (1717). pp. $\mathbf{7}^{8} \mathrm{mq}$.
image of a distant body; and the micrometers of Malvasia, Auzout and Picard are the natural developments of this discovery. Gascoigne was killed at the battle of Marston Moor on the and of July 1644, in the twenty-fourth year of his age, and his untimely death was doubtless the cause that delayed the publication of a discovery which anticipated, by twenty years, the combined work of Huygens, Malvaison, Auzout and Picard in the same direction.

As the powers of the telescope were gradually developed, it was found that the finest hairs or filaments of silk, or the thinnest

Spldor

 silver wires that could be drawn, were much too Web. thick for the refined purposes of the astronomer, as they entirely obliterated the image of a star in the more powerful telescopes. To obviate this difficulty Felice Fontana of Florence (Saggio del real gabinctlo di fisica e dis storia naturale, 1755) first proposed the use of spider webs in micrometers, ${ }^{1}$ but it was not till the attention of Troughton had been directed to the subject by Rittenhouse that the idea was carried into practice. ${ }^{2}$ In 1813 Wollaston proposed fine platinum wires, prepared by surrounding a platinum wire with a cylinder of silver, and drawing out the cylinder with its platinum axiş into a fine wire. ${ }^{2}$ The surrounding silver was then dissolved by nitric acid, and a platinum wire of extreme fineness remained. But experience soon proved the superiority of the spider web; its perfection of shape, its lightness and elasticity, have led to its universal adoption.Beyond the introduction of the spider line it is unnecessary to mention the various steps by which the Gascoigne micrometer assumed the modern forms now in use, or to describe in detail the suggestions of Hooke, Wren, Smeaton, Cassini, Bradley, Maskeiyne, Herschel, Arago, Pearson, Bessel, Struve, Dawes, \&c., or the successive productions of the great artists Ramsden, Troughton, Fraunhofer, Ertel, Simms, Cooke. Grubb, Clarke and Repsold. It will be sufficient to describe those forms with which the most important work has been done, or which have survived the tests of time and experience.

Before astronomical telescopes were mounted parallactically, the measurement of position angles was seldom attempted. Indeed, in those days, the difficuties attached to such measures, and to the measuremens of distances with the filar micrometer, were exceedingly great, and must have taxed to the utmost the skill and patience of the otserver. For, on account of the diurnal motion, the direction of the axis of the telescope when pointed 10 a star is always changing, so that, to follow a star with an altazimuth mounting, the observer requires to move continuously the two handles which give slow motion in altitude and azimuth.

Sir William Herschel wals the first astromomer who measured position angles; the instrument he employed is described in $/$ hil. Trans. (178 i), lxxi, $\mathbf{5 0}$. It was used by him in his carliest observa. tions of double stars $(1779-1783)$; but, even in his hands, the measurements were comparatively crude, because of the difficultics herhad to encounter from the want of a parallactic mounting. In the case of close double stirs he estimated the distance in terms of the disk of the components. For the measurement of wider stars he invented his lamp-mictometer. in whive the components of a wouble star observed with the right eye were made to colncide with two lucid points placed 10 ft . from the left eyc. The distance of the lucid points was the tangent of the magnified angles subtended by the stars to a redius of 10 ft . This angle, therefore, divided by the magnifying power of the telescope gives the real angular distance of the centres of a double star. With a power of 460 the tcale was a quarter of an inch for every second.

The Modern Filar Micrometer.

When equatorial mountings for telescopes became more general, no filar micrometer was considered complete which was not fitted with a position circle. ${ }^{\text {t }}$ The use of the spider line or filar micrometer
I In 1782 (Phil. Trans. Ixxii. 163) Sir W. Herschel writes:"I have in vain attempted to find lines sufficienly thin to extend them across the centres of the stars. so that their thickness might be neglected." It is a matter of regret that Fontana's suggestion was unknown to him.
${ }^{2}$ J. T. Quekett in his Treatise on the Mic raseape ascribes to Ramsden the practical introduction of the spider whe in micrometers. The evidence appears to be in favour of Troughton.
${ }^{2}$ Phil. Trans. (t813), pp. 114-t18.

- Dr Hooke made the imporlant improvement on Gascoigne's micrometer of substituting parallel hairs for the parallel edges of its original construction (Hook c*s Posthumous Works: p. 497).
${ }^{3}$ Herschel and South (Phil. Trams., 1824, part iii. p. 10) claim that
became univeral; the methods of illumination were improved: and micrometers with screws of previously unheard of fineness and accuracy were produced. These facilities. coupled with the wide and fascinating field of research opened up by Sir William Herschel's discovery of the binary character of douhle stars, gave an impulse to micrometric research which has continued unabated to the present time. A still furiher facility was given to the use of the filar micrometer by the introduction of clockwork, which caused the telescope automatically to follow the diurnal motion of a star, and left the observer's hands entirely at liberty:"
The micrometer represented in figs. $1,2,3$ is due to Troughton. Fig. I is a horizontal section in the direction of the axis of the tele-

Fig. i.

Fig. 2.

Fic. 3
scope. The eyepiece ab consists of two plano-convex lenses a, b. of nearly the same focal lengit, and with the two convex sides facing each other. They are placed at a distance apart less than the focal length of a, so that the wires of the micrometer, which must be distinctly seen, are beyond b. This is known as Ramsden's eyepiece, having been made originally by him. The eyepiece slide into the tube $c d$, which screws into the brass ring ef, hirough two openings in which the oblong frame, containing the micrometer sfides, passes. These slides are shown in fig. .2, and consist of brass forks k and l. into which the ends of the screws o and p are sigidly fitted. The slides are accurately fitted 50 as to have no sensiblo lateral shake, but yet so as to move easily in the direction of the greatest length of the micrometer box. Molion is communicated to the forks by female acrews lapped in the heads m and m acting on the screws o and p respectively. Two pins q,, , with spiral spring: coiled round them, pass loosely through holes in the forks k. l, and keep the bearings of the heads m and n firmly pressed against the ends of the micrometer box. Thus the smallest rotalion of either head communicates to the corresponding slide motion, which. if the screws are accurate. is proporticnal to the amount through which the head is turned. Each head is graduated into roo equal parts on the druma u and v, so that, by estimation, the reading can casily be carried to foboth of a revolution. The total number of revolutions is read of by a scale attached to the side of the box, but not seen in the Gigure.

Two spider webs are stretched across the forks, one () being cemented in a fine groove cut in the inner fork k, the other (s) in a similar groove cut in the outer fork l. These grooves are simultaneously cut in sufu by the maker, with the aid of an engine capable of ruling fine straight lines. so that the webs when accurately laid in the grooves are perfectly parallel. A wire st is stretched acrose the centre of the field, perpendicular to the paraliel wires Each movable web must pass the other without coming in connact with it or the fixed wire, and without rubbing on any part of the brasswork. Should either fault occur (technically called" fiddling ") it is fatal to accurate measurement. One of the most essential point in a good micrometer is that all the webs shall be so nearly in the same plane as to be well in focus together under the highest powers used, and at the same time absolutely Irce from "fiddling." For measuring position angles a brass circle g^{h} (fig. 3). fixed to the celescope by the screw i, has rack teeth on its rircumlerence that receive the tceth of an endiess screw w, which, being fixed by the arms $x x$ to the oblong box min, gives the latter a motion of rotation round the axis of the telescope; an index upon this box points out on the graduated circle gh the angular rotation of the instrument.
the micrometer by Troughton, filted to their 5 ft . equatorial telescope, is the firse position micrometer constructed capable of measuring position angles to I^{\prime} of arc.
So far as we can ascertain, the first telescope of large size driven by clockwork was the 9 -in. equatorial made for Siruve at Dorpat by Fraunhofer: it was completed in 1825 . The original idea appears ro be due to Claude Simeon Passemant (A/cm. Aced., Paris, 17.46). In 1757 he presented a telescope to the king: so accuratcly diiven by clockwork that it would follow a star all night long.

The English micrometer still retains the essential features of Troughton's original construction above described. The later
 English artists have somewhat changed the mode of communicating motion to the slides, by attaching the screws permanently to the micrometer head and tapping each micrometer screw into its slide. Instead of making the shoulder of the screw a Alt bearing surface, they have given the screw a sphercal bearing resting in a bollow cone (fig. 4) attached to the end of the box. The French artiste still retain Troughton's form.
Fraumhofer's Filar Micromeler. - The micrometer represented in fig. 5^{1} is the original Merz micrometer of the Cape Observatory, made

Fic. 5.
on Fraunhofer's model. S is the head of the micrometer screw Proper, 5 that of the screw roving the slide to which the so-called Pixed web" is attached. s' that of a screw which morecs the eyepiece E. C is the clamp and M the slow motion in position andie. L. L are tubes attached to a larger tube N : the latter fits loosely on 2 strong hollow cylinder which terminates in the screw V. By this screw the whole apparatus is attached to the telescope. The noezles of small hamps are inserted in the tubes L, L. for illuminasting the webs in a dark field; the light from these lamps is admited through apertures in the strong hollow cylinder above mentioned (for illumination. see p. 385). In this micrometer the three slides moved by S. S, and s' are simple dovetails. The lowest of these slides reposes upon a foundation-plate $p p$, into one end of which the screw g is tapped. In the middle of this slide a stiffly fitting brase disk is inserted, to which a small turn-table motion may be communicated by an at tached arm. acted on by two fine opposing screws accessible to the astronomer: and by their means the " fixed web" may be rendered strictly parallel with the movable one. Another web is fixed parallel to the axis of the screw, as nearly as possible in the same piane with it and passing through the axis of rotation of the micrometer. For the imicrnal structural details of the micrometer the reader is referred to the article "Micrometer" in the 9 th edition of the Encyclopacdia Brilannica.

To use the instrument, it is well first to adjust the web moved by the ecrew S. so that its point of jntersection with the web (commoniy called the " position-web"), which is paralicl to the axis of the sercw, shall be nearly coincident with the axis of rotation of the micrometer box. For this purpose it is only necessary to direct the telescope to some distant object. bisect that object with the movable wire, and read the number of revolutions and parts of a revolution of the screw; now reversc the micrometer box 180° and repeat the observa. tijn; the mean of the two readings will be the point required. Now direct the telescope to a star near the equator and so that the star's image in its diurnal motion shall pass across the intersection of the two webs which mark the axis of rotation of the micrometer box. Then. as the diurnal motion causes the star-image to travel away from the axts of rotation, the micrometer box is rotated til] the image of the star when at a considerable distance from the axis is bisected by the position-web. The micrometer is now clamped in position-angle by the clamp C. the star again brought back to the axis. and delicate adjustment given in positionangle by the slow-motion screw M. til the star-image remains bisected whilst it traverses the whole length of the position-web by the diurnal motion only. This determines the reading of the position-circle corresponding to position-angle 90^{c} or 270°.

[^23]The position-angles of double stars are reckoned from north through east, the brighter star being taken as origin. To observe the position-angle of a double star it is only necessary to turn the position-web so that it shall be parallel to the line joining the centres of the components of the double star. To test this parallelism the single web nust be made to bisect the images of both components simultaneously, as in fig. 6, because it is evident that if the two components of the double star are not exactly equal in magnitude, there will be great tendency to systematic cror if the web is placed on one side or other of the stars.

Fig. 6.
To avoid such error Dawes used double wires, not spider webs, placing the image of the star symmetrically between these wires, as in fig. 7 , and believed that by the use of wires, much thicker than spider webs, the cye could estimate more accurately the symmetry of the star-images with respect to the wires. Other astronomers use the two distance-measuring webs, placed at a convenient distance apart, for position wires. This plan has the advantage of permitting easy adjustment of the welos to such a distance apart as may be found most suitable for the particular observation, but has the disadvantage that it does not permit the zero of the position-circle to be determined with, the same accuracy; because, whilst by means of the screw s' (fig. 5) the eyepiece can be made to follow the star for a considerable distance along a position-web parallel to the screw, the biscetion of the web by a star moving by the diurnal motion at right angles to the micrometer screw can only he followed for a limited distance. viz. the feld of the eyepiece. But, as the angle between the positionweb and the distaace-webs is a constant, the remedy is to detcrmine that angle (always very nearly a right angle) by any independent method and employ the distance-webs as position-webs in the way described, using the position-web only to determine the instantaneous index error of the position-circle.

To measure distances with the Fraunhofer micrometer, the posi-tion-circle is clamped at the truc position-angle of the star, and the telescope is moved by its slow motions 50 that the component A of the star is bisected by the fixed wire: the other component \mathbf{B} is then bisected by the web, which is moved by the graduated head S. Next the star B is bisected by the fixed web and A by the movable one. The difference between the two resdings of S is then twice the distance between \mathbf{A} and B.

The great improvement now introduced into all the best micrometers is to provide a screw s, which, not as in the Fraunhofer micrometer, moves only one of the wires, but which moves the whole micrometer box. i.e. moves both webs together with respect to the star"s image in the direction of the axis of the screw. Thus the fixed wire can be set exactly on star A by the screw s. White star B is simultancously bisected by the movable wire, or vice versa, without dist urbing the reading for coincidence of the wites. No one, unless he has previously worked without such an arrangement, can fully appreciate the advantage of bringing up a star to bisection by moving a micrometer with a delicate serew-motion, insicad of having to change the direciion of the axis of a huge telesxope for the same purpose. When in is further remembered that the earlier telescopes were not provided with the modern slow motions in right ascension and that the Struves, in their extensive labours among the double

Fig. 8.
Repsolds for the Cape Otservatory.
Profensor Watson used to aty pert of a telescope is the man at the amall end.
micrometer with the upper side of the box removed. The letters in the description refer to both figures.
S is the head of the micrometer screw, s that of the screw by which the micrometer box is moved relative to the plate f (fig. B), ${ }_{5}$ that of the screw which moves the evepiece slide. K is the clamp in position angle. P the slow motion screw in position-angle; $p p$ is the position circle. R, R its two readers. The latter are in fact little microscopes carrying a vernier etched on glass, in bicu of a filar micrometer. These verniers can be read to t^{\prime}, and estimated to $0^{\prime} \cdot 2$. D is the drum-head which gives the fraction of a revolution, d that which gives the whole number of revolutions, I is the index or pointer at which both drums are read. This index is shown in fig. 9 , but only its mode of attachment (X, fig. 9) in fig. 8 . The teeth of the pinion 8 , fig. 9 . are cut on the axis of the mierometer screw. The drum d and

Fig. 9.
its attached tooth wheel are ground to turn smoothly on the axis of the screw. The pinion z and the toothed wheel d are connected by an intermediate wheel and pinion Y: the numbers of teeth in the whecls and pinions are so proportioned that twenty-four revolutions of the micrometer screw produce one revolution of the drum and wheel d. The divisions of both drums are conveniently read. simul. tancously, by the lense; at night the lamp which illuminates the webs and the position-circle also illuminates the drum-heads (see on illumination p. 385). aaca is the web-frame (fig.9), $\beta \gamma$ is a single rod consisting of two cylinders accurately fitting in the ends of the micrometer box, the larger cylinder being at β. There is a hole in the webframe which smoothly fits the larger cylinder at β^{\prime}, and another which similarly fits the smaller cylinder at γ^{\prime}. A spiral spring, coiled round the cylinder γ_{1} resting one end on the shoulder formed by the difference of the diameters of the cylinders β and γ and the other on the inside of the web-frame, presses the latter continuously towards γ. Contact of the web-frame of the micrometer with the side of the box at γ would thercfore take place, were it not for the micrometer screw. This screw fits neatly in the end of the box at e, passes loosely through the web-frame at e', is tapped into the frame at 5^{\prime}, and its end rests on a flat hardened surface at 5 . Rotation of the wel-frame about Br is prevented by the heads of the screws at m; the head of the screw on the lower side of the frame reposes on the plane vr, that on the upper side (fig. 9) touches lightly on the inner surface of the lid of the box. Such rotation can obviously be controlled within fimits that need not be further eonsidered. But freedom of rotation in the plane of the paper (fig. 9) is only prevented by good fitting of the holes $\beta^{\prime} \gamma^{\prime}$; and, since the weight of the slide is on one side of the screw, misfit here will have the effect of changing the reading for coincidence of the movable with the fixed web in reverse positions of the micrometer. With the Cape micrometer a systematic difierence has been found in the coincidence point for head above and head below amounting to $0^{-1} 14$. This corresponds, in the Cape instrument, with an excess of the diameters of the holes over those of the cylinders of about rifosth of an inch-a quantity so small as to imply good workmanship, though it involves a systematic error which is very much larger than the probable error of a single determination of the coincidence point. The obvious remedy is to make all measures on opposite sides of the fixed web before reversing in position-angle-a precaution, however, which no careful observer would neglect. In measuring differences of declination, where the stars are brought up by the diurnal motion, this precaution cannos be adopted, because it is
necessary always to bisect the preceding star with the fixed web But in Δs measures index error can be eliminated by biseeting both stars with the same web (or different webs of known interval fixed on the same frame), and not employing the fixed web at all. The discordance in zero, when known to exist. is really of no consequence, because the observations can be so arranged as to eliminate it.

The box is mounted on a strong hollow stecl cylinder CC (fg. 9) by holes $\eta_{1} \theta$ in the ends of the box, which fit the cylinder closely and smoothly. The cylinder is rigidly fixed in the suds C, C, and these are attached to the foundation plate f. The cylinder contains towards η a sliding rod, and towards θ a comprested spiral spring. There is thus a thrust outwards of the spring upon the hollow cap W (attached outside the box), and a thrust of the rod upon the end of the screw s. The position of the box relative to the plate f, in the direction of measurement, depends therefore on the distance between the end of the screw sand the fixed stud C. A screwing in of 3 thus causes the low to move to the left, and vice versa. Rotation of the box round $C C$ is prevented by downward pressure of the spring Z on a projection attached to the side of the box. The annount of this pressure is regulated by the screw z^{\prime}.

The short screw whase divided nilled head is σ shifts the zero of the micrometer by pushing, without turning, the short sliding rod whose flat end forms the poind d'appui of the micrometer acrew at 5 . The pitch of the screw σ is the same as that of the measuring screw (50 threads tis the inch), and its motion can be limited by a stop to half a revolution.

The five fixed welis are attached to the table $\boldsymbol{r r}$, which is secured to the bottorn of the box by the screws p. The three movable webs are attached to ine projections $\lambda \lambda$ on the frame aa. The plane surfaces ir and λM ari composed of a bronze of very close rexture, which appears capable of receiving a finish having almost the truth and polish of an optical surface. It seems also to take a very clean V cut, as the webs can be laid in their furrows with an astonishing ease and precision. These furrows have apparently been cut in sitm with a very accurate engine: for not the slightest departure from paralletism can be detected in any of the movable webs relative to the fixed webs. Extraordinary care has evidently been bestowed in adjusting the parallelism and distance of the planes r and λ, 0 that the movable wires shal! almost, but not quite, touch the surface t . The varnish to fix the webs is applied, not on the surface r as is usual, but on a bevel for the porpose, 1 the position of the webs depending on their tension to keep them in their lurrows. The result is that no trace of "fiddling "exists, and the movable and fixed webs come sharply together in focus with the highest powers. Under such powers the webs can be brought into apparent contact with such precision and delicacy that the uncertainty of measurement weems to lie as much in the estimation of the fraction of the division of the head as in the accuracy of the contiast. It is

Fic. 10.
a convenient feature in Repsulds' micrometer that the webs are very near the inner surface of the top of the box. 50 that the eye is not brought inconveniently close do the plate wben high powers are used.

Another excellent micrometer, originally based on a model by Clark of Cambridge. Massachusetts, has been largely used by Burnham and others in America. The form, as constructed by Warner and Swasey for the 40 in, Yerkes telescope, is shown in figs so and it. The micrometer bok, and of course with it the whole system of spider nebs, is moved by the screw s. whilst the measuring web is independently moved by the screw S . The other parts of the instrument will be readily undersiond from the figure without further explanation. The method of counting the total number of revolutions gives more friction and is leas convenient than Repsolds; and no provision secms to the made for illuminating the micrometer head is the practical and convenient plan adopted by Repaolda.
Repsolds' more rocent form of the spider-line micrometer (ince
1 The marks of varnish so applied will be seen in 6 g 9.
2893) for large teiescopes is shown in hig. 12. Quick notion in posi-tion-angle for rough setting or for the measurement of close double stars is given by the large ring R. The micrometer is clamped in

position-angle by the screw K and slow motion in position-angle is given by the screw p. The small drum-head T opposite the micrometer head S turns a screw which acts upon a short cylinder that cannot turn but can move only in the direction of the axis of the micrometer screw. The end-plane of this cylinder receives the pressure of the micrometer screw, so that by turning the small drum-head the coiacidence-reading of the movable web with the fixed web can be changed, and thus any given angle can be measured with different

parts of the mierometer screw in order to eliminate the effects or periodic error of the screw. The electric lamp a gives illumination of the webs in a dark field, nearly in the mannes described for the Cape trangit circle micrometer: the intensity of illumination is regulated by a carbon-resistance controlled by the screw b. The Lamp c illuminates the drum-head and also. by reflection, the portions of the position-circle which come under the microscopes d and e. The head f is a switch which enables the observer to illuminate lamp of or c at pleasure. These lamps, alt hough shown in the figure, are in reality covered so as not to shine upron the observer's cye. The illumination of the field is given by a lamp rear the object glass, convrolled by a switch near the micrometer.

Repsolds in more recent micrometers under ennstruction give a secard motion to the eyepicce at right angus th the axis of the
of position-angle for his movable webs with the same accuracy as he formerly could only do for the so-called position-angle webs. Repsolds also provide two insulated sliding contact rings instead of the single ring \&, so that the electric current for illuminating the lamps does not pass through the instrument itself but may come to the micrometer from the storage battery through two insulated leads. The same firm is also constructing a micrometer in which the readings of the head are printed on a band of paper instead of being read off at the time of observation.
Instruments have been invented by Alvan Clark and Sir Howard Grubb for measuring with the spider-line micrometer angles which are larger than the feld of view of the eyepiece. In both cases two eyepieces are employed, one to view each separate web. One draw. back to this form of instrument is that the two webs cannot be viewed simultaneously, and therefore the observer must rely on the steadiness of rate of the clockwork and uniformity in the conditions of refraction whilst the eye is moved from one cyeprece to the other.

Clark's micrometer was exhibited at the June mecting of the Royal Astronomical Society in 1859 (Monthly Nolices, R.A.S.. vol. xix.), Grubb's duplex micrometer is described in the gth edition of the Encyelopaedia Brifarmica. Some examples of use of the latter are given by Prolcssor Pritchard (Mem. R.A.S. xlvii. 4-12), who estimates the accuracy attainable with the duplex micrometer as equal to that of the heliometer: but as few measures of permanent value have been made with the instrument, and those made exhibit an accuracy far inferior to that of the heliometer, it is unnecessary to describe the instrument here in greater detail.
The Reading Micromeler-Microscope.-Micrometers used for subdividing the spaces on graduated circles and scales have, in gencral only a single pair of cross-webs or parallel webs moved by a single screw. The normal form of the apparatus is shown in figs. 13 and is. C is the objective. D the micrometer box. E the graduated head of the screw. G the milled

Fig. 13.

Fig. 14.
eyepiece sliding in a tube B. aa (fig. 14) the slide, and b, b the spiral springs. The focal length of the objective and the distance between the optical centre of the lens and the webs are so arranged that images of the divisions are formed in the plane of the webs, and the pitch of the screw is such that one division of the scale corresponds with some whole number of revolutions of the screw.

There is what is technically called a "comb" inserted in the micrometer box at d (fig. 14)-its upper surface being nearly in the plane of the wires. This comb does not move with reference to the box, and serves to indicate the whole revolution of which a fraction is read on the head. In fig. it a division is represented bisected by cross webs, and five revolutions of the screw correspond with one division of the scale. In all modern reading micrometers the cross webs of fig. 14 are replaced by parallel webs embracing the division (fig. 15). The means for changing the length of the tube and the distance of C from the scale are omitted in the figure. These appliances are required if the "run" has to be accurately adjusted. By "run" is meant the difference between the intended whole number of screwrevolutions and the actual measures of the space between two adjacent divisions of the scale in turns of the screw Fig. 15. divided by the number of intended revolutions. In delicate rescarches two divisions of the scale should always be read. not mercly for increased accuracy but to obtain the corrections for run " from the observations themselves.
Repsolds employ for the micrometers of their reading microscones the form of construction shown in fig. 9, omitting. of course, the motion of the whole micrometer box given by the acrew sfor those cases in which the axis of the micrometer is supposed to remain constant in position, as, for example, in the case of the reading microscopes of transit circles (see TRANsIt Circle).

But when the relative positions of two auljacent objects or scaledivisions have to be determined (as, for example. in the case of heliometer scales), much time is saved by retnining the motion of the micrometer box. One double web, fixed in the box, is poinied symmetrically, as in fig. 15, on one of the scales, by moving the whole micrometer box by means of the screw s: the pair of webs, moverd by the screw 5 , is then pointed upon an adjacent division on the other scale. If the reading far coincidence of the mowible vitit the

It is generally possible 00 to arrange the method of observation as to eliminate the effect of an error in "the reading for coincidence of the webs" from the results. This excellent time-saving contrivance has also been used in Gill's apparatus for measuring astrographic plates (see below).

Ghast Micrometer.-C. E. Burton and Sir Howard Grubb (Mowthly Notices, $\mathbf{x i}$. 59 h after calling attention to J. von Lamont's paper (Jabrbuck daf K. S. b. MAunchen. p. 187) and K. L. von Littrow't paper (Proc. of Vienna Acad. of Sciences, xx. 253) on a like subject, proceed to describe a most ingenious form of Ghost Micrometer, in which the imase of a fine line or lines ruted in (or rather cut through) a silver film deposited on glass is formed at the cormon facus of an object-glase and eyepiece of a telescope. A faint light being thrown on the outside of the silvered plate, there appear bright lines in the feld of view. We have not had an opportunity of testing this, nor Grubb's more recent models; but, should it be found possible to produce such images satisfactorily, without distortion and with an apparatus convenient and rigid in form, such micrometers may possibly supersede the filar micrometer. Their absolute freedom from diffraction, the perfect control of the illumination and thicknesa of the lines, and the accuracy with which it will be possible to construct scales for zone observations will be insportant features of the new method.

The Astrographic Micrometer or Measuring Machine.-The application of photography to exact astronomy has created the necessity for new forms of apparatus to measure the relative positions of stellar and planetary images on photographic plates, and the relative positions of lines in photographic spectra.

Especially important has been the problem of measuring the "cataloguc plates " of the international Carle dus ciel-a work that implies the determination of the positions of some millions of stars-that is to say, of all stars to the ith or 22 th magnitude. The problem has been how to accomplish this work with the minimum of labour consistent with the desired accuracy. The adoption of a réseau photographed upon the plate has greatly facilitated the procedure. A plate of parallel-surfaced glass has a fitm of silver deposited upon it. On this firm is ruled a system of lines 5 mm . apart, and another similar system of lines at right angles to the first, thus dividing the silvered surface of the plate into squares 5 mm . on the side. The cutter employed to rule these lines removes the silver in fine lines from the surface of the glass, Thus, if a photographic plate, before it is exposed in the telescope, is placed with its sensitive surface nearly in contact with the silvered surface of this rescaus, and if parallel lipht, normal to the surface of the plate, is allowed to fall on the silvered fim through the glass on which the film has been deposited, that light will pass through the fine lines in the silver film where the silver has been removed by the cutter, but will otherwise be intercepted by the silver film. Thus a latent image of the "rêseau-lines" will be formed on the sensitive plate, and, when the latter has been exposed to the sky in the telescope, we obtain, on development, a negative of the images both of the stars and of the re'scau-lines. If the errors of the rectangular co-ordinates of these lines are known, the problem of determining the co-ordinates of any star-image on the plate becomes reduced to the comparatively simple one of interpolating the co-ordinates of the star relative to the sides of the 5 mm . square within which that image is included. This interpolation can, of course, be accomplished with the aid of a micrometer-microscope whose optical axis is normal to the plate, provided that the plate is mounted on slides which enable the observer to bring the reseau-squares successively under the microscope.
This system has an additional advantage beyond its convenience, viz. that if any distortion of the film takes place during development the same distortion will be communicated boih to the star-images and to the reseau-lines, and consequently its offect will be eliminated from the resulting star co-ordinates, except in so far as the distortion rithin the 5 mm . square is of an irregular character; this exception is hardly worth consideration. An originally unanticipoted difficulty has arisen from the fact that the reseau-lines have not been ruled on plates of optical glass with optical surfaces, and that, in consequence of irregular refraction in the glass plate, the rays do not always pass chrougt the silver film-fines in a direction atrictiy normal to the silvered surface: therefore, if the sensitive surface of the photographic plate ls not in contact with the silver film of the reseau, the undeveloped photographic copy of the remeau may in wuch a case not be an exact reproduction of the silvered remeau. It is practically impossible to work with the sensitive film in contact
with the reseaufilm, not only because dust particles and contact would injure the silver fifm, but also because the plate-glass used for the photographic plates is seldom a perfect plane. The discrepancies produced in this way are, however, very small, if care is taken to minimize the distance between the silver film and the photographic plate and to select a reasonably good piece of glass for the reseau. For very refined work, however, the irregularities in the reproduction of the rescau may be studied by comparing the measures of the original reseau with the mean of corresponding measures of a number of photographed copies of it.
At Greenwth, Oxford and several other observatories, instead of measuring the distances of the atar's image from the opposite sides of the 5 mm . ntseau-square by means of a spider-line micrometer, a glase scale, on the plan shown in fig. t6, is employed in the common focus of the ohjective and the eyepiece. The image of the star is set upon the intersections of the lines of the central cross, and the positions of the reseau-lines are read off by estimation to th of a division on the glass scalc. As cach division corresponds to 3 sec .

 Fig. 16. \rightarrow Diagram of the diaphragin in eyepieces of the micrometer used for measuring the plates of the Actrographic Catalogue.
of arc, the nearest estimate corresponde with a nominal accupacy of $\equiv 0.3^{\circ}$. This involves a lows of accuracy because, with a splder. line micrometer the accidental error of pointing is of the order of ${ }^{-0} \mathrm{O}^{\circ}$ of arc.
In the measuring machines in general use the field of view, as in the case of the glassescale micrometer, is sufficiently large to include the image of the 5 mm . square. The microscope or viewfag telescope is fitted with a spider.line micrometer having two acrews at right angles to each other, by means of which readings can be made frst on one rescau-lime, then on the star, and finally on the opposite réseau-line in bath co-ordinates. This form of micrometer is of courme capable of giving results of high precision, but the drawback is that the process involves a minimum of six pointings and the entering of six screw-head readings in order to measure the two co-ordinates of the star.

Cill's Measuring Machine,-Sir David Gill (Monthly Notices, R.A.S. lix. 61) devised a measuring machine which combines the rapidity of the glasp-scale micrometer with the accuracy of the spiderWine micrometer and simplifics the reduetions of the obeervations at the same time. The essential conditions of the inctrumeas are:-

1. The object glass of the micrometer-microscope is placed midway between the plane of the photographic plate and the plane of the micrometer webs
2. The micrometer is provided with a " fixed square" 5 mm. X 5 mm ., the sides of this aquare being parallel spider webs 4° of ere apart; the size of the square is reciooned from centre to centre of these double webs.
3. The two micrometer screws $\langle X$ and Y, fig. 17), which actuate the movable slides. have heads divided into 100 parts. one revolution $=0.5 \mathrm{~mm}$.; so that ten revolutions are $=5 \mathrm{~mm}$. or m the interval between two adjacent reseau-lines, or $=$ the interval between the sides of the "fixed square."

4- Two other acrews, $0, p$, the heads of which are not graduated, give motions to the whole micrometer box through 1 mm . in directions parallel to the axes of the two micrometer screws.
5. Each of the two micrometer screws X and Y moves a system of six parallel webe, placed $4^{\prime \prime}$ of arc apart from each other. These

Fig. 17.
webs serve not only for pointing on stars to determine their coordinatea (in manner afterwands described), but also for estimating the diameters of the star-images in terms of these 4 "intervals.
6. All the essential parts of the micrometer. including the slides, micrometer box, tube, \&e., are of steel or cast-iron, so that changes of temperature do not affect the adjustments.
The necessary adjust ments are the following:-

1. The webs of each set of movable webs shall, inter se, be strictly parallel, and the two sets shall be strictly at right angles to each other.
2. The double webs composing the sides of the fixed square shall be strictly parallel, and shall form a true square of exactly ten revolutions of the screw on the side.
3. The two micrometer screws shall be without sensible periodic or other error, and exactly alike in pitch.

4 The micrometer readings for coincidence of the movable webs witb the webs of the fixed square shall be exactly 0.000 R and $10-000 \mathrm{R}$.
5. The image of a normal reseau-square, as viewed in the microscope, shall exactly coincide with the square formed by the fixed webs-that is to say, the image of the sides of a normal rescau-square thall measure exactly 10 screw-revolutions.

Aseuming that these conditions can be rigidly realized, we have the following very simple modus operand i;-

1. By means of the quick rack motions A and B move the plate 50 as to bring the resseau-square into the centre of the field of the micrometer; then, by means of the screw heads o, p. perfect the coincidence of the " fixed square" of webs, with the image of the reseau-squarc.
2. By means of one of the mierometer screws X place the star: image in the middle of the six parallel webs which are moved by X.
3. Similariy. place the star's image in the middle of the webs moved by Y.
4. Eximate the diameter of the star's image in terms of the $4^{\text {" }}$ intervale of the movable webs.

By employing both hands, operation (t) can be made as quickly as a single pointing with the ordinary spider-line micrometer, and operations (2) and (3) can be similarly jenformed in the time required for a single pointing. The reading (2) is then the required co-ordinate in x and that of (3) is the required co-ordinate in y; or, if the plate is reversed, 180°, these readings have to be subtracted from $10-000^{2}$.

A general idea of the construction of the machine can be gathered from fig. 17 above. but the reader will find a detaited aceount of it, and of the manner in which the requisite adjustarents are made, in the paper already quoted.

The apparatus has been used with complete success at the Royal Observatory, Cape of Good Hope. and at Melboume, Syoney and Córdoba.

Effects of Wear on the Micrometer Screws.-The accuracy of this apparatus has been frequenlly criticized on the ground that errors are produced in the screws by the effect of wear. One reply to this is that it is not difficult to determine from time to time the errors of the screws and to apply the necessary corrections to the observations. But a little consideration will show that when the plate is reversed 180° the effects of errors of the screws produced by wear are practically eliminated.

In discussing the effect of wear upon a screw, it will be convenient to imagine the thread unrolled and forming a wedge, of which we can represent the unworn bearing-side by a atraight line AB (fig. 18),

Fig. 18.
on which rubs the block $C D$, which represents the female screw or bush, and moves between the points E and F, cometimes towards E, sometimes towards F, but having as often to measure short distances as long distances from the middle point of this range, and these as often towards E as towards F. Now, if $C D$ is pressed by ita weight or by a spring on the curface AB, the effeci of wear will be to produce a symmetrical grinding away of both surfaces, which may be represented thus, fig. 19. That is to say, the screw-errors will be

Fic. 19.
identical for revolution s and for $10-\mathrm{n}$, and thus will disappear in their effect in the mean of observations made in reversed positions of the plate. At the Cape of Good Hope, after more than 200,000 pointings had been made, the screw-errars were redetermined: the resulte proved the truth of the above conclusions, viz. the absolute freedom of the derived co-ordinates from the effects of wear of the serews in the mean of mensures made in reversed positions of the plate.

Hinks's Measuring Machine.-A very refined modification of the Cape machine is described by A. Hinks (Monthly Notices, R.AS., vol. 6r, p. 444), and the instrument contains many elegant mechanical and optical details due to Horace Darwin and Messrs Zeiss respectively:

Its fundamental principie is that, by a combination of glasa scales with a micrometer screw, "the chicf part of the distance to be measured is read of on the scale; the fractional part of the scaleapace is not estimated but measured by the screw. Hinks claims that thus never more than one- or two-tenths of a revolution of the screw need be used in making the measure, and little time is lost in running the screw backwards and forwards. All this. is true, but three readings instead of one for each pointing, much more figure-work in computation (especially if corrections have to be applied to the scale readings to reduce them to exact normal screw readings), are factors which involve a far greater expenditure of time than making a few additional turns of a screw in the process of measurement. Hinks's further claim that, in consequence of the small motion of the screw, less crror is produced in the screw by wear is not true; for, although large movemenis of the screw produce a large amount of wear. that wear is spread over longer parts of the screw but remains the same for any particular part of the screw; the resulting errors are exaggerated towards the extremity of the range of screw employed (sce Monthty Notices, R.A.S., vol. 45, p. 83). and are therefore more likely to produce errors which are not eliminated on reversal of the plate in cases where the ecrew range is not strictly limited, and the wear therefore not strietly sy mmetrical.

The excellent manner in which the scales and micrometers are mounted, the employment of a compound microscope for vipwing the scales, with its ingeniously arranged and admirably efficient reversing prism, and the periection of its slow motions for focusing and reading. comblne to render thit a most accurate and convenient instrument for very refined measures, although too slow for work in which the measures must depend on single pointings in each of two reversed positions of the plate, and where speed of working is essential.

A \¶tus for Mecsuring Star-Spectra, Eec.-Thest machines may be divided into three classes, viz. A, in which the motion of the slide which carries the photographic plate is measured entircly hy a screw; B; in which that motion is measurod by combination of a scaic and screw; and C, in which the
photographic plate is fired and the measuring microscope is moved.

The chic drawback to type A is that the errors of the screw are liable to change by wear, otherwise the apparatus, as made and used at Porsfam, is, on the whole, a convenicnt and accurate one. In determining the errors of the screw of the Potsdam form

Fic. 20.
of machine it is necessary to have regard to the fact that the screw is placed at one side of the slide, as in fig. 20.
The result is that, if the screw is bent-if, for example, the end of the frame next the screw-head is raised and that next the end p Is lowered in the diagram-a twist will be given to the web-frame, and the centre of the web will be moved nearer to the micrometerdrum than it should be, whilst the reverse effect will follow when the head has been turned 180°. This would, of course, create a periodic error, which would be determinable for the motion of any particular point (say the middle) of the web, but which would be smaller for a point near the axis of the acrew and greater for a point farther from that axis. In the Potsdam form of this spparatus the micrometer is, for convenience, provided with a motion at right angles to the axis of the screw, and it has been lound at the Cape Observatory that the periodic errors in this apparatus do vary very sensibly according as the microscope is directed to a point more or less distant from the measuring screw. Since the discovery of this fact all measurements have been made in that fixed position of the microscope with respect to the axis of the screw for which the enrors of the acrew have been determined.
In the apparatus of type B as made by Zeiss there are two microscopes attached to a base-plate, one of which views the apectrum-plate (or other object) to be measured, while the other views a scale that moves with the alide on which the spectromplate is mounted. In this way the scale can be viewed by a mictoscope of much higher magnifying power than can be employed for the photographed spectrum. Indeed, if the scale were subdivided to it mm. the power employed might only be limited by the sharpness of the division-lines. But for refined work this would imply the investigation of too many divisions of the acale; it is therefore more usual to divide the scale into single millimetres or half-millimetres and to provide a micrometer which subdivides the millimetre into 1000 or by estimation, into 10,000 parts. For very accurate work it is desirable that the basc-plate, the slide and the scale should be of nickel steel, having the same thermal coefficient of expansion as glase.
The forms of measuring machines of type C , often seen in physical laboratories, should be at once rejected for refined measurements, because it is impossible to construct slides of such perfection that the axis of the microscope will remain absolutely normal to the surface of the plate (assumed to be a plane) throughout the range of measurement. Even if the slide itself is mechanically perfect, the irregularity in the thickness of the lubricating oil between the bearing surfaces of the slide is apt to produce a variable error.
Bakhuyzen (Bulletin de Com. perm. rongres. astrog. i. 164) deacribed a measuring-machine by Repsolds, in which the micrometermicroscope tilts in the bearings of the chariot on which it moves, ω that it can view either a graduated ecaie or the photographic plate. We have, in fact, In this instrument a combination of types B and C. Even In this apparatus if the slide on which the chariot moves is not perfect (and no slide is perfect), the azimuth of the axis of the microscope is liable to change in the course of movement of the slide, and thus equal spaces on the scale will not be represented by equal spaces on the plate under measurement. The remery proposed by Repsold for this proved fault is to cause the whole slide to tilt instead of the microscope only; this should prove a complete remedy.

The Travelling Wire Micrometer,-An important modern application of the mlerometer, which is not dealt with in the article Transit Circle, is that which is now called " the travelling wire micrometer."

In the Astronemische Nachrichten. No. 2940, Dr Repeold proposed a method of meridian observing which consists in causing a web to follow the image of atar in transit by motions communicated by the observer's hands alone, whilst electrical contacts on the drum of the micrometer screw regiver on the chronograph the instants corresponding to known intervals from the line of collimation. The purpose of his paper was to show that if the axis, by which the
observer imparts motion to the slide on which the travelling web is mounted, is provided with two disks at its extremities, so that the observer can use the thumb and finger of botk hands in rocating it, there is no difficulty. after a litzle practice. in kecping the web constantly bisecting the atar in transir, and that with a little practice the mean of the sbsolute errors in following the star becomes nearly zero.
In the Astron. Nack, No. 3377, Repsold gives a detailed description of two forms of eye-ends of transit circles, fitted with means of observing in this manner, to which he gives the parme of. "the impersonal micrometer." This ruethod of observation was very auccessofully employed, under Seeliger at Munich, in an extensive series of mendian observations, and, under the auspices of the Geodetic Institute at Pocedam, in telegraphic longitude opera. tions. Still more recently the method has been largely employed at the Cape of Good Hope and elsewhere.
Under the date March $1901 \mathrm{Dr} \mathrm{H}$.Struve , published an account of the application of clockwork as an aid in Repsold'e method; and, later, Dr Cohn published a more elaborate paper on the same subject in the Astron. Nack., 3767. The method consisted in having motion transmitted to the micrometer screw from an axis on which is mounted a disk that presses with friction-contact upon a cone that revolves uniformly by clockwork. The velocity of rotation of the micrometer-screw could therefore be varied for gtars of different declination by varying the distance from the aper at which the revolving disk presses upon the revolving cone. In the Konigsberg transit instrument used by Struve and Cohn, the clockwork was attached to the eye-end of the instrument-a condition which is obviously undesirable both from the necessarily unsymmetrical position of the clockwark with respect to the optical axis, and from the impoasibility of securing the uniform going of the clock in different positions of the instrument. In more recent instruments at the observatories of the Cape of Cood Hope and Paris the motion is transmitted from a separately mounted cone and clock by a light rod passing through a perioration in the pivot of the transit instrument and thence through bevel-wheels in the cube of the axis to a second rod leading to the eyepiece. This rod turns a worm-screw which acts on a worro-wheel Gitted "spring tight " upon the axis of the micrometer-screw.
It should be mentioned that an essential feature of the travelling wire micrometer is that the eyepiece as well as the wire shall be moved by the micrometer-screw. Thus if the star'm image is kept in bisection by the wire, both star and wire will appear at rest in the field of view.
The distinction between the old and new method of observation may thus, in one sense, be described as the difference between shooting at a moving object and in shooting at one at rest. in the cabe of the original Repsold plan without clockwork the de Ecciption is not quite exact, because both the process of following the object and correcting the aim are simultaneously performed; whilst, if the clockwork runs uniformly and the friction-disk is set to the proper distance from the apex of the cone, the star will appear almost perfectly at rest, and the observer has only to apply delicate corrections by dificrential gear-a condition which is exactly tanalogous to that of training a modern gun-sight upon a fixed object. It is impossible in this article to give a detailed description of the apparatus, but the rcader is referred to Astron. Nach., 3377, for an inustrated account of the original Repeolds instrument and to the History and Description of the Cape Obsertalory for a complete description of the most modern form of its applicatioa to the Cape transit circle, with and without clockwork.
The HartmannSpecirocomparalor.-For accurste measure ment of the displacements of lines of stellar spectra which are prod uced by the relative motion of star and observer in the line of sight, a very beautiful instrument has been devised by Dr J. Hartmana of Potedsm, and is described by him in the Publicationen des astrophysikalischen Observatoriums mu Potsdam, Bd. 18, Stück 53 (1906). An English translation of this paper is given in the Astrophysical Journal, xxiv. 285-302. The method originally used by Huggins, who first conceived and proved the possibility of measuring stellar velocities in the line of sight, was to measure with a filar micrometer the displacement of soroe well-known line in a stellar apectrum relative to the corresponding line of a terrestrial spectrum. Vogel of Potsdam introduced the method of photographing stellar and terrestrial spectra on the same plate, and in this way obtained an immense advance in the ease and precision of obscrvation. Vogel and his successors employed one or other form of measuring machine, provided with a microscope having single or ciose parallel webs which could be successively pointed on the photographed lines of the st ar spectrum and the lines of the terrestrial spectrum. To derive the stellar velocity in the line of sight relative to the observer it was then wecessary to asaume that the normal weve-lengt hs of the slellar and terrestrial apectra are accurately known. But in the

Complex spectra of stars of the solar type this is by no means the casc; for, as Dr Hartmann remarks, " in the first place the lines in these spectra are so numerous that their complete measurement and reduction would require many days, and in the second place a rigorous reduction of such material has hitherto not been at all possible because the wave-lengths of the lines are not known with sufficient accuracy. On this account, observers have until now limited themselves to a partial treatment of such spectra, measuring only a small number of lines, whereby the major part of the rich material present in the plate remains unutilized." But the spicetroscopes that can be employed for stellar spectrographs are not sufficiently powerful to scparate fully lincs which are very closely adjacent, and therefore a line, assumed to be of a known wave-length, may be apparcnuly displaced by the near neighbourhood of an unknown line. Hartmann overcame these and many other difficulties by directly superposing the image of the spectrogram of a star, having iron comparison lines, upon the image of a spectrogram of the sun taken also with iron comparison lincs.
The apparatus for this purpose is shown in fig. 21, its principle of construction is shown in figs. 22 and 23 . The solar spectrograph is attached by clamps to the plate A_{1}, the stellar spectrograph to the plate A_{s}. The plate A_{1} is mounted on the dove-tailed slide B_{1}, upon the metallic stase T. and can be moved to right or left relative to T by the mierometer-screw S ; whilst the

Fig. 21.

From Zeilsche fur Instrumathatumes, by permiswion of Julius Springer, Bertin.
Fig.. 22.
be moved at right angles to its greatest length by the screw G. The micrometer-screw S has a pitch of 0.5 mm. , its head is divided into 100 parts, Two spiral springs underneath press the plate B_{1} with its agate end-bearing against the rounded end of the screw S. The whole number of revolutions of the screw is read by the scale X (fig, 23). The whole stage T, carrying both spectrogramis, can be moved from right to left on the steel cylinder Z , by turning the head K , on the axis of which is a pinion that gears into a toothed rack attached to the lower side of the cylinder Z. A scale N on the cylinder Z serves for setting the slide to any required position. The prelinainary conditions of measurement are:-

1. The centre of both spectrographs shall be parallel to the axis of the cylinder 2.
2. The distance between the centres of the two spectrographs shall be equal to the distance between the optical axes of the two viewing microscopes.
3. The scales of the images lormed in the focus of the esepiece common to both microscopes shall be identical.

To fulfil condition (1) the plates A_{3} and A_{3} are mounted in circular slides, whose centres are E_{1} and E_{3} respectively, so that by means of the screws D_{1}, D_{21} with their corresponding opposing springs F_{1} and F_{2}, the operation can be very easily accomplished. To fulfil condition (2) the two microscopes whose object glasecs are O_{1} and O_{1} (fig. 22) are attached to the plate L . their optical axes being normal to the stage T. The screw Q serves to adjust the axis of O_{t} to coincidence with the centre of the lines of the solar spectrograph, and the screw G then serves to move the slide B_{2} till the optical axis of O_{2} is coincident with the centre of the lines of the stellar spectrograph. Suppose now the solar spectrogram to be viewed in the focus of O_{i}, and the convergiag rays to be reflected by the prisms P_{1} and P_{2}, till an image is formed in the focus of the eyepiece at the point where the axis of the eyepiece fotermect
the upper face of the prism P_{2}. Then if the prism P_{4} is cemented to P_{3}. a sharp image of such lines of the solar spectrograph as are visible in the field of view will be seen in the eyepiece. If the stellar apectrograph is viewed in the focus of O_{2} and the converging rays are reflected by the prism P_{2} to P_{4} no image would be seen in the eyepiece, for the rays would pass out directly through the parallel glass plate which is formed by the cementing together of the prisms P_{s} and P_{4}. But if the cemented face of P_{4} is silvered,

Fig. 23 -
then the lines of the stellar spectrogram would be seen in focus of the eyepiece and the image of the solar spectrograph would be obliterated. Therefore, if one-half of the cemented face of P_{4} is silvered, it becomes poesible to view, sede by side, one-half of the image of the solar spectrograph formed by O_{1} and one-half of the image of the stellar spectrograph formed by O . A prism half wilvered in this way is provided, which enables the observer to compere the equality of acale of both photographs. If, for example, it is cound that the image of the solar spectrograph is the larger of the two it becomes neccessary to adjust the object glass O_{1} farther

 bume, by perminuion of Julise Soploger. Berlin

FIG. 24. from the stellar apectrograph. This has the effect of forming the image of the latter farther from the observer's eye. and so it becomes necemary to turn the handle of the rack-pinion V in such a way as to move the prisms P_{1} and P_{4} nearer to P_{1} till the lines of the atellar apectrograph are again sharply in cocus. The effect of turning the panion V is, of course. to displace the focus both of the solar and stellar spectrographs ln the field of the eyepiece, but this displacement is easily restored by the focussing screws O_{1} and O_{2}. By successive adjuatments of this kind condition (3) can be accurately realuzed
These three adjurtments having been made, the prisms P_{3} and P_{4} are removed and replaced by another prism in which the silvering is arranged as in fig. 24, where the hatched lines denote the silvered vurfaces The narrow tongucs of the silvered aurface will now reflect corresponding parts of the star-spectrograph, and will obliterate correaponding parts of the solar spectrograph-as shown in figs. 25 and 26. Fig. 25 shows the stelar and solar lines of the two spectrographs in coincidence. whilst the metallic lines of comparison are non-coincident. Fig. 26 shows the metallic lines of comperison ia coincidence whilst the colar and steltar lines are non-coincident. It is obvious that these two conditions can be produced at the will of the observer by amply turning the screw S, and that the difference of the readings of the screw-hcad, which are required to reproduce the two conditions in question, gives a measure of the displacement of the atchllar lines relative 10 the solar lines. If then the screw-value in kiiometres per second is knowa for the neighbourhood of each of the comparison lines employed. the redial velocity of the otar can be independently derived directly from coincidences made in above manner in the
neighbourthood of each comparison line. For the epecial purpose of determining the solar parallax this instrument has been used in a mont refined and perfect manner by Dr Halm at the Cape of Good Hope (Ammals of the Cape Observatory, vol. x. pert 3).

Fig. 25.

 Fig. 26.
Double Image Micrometars are deacribed in the article HelioMgTER (q.v.).
(D. GL.)

MICRONESLA (from Gr $\mu \mu \mathrm{kpbs}$, small, and भīoos, island), one of the three great divisions of the oceanic islands in the central and western Pacfic. Lying to the north of Melanesia, it embraces the following groups Mariana, Pelew, Caroline, Marshall and Gilbert. See articles under these headings, and Pacific Ocean (section on Islands).

The Micronesian islanders form in the main a branch of the Polynesian race, but distinguished from it by well-marked dafferences in appearance, language and institutions. Many of the islanders, however, show signs of hybridism. The proximity of Japan and the Philippines ' on the west, and of the Papuan
1 There are authenticated instances of Japanese junks, with living people in them, having been found in various parts of the North Pacific. In 1814, the British brig "Forester " met with one off the coast of California (about $30^{\circ} \mathbf{N}$. lat). with three living men and fourteen dead bodies on boand. In Derember 1832 a Japanese junk arrived at the Hawaiian Islanda, with four of the crew living. If these junks could cross the Pacific in the latitude of Hawaii it is not at all unlikely that others running in a south-easterly direction would reech zome of the many atolls which stretch over about 35° of longitude. forming the Caroline and Marshall archipelagoea.
The traditions of the Gilbert Islander: tell us that their islande
and South Polynesian islands on the south and southeast, suggests, what in fact is found, a combination of races. In some places the oblique Mongolian eye is noticed, and (together with certain Indo-Chinese customs) there is often a scantiness of beard and general " Malay " look, which increases west wards, and seems to imply relations with the archipelago subsequent to the departure thence of the pure Polynesians. In the Gilberts the traces of Polynesian (Samoan) influences are evident, and are confirmed by tradition. Among the Carolines and the Marshalls darker and more savage communities are found, suggesting a Melanesian element, which is further traceable in the Ebon (Marshall) and other languages.
Each of the four main groups, viz. the Caroline, Marshall, Gllbert and Ladrone (Mariana), from long isolation, has developed ethnological peculiarities of its own. The most advanced folk were the "Chamortos" of the Ladrones, owing to the greater natural resources of the islands, and perhaps more frequent contact with influences from the west; hut as a separate people they no longer exist, having been nearly exterminated by the Spaniards in the 17th century. Next in advancement come the Caroline islanders. The general Micronesian type is a well-proportioned rather slightly buill figure, with smali and regular icatures: head high and well proportioned, but forehead rather retreating and narrow at the temples; check bones and chin slightly prominent; straight black hair, lanker than that of the Polynesians, colour somewhat darker than the Polynesians, the Marshalis being darker and more vigorous than the Carolines, while the Gilbert type, though smaller than the latier, is still darker and coarser. The upper class greatly surpasses the common people in physique and intelligence.

There is a division of society into septs or clans, the membership of which constitutes the closest tie. Persons of the same sept must not intermarry, and when two islands or communities meet in war the members of one sept, however widely separated by distance of space or time. will not injure or fight with each other. Each cornmunity is usually composed (but there are local differences) of-(1) an upper class of chiefs, from among whom the head (lamod or iros) is chosen; (2) a lower but still noble class; and (3) common people, mostly without rights of property. These last are only allowed one wife. Here and there are traces, as in Tonga, of a spiritual sovereign, the descendants probably of a conquered dynasty. Succession is through the female side, which assures to women a certain position, and leads beatdes to some curious results (see paper by J. S. Kubary in Das Ausland, 1880, No. 27). The upper class are the keepers of traditions, boat-builders, leaders of expeditions; tattooing is generally done by them. the amount increasing with a man's rank; the custom here atill has definite religious associations. Both wexes are tattooed.

The Marshall Islanders are the boldest and most akilful mavigators in the Parific. Their voyages of many months' duration, in great cances sailing with outrigger to windward, well-provisioned, and depending on the skies for lresh water, help to show how the Pacific was colonized. They have a sort of chart, medo, of small Pticlas tied together, representing the positions of islands and the directions of the winds and currents. A two-edged weapon, of which the blade is of sharks' teeth, and a defensive armour of braided sennit, are also peculiar to the isiands; a large adze, made of the rhell of the Tridacna gigas (the largest bivalve known), wat formerly used in the Carolines, probably by the old bulder race.
The dialects of Micronesia, though grammatically alike, differ widely in their vocabularics. They have the chief characteristics of the Polynesian, with Malay affinities, and peculiarities such as the use of suffixes and inscparable pronouns and, as in Tagal, of the infix to denote changes in the verb; in the west groupe there is a tendency to closed syllables and double consonants, and a use of the palatale ch, j. sh, the dental $i h$, and s (the last perhaps only in foreign words), which is alien to the Polynesian. These letters are wanting in the Gilbert language, which differs considerably from all the others, and has much greater affinities with the Polynesian. Most words take the accent on the penult. In some of the dialects there appeare to be no true article, but in the Gilbert Islands the Polynesian te is used for both defnite and indefinite article. Gender is sexual only. Number in the noun is either gathered from the
were peopled from the weat and also from the cast. Those who came from the east are expressly said to be from Samoa. Those from the west were more numcrous than those from the east. There are also traditions of the arrival of other st rangers at some of these islands. On the island of Peru. in the Gilbert group, in 1869 there was still the remnants of a large proah which. from the description given, appears to have been like those used in the Indian Archipelago.
requirement of the mense or is marked by pronominal words ar numerals. Case is known by the position of the noun in the sentence or by prepositions. In the language of Ebon, one of the islands in the Marshall archipelago, nouns have the peculiarity which is characteristic of the Papuan languages: those which indf cate close relationship-as of a son to a father, or of the members of a person's body-take a pronominal suffix which gives them the appearance of inflexions. Many words are used indiscriminately as nouns, adjectives or verbs, without any change of form. In some languages the personal pronouns are singular, dual and plural. In others there are no special dual forms, but the numeral For two is used to indicate the dual. In the Ebon languive there are inclusive and exclusive forms of the personal pronoun; which, sso far as has been ascertained, do not occur in any of tie other llanguages. The verbs usually have no inflexions to express. re llations of voice, mood, tense, number of person-such dintinction being indicated by particles. In the Ebon language, however, the tenses are sometimes marked; but in that the simple form of the verb is frequenily given. All have verbal directive particies. In 1 Ponape, one of the Caroline Islands, many words of ceremony are used in addressing chiefs, as they are used in Samoa. Thr: Cutom of tabooing words is also found there as it is in the P-lynesian languages.

The religious mythe are gerculdy jucotifind wid the Sulynesian, but a beliel in the gods proper is overshadowed by a general deification of ancestors, who are supposed from time to time to occupy certain blocks of atone, set up near the family dwelling, and surrounded by circles of smaller oncs. These stones are anointed with oil, and worahipped with prayer and offerings, and are also used for purposes of divination, in which, and in various omens, there is a general belief. In the Marshalls, in place of these stones, certain palm trees are similarly enclosed. The spirits aiso sometimes inhabit certain birds or fishes, which are then taboo, as food, to the family; but they will help to catch them for othern. Templees are very rare, though these blocks of coral are cometimes surrounded by a roofless enclosure opening to the west. The bodies of the dead, and sometimes even of the sick, are despatched to eea westwards, with certain rites; those of the chiefs, however, ane buried, for the order has something essentially divine about it; their bodiet thercfore are sacred, and their spirits naturally assume the position above described. Such a belief greatly strengthened the king's authority, for the spirits of his ancestors were aecesaarily more powcrful than any other spirits. Thus too it comes that the chiefs, and all belonging to them, are taboo as regards the common pcople. There are various ofher subjecte and occasions of taboo, but the inatitution has not the oppressive and all-pervading character which it has in Polynesia. Its action is often economical or charitable, e.g. the ripening coco-nuts are taboo as long as the breadfruit lasts, thus securing the former for future use; or it is put on after a death, and the nuts thus saved are given to the familya kindness to them, and a mark of respect for the dead.

The houses in the Gilberts and Marshalls (much less elaborate than in the Carolines) consist merely of a thatched roof reating on posts or on blocks of coral about 3. ft . high, with a floor at that level, which is reached from an opening in the centre. On this the principal people sleep, and it serves as a storehouse inaccessible to rats, which infest all the islands.

HICRONTCLEUS, the smaller nucleus in Infusoria (q.v.). In fission it divides by mitosis, and in conjugation furnishes the pairing or gametonuclei, by whose reciprocal fusion a zygotenucleus is formed, which gives rise to the meganuclei and micronuclei of the individuals of the next cycle of fission.

MICROPEGEATITE, in petrology, a very fine intergrowth of quartz and alkali felspar, occurring as the last product of consolfdation in many igneous rocks which contain high or moderately high percentages of silica. It shows the same structure on a minute scale as certain pegmatites ($q . v$.) or coarse granitic veins do on a large scale (see Petrology, Pl. 2, figs. 6 and 8); the quartz forms angular patches senttered through a matrix of felspar. In polarized light the separate arcas of each mineral extinguish at the same time, and this proves that even though apparently discontinuous they bave the same crystalline orientation. The felspar may be considered an irregular crystal of spongy structure, the interstices being filled up by another spongy crystal of quartz. This kind of mineral intergrowth is said to be "graphic," because the coarsely graphic veins have triangular quartz areas dotted over a felspathic background resembling certain primitive inscriptions. Micropegmatite differs from "graphic granite" only in being so much finer grained that jts nature can only be detected with the microscope. The felspar of micropegmatite is usually orthoclase, but sometimes albite, oligoclase or microcline. Occasionally it has crystalline form, and then it has been proved that the quarte
may he so disponed that the two minerals have a definite relation between their crystallographic axes (parallel growth). The quartz typically occurs as angular patches; at other times it forms club-shaped, curved or vermiform threads (vermicular micropegmatite, myrmekite), and then some authors consider that the felspar has been corroded and the quarts fills up the spaces thus produced (quarts de corrosion of French petrographers). Micropegmatite is often so fine grained that even in the thinnest sections and with high powers it cannot be resolved into its components. This fine micropegmatito resembles threads, having a divergent arrangement In some rocks the whole ground mass consists of such spherulitic growths of fibrous micropegmatite (see Quartz-Porphyry); in their centres there is often a quartz or felspar crystal, the outer boundaries of the spherulites are not usually circular but irregular owing to the interlocking of adjacent spherulites at their margins ("granophyric structure "). Micrographic structures may occur in other minerals, e.g. quartz and garnet, cordierite, epidote or hornblende, augite and felspar, but are less common, and the name micropegmatite is usually reserved for aggregates of quartz and felspar.
In rock where micropegmatite frequently occurs (e.s. granite, porphyry and granophyre, quartz-diorite) it is usually the last product of consolidation, and reprewente the mother liquor left over after the other minerals had separated out in more or leas perfect crystals. Hence it hat no definite form of fis own, bat ills up the irregular interapaces between the earlier crystalizations. For that reason it has been compared to a eutectic, and supposed to be the mixture of quartz and felspar which has the lowest fuafon point. Eutectics are common in alloys and of ten have a very perlect micrographic structure. The eutectic mixture of quarts and orthoclase has been estimated to contain $70-75 \%$ of the latter. This theory, bowever, is not whthout its difficulties; analyses of micropegmatite prove that its componition is by no meansconstant (this may perhaps be due to small admixtures of soda and lime (elspars); and experimental rescarches on the fusion points of mixtures of quartz and felspar have not yet shown that there is definite mixture which melta at a lower temperature than any other. Furthermore micropegmatite is not always the last consolidation product, as a eutectic should be, but may oocur as weltchaped phenocygts lying in a felatic or glasey matrix which solidified at a still later time. Micrographic structures in the minerals of igneous rocks prove only that these minerale crytallized simultaneously.
(J. S. F.)

MICROSCOPE (Gr. unpos, small, σ кoreí, to view), an optical instrument for examining small ohjects or details of such objects; it acts by making the angles of vision under which the images appear greater than when the objects themselves are viewed hy the naked eye.
Microscopes are distinguished as simple and componnd. A simple microscope consists of a single positive lens, or of a lens combination acting as a single lens, placed between the eye and the object so that it presents a virtual and enlarged image. The compound microscope generally consists of two positive lens systems, so arranged that the system nearer the object (termed the objective) projects a real enlarged image, which occupies the same place relalively to the second system (the eycpiece or ocular) as does the real object in the simple microscope. An image is therefore projected by the ocular from the real magnified image produced by the objective with increased magnification.

History of the Simple Microscope.-Any solid or liquid transparent medium of lenticular form, having either one conver and one flat surface or two convex surfaces whose axes are coincident, may serve as a " magnifier," the essential condition being tbat it shall refract the rays which pass through it so as to cause widely diverging rays to become either parallel or but slightly divergent. Thus if a minute object be placed on a slip of glass, and a single drop of water be placed upon it, the drop will act as a magnifier in virtue of the convexity of its upper surface; so that when the eye is brought sufficiently near it (the glass being held borizontally) the object will be seen magnifed. Again if a amall hole be made in a thin plate of metal, and a minute drop of water be inserted in it, this drop, having two convex suxfaces, will serve as a still more powerful magnifier. There is reason to believe that the magnifying power of transparent media with
convex surfaces wis very early known. A conves lens of rockcrystal was found by Layard among the ruins of the paince of Nimrud; Seneca describes hollow spheres of glass filled with water as being commonly used as magnifiers.
The perfect gem-cutting of the ancients could not have been attained without the use of magnifiers; and doubless the artificers who executed these wonderful works also made them. Conver glass lenses were first generally used to assist ordinary vision as "spectacies"; and not only were spectacie-makers the first to produce glass magnifiers (or simple microscopes), bat by them also the telescope and the compound microscope were first invented. During the Thirty Years' War the simple microscope whs widely kcown. Descartes (Dioptriquc, 1637) deacribes microscopes wherein a concave mirror, with its concavity towards the object, is used, in conjunction with a kens, for illuminating the object, which is mounted on a point fixing it at the focus of the mirror. Antony van Leeuwenboek appears to be the first to succeed in grinding and polishing lenses of such short focus and perfect figure is to render the simple microscope a hetter instrument for most purposes than any compound microscope then constructed. At that time the "compass" microscope was in use. One leg of a compass carried the object, and the other the lens, the distance between the two being regulated by a screw. Stands were also in tase, permitting the manipulation of the object by hand. Robert Hooke shaped the minutest of the lenses with which he made many of the discoveries recorded in his Micrographia from small glass globules made by fusing the ends of threads of spun glass; and the same method was employed by the Italian Father Di Torre. Early opticians and microscopists gave their chief attention to the improvement of the simple microscope, the principle of which we now explain.

Sifple Microscope

Position and Sise of the Image.-A person with oormal vision can see objects distinctiy at a distance varying from ten inchee to a very great distance. Ohjects at different distances, however. are not seen distinctly simultaneously, but in succession. This is effected by the power of accommodation of the eye, which can so aleer the focal length of its crystalline lens that images of objects at different distances can be produced rapidly and distinctly one after another upon the retina.
The angle under which the object appears depends upon the diotance and size of the object, or, in other words, the size of the image on the retina is determined by the distance and the dirmeasions of the object. The ratio betweed the real size of the object y ($\mathbf{f g}$. I)

Fig. 1.
and the distance $?$, which is equal to the tangent of the viraal angie w, is termed the "apparent size" of the object. From the figure, which representa vision with motionless eye, it is seen that the apparent size lncreases as the object under observation is approached. The greater the visual angle, the more distinctly are the details of the object perceived. Oa the other hand, as the observer recedes from the object, the apparent sixe, and also the image on the retina diminishes; details become more and more confused, and gradually after a while, disappear altogether, and ultimately the external configuration of the object as a whole is no longer recognizable. This case arises when the visual angle, under which the object appears, is approximately a minute of arc; it is due to the physiotogical construction of the retina, for the ends of nerve fibres, which feceive the Impression of light, have themselves a definite size. The lower limit of the resolving power of the eye is reached When the distance is approximately 343^{8} times the sixe of the object. If the object be represented by two separate pointe these points would appear distinct to the normal eye only so long as the distance between them in at the most only 343^{8} times smaller than their distance from the eye. When the latter distance is increased still further, the two appear as one. Therefore when li is desired to distinctly recognize exceedingly small objects or details of surch. they are brought as near as possible to the eye. The eye is at rained in bringing its focal length to the smallest possible amount, and when this strain is long continued it may cause pain. When the shortest distance obtained by the highest strain of accomnodation is insufficient to recognize small objects, distinct vision is possible at even a sborter distance by placing a very small diaphragm
yetween the eye and the object, the pencils.of rays proccu ing from the object-pointa, which otherwise are limited by the pupitio of the eye, being thus restricted by the diaphragm. The objcec: is then projected with such acute pencils on the plane focused for, in this case on the plane on which the eye can just accommodate iself, that the circle of confusion arising there is aritl so small that it is below the limit of angular visual dietinctness and on hat eccount appears as a sharp point. However, the loss of light in this procedure is extraordinarily large, so that only most intuusely illuminated objects can be investigated.
A naked short-sighted eye, which would be corrected for distant objects by a spectacie glase of - 10 diopters, may approach the object up to about 4 in . and have a sharp image upon the retina without any strain whatever. For the observation of small objects, a myopic eye is consequently superior to a normal eye; and the normal eye in its turn is superior to the hypermetropic one. When the details are no longer recognizable by the unaided eye, the magnifying, glass or the simple mitroscope is necessary, As a rule large magnification is not demanded from the former, but a larger feld of new, whilst the simple microscope should ensure powertul magnification even when the field is small. The simple microscope enlarges the angle of vision, and does not tire the eye when it is arranged so that the image lies in the farthest limit of distinct vision (the punctiwm remotum). A normal eye will therefore see an image lormed by the magnifying ghase most conveniently when it is produced at a great distance, i.e. when the object is in its front focal plane. II y (fig. 2) be the object the image appears to a nompal

Fig. 2.
eye situated behind the system L with pasaive accommodation at A very great distrance under the angle w. Since $\mathrm{H}^{\prime} \mathrm{P}=\mathrm{FO}=y_{c}$ from the focal length of the simple microscope, the visual angle - is given by

in which $f^{\prime \prime},=H^{\prime} \mathrm{F}^{\prime \prime}$, is the image-side focal length (see Levs) Since the lens is bounded by air, the image- and object-side focal lengths $f^{\prime \prime}$ and f are equal. The value $\mathrm{I} / \mathrm{f}^{\prime}$ or V in (r). is termed the porver of the lens. In most cases the number of "diameters" of the simple microscope is required; i.e. the ratio between the appareat sizes of the object when observed through the microscope and when viewed by the naked eye. When a person of normal vision views a small object, he brings it to the distance of distinct vision, which would average about 10 in. The apparent size is then (fig. 1) tan $w=y / l$, where $l=10$ in., whilst the apparent size of the object viewed through the magnifying glass would result from the formula (1) $\tan w^{\prime}=$ y/f. Consequently the number of diameters will be

$$
\begin{equation*}
N=\tan w^{\prime} / \tan w-y / f . l / y=l / f=V i \tag{2}
\end{equation*}
$$

it is thus equal to the magnifying power multiplicd by the distance of distinct vision, or the number of times that the focal length is contained in 10 in .
Since this value for the distance of distinct vision is only conventional, it is understood that the capacity of the simple microscope given in (2) holds good only for eyes accustomed to examine small objects to in. away: and observation through the magnifying glass must be undertaken by the normal eye with passive accommodation. A lens of 1 in . focal length must be spoken of, according to this notation, as a x io lens, and a lens of fin. focal length as a $\times 100$ lens. Obviously the position of a normal eye free from accommodation is immaterial for determining the magnification. A $\times 10$ magnification is, however, by no means guaranteed to a myopic eye of -10 D hy a lens of I in. focua, Slince this shortuighted observer can view the object with the naked eye with no inconvenience to himself at 4 in. distance, it follows (to him) the apparent size is tan $w=y / 4$; and to secure conyenient vision through the lens the short-sighted person would bring the object to such a distance that a virtual, magnified image would be projected in his punctum remotum. In addition it will be supposed that the centre of the pupil of the observer coincides with the back focal point of the system. The apparent size of the object seen through the lens is then tan $w^{\prime}-y / f$. The magnification, resulting from the simple microscope of $:$ in. locus, is here $N=\tan w^{\prime} / \tan w=$ $y / f .4 / y=4 / f=4$. Thus, while a lens of 1 in. focal kength assures to the normal-sighted person a $\times 10$ magnification, it afords to the short-sighted individual only $\times 4$. On the other hand. it is even of greater use to the hypermetropic than to the observer of normal sight. From this it appears that each observer obtains specific advantages from one and the same simple microscope, and also the individual observer can obtain difierent magnifications by either using different accommodations, or by viewing in pasivive accommodation.

Regulation of the Rays. LI In using optical instruments the eye in general is moved just as in free vision t that is to say, the attention is fixed upon the individual parts of the image one after another, the eye being turned in its cavity. In this case the eye is alway directed so that the part of the image which is wished to be viewed exactly falla upon the most sensitive portion of the retina, viz. the macula luter (yellow spot). Corresponding to the size of the yellow spot only a small fraction of the image appears particularly distinctly. The other portions which are reproduced on the retina on the regions surrounding the yellow spot will also be perceived, but with reduced definition. These external and less tensitive parts of the retina, therefore, merely give information as to the general arrangement of the objects and to a certain extent act as guide-post in order to show quickly and conveniently, although not distinctly, the places in the image which should claim special attention. Vision with a motionless eye, or "indirect vision," gives a general view over the whole object with particular definition of a small central portion. Vision with a movable eyc, or "direct vision," gives exact information as to the parts of the object one nfter another.
The simple microscope permits such vision. If the instrument has a sensible lens diameter, and is arranged so that the centre of rotation of the eye can coincide with tbe intersection of the principal rays, the lens can then form with the eye a centred system. Such lenses are termed "lenses for direct vision." By moving the eye about its centre of rotation M the whole field can be examined. The margin of the mount of the lens scrves as the diaphragm of the field of view. The selection of the rays emerging from the lens and actually employed in forming the image is undertaken by the pupil of the eye which, in this case, is consequently the exit pupil of the instrument. In fig. $3 \mathrm{P}^{\prime} \mathrm{P}_{\mathrm{s}}^{\prime}$ designates the exit pupil of the

[Fig. 3.
lens, and the image of $\mathrm{P}^{\prime} \mathrm{P}_{\mathrm{l}}^{\prime}$, i.e. PP_{h}, which is formed by the lens, limits the aperture nf the pencils of rays on the object-side; consequently it is the entrance pupil of the instrument. Since the exit pupil moves in observing the whole fick, the entrance pupil also moves. The principal rays, which on the object-side connect the object-points with the centre of the entrance pupil. intersect the axis on the image-side at the centre of rotation M of the eye. \mathbf{M} is therefore the intersection of the principal rays.

So long as the exit pupil is completely filled the brightness of the image will be approximately equal to that of free vision. If, however, we fix the points lying towards the margin of the field of view, the diaphragm gradually cuts off more and more of the rays which were necessary to fill the pupil, and in consequence the brightness gradually falls off to zera. This vignetting can be observed in all lenses.
In most cases, and also in corrected systems, the intersection of the principal rays is no longer available for the centre of rotation of the eye, and this kind of observation is impossible.

In come instruments observation of the whole available field is only possible when the head and eye are moved at the same time the lens retaining its position. Dr M. von Rohr terms this kind of vision "peep-hole observation." It has mainly-to be considered in connexion with powerful magnifying glasses. In most cases a diaphragm regulates the rays. Fig. 4 shows the position of the diaphragms to be considered in this kind of observation. ${ }^{\prime} P_{3}$ is the entrance pupil, $\mathrm{P}^{\prime} \mathrm{P}^{\prime}$ ' the exit pupil, and GG the diaphragm. The intersection of the principal rays in this case lies in the middle of the entrance pupil or of the exit pupil. By head and eye motion the various parts of the
 whole field can be viewed one after another. The distance of the eye from the lens is here immaterial. In this case also the illumination must fall to zcro by the vignetting of the pencils coming from objects at the margin of the field of vicw. C and D are the outermost rays which can pass through the instrument.

Magnilying glasses are often used for viewing three-dimensional objects. Only points tying on the plane focused for can be aharply reproduced in the retins, which acts as object-plane to the retine.

All points lying out of this plane are reproduced as circles of conCusion. The central projection, of which the centre is the middle point of the entrance pupil on the plane focused for, will show in weaker systems, or those very much stopped down, a certain finite depth of definition; that is to say, the totality of points, which lie out of the plane focused for, and which are projected with circles of confusion so small that they appear to the eye as sharp points, will include the sharp object relief, and determine the depth of definition of the lens. With increasing magnification the depth of definition diminishes, because the circles of confusion are greater in consequence of the shorter focal length. Very powerful simple microscopes bave hardly any depth of definition so that in fact only poiats lying in one plane can be seen sharply with one focusing.
Illumination.-So long as the pupil of the observer alone undertakes the regulation of the rays there is no perceptible diminution of illumination in comparison with the naked eye vision. The losses of light which occur in this case are due to refection, which takes place in the passage of the light through the glass surfaces. In a lens with two bounding surfaces in air there is a loss of about 9%; and in a lens system consisting of two separated lenses, i.e. with four surfaces in air, about 17%. Losses due to absorption are almost zero when the lenses are very thin, as with lenses of small diameter. A very marked diminution in illumination occurs, however, when the exit pupil of the instrument is smaller than the pupil of the eye. In such instruments an arrangemeat is often required to intensely illuminate the object.
Forms of the Simple Microscope.- If the ordinary convex lens be employed as magnifying glass, great aberrations occur even in medium magnifications. These are: (1) chromatic aberration, (2) spherical aberration and (3) astigmatism (see Aberpation).

When the pupil regulates the aperture of the rays producing the image the aberrations of the ordinary lenses increase considerably with the magnification, or, what amounte to the same thing, with the increase in the curvature of the surfaces. For lenses of short focus the diameter of the pupil is too large, and diaphragms must be employed which strongly diminish the aperture of the pencils, and so reduce the errors, but with a falling off of illumination. To reduce the aberrations Sir David Brewster proposed to employ in the place of glass transparent minerals of high refractive index and low dispersion. In this manner lenses of short focus can be produced having lower curvatures than glass lenses necessitate. The diamond has the requisite optical properties, its index of refraction being about $t \cdot 6$ times as large as that of ordinary glass. The spherical aberration of a diamond lens can be brought down to one-ninth of a glass lens of equal focus. Apart, however, from the cost of the mineral and its very difficult working. a source of error lies in its want of homogeneity. which often causes a double or even a triple image. Similar attempts made by Pritchard with sapphires were more suceessful. With this mineral also spherical and chromatic aberration are a fraction of that of a glass lens, but double refraction, which involves a doubling of the tmage, is fatal to its use. Improvements in glass lenses, however, have rendered further experiments with precious stones unnecessary. The simplest was a sphere of glass the equator of which (i.e. the mount) formed the diaphragm. Wollaston altered this by taking two plano-convex lenses, placing the plane surfaces towards each other and employing a diaphragm between the two parts (fig 5).

Wollaston. Brewster. Brewster (Stanhope).

Fig. 5.

Fig. 6.

Fig. 7.

Sir David Brewster found that Wollaston's form worked best when the two lenses were liemispheres and the central space was filled up with a transparent cement having the same refractive index as the glass: he therefore used a sphere and provided it with a groove at the equator (see lig. 6). Coddington employed the same construction. and for this reason this device is lrequently called the Coddington lens; although he brought the Wollaston-Brewister lens into general notice, he was neither the inventor nor chimed to be. This lens reproduced all points of a concentric spherical surface simultancously sharp. A construction also employing one piece of giass forms the so-called Stanhope kens (fig. 7), which was really due to Brewster. This is a glass cylinder, the two ends of which are spherical surfaces. The more strongly curved surface is placed next the eye, the other serves at the same time as specimen carrier. This lens is employed in articles found in tourist resorts as a magnifying glass for miniature photographs of the locality.

Doubleds, \&c.-To remove the errors which the above lenses showed, particularily when very short focal lengths were in question, lens comblations were adopted. The individual
components required weaker curvatures and permitted of being more correctly manufactured, and, more particularly, the advantage of reduced aberrations was the predominant factor.
Wollaston's doxblet (fig. 8) is a combination of two plano-convex lenses, the focal leagths of which are in the ratio of $3: 1$; the plane Wolleston. Fraunhofer. Wilson. Steinheil. Chevalier (Bricke).

Fic. 8.
sides are turned towards the object, and the smaller of the two lenses is nearer the object. This construction was further improved (1) by introducing a diaphragm between the two lenses; (2) by altering the distance between the two lenses; and (3) by splitting the lower lens into two lenses. Triplets are employed when the focal length of the simple microscope was less than $\mathrm{r}_{0} \mathrm{in}$. When well made such constructions are almost free from spherical aberration, and the chromatic errors are very small. Similar doublets composed of two plano-convex lenses are the Fraunhofer (fig. 9) and the Wilson (fig. 10). Axial aberration is reduced by distributing the refraction between two lenses; and by placing the two lenses farther apart the errors of the pencils of rays proceeding from points lying outside the axis are reduced. The Wilson has a greater distance between the lenses, and also a reduction of the chromatic difference of magnification, but compared with the Fraunhofer it is at a disadvantage with regard to the size of the froe working distance, i.e. the distance of the object from the lens surface nearer it.
By introducing a dispersive lens of fint the magnifying glass could be corrected for both chromatic and spherical aberrations. Browning's "platyscopic" lens and the Steinheil "aplanatic" lens (fig. 11) are of this type. Both yield a field of good definition free from colour.
The manner in which the eye uses such a lens was first effectively taken into account by M. von Rohr. These anastigmatic lenses, which are manufactured up to $\times 40$, are chromatically and spherically corrected. and for a middle diaphragm the errors of lateral pencils, distortion, astigmatism and coma are eliminated. "Peephole ' observation is employed, observation being made by moving the head and sye while the lens is leld steady. Even in powerful magnifications a good image exists in all parts of a relatively large field, and the free working distance is fairly large.

For especially large frce working distances life corrections proposed by Chevalier and carried out by E. Bracke must be noticed (fig. 12). To an achromatic collective lens, which is turned towards the object, a dispersive lens is combined (this type to a certain extent belongs to the compound microscope). By altering the distance of the collective and dispersive members the magnification can be widely varied. Through the large free working distance. which for certain work offers great advantages, the size of the field of view is diminished.
In magnifying glasses for direct vision the eye must always be considered. The lens is brought as close as possible to the eye so as to view as large a ficld as possible. The watchmaker's glass is one of the carliest forms of this kind. Gullstrand showed how to correct these lenses for direct vision, i.e. to eliminate distortion and astigmatism when the centre of rotation of the cye coincided with the point where the principal rays crossed the axis. Von Rohr fulfilled this condition by constructing the Verant lens, which are low power systems intended for viewing a large flat feld.
Stands.-For dissecting or examining objects it is an advantage to have both hands free. Where very shorr focus simple microscopes are employed, using high magnifucations, it is imperative to employ a stand which permits exact focusing and the use of a special illuminating apparatus. Since, however, only relatively low powers are now employed, the ordinary rack and pinion movement for focusing suffices, and for illuminating the object only a mirror below the stage is required when the object is transparent, and a condensing lens above the stage when opaque.
Dissecting stands vary as to portability, the size of the stand, and the manner in which the arm-rests are arranged. A stand is shown in fg. 57 (Plate). On the heavy horseshoc foot is a column earrying the stage. In the column is the guide for the rack-andpinion movement. Lenscs of various magnifications can be adapted to the carricr and meved about over the stage. The rests can be attached to the stage, and when done with folded together. Illumination of transparent ohjects is effected by the universal-jointed mirror. By turning the knob A, placed at the front cofner of
the atage, a black or white plate, forming a dark or light background, can be swung underneath the specimen.
When the recognition of the arrangement in space of small objects in desired a stereoscopic lens can be used. In most cases refracting and reflecting systems are arranged so that the natural interpupillary distance is reduced. Stereoscopic lenses can never be powerful systems, for the main idea is the recognition of the depth of objects, so that only systems having a sufficient depth of definition can be utilized. Very often such stereoscopic lenses, owing to laulty construction, give a false idea of space, ignoring the errors which are due to the alteration of the inter-pupillary distance and the visual angles belonging to the principal rays at the object-side (see Binocular Instrumbnts).

Corpound Microscope

The view held by early opticians, that a compound microscope could never produce such good images as an instrument of the simple type, has proved erroncous; and tbe principal attention of modern opticians has been directed to the compound instrument. Although we now know how the errors of jenses may be corrected, and how the simple microscope may be improved, this instrument remains with relatively feeble magnification, and to obtain stronger magnifications the compound form is necessary.
By compounding two lenses or lens systems separated by a definite interval. a system is obtained having a focal length considerably less than the focal lengths of the separate systems. If f and f^{\prime} be the focal lengt hs of the combination. f_{1}, f_{1}^{\prime} and f_{2}, f_{3}^{\prime} the focal lengths of the two components, and Δ the distance between the inner loci of the components, then $f=-f_{1} f_{2} / \Delta, f^{\prime}=f_{i}^{\prime} f_{i}^{\prime} / \Delta$ (see LENS). Δ is also equal to the distance $F_{1}^{\prime} F_{2}$. The arcented fs are always on the image side, whilst the unaccented are on the object side. From this formula it follows, for example, that one obtains a switem if $\frac{1}{h}$ in. focal length by compounding two positive syitms of 1 in. each. whose focal planes, turned towards one another, are separated by 8 in.
A microscope objective being made in essentially the same way as a simple microscope, and the front focus of the compound system being situated before the front focus of the objective, the magnification due to the simple system makes the free object distance greater than that obtained with a simple microscope of equal magnification. Moreover, this distance between the object and eye is substantially increased in the compound microscope by the stand; the inconveniences, and in certain circumstances also the dangers, to the cye which may arise, for example by warming the object. are also avoided. The convenient and rapid change in the magnification obtained by changing the cyepiece or the objective is also a special advantage of the compound form.
In the commonest compound microscopes, which consist of two positive systems a real magnified image is produced by the objective. This permits researches which are impossible with the simple microscope. For example, the real image may be recorded on a photographic plate; it may be measured: it can be physically altered by polarization, by spect rum analysis of the light employed by absorbing layers, \&c. The greatest advantage of the compound microscope is that it represents a larger area, and this much more completely than is possible in the simple form. According to the laws of optics it is only possible either to portray a small object near one of the foci of the system with wide pencils, or to produce an image from a relatively large object by correspondingly narrow pencils. The simple microscope is subject to cither limitation. As we shall see later, one of the principal functions of the microscope objective is the representation with wide pencils. In that case, however, in the compound microscope a small object may always be represented by means of wider pencils, one of the fori of the objertive (not of the collective system) being near it. For the eyepiere the other rule holds; the object is represented by narrow pencils, and it is hence possible to subject the relatively great object, viz. the magnified real image, to a lurther representation.

History of the Compound Microscope. -The arrangement of two Ienses so that small objects can be seen magnified followed soon after the discovery of the telescope. The first compound miscroscope (discovered probably by the Middelburg lens-grinders, Johann and Zacharias Janssen about 1590) was a combination of a strong biconvex with a still stronger biconcave lens; it had thus, as well as the first telescope, a negative eyepiece. In 1646 Fontana described a microscope which had a positive eyepiece The development of the compound microscope essentially depends on the improvement of the objective; but no distinct improvement was made in its construction in the two centurles following the discovery. In 1663 the Italian Divini employed several doublets, i.e. pairs of plano-convex lenses, and his example was followed hy Griendl von Ach. But even with such moderate magnification as these instruments permitted many faults were apparent. A microscope, using concave mirrors, was proposed in 1672 by Sir Isaac Newton; and he was succeeded
by Barker, R. Smith, B. Martin, D. Brewster, and, above all, Amici. More recently these catadioptric microscopes were disregarded because they yielded unfavourable results. From 1830 onwards many improvements were made in the miscroscope objective; these may be best followed from a discussion of the faults of the image
Position and Size of Image.-In most microscopic observations the object is mounted on a plane glass plate or slide about 0.06 in thick, embedded in a liquid such as water, glyceriae or Canada balsam, and covered with a plane glasi plate of about 0.008 to 0.006 in . thick, called the cover-slip. II we consider the production of the image of an object of this kind by the two positive systems of a compound microscope shown in fig. 13, the objective L_{1} forms a real magnified image $O^{\prime} \mathrm{O}_{1}^{\prime}$; the object OO_{1} must therefore lie somewhat in front of the front focus F_{1} of the objective. Let $\mathrm{OO}_{1}=y_{1}, O^{\prime} \mathrm{O}_{1}$ $=y^{\prime}$, the focal distance of the image $\mathrm{F}_{1} \mathrm{O}^{\prime}=\Delta$, and the image-side focal length $f_{1}{ }^{\prime}$, then the magnification
$\mathrm{M}=\boldsymbol{y}^{\prime} / y=\Delta / \mathrm{f}_{1}{ }^{\prime}$.
(3)

The distance, Δ is called the " optical tube length.'
Weak and strong microscope objectives act differently. Weak systems act like photographic objectives. In this case the optical tube length may be altered within fixed limits without spoiling the image: at the same time the objective magnification M is also altered. This change is usually effected by mounting the objective and eyepiece on two telescoping tubes, so that by drawing apart or pushing in the tube length is increased or diminished at will. For strong objectives there is, however, only one optical tube length in which it is possible to obtain a good image by means of wide pencils, any alteration of the tube length involving a considerable spoiling of the image. This limitation is examined below.
When lorming an image by a microscope objective it often happens that the transparent media bounding the system have different optical properties. A series of objectives with short focal Penghs ape availate, whith ret mit the placing of a liquid leetween the eover-slip and the front lens of the ot jective; such lenses are known as Wimmersion systems !"; objectives beunded on boith sides by air are ealled "dry systems." The inmersion liquids in common use are water, glycerine, cedar-wood oil, monobromnaphthatene, \&ce. Immersion systems in which the embedding liquid, coverslip, immersion-ligusd and frone lens have equal refractive indices are called "homogencous immersion systerris." In immersion systenus the object-side focal dongth is greater than the imageside focal lengih. Nothing is altered as to objective magnificalion, however, as the first surface is plane. and the employment of the immersion means that the value of f_{1}^{\prime} is unaltered.
If we assume that a normal eye observes the image through the eyepiecr. the eyepicse must project a distant image from the real image produced by the objective. This is the case if the image $\mathrm{O}^{\prime} \mathrm{O}_{1}^{\prime}$ lies in the front focal plane of the eyepiece. in this case the opitcal tube length equals the distance of the adjacent focal planes of the two systems, which equals the distance of the image-side focus of the objective F_{1}^{\prime}. from the object-side focus of the eycpicce F. The image viewed through the eyepicce appears then to the observer under the angle $w^{\prime \prime}$, and as with the single microscope $\tan x^{\prime \prime} / y^{\prime}=1 / f_{i}^{\prime}$
where $f^{\prime \prime}$ is the image-side focal leogth of the eyepiece

To obtain the magnification of the complete microscope we must combine the objective magnification M with the action of the eycpiece. If we replace y^{\prime} in equation (4) by the value given by (3), we ohtain

$$
\begin{equation*}
\tan w^{\prime \prime} / y=\Delta / f_{1}^{\prime} . I / f_{2}^{\prime \prime}=V_{0} \tag{5}
\end{equation*}
$$

the magnification of the complete microscope. The magnification therefore equals the power of the joint system.

The magnification is also expressed as the ratio of the apparent aize of the object observed through the microscupe to the apparent size of the object scen with the naked eye. As the conventional distance for clear vision with naked eye is 10 in ., it results from fig. I that the apparent size is tan $z=y / l$. II this value of y be inserted in equation (5), we obtain the magnification number of the compound microscope:-

$\mathrm{N}=\operatorname{tas} \boldsymbol{\sigma ^ { \prime }} / \tan \boldsymbol{\operatorname { t o n }}=\Delta l / f_{1}^{\prime} f_{2}^{\prime}=\mathrm{V} l$.

The magnification number increases then with the optical tube-length and with the diminution of the focal lengt hs of objective and eyepiece.

As with the simple microscope, different observers see differently in the same compound microscope: and hence the magnification varies with the power of accommodation.

The image produced by a microscope formed of two positive systems (fig. 13) is inverted, the objective L_{1} tracing from the object OO_{1} a real inverted image $\mathrm{O}^{\prime} \mathrm{O}_{1}^{\prime}$, and the eyepiece $\mathrm{L}_{2} \mathrm{~L}_{2}$ maintaining this arrangement. For many purposes it is immaterial whether the image is inverted or upright : but in some cases an upright image lightens the work, or may be indispensable.

The simplest microscope which produces an upright image has a negative lens as eyepiece. As shown in fig. I4; the real image

Fig. 14.-Ray transmission in compound microscope with a negative eyepiece.
$L_{i}=$ weak achromatic objective.
$\mathrm{L}=\mathrm{m}, \mathrm{gative}$ eyepiece.
F_{1}, F_{1}^{\prime} zobject and im-agc-side foci of objective.
$F_{3}, \mathrm{~F}_{1}^{\prime}$ =object and im -agc-side foci of eyepiece.
p'pi=exit pupil of ob-
\mathbf{P}^{\prime} P'ective. virtual image of PiPi' $^{\prime}$ exit pupil
complete microscope. formed by the objective must fall on the object-side \{ocal plane of the eye piece F_{2}, where a normal eye without accommodation can ohsirve it. But as the object-side focus F_{z} lics behind the eyepicce, the real image is not produced, but the converging pencils from the objective are changed by the eyepiece into parallels; and the point O_{1} in the top of the object y appears at the top to the eye, i.c. the image is upright.

The erection of inverted images by prisms, which was applied to the simple telescope by Porro, and to the binocular (q.v.) by A. A. Boulanger was employed by K. Bratuscheck in the Greenough double microscope; these inverting prisms permit a convenient adaptation of the instrument to the interpupillary distance of the observer. Double microscopes, which produce a correct impression of the colidity of the object, must project upright images. The terrestrial cyepiece (see TELESCOPE), which likewise ensures an upright image, but which involves an inconvenient lengthening, has also been employed in the binocular microscope.
Regulation of the Rays.-Weak and medium microscope objectives work like photographic objectives in episcopic or diascopic projection: in the microscope, however, the projected image is not intercepted on a screen, but a real image in air is formed. This must lie in the front focal plane of the eyepiece if we retain the aupposition that it is to be viewed by a normal eye with passive accommodation. The plane in the objoct conjugate to the focal plane of the eye-piece is the plane focused for: and allo points in it are sharply portrayed (a perfect objective being astumed). Object points lying out of the focal plane, on the other hand, are projected as circles of confusion on the plane focused for, the centre of the entrance pupil being the centre of projection and the circles of confusion constituting', with the points of the focal plane, the object-side imogo. As the pencils waed in the representations are of wide aperture on the object-side, only buch points as are proportionately very near the focal plane can produce such small dispersion circles on the plane focused for, that they, so lar as the objective and eyepreoe-magnification permit, appear as points to the eye. It follows that the depith of definition
function of the aperture and the magnification, it can be increased by diminishing the entrance pupil, the magnification remaining unchanged. A diminution of the nperture, however, would injure a very much more important property, viz. the resolving power (see below). With powerful systems, object-points lying quite near the plane focused for would be represented by such large dispersion circles that practically only the points lying in one plane appear simultaneousty sharp; and it is only by varying the focus that the object-points lying in other planes can be observed.
The position of the diaphragm limiting the pencils proceeding from the object-points is not constant in the compound microscope. In all microscopes the rays are limited, not in the eyepiece, but in the objective, or before the objective when using a condenger. If the pencils are limited in the objective, the restriction of the pencil proceeding from the object-point is effected by either the front lens itself, by the boundary of a lens lying behind, by a real diaphragm placed bet ween or behind the objective, or by a diaphrasm-image.

The centre of the entrance pupil is the point of intersection of the principal rays; and it is therefore determinative for the perspective representation on the plane focused for. In fige is the centre of the

(Nter M. Y. Rohr.)
Fig. I5-Entocentric transmission chrough a microcoope objective.
$\mathrm{E}=$ plane focused for; $\mathrm{O}_{1}{ }^{*}, \mathrm{O}_{3}{ }^{*}=$ projections of $\mathrm{O}_{1} \mathrm{O}_{3}$ on $\mathrm{E} ; \mathrm{Z}=$ centre of projection; $P P_{1}$ =a virtusi image of real diaphragm P'Pi' with regard to the preceding part of the objective is the entrance pupil.
entrance pupil lies behind the focal plane, and consequently nearer objects appear larger, and farther objects smaller (" entocentric transmission," see below). If a diaphragm lying in the back focal plane of the objective forms the exit pupil for the objective, as in figs. 13 and 14, so that its image, the entrance pupil. lies at infinity, all the principal rays in the object-space are parallel to the axis, and we have on the object-side "telecentric "transmitaion. The size of the imago on the focal plane is always equal to its actual cize, and is independent of the distance of the object from the plane focused for. This representation acquires a special importance if the object be micrometrically measured. for an inaccuracy in focusing does not involve an alteration of the size of the image. To ensure the telecentric transmission, the diaphragm in the back focus of the objective may be replaced by a diaphragm in the front focal plane of the condenser, supposing that uniformly illuminated objects are being dealt with: for in this case all the principal rays in the object-space are transmitted parallel to the axls.

With uniformly illuminated objects it may happen that the pencil in the object-space may be limited before passing the object, either through the size of the source of light employed or through a diaphragm connected with the illuminating system. In fig. 16

(Afler M. . . Rohr.)
'Fig. 16.-Hypercentric transmission in a micrascope objective.
$\mathrm{E}, \mathrm{O}^{*}, \mathrm{O}^{*}$ and Z as in fig. 15. PP_{1} is the entrance pupil.
the intersection of the principal rays lies in front of the object, and consequently objects in front of the plane focused for will be projected on E magnified and the objects lying behind it diminished (" hypercentric" transmission). It produces a perspective representation entirely opposed to ordinary vision. As objects lying near us appear smaller in the case of hypercentric trantmission than those lying farther from us, we receive a false impression of the spatial arrangement of the object.

Whether the entrance pupil be before or behind the object, in general its position is such that it lies not too near the object, to that the principal rays will have in the object space only trifing inclinations towards one another or are strictly parallel. This is specially important, fur otherwise pencils from points placed somewhat laterally to the axis arrive with diminished aperture at the image.

Tie see from fig. i^{3} that the objective's exit pupil $P^{\prime} P_{1}^{\prime}$ is portrayed by the positive eyepicce, the image $P^{\prime} P_{1}{ }^{\prime \prime}$ limita the pencile
prooseding frow the eyeploce. Thi ireage $P^{\prime} P_{1}^{\prime \prime}$ is then the exit pupid of the combined system, and consequeatly the image of the entrance pupil of the combined system. Ao the exit pupil 'P'P:' for the objective lies before the front focus of the eyeplece, generally at some distance and near the objective. the eyepiece projects a real image from it behind its imageside focus, so that if this point is accessible it is the exit pupil $P^{\prime} P_{1}$ '. II, e.g. in the object-apace the objective has telecentric tranamission, the exit pupil must coincide with the back focal plane of the combined syatern, and it always lies behind the image-side focus of the eyepiece. The oxit pupil, often called Ramaden's circle, is thus acoesaible to the obeerver, who by bead- and eye-movements may survey the whole field.
We can now understand the ray transmisaion in the compound microscope, shown in fig. 13. Points of a small object (compared witb the focus of the objective) ecad to the objective wide pencils. The diaphragm limiting them, i.e. the entrance pupit, is placed to that the principal rays are eisher parallel or slightly inclined. The pencils producing the real image are very much more acute, and their inclination is the smaller the stionger the magnification. The eyepiece, which by means of narrow penciis represents the relatively large real image at infinity, transmits from all pointe of this real image parallel pencils, whereby the inclination of the principal rays becomes furt her increased. The point of intersection, i.e. the ceatre of the exit pupil, is acceasible to the eye of the observer. In the case of the negative eyepiece, on the other hand, the divergence of the principal rays through the eyepjece is also further augmented. but their point of intersection ls not accessible to the eye. This property shows the superiority of the collective eyepiece over the dispersive.
The increase of the inclination of the principal rays, which arise with the microscope, influences the perception of the relief of the object. In entocentric transmission this phenomenon appears in general as in the case of the contemplation of perspective represen. tailons at a too short distance, the objects appearing flattened. Although in the case of the spatial comprehension of a perspective representation experience plays a large part, in observing through a microncope it does not count, or only a little, for the object is presumably quixe unknown. In telecentric and bypercentric transmission we obtain a false conception of the spatial arrangement of the objects or their detaile; in these cases one focusess by turns on the different details, and so obtains an apptoximate idea of their spatial arrangement.

While the limiting of the pencil is almost always effected by the objective, the limiting of the field of view is effected by the eyepiece, and indeed it is carried out by a real diaphragm DD arranged in the plane of the real image $\mathrm{O}^{\prime} \mathrm{O}_{1}{ }^{\prime}(\mathrm{Gg} .13)$ projected irom the objective. The entrance window is then the real image of this diaphragm pmjocted by the objective in the surface conjugate to the plane focused for, and the cxit window io the image projected by the eyepiece; thi happens with the image of the object lying at infinity. The result must be that the feld of view exhibits a sharp border. In the case of the dispersive eyepiece, on the contrary, ao sharply limited field can arise, but vignetting must occur.

Illumination.- The dependence of the clearness of the image on the aperture of the system, i.e. on the angular aperture of the image-producing pencil, bolds for all instruments.

The brightnesses of image points in a median section of the pencil are proportional to the aperture of the lens, supposing that the rays are completely reunited. This is valid so long as the pencil is in air; but if, on the other hand, the pencil passes from air through a plane surface into an optically denser medium. e.g. water or glass, the pencil becomes mure acute and the aperture smaller But since no rays are lost in this transmission (apart from the slight loss due to reftection) the brightness of the image point in the water is as large as that in air, although the apertures have become less. Fig. 17 ghowe a pencil in air, A, dispersing in water, W, from the remiaperture m_{t}. or a pencil in water dispersing in air from the semiaperture w_{n}. If the value of the clearness in air be taken as sin m_{1}. then by the law of refraction $N=\sin s_{1} / \sin \mu_{2}$, the value for the clearness in water is $\mathrm{N} \sin u_{4}$. This rule is general. The value of the

Fic. 17.

Fic. 18.

Fig. 19.
clearness of an Image-point in a median section is the sine of the semi-aperture of the pencil multiplied with the refractive index of the medium.

An illustration of this principle is the immersion experiment. A vew taken under water from the point O (fig. 18) sees not only the whole horizon, but also a part of the bed of the sea. The whole feld of view in ir of 180° is compressed to one of 97.5° in water. The trys from 0 which have a greater inclination to the vertical
than 48.75 * cannot come out into the air, but are totally refiected. If percils proceed from media of high optical density to media of low density, and have a memi-aperture greater than the critical angle, total refection occurs; in auch cases no plane surface can be eraployed. hence front lenses have small radii of curvature in order to permit the wide pencils to reach the air (see fig. 19, in which P is the preparation, O the object-point in it, D the cover alip, I the immeraing fluid, and L the front lens).
The function $n \sin \approx \in A$, for the microscope, has been called by Abbe the sumarical apertire. In dry-systems only the sine of the semi-aperture is concemed ; in immersion-sybtems it is the product of the refractive index of the inamernion-liquid and the sine of the object-side semi-aperture. In the case of the brightnese of large objects obvioualy the whole pencil is involved, and hence the clearneas is the squares of these values, i.e. sin $x^{2} u$ or $\pi^{2} \sin ^{2} w$. As the semiaperture of a pencil proceeding from an object point cannot eacceed \%o', the numerical aperture of a dry-syotem cannot be greater than i. $^{\circ}$. On the other hand, in immertion-gyotems the numerical aperture can almost amount to the relractive index, for A $=$ ain $u \leq n$. Dry aystems of 0.98 anmerical aperture, water immersion ($n=1 \cdot 33$)
 a-bromaphthalene immersions ($\mathrm{w}=\mathrm{I} \cdot 65$) from $\mathrm{A}=1 \cdot 60$, are available. In immersion-systems of much considerable aperture no medium of smaller refractive index than the immersion liquid may be placed between the surface of the front lens and the object. as otherwise total refection would occur. This is especially inconvenient in the case of the e-bromnaphthatene immersion.- As the embedding and immeraing liquids mutt have equal refractive indexes, one must use a-bromnaphthalene for embedding; but this substance destroys organic preparations, so that one can employ this immersion-system only for examining inorganic materials, e.g. fine diatoms.

In immersion-systems a very much greater aggregate of rays is used in the representation than is posable in dry-5ystems. In adfition to a considerat le Increase in brightness the losses due to rellection are avoided: losses which arise in passing to the back surface of the cover-slip and to the front surface of the front lens.

The Peysical Teqeory

In order to fully understand the representation in the microscope, the process must be investigated according to the wavetheory, especially in considering the representation of objects or object details baving mearly the size of a wave-length. The rectilinear rays, which we have considered above, but which have no real existence, are nothing but the paths in which the light waves are transmitted. Acoording to Huygens's principle (see Diffraction) each aether particle, set vibrating by an incident wave, can itself act as a new centre of excitement, emitting a spherical wave; and similady each particle on this wave itself produces wave systems. AH systems which are emitted from a single source can by a suitable optical device be directed that they simultaneously influence one and the same aether particle. According to the phase of the vibrations at this common point, the waves mutually strengthen or weaken their action, and there arises greater clearness or obscurity. This phenomenon is called interference ($q \circ$) E. Abbe applied the Fraunhofer diffraction phenomena to the explanation of the representation in the microscope of uniformly illuminated objects.

If a grating is placed as ohject before the microscope objective, Abbe showed that in the amage there is intermittent clear and dark banding only, if at least two consecutive diffraction spectra enter into the objective and contribute towards the image. If the illuminating pencil is parallel to the axis of the microscope objective, the illumination is said to be direct. If in this case the aperture of the objective be so small, or the diffraction spectra lie so fiar from each orher, that only the pencil parallel to the axis, i.e. the spectrum of zeto order, can be admitted, no trace is generally found of the image of the grating. 11 . in addition to the principal maximum, the maximum of Ist order is admitted, the banding is distinctly seen, although the image does not yct accurately resemble the object. The resemblance is greater the more diffraction apectra enter the objective. From the Fraunhofer formula $d=\lambda / n \sin w$ one can immediately deduce the limit to the diffraction conctant 8 , 5 that the banding by an objective of fixet aumerical aperture cat be perceived The value n ain u equals se aumerical aperture A where n is the refractive index of the imm mion-liquid, and w is the geni-aperture on the object-side. For wicrowcopy the Fraunhofer formula is best writen $\delta=\lambda / \mathrm{A}$. This ermeapes of the resolving power in the case of direct lighting it1 details of the object so resolved are perceived, if two diffractionis maxime can be paseed through the objective, so that the chara of of the object is seen ia the image, even if an exact resemblance hits aot yet beea attained.
The Fraunhofer diffraction phenomena, which take place in the
axis have been removed, then the image shown in fig. 19 results. The cones of rays issuing from a point situated only a little to the

F1G. 29.-The lens is epherically correcped for OO^{\prime}, but the sinecondition is not fulfilled. Hence the different magnificatioas of a point O_{1} beyond the axis.
side, which traverse different zones of the objective, have a different magnifiction. The sine-condition can therefore also be understood as follows: that all objective zonee must have the same magnification for the plane-element.

Fig. 30.- O^{\prime} is the virtual image of O formed at a spherical surface of centre C and radius CS .

According to Abbe, a system can only be regarded as aplanatic if it is spherically corrected for not only one axial point, but when it also fulfils the sine-condition and thus magnifies equally in all zoaes a surface-element situnted vertically on the axis at this point.

A second method of correcting the spherical aberration depends on the notion of aplanatic points. If there are two transparent substances separated from one another by a spherical surface, then there are two points on the axis where they can be reproduced free from error by monochromatic light, and these are called "aplanatic points." The first is the centre of the sphere. All rays lisuing from this point pass unrefracted through the dividing surface; its image-point coincides with it. Besides this there is a second point on the axis, from which all issuing rays are so refracted at the surface of the sphere that, after the refraction, they appear to originate from one point-the image-point (see fig. 30). With this, the objectpoint O, and consequently the image-point O^{\prime} also, will be at a quite definite distance from the centre. If however the object point does not lie in the medium with the index n, but before it, and the medium is, for example, like a front lens, still limited by a plane surface, just in front of which is the object-point, then in traversing the plane surface spherical aberrations of the under-corrected type again arise, and must be removed. By homogeneous immersion the object-point can readily be reduced to an aplanatic point. By experiment Abbe proved that old, good microscope objectives, which by mere testing had become so corrected that they produced usable images, were not only free from spherical aberrations, but also fulfilled the sine-condition, and were therefore really aplanatic rystems.

The second aberration which must be removed from microscope objectives are the chromatic. To diminish these a collective lens of crown-glass is combined with a dispersing lens of fint; in such a bystem the red and the blue rays intersect at a point (sce AberraTION). In systems employed for visual observation (to which clase the mieroscope belongs) the red and blue rays, which include the physiologically most active part of the spectrum, are combined; but rays other than the two selected are not united in one point. The transverse sections of these cones of rays diverge more or lees from the transverse section of the chosen blue and red cones, and produce a secondary spectrum in the image, and the images atill appear to have a alightly coloured edge, mostly greenish-yellow or purple: in other words, chromatic difference of the spherical pberrations arises (oee fig. 3i). This refers to systems with small spertures, but still more so to syotems with large ones; chromatic aberrations are exceptionally increased by large apertures.
The new glasses produced at Schott's glass worke, Jena, possessed In part optical qualities which differen considerably from those of the older kinds of glase. In the old crown and flint glase a high

F1g. 31.-Showing a mytem with chromatic difference of spherical abertation. $O^{\prime \prime}=$ image of O for red light: $O^{\prime \prime \prime}$ for blue. The zystem is under-corrected for rod, and over-corrected for blue rays.
refractive index was always connected with a strong dispersion and the reverse. Schott succeeded, however, fa producing glasses which with a comparatively low relraction have a high dispersioa,
and with a higb refraction aw dispersion. By using theee slapeses and employing minerals with epecial optical properties, it is powsible to correct objectives to that three colours can be combined, leavine oaly quite slight tertiary spectrum, and removing the spherical aberration for two colours. Abbe called such systems "apochromats." Good apochromats often have as many as twelve lensen, whilst systems of simpler construction are only achromatic, and are therefore called " achromits."

Even in apochromats it is not possible to entirely remove the chromatic difference of magnification, i.e. the images produced by the red cays are tomewhat gmsller than the images produced by the blue A white object is represented with blue streaks and a black one with red streaks. This aberration can, however, be successfully controlled by a suitable eyepiece (see below).

A further aberration which can only be overcome with difficulty, and even then only partially, is the "curvature of the feld," i.e. the points situnted in the middle and at the edge of the plane object can not be seen clearly at the same focusing.

Historical Development.-The first real improvement in the microscope objective dates from 1830 when V. and C. Chevalier, at first after the designs of Selligue, produced objectives, consisting of several achromatic systems arranged one above the other. The systems could be used separately or in any combination. A second method for diminishing the spherical aberration was to alter the distances of the single systems, a method still used. Selligue had no particular comprehension of the problem, for his achromatic single systems were simply telescope objectives corrected for an infinitely distant point, and were placed so that the same surface was turned towards the object in the microscope objective as in the telescope objective; altbougb contrary to the telescope, the distance of the object in the microscope objective is small in proportion to the distance of the image. It would have been more correct to have employed these objectives in a reverse position.

These circumstances were considered by Chevalier and Lister. Lister showed that a combination of lenses can be achromatic for only two points on the axis, and therefore that the single systems must be so arranged that the aplanatic (virtual) image-point O^{0} (fig. 32) of the first system coincides with the object-point of the next system. This system will always be splanatic. These objectives permitted a much larger aperture than a simple achromatic system. Although such systems have been made recently for special purposes, this construction was abandoned, and a more complex one adopted, which also made the production of better objectives possible; this is the principle of the compensation of the aberrations produced in the different parts of the objective Even Lister. Who proceeded on qulte different lines, hinted at the possibility of such a
 compensation. This method makes it specially possible to overcome the chromatic and spherical aberrations of higher orders and to fulfil the sine-condition, and the chief merit of this improvement beiongs to Amici. He had recognized that the good operation of a microscope objective depended essentially upon the size of the aperture, and he therefore endeavoured to produce systems with wide aperture and good correction. He used chiefly a highly curved plano-convex front Iens, which has since always been employed in strong systems. Even if the object-point on the axis cannot be reproduced quite free from aberration through such a lens, because aberrations of the type of an under-correction have been produced by the first plane outer limiting surface, yet the defects with the strong refraction are relatively small and can be well compensated by other systems. Amici chiefly employed cemented pairs of lenses consisting of a plano-convex flint lens and a biconvex crown lens(fig. 33), and constructed objectives with an aperture of 135°. He also showed the influence of the cover-slip on pencils of such wide aperture. The lower surface of the slip causes undercorrection on being traversed by the pencil, with over-correction when it leaves it; and since the aberration of the surface lying farthest from the object, i.e. those caused by the upper surface preponderate, an over-corrected cone of rays enters the objective: The over-cotrection increases when the glass is thickened. In order to counteract this aberration the whole objective must be correspondingly under-corrected. Objectives with definite undercorrection can however only produce really good imagea with glass covers of a specified thickners. With mpertures of 0090-0-95 differences of even $0-004-0.008$ in. in the giams covers can be noticed by the deterioration of the image. In syotems with srnaller apertures variations of the thiclanew of the glase cover are not 90

Fig. 57.-Large Dissecting Stand (Zeiss).

Fig. 58.-Stephenson's Binocular Microscope (Swift).

Fig. 60.-The Demonstration Microscope (Baker).

Fig. 59.-Greenough's Binocular Microscope (Zeiss).
noticeabie. For this remon Amici constructed' objectives of a similar aperture and focus for different thicknesees of glam covera.

This expensive method was simplified in 1837 by Andrew Ross by making the upper and lower portion of the objective variable by means of a so-called correction-collar, and so giving the objective a corresponding under-correction according to the thickness of the glass cover. The alteration of the focus and the aperture are little influenced. The correction-collar was improved by Wenham and Zeiss, by working the upper system upon the lower, and not the reverse; for in this way the preparation remains alroost exactly locused during the operation (see fig. 34).

The injurious influence of the glass cover is substantially leasered if no air is admitted to the apace between the glass cover and the

Fig. 34--Objective fitted with correction collar (Zeiss),

Fig. 33.-Achro matic objective for homogeneous immetsion.

Fig. 36.Apochromatic system.
front lens (as in the dry-system) but if the intervening space is filled with an immersion-liquid. Amici was likewise the first to produce practical and good immersiop-systems. The slight difference of the refractive indexes of the glase cover and the immersion-liquid involves a diminution of the aberrations, by which the objective will become less sensitive to the differences in thickness of the glass covers and admits of a more perfect adjustment. Water-immersion was introduced by Amici in 1840, and was improved by E. Hartnack in 1855 .
The advantages of the immersion over the dry-systems are greatest when the embedding-liquid, the glass cover, the immersion-liquid and the front lens have the same refractive index. Such systems with a so-called homogeneous immersion were first constructed after the plan ol E. Abbe in 1878 in the Zeiss workshops at the instigation of J. W. Stephenson. Cedarwood oil (Canada balsam), which has a refractive index of 1.515 , is the immersion-liquid. The structure of a modern system of this type, with a numerical aperture of $1 \cdot 30$, is nhown in fig. 35.
The most perfect microscope objective was invented by E. Abbe in 1886 in the so-called apochromatic objective. In this, the secondary spectrum is so much lessened that for all practical purposes it is unnoticeable. In the apochromats the chromatic difference of the spherical aberrations is eliminated, for the spherical aberration is completely avoided for three colours. Since in these systems the sine-condition can be fulfilled for several colours, the quality of the images of points beyond the axis is better. There still remaina a slight chromatic difference in magnification, for although the magnification consequent upon the Iulfilment of the sine-condition is the same for all zones for one colour, it is impossible to avoid a change of the magnification with the colour. Abbe overcame this defect by using the so-called compensation ocular, made with Jena glasses.. Fig. 36 shows an apochromat of a numerical aperture of 1.40..

The Eyepiece or Ocular

The eyepiece is considerably simpler in its construction than the objective.

Its purpose in a microscope is by means of narrow cones of ays to represent at infinity the real magnif ed image which the obje ive produces. As, however, the object 1 presents a real image, the problem is to project a tranmparent diapositive. It is therefore impossible to observe this image thro igh an ordinary lens. Since many of the rays coming from the exit-pupil of the objective would not reach the eye of the observer at all. it is necessary, in order to make use of all of them, to direct the diarging rays forming the real image so that the whole of the light el:ers the cye of the observer. This is effected by a collective lens; it may be compared with the second part of the condenser system of a projecting lantern.
The two mont custornary eyepieces Eunsist in two simple planoconvex lenses, whose distance one from the other is equal to half the sum of the two focal lengths. One of thse is the Ramsden eyepiece (fig. 37). If the real image produced liy the objective coincides writh the collectlve lens, only the inclinntion of the principal rays is altered, the form of the conte being alfected only to a very simall extent. The lens nearer the eye, which has about the sarne fical tength as the collective leas, it distant from it by about its iscal
length. The eye-lens converts diverging pencils into parallels. Both' lenses together form the exit-pupil of the objective behind the eye. lens, so that this image, the exit-pupil of the total syatem or the Ramsden circle, is accessible to the eye of the observer. It it poseible to see the whole field through this pupil by slightly moving the head and eye. In practice the real image is formed not directly

Fig. 37.-Ramsden Eyepiece.
L_{2} mollective-, L_{3} weye-lens.
DD=diaphragm of the field of view.
$P^{\prime \prime} P^{\prime \prime}-$ Ramsden's circle, or exit-pupil of whole microscope.
on the callective lens but a little in front of it, because otherwise wll the particles of dust on the collective would also be seen magnified.
In the other type, the Huygenian eyepiece (fig. 38), which is much more widely used, the collective lens is in front of the real image; it alters the direction of the principal rayy and somewhat diminishes the real image. In this type the eye-lens is about twice as powerful as the collective lens, and makes the rays parallel. Here also the exit-pupil is accessible to the eye and through it the whole field can be seen by moving the head and eye. In both eyepieces micrometcrs or cross-wires are used for measuring in the plane of the real

Fra. 38.-Huygenian Eyepiece,
$\mathbf{L}_{2}=$ collective- $\mathrm{L}_{3}=$ eye-lens.
DD-diaphragm of the field of view.
$\mathbf{P}^{\prime \prime} \mathbf{P}^{\prime \prime}=$ Ramsden's circle, or exit-pupil of whole microtcope.
image. The Rameden eyepiece is the most convenient for this because this plane lies in front of the collective lens, and the objective image has not yet been influenced by the eycpiece. As both eyepieces are used with very small apertures (about $f: 20$) no attempt bas been made to overcome the spherical aberrations, which are usually very slight; neither, as a rule, are the eyepieces chromatically corrected, care has only to be taken by a suitable choice of the distance of one bens from the other, that the coloured images derived from a colourless object should have the same apparent size. Since, however, the difference of chromatic magnification cannot be overcome in powerful objectives, this error is atill lurther increased by the eyepiece. The difference of chromatic
magnification cannot even be overcome in apochromats, and to cancel this aberration Abbe devised the compensating ocular (fig. 39).
The weak compensation oculars resemble a Huygenian eyepicce with achromatic eye-lens, whilst the more powerful ones are of a different construction. These eyepieces are intentionally provided with a different chromatic magnification, which however is in oppoaltion to that originating in the objective. They have also a shorter focus for red, and a longer one for

Fio. 39.-Compensating Eyepicces (Zeiss). blue, and thus magnify the red image more than the blue; and as the objective gives a large blue and a small red image, the two cancel one a nother and a colourless image is produced.
These eyepieces are very convenient in use, for when they are changed the lower focus always falls in about the same plane. Ia German and French microscopes the optical tength of the tube, When apochromats and compensation-eyepicces are used, is 180 mm . By multiplying the magnification of the objective by the number
on the eyepiece the total magnification of the microscope is obtained. By the magnification of the objective is meant the ratio of the distance of distinct vigion to the focal length of the objective. As powerful achromatic objective show differences of chromatic magnification in the same way as apochromats, compenation eyepieces can be used in combination with these objectives.

Iflulgnating Systeygs

Most microscopic observations are made with transmitted light; an illuminating arrangement is therefore necessary, and as the plane of the object is nearly always horizontal or only slightly inclined, the illuminating rays must be directed along the optical axis of the microscope.

To fully utilize the aperture of the syatem all dispersing rays in the object-space of the objective must be retained ia the imagespace of the illuminating system. When this occurs the greatest brightness will be obtained if the corresponding diaphragms of the two systerns coincide; i.e. the field-diaphragm on the image-side of the observing system with object-side of the illuminating system, and che exit pupil of the illuminating system with the entrance pupil α the objective.

For slight magnifications a revolving plane mirror fixed below the object for altering the direction of the rays suffices. For this mirror to illuminate all the points of the objective so that the rays fill up the objective, it must not be too small, and should be as near as possible to the stage plate, and the source of light muse be con-

Fig. 40-Mirror Illuming. tion.
$M_{i}=$ plane-, $M_{i}=$ curvedmirror.
$O=$ object; $L_{1}=$ front lens of microscope;
$P P=$ diaphragm.
consequentiy is represented at the cront cocus of this lene and lens. By a correct choice at ininity through the illuminating lens in relationtect choice of the focal length of the illuminating choose the sin to the focal length of the murror, it is possible to whote object-field is uniformly lighted.

Too much light is useless for observing delicately coloured or colourless preparations, whose parts only become visible as a result of slight differences of diffraction. Then it is neceseary to use powerfully concentrated cones of light. The apparatus must be such that the apertures of the illuminating rays can easily be altered, e.e. by inserting diaphragms in the course of the rays of the illuminat. ing cone below the stage plate (fig. 40, PP). This concentration is most easily produced by sliding or revolving diaphragms. A series of holes of different sizes perforate a revolving disk below the stage plate at an equal radial distance from the axis of the disk, so that the holes can be brought under the preparation in turn, the centre of the diaphragms always being a continuation of the optical axis of the microecope.

Fig. 41.-Cylinder Dinphragm (Zeiss). creased; if the diaphragm is removed farther from the object the cone of rays is diminished (cl. fig. 40). These diaphragms are
sometimes fitted in a alide, 00 that it is possible to move the diaphragm sideways and give oblique illumination (see below).

With very powerfal objectives these methods are insufficient; and a condenser is fitted below the stage plate. As a rale an iris diaphragm, which can be moved sideways, is now fitted below this condeneer; below is the mirror which can be moved in all directions. The Abbe apparatus consists of a condenser, movable iris diaphragm, and mirror (big. 42). The whole apparatus can be focused by a rack

Fio. 42.-Abbe Illuminating Apparatus with Ordinary Condenser (Zeiss).
and the buttons. The iris diaphragm can be regulated by the lever p; it can also be turned to one side round the pivot z, so that the condenser k can be removed or changed. The correct direction can be given to the illuminating cone by the mirror m. It is often desirable to pass from direcs to oblique lighting. The Able apparatus makes this easy. The iris diaphragn i is pushed to the side by the rack and pinion $t \mathrm{n}$. The chief cone of rays then enters obliquely into the objective, the angle between the direct cone of rays and the diffraction spectrum of the first order can then become as large again as with direct lighting, and still be taken up in the objective. Oblique lighting, however, can only be in an azimuth. oo that the object must be turned in order that the decails may be observed. Hence a condenser, for lighting with very oblique cones, must have about the same aperture as the objective. and therefore be of very wide aperture: they therefore closely resemble microscope objectives in construction. Especially powerful achromatic condensers are really only magnified microscope objectives, with the difference that they are not corrected for the thickness of the cover elip, but for the thickness of the glass on which the object is placed. For exceptionally accurate work microscope objectives are sometimes used as condenser ay thems. When using inmersion objectives, an immersion condenser must also be used if rays of extreme obliquity are wanted, for, in consequence of the total reflections, rays can only come from the upper plane surface of the condenser, which have not a larger inclination to the axis than about 41°, varying according to the refractive index of the glass. In order to let highly inclined rays pass out from the condenser, some immersion liquid must be placed between the upper surface of the condenser and the object slide. Condensers are for this reason aleo constructed with a pertures up to 1.40 .
Vertical Illuminators.-Opaque objects can oaly be meen by reflected light. With low magnifying aystema and a large free object distance, ordinary good daylight is sufficient. If the objects bave a low reflecting power, or if a slightly higher magnification is needed, the ligbring can be improved by optical system.
To examine mall opaque objects with a high magnification the Lieberkahn mirror, 20 named after its inventor, wae former) much used. This was a concave mirror, pierced in the middle, fised to the objective, and directed towacels the object and with such a
focal length that rays parallel to the axis falling upon it were united exactly upon the object. In this case the object lay upon a stage plate. whose centre had so far been made opaque, so that the rays coming from the illuminating plane mirror could not reach the objective direct, but only the rays passing the stage plate to the side of this blackened portion reached the Lieberkilhn mirror, and were used in lighting; The disadvantage of this method was that only small opaque objects could be examined. Much more easily manipulated in the parabolic side-illuminator invented by R. Beck, which can be conveniently fitted in and used for objectives with different focal lengths. It consists in half of a short focused parabolic mirror, which concentrates all the light coming from the one side on to the object. To eramine objects with ohjectives of high power and low free object distance, the apparatus for side-illumination is not zufficient, and a so-called vertical illuminator is used. In Zeiss's form (6g. 43) a small prism p. which also revolves upon a horizontal axis, is placed as near as possible to the back lens of the objective. The edge which is the separating line of the horizontal and hypothenuse surfaces of the prism, lies approximately over the middic of the system, so that the rays entering through the opening in the side after having been refected by the hypothenuse surface are concentrated through one half of the objective on to the object. When observing only the other hall of the objective is used. The sources of light used should be atranged so that the objective throws an image of the light-source upon the object. It is best if the image of the light is not larger than the object examined, and to effect this, an illuminating lens with an iris diaphragm is often placed between the source of light and the illuminator. By suitable adjustment and by changing the iris diaphragm the slze of the

Fic. 13.-Vertica? Illuminator (Zeis)
clove to the axis of the condenser in the inside of tbe condenser, and are scmaller than the limiting angle of the total reflection.

Fig. 45-Path of Raya for dark-ground illumination with fixed diaphragm in the objective.
(Objective D can also be used as a condenser (Zeiss).)
Th. Ross's " spot lens," invented in 1855, and J. W. Stephenson's catoptric illuminator (1879), may also be mentioned. A recent condenser of very high illuminating power is due to \mathbf{H}. Siedentopf (fig. 47). It is a double mirror system, whose reflecting surfaces are a sphere a and a cardioid b. The combination of rays is also sufficient in practice if the cardioid surface is replaced by a spherical one.

Fic. 46-Wenham's Paraboloid Condenser. Cardioid Condenser. A supplementary spherical surface c is necessary for the completion of the condenser.

Binocular Instrunents

The stereoscopic microscope is the most suitable for finding out the space taken up by the separate parts of a preparation. (See also Binocular Instruyents and Stereoscopy.) The observer has a stereoscopic impression of an object, when different perspective representations are presented to both eyes, which, through the action of the central nerve system, resolve into one impression.
One way of receiving a atereoscopic impression through a microscope is by fixing an apparatus as directly as possible above the last lens of the microscopic objective, which divides the rays passing out and directs half into each eyepiece. The half cones of rays have now semicircular sections, the diaphragms having the same form. The cones must be so directed through the divided system that the two exit pupils correspond to the interpupiliary distance of the observer. The distance of the centres of the semicircular entrance pupils and their distance from the object regulates the difference of the two perspective representations, which are presented one to the right eye and one to the left. If the perspective centres lie too near one a nother in the object-space, as may happen with slightly opened and weak systems, the difference of the perspective is then too slight to make any real stereoscopic impression. On the other hand, a very much exaggerated stereoscopic effect can be derived Irom ahort locused
eystems of wide aperture On socount of the slight depth definftion, short focused systems of wide aperture are not at all specially suitable for stereoscopic observation, because the possibility of observing objects taking up a good deal of apace is too limited when such systems are used.

Professor J. L. Riddell (Quart. Jowrm. Micros, 1853. P. 236; 1854, pp. 18-24) published an arrangement of prisms, which, however, imparted a pseudomorphous impreasion it image-forming oculars were not used, and in 1854 a second syetern (fig. 48), escentially a Wheatstone preudoscope, added just above the objective. This gave an orthoscopic image even in ordinary eyepiecea By adopting right-angled reflectionprisms above the eyepiece he completely erected the image. Stephenson's stereoscopic microscope (fig. 58, Plate) resembles this apparatus in all essentials. A construction of prisms by Nachet is now almost forgotten, while on the contrary an extremely simpie dividing prism publishod by Wenham (Lond. Micros. Soc., 1861, i. 109) has been exceptionally well attested in practice. It is more easily used than any other apparatus (see Binocular

Fig. 48.-Riddell's Prisms. is placed sbove the last surface of the objestive and divides the exit rays. The group of rays coming from the left half of the objective can continue its way withoul hindrance to the right eye. The group of rays coming from the right half of the objective is reflected twice in the prism and directed to the left eye. The tube containing the left eyepiece is a little inclined towards the right tube, which is perpendicular. It can be adapted to the interpupillary distance by changing the tube stide. If it is desired to use the instrument as a monocular, the setting with the prism at the lower end of the tube is taken away.
A second manner of making stereoscopic observations employs stereoscopic eyepieces. The first of such eyepieces was proposed by R. B. Tolles. He realized that the division of the cones of rays by prisms could only be satisfactorily performed if the prism was placed in the position of the exit pupil of the objective or in the position of the real image of this exit pupil. He employed a Nachet combination of prisms and placed the dividing prisin at the spot where a special reversing system formed a real mage of the exit pupil of the objective. A second stereoscopic eyepiece was devised by A. Prazmowski who substituted a Wenham diffracting division prism at the position of the real image of the exit pupil of the objective formed by a reversing system. The newest form of a stercoecopic microscope resembles the oldest in so far as two completely separate microscopes are used. In the oldest microscope by Cherubin d'Orleaas the observer receives a pseudoscopic impression in consequence of the reversed image. This defect has been avoided in the instruments constructed in the Zeiss factory (fig. 59, Plate) at the instigation of the American zoologist H. S. Greenough. The system of Porro prisms employed affords a convenient method of adapting the ends of the eyepieces to the interpupillary distance. The two tubes are inclined to one another at an angle of about 14^{*}. The microscope is only intended for slight magnifications. The possibility already suggested of using both eyes for observing without having a stereoscopic impression, is often regarded as a great advantage. Binocular microscopes have therefore been constructed on this plan. Such a comhination of prisms was used by Wenham, who placed it directly behind the last objective lens. As a rule this arrangement of prisms can be exchanged for the Wenham stereoscopic reflection -prisms.
A second kind of dividing prism which directs the entire course of rays to both eyes, and thus produces identical images, was used by Powell and Lealand (fig. 50). Every ray is divided into a reflected and a refracted portion on the front side of a parallel plate. Whilst the refracted portion after leaving the plate continues its way in the same direction, displaced a little to one side, the reffected portion is directed into the side tube by a reflectionprism. With these microscopes, which are not stereoscopic, objectives of any power can be used. The surfaces of the dividing prisms must be very exact, so that no deterioration of the image may arise from them. A microscope for two eyes can also be obtained by employing the Abbe stereoscopic eyepiece.

By the supplementary use of nne of Weaham's prisms every ray is analysed into a more powerful refracted and a weaker reflected onc. The same image Powell's can be presented to each eye by using this eyepiece
Prisms. also. No stereoscopic ismpression is then felt. It is
brought about by placing special semicircular diaPowells can be presented to each eye by using this eyepiece
Prisms. also. No stereoscopic impression is then felt. It is
brought about by placing special semicircular diaPowells can be presented to each eye by using this eyepiece
Prisms. also. No stereoscopic ismpression is then fele. It is
brought about by placing special semicircular diaphragms in the plane of the exit pupil of the microccope. By
${ }^{1}$ R. B. Tolles Sill. Journ. (1855), xoxix. 212; Journ. Roy. Micr. Soc. (1890), pr. L. p. 383.
turning the diaphragras 180° round the optical axis, the orthoucopic impresion can be changed into the pseudoscopic. The mechanical arrangement of the eyepiece is such that the distance of the two exit pupils can be adjusced to the intergupillary distance.

Mechanicar Arpangements

Although the optical system is the first consideration in a microscope, the system is valueless if the fittings do not allow its correct use. The optical system must be kept at a certain distance and well centred, and a correct position for the object in relation to the system must be assured.
In 6y. 60 , Plate, the microscope is seen to consist of the heavy metal loot A , which rests on the table at thrce points. The whole microscope is fitted to this foot. The object can be held firmly on the stage plate \mathbf{B} by cramps C . On the lower side of the stage plate are the condenser and the diaphragms, and the illuminating mirror J is beld by a rod D fixed to the stage plate. Likewise on the stape plate is the support for the tube \mathbf{E}. The rougb adjustment of the microscope can be made by a rack and pinion F; and the fine adjustment by the screw G. The tube containing the eyepiece and the objective is doublie. The inner tube H is movable, making a change in the length of the tube possible. As a rule this inner tube has a mark which allows the length of the tube to be set.
It is most important the stand should be free of vibration. A fine ndjustment is also necessary, in order to perform conveniently and with certainty the slight motion of the microscope in relation to the object. In cheap stands the rough adjustment was worked by moving the inner tube by hand, but the more convenient rack and pinion is now used almost exclusively.
For slight magnifications rough adjustment is sufficient, but with objectives of a focus below t in., a fine adjustment is wanted. Very different constructions are in use. Almost all are such that the whole microscope tube is raised or sunk by the mechanism of the fine adjustment, and not only the objective. The most used is the micrometer screw adjustment ${ }^{-}$(fig. 51). The tube carrier B

Fig. 51. - Micrometer Screw Adjustment of Leitz.

Fic. 52.-Lever Adjustment od J. Swilt \& Son.
fits closely on to a column A which is fixed firmly to the stage plate. The end of the column C is traversed by the mictometer screw D which is set in action by the knob E. The column A contains a powerful spiral spring, which excreises a strong pressurce on the plate F fixed to the carrier'B. By screwing in the micrometer, the spring is compressed and the tube lowered. By the contrary movement the spring pressure raises the tube as far as is allowed by the screw. The strong presare of the apring practically excludes motion which with fine ac ustments is very important. Another very good ad just ment is thet of Messrs Swift \& Son, shown In fig. 52. The long lever D is presserf t, one side by the screw F, and is thas turned round the pin E. On the tube very near to the pin E is a cylinder C, which by the action of cle screw F is very slightly raised or lowered. \AA double lever is used in a fine adjustment by Messrs Watson \& Sons (fig. 33). According to whether the screw A or B is used, the adjustment is fine or coarse. In other fine adjustments by means of springs and balance wheels either a micrometer screw is moved (Zeiss), or a curyed disk fixed to the balance wheel is turned (Leitz) or an oblique disk arranged more or less in a circle and attached to the balance wheel is revolved (Reichert). These modern adjuat: ments are made s exact that motions can be enaily measured
up to oovo mm. An espential in aff rough and fine adjumments if that the motion must always be parallel to the optical axis of the microscope, so that the same point in the object remains in the centre of the field.
Another condition which muet be fulfilled by a good stand is the puwer of inclination. it is oniy rarely necessary to arrange the preparation really horizontal; and lor casy observation, especially when it will take a long time, it is of great assistance if the microscope can be inclined. so that the observations can be made in a natural position. The apparatus for inclining the microscope is bunely suth that the microb stpe cal be placed in all post tions between the vertical and the horizontal. The horizontal position is sornetimen necespary if photographe are to be taken by the microscope.
Many devices are available for changing the objective. It is essential that the objective is always brought berore the lower end of the tube in such a way that

Fis. 53-Double Lever Adjustment of Watson \& Sons.
the optic axis of the objective coincides with the optic axis of the rest of the syatem. The fittings of the objective and the changer are so arranged that littie or no fine adjustunent is necescary after the change. The most widely used is the revolving changer (fig. 60, Plate). The revolver may bold two, three or four objectives. In the sliding changer the objective is, dovetailed to a sfide, the correct position being secured by clamps.

Fully equipped microscopes have apparatus for moving and turning the object. In simple microscopes the stage plate lies on the gand held by two springs, and must be moved by the hand (5g. 60 , Plate). For elaborate work a so-called croes-table is indispenable. By means of screws the stage plate is movable in two directions at right angles to one another, in the plane of the stand. In many caset the stand is also movable round the optic axis.
The microscope stands described above can be used for the greater number of the naturalist's experiments. For very special objects the stand must be expressly made; thus stands with tube carriers very much projecting are made for examining sections of the brain. The petrographical microscope is shown in fig. 61, Plate.

In order to determine the refractive index wben the thickness of the crystal is known, or the thickness of the crystal when the index 3 known, a Gre adjustment A makes it possible to measure cxactly the changes in the length of the microscope. Further, a revolving stage plate provided with a graduation B is used to determine, the angle in crystals. To obviate mistakes the optical axis of the microecope must coincide with the revolving axis of the plate, and the revolving plate has a central position C to keep this condition fulfilled. In many stands the objective can be centred instead of the plate. For measuring this angle, an eyepiece with cross-threads is used. In the lower focal plane of the eyepiece, at the spot where the real image which the objective forms of the object arises, a glass plate in introduced on which are two fine cross lines or even two very thin thresds. The eye-lens can be adjusted for the thread-plate, so that diferent observers can see the cross clearly. The croes is always adjusted first. When obserying with such an eyepiece, care must be taren that the real inage of the object lies in the plane of the crossthreads, i.c. that there is no parallax. The adjustment is easily controlled. If the eye is moved to and fro over the eyepiece and the tmage makes apparently similar movements in relation to the cross threads, then the image does not yet lie in the plane of the threads
To measure the angle, the images of the erystal edges are covered in turn by one of the threads by turning the table, and the angle of rotation is read from the scale. A cross-table is very convenient for this calculation, for with the aid of the two movable slides situated in the plane of the plate and at right anglee to one another, the point where the two crystal edgen intersect can be quickly and correctly brought into the revolving axis of the plate. This measurement can sho be made with a goniometer eyepicce, in which a row of parallel doubte-marks are uscd instend of the cross threads. The fitting of the eyepicce at the upper end of the tube is provided with a graduated circle. The eycpiece proper with the parallel strokes can be revolved, and the rotation be read from the graduated circle. In carrying out this calculation the marks of the thread-plate bave only to be placed enactly parallel to the crystal edge.

For examining preparations in polarized light a polarizer D is introduced in the illuminating apparatus below the diaphragm and an analyser E above the eyepiece. The analyser can be rotated, the angle being read by a divided circle F. Very often the analyser placed In the tube, a little above the objective: it is then generally in a case G, which can be put into the tube. The placing of the anolyter nei the objective haf the adrantage that the beld of vien
is not restrictod, as is the ace if the andyeer man above the 'yepiece. Nicols's, Glan-Thomson prisms or similar polarization upparatus are used as polariners and analysers. Below the analyser C. a plate H of selenite or mica may be put in the course of the rayn. This small plate can also be lud above the polarizer in the illuminatind apparatus or in the eycpiece.

To examine crystals, espesially in converging light, a condenter, movable in the optic axis, is needed above the polarizer. The image produced by the microscope objective \mathbf{M} in its back focus plape is then observed through a supplementary microscope. The objective of this supplementary micrusoope, the Bertand bens, can be applied through a window 1 at che lo wer end of the inner tube K. By using a rack and pinion movement L the supplementary microwcope can be adjusted for the imirges. There is nearly always an arrangement to whorve the preparation firet in convergent light and then in parallal polarised light. This change can often be brought about by taking away or adding perte of the condener.

Microyerizy

It is often required in microscopical work to determion the size of objects or parts of objects.

There are three essentit ways of performing this. The firt method uses the objective sitew micrometer. The object is placed on a slide in the plane of the stage plate and abie to be very fiacly moved by the micrometer scruw, which has as fine a worm as poesible. A divided cylinder is fixed wo the turning knob, which thus makes it possible to measure fractions of the revolution. The revolutions of the cylinder are registert yot a calculator. The use of an eyepiece with a cross thread is issen ial to this measurement. After the microscope has been so 1 ils:ed that the image of che object to be measured falls exactly in the piane al the cross threads, the object is moved by the micrometer until one edge of the object is exactly covered by a thread. The micrometer is now read. Then the object is moved by the micrometer till the image of the other edge is covered by the thread in the eyepicce, and the micrometer is again read. The difference between the two positions gives the aize of the object The objective screw micromet is is, bowever, not sufficiently delicate, and is only used when comparatively large objects are to be measured, and especially for objects whose edges do not appear at the same time in the field of view.

The sccond and most widely ued method employa micrometer crepiecc. In this case not the object itself but a real image which lus already been magnified by the objective io measured, and Liviously much more accurate results are possible. The most accurate calculations are obtained by using the tcrew micrometer ocular (6.8. 54). Directly below the collective lens of a Rameden

Fic. 34-Serew Micrometer Ocular. Sectional elevation and plan (Zeiss).
eyepiece a slide b can be moved by a micrometer acrew a; the slide carries a little glass plate c provided with a graduation. With the help of this scale the total revolutions of the acrew can be read; fractions of the revolution can be read from tbe divided cylinder d The scale is generally divided into hundredths of millimetres or thousandihs of inches. A fixed mark which serves as an index is placed on the lower side of the collective lens and is seen clezrly at the sarme time as the graduation of the movable alide. The micrometer stands at zero if the zero mark of the cylinder coincides with the index and the fixed mark is at a known division. The calculation is most convenient if the micrometer is left in the position of zero and the object is moved till one of its edges corresponds to the zero mark of the eyepiece scale. If the micrometer is then moved till another graduation corresponds to the other edge of the image the size of the image can be read off. As this method meacures
the image conrectly to s few thousandthe of millimetres, the ooject iteelf is measured accurately to some hundred-thousandths of millimetres, if it has been magnified a hundred times by the objective. To keep up this degree of exactitude the magnification of the objective must be carefully ascertained, e.g. by using an objective micrometer. A Gine scale with known intervals is put on the stage plate, and by determining the distance between the graduations of the objective micrometer formed through the same objective, by means of the screw micrometer ocular, the magnification of the objective is determined. As the errors in the graduation of the objective micrometer are also magnified, very exact scales are necessary. When determining the magnification the microscope must be used under exactly the same conditions: neither the length of the tube nor the focal length of the objective may be altered.

A fixed eyepiece micrometer is simpler and more popular. This consiats of a scale on a little glass plate, which, instead of a cross wire, is placed in the eyepiece. The adjust ment must be such that the image produced by the objective falls exactly in the plane of the scale. The size of the image is determined by calculating the entire interval taken up by it. By using an objective micrometer in place of the object, the magnification of the objective can be ascertained and from this the actual size of the object. As fractions of intervals can only be estimated in this method, a measurement with ouch an eyepiece scale can of course not be as exact as with a screw micrometer ocular. However, such a determination of size is often quite accurate enough.

A third method employs a drawing prism. The object and the drawing plane are been at the same time and the outlines can be readily drawn. 1f, as before, an objective micrometer is placed below the microocope in the place of the object, and the sise of a epecial micrometer-interval is drawn on the same board, then the actual size of the object an be ascertained. Instead of first drawing the object and the objective micrometer, they can of course be projected at the same moment on a scale on the drawing board.

The errors atcending the determination of the size of a microecopic object depend chiefly on the accuracy of the objective micrometer: any errors in the mictometer being magnified by the objective. These may be diminished by using different parts of the objective micrometer for the correction of the eyepiece scale, and the calculation of the size is based on the found mean value. A second errar can arise through the inaccuracy of the cyepiece micrometer, and alao in the case of a screw micrometer through periodic faults of the screw, and through dead motion. The eyepiece micromettr allows its errors to be diminished, if one meagures at difierent pointa and then fixces a mean value. The dead motion of a micrometer screw is best avoided by working the screw always from une and the same side. The thickness of the crose wire may also occasion a fault. For this reason there is sometimes employed two very narrow threads lying beside one another, and which limit the image as nearly as possible.

Tere Testing of the Microscopt

The excellence of a microscope objective depends on its definition and its resolving power.

The definition is better according as the chromatic and spherical aberrations are removed: there aways nenains in even the best constructions some slight aberration. In consequence of these residual aberrations, every object-point is not reproduced in $3 n$ ideal image-point, but as a small circle of aberration. These circles will be objectionable when the smal", int details are examined. The size of these circios depends, in the case of equal tube lengt !1s, only on the type of the objective, and not on the focal length, exact execution being assumed. Object details will only be well seen if the aberration circles are small in comparison. The size of these detaiis in the image depends only on the magnification of the objeclive, $M=\Delta / h^{\prime}$ and can by appropriate choice of the focal length of the objective be brought to the 'right value. In the case of a suivable ocular magnification, the details will be well seen, while the aberration circles remain invisible. It is therefore possible to judge the excellence of the focusing of objectives on the strength of the ocular-magnlfication or the over-magnification, which they permit.
E. Abbe; through the so-called delicate ray transmission, suggested a way by which the quality of the images of objectives can be observed. The ray transmission, shown in fig. 55, is obtained by means of a stop of the form shown in the lower figure and placed under the condenser in the plane The entrance pupil is in this way reduced on two small separate felds, which nevertheless contain rays of all zones. It Is necesatry that the outaide edge of the diaphragm
coincides with the edge of the entrance pupil. This can be attrined by drawing the iris diaphragm so far as to form the entrance pupil. The double diaphragm is then in such a position that the edge of the outer diaphragm coincides with the edge of the iris diaphragm

The object employed must have distinct boundaries. Abbe's teat plate consists of an object carrier on which six cover ghassè of exactly determined thickness (bet ween 0.09 mm . and 0.24 mm .) are cemented. The cover glasses are silvered on their under surfaces, and in the silvering fine lines are drawn; thene linet form the test object. This plate admita at the same time of a correct determination of the thickness of the cover glass, for which the best correction exists. So long as the object is not sharply focused two aeparate dispersion figures will be seen. The defects of the objective are revealed, e.8. two adjacent sharp images ere formed, which become indistinct if they coincide, or one pencil produces a distinct, the other an indistinct irrage, or that the images are surrounded with coloured rings. Owing to the curvature of the image, all parts of the object are not seen distinctly at one and the same time.

The resolving power of an objective depends on its numerical aperture. The numerical aperture can be determined in two ways. A diaphragm with a very narrow hole is claced on the stage, and the microscope sharply focused on the edges of the hole. The illuminating mirror is turned aside and a graduated scale is laid on the foot of the microscope. Strong yystems produce in the proximity of their back focal plane an image of the scale, which can be inspected with a weak auxiliary microscope, and the length of the visible part of the graduation determined. The ratio of half the length of the visible piece of the scale to its distance from the diaphragm on the stage gives the tangent of half the angular apetture. The sine of this angle is the numerical aperture for dry lenses. With weak systems no auxiliary microscope is necessary, the eyepiece being removed and the scale viewed directly in the tube.
E. Abbe constructed a simple instrument for the determination of the aperture, termed the apertometer (6g.56). A semi-circular

Fic. 56.-Abbe's Apertometer (Zeiss).

giass plate bears two scales, over which two black thin metal plates bent back at right angles may be moved. A little hole in the sifvered plate a marks the centre of this circle. Through this hole ene point: of the metal plates b can be observed by total refiection on the surface c. The apertometer is laid on the stage, so that the hole lies in the axis of the microscope, and the hole is sharply focused. The eyepiece being removed the image of the metal plates s produced by the objective is seen. In order to ensure for the eye a central position, there is fixed on the upper end of the tube in place of the eyepiece a disk of pasteboard or metal with an axiai hoie. The metal plates b are then moved till the points just cut ofl the edge of the field to be surveyed. The angular or numerical aperture can then be read off. With strong systems the vanishing of the points in observed with an auxiliary microscope, formed by means of the inner tube. In immersion systems the immersion liquid is placed betweet the front lens and apertometer.

If the numerical aperture be known the resolving power is easily found. The resolving power can also be determined by using differ ent fine teat objects. Norbert's test plates, which bear graduated groups of extremely fine and narrow divisions are very useful. while the tests of Amphiplewra pellacide and Surirelle cenma are of ten employed.

The magnification of a microscope is determined from the focal lengths of the two optical systems and the optical tube length, for $\mathrm{N}=250 \Delta / \mathrm{f}_{1}^{\prime} / 2$. To determine the optical tube length Δ_{4} it is necet eary to know the position of the focal planes of the objective and of the ocular. If one focuses an auxiliary microscope, carried in the inner tube, on the image situated in the back focal plane of the objective of a distant object, and then on the dust particlea lying on a slide pressed against the end of the outer tube, the displacen ent of the auxiliary microscope gives the distance of the back focal plane of the objective from the end of the outer tube. To determine the position of the anterior focal plane of the eyepiece, the eycpicas is placed on the stage with the eye-lens downwards. An auxiliary microscope is now focused first on the image of a distant object and then on the plane of the edge of the setting. This plane can be marked by a small piece of paper. This gives the distance of the anterior focal plane of the eyepiece from the bottom edge of the setting of the eyepiece and consequently also of the edge of the eyepiece carried by the upper end of the tube. These measuremente determine the optical tube leogth Δ.

There are many methods for determiniag the focal length of the objective. The objective to be examined is placed on the stage, and in the manner just shown, the distance of the focal plane from the edge of the fittings or to the surface plape of the front lens is determined. Any plane object a few yards distant can be used. If the object can be seen by using the mirror, the plane mirror must be used; then the actual size of the object and of the image produced by the objective is mensured (of the image by a micrometer ocular). The distance of the object from the nearer focus of the objective is next determined. This distance is composed of the distance of the object from the centre of the plane mirror, and of the diatance of the focus of the objective on the stage plate from the centre of the plane mirror. Let the size of the object be y, the size of the image y^{\prime} the distance of the object from the focus x, then $y / y^{\prime}=x / f$ from which f_{1} can be calculated (bee Lens). The same mechod can be used to determine the focal length of the eyepiece. These are the dimensions necesary for determining the magnification of the microscope, via the optical length of the tube Δ, the focal lengths of the objective f_{1}^{\prime}, and of the eyepiece f_{2}.
The focal length of an objective can be more simply determined by placing an objective micrometer on the stage and reproducing on a screen some yards away by the objective which is to be exannined. If the sixe of the image of a known interval of the objective micrometer in determined by an ordinary scale, and the distance of the image from the focal plane of the objective belonging to it is measured, then the focal length can be calculated from the ratio $y / y^{\prime}=f_{1}^{\prime} / x_{1}^{\prime}$; in which y is the size of the object, y that of the image, and x_{1}, the distance of the image from the focal plane belonging to it.
Besides this indirect method of determining the magnification there is also a direct one, in which it is not necensary to first measure f_{1}, fo or Δ. If a drawing prism is used above the eyepiece, and an objective micrometer is inserted, then if a scale is laid on the drawing board which is 25 cm . distant from the exit pupil, one or more intervals of the objective micrometer can be seen projected on the cale tying on the board. The comparison of the two scales gives directly the magnification. The course of the light within the drawing prism must be taken into account when determining the distance of the scale from the exit pupil. Although this method does not give very accurate results, it is more convenient and simple than the modirect method.
Bibliography.-EE. J. Spitta, Microscopy (2nd ed., 1909): Sir A. E. Wright. Principles of Microscopy (1906) W. B. Carpenter, The Microscope and its Revelations (8thed. by W. H. Dallinger, 1901); 1. Hogg, The Microscope (5 th ed., 1898); H. wan Heurck, The Microscope (Eng. trans. by W.E. Baxter, 1803). W. Kaiser, Technik des modernen Mikroskopes (Vienna, 1906), deals with the practical aspects, whilst the theory is treated in M. von Rohr (Dic Theorie der oprischen Instrumente. Berlin, 1904) and in S. Czapski (Grandnirge der Theoria der optischen Instrumente; ed. by O. Eppenstein, Leipzig, 1904).
(O . HR.)
MICROTOMY (Gr. тbm; тt μ vay, to cut), the term applied to the preparation of minute sections of organic tissue for the microscope. In 1875 the methods were yet in their infancy; their development has enabled observers to achieve the most exact study of minute anatomy, in the case of small objects, which without these methods could only be investigated by the unsatisfactory process of focusing with the microscope through the solid object.

It is not necessary here to detail at length the wet method of preparing sections. Briefly, the tissue is soaked in a solution of gum, or of gum and syrup, and after being frozen by ether spray, or by a mixture of ice and salt, is cut into sections either by the Rutherford, Cathcart or some similar section-cutter, or by apparatus which can be fitted to the more modern types of microtome referred to below. This method, which is to-day used mainly by pathologists, has two main disadvantages: the prolonged action of watery fluids on the tissues, and the impossibility of getting ribbons; each section having to be picked up separately.
The general processes of the dry method employed in zoological and botanical microtomy are, up to a certain point, practically identified with those used for the preservation of animals and their tissues for other branches of microscopic work. In the first place the tissues must be killed; in the second, they must be fxed. i.e. the protoplasm must be set or coagulated as far as possible in the condition in which it appears in life; and in the third, they must be hardened, i.e. in most cases dehydrated. Killing may be effected by asphysiation or narcotization (nicotine, cocaine, chloral hydrate, \&c.) in special cases, but is generally achleved by fixing reagents, of which corrosive sublimate and other chlorides, picric, acetic, osmic and chromic acids, alone or in combinstion, chromates and strong alcohol
are the most usual. These serve to a great extent also as hardicning agents, but alcohol, used after them, completes this process effectively, and when not $t 00$ strong (70%) is the best storage fluid. The second set of processes relates to the staining, without which transparent sections are almost invisible. The stains are divisible into general stains, which dye the tissue practically uniformly and indiferently; and selective stains, which bave affinity for special tissues or cell elements. Of the latter group some fasten on nuclei, others only on the chromatin of the nuclei; some on connective tissues, others on muscle fibres and so on. It is probable that the action of all these selective stains is produced by definite chemical combination with compounds originally present in, generated in, or introduced into the tissue selected. The most generally useful stains for ordinary work belong either to the cockineal series (borax-carmine, carmalum, \&c.), or to the logwood series (haematoxylin, heemalum, iron haematoxylin, \&c.); in both of these great improvements have been introduced of late years by Dr Paul Mayer. The activity of these stains apparently depends upon the presence of alumina or of some similar base For more special researches, such as cytology, neuropathology, neurohistology, and so forth, greater dependence is placed on the coal-der colours, the name of which is legion. Some of these, such as safranine or gentian violet, are regressive stains; that is to say, the tissues are overstained uniformly, and the superfluous colouring matter washed out either by alcohol or by weak hydrochloric acid from the unselected parts. Others, such as methyl green, are progressive-that is, the colour is brought up to the pitch required and the reaction promptly stopped. The coal-tar stains can be used singly, or in combinations of two or three. Some of the best, unfortunately, are not permanent. A third group of stains is furnished by such reagents as silver nitrate, gold chloride, and the like (impregnation stains), which can be made not only to stain, but also to deposit a fine metallic precipitate on certain structures. In the case of small and delicate objects, the staining is done in the mass before any further preparation for sections, but with larger animals, or large pieces of resistant tissue, the stain is applied to the sections only. The processes so far mentioned are applicable to many branches of microscopic work.

When preparing tissues for sections the first step is complete dehydration, generally effected by bringing the object into absolute alcohol. It is then transferred to one of a group of reagents, which are miscible with absolute alcohol, but would form an emulsion with water, and are solvents of the embedding medium. The embedding mass in most general use is paraffin wax, melting at a temperature of 54° to $60^{\circ} \mathrm{C}$., according to the character of the object and the thickness of section required. The object is transferred from absolute alcohol to benzol, chloroform, cedar oil, or similar fluid to the melted paraffin; the fluid diffuses and evaporates, leaving the tissues to be completely permeated by the paraffin. This process can be greatly hastened by the use of a partial vacuum. When impregnation is complete the paraffin is cooled rapidly, so as to assumie a homogeneous non-crystalline condition, and the tissue thus comes to form part of a block of soft but tenacious material, which protects it from damage by air or damp, and can be readily cut by a razor. The block is then trimmed to the form of a triangle or rectangle, and fixed by a clamp or by local melting in the holder of the microtome.
The first automatic microtome suitable for cutting a block of tissue into a continuous series of sections was made in 1883 in the university workshops of Cambridge, from a design by W. H. Caldwell and R. Threlfall. Only a single machine was made, but in 1884 twelve machines were made by the Cambridge Scientific Instrument Company trom a design by Caldwell. Since then numerous excellent and simpler forms of microtome have been evolved. Some of these have distinct advantages over others, but with microtomes as with other tools-the success of the results depends very largely on the manipulator, for every one works best with his accustomed instrument. In one type of mierotome the rasor is atteched at one end only to a heavy
block, sliding beckwards and forwards in a horicontal V-groove; the paraffin block is fed to this either up a vertical guide (Schanze, Reichert, \&ic.) or up an inclined plane (Thoma-Jung). In another type the razor is firmly clamped at both ends, to diminisll vibration, and the paraffin block advances to it at the end of a long lever on trumnion bearings (Cambridge rocker) or up a vertical guide (Minot types).

In the selection of a microtome, apart from its steadiness, rigidity, accuracy of workmanship, and so forth, it must be borne in mind that, in general, simplicity of working parts means longer life, and that an elaborate " automatic " mechanism, by which a single movement is translated into several in different directions, not only complicates the machine, but robs the operator of those alterations of pace, rigidity, pressure, \&c., which are often necessitated by the varying texture in different parts of the object cut. For general use by less skilful students in a laboratory, price, simplicity and rapidity of work recommend the rocking microtome of the Cambridge Scientific Instrument Compeny, but it tends to fail at large or hard objects. For the all-round work of an investigator, its simplicity and finish have made Jung's sliding microtome with the Naples improvements deservedly popular for many years; it can be fitted with special apparatus for cutting celloidin and frozen objects, and it can be relied upon to cut any tissue, however difficult; but it cannot be worked as rapidly as some others, nor produce long ribbons of large objects. For this latter purpose the Minot-Becker, Minot-Zimmermann and ReinholdGilltay have been strongly recommended; these, however, are all of more complicated construction, with corresponding liability to uneven wear and damage; they are highly " automatic," ieaving nothing but pace under control of the operator, and they are (particularly the last) expensive.

In 1910 the Cambridge Scientific Instrument Company issued a new microtome designed primarily for cutting larger sections than was possihle in their earlier forms, which respectively dealt with mections $12 \times 20 \mathrm{~mm}$. and 30 mm . in diameter; the new instrument cuts sections measuring $150 \times 120 \mathrm{~mm}$. $\left(6 \times 4 \frac{1}{1}\right.$ in.) embedded in paraffin or celloidin and of a thickness varying from 0.002 to 0.06 mm ., each division of the scale being equal to 0.002 mm , and the cotal distance of automatic feed being 21 mm . The construction and action of the instrument can be understood hy referring to the figure; a detailed description is given, since the same principles are utilized to a greater or less extent in all sliding microtomes.

Large Sliding Mierotome.

The object to be cut, having been embedded in a suitable prepara. tion A , is fixed to a wooden block which is attached hy clampe to the object-holder B. The object-holder is provided with mechaniern by means of which the height of the block is debermined; this is effected hy mounting the holder in a cup-shaped socket at the extremity of a brass pillar E, which can be ralied or lowered and fixed in nny. position by a clamp. In addition, the direction in which a section is cut can be.varied by adjunting the four ecrewn
one of which is shown at C, which orientate the block. The objectholder and feeding mechanism are carried on a sliding tarriage which rests at three points on two guides in the frame N, N_{1} of the instrument; and in order to secure easy running the necessary lubrication of the bearing surfaces is provided for by a groove in which oil is placed. The motion of the carriage in either direction is effected hy the handle G, connected to a system of levers H, which being constructed on geometrical principles, prevent any side-play and ensure a uniform motion. The arrangement for determining the thickness of the section cut consists of a stop-pin, which, operating through the ratchet M. caueen a toothed whed to revolve, which in turn raises the pillar K; the amount of the mation can be read of hy an index. On the return stroke of the sliding carriage the stop-pin is again actuated in such a manner that just before the knife R reaches the object-holder the mechanism depresses this part of the instrument mo that the knife is mot fouled; and after its passage the object-holder is raised to the poition appropriate for taking the next section. The knife R is rigidly set in two heavy brass clamps adjustable by the screws S, and the clampe are atcached to the frame of the instrument by the acrews T. The angle which the cutting edge makes with the frame in aloo adjustable, and by means of a omall angular acale engraved oo the knife-holders any setting can be easily determined or repeated. The knife is fat on ope side and hollow-ground on the other. In using the microtome it is esmential that the cutting edge of the knife points towards the end of the instrument where the baodie is placed; the hollow-ground face should be uppermost, and the flat surface should not be exactly horizontal but slightly inclined oo that the lower facet of the cutting edge is parallel to the frame. As to the relation of the position of the knife to the direction of motion, it is the usual practice, when peraffin sections are to be taben, to have the cutting edge at right angles to the noction; when, of the other hand, colloidin preparations are being eut, the knifo must be set ohliquely across the frmme, an angle of 30° being convenient. This oblique setting in aloo recommended for paraffir sections. In addition it must be remembered that celloidia preparations always require lubricating when being cut, and it is also necessary to keep boih the knife and the preparation constantly moistened with either 80% alcohol or with cedar-wood oil.]

The sections, when cut by the microtome with the knife straight and the two sides of the rectangular paraffin block parallel to it, in most cases can be got off in a continuous ribbon, each sticking to its predecessor. This very desirable result generally can be insured by a coating of softer paraffin; but if the object be large, or britule, or of varying texture, it is safer to cut the sections singly from a triangular block with an oblique knife. The sections or ribbon are often not quite flat, but rolled, creased or compressed; they must be flattened before being attached to the slide. It is possible to carry out these two processes simultaneously by covering the carefully cleaned slide with plenty of very dilute solution of Mayer's glycerine and albumen, and leying the sections on the fluid and the slide on a hot-plate; as the water becomes warm the sections flatten out, and as it evaporates they settle down on the slide, and are held there by the albumen (many other methods are in use). The slide is then warmed to melt the parafin, and plunged into benzol, or some similar fluid, which removes the parafin; thence into absolute alcobol, which dehydrates and coagulates the albumen. If the timus has not been stained en bloc the sections can now be stained on the slide. After staining they are fully debydrated, rendered transparent by oil of cloves, and mounted in xylol-dammar or Canada balsam. W. Giesbrecbt was the first to fix sections on the slide, using a solution of shellac in creasote in 1881; and also in the same year and in the laboratory of the Naples aquarium, W. H. Caldwell first cut and fixed ribbons of sections.

For ordinary work the paraffin method excels all others for rapidity, certainty and cleanliness; but for large and hard objects, or crumbling tissues (such as ova with a large quantity of yolk), some manipulators prefer to embed in celloidin. By this method, after dehydration, the tiscue is soaked ia a mixture of absolute alcohol and ether; thence transferred eitbar to increasingly strong solutions of celloidia in the same mizture or to a thin solution which is then boiled down till strong. The celloidin mass is then hardened: at first, if necessary, by drying; afterwards by a bath of chloroform or its vapours. It can then be cut in the microtome, either wet, or (it
previonily cleaned with ceder oili) dry like a parafin block. The method is more tedious and more messy than the paraffin proces; but amongst its advantages must he reckatied that litile or no heat is required, and that the embedding mass is transparent, though it does not allow of such thin sections as paraffin.

The above accounts present an outline of the complex proceses employed to-day, by which, on the one hand, sections 30μ in thickness may be made through the entive human brain; and, on the other, organisms invisible to the naked eye may he cut into a long ribbon of consecutive sections $: m$ (one-thousandth of a millimetre) thick, every minuteat fragment being retained in its proper place.
The standard bouk on the subject is Bollos Lee's Microtomist's vade-mecum. Oiher works are C. Mann, Alethods and Theory of Physialozical Histology (Oxiord, 1902), and A. Flatters, Methods in Microscopical Research (London, 1905).
(G. H. Fo.)

MIDAS, the name of several Phrygian kings. The first of these was said to have been the son of Gordius and Cybele, whose first priest he was, and in whose honouz he founded a ternple at Pespiaga. Having taken the drunken Sllenus back to his youthful charge Dionysus, he was rewarded by the god with the power of tranaforming everything he touched into gold. Finding himself in daager of starvation, even his food and drink being changed by his touch, Midas entreated Dionysus to take back the gift. By the copmand of the god he bathed in the river Pactolug, which henceforth became auriferous (Ovid, Medam. ni. 85-145; Hyginus, Fab. 191). Another story connects him with the musical contest hetween Apollo and Marsyas (or Pan). Having decided against the god, his cars were changed into thooe of an asa. He concealed them under a Phrygian cap; but the secret was discovered by his barber, who, being unable to keep it, dag a hole in the ground and whiapered into it "Midas has the atrs of an ass." He then filled up the hole, thinking his secret affe; but the zeeds which grew up over the spot proclaimed it to all the world. Midas with the ass's ears was a frequent subject of the Attic satyt-drama. There is no doubt that Midas was the name of one or more real persons around whom religious legends have grown up. The name' Midas the king " occurs on a very ancient tomb in the valley of the Sangarius, the legendary seat of the Phrygian kingdorn. The Phrygian monarchy was destroyed by the Cimmerians about 670 B.c., and the name Midas beceme in Greek tradition the representative of this ancient dynasty:
On the connexion between Midas and the Attic story sce J. G. Frazer, The Golfen Bough, ii. I34

MIDDELBURG, the ancient capital of the province of Zeeland, Holland, in the middle of the island of Walcheren, 4 m . by rail N. by E. of Flushing, with which it is also connected by steam trampay and by ship canal (1873), which continues to Veere on the N.E. coast, with a branch eastward to Arnemuiden. Pop. (1903), 19,002. Middclburg contains many splendid old houses, which recall the prosperity which distinguished it until the end of the 18 th century. The leautiful town-hall, built by Anton Keldermans about 1512, with a square tower 180 ft . high, and a façade adorned with statues of the counts and countesses of Zeeland and Holland, contains the valuable city archives and antiquarian and historical collections. The old abbey of St Nicholes, founded in 1150 , and now occupied by the provin. cial council. has some fine old tapestry of the end of the 16th century. The building was addod to in the sith and rith centuries, and partly rebuitt after a fire in 1492. It was the scene in 1505 of a meeting of the knights of the Golden Fleece, and was frequentiy the residence of royal visitors, including Maximilian, Philip the Fair and Charles V. The abbot of Middelburg formeriy possessed a vote of his own in the Provincial States. What was formerly the nave of the abbey church is now the New Church, and the ancient choir constitutes the Choir Church. These churches are interesting for the monuments of William II., count of Holland, king of the Romans (d. 1256), the 26th century scholar Hadrian Junius, and Jan Pieterxtoon; and the tombs of Jan and Cornclius Evertsen, who fell in the naval war against England in 1666. The high tower (280 ft), known as d e lanze Jan, standing apart from the church
comanins a goed chfime of bells. The carn exchange, the bof St Joris and the hol St Sebastian (formerly buildings belonging to the gilds of archers, and now places of amusement) elso deserve mention. The museum of antiquities belonging to the Zeeland Socioty of Arts and Sciences (founded at Flushing in : 769 , and transferred to Middelburg in 1801) contains a complete collection of the fauma and flora of the province, many maps, plans and drawings relating to Zeeland, the first telescope made by Hans Lippershey and Zacharias Jansen in Middelburg in x008, and some provincial Roman antiquities.

The extensive trade which Middelburg formerly carried on with the East and West Indies and with England and Flanders, was ruined by the war with England and the French occupation. But the construction of the railway in 1872, followed by the opening of the ship canal and the large dock (1876), as well as the eatablishment, by the aid of the chamber of commerce, of certain manufacturing industries (iron, machinery, furniture, oil and cigars), lifted it out of its isolation.

MIDDRMBURG, a town of the Transvaal, 98 m . E. by rail of Pretoria, and 251 m. W. of Lourenco Marques. Pop. (rgoq), 5085 -of whom 2343 were whites. It is prectily situated on the high veld, 5090 ft . above the sea, on one of the head streams of the Olifamts River. Middelburg is the chief town of an administrative division of the same name, and is a trading centre for a large district. It is also the centre of one of the richest coalfields in South Africa. From some of the adjacent collieries excellent steam coal is obtained. Copper and cobalt are found in the neighbourhood.

Middelburg was chosen in 1901 as the place of conference for pence negotiations between the British and the Boers. After the occupation of Pretoria in June 1900 by Lord Roberts the Bocr forcos had been reduced to guerille warfare, and Lord Kitchener, learning that the Transval commandants wers despondent, invited General Botha to enter into negotiations, on the basis of the recognition of British sovereignty. The conference between Lord Kitchener and General Botha was opened on the 28th of February and the negotiations, which ended in failure, were protracted until the 16th of March (see Transvanl: Hislory, \& The War of 1899-1goz).

Middelburg is also the name of a town in the Cape Province, South Arrica, 250 m . N. by W. of Port Elizabeth. Pop- (1904), 6137.
MIDDLE AGES, THE. This name is commonly given to that period of European history which lies between what are known as ancient and modern times, and which has generally beea considered as extending from about the middle of the sth to about the middle of the 151 h centuries. The two dates adopted in old textbooks were 476 and 1453, from the setting aside of the last emperor in the West until the fall of Constantinople. In reality it is impossible to assign any exact dates for the opening and close of such a period. The trend of recent historical research leads one even to doubt the validity of the very conception of any definite medieval period. The evolution of modern European society has been continuous. Progress has not been uniform. There was much retrogression with the intrusion of new barbarian races; but from their absorption by the soth century until the zoth there is not a century in which some notable gain was not made towards the attainments of modern civilization. The correct perspective places between the summits of modern and ancient times, not a long level stretch of a thousand years, with mankind atationary, spell-bound under the authority of the Church, absorbed in war or monastic dreams, but a downward and then a long upward slope, on both of which the forces which make for civilization may be seen at work.

It is clear that a survey of the history of these so-called middle ages-long use makes the term inevitable-must include not only the political phese, but also economics, religion, law, science, literature. \&c., since ail are involved in the concept. A hurricd outline of each of these vital branches of our civilization will at once reveal the falseness of the usual periodizing. It is only after having traced these one by one that we cas properly review the process an a whole.

In political history, the epochal fact which marts the close of ancient limes is the decline of the Roman Empire. This was a process extending over three or four centuries, in which no one date lends itself to the historian. The deposition of Romulus Augustulus, the last Roman emperor in the West, in 476, was certainly not one of those events upon which the history of the Western world depends. Outwardly it did not mark the end of the Empire, but the restoration of imperial unity. The throne in Italy had been vacant before, and the restoration of unity was realized in fact under Justinian. There is no reason why the date 476 should stand out in European history more strongly than half a dozen other such dates. Yet we may say that the sth century did witness the actual dismemberment of the Roman Empire. The new nations in Spain, Gaul, parts of Italy and Britain were forming the rude beginnings of what were to become national states in the centuries following. Western Europe was taken out of the imperial mould and broken up. This is a revolution of sufficient magnitude to be regarded as politically the opening of a new ern. It had been long preparing in the economic and administrative decline of the Empire, and in the steady influx of Germanic peoples into Roman territory for over two centuries; but the power of the old civilization to absorb the aew races was exhausted by the sth century, and the political history of Europe was turned into a different path. That path, however, was not destined to end hlindly in a " middle age." The line of political development marked out in the 5 th century -that of the national state-still continues. The reyolution in which Alaric, Theodoric and Clovis figured did not set the probfem for the middle ages only, as is frequently stated; its fuli meaning did not appear until the Peninsular War, the Prussia of Stein and Scharnhorst, and even Solierino and Sedan. Thus the 5th century politically introduces not 30 much the history of the middle ages as that of modern Europe.

The immediate introduction, however, was a long one-so long and so distinct from the later development as to constitute in itself a distinct phase. For five or six centuries-from the 5 th until about the 1 ith-comparatively little permanent progress was made. The Germanic tribes were still adjusting themselves and slowly learning to combine their primitive institutions with the remains of those of Rome; the premature union under Charlemagne gave way hefore new invasions, and anarchy became crystallized in feudalism. It was not until the inth and e3th centuries that modern national states really took shape: England with its trial by jury, circuit courts, Magna Charta and parliament; France under the strong hand of the Capetians. A political middle age certainly lay between Theodosius and William the Conqueror, or at least between Justinian and Henry II. It is difficult to grasp its vastness. Few students of history realize that the period from the Saxon to the Norman Conquest of England would take us as far back as from George V. to Edward I.; or that from Theodosius to Philip Augustus there is an interval equal to that hetween the aocession of Hugh Capet and the French Revolution.

This, however, is not the period most frequently termed the middle ages in political histories. It does not include those two institutions which more than any others stand in popular imagination as genuinely medieval-the papal monarchy and the Holy Roman Empire. The papacy received its full monarchial structnre under Hildehrand (Gregory VII.) in the middle of the irth cehtury; its political decline set in suddenly after the pontificate of Boniface VIII. at the opening of the 14th. The great age of the Empire began slightly earlier, and continued until tho fall of the Hohenstaufen in the middle of the 13 th century. One cannot now deny the term middle ages to the period of these two institutions. It has been consecrated to this use too long. Yet whem we include wnder a common name two eras so distinct as this and that preceding, our term becomes so vague as to be elmose valueless. Moreover, it is doubtful if this second period is reaily as "medieval" as it has seemed. Papal monarchy and Holy Roman Empire were not the only pohitical phenomena of their age, and it is possible that thelr vast pretensions have somewhat blinded hbtorians as to their real
importance. While they were struagting to enforce their claims to universal sovereignty, the royal power, less extravagant but more real, was welding together the feudal states of France and moulding the England of to-day. Compared with this obscure process-this spread of the king's peace along the highways and through the distant forest lands of the 12 th and 13 th centuriespapal interdicts and jubilecs, however impressive their spectacle, are but fleeting shows. The chivalry of Germany pouring ihrough Alpine passes for an Italian campaign, or a coronation, left litile trace in history except the tesson of their futility. There is much in the imperial and papal bistories that is merely spectacular and romantic: much that appeals to the imagination and lends itself to myth; and since the sources are abundant -the papal archives inexhaustible and the German chronicles easily accessible-an undue emphasis bas been placed upon them. It is at least evident that the political middle ages were already disintegrating during the period of papal monarchy and Holy Roman Empire.

In economic history there is a more definite line traceable. The one great economic change brought about by the decline of the Roman Empire was the lessening of urben life throughout the greater part of Europe, the closing up of avenues of communication and the predominance of isolated agricultural communities. This phase began to give way in the rth century to a commercial and industrial renalssance, which rectived a great impetus from the crusading movements-themselves largely economic-and hy the $14^{\text {th }}$ century had made the Netherlands the factory of Europe, the Rhine a vast artery of trade, and north Italy a hive of busy chics. The discovery of America and the expansion of commerce merely readjusted conditions already highly developed. The period of isolated economy which we may term medieval hasted only from about the sth to the 1 th centuries. As for manufactures, the antique methods survived. until the 18 th and 1 g th centuries.

In religious history-to be distinguiahed from that of the political organization referred to above as the papal monarchythe official recognition of the Christian Church by Galerius in $3 I 1$ serves as a convenient starting-point for what we know as universal Christendom, though the slow disappearance of paganism, as distinct from Christianity, stretches over at least a century more. The Reformation of the itht century has long been regarded as the close of the period. The real close, however, is the present day-as the result of the rationalism and science of the 18 th and 19th centuries. The heroes of the Reformation, fudged by modern standards, were reactionaries. Unconsciously and to its own ultimate damage the Reformation forged the weapons of progress; hut it was itself in no sense, except the insitutional and political, the end of that religious history inaugurated before the Council of Nicnea. The real change in atcitude which marks the dawn of a new era come in the generation of Voltaire. And "medievalism" is only now on the defence against "modernisun," both Catholic and Protestant.

In legal history there was a distinct medieval period, when Germanic customs superseded Roman law, that most splendid of Rome's legacies. But the renaissance of law began relatively early; by the 12 th century it had created a university, by the 13th it was helping to organize national states and laying the basis for that order which the economic renaissance was already demanding.

In science there was no great product In antiquity to be lost. Compared with art or law, hiterature or philooephy, ancient science (in our sensc) was almost insignificant. The promise in Aristotle of such production remained unfulguled. The ifth century is not so much a renaissance here as a mere beginning. No one can deny the general unscientific, uncritical nature of " medieval" thought. A single Roger Bacon does not relieve his age of the charge. But the middle age in science must include much of antlquity, including Pliny.

Philosophy was the one subject which had, clearly and definitely, a medieval period. Scholasticism, which absorbed the attention of most thinkers from about the ith to about the

15th centuries, is so easily marked of and played so considerable a role in the academic history of that time, that historians often refer to it as the only intellectual interest of "medieval" men. Then, selecting some of the later and less virile scholastics as victims, they ask how men could be seriously interested in their trivialities. But these men were not all busy over the problem of how many angels could stand on a needle-point; nor were they all dominated by the religious spirit of faith or intellectual cowardice. They were searching for truth with scientific eagorness. Their very failure made possible the modern era It is perhaps unnecessary to point out how small a proportion of the "intellectuals" were scholastics even in the i3th century.

In the realm of art the " middle ages" had already set in before Constantine robbed the arch of Titus to decorate his own, and hefore thase museums of antiquity, the temples, were plandered by Cbristian mobs. The victory of Christianityiconoclastic in its primitive spirit-was but a single chapter in the story of decline. The process was completed by the misery of the decaying empire, and by the Germanic invasions. The barbarians, however, destroyed less than has been commonly supposed. Destruction was more the product of necessity than of wantonness. Thus public monuments became fortresses, and antique sculpture was built into city walls. Such art as continued was almost wholly religious; for in the wilderness of the times the churches formed oases of comparative prosperity and peace, and, even in the darkest times, wherever such oases existed there the seeds of art took root. The Church architecture of the " midतle ages," then developed naturally and without a break, through the Byzantine and Romanesque styles, out of the secular and religious architecture of Greece and Rame. And, with the return of comparatively settled and prosperous conditions, not only architecture but the other arts also blossomed under the influence of what was later stigmatized as the," Gothic " spirit into new and original forms. Down to the Reformation the churches continued to be, as the temples of the ancient world had been, the main centres of the arts; yet the arts were not confined to them, but flourished wherever, as in castles or walled cities, the conditions essential to their development existed. With the revival of civilized conditions in secular life, gecular ideals in art also revived; the ecclesiastical traditions in paigting and sculpture, which always tend to become stereotyped, began in the West to be-encroached upon long before the period of the "Renaissance." The 12 th and 13 th centuries, which witnessed the great struggle between the secular and spiritual powers in the state, witnessed also the rise of a literature inspired by the lay spirit, and of an art which was already escaping from the thraldom of the stereotyped ecciesiastical forms. Gothic sculpture was not incidentally decorative, it was an essential element in the harmony of the architectural design. The elongated kings that guard the door of Chartres Cathedral, or the portals with the Last Judgment, are a necessary element in the facade. Thus fettered, even the reatiom of the Gothic sculptors failed, except in rare instances, of its full expressior. The plastic arts were left for Italy, where antique models were at hand, and the glory of its achievement in the 1 sth and 16 th centuries was so great as to obscure in men's eyes what had been done before.

But this Italian renaissance was not the only one. It was but one of many; and it was concerned with the two subjects which perhaps least deeply influence the lives of the mass of men -literary humanism and art. It is obviously absurd, in the face of the foregoing facts, to regard it as the end of a middle age in anything but in its own field.
When one studies the history of Europe subject by subject, as indicated above, and not merely in a monastic chronicie of things in general, chosen according to the author's point of view, one sees the old-time framework passing nway. The traditional idea of a barren middle age and a single glorious renaissance proves falge. An organic study of the past reveals a more rational picture of the process which produced the Europe of to-day. Cataclysm and special creation here as elsewhere give way to evolution. The new synthesis reveals a universal
decline from the 5 th to the roth centuries, while the Germanic races were learning the rudiments of culture, a decline that was deepened by each succeeding wave of migration, each tribal war of Franks or Saxons, and reached its climax in the disorders of the gth and roth centuries when the half-formed civilization of Christendom was forced to face the migration of the Northmen by sea, the raids of the Saracen upon the south and the onslaught of Hungarians and Slavs upon the cast. That was the dark age. It keft Europe bristling with feudal castles, and already alert for the march of progress. At once the march begins. Henry the Fowler beats back the Slavs and places the outposts of Christendom along the Elbe and the Oder. Otto I., his son, drives the Magyars from southern Germany and establishes the East Mark (Austria) to guard the upper Danube. The restoration of the Empire in 962 marks the first milestone on the pathway of recovery. Already scholarship had fuund a home in monasteries planted in the heart of the German forests. The succeeding century brought the Empire to the acme of its power, until Henry III. in the Synod of Sutri, sat in judgment on the impotent and demoralized papacy. Meanwhile France had been learning something even in its feudal anarchy. The monks of Cluay were at work. The Capetians had begun. The great monastery of Bec was drawing the sons of northern sea-robbers to the service of that greatest civilizing force, the Church. The progress made through even this darkest age may be measured by the diflerence between the army of Rollo and that which William the Conqueror gathered for the invasion of England.

There is a legend, current among historians from the days of Robertson and Hallam, that as the year 1000 approached mankind prepared for the Last Judgment; that the earth "clothed itself with the white mantle of churches," and like a penitent watched in terror and in prayer for the fatal dawn. Contemporary sources fail to bear out this beautiful conception. Apart from the fact that reckoning from the birth of Christ was by no means universal, and consequently the mass of men were ignorant that there was such a thing as the year 1000, one wonders how that most enduring type of architecture, the Romanesque, reached its maturity among men who thought that the earth itself was so soon to "shrivel like a parched scroll." Recent scholarship has absolutely disproved this legend, founded on a few trite phrases in monastic chronicles, and still to be heard in similar contexts. The year 1000 marks no epoch in medieval history.

The latter half of the inth century witnessed the most remarkahle political creation in Europe since the days of Caesar, the papal monarchy of Hildebrand. The great scholastic controversies had already begun in the schools of France; the revival of Roman law had called forth the university of Bologna, and the canonists had begun the codification of the law of the Church. The way was already cleared for the busy 12 th century-the age of Louia VI, and Henry II., of Glanvill and Suger, of Abelard and Maimonides, of Frederick Barbarossa and Alexander III., of the emancipation of Freach communes and cities and the independence of those of Lombardy, of the growth of gilds and the extension of commerce, of trouvère and troubadour and the beginnings of vernacular literature, of the creation of Gothic art, of trial by jury and the supremacy of royal justice. Such are but a fraction of its achievements. The 12th century stands beside the 18 th as one of the greatest creative centuries in human history. The 13th like the rgth applied these creations in the transformation of society. The century of Dante was also that of the first English parliament; its vast economic expansion enabled the national state to triumph in both Engiand and France, and furnished the grounds for the overthrow of Boniface VIII. Into the complex bistory of this momentous age it is impossible to go in any detail. Sufficient to say that in the opening quarter of the 14 th century England and France at least stood on the brink of " moriern times." Then hese two nations entered upon that long tragedy of the Hundred Years' War, a calamity absolutely immeasurable to both. But during its massacres, jacqueries, plagues and famines, the cities of Italy, growing rich with trade and manufactures, were in their turn
the centres of progress, this time in a new direction, toward the recovery of the antique past and the development of art.

This is the so-called Renaissance ($q . v$.). The humanist which it produced, interested oniy in its spiendid revelations, forgot or ignored the achievements of the period which intervened between Cicero and Petrarch. Then by the genius of their work they fastened their mistaken perspective upon historians and the cultured world at large. They struck upon the unfortunate and opprobrious term "middle ages" for that which stood between them and their classic ideals. The term was first used in this sense by Flavio Biondo, whose "decedes" was an attempt to block out the annals of history from 410 to 1410. His treatment fell in admirably with the ldeas of his age and of that following. To Protestants the age of the papal monarchy was like the reign of Anti-Christ. Then, after the indifference of humanists and Protestant poiemic, came the disgust of men of science at the scholastic philosophy-an attitude best exhihited in Bacon's Advancement of Learning. The 18 th century was thus trehly harred from a knowledge of genuine medieval history. Romanticism, that reaction in which Sir Walter Scott, the Schlegels and Victor Hugo so largely figured, was as far from understanding what it admired as classicism had been from what it hated. Its extravagant praise of all that savoured of the middle ages was still blind to their real progress and work. They were, for it, the ages of romance and chivalry. The view of the romanticists was as one-sided as any that had gone before. It is only with the introduction of a wider outlook in the scientific study of history that it has been possible to straighten the perspective and modify the traditional scheme.

In the purely intellectual sphere it is certainly true that the recovery of the antique world was of great importance; that it made possible genuine criticism hy presenting new points oi contrast and opening up fields that led away from theological quibbles. But it did not mean the "double discovery of the outer and inner world." Mankind did not, as Burckhardt and J. A. Symonds lead one to imagine, suddenly throw off a cowl that has blinded the cyes for a thousand years to the beauty of the world around, and awaken all at once to the mere joy of living. If any one was ever awake to the joys of living it was the minnesinger, troubadour or goliard, and the world had to wait until Rousseau and Burns before its external beauty was discovered, or at least deeply appreciated, by any but a few Dutch artists. Even Goethe crossed the Alps with his carriage shutters closed. Mont Blanc is not mentioned by travellers until after the middle of the r8th century. The discovery of the outer world is a recent thing in art as well as in science. As for the claim that the "Renaissance" delivered men from that blind reliance upon authority which was typical of "medieval" thought, that is a fallacy cherished by those who themselves rely upon the authority of historians, hlind to the most ordinary processes of thought. In this regard, indeed, in spite of the edvance of scientific method and the wealtb of material upon which to base criticism, we are still for the most part in the middle ages. The respect for anything in books, the dogma of joumalistic inerrancy which stili numbers its devotees by millious, the common acceptance of even scientific conceptions upon the dicta of a small group of investigators, these are hut a [CW of the signs of the persistence of what is surely not a medieval hut a universal trait. The so-called Renaissance did much; but it did not do the things altributed to it hy those who see the " middie ages" through humanist glasses.

Upon the whole, therefore, it would seem that not only was there no one middie age common to all branches of human evolution, except the period more definitely marked as the dark age, but that those characteristics which are generally regarded as "medieval" were hy no means limited to a single epoch of European history. In short, the dark age was a reality; but the traditional " middle ages" are a myth. (J.T.S.")

MIDDLEEORO, a township of Piymouth county, Massachusetts. U.S.A., in the S.E. part of the state, bounded on the N.W. by the Taunton river. Pop. (1800), 6065 ; (1900), 6885-of whom 930 were foreign-born; (1910 coatua) 8324. Area,
about $708 \mathrm{sq} . \mathrm{m}$. The principal village also is named Middleboro; it is 35 m . S. of Boston, is served by the New York, New Haven * Hartiord railroad and by electric lines connecting with Taunton, Boston, New Bedford and Cape Cod, and has a townbouse, a soldiers' monument, and a puhlic hibrary housed in a building erected from. a fund (part of which is used as a permanent: endowment) bequeathed by Thomas Sprout Peirce (1823-1901), a merchant of the township, who, in addition, bequeathed about $\$ 500,000$ as a apecial trust-fund for the use and benefit of the town of Middleboro; the income has been spent largely in the construction of macadam roads, the erection of an ahmshouse and the installation of special coutses in the high school. The village, a place of considerable natural benuty, is a summer resort, and has various manufactures. Other villages in the township are North, East and Soutb Middieboro, and Rock., The township had important herring fisheries in early times and manufactured straw hats (from 1828) and kadies' dress goods. Middleboro was settled about 1662 under the Indian neme: Nemasket; became a partof the township of Plymouth in 1663; and in $\mathbf{8 6 6}$ was incorporsted as a separate township, taking its name prohahly from Middlesbrough, North Riding, York.

See Thomas Weston, Fistory of the Town of Midilleboro, Massechuselts (Boston, 1906).

EIDDLBBUAY, a vilage and the county-seat of Addison county, Vermont, U.S.A., in Middlehury township, on Otter Creek, about 3 I m. N.N.W. of Rutland. Pop. of the village (1890), 1762; (1900), 1897 (221 foreign-born); (1910), 1866; of the township. (rgoo). 3045; (ygro), 2848. Middlebury is served by the Rutland railroad. It is picturesquely situated near the Green Mountain range, and is the seat of Middlebury College (chartered, $\mathbf{1 8 0 0}$; co-educational since 1883), which offers a classical course and a Latin-scientific course, and had in rgot1908 Iz instructors and 203 students (84 of whom were women), and a library of 35,000 volumes. The Sheldon art museum and a public library are among the public institutions of the village, and the principal huildings include the courthouse and the opera-house. The principal industrial establishments are marble quarries, "Italian" marhle works, iron foundries, lime-kilns, flour-mills, and door, sash and lumber mills. About I m. north of the village, in the township of Weybridge, there is a lage United States government hreeding station for Morgan borses; and merino shecp are raised in the vicinity.

The township of Middlebury was incorporated in 1761, and the first settlement on the site of the present village was made in 1773. At the outhreak of the War of Independence the settlement was deserted, and all except two or three of the houses were destroyed by British troops; hut the settlers returned soon after the close of the war, and the township was formally organized and sent a member to the state assemhly in 1788 . Middlehury was incorporated as a borough in 1813 , and as a village in 1832.

MIDDLESBROUGH, a munlcipal, county and parliamentary borough and seaport in the North Riding of Yorkshire, England, ${ }^{2} 38 \frac{1}{2} \mathrm{~m}$. N. hy W. from London, on the North Eastern railway. Pop. (1891), 75.532; (1901), 91,302. It lies on the south bank of the Tees, 5 m . from its mouth in the North Sea, and is the centre of one of the most important iron-working districts in the world. It is wholiy of modern growth, having been imcorporated in 1853 . Its chief huildings are a fine tow-hall with lofty clock-tower and spirt (1889), containing the municipal offices, free library, \&c.; the exchange, county court, Dorman memorial museum and Roman Catholic cathedrad. Besides iron and steel works, the first of which was that of Messrs Bolckow, Vaughan \& Co., there are rolling-mills, tube works, wire-mills, enginerring works, oil works, chemical works, salt works and a considerable shipbuilding industry. The district abounds in blast furnaces. The docks are accessible to large vessels, the entrance having a depth of 32 ft . Extensive dredging operations are carried on in the river. The accommodation for shipping includes two graving docks, two patent slips, \&c. The entrance to the river is protected by two breakwaters named respectively the North Gare and Sourh Gare. The furnaces within the port produce some
as00,000 toms of pig tron annally. Middlesbrough in the seat of a Roman Catholic beshop. The parliamentary borough falling within the Cleveland division of the county, returns one nember. The county borough was created in 1888. The town is governed by a mayor, ten aldermen and thirty councillors. Area, $\mathbf{a 8 2 3}$ actes.
The earlier history of the pince is meagre. Where Middlesbrough now stands there were at one time a small chapel and priory founded by Robert de Brus of Skelton Castle. These vere dedicated to St Hilda, and with some lands were given by de Brus to the abbey of St Hilda at Whitby in 1130 . The priory fell into ruins at the time of the Reformation, and no trace now remains beyond some stones built into the wall of a brewery. The Oak Chair in the town-hall also is made from a iragment. In 1801 there were upon the site of Middesbrough only four farmbouses. In 1829 a company styling itself the Middlesbrough Owners bought 500 acres of land, and began building in the town. In 1830 the Stockton \& Darlington railway was extended to Middlesbrough; four years later the town was lighted with gas; and after six years more a public market was extablished. The census of 1831 showed the population to be 154 , that of 1841 sbowed 5709 . In 1842 the opening of the docks gave additional importance to the town. From the year 1851 , when John Vaughan discovered the presence of ironstone in the Eston hills, the town advanced rapidly.

MIDDLESEX, LIONEL CRANFIELD, ist EARL of (1575-1645), was a successful London merchant, who was introduced to King James I. by Henry Howard, earl of Northampton, and entered the royal service in 1605 . In 1613 he was knighted and was appointed surveyor-general of customs; in 1616 he became one of the masters of requesis, and in 1619 master of the court of wards and liveries and chief commissioner of the navy. He was returned to partiament as member for Hythe in 1614 and for Arundel in 1621. Cranfietd, who was also master of the wardrobe, was responsible for many economies in the public service, and his business acumen was very useful to the king. He took part in the attack on Bacon in 1621, and although, contrary to general expectation, he did not succeed Bacon as lord chancellor, he was created Baron Cranficid in July of this year. In 1621 also he became lord high treasurer, and in September 1622 was created earl of Middlesex, losing his positions and influence shortly afterwards because he opposed the projected war with Spain, and had incurred the hostility of Prince Charles and George Villiers, duke of Buckingham. Impeached hy the House of Commons for corruption, he was found guilty by the House of Lords in May 1624 and was sentenced to lose all his offices, to pay a heavy fine and to be imprisoned during the king's pleasure. However, he was released from prison in a lew days. was pardoned in the following year, and was restored to his seat in the House of Lords in 1640 . The earl's second wife was Anne Brett (d. 1670). a cousin of Buckingham's mother, whom he married somewhat reluctantly in 1621 in arder to ensure Buckingham's support. Middlesex died on the 6th of August 1645 . leaving with other issue a son James (162t-t65t), and eart of Middlesex, who was a partisan of the parliamentary party during the Clvil War. James was succecded hy his brother, Lionel, and when this earl died in October 1674 his titles became extinct. The first earl's daughter Frances married Richard Sackville, sth earl of Dorset, and their son Charles was created earl of Middlesex in 1675. Two years later he became earl of Dorset, and the titie of earl of Middlesex was borne by the earls and dukes of Dorset until 1843.

MIDDLESEX, a south-castern county of England, bounded N. by Hertfordshire, E. by Essex, S.E. hy the county of London, S. by Surrey, and W. by Buckinghamshire. The area is 283.3 sq. m ., and, exceptling Rutland, the county is the smallest in England. The area nutside the county of London, or extrametropolitan area. with which this artlcle is mainly concerned. is $233.8 \mathrm{sq} . \mathrm{m}$. It lies entircly in the basin of the river Thames, which forms its southern boundary. On the east it is separated from Essex by the Lea, the largest northern tributary of the Thames. The other rivers, in order west ward, are the Brent, the Crane or Yedding Brook, and the Colne. The waters of
several streams are collected in the artificial Brent reservoir near Headon, from which the Brent flows with a circuitous course to the Thames at Brentford. The Crane, rising in the high ground near Harrow-on-the-Hill, joins the Thames at Isleworth, and the Colne, which rises on the eievated plain between Hatfield and St Albans (Hertfordshure), traverses a flat valley on the western boundary of the county, where it divides into several channels, and joins the main river at Staines. The bighest ground, exceeding 400 ft . at several points, and reaching 503 ft . above Stanmore, is found along the northern boundary, in a line from Stanmore through Elstree, Chipping Barnet and Potter's Bar. Two well-marked lines of heights, detached from the main line, project southward, the eastern from Whetstone through Finchiey and Highgate to Hampstead, where, within the county of London, a height of 443 ft . is found on Hampetead Heath; the western being the isolated elevation on which stands Harrow-on-the-Hill. The hills skirting the Lea valley, in the neighbourhood of Enfield, are abrupt, though of no great elevation. Elsewhere the country is very slightly undulating or quite flat, as along the banks of the Thames and Lea. The Thames, however, beautifies its immediate neighbourhood, and rich aylvan scenery is not wanting in the higher districts. The greater part of the county was formerly densely forested and sparsely populated, and the name of Enfield Chase, a royal preserve in the north-east, still recalls this condition. In modern times the visible influence of London has spread over practically the entire county. Villages have grown into populous suhurbs; large institutions, for which sites adjacent to rather than within the metropolis have been found preferable, are numerous, and the development of suburban railway communications has brought fresh ground withm reach of builders.

Geology. - The county lies entirely within the structaral basin of the Thames, and, as in the neighbouring counties, the general slope of the ground and dip of the strata is towards the south-east. South of an irregular line passing from Uxhridge, north of Hayes, by Hanwell and Ealing to Hyde Park and east of a similar line from the upper side of the Park to Tottenham and on from that point to Enfield, the only vislble deposits are the gravels, loams, brickearths and sands laid down in former times by the Thames, with contributions by the Lea and the Colne. These alluvial deposits rise gradually northward from the Thames and westward from the Lea, in a series of gentle terraces. The eartiest portions of London were built upon these terraces, because while they were dry at the surface, water could be obtained by sinking shallow wells. The alluvium has yielded many fint implements and the boncs of the mammoth, bear and rhinoceros, great elk and other extinct forme The loams are dug for bricks and the gravel for ballast, \&c., about West Drayton, Southall. Enfield and Tottenham.
The London clay, a marine deposit, In bluish where it has not beas turned brown by exposure to tha weather. It underlies all the river deposita and risea to the surface north and cast of the alluvial boundary indicated above. It gives rise to the undulating grassy country round Harrow, Chipping Barnet and Elstree. Betow the London clay are the more gandy Reading beds, abey may be seen at Harefield and at South Mimms; inliers occur at Pinner and Ruislip. Chalk is only visible on the side of the Colne valley at Hareficld, where it is quarried, and at South Mimms. Formerly, the sandy and pebbly Bagshot beds covered all the London clay arca, but now only inolated patches remain, such as thowe on the cop of Harrow. Hampatead and Highgate bills. Long alter the Bagshot beds were laid down the country was covered by a variety of glacial deposits: such are the pebble gravels of Stanmore Heath and the distrirt north of Barnet, the clay and sand of Finchley, Muswell Hill and Southgate, the chalky boulder clay to be seen at Finchley, Southgate and Potter's Bar. Several deep borings in the London basin prove the existence, bencath the chalk. of beds which do not crop out in Middlesex. The most interesting is that at Meux's Brewery, Tottenham Court Road (about 1146 ft.), which pasese through the following formatlonts: gravel and clay, 21 ff.; London clay. 64 ft.; Reading beda, 51 ft.; Thanet mand, 21 lt.; chalk. 655 ft.: upper greensand, 28 ft ; gault. 260 ft .; lower greensand, 64 ft .; Devonian rocks, 80 ft. ${ }^{1}$

Industries. 8 cr.- The climate of some of the high-lying districte is particularly bealthy. Litile more than one-half the total aree of the county is under cutcivation: and the grain crops, greatly decreasing, are insignificant. The woil in the north and norith-weot

[^24]ia neavy, poor clay; but the rich alluvial soit of the Thames Valley is specially suitable for market gardens. On the outstirts of London much land now built over was formerly devoted to marke gardening. The number of livestock decreases; in fact, agriculture as a whole has slowly to give place to extension of building. ladustries are extensuve and varied. The county is naturally, in view of the proximity of London, closely intersected with railways, the following companies. from east to west and soulh, affording communications: Great Eastern, Great Northern. Midland. London \& NorthWestern, Metropolitan, Great Central. Metropolitan District. Great Western, London \& South-Western. Moreover, in some parts the tramway system has been extended over a wide area from London, thus Uxbridge, in the extreme west of the county, is so served. The principal canals are the Grand Junction, running west from Brentord to the Colne Valley, and thence northward; with a branch (the Paddington Canal) connecting it with the Regent's Canal in London: and. in the east, the Lea navigation.

Population and Administration.- The area of the ancient county is 181,320 acres. with a population in 1871 of 2.539 .765 ; in 1891 of 3.251,671: and in 1901 of 3.585 .323 . At the time of the Domesday Survey the population of Middlesex. exclugive of London, was ${ }^{2} 302$. The extra-metropolitan area is $1+9.668$ acres, with a population in 1901 of 798.738. The part of the ancient county transferred to the county of London under the Local Covernment Act 1888 was 31.484 acres in extent, and 771 acres were then transferred to Hertfordshire; while under the London Government Act 1899 the southern part of Hornsey was transferred to London. The area of the administrative county is 148.700 acres. The county contains宜ix hundreds. The municipal boroughs are Ealing (pop. 33.nI). Hornsey $(72,056)$. The urban districts are Acton $(37,74)$), Brentford ($\mathbf{1 5} \mathbf{1 7 1) \text { . Chiswick (29,809). Edmonton (} \downarrow 6 , 8 9 9 \text {), Enfield }}$ (42.738), Felrharn (5280). Finchley (22.126). Friern Barnet (11.56). Creenford (819). Hampton (6813). Hampton Wick (2606), Hanwell (10,438), Harrow-on-the-Hill (10,220), Hayes (3000), Hendon (23.450), Heston and Isleworth (30.863), Kingsbury (757), RuislipNorthwood (3850), Southall Norwood (13.200), Sourhgate (14.903). Staines (66 (38). Sunhury-on-Thames (4544). Teddington ($14, n 37$). Tottenham (102.541). Twickenham (20.991). Uxbridge (8585), Wealdstone (5901), Wembley (4519), Willesden (it4,811), Wuod Green (34: $: 3$). The county is in the jurisdiction of the central criminal colrt, and the whole extra-metropolitan county is within the metropolitan police district, the name of "Greater London" covering it. There are one court of quarter sessions and eight petty sessional divisions. The number of civil parishes is 60. Middlesex (extra-metropolitan) is wholly in the diocese of London, excepting a small portion in that of Oxford, and includes 153 ecclesiastical parishes or districts, wholly or in part. The extra-metropolitan parliamentary divisions, each returning one member, are Enfidd. Tottenham. Hornsey, Harrow, Uxbridge, Brentord and Ealing.

Aistory.-The district which is now Middlesex was colonized in the 6th century by an offshoot of the East Saxon tribe, and derived jts name from its position between the kingdoms of the East and West Saxons. In a charter dated 704 Middlesex is mentioned by name as a dependency of Essex, but soon after it acknowledged the supremacy of Mercia, and from 748 onvards the Mercian council was beld at London, and from 780 onwards at Brentford. In the gth century Middlesex formed part of the Danelagh, and in 993 Anlaf the Dane came with 93 ships to Staines. The only reference to Middlesex in the Saxon Chronicle occurs in 101 I , when it was again overrun hy the Danes. The Conqueror's march upon London was preceded by a general devastation of the surrounding country, the effects of which are illustrated in the Domesday Survey by the diminution in land values. At this time the district north of London formed the vast forest of Middlesex, the greater part of which was disafforested in the reign of Henry III. Enfield had woodlands for 2000 pigs; Ruislip for 1500 pigs; and Kingsbury, Fillingdon and Hendon for 1000 pigs each. Vineyards are mentioned at Holborn, Colham, Kempton and Kensington; fishponds at Harmondsworlh and Harefield produced each 1000 eels.

As a shire Middlesex probably originated about the time of the frith of 886, when it is described as the land dependent upon London, and in 912 is referred 10 as "London and the land which owed obedience thereto." During the Saxon period the extensive manors held by the church of Canterbury, the bishop of Londen and his canons of St Paul's, and the abbey of Westminster were held as independent franchises, the courts for St Paul's being held at Stepney and Fulham. for Westminster at Westminster and Staipes, and for Canterbury at Harrow. By charter of Henry I. (coinfirmed by Stephen and Henry II.) the cilizens of London heid Middtesex at
farm for $\{300$, with power to elect a sheriff from emont their number, and by charter from John the shrievalty of both Londion and Middlesex was granted to the mayor and citizens in fee. By charter of 1242 the common pleas for the county of Middlesex were ordered to be beld at the stone cross in the Strand. Under a charter of 1447 the lord mayor was authorized to nominate one of the city aldermen as justice of the peace for Middlesex. The six modera hundreds of Edmonton, Elthorne, Gore, Isleworth, Ossulston, and Spelthorne have been scarcely changed since the Donuesday Survey, except that Isleworth was then Honeslaw (Hounslow, while in the 1 ath century hidage a hundred of " Munes" is mentioned, corresponding with the Domesday hundred of Edmonton. Middlesex has always been included inthe diocese of London. The archdeaconty of Middlesex, which includes part of Essex, is mentioned in 1151 . but the Middlesex portion was not subdivided into rural denneries until 1857, when the deaneries of Fulham, Ealing, Uxbrige, Staines, Hampton, Enfield, Harrow and St Pancras were created. The dcaneries of Chelsea, Hammersmith, Hampstead, Hornsey, Kensington, Paddington. St Marylebone, Westminster and Willesden were created later, but Staines was abolished.

In 12:5 Middlesex was ravaged by Willıam, earl of Salisbury, and Falkes de Breaute, and in the same year at Runnimede near Staines John was forced to issue the Magna Carta. In the Civil War of the 17 th century Middlcsex supported the Parlismentary cause, joining in 164^{2} with Hertlordshire and Essex in a petition that the votes of the bishops and popish lords might be disallowed in the House of Lords, and that the forts and castles of the kingdom might be placed in such hands as the Parliament could confide in. Sir Denzil Hollis was defeated by the Royalists at Brentiord in 1642 , and in 1645 a fruitless treaty between Charles 1. and the Parliament was concluded at Uxbridge. Brentford had famous clection contests in 1768 and 1769 .

The woollen and leather industries fourished in Middleser. in Norman times. London was the great place of slaughter, and hides were tanned at Enfield. Bricks were also manufactured from early times, and Heston was noted for its wheat. Paper was extensively manufactured in the 17 th century, and much distress was caused in 1636 by a decree proluibiting the purchase of old rags for the Middlescx paper-mills for fear of the plague. In i64o the manufacturers of mohair yarn in Middlesex appealed against a bill prohibiting the wearing of material made of the said yarn during the winter season. In 1655 a certificate of a hundred master tanners and other traders of Middlesex approved an invention for converting raw hides into leather by means of new liquor, with or without oak-bark.

Middlesex returned two members to parliament in 1295 . (For the representation of London, see London.)
See John Norden, Speculum Britannice: the firste parte, an historicall and chorographicall description of Middlesex (London, 1593: reprinted 1637 and 1723): Danjel Lysons, The Environs of Londow (1792-1796): Victoria Cownty History, Middlesex.

MIDDLETON, EARLS OR. JOHN MiDDLETON, IST EARL or Middleton (c. 16r9-1674), belonged 10 a Kincardineshire family which had held lands at Middleton since the 12 th century. In early life he served as a soldier in France; later he fought against Charles I. both in England and in Scotland, being especially prominent at the battle of Philiphaugh and in other operations against the great Montrose. He held a high command in the Scot tish army which marched to rescue the king in 1648 , and he was laken prisoner after the battle of Preston. He joined Charles II. when that monarch reached Scotland in 1650, but he was soon at variance with the party which at that time was dominant in church and state and was only restored to favour after doing a public penance at Dundee. He was a captive for the second time after the battle of Worcesier, where he commanded the Royalist cavalry, but be escaped Irom the Tower of London to Paris. In 1653 Middleton was chosen by Charles II. to head the projected rising in Scotland. He reached that country in February 1654 , but the insurrection was a complete failure. Its leader, who cannot be beld responsible for this result, remained in Scotland until $\mathbf{1 6 5 5}$, when he rejoined Charles II, who made
him tan earl in 1656. He returned to England with the king in 1660 and was appointed commander-in-chief of the troops in Scotland and lord high commissioner to the Scottish parliament, which he opened in January $\mathbf{6 6 1}$. He was an ardent advocate of the restoration of episcopacy, this being one reason which led to serious dissensions bet ween the earl of Lauderdale and himself, and in 1663 he was deprived of his offices. He was afterwards (1667) governor of Tangier, where he died in June 1674.

His eldest son Charles, $2 n d$ Earl of Middefion (c. $1640-$ 1719), held several offices under Charles II. and James II., being envoy extraordinary at Vienna and afterwards joint secretary for Scotland. In 1684 he became an English secretary of state, and with Richard Graham, Viscount Preston, he had the diffieult task of managing the House of Commons for James II. He was loyal to James after the king fled to France, although be remained in England. where, as the leader of the moderate Jacobites, he sought to bring about a restoration by peaceful means. In 1693 the earl joined the exiled king at SL Germains, where he became his secretary of state; afterwards he held the same office at the court of James Edward, the old pretender, in Flanders and in Lorraine. He was partly responsible for the unsuccessful expedition of the Jacobites to Scotland in 170\%, and he resigned bis office as secretary in 1713. Middleton, who had been ereated earl of Monmouth by the pretender, died in 1719 . His tilles had been declared forfeited in 1695 , but they were claimed by his son John, who died unmarried about 1746 . The earl was a Protestant, although a lukewarm one, until i 701 , when he yielded to the dying wish of James II. and joined the Roman Catholic Church.
One of Middleton's kinsmen was Sir Charles Midileton, Bart. (1726-1813). Having served in the navy Middleton was comptroller of the navy from 1778 to 1790 " standing out through that period of inept administration as the pillar of the service." In April 1805 , at a most critical time; he was, although eighty years of age, appointed first lord of the admiralty by. Pitt and was created Lond Barham. It has been usual to segard Barham as a cipher at the admirally board, but more recent research, especially an examination of the Barham Papers; has proved this to be the reverse of the truth. He enjoyed the absolate confidence of Pitt, and it was his experience, industry and energy which made possible the great campaign which ended at Trafalgar. He resigned office in January 1806 and died on the $\mathbf{1 7 t h}$ of January 1813. His barony passed through bis daughter Diana ($1762-1823$) to the Noels, earls of Gainsborough, by whom it is still held. The Barham Papers are being edited hy Sir J. K. Laughton (vol. i. 1907; vol. ii. 1910). See also J. S. Corbett, The Campaign of Trafalgar (1910).

See A. C. Biscoe, The Earls of Middleton (1876).
MIDDLETON, ARTHUR (1742 -1787), Americsn politician and signer of the Declaration of Independence, was born at Middleton Place on the Ashley river, South Carolina, on the 26th of June 1742. His family was one of the most prominent in the colony. The grandiather, Arthur Middleton ($168 \mathrm{t}-1737$), was president of the Council in 1721-1730 and as such was acting governor in $1725^{-1} 730$, and the father, Henry Middicton (17171784), was speaker of the Assembly in 1745-1747 and again in r754-r 755 , a delegate to the Continental Congress in 1774-1776, and its president from October 1774 to May 1775, 2 member of the South Carolina Committee of Safet y_{4} and in 1775 president of the South Carolina Provincial Congress. Like most wealthy South Carolinians of the r8th century, Arthur Middleton was educated in England-at Hackney, at Westminster Schood, and at St John's College, Cambridge. He then returned to South Carolina, but soon afterwayds went back to England to live, and travelled on the Continent. In 1773 he again returned to South Carolina, and in the controversies bet ween the colonists and the home government became a leader of the. Whigs, He was a member of the provincial Council of Safety in 1775-1776, and a delegate to the Continental Congress in 1776-1777. In 1778 he was elected governor of South Carolina, hut owing to his dissatisfaction with the new state constitution he declined to serve. He was captured by the British at Charleston in May 1780, was exchanged in July 1781, was again a delegate to Congress in
$\mathbf{y} 78 \mathrm{Bm}-1783$, and fater served in the state legtalature. He died on the 1st of January 1787 at Middleton Place. near Charieston.

His eldest son, Henry Mmoleton (1770-1846), was an orator of ability, was governor of South Carolina in 1810-1812, a represtatative in Congress in $1815-1819$, and the United States minister to Russia from 1820 to 1830 , negotiating in 1824 a convention "relative to navigation, fishing and trading in the Pacific Ocean, and to establishments on the North-West Coast." This was the first treaty between the United States and Russia.

MIDDLETON, CONYERS ($1683-1750$). English divine, was born at Richmond in Yorkshire on the 27th of December 2683. He graduated at Cambridge, took orders, and in 1706 obtained a fellowship, which he soon resigned upon contracting an advantageous marriage. In 1717 a dispute with Richard Bentley, who madean extortionate demand on the occasion of Middleton's being created D.D., involved him in an acrimonious controversy. He wrote several trenchant pamphlets, among them the "Remarks" and "Further Remarks" on Bentley's Proposals for a New Edilion of Use Greek Testament, an endea vour to visit his grievances upon the text of the New Testament. In 1723 he was involved in a lawsuit by personalities against Bentley, which had found their way into his otherwise judicious tract on library administration, written on the occasion of his appointment as university librarian. In 1726 he offended the medical profession by a dissertation cantending that the healing art among the ancients was only exercised by slaves or freedmen. Between the dates of these publications he visited Italy, and made those observations on the pagan origin of church ceremonies and beliefs which he subsequently embodied in his Leller from Rome (1729). This cogent tract probably contributed to prepare the storm which broke out against him on his next publication (1731). In his remonstrance with Daniel Waterland on occasion of the latter's repty to Matthew Tindal's Christianity as Old as the Creation, Middleton takes a line which in his day could hardly fail to expose him to the reproach of infidelity. He gives up the literal truth of the primeval Mosaic narratives; and, in professing to indicate a short and easy method of confuting Tindal, lays principal stress on the indispensableness of Christianity as a mainstay of social order. This was to resign nearly everything that divines of the Waterland stamp thought worth defending. Middleton was warmly assailed from many quarters, and retreated with some difficulty under cover of a sheaf of apologetic pamphlets and a more regular attendance at church. His next important publication was a Life of Cicero (1741), largely told - in that statesman's own words. Though Middleton's reputation was much enhanced by this piece of work, there is no doubt that he drew largely from the scarce book of William Bellenden, De bribus luminibus Ramanorum. The work was undertaken at the instance of Lord Hervey, in correspondence with whom also originated his disquisition on The Roman Senale, published in 1747 . The same year and the following produced the most important of all his writings, the Introductory Discourse and the Frce Inquiry "concerning the miraculous powers which are supposed to have subsisted in the church from the earliest ages." In combating ahis belief Middleton indirectly established two propositions of capital importance. He showed that ecclesiastical miracles must be accepted or rejected in the mass; and he distinguished between the authority due to the carly fathers' testimony to the belifis and practices of their times, and their very slender credibility as witnesses to matters of fact. Some individual grudge seems to have prompted him to expose, in 1750, Bishap Sherlock's eccentric notions of antediluvian prophecy, which had been published 25 years before. On the $28 t h$ of July 1750 he died at Hildersham, near Cambridge.

Afiddleton's most ambitious work is obsolete from no fault of his, hut his controversial writings retain a permanent place in the history of opinion. In his more restricted sphere he may not inappropriately be compared with Lessing. Like Lessing's the character of his intellect was captious and iconoclastic, buf redeemed from mere negation by a passion for abstract truth, too mpt to slumber until called into activity by some merely personal stimulus His diction is generally masculine and
harmonious. Pope thought him and Nathaniel Hooke the younger the only prose writers of the day who deserved to be cited as authorities on the language. Samuel Parr, while exposing his plagiarisms, heaps encomiums on his style. But his best qualities, his impatience of superstition and disdain of mere external authority, are rather moral than literary.
The best general view of his intellectual character and infuence is to be found in Sir Leslie Stephen's English Thought in the Eighteenth Century, ch. vi. A handsome edition of his works, containing several posthumous tracts, but not including the Lifo of Cicero, appeared in 4 vols. in 1752 and in 5 vols. in 1755 -

EIDDLETON, THOMAS (c. 5570-1627). English dramatist, son of William Middleton, was born about 1570 , probably in London. There is no proof that he studied at eitber university, but he may be safely identified with one of the Thomas Middletons entered at Gray's Inn in 1503 and $\mathbf{5 9 6}$ respectively. He began to write for the stage with The Old Laso, in the original draft of which, if it dates from 1599 as is generally supposed, he was certainly not essociated with William Rowley and Philip Massinger, although their names appear on the title-page of 1656 . By 1602 be had become one of Philip Henslowe's established playwrights. The pages of Henslowe's Diary contain notes of plays in which he had a hand, and in the year 1607-1608 he produced no less than six comedies of London life, which he knew as accurately as Dekker and was content to paint in more realistic colours. In 8613 be devised the pageant for the installation of the Lord Mayor, Sir Thomas Middleton, and in the same year wrote an entertainment for the opening of the New River in bonour of another Middieton. From these facts it may be reasonably inferred that he had influential connexions. He was frequently employed to celebrate civic occasions, and in 1620 be was made city chronologer, performing the duties of his position with exactness till his death.

The most notable event in his career was the production at the Globe theatre in 1624 of a political play, A Game at Chess, satirizing the policy of the court, which had just received a rebuff in the matter of the Spanish marriage, the English and Spanish personages concerned being disguised as the White Knight, the Black King, and so forth. The play was stopped, in consequence of remonstrances from the Spanish ambassador, but not until after nine days' performances, and the dramatist and the actors were summoned to answer for it. It is doubtiul whether Middleton was actually imprisoned, and in any case the king's anger was soon satisfied and the matter allowed to drop, on the plea that the piece had been seen and passed by the master of the revels, Sir Henry Hicrbert. Middleton died at his bouse at Newington Butts, and was buried on the 4th of July 1627.

He worked with various authors, hut his happiest collaboration was with William Rowley, this literary partnership being so close that F. G. Fleay (Biog. Chron. of the Drama) treats the dramatists together. The plays in which the two collaborated are A Fair Quarrel (printed 16r7), The World Lost at Tennis (1620), an ingenious masque, The Changeling (acted 1624 , printed 1653), and The Spanish Cipsie (acted 1623, printed 1653). The main intercst of the Fair Quarrel centres in the mental confict of Captain Ager, the problem being whetber he should fight in delence of his mother's bonour when he no longer believes his quarrel to be just. The underplot, dealing with Jane, her concealed marriage, and the physician, which is generally assigned to Rowley, was suggested by a story in Ciraldi Cinthio's Hecalommithi. The Changeling is the most powerful of all the plays with which Middleton's name is connected. The plot is drawn from the cale of Alsemero and Beatrice-Joanna in Reynolds's Trium phs of Cod's Reveng against Murther (bk. 1., hist. iv.), but the story, black as it is, receives additional horror in Middleton's bands. The famous scene in the third act between Beatrice and De Flores, who has murdered Piracquo at her instigation, is admirably described by Swinburne:
"That note of incredulous amazement that the man whom she bas just instigated to the commission of murder ' can be so wicked. as to have served her end for any end of his own beyond the pay of a professiomal assassin. is a touch worthy of the greatest dramatist that ever lived. . . . That she, the firte criatinal, chould be boouculy
shocked as well as physically hocrified by revelation of the real motive which impeled her accomplice into crime, gives a lurid streak of tragic humour to the lifeilike interest of the scene; as the pure infusion of spontaneous poetry throughout redeems the whole work from the charge of vulgar subservience to a vuigar taste for the presentation or the contemplation of criminal horror."
Leigh Funt thought that the character of De Flores, for effect at once tragical, probable and poetical, "surpassed anything with which he was acquainted in the drama of domestic Hfe." The underplot of the piece, though it is based on the humours of a madhouse, has genuine comic flashes. The Spanish Gipsio has a double plot based on the Fuerva de la sangre and the Gitamilla of Cervantes Much has been said on the collaboration of Middleton with Rowley, who was much in demand with fellow. dramatists, especially for his experience in low comedy. These plays, even in scenes where the evidence in favour of one or other of the collaborators is clear, rise to excellence which neither dramatist was able to achieve alone. It was clearly no mechanical partnership the lumits of which can be said to be definitely assigned when the actual text has been parcelled out between the collaborators.

With Thomas Dekker he wrote The Roaring Girle, or Moll CutPurse (16t1). The frontispiece represents Moll herself in man's attire, indulging in a pipe of tobacco. She was drawn or ideakized from life, her real name being Mary Frith ($1584-1659$?), who was made to do penance at St Paul's Cross in 1612. "Worse things, I must confess," says Middleton in his preface, "the world has taxed her for than bas been written of her; but 'tis the excellency of a writer to leave things better than he finds "em." In the play she is the champion of her sex, and is equally ready with her sword and her wits. Middleton is also credited with a share in Thomas Dekker's Honest Whore (pt. i., 1604). The Witch, first printed in 1778 from a unique MS.. now in the Bodleian, has aroused much controversy as to whether Shakespeare borrowed from Middleton or vice versa. The dates of both plays being uncertain, there are few definite data. The distinction between the two conceptions has been finely drawn by Charics Lamb, and the question of borrowing is best solved by supposing that what is common to the incantations of both plays was a matter of common property. The Mayor of Quinboroxgh was published with Middleton's name on the titlo-page in 1669 . Simon, the comic mayor, is not a very prominent character in the plot, which deals with Vortiger, Hengist, Horsus and Roxena amons other characters. One of its editors, Mr Havelock Ellis, thinks the proofs of its authenticity as Middleton's work very slender. It is generaliy supposed to have been a very early work sabjected to generous revision.
The plays of Middleton still to be mentioned may be divided isto romantic and realistic comedies of London Life. Delker had as wide a knowledge of ciry manners, but he was more sympathetic in ireatment, readier to idealize his subject. Two Nem Playes. Vis.: Mory Dissermblers besides Wowen. Wamen beapre Wonnes, of which the former was licensed before 1622, appeared in 1657 . The plot of Womex beware Women is a double intrigue from a contemporary novel. Hyppolito and Isabella, and the genuine history of Bianca Capello and Francesco de Medici. This play, which enda with a masaacre appalling even is Elizabechan drama. may be caken at giving the measure-no mean one- - M Middleton's unaided power in Irapedy.
The remaining plays of Middleton are: Blwri, Master-Constable. Or the Spamiards Night-malhe (1602); Michoetmas Terme (1607). described by A. C. Swinburne as an excelleat Hogarthian comedy: The Phoenix (1607), a version of the Haroun-al-Raschid irick: The Famelie of Loove (i608): A Trick to calch the Old one (anony mously printed. 1608): Your Five Gallants (licensed 1608): A Mad World, my Masters (i608): A Chast Mayde in Cheaparde (printed 1630), notable for the pieture of Tim, the Cambridge otudent, on his return home: Anylkisg for a Quiel Life (c. 1617, printed 1662); No Wit, No Help like a Womon's (c. 1613, printed 1657): The Widdoro (printed 1652). on the title-page of which appear also the names of Ben Jonson and John Fleteher. though their collaboration may be doubted. Eleven of his masques are extant. A tedious poem, The Wisdam of Solomon paraphrasel. by Thomas Middlelon. wat printed in 1597, and Microcynicon, Six SmaNing Satires by T. if. Gent. in 1599 . Two prose pamphlets. dealing with London life, Father Fabbard's Tale and The Black Book, appeaved in 1604 undet his initials. His non-dramatic work, however, even if feauime mas litule value.

Aurmosirms.-His yortas mese edited by Ahrameter Dyce (5 vola) in 1840 , with a valuable introduction quoting many documents, and by A. H. Bullen (8 vols.) in 1885. The Best Plays of Thomas Yiddleton were edted for the Mermaid series (r887) by Havelock Elis with an inuroduction by A. C. Swinbarme. See also Miss P. G. Wiggin's 1 mquiry into the A whershisp of the widideton-Rontery Plays (Boston, 1897). and the notice on Middieton in Profemor A. W. Ward's Hitl of Eng Dram. Lit. (ed. 1899; ii.. 493-540), Uich contains a full sccount of Middleton's Game as Chessed A corefui examination of the paralielieme between the playe of Shakespearo and Middlecon in made by D. Huyo jung in "Da Verhalunis Thomas Midderon's 34 Shakepere " (Mixuchewer Boilrdea swir roman. \%. engh. Phil. vol. xxix., 1904).

MIDDLETOM, a market town and municipal borough in the Middleton pariamentary division of Lancusbire, England, on the Irk, near the Rochdale Cunal, and on the Lancashire \& Yorkehire railwey, 6 m . N.N.E. from Manchester. Pop. (rgor), 25,178. The church of St Leonards is of mixed architecture, with a low square tower. The oldest portion of the building (the tower arch) dates from the 12 th century, but the main portion from 1412, and the south aisle from 1524. Two chapels in it contain memoriaks of, and are named after, two ancient Lancashire families, the Asshetons and the Hopwooda. The Queen Elizabeth grammar-tchool, a building in the Tudor style, was founded in 1572 by Nowell, dean of St' Paul's, London. There are a handrome town-hal and municipal technical achools. An exteneive system of tramways and electric light rail ways connects the town with its suburbs and adjacent industrial centres. The proceprity of the town dates from the introduction of manubactures at the cose of the $18 t h$ century. The staple trade is the epianing and weaving of cotton, and the other industries inchude wilk weaving, calico-printing, bleaching, dyoing, iron-founding and the manufacture of roap and chemicals. There are collieries in the geighbourbood. The town was incorporated in 1886, and the corporation coneaists of a mayor, 6 aldermen and 18 counciliors. Area, 4775 scres.
MiDDLETOWR, a dity and the coumy-seat of Middleser county, Comecticut, U.S.A., in the tommhip of Middletown, in the south central part of the state, on the west bank of the Connecticut river, about 30 m . from its mouth, and about 15 m . south of Hart ford. Pop. (1890), 9013 ; (1900), 9589, of whom 2316 were foreign-bom; (1910 census) 11,851 . Within a radius of 2 m . from the city hall there was found in 190_{0} most of the zownship's population of co,749. The chty is served by two branches of the New Yort, New Haven \& Hartiord railroad, by a line of coast stesmers, and by electric lines connecting with neighbouring cities and villages. The city is connected by a long highway btidge with the village of Portland in the township of Portand (pop. in 1910, $3425 i$ area $26 \mathrm{sq} . \mathrm{m}$.), which is known for its brown-tone quarries. Four miles south of Middletown is Chestnut Mountain (or Bull Hill), which commands a fine view; and about 3 m . east are the "Narrows " of the Connecticut river, where the water flows between high hills. Middletown has a mumber of handsome residences. In High Street stand the buildings of Wesleyan university (Methodist Episcopal), founded in 1831 by the Rev. Wilhur Fisk, who became the first president and the Rev. Laban Clark (1778-1868), who became the first president of the board of trustees. Women were first admitted in 1872, but coeducation was later discontinued, and the last freahman class of women students under the ofd system entered in 1909. The university offers classical and scientific courses, and in $1908-1909$ had 36 instructors, 322 students (30 being women), and a library of 79.000 volumes. In 1875-1877 the work of the first agricultural experiment atation in the Onited States was carried on here under state supervision in Wesleyan University, with Professor Wilbur Olin Atwater (1844-1907) as director; it was then removed to New Haven. Middletown is also the seat of the Berkeley divinity school (Protestant Episcopal), founded in 1849 as the theological department of Trinity College. Hartford, rechartered and removed to Nifddletown in 1854, and having in 1907 a faculty of 8 , and 16 students; and the city has a
 of the city is the Connecticut hospital for the insane, and soutb-
west of the city, the Connecticut industrial school for girls (reformatory). The total value of the factory products in 1005 was $\$ 5,604,676$, an increase of 35% over that for, 1900. The municipality owns and operates the waterworks.

Middletown occupies the site of an Indian village, Mattabesec or Mattabesett (from Massa-sfpucs-a, "at a great rivulet or brook "), the principal village of the Mattabesec Indians, an Algonquian tribe which included the Wongunk, Pyquaug and Montowese Indians and seems to have had jurisdiction over the whole of south-western Connecticut. The township of Middlotown was settled by whites in 1650, and until 1653. when the present name was adopted, was known by the Indian name, Mattabesett. It was incorporated in 1651; and the city was chartered in 1784. Shipbuilding and commerce became the principal sources of wealth. In the middle of the nineteenth century Middletown was one of the leading cities of Connecticut, and as late as 1886 it was a port of entry; but the development of rival ports, especially New Haven, Hartiord and Bridgeport, into railway centres, retarded the growth of manufacturing, and commerce declined after the Civil War.
MIDDLETOWN, a city of Orange county, New York, U.S.A.; on the Walkill river, 67 m. N.N.W. of New York City. Pop. (1890) 11,977 ; (1900) 14,522 , including 1700 forelgn-born and 480° negroes; (1905 , state census) 14,516 ; (r 910) 15.313 . It is served by the Erie, the New York, Susquehanna \&o Western, and the New York, Ontario \& Western railways, and is connected by an electric line with Coshen (pop. in 1910, 3081), the county-seat. It is situated in an attractive dairy and agricultural country; and in the dty and vicinity there are many summer residences. Here are the state bomoeopathic hospital for the insane, a state armoury, Thrall hospital, and Thrall Lihrary. Middietown is primarily a manufacturing city, and has the car shops of the New York, Ontario \& Western cailway. The value of its factory products increased from $\$ 2,154,742$ in 1900 to $\$ 3,356,330$ in 1905, or 55.8%. The mumicipality owns and operates its waterworks. Middletown was settled about 1796 and owed its early commercial importance to its beling a "half-way house" (whence its name) for travellers on the Minisink Road to western New York, and it was for a time a terminus of the Eric railroad. It was incorporated as a village in 1848, and first chartered as a city in 1888.

MIDDLETOWH, a city of Butler county, Ohio, U.S.A., on the Miami river, 34 m. N. of Cincinnati. Pop: (1890), 7681; (1900), 9215 , of whom 769 were foreign-born and 314 were negroes; (1910) 13.152. It is served by the Cleveland, Cincinnati, Chicago \& St Louis, the Cincinnati, Hamilton \& Dayton, the Cincinnati Northern (New York Central system), and a branch of the Cincinnati, Lebanon \& Northern (Pennsylvania system) railways. It is the trade centre of a rich and beautiful agricultural region in which tobacco, wheat and Indian corn are the principal crops. The river furnishes considerable water-power and the total factory produet in 1905 was valued at $\$ 8,357,993$, an increase of $47 \cdot 2 \%$ over that in 1900 . The waterworks are owned and operated hy the municipality. Middletown was laid out in $\mathbf{8 0 2}$ and was named from its location between Cincinnati and Dayton; it was incorporated in 1833 .

MIDDLETOWH, a borough of Dauphin county. Pennsyivanis, U.S.A. on the east bank of the Susquehanna river, 9 m . below Harrisburg. Pop. (1890), 5080 ; (1000), 5608 (340 foreign-born and 289 negroes); (1910), 5374 . It is served by the Pennsylvania and the Philadelphia \& Reading railways, and by an electric line to Harrisburg. The borough has a considerable trade with the surrounding agricultural country, and owing to the proximity of the Yorkhaven power-plant (across the river) and the excellent railway service, is a manufacturing centre. The municipality owns its electric lighting plant. Middletown was founded in 1755 by Friends (from Philadelphia and other places in Pennsyivania) and Scotch-Irish, and was so named because of its position midway between Lancaster and Carlisle. It was first incorporated as a borough in 1828 .
HDDLEMACH, an urban district in the Northwich parliamentary divisfon of Cheshire, England, 160 m . N.W. of London,
on the London \& North Western railway. Pop. (1gon), 4669. It lies in open country near the river Dane, having water communications by the Trent and Mersey canal, and a branch giving access to the Shropshire Union canal. The church of St Michael and All Angels is of various periods and contains numerous monuments. In the streets not 2 few old huildings remaln, making for picturesqueness, and a number of the fine timbered houses in which Cheshire abounds are seen in the immediate neighbourhood. Middlewich shares in the salt industry common to several towns, such as Northwich and Winsford, in this part of the county; there are also chemical works and a manufacture of condensed milk.

MIDRAT PASHA (1822-1884), Turkish statesman, the son of a civil judge, was born at Constantinople in 1822. His father, a declared partisan of reform, trained him for an administrative career, and at the age of twenty-two he was attached as secretary to Fark Effendi, whom he accompanied in Syria for three years. On his return to Constantinople Midhat was appointed chief director of confidential reports, and after a new financial mission in Syria was made second secretary of the grand council. His enemies, however, succeeded in ousting him from this post, and caused hlm to be entrusted with the apparently impossible task of settling the revolt and brigandage rampant in Rumelia. His measures were drastic and their success was startling and the government made him an official of the first rank and restored him to his place in the grand council. In similar vigorous fashion he restored order in Bulgaria in 1857. In 1860 he was made vizier and pasha, and entrusted with the government of Nisch, where his reforms were so beneficial that the sultan charged him, in conjunction with Fuad Pasha and Ali Pasha, to prepare the scheme for adapting them to the empire which was aflerwards known as the law of the vilayets. After further administrative work in his province, he was ordered to organize the council of state in 1866, and was then made governor of Bagdad, where his success was as decisive as at Nisch, but attended with much greater difficulties. In 187 x the anti-reform influence of the grand vizier, Mahmoud Nedim, seemed to Midhat a danger to the country, and in a personal interview be boldly stated his views to the sultan, who was so struck with their force and entire disinterestedness that he appointed Midhat grand vizier in place of Mahmoud. Too independent, however, for the court, Midhat remained in power only three months, and after a short governorship of Salonica he lived apart from affairs at Constantinople until 1875.

From this time forward, however, Midhat Pasha's career resolved itself into a series of strange and almost romantic adventures. While sympathizing with the ideas and aims of the "Young Turkey "party, he was anxious to restraln its impatience, but the sultan's obduracy led to a coalition between the grand vizier, the war minister and Midhat Pasha, which deposed him in May 1876, and he was murdered in the following month. His nephew Murad V. was in turn deposed in the following August and replaced by his brother, Abdul HamidII. Midhat Pashanow became grand vizier, reforms were freely promised, and tbe Ottoman parliament was inaugurated with a great flourish. In the following February, however, Midhat was dismissed and banished for supposed complicity in the murder of Abdul Aziz. He then visited various European capitals, and remained for some time in London, where he carefully studied the procedure in the House of Commons. Again recalled in 1878 , he was appointed governor of Syria, and in August exchanged offices with the governor of Smyrna. But in the following May the sultan again ordered him to be arrested, and although he effected his escape and appealed to the powers, be shortly afterwards saw fit to surrender, claiming a fair hearing. The trial accordingly took place in June, when Midhat and the others were sentenced to death. It was, however, generally regarded as a mockery, and on the intercession of the British government the sentence was com. muted to banishment. The remaining three years of his life were consequently spent in exile at Taif in Arabia, where he died, probably by violence, an tbe 8th of May 1884.' To great ahility, wide sympethies, and undoubted petriotiom he added absolute
honesty, that rare quality in a vizier, for he left office as poor as when he entered lt.
(G. F. B.)

MIDHORST, a market town in the north-western parliamentary division of Sussex, England, iz m. N. by E. of Chichester by the London, Brighton \& South Coast railway; served also by the London \& South Western railway. Pop. (1901), 1674 It is pleasantly situated on slightly rising ground near the river Rother. The church of St Mary Magdalen andSt Denis is a large Perpendicular building. The town retains several picturesque old bouses, and in the vicinity, by the river, are the ruins of the r6th century mansion of Cowdray, burnt down in 1793. A grammar-school was founded at Midhurst in 1672 and attained some eminence. After being closed for many years it was reopened in 1880. In 1906 a magnificent sanatorium for consumptives was opened about 4 m . from Midhurst; it beass the name of King Edward VIL., who laid its foundatlon stone and opened it.
The name of Midhurst (Middehesst, Mudhurat) first occure in the reign of Henry L. when Savaric Fitz-Cana Held It of the honour of Arundel, then presumably in the king's hands. The charter of Henry 1., although no longer extant, is quoted in later confirmation charters of Richard I., Henry III., Edward III. and Richard II. Franco de Bohun inherited Midhurst from his uncle Savaric Fitz-Savaric, and the De Bohuns held the lordship until 1499 when Sir David Owen obtained it through his marriage with the daughter of the last male heir. He sold it to Sir William Fitz-William, from whon it passed to Sir Anthony Browne and descended to the viscounts Montague. Midhuist is definitely called a borough in the reign of Edward I., but the borough-court and market were probably in existence much earlier. It was governed by a bailif, elected annually, until the office lapsed, probably early in the agth century. In an aet of 1883 it is mentioned as one of the towns which had long ceased to be municipal. No charter of incorporation is known. Midhurst returned two members to parliament from 1300-1301 till 1832, and from that date one member until 1885 when it was disfranchised. In the reign of Henry VI. a market was held by the burgesses every Thursday, and a fair on Whit-Tuesday, by grant from Sir John Bahun. In 1888 the fair-days were the 6th of April, the gth of May and the 29 th of Octoher. The market. day was Thursday. Pleasure-fairs are still held on the 6 th of April and the 2gth of October, hut there is no market.
MIDIAN (properly Madyin, so Sept.), in the Bible, one of the peoples of North Arabia whom the Hebrews recognized as distant kinsmen, representing them as ants of Abraham's wife Ketaral ("incense "). Thus the sons of Ketorah are the " incense-men," not indeed inhabitants of the far south incense-land, but presumably the tribes whose caravans brought the incense to Palestine and the Mediterranean ports. So the Midianites appear in connexion with the gold and incense trade from Yemen (Iss. 1k. 6). and with the trade between Egypt and Syria (Gen. zxxvii. 28, 36). They appear also as warriors invading Canaan from the eastern desert, and ravaging the land as similar tribes have done in all ages when Palestine lacked a strong government (see Gideon). Again, they are described as peaceful shepherds, and the pastures of the Midianites, or of the branch of Midian to which Moses's father-in-law (Jethro or Reuel, or Hobab) belonged, lay near Mount Horeb (Exod. iii. 1). The Kenites who had friendly relations with Israel, and are represented in Judg. i. 16, iv. in, as the kin of Moses's father-in-Jaw, appear to have been but one fraction of Midian which took a separate course from their early relations to Israel. ${ }^{1}$ Balaam, according to one version of the story, was a Midianite (Num. xxii. seq.) and his association with Moab has been connected with the statement in Gen. xxxvi. 35, that the Edomite king Hadad defeated Midian in the land of Morb; (see Balany, EDom).
${ }^{1}$ The admixture of Midianite elements in Judah and the other border tribes of Imrael is confirmed by a comparison of the names of the Midianite clans in Gen. xox. \& with the Hebrew genealogies (1 Chron. ii. 46, Ephah; iv. 17, Epher Gen. xlvi, 9. Hanoch). Epher is also associated with Ofr near Hanakiya (Hanoch), three days north from Medina, also with Apparu a Bedouin locality mentioned by Assum-bani-pal. Ephah is probablv the Hiayapa tremeported by Sergon to Beth-Omi (Semaria).

A place Midian is mentioned in 1 Kings xi. 18, apparenty between Edom and Paran, and in later times the name lingered in the district cast of the Gulf of 'Akaba, where Eusebius knows a city Madiam in the country of the Saracens and Ptolemy (vi. 7) places Modians. Still later Madyan was a station on the pilgrim route from Egypt to Mecca, the second beyond Aila (Elath). Here in the middle ages was shown the well from which Moses watered the flocks of Sho ${ }^{\circ}$ aib (Jethro), and the place is still known as "the caves of Sho'aib." It has considerable ruins, which have been described by Sir R. Burton (Land of Midian, 1879).

This district which has on its east Taima, a centre of civilization in the 5th century 日.C., end on its south-east El-OHI whose existence az a seat of cultare is poosibly even older, is identified by mome scholars with the Musran of the Minnean (eouth Arabian) inacriptions, on which see Sabaeans, Yemen. That this part of north-weat Arabia had frequent intercourse with Palestine appears certain from its commercial relations with Gaza; and the asociation of the Midianite Jethro with early Hebrew legislation, as also the poscibility that Mizraim ("Egypt") in the Old Testament should be taken in some cases to refer to this district, have an important bearing upon several Old Testament questions. See Mizraw.

MIDLETON, WILLIAX ST JOHN FRGIANTLE BRODRICK, 9TH VIscount (1856-), English politician, was the son of the 8th viscount ($1830-1907$). He came of a Surrey family who in the 17th century, in the persons of Sir St John Brodrick and Sir Thomas Brodrick, obtained grants of land in the south of Ireland. Sir St John Brodrick settled at Midleton, between Cork and Youghal in 1641; and his son Alan Brodrick (1660-1728), speaker of the Irish House of Commions and lord chancellor of Ireland, was created Baron Brodrick in 1715 and Viscount Midleton in 1717 in the Irish peerage. In 1796 the title of Baron Brodrick in the peerage of the United Kingdom was created. The English family seat at Peper Harow, near Godalming, Surrey, was deaigned by Sir William Chambers. The 8th viscount was a Conservative in politics, who for a few years had a seat in the House of Commons, and who was responsible in the House of Lords for carrying the Infants Protection Act. His brotber, the Hon. G. C. Brodrick, was for many years warden of Merton College, Oxford. As Mr St John Brodrick, the gth viscount had a distinguished career in the House of Commons. After being at Eton and Balliol, Oxiord, and serving as president of the Oxford Union, he entered pariament as conservative member for one of the Surrey divisions in 1880. From 1886 to 1892 he was financial secretary to the war office; under secretary for war, 1895-1898; under secretary for foreign affairs, 1898-1900; secretary of state for war, 1900-1903; and secretary of state Jor India, 1903-1905. He lost his seat for the Guildford division of Surrey at the general election of January 1906. In March 1907 he was made an alderman of the London County Council. He married, first in 1880, Lady Hilda (d. 1901), daughter of the gth earl of Wemyss, by whom he had a family; and secondly in 1903, Madeleine Stanley, daughter of Lady St Helier by her first husband.
midLETON, or Middleton, a market town of Co. Cork, Ireland, on the river Owenacurra, 13 m . E. of Cork by the Youghal branch of the Great Southern \& Western railway. Pop. (1901), 3361. The river here enters a branch of Cork harbour. The surrounding hilly country is pleasant and fertile, and furnishes the town with a good agricultural trade. There are also whisky-distilleries. Ballinacurra, 13 m . south on the estuary, serves as a small port. The grammar school was founded in 1696, and here among its students were John Philpot Curran and Isace Butt. Mideton is governed by an urban district council.
MIDNAPORE, a tom and district of British India, in the Burdwan division of Bengal. The town is 68 m . W. of Calcutta; it has a station on the Bergal Nagpur railway. Pop. (1gor), 33,140. It is an important centre of trade, being the terminus of a navigable canal to Calcutta, and also the junction for the Sini branch of the Bengal-Nagpur railway. There are manufactures of brass and copper wire. It has an American mission, 4 municipal college, and a public library founded in 1852.

The Dretrect of MmNaroier hat an aree of $5186 \mathrm{sg}, \mathrm{m}$. The general appearance is that of a large open plain, of which the greater part is under cultivation. In the northern portion the soil is poor, and there is little mood. The country slong the western boundary, known as the Jungle Mahals, is undulating and picturesque; it is almost uninhabited. The eastern and south-eastern portions are swampy and richly cultivated. The chief rivers of the district are the Hugli and its three tributaries, the Rupnarayan, the Haldi and the Rasulpur. Th Midnapore bigh-level canal used also for irrigation runs almost due east and west from the town of Midnapore to Ulubaria on the Hugii 16 m . below Calcutte, and affords a continuous navigable channel 53 m . in length. There is also a tidal canal for navigation, 26 m . in length, extending from the Rupnarayan river. The district is traversed as well by the Bengal-Nagpur railway towards Orissa, with a branch to Chota Nagpur. The jungles in the west of the district yield lac, tussur, silk, wax, resin, fire-wood, charcoal, \&cc, and give shelter to large and small game. The principal exports are rice, silk and sugar; and the chief imports consist of cotton cloth and twist. Salt, indigo, silk, mats and brass and copper utensils are manufactured. Both silk and indigo are decaying industries. The popolation in 1901 was $2,789,114$, showing an increase of 6% in the decade.

The early history of Midnapore centres round the ancient town of Tamluk, which in the boginning of the 5th century was an important Buddhist settlement and maritime harbour. The first connexion of the English with the district dates from 1760, when Mir Kasim ceded to the East India Company Midnapore, Chittagong, and Burdwan (then estimated to furnish one-third of the entire revenue of Bengal) as the price of his elevation to the throne of Bengal on the deposition of Mir Jafar.
MIDRASH, a very common term in Jewish writings for "exposition" and a certain class of expository literature. The word also occurs t wice in the Old Testament (a Chron. xiii. 22, riv. 27; R.V. rather poorly " commentary").

1. Introduclion.-The term (Heb. midedsh from dirash "to search out, enquire ") denotes some explanation or exposition, which, in contrast to the more literal exegesis (technically called ptshat "simple "), endeavours to reach the spirit lying below the text. It may be defined as a didactic or homiletic development of some thought or theme, characterized by a more subjective, imaginative and ampliative treatment. Jewish Midrash falls broadly into two classes: Halaka (q.v.) or Fraldkd (walking, way, conduct) and Haggodak (narrative [with a purpose], homily; Aramaic equivalent Aggidah; the incorrect form Agadah rests upon a mistaken etymology). The former dealt with legal and ritual matters; it flourished in the schools and developed into the most subule casuistry. The latter coveted all non-halakic exposition and was essentlally popular. It embraced historical and other traditions; stories, legends, parables and allegories; beliefs, customs and all that may be called folk-lore. It fed itself, not upon the laws, but upon the narrative, the prophetical and the poetical writings of the Old Testament, and it had a more spiritual and ethical tone than the Haleke. In both classes, accepted tradition (written or oral) was reinterpreted in order to justify or to deduce new teaching (in its widest sense), to connect the present with a hallowed past, and to be a guide for the future; and the prevalence of this process, the innumerable different examples of its working, and the particular application of the term Midrash to an important section of Rabhinical literature complicales both the study of the subject and any attempt to treat it concisely. 1 Apart from the popular paraphtastic translations of the Old Testament (see Targum), the great mass of orthodox Rabbinical literature consists of (1) the independent Midrashim, and (2) the Mishna which, with its supplement the Germara; constitutes the Talmud. Both contain Halaka and Haggada, although the Mishna itself is essentially Halaka, and the Midrashim are more especially Haggadic; and consequently further information bearing upon Midrash must be sought in the art. Talmud. These two articles
${ }^{1}$ For a careful study of the meaning of the term, see W. Bacher, Frw. Quart. Rev. IV. 406-429.
handle one of the most famous bodies of anclent literature, which, irits turn, has given rise to innumerable Jewish and nonJewish works, and bas many points of value and interest which cannot be adequately discussed here. It must suffice, therefore, to deal rather hroadly with the subject, and to refer for fuller detaik to the special encyclopaedias, vis.: Hamburger's RealEncyc. fur Bibel und Talmud, and the very elaborate articies in the Jowish Encydopodia.
2. Narrative Midrosh.-Of the three different kinds of historical writing-the genetic or scientific, the purely narrative and the pragmatic-it is the last which has prevailed among religious historians. It is extremely difficult to avoid the subjective element in dealing with matters of fact, and the religious treatment of history is influenced, however unconsciously, by the mental environment of the writers. In giving greater prominence to events of religious importance and to their bearing upon the spiritual needs of contemporaries they view and interpret the past in a particular light, and will see in the past those growths which only in their own time have become mature. A lateot significance is found, a particular connexion is traced, and a continuity is established, the true nature of which must be tested by critical students. Now, it is subjective history which we find in the earliest references to Midrash. The Midrash of the prophet Iddo (2 Chron. xiii. 22) like the Visions and the Histories of Iddo and Shemaiah (ix. 29, xii. 15) which are quoted for the lives of Solomon, Abijah and Jeroboam, are evidently quite distinct from the sources cited in the parallel portions of the earlier compilation, and the entire spirit of the narratives is different. Similarly, there is a conspicuous difference of treatment of the life of Joash in 2 Kings xi. seq., compared with 2 Chron. xxiii. seq., which refers to some Midrash of the Book of the Kings (xxiv. 27). Altbough it is uncertain whether this comprebensive Midrash also included the "books of the Kings" (xvi, 11, xrvil. 7, \&c.), and the Midrash of Iddo and ot her related works, it is clear that the Book of Chronicles (q.p.) marks a very noteworthy advance upon the records in the (canonical) Book of Kings (q.p.). It is now recognized that the compiler of the former has used many novel narratives of a particular edifying and didactic stamp, and scholars are practically unanimous that these are subsequent to the age of the Isracile monarchy and present a picture of historical and religious conditions which (to judge from carlier sources) is untrustworthy. At the same time various details (as comparison with the Book of Kings shows) are relatively old and, on a priori grounds, it is extremely unlikely that the unhistorical elements are necessarily duc to deliberate imagination or perversion rather than to the development of earlier traditions. The religious significance of the past is dominant, and the past is idealized from a later standpoiat; and whether the narratives in Chronicles are expressly styled Midrash or not, they are the fruit of an age which sought to inculcate explicitly those lessons which, it conceived, were implied in the evenis of the past. The value of the book lay not in history for its own sake, hut in its direct application to present needs. But the tendency to reshape history for the edification of later generations was no novelty when Chronicles was first compiled (about 4th cent. в.c.), Pragmatic historiography is exemplified in the earliest continuous sources (viz. of the "Deuteronomic " writers, i.c. allied to Deut., especially the secondary portions); and there are many relatively early narratives in which the details have been modified, and the beroes of the past are the mouthpiece for the thought of a later writer or of his age. Numerous instructive examples of the active tendency to develop tradition may be observed in the relationchip between Genesis and the "Book of Jubilees," or in the embellishments of Old Testament history in the Artiquilies of Josephus, or in the widening gaps in the diverse traditions of the famous figures of the Old Testament (Adam, Noah, Enoch, Abraham. Moses, Isaiah, Exra, \&c.), as they appear in noncanonical writings. In such cases as these one can readily perceive the different forms which the same material clements have assumed, and one may distinguish the unreliable accretions which are clearly later and secondery. Accordingly, when
there are narratives which cannot be teated in this manner, should they show all the internal marks of didactic expansion and date from an age much later than the times with which thoy deal, their immediate value will not necemarily lie in the details which appear to be of historical interest, but in their contribution to later forms of tradition and phases of theught. So far then, Midrash tends to include moralizing history, whether we call it narrative or romance, attached to names and evente, and it is obviously exemplified whenever there are unmistakable signs of untrustworthy amplification and of some explicit religious or ethical aim colouring the narrative. This, bowever, is only one of the aspects which have to be taken into consideration when one advances to the Rabbinical Midraah.

For OHd Testament " Midrash " see further K. Budde, Zeifschp, f. all-test. Wissensckafl, xit. 37, seq., and commentaries on Chronicles (q.o.). The elaborate study by the Jewish scholar Zunt (Die gottesdiensthichen Vortrife, ch. viii.) is also valuable for bridging the gulf between the canonical and the non-canonical traditions and for its just attitude to the criticism of historical traditions. The rigid line between fact or fiction in religious literature, which readers often wish to draw, cannot be consistently justified, and in stodying old Oriental religious narratives it is necessary to realize that the teaching yas regarded as more essential than the method of presenting it. "Midrash" which may be quite uselews for historical investigation may be approciated for the light it throws upon forms of thought. Historical criticism does not touch the reality of the ideat, and ance they may be as worthy of study as the apparent facts they clothe, they thus indirectly contribute to the history of their period. lo any case, while the true historical kernel of the Midrashic narrative (c.g. dealing with Adam, Mowes or lasiah) will ahrays be a matter of dispute, the teaching to which it is applied stands on an independent footing as also does the application of that teaching to other ages.
3. Continuity of Lilarature and Material.-Amid obscure vicissitudes in the 7th to 3 th centuries, B.C., the Canonical books of the Old Testament gradually began to asoume their present shape (see Palestine: History). The internal peculiarities show that the compilations are the much edited remains of a larger body of literature, and it may reasonably be suppoeed that the older sources did not at once perish. There is literary critical evidence for late insertions by exilic or Later compilers; ${ }^{\text {t }}$ the compiler of Chronicles apparently refers to accessible worts; and there is a close material relationship between the Old Testiment and later literature. All this sugsests that Odd Hebrew writings, apart from those preserved is the Canon, persisted to a relatively late period. No a priori distinction can be made and no precise chronological line can be drawn between the books of the Canon (Canticles, Ecclesiastes, Esther, Ezekiel and Proverbs had been at onc time or another subjects of debate among the Rabbis) and the Apocrypha (Eccleaiasticus, Judith, Maccabers and Tobit, were "allowed"); and the intimate relation between them appears in the character of the "Wisdom Literature " (e.g. Proverbs, and the Wisdom of Solomon), in the treatment of the stories of Esuher and Daniel (the history of Susanna), and also in the (wofold recensions Exra and i Esdras. Historical or narrative Midrash is exemplified in the " canonical " books Damiel, Esther, Jonah and Ruth, and in the "' apocryphal " stories of Daniel (viz. Susanna, where the point lies in the name Daniel " God is judge "), Esther, Judith, Tobit (and the Ahiqar cycle of stories), the story of Zerubbabel (Esd. iij. seq., the sequel of which belongs to the canonical Exra), and the martyrdom of Ejeazer (2 Macc. vi. seq., compare 4 Macc.). This is not the place to notice the course of Jewish literary activity in Palestine or Alerandria, whether along the more rigid lines of Pharisaic legalism (the development of the canonical "priestly" law), or the popular and less scholastic phases, which recall the earlier apocalyptical tendencies of the Old Testament and were cultiyated alike by carly Jewish and Christian writers. But after the fall of Jerusalem, partly through the need lor systematizing the traditional post-biblical law, and partly through dispules with the Christians, orthodox Rabhinism received the stamp which has since characterized it. The traditional or oral law wat codified in the Mishana (see Talmud, $\delta 1$ seq.), the Canon was
${ }^{1}$ E.f. Judg. i. (see G. F. Moore. Ency. Eib. "Historical Lit. ${ }^{*}$ col. 2085, middic), 2 Sem. ix.-xx., ac.
fixed, and the fluctuations in the MSS. of the Od Testament (which, like the numerous variations in the Septuagint, complicated exact exegesis) gave way to what was virtually a single text. Moreover, the important bady of apocalyptical and pseudepigraphical literature, with all its links between Christianity and Judaism, fell into disfavour on both sides. This literature is especially valuable because it illustrates contemporary Halaka and Haggada, and it illuminates the circle of tbought with which Jesus and his followers were famifiar; it thus fills the gap between the Old Testament and the autboritative Rabbinical Midrashim which, though often in a form several centuries later, not rarely preserve older material. ${ }^{1}$
A few miscellaneous cxamples of related Midrashic details may be cited:-
i. The book of Jubilees (a haggadic and halakio Midrash on Genesis, about 2nd century B.c.), contains the story of the war between Amorite Kings and Jacob (ch. xoxiv.). This is known to the probably contemporary Testament of Judah and to much later Midrashim (ASid, Waypisd'h. Yalequi Shimeoni, also the apoeryphal "book of Jachar "), and is evidently connected with the cryptic allusion to the capture of Shechem in Gen xlviii. 22 (R,V. marg.). Ualess we suppose that the latter was suddedy expanded into the stories which thenceforth persisted, it may be inferred that an old extra-canonical tradition (for which a case can be made) continued to survive the colnpilation of Genesis (q.v.) and ultimately aosumed the various exagyernbed forms now catant. Naturally the probability of such a tradition-the merest hint of which happens to be preserved in Gen. loc. cii.-does not prejudice the problem of its origin or accuracy; in Jub. the story is useless for Jacob's history, and is probably influenced by a recollection of more recent events in the diaccabreean age.
ii. A curious account of war between Esypt and Canaan after Joseph's death recurs in Jub. xli., Test. of Simeon, viii., and Benjamin vii., and is connected with details (burial of Jacob's sons at Hebron) recorded by Josephus (Awd. il. 8). Josephus in turn has another story wherein Moess leads the Egyptians against Ethiopia (And. ii. 10, for parallels see Mcoro, Esicy. Bib. col. 2089 seg.), and this is found in the late chronicles of Jerahmeel and the Book of Jashar (cf. also Midi. Dibrd ha-yemim shel-MOsheh; see Jewo. Ency. vili. 573 seq.). The former may be linked with Cen. I. 9 (where the concourse of chariots and horsemen would invite speculation), and the latter with the Cushite wife of Moses; but although one may grame that the canonical sources do not by any means preserve all the older current traditions, the contents of the latter cannot be recovered from the later persisting Midrashim. ${ }^{\text {? }}$
iii. The allusion in ude v . 9 to the contention of the archangel Michael for the body of Moses belongs to a group of traditions which have been collected by R. H. Charles (A stimption of Moses, pp. 105 teq.), and it appears that the incident was familier to Clement of Alexandria, Origen and other early writers. Moreover, Jude D. 16 agrees very closely with the Latin version of the Testament of Moses, which has other parallels in Matt. xxiv. 29; Acts vii. 36, 38 seq. (ibid. pp. Ixii. seq.). Here may be added Jannes and Jambres, who withatood Moees (2 Tim. iij. 8); these or related names were known to the elder Pliny (x xx. i. 11), Apuleius (first half of 2nd century), Origen (who refers to a book of Jannes and Mambres), and various earlier and later Jewish sources; see I. Abraharus, Ency. Bib. col. 2327 geq. : H. St J. Thackeray, Relation of St Paul to contemporary Jewish hought (London, 1900), pp. 215 sqg .
iv. Jewish traditions of Abraham in Ur of the Chaldees recur in the Targums, Midrashic works, and earlier in the book of Jubilecd (ch. xii., ed. Charles, p. 91 ; cf, also Judith v. 6 seq.). The legenda of his escape from a fiery furnace may have a philotogical basis (dr interpreted as "fire"), but the allusion to the redemption of Abraham in Isa. xxix 22 seems to indicate that older tradition was fuller than the present recorda in Gencsis, and supplies another example of the link connecting the Old Testament with Rabbinical thought.
\mathbf{v}. Not to multiply examples further, it may suffice to refer to (a) the apparent belicf that the serpent tempted Eve to unchastity (2 Cor. xi. 2 seq., see Thackeray pp. 50 seq.): (b) the descent of the angels upon earth (Gen. vi. I seef.; Jude 6, 14 seq., see Charles, Jub. p. 33 seq., Clermont-Ganneau, Quart. Statements of the Pal. Explor. Fund, 1903, pp. 233 seq- and the Midr. Abkir. nee Jeow Ency. viii 572); (e) the relationship between the Midrashic developments of the atory of Esther in Josephus, the Greek and Old Latin Versions, the Taryums and later Jewish sources (see L. B. Paton, Comm. on Esther, pp. 20, 100 and passim); and finally (d) the numerous minor miscellaneous parallels noticed in recent annotated editions of the
${ }^{1}$ On the bistory of his intermediate stage see E. Scharer. Hist. of Jew. People (Edinburgh, 1886), Germ. Gesch. Jud. Volkes; M. FriedIXnder. Relig. Bewequngen innerhalb dos Judentums im Zeitalter Jesu (Berlin, I905); W. Fairweather, Background of the Gospels (Edinburgh 1908). See also Apocalyptic Lit. and Apocryphal Lit.
? Note also the allusion to the wisdom of Moses in Acts vii. 22. mpon which coatemporary writinga are pretty well informed.
peoudepigraphical literature (expecially thoee of R. H. Charies). (Soe further Talmud, 8 5.)
4. Midrashic Exposition.-The Talmud poetically describes Midrash as a hammer which wakes to shining light the sparks which slumber in the rock; and the simile is a happy one when one considers the exegetical implements, the workmen and their workmanship. For the expository or interpretative Midrash was bound up with rules and methods which often appear crude and arbitrary, they are nevertheless those of the age and they helped to build up lasting monuments.* It was believed that the Written Word had an infinite fulness; according to the Midr. Bcmidbar Rabbak every word of the Law had seventy different aspects, and Philo of Alcxandria held that there are no superfluous words in Scripture. Consequently an exaggerated emphasis is often hid upon single words; as, for example, in the school of Rabbi 'Aqiba, where even individual letters were forced to reveal their meaning. Thus, since the Hebrew eth, which marks the accusative, is also the preposition "with," Deut. x. 20 ("thou shalt fear [eth-] Yabweh thy God ') was interpreted to include the veneration of the doctors of the law along with Yabweh.4 Many examples of literal interpretation can of course be found, but arbitrary cases of the kind just noticed are due eitber to an obviously far-fetched interpretation or to the endeavour to find some authoritative support for teaching which it was desired to inculcate. Thus faulty proof rather than faulty inference is illustrated when the word "in-number" (Ex. xii. 4) was used to confirm the Halaka that the man who killed the Passover Lamb must know how many people were about to share it (Jew. Ency. viil. 570). Often the biblical text cannot be said to supply more than a hint or a suggestion, and tbe partlcular application In Halaka or Haggada must be taken on its merits, and the teaching does not necessarily fall because the exegesis is illegitimate. To take another specimen: the Mekilte on Ex. xx. 25 Infers from the unusual form of the word "it," that the prohibition of iron applies only to if, i.e. the altar, and not to stones used \ln building the temple. This Halaka is followed by a haggadic explanation of the prohibition: "iron abridges life while the altar prolongs it; iron causes destruction and misery, while the altar produces reconciliation between God and man; and therefore the use of iron cannot be allowed in making the altar."3 Such were the sparks that could be hammered out of the rock, and it is instructive to observe similar exegetical methods in the New Testament. Emphasis upon a single word is illustrated by Gal. iii. 16, where the argument rests upon the word "seed" (and not the plural " seeds") in the proof-text, and the same word in Rabbinical writings is used to support other arguments.' By identical kinds of exegesis Lev. xix. 14 (not to put a stumbling block before the blind) is the ground for cautioning a father against striking an adult child, and Deut. xxy. 4 (the law of the muzaled ox) is used to show that God's labourer is worthy of his hire. Again, since through Eve sin entered into the world, woman must be subordinate to man (I Tim. ii. 11-14), or, she who has thus extinguished "the light of the world" should atone by lighting the festal candles on the sabbath (Talm. Shabb. 5b). By the allegorical method Isa. lxi. is interpreted as applying to Jesus (Luke iv. 16-22), and frequently passages which originally had angther application have a Messianic reference in
"For the Rabbinical "rules" and examples of their working see F. Weber, Jüd. Theologis (Leipzig, 1897), pp. 109-125; C. A. Briggs Slady of Holy Scriptura (Edinburgh, 18g9), ch. xvin.; Jev. Ency. xii. 30-33; S. Schechter, Hastings's Dich. Bible, y. 59, 63; and H. L. Strack, Einleinng in dew Talmud (Leipaig, 1908), pp. IT9-13I. - So Aquila, the digeiple of "Aqiba, translates the accusative particle by oiv; soe W. R. Smith, Old Test. in the Jew. Church, p. 63. 'Oesterley and Box. Religion and Worship of the Symogogue (London. 1907), p. 80; pp. 44-97 deal with Midrashic and other Jewich literature.

- Mish. Sanhed. iv. 5, see A. Geiger, Zeit. f. morgendind. Gesellschafl, 1858, pp. 307 日qq-, S. R. Driver, Exposilor, ix. (1889), p. 18 seg.
${ }^{1}$ The Talmud Ms'ed Qefar, 7a, and New Testament (i Cor. ix. 9, I Tim. v. 18) respectively.

Christinn and Rabbinical teaching. Similarly the application of Hos. ii. 23, not to the scattered tribes of Israel, but to the Gentiles, is common to the Mishma and to Romans ix. 25 seq. (Sanday and Headinm, Comment. ad loc.) The Apostle Paul, once a disciple of the famous Rabbi Gamaliel, uses in I Cor. x. 4 (" the spiritual rock that followed them ") 2 familiar Jewish Haggada which, however, he reinterprets, even as, when be identifes the "rock" with Cbrist, he diverges from the Alexandrian Philo who had identified it with Wisdom or the Word of God. Moreover, not only are passages thus taken out of their context, but they are combined, especially when they contain the same words or phrases, or appear to have the same or similar thoughts or aims. The Talmud, with a reference to Prov. xxxi. 14 (" she bringeth her food from afar"), says "the words of the Torah are poor (or deficient) in one place hut rich in another." Hence in the Mid. Siphré on Numbers 1v. 39, "ye shall not seek after . . your own eyes" is explained to refer to adultery, after the words of Samson "she is pleasing in my cyes" (Judg. xiv. 3); and on Deut. vi. 5 it charges man to love the Lord "with all thy soul . . . even if be should take away thy soul," the teaching being hased upon Ps. xliv. 22.1 Similarly, in the New Testament, aiter the same method, Mal. iii. I and Is. xI, 3 (linked by the phrase " to prepare the way ") are combined in Mark i. 2 seq.; Abraham's faith (Gen. xv.6) and temptation (xxii. 1) are associated in James ii. 21-23, as also in contemporary Jewish thought; and by other combined quotations Paul enunciates the universality of sin (Rom. iii. to sq9.) and the doctrine that Cbristians are God's temple (a Cor. vi. 16 sqq). Procceding upon such lines as these, the Jews wove together their Midrashic homilies or sermons where, though we may find much that seems commonplace, there are illuminating parahles and proverbs, metaphors and similes, the whole affording admirable exaniples of the contemporary thought and culture, both of the writers and-what is often overlooked-the level of their hearers or readers. Like many less ancient discourses, the Midrashim are apt to suffer when read in cold print, and they are sometimes judged from a standpoint which would be prejudicial to the Old Testament itself. But they are to be judged as Oriental literature and if they contain jarring extravagances and puerilities, one may recall that even in modern Palestine it was found that the natives understood Robinson Crusoe as a religious book more readily than the Pilgrim's Progress (J. Rohertson, Early Rel. of Israel, 1892, p. 66). In making aliowance for the defects (without which they would probably not have appealed to the age) it must be remembered that some of the Rabbis themselves recognized that the Midrashic Haggada was not always estimable.
An interesting example of combined quotation is illustrated in Matt. xii. $4-8$, where the teaching of Jesus on the law of the stble th rests uponi Sam. xxi. 1-6. Num, exvifi. 9 seq. and Hos. vi.6. Aprops of this taw the Rabbinical arguments are worth noticing. Apisrently the severe rules taid down in Jubilecs 1. 8-12 (see R. Ti. Charles, ad loc.) were exceptional. It was allowed that the Sabbath need not be too rigorously kept, and this was justified by Exod. xxxi. t3. where the singular use of the restrictive particle ak (EV "verily" upported the teaching, that other Sabbaths need not be obscrved. Also, from the words" holy unto you" (0.14) it was taught that * the Sabbath is given to you to desecrate in case of need, but thou art not given to the Sabbath." Hence the Sabbath might We broken when life was in danger. Moreover, it was argued that a battle nerd not be slopped from religious considerations, e.f, the Sablath. This was jurtified by Deut. xx. $20^{"}$ until it fall " (Talm, Shabb. 190). Also, the Passover Lamb could be sacrificed on the Sabbath, and justification for this was found in Num. ix. $2^{\text {" }}$ in its meason" (Pesah. 66a). See further on this suhject, and on the evasions of the Sabhath law. S. Shechter, Studses in Judaism, PR. 297 sqq.; ibid. in C. G. Montefiore, Hibbert Lectures (for 1892). Append ix; ibid Hastings' Diat. Bis. v. 63, and also S. R. Driver, Hostinps' Dich. iv. 320 seq. With the above interpretations, cf. A. H. McNeile on Matt. xii. 5 . John vii. 23: "the a priori eleınent in them perhaps suggests that these verayy werc duc 10 later reflexion on the part of Christiana who had realized the inadequacy of the law "' (Swete's Camb. Bibl. Essays, 1909. p. 226). For other examples iliustrating Rabbinical methods of exegesis in the New Testament, see McNeile, pp. 221, sqq. ("Our Lord's use of the Old Testament"); Briggs, op. cii. pp. 436.
uq9., and Thackeray. of, cit. (ch. vii. "use of the Old Testament," ch. viii. "St Paul the Haggadist "). The latter observes (p. 203): "the arguments by which Paul tried to convince his opponents of the true meaning of the Old Testament as pointing forward to Christ, are those which they would themselves have emptoyed for another purpose: and to some extent we need not doubt that they were selected for that very reason. They were the arguments which were best calculated to appeal to them." Quite in accordance with Rabbinical custom is the system of question and answer (Rom. x 5, seq., 16 seq.), and the argument in the sequence: statement, objection and reply, a ppears already in the book of Malachi (q.r.).
5. The Jewish Midrashim. -The earlier stages in the growth of the extant Rabbinical Midrashim cannot be traced with any certainty. Although there are several allusions to early written works, other references manifest an objection to the writing down of Haggada and Halaka. Perhaps it was felt that to preserve uniformity of teaching in the schools it was undesirable to popularize the extant collections, or perhaps the references must be reconsidered in the light of those significant changes after the fall of Jerusalem which have been mentioned above ($₹ 3)^{2}$. However this may be, the independent Hallakoth (where the oral decisions are interpreted or discussed on the basis of the Old Testament) were gradually collected and arranged according to their subject in the Mishnab and Tósephta (Talyud, \$ 1), while in the halakic Midrashim (where the decisions are given in connection with the biblical passage from which they were derived) they follow the sequence of the text of the Old Testament. The Haggada was likewise collected according to the textual sequence of the Old Testament. But the sermons or discourses of the homiletic Midrashim are classified according to the reading of the Pentateuch in the Synagogue, either the three year cycle, or else according to the sections of the Pentateuch and Prophetical books assigned to special and ordinary Sabbaths and festival days. Hence the latter are sometimes styled Pesiqta ("section"). The homilctic Midrashim are characterized by (a) a proem, an introduction based upon some biblical text (not from the lesson fiself), which led up to (b) the exposition of the lesson, the first verse of which is more fully discussed than the rest. They conclude (c) with Messianic or consolatory passages on the future glory of Isracl. A feature of some Midrashim (e.g. nos. 4, $5 d, \varepsilon$, and 7 below) is the halakic erordium which precedes the proems. ${ }^{3}$
A. ang the more important Midrashim are: i.-Mtkila (Aram. "snessure," i.e. "ruie") best known as the name of a now imperiect hainkic Midrash on Exod. xil--xxiti. 19 (also xxxi. 12-17 and xuxv. 1-s). It represents the school of R. (Rabbi) Ishmaci, is a useful source for old Haggadah (especially on the narrative portions of Exodus), and is interesting for its variant readings of the Canonical Mussoretic text." Edited by Blasius Ugolinus, Thes. Antig. Sacr. xiv. (Venice, 1744, with a poor Latin translation). more recently by J. H, Weiss (Vienna, 1865) and M. Friedmann (ibid. 187o), Germ. trans. by J. Winter and A. Wunsche Leiprig. 1909). See further J. Z. Lauterbach. Jew. Ency, viii. 4,44 seq.
ii. Siphrd (Aram. "the book") or Torath Kshantm (" the law of the priests"), a commentary on Leviticus, mainly halakic, the text being a source for various maxims. (On Lev. xix. 17 seq., neighbourly love and abstinence from vengeance conatitute, according to R. Aqiba, the great principle of the Torah.) It is uselul for the interpretation of the Mishnah treatises Qddastim and Tchäräh. Latin trans. in Ligolinus, vol. xiv.; recent editions by 1. H. Weiss (Vienna. $: 86,2)$, and with the commentary of Shimahou (Sequrusi) of Siens (thrar eaw, a866) ; see Jaw. Ency. xi. 330 sq9.
iii. Siphri (Aram. "the books"), añ old composite collection of Halaka on Numbers, after R. Ishmael's achool; and on Deut. after that of R. Aqiqa, although the haggadic portions belong to the former. Lotin in Ugol. xv.: recent edition, with good introduction by Friedmann (Vienna, 1864): see Jew. Ency. xi. 132 seq.

The above works, although of 5 th century or later date in their present form, contain much older material, which was perhaps first redacted in the earlier part of the and century, A.D. They are of

[^25]Palestinian origin, although the main redaction was made in Babylonia.'
iv. Tanhuma, one of the oldest on the lessons of the Pentateuch. with many proems ascribed to R. Tanhūmis ben ("son of") Abbã, one of the most famous haggadists of Palestine (4th eentury), who systematized and fixed the haggadic literature. This collection of 158-161 homilies is also known as T. Yelammedènū, from the opening words, Yel. Rabbenu, " our Rabbi teaches us "; on the critical questions connected with the titfes and the present redaction (probably sth century), see Jew. Ency. viii. 560 seq., xii. 44 sq9Recent edition by Buber (Wilna, 1885).
v. Midrash Rabbah (or Rabboth), a large collection of very diverse origin and date, probably not completed before the 13 th centurs; It covers the Pentateuch (iss ed., Constantinople, 1512) and the "Five Rolls" (Pesaro. 1519; the whole priated first at Venice, 1545): Germ. trans. by A. Winsche, Bibliotkeca rabbinica (Leipzig, 1880-1885). The several portions are named after the ordinary Jewish titles of the Old Testament books with the addition of Rabbah "great." These are (a) Btreskilid ("in the beginning." Gen. i. 1) Rabibch. On Genesis, the oldest and mont valuable of haggadic Midrashim. Traditionally ascribed to R. Höshaiah (3rd. century), but in the main a redaction of Gth century. Ed. J. Theodor; Jew. Eency. ïi. 62 seq.; viii 557 seq. (b) Shemoth (" uames" Exod. i. 1) R., a composite and incomplete work of itith and rath century date, but valuable nevertheless for its Tanbuma homiliea. Exod. i .-xi. is a commentary on the text in continuation of (a). ${ }^{2}$ See Jowv. Exacy, viii. 562 (c.) Wayyiqrd (" and he called ") R., on Leviticus, perhaps 7 th century, based upon sources in 2 and $5 a$ above. It is characterized by its numerous proverbs (e.e. on xix. 6: " do not came for the good pup of a bad dog, much less for the bed pup of a bad dog "'). See Jaw. Ency. viii. 560 . xii. 478 seq. (d) Bamidbar (" in the desert of . \because ") R., 33 homilics on Numbers, mainly derived from 4 above (though in an earlier text). with a later haggadic exposition, perhaps of 12 th century, on Num. i.-vii. See Jewr. Ency. ii. 669 sq9., vîi. 562. (e) Díbārìm (" words "') R., independent homilies on Deuteronomy, of about A.D. goo, but with a good collection of Tanbumans and excerpis from the old sources See Jaw. Ency. iv. 487 seq. (() Shir ("song") R, or (after the opening words) Aggadath Hasith, a late compilation of haggadah on Canticles, illustrating the allegorical interpretation of the book in reference to the relation between God and Israel (so aiready in the exegesis of R. Aqiba, $c f$, also 2 Esd. v. 24, 26, vii. 26). For this and other Mid. on this popular book, sec Jetos. Ency. viii 564 seg ., xi. 291 seq . (4) Mid. Ruth or Ruik Rabbah ${ }_{1}$ a compilation including an exposition of 1 Chron. iv. 21-23. xit ${ }^{13} 3^{-15}$ and interesting Messianic references. For this and similar Mid. or Ruth, see Jew. Ency. viii. 565, x. 577 seq. (h) Eketh (" how') Rabbethi, a compilation of about the 7th century on Lamentations, from wources. cited also in the Palestinian Taimud. Thirty-six proems precede the commentary. See Jev. Ency. v. 85 seq. (i) Mid. Kokeleth or Koh. Rabbah, on Ecclesiastes; see Jew. Ency. vii. 529 sqq.; viii. 565 . (j) Mid. Megillath Esther, dating, to judge from its indebtedness to Josippon (the peeudo-josephus), after roth century. On this and of her similar works dealing with this everpopular book, see Jew. Ency. v. 241, viii. 566, and Paton's Comment. on Esther. p. 104.
vi. Pesiqui ("section ") or P. do-Rab Kahama, contains 33 or 34 homilies (on the principal festivals), the first of which opens with a sentence of R. Abba bar Kahana, who was confused with a predecessor, Rab Kahana. Although it goes back to early Haggada it has received later additions (as is shown by the technique of the proems). Edited by S. Buber (Lyck, 1868), Germ. trans by A. Wansche (Leipzig, 1889) ; see Jewe. Ency. viii. 559 seq . Not to be confused with this is:-
vii. Pasigft Rabbathi.-A very similar but larger collection of 51 homilies, of which 28 have a halakic exordium prefixed to the Tanbumas-proems, perhaps of 9 th century. Edited by M. Friedmann (Vienna, r880). Quite another and later work is the Pls. Zitarta or Leqak Tah of Tobiah b. Eliezer of Mainz (trans Uzolinus, vol. तv. seq. ied. Buber, 1880) ; mee Jew. Ency, viii. 561 sq9.
viii. In addition to the more prominent Midrashlm mentioned above there are numerous self-contained works of greater or less interest. Some are connected with Old Teatament books; e.g. Aggadaik Bereshiti, 83 homilies on Genesia, each in three parti connected with a section from the lectionary of the Pentateuch, and one from the Prophets, and a Psalm (ed. Buber. Cracow 1903: see Jew. Ency. viii. $5^{6} 3$) : the Mid. Tehillim on the Psalms (Germ. trans. A. Wónsche, Trier. 1892-1893), \&c. Others are historical. e.g. Pirge or Baraithe de-Rabbi Elirzer, a lanciful narrative of events

[^26]melected from the Pentateuch, \&c.; the eachatology is interesting Though associated by name with a well-known Ist century Rabbi, it is hardly earlier than the 8th (Latin trans. by Vorstius, Leiden, 1644 : sce Jew. Excy. viii. 567). Further, the Maqillath Ta'anith (' roll of lasts "'), an old source with à collection of misceilaneous legends, \&ec. Megillath Antiokhos, on the martyrdom under Hadrian; Scder Otam Rabbah, on biblical bistory from Adam to the rebellion of Bar Kökba (Barcocheba); the "Book of Jashar"': the Chronicle of Jerabmeel," dec. Liturgical Midrash is illustrated by the Haggada shal Pesah, part of the ritual recited at the domestic service of the first two Passover evenings. In Mid. Ta'ame Häsī̀ờh wee-Yethêrờh, Hebrew words written "defectively "or "fully," and other Masso. retic details, arc haggadically treated. Finally Kabbalah (q.v.) is exemplified in Olhiyyobth de R. Agiba on the alphabet, and M. Tudshe (or Baraitha de-R. Phinehas b. Yu'iv), on groups of numbers, $\& \mathrm{C}$. ; of some interest for its relation to the book of Jubilees.
ix. Of collections of Midrash the chief are (a) the Yalquit Shimeoni, which arranges the material according to the text of the Old Testament (extending over the whole of it), preserves much from sourges that have since disappeared, and is valuable for the criticism of the text of the Midrashim (recent ed. Wilna, 1898) translation of the Yalqut on Zechariah by E. G. King (Cambridge, 1882; see further Jew. Ency, xii. 585 seq .). (b) Yal. ha-Makiri, perhaps later, covers only certain books, is useful for older sources and their criticism; portions have been edited by Spira (1894, on Isaiah) ; Buber (1899 , on Psalms); Grünhut (igoz, on Proverbs). (c) Midrash ha-Gadob (" the great "), an extensive thesaurus, but later (quoting from Ibn Ezra, Maimonides, \&c.): the arrangement is not so careful as in (a) and (b). See further Jews. Ency. viii. 568 seq-
Of modern collections special mention must be made of A. Jellinek's Bet ha-Midrasch (Leipzig. 1853) and A. Wunsche's valuable translations; to those already mentioned must be added his Aus Israds Lehrhallen (excerpts of a more miscellaneous character (Leipzig, 1907 soq.).
Besides dictionary articles on this subject ($\$$. Schiller-Szinessy, Ency. Brih, gth ed.- H. L. Strack, Real-Ency, f. Prolest. Theol. u. Kirche; and especially J . Theodor and others in the Jew. Ency), sec D. Hoffmann, Zur Einleilung in die halachischen Midraschim (Berlin, 1888), and the great work by Zunz, Die gotlesdienstichen Vorlräge der Juden, 2nd ed. by N. Brull (Frankfort on Main. 1892). These, as also the citations in the course of this article, give fulier information. (See further Talmud.)
(S. A. C.)

MIDSHIPMAN, the title in the British and American navies of the "young gentlemen" who are serving in order to qualify themseives to hold a commission as lieutenant. The English midshipman was originally a petty officer, one of the crew under the immediate orders of the boatswain. After the restoration of King Charles II., in 1660, the king and his brother, James Duke of York, lord high admiral, decided to train officers for the sea service. They therefore decided to send a volunteer to each ship of a squadron in commission, with a "Jetter of service," which instructed the admirals and captains that the bearer was to be shown "such kindness as you shall judge fit for a gentleman, both in accommodating him in your ship and in furthering his improvement." He was to receive the pay of a midshipman, and one midshipman less was to be borne in the ship. Until 1729 the young gentiemen who entered the British navy were known as "king's letter boys." In that year the system was altered. A school, known as the naval academy. was founded at Portsmouth in which forty lads were to be trained for the sea service. In 1773 the school, having proved unsatisfactory, was reorganized and the number of boys to be trained there increased from forty to seventy. In is06 it was agaia reorganized, under the name of the naval college, and was finally suppressed in 1837, when the practice of training the boys under instructors in the ships was introduced. A special school was re-esiablished in 1857, and was finally placed in the "Britannia." In the meantime the number of midshipmen had increased far beyond one for a ship. A line-of-battle ship in the 18th century carried as many as twentyfour, and the title had come to be confined entirely to those who were being trained as officers. The immense majority of officers of the British navy never passed through the academy or the college. They entered the ships directly as "captains' servants " or "volunteers," and were rated midshipman, if there was a vacancy, at the age of fifteen. As they were expected to learn navigation, they were instructed by the master, and at the age of seventeen were supposed to be qualified to be masters' mates. To-day the midshipman is the officer of tbe British and American navies who has passed through the
preliminary schools and has been appointed to a ship. The French equivalent is aspirant, and other Eurupcan navies use that name, or caded.

MIDSODER NORTON, an urban district in the northern partiamentary division of Somersetshire, England, $12 \frac{1}{2} \mathrm{~m}$. S.S.W. of Bath. on the Somerset \& Dorset and the Great Western railways. Pop. (1901), 5809 . The town is pleasantly situated in a hilly district, between two branches of the small river Somer. The church of St Jolin the Baptist, principally Perpendicular, has in its tower three bells presented by Charles II. Both this town and the adjacent urban district of Radstoct (pop. 3355) have a considerable trade in coal, which is mined in the vicinity. The coalfield extends northwestward towards Bristol, and is of great importance to the manufactures of that city.
MIDWIPE (Mid. Eng. midwif, mydwyf or medewife, from preposition mid, with, and wife, i.e. woman, in the sense of one who is with the mother, or from adjective mid, one who is the means of delivering the mother, a woman who assists other women in childbirth). As a class, midwives were recog. nized in Egypt in the time of the Jewish captivity. It was the universal practice in Europe untit the middle of the roth century, as it is to-day in the East, that women should be attended in confinement only by those of their own sex. From that period more attention was given to the practice of midwifery by the medical profession (sce Obstetrics), while in continental Europe, towards the close of the 172 h century, special schools were instituted for the proper training of midwives. But it was not until well on in the tgth century that any supervision or regulation was imposed on those who acted as midwives. Now in practically every European coumry midwives are under strict state control, they are required to undergo a course of thorough training, and their practice is carefully regulated by legislation.
In France midwives (sages femmes) are divided into a first and a second class. Those gualifying for both classes go through a twi yeara' course of training and must qualify both in the theory and practice of midwifery, as well as in anatomy, physiology and pathology. A midwife of the first class has a superior status and can practise in any part of France, while those of the second class are restricted in their practice to the department for which the certificate was issued. Their qualifications allow them also to vaceinate and to prescribe certain antiseptic preparations. They are not allowed to use instrumenss and must call in a needical man in difficult cases. All cases must be reported to a central officer. In Spain midwives are allowed to pracrise on the resull of an examination after studies covering at liast four halfyears. Tho diploma is issued by the director-gencral of public insiruction. In Germany midwives are appointed. recognized and aushorized ty the state. They can conduct confinernents independently and without the aid of a medical man. They must be provided with a certifeate from the police authoritics, and must reside in special districts assigned to them by the authoritics. In Austria midwives before they are allowed to practise must pass a strict examination, after having followed a six monihs* course at one of the state schools of midwilery. They are subject 10 elaborate" inst ructions for midwives "issued from time to time by the ministry of the interior. In ltaly a midwife must pass an examination and obtain a diplorta from a recognized authority; but in order to obviate the dificulty which the poorer classes in the smaller communes would find in obtaining properly-authorized midwives, a certificate of permission to practise may be given to a certain number who have practised without the sanction of the law satisfactorily duting a ternm of five years. These cretificates are distrituted by the prefect. In and pay of midwives are under the charge of the medical department of the ministry of the interior. In cach town of a provinca or region there is stationed one weniir midwife and a number of junior midwives in proportion to the shanber of districts in the province. The examination of midwives hind the issue of eertificates of competency is carried out by the Medico-Chirurgical Academy and certain of the universitics. A duly-licensed midwife, on presentation of her licence, is at once excluded from the tax-paying class to which she may have belonged. The general code of Russian laws laya down extensive rules for the carrying out of the dutics of midwives. In Norway all midwives are licensed after examinatios and are under the control and inspertion of the boand of heahlia, Provision is made for infirm and aged midwives. They are usually paid by the parish, but also receive fecs according to the nicans of the person attended. In Sweden a certificate of competency and of having pesced an examingtion does not give a midwife a right
to practise until a note has been made on the certificate that the oath of office has been duly taken. All midwives are under the control of the board of health. When a midwife takes up her residence in a parish, or moves from one place to another, she must announce the fact within a month to the nearest appointed doctor and exhibit her eertificate. In towns a midwife must put up a notice loard ourside her residence; she must not absent herself from home without leaving word as to where she may be found and at what hour she will probably return. In the country a midwife may be paid out of the poor rate. In Denmark, also, midwives are recos nized by the state, and the practise of midwifery is almost entirely in the hands of women. In Holland a certain number of candidates are given free training by the state in return for their practising mid wifery in scattered country districts at a fixed salary. Many of the states of the United States have aloo passed baws for the registration of midwives.

In England alone there was no regulation of any kind so lateas 1902. Any person, however ignorant and untrained, could describe herself as a midwife and practise for gain. Several societies made continuous efforts towards the elose of the rgth century to obtain legislation. A select committee on midwives' registration reported in 1892 that the evidence they had taken showed that there was at the time "serious and unnecessary loss of life and health and permanent injury to both mother and child in the treatment of ehildbirth, and that some legislative provision for improvement and regulation was desirable." A similar committec reported to the same effect in 1893 . Eventually a bill was drafted with the object of securing the examination and registration of midwives, but, although introduced several times into the House of Commons, it was not successful until 1902. The Midwives Act 1902 forbids any woman after the rat of April 1905 to call herself "midwife" without a certificate, or to act as a midwife for gain without a certificate after the Ist of April 1910. Existing midwives (thos: who held certificates in midwifery from certain recognized institutions, or produced satisfactory evidence at the passing of the act that they had been for at least one year in bona fide practice as midwives, and bore good characters) were allowed to chaim cerificates within two years from the ist of April 1903. The act created a central midwives' board, whose duties are, inder alia, to regulato the issuc of certificates and the conditions of admission to the roll of midwives; to regulate the course of training and conduct of examinaions; to regulate, supervise and restrict within due limits the practice of midwives; to publish annually a roll of duly certified midwives; to remove from the roll the name of a ny midwife who disobeys the rules and regulations haid down from time to time: to issue and cancel certificaics, \&e. There in an appeal to the High Cour of Justice against removal of a name, but the appeal must be made withia three months. Local authoritics are required to exercise supervision over the midwives within their area; they must investigate charges of malpracticy, negligence or misconduct; exercise the power of suspension and report convictions. Thex must supply the central board with the names and addresses of those practising within therr area, and notify any deach. The local authority must appoint a committee to carry out its powers or dutien under the act, and onay. if it think fit, delegate its powers to a lesoer local authority, such as a district council. The act provides for penalties for obtaining a certificate by false representation or for wilful falaification of the roll. The act does not apply to Ireland or Scotland.
(T. A. IJ)

MIERES, a town of northern Spain, in the province of Oviedo, 12 m . by rail S.E. of Oviedo, on the river Caudal, a tributary of the Nalon. Pop. (1900), 18,083. Mieres is the chief town of a mountainous, fertile and well-wooded region in which coal, iron, and copper are extensively mined and sulphur and cinnabar are obtained in smaller quantities. The town contains large iron foundries and chemical works, and has an active trade is fruit, cider, timber and live stock.

MIEREVELT (Miereveld, or Mireveldt), Michiel JANSZ VAN (1567-1641), Dutch painter, was born at Delit, the son of a goldsmith, who apprenticed him to the copperplate engraver J. Wierix. He subsequently became a pupil of Willem Willemz and Augusteyn of Delft, until Anthonie van Momfoort (Blocklandt), who had seen and admired two of Miercvelt's early engravings, "Christ and the Samaritan" and "Judith and Holofernes," invited him to enter his school at Utrecht. Devoting himself first to still life, he eventually took up portraiture, in whicb he achieved such success that the many commissions entrusted to him necessitated the employment of numerous assistants, by whom hundreds of portraits were turned out in factory fashion. The works that can with certainty be ascribed to his own brush are remarkable for their sincerity, severe drawing and harmonious colour, but comparatively lew of the two tbousand or more portraits that bear
his name are wholly his own handiwork. He settled down in his native town, but went frequently to The Hague, where be entered the gild of St Luke in 1625 . So great was his reputation that he was patronued by royalty in many countries and acquired great wealth. The king of Sweden and the count palatine of Neuburg presented him with golden chains, Archduke Abrecht gave him a pension, and Chardes I. vainly endeavoured to induce him to visit the English court. Though Mierevelt is chiefly known as a portrait painter, he also executed some mythological pieces of minor importance. Many of his portraits have been reproduced in line hy the leading Dutch engravers of his time. He died at Dellt on the 27th of June 1642.

The Ryks Museum in Amsterdam has the richest collection of Mierevell's works, chief of them being the portraits of William, Philip William, Maurice, and Frederick Heary of Orange, and of the count palatine Frederick V. At The Hague Museum are the portraits of four princes of the house of Orange, of Frederick V., king of Bohemia, and of Louise de Coligny as a widow. Other portraits by him are at nearly all the leading continental galleries, notably. at Brunswick (3), Gotha (2), Schwerin (3), Munich (2), Paris (Louvre, 3), Dresden (4), Berlin (2), and Darmstadi (3). The town hall of Delit also has numerous examples of his work.
Many of his pupils and assistants rose to fame. The most gifted of them were Paulus Moreelse and Jan van Ravesteym. His sons Pieter ($1596-1623$) and Jan (d. 1633), and his son-in-law Willem Jacobz Delf, probably painted many of the picturea which go under his name. His portrait was painted by Van Dyck and engraved by Delff.
MIERIS, the name of 2 family of artists embo practised painting at Leiden for three generations in the 17th and x8th centuriek.

1. Frans van Mimens, the elder (${ }^{2} 1635-1681$), son of Jan van Mieris, a goldsmith and diamond setter, was born, acconding to Houbraken, at Leiden on the 16th of April 1635, and died there on the 12th of March 1681. His father wished to train him to his own business, but Frans preferred drawing to chasiog. and took service with Abraham Torenviet, a glatier who kept 2 school of design. In his father's shop he became familian with the ways and dress of people of distinction. His eye was fascinated in turn by the sheen of jewetry and stained glass; and, though be soon gave up the teaching of Tonenviet for that of Gerard Douw and Abraham van den Tempel, he acquired 2 manner which had more of the finish of the expuisices of the Dutch school than of the breadth of the disciples of Bembrandi. It should he borne in mind that he seldom chose panels of which the size exceeded it to 15 in ., and whenever bis name is altached to a picture above that size wo mayy surely assign it to his son Willem or to some other imitator. Ullike Gerard Douw when he first jeft Rembrandt, or Jan Steen when he started on an indeperdent career, Mieris never ventured to design figures as large as life. Charecteristic of his art in its minute proportions is a shiny brightness and metallic polish. The subjects which he treated best are those in which he pllustrated the habits or actions of the wealt bier classes; but be sometimes succooded in homety incidents and in portrait, and not unfrequently he ventured on allegory. He repeatedly painted the salin skirt which Ter Borch brought into fashion, and he often rivalled Ter Borch in the faithful rendering of rich and highly-coloured woven tissues. But he remained below Ter Borch and Metsu, because he had not their delicate perception of harmony or their charming mollowness of touch and tint, and he fell behind Gerard Douw, because he was hard and had not his reeling for effect by concentrated light and shade. In the form of his composition, which sometimes represents the framework of a window enlivened with greenery, and adorned with baa-rellefs within which figures are seen to the whist, his model is certainly Gerand Douw.

It is a queation whether Houbraken has truly recorded this manster's birthday. One of his best-known pieces, a party of ledies and gentlemen at an oyster luncheon, in the Hermitage * St Petenburg, beare the dute of x650. Celebrated alike
for composition and finith, it mould prove that Mietris had reached his prime at the age of fifteen. Another beautiful example, the "Doctor Foeling a Ledy's Pulee" in the gallery of Vienna, is dated 1656; and Wangen, in one of his critical esseys, justly observes that it is a remarkable production for a youth of twenty-ope. In 1657 Mieris was maried at Leiden in the presence of Jan Pothruck, a painter, and this is the earlicest written record of his existence on which we can implicitly rely. Of the numerous penels by Mieris, twenty-nipe at least aie dated-the hatess being an allegory, long in the Ruhl collection at Cologne, illustrating what he considered the kindred vices of drinking, smoking and dicing, in the year 1680.

Mieris had numerous and distinguished patrons. He reccived valuablo commissions from Archduke Leopold, the electorpalatine, and Cosimo III., grand-duke of Tuscany. His practice was large and lucrative, but never engendered in bini cithee carelesseness or neglect. If there be a difiference between the peinter's earlier and later work, it is that the former was clearee and more delicate in flesh, whilst the latter was often darkes and more livid in the shadows. When be died his clients maturally went over to his son Willem, who in turm bequeathed his painting-room to his son Frans. But neither Willem not Frams the younger equalled Frans the elder.
2. WiLLem van Mirais ($1062-1747$), son of Frans. His works are eatremely numerous, being partly imitations of the paternal subjects, or mythological episodes, which Frans habitually avoided. In no case did he comene near the excellesce of his sirce.
3. Frans van Mirers, the younger ($\mathbf{1 6 8 9 - 1 7 6 3 \text {), alse lived }}$ on the traditions of his grandiather's studio.
The pictures of all the generations of the Mieris family were succeosfulty imitated by A. D. Smaphaan, who tived at Leiprig and was patronized by the court of Anhalt.Dcmanu. To thoce who Would study his deceptive form of art a visit to the collection of Wbritiz ncar Dessau may aford Instruction.

MIFFLIN, THOMAS ($1745-1800$), Amencan soldier and politician, was born in Philadelphia, Penmsylvania, on the roth of January 1744, of Queker parentage. He graduated at the college of Philadelphia (now the university of Pennsylvania) in 1760 . As a member of the Pennsydvania house of representstives in $1772-1775$, he was an ardent Whig, and in 1774 was a member of the first Continental Congress. After the outbreat of the War of Independence be devoted himself chiefly to the enlisting and drilling of troops, and was chosen major of a regiment. In June 1775 he entered the continental service as Washington's first side-do-camp, and in August was chosen quartermaster-general. He became 2 brigadier-geseral in May 1776 and a major-general in February 1777. On the sth of June 1776 he was suoceeded as quartermaster-general by Stephen Moylan. Moylan, bowever, proved incompetent, and Miffin resumed the office on the rst of October. In the autumn of 1777 Miffin was a leader in the obscure movement known as the Conway Cabal, the object of which was to replece Washington by General Horatio Gates. On the ground of ill health Mifflin tendered his resignation on the 8th of October, and on the 7th of November Congress accepted his resignation as quartermastergeneral, but continued him in rank as major-general without pay. On the same day he was appointed a member of the new board of war, and on the following day was asked to continuo as quarternaster-general until his successor should be appointed. On the arst of November be arged before the old board of war and ordnance that Gatea should be made president of the new board of war "from a conviction that his military skill would suggest reformations in the different departments of the army essential to good discipline, order and economy, and that his character and popularity in the army would facilitate the execution of such reformations when adopted by Congress": The attacks on Washington failed, and in March 1778 Miftin was finally superseded as quartermaster-general by General Nathanael Greene. In October of the mame year be was removed from the board of war. The sufferings of the troops at Valley Ferge having been charged to his mikmanagoment as quarter-
master-general, Congress, in Jme r77,8, ordered an investigation; but before this inquiry had proceeded far, Congress granted hima $\$$ r,000,000 to settle all chaims against the office during his administration. In February 1779 be resigned his commission as major-general. During the war his eloquence was repeatedly of assistance to Congress in recruiting soldiers. He was a delegate in Congress in 1782-1784, and from November 1783 to November 1784 was president, in which office he received Washington's resignation of the command of the army and made 2 congratulatory address. In 1785-1788 be was speaker of the Pennsylvania general assembly (then consisting of only one house); he was a member of the Federal Constitutional Convention of 1787, and president of the state supreme executive councit (or chice executive officer of the state) in 1788-1790. He was president of the Pennsylvania Constitutional Convention of $1789-1790$; was the first governor of the state, from 1790 to 1799, after the adoption of the new state constitution; and during the Whisky Insurrection assumed personal command of the Pennsylvania militia. Towards the close of his last term as governor he was elected a member of the state assembly, but died during the first session, at Lancaster, on the 20th of January 1800.

See William Rawie, "Sketch of the Life of Thomas Mifflin," in Memoirs of the Histortcal Sociely of Pennsyivania (vol. 2: part 2, Philadelphia, 1830); and J. H. Merrill, Lifmoranda redating to the Miffir Family (Philadelphia, 18go).

MIENARD, PIERRE ($1610-1695$), called-to distinguish him from his brother Nicholas-Le Romain, French painter, was born at Troyes in 1610, and came of a family of artists. In 1630 he leit the studio of Simon Vouet for Italy, where he spent twenty-t wo years, and anade a reputation which brought him a summons to Paris. Successful with his portrait of the king, and in favour with the court, Mignard pitted himself against Le Brun, declined to enter the Academy of which be was the head, and made himself the centre of opposition to its authority. The history of this struggle is most important, because it was identical, as long as it lasted, with that between the old gilds of France and the new body which Colbert, for political reasons, was determined to support. Shut out, in spite of the deserved success of his decorations of the cupola of Val de Grace (1664), from any great share in those public works the control of which was the attribute of the new Academy, Mignard was chiefly active in portraiture. Turenne, Molière, Bossiet, Maintenon (Louvre), La Vallìre, Sévigné, Montespan, Descartes (Castle Howard), all the beauties and celebrities of his day, sat to him. His readiness and skill, his happy instinct for grace of arrangement, atoned for want of originality and real power. With the death of Le Brun (1690) the situation changed; Mignard desarted his allies, and succeeded to all the posts beld by his opponent. These late honours he did not long enjoy; in rogs he died whilst about to commence work on the cupola of the Invalides. His best compositions have been engraved by Audran, Edelinck, Masson, Poilly and others.

MLONE, JACQUES PAUL (1800-1875), French priest and publisher, was born at St Flour, Cantal, on the 25 th of October 1800. He studied theology at Orleans, was ordained priest in 1824 and placed in cherge of the parish of Puiseaux, in the diocese of Orleans. In 1833 he went to Paris, and started L'Uniters religiewar, which afterwards became Louis Veuillot's wltramontane organ. On severing his connexion with the paper three years later, he opened at Petlt Montrouge, near Paris, the great publishing house which brought out in rapid succession numerous religious works at popular prices. The best known of these are: Scriplurae sacrae cursus completus, and Theologice cursus (each in 98 vols., 1840-1845); Collection des outcours sactls (100 vals., $1846-1848$); Encycloptdie thenogique (171 vols., 1844-1866); Patrologiae cwpsus compledus, Latin series in 221 vols. ($1844-1855$; and edition, 1878 seq.); Groek series. first publiebed in Latin (85 vols., $1856-1861$); with Greek text and Latin translation (165 vols., 1857-1866). Uniertunately theac editions, brought out in great haste and often edited by superficial scholars, do not come up to the requirements of modern
criticism. By far the most noteworthy is the Patrology, which was superintended by the learned Benedictine J. B. Pitra. Its vast scope leaves it still unique and valuable, where other editions of special works do not exist. The indices in 3 vols. are arranged so that one may easily find any reference in the patristic writings. In February 1868 a great fire destroyed the whole of Migne's printing premises, but he established a new house in Paris, which was purchased in 1876 by the publishers Garnier Frères, who still own all the works brought out by Migne. He died in Paris on the 25th of October 1875.

For a more complete account of Migne's Hife, see the article in the Cathotic Encrolopedia (New York, 1906 seq.).

MIGNET. PRANCOLS \triangle UGUSTE ALEXIS (1796-1884), French historian, was born at Aix in Provence on the 8th of May 1796, and died at Paris on the 24th of March 1884. His father, a Vendean by birth, was an ordinary locksmith, who enthusiastically accepted the principles of the French Revolution and roused in his son the same love for liberal ideas. Frangois had brilliant successes when studying at Avignon in the lyctc where he was afterwards professor (1815), he returned to Aix to study law, and in 1818 was called to the bar, where his eloquence would have ensured his success had he not preferred the career of an historian. His abilities were shown in an Eloge de Charles VII., which was crowned by the Academie. de Nimes in 1820, and a memoir on Les Instifutions de Saint Lowis, which in 1821 was crowned by the Académie des Inscriptions et Belles Lettres. He then went to Paris, where he was soon joined by his friend and compatriot, Adolphe Thiers, the future president of the Freach repurblic. He was introduced hy J. A. Manuel, formerly a member of the Convention, to the Liberal paper, Cowrrier francais, where he became a member of the staff which carried on a fierce pen-and-ink warfare against the Restoration. He acquired his knowledge of the men and intrigues of the Napoleonic epoch from Talleyrand. He wrote a Histionc de la reolution frampaise (1824) in support of the Liberal cause. It was an enlarged sketch, prepared in four monthe, in which more stress was haid on fundamental theories than on the facts, which are more rigidly linked together than their historical sequence warrants. In 1830 be founded the National with Thiers and Armand Carrel, and signed the journalists' protest agairst the Ordonnancer de jnillet, but he refused to accept his share of the epoil after his perty had won. He was satisfied with the modest position of director of the archives at the Foreign Office, where he stayed till the revolation of 1848, when he was dismissed, and retired permanently into private life. He had been elected a member of the Academie des Sciences Morales et Politiques, rehestablished in 1832, and in 1837 was made the permanent secretary; he was also elected a member of the Acadimie Frangaise tn 1836, and sought no further honours. He was well knowa in fachionable circles, where his witty conversation aad his pleasant manners made him a favourita. The greater part of his time was, however, given to study and to his academic dutics. Eulogies on his deceased fellow-members, the Academy reports on its work and on the prizes awarded by it, which it was part of Mignet's dnty as secretary to draw up, were literary fragments thoroughly appreciated by connoisseurs. They were collected in Mignot's Notices of poriraits. He worked slowly when in bis study, and willingly lingered over research. With the exception of his description of the French Revolution, which was chiefly 2 political manifesto, all his early works refer to the middle ages-De La ffodulite, das inetitustions de Saint Lowis et da l'infixence de la IJgislation de ce prince (1812); La Germanie am tiai et as ixa sidcle, sa consersiox as christianisma, at son istroduction dans la socidt cioiliste do l'Eupope occidentale (1834); Eissai sur la formation cerritoriale at politique de la France depwis la fis da si" sidele jusqu'd la fin din $x 0^{\circ}(1836)$; all of these are rough sketches showing only the outlines of the subject. His most noted works are devoted to modern history. For a long time he bad been taken up with 2 history of the Reformation, but oaly one part of it, dealing with the Reformation at Geneva, has been published. His Histoine de Marie Stuart (2 vols., 1851)
is weil worth reading; the wother made liberad we of some tomportant umpublished documents, taken for the greater part from the archives of Simancas. He devoted some volumes to a history of Spain, which had a well-dewerved successCharter Qwint, son addication, son spjowr, at samort an monastere de Yuste (1845); Antonio Pare af Philippo II. (1845); and Histoine de le rioalin de Fraserois 1. A de Charles Quine (1875). At the same time he had been commincioned to publich the diplomatic acte relating to the War of the Spanish Soccestion for the Colloction des docwmonts indedts; only four volumes of these Nogociations were published (1835-1842), and they do not go further than the peace of Nijmwegen; but the introduction is celebrated, and Mignet reprinted it in his Mclanges historiques.
See the eulogy of Mignet by Victor Duruy, dellvered on entering the Academie Frangaise on the 18 th of June 1885, and the notice by Jules Simon, read before the Acadímie des Soiences Morales et Politiques on the 7 th of November $\mathbf{2 8 8 5}$.

LIGMOH, ABRATAI ($640-1697$), Dutch painter, whe born at Franifort. His father, a merchant, placed him noder the still-life painter Jacob Merrel, hy whom he was taken to Hoiland about 1660. He then worked under de Heem at Utrecht, where in 1675 be married the dangbter of the painter Cornelis Willaerts. Sibylle Merian ($1647-17 \mathrm{r} 7$), daughter of the engraver Matthew Merian, became his pupil and achieved distinction ts a flower painter. He died at Wetzlar. Mignon devoted himself almost exclusively to flowers, fruit, birds and otber "still life," though at times he also attempted portraiture. His flower pieces are marked by careful finish and delicate handling. His favourite scheme was to introduce red or white roses in the centre of the canvas and to set the whole group of flowers agaisst a dark background. Nowhers can his work be seen to better advantage than at the Dresden Gallery, which contains fifteen of his paintings, twelve of which are signed. Six of his pictures are at the Louvre, four at the Hermitage, and other examples are to be found at the muscums of Amsterdam, The Hague, Rotterdam, Brussels, Munich, Karlsruhe, Brunswick, Cassel, Schwerin, Copenhagen and Turin.

Mianonetiß or Mignonnetis (i.e "little darling'", the name given to a popular garden flower, the Reseda odoraio of botanists, a "fragrant weed," as Cowper calle it, bighly esteemed for its delicate but delicious perfume. The mignonette is generally regarded as being of annual duration, and is a plant of diffuse decumbent twiggy habit, scarcely reaching a foot in height, clothed with bluntisb lanceolate entire or three-lobed leaves, and bearing longish spikes-technically racemes-of rather insignificant flowers at the ends of the ntonerous branches and branchlets. The plant thus naturally assumes the form of a low dease mass of soft green foliage studded over freely with the racemes of flowers, the latter unohtrasive and likely to be overbooked until their diffused fragrance compels attention. It is probably a native of North Africe and was sent to England from Paris in 1742; and ten years later it appears to have been sent from Leiden to Philip Miller at Chelsea. Though originally 2 alender and rather straggling plant, there are now some improved garden varieties in whicb the growth is more compect and vigorous, and the inflorescence bolder, thougb the odour is perhaps less penetrating. The small six-petallod flowers are somewhat curious in structure: the two upper petals are latger, concave, and furnished at the back with a tuft of club-shaped filaments, whicb gives them the appearance of being deeply incised, while the two lowest petals are much amaller and undivided; the most conspicuous part consists of the anthers, which are numerous and of a brownish red, giving the tone of colour to the inflorescence. In the varieties named Golden Queen and Golden Machet the anthers have a decided tint of orangeyeilow, which imperts a brighter gotden hue to the plants when in blossom. A handsome proliferous or double-fowered variety has also been oblained, which is a very vefut decorative plant, though only to be propagated by cuttings; the double white flowers grow in large massive panicles (prolfferous
racemes), and are equally fragrath with thome of the ondinary forms.

What is called tree mignooette in gardens is due to the skill of the cultivator. Though practically a British annual, as alrcady noted, since it flowers abundantly the first season, and is utterly destroyed by the autumnal frosts, and though recorded as being annual in its native habitat by Desfontaines in the Ftora Allantica, the mignowette, tike many other plants trented in England as annuals, will continue to grow on if kept in a asitable temperature. Moreover, the life of certain plants of thin semi-annual character may be prolonged into a second season if their flowering and sceding are persistently prevented. In applying these facts to the production of tree mignonette, the gardener grows on the youmg plants under glam, and prevents their fowering by nipping off the blooming tips of the sboots, so that they continue their vegetative growth into the second scason. The young plants are at first supported in an erect position, the lateralis being removed so as to secure clean upright btems, and then at the height of one or two feet or more, as may be desired, a head of bramehea is encouraged to develop itself. In this way very harge plants can be produced.
For ordinary purposes, however, other plans are adopted. In the open borders of the flower garden mignonette is usually sown \dot{m} apring, and in great part taleet care of itself; but being a favourite either for window or balcony culture and on account of its fragrance a welcome inmate of town conservatories, it is also very extensively grown as a pot plant, and for market purposes with this object it is sown in pors In the autumn, and thinned out to give the plants requigite spact, since it does not transplant well, and it is therealier specially grown in pirs protected from frosta, and warketed when just arriving at the blooming stage. Ia this way hundreds of thousands of pots of blooming mignonette are raised and disposed of year by year.

In classifying the odours given off by plants. Rimmel ranks the mignonette in the class of which be makes the violet the type; and Fee adopts the same view, referring it to his class of "iosmoids" along with the violet and wallfower.
The s'nus Reseda contains about fifty species, natives of Europe and Wert Asia. R. Iufeola. commonly called dyer's-weed and weld, yields a valuable yellow dye. R. alba is a fine biennial about 2 ft . high, with erect spikes of whitish llowers.

HIGNOTS, Ls. In a general sense the French word mignom means "favourite," but the people of Paris used it in a special sense to designate the favourites of Henry 1II. of France, frivolous and fashionable young men, to whom public malignity attributed dissolute morals. According to the contemporary cbronicler Pierre de l'Estoile, they made themselves "exceedingly adious, as much by tbeit foolish and haughty demeanour, as by their effeminate and immodest dress, but above all by the immense gifts the king made to them." The Guises appear to have stirred op the ill will of the Parisians against them. From 1576 the mignons were attacked by popalar opinion, and historians accredited without proof the scandalous stories of the time. The best known of the mignons were the dukes of Joyeuse and of Epernon.
mighot, Claudine Frangorse [commoniy called Marie] (c. 1617-1711), French adventuress, was borm near Grenoble, at Meylan. At the age of sixteen she attracted the notice of the secretary of Pierre des Portes d'Amblérieux, treasurer of the province of Dauphiny, and Amblericux promised to promote their marriage. He married the girl himself, however, and left her his fortune. His will was disputed by his famlly, and Claudine went to Paris in 1653 to secure its fulfilment. She sought the protection of Prançois de l'Hopital, marshal of France, then a man of seventy-five. He married her. within a week of their first meeting, and after seven years of marriage died leaving ber part of his estate. By a third and morganatic marriage in 1672 witb John Casimtr, ex-king of Poland, a iew weeks before his death, she received a third fortune. Immediately on her marriage with Ambléricux she had begun to educate bersell, and her wealth and talents assured her a welcome in Paris. She retired in her old age to a Carmetite convent in the city, where she died on the 30 h of November 1711.

Her hisıory, very much modified. was the subject of a play by Bayard and Pawl Doport, Marze Migmor (I829).
MIGRATION. Under this title will be considered movements of men with intention of changing their residence or domicile. Such migration (Lat. migrare) may be either external-that is. from one country to another, including emigration from mother country to colony; or it may be internal-that is, within
the fimits of a stugle conntry．Under eatermal migration are comprised emigration and immigration，denoting simply direction from and to．The emigrants are－at the same time the immi－ grants；that is，the material of the movement is the same， but the effect upon the country giving up and the country receiving the migrant requires separate treatment．Hence it is proper to separate emigration from immigration．Tenm－ porary migration，or travel for purposes of business，enterprise or pleasure，will be considered only incidentally，and because in some cases it is difficult to distinguish between such movements and permanent migration．

Migration in general may be described as a natural function of social development．It has taken place at all times and in the greatest variety of circumstances．It has been tribal， national，class and individual．Its causes have been political， economic，religious，or mere love of adventure．Its causes and results are fundamental for the study of ethnology（forma－ tion and mixture of races），of political and social history（forma－ tion of states and survival of institutions），and of political economy（mobility of labour and utilization of productive forces）．Under the form of conquest it makes the grand epochs in history（e．g．the fall of the Roman Empire）；under the form of colonization it has transformed the world（c．g．the settlement of America）；under free initiative it is the most powerful factor in social adjustment（e．g．the growth of urban population）．It must suffice here to indicate the character of the principal movements in the past，and then describe certain aspects ol modern migration．The early move－ ments may be grouped as follows：（a）Prehistoric migrations．Among savage and nomadic nations the whole tribe often moves into new territory，either occupy－ ing it for the first time or exterminating or driving out the indigenous inhabitants．We have only vague knowledge of these early movements，laboriously gleaned from archaeology，anthropology and philology．The cause has been commonly said to be the pressure of population on the food－supply．A more probable explanation is the love of booty and the desire of the stronger to take possession of the lands of the weaker．（b）Greek and Roman coloni－ zation．Both of these ancient civilizations extended their influence through migration of individual families and the planting of colonies．The motive seems to have been primarily commercial－that is，the love of gain．It may have been partly a sort of＂swarming＂process，caused by pressure of population at home．In some cases it had a political motive，as the planting of military colonies or providing new homes for the proletariat．The con－ sequences were of course momentous．（c）The German Conquest．Beginning about the sth century，the Roman empire was overthrown by German tribes from the north of the river Danube and east of the river Rhine．This Volkerwanderung，as it is called by German historians， again transformed the face of Europe，resulting in the establishment of independent kingdoms and a great mix－ ture of races and institutions．It was coincident with the building－out of the feudal system．The conquered in many cases could be left as serfs and tillers of the soil， while the conquerors seized the higher positions of administration and power．（d）The later middle ages saw many misor migratory movements，such as those accompanying the crusades，the pushing of German colonization among the Slavs，and the introduction of Flemish weavers into England．The religious reformation caused a considerable amount of expatriation，culminating in the expulsion of the Huguenots from France．（c）The period of discovery and colonization opened up a new era for migration．The first expeditions were for adventure and booty，especially the discovery of gold and silver． Then came the establishment of commercial posts or factories for the purposes of trade．Finally came coloni－ sation proper－that is，the settlement of new countries by Europeans intending to remain there permanently，
but still retaining their connexion with the mosher coumtry： This meant the opening up of the world to cocmmerce and the extemsion of European civilization to vast aseas formerly peopled by zavages or half－civilized peoples．It meant a great outlet for the epirit of enterprise and adventure，relief from over－population，an enormous increase in wealih and power，and a struggle for supremacy among the nations of Europe．Colonization and colonial policy excited immense attention in Europe；and this extended into the 19th century （a．g．E．G．Wakefield＇s plans for colonization，and the various colonization societies of modern times）．The colonial policy proper was broken down by the revolt of the North American colonies from Great Britain，and later of Mexico and Central and South America from Spain．（f）The movement of popula－ tion，however，has continued under the form of emigration． This movement is characterized firstly by its magnitude； secondly，hy the fact that the emigrant changes his political allegiance，for by far the greater part of modern emigration is to independent countries，and even where it is to colories the colonics are largely self－governing and self－regarding；and thirdly，it is a movement of individuals seeking their own good，without state direction or aid．This is sotb－century emigration，difiering from al preceding forms and having an importance of its own．

Shatistics of Emigration．－The direction of the modern movernent is from Europe to America，Australit：and South Africa，as shown in the following table：－

Emigration from Certain Slates of Earope，1800－1905．1

Year．	总	$\begin{gathered} 8 \\ \text { 萹 } \\ \text { 品 } \end{gathered}$	$\begin{aligned} & \text { 㤩 } \\ & \text { 㤩 } \end{aligned}$	$\begin{aligned} & \text { 离 } \\ & \text { 含 } \\ & \text { O } \end{aligned}$					
1890	115.595	20.560	2976	3526	37.025	28，945	74，002	6693	97，103
1891	189．746	6，217	3456	4075	37，721	33.234	81,407	6521	170，089
1892	116，642	5.528	5174	6290	30，190	20.772	74，947	6689	116，339
1893	142，269	5.586	3881	4820	38，707	30，093	65.534	5129	87.677
1894	114，566	4	1267	1146	34，102	26，656	25.536	2863	40，964
1895	187.908	0	1318	1314	36，220	44.420	63，552	3107	37．498
1896	197.554	\cdots	1429	1387	45.317	37.635	60.547	2441	32，152
1897	174.545	？	760	792	39，366	21，369	35.634	1778	23.249
1898	139.188	8	928	851	38，546	23.280	53.947	1694	20.966
1899	$145+440$	8	600	1347	47.058	17．539	99.299	1701	22，114
1900	171．735	完	876	1899	55，452	20，794	117.372 136.557	2650	20,981
1901	288，947	E	1019	1874	48，892	20.439	136．557	2968	20，874
1902	295.443	0	1695	2301	44，401	23，880	185.449	3617	30,915
1903	292，033	．	2101	2963		21，291	222，218	4669	35－453
1904	267，249	\bigcirc	2269	2440	－	27，925	144，038	3727	27.265
1905	479．349	z	2340	2297				3780	27，403

Year．	$\begin{aligned} & \text { 荡 } \\ & \text { 空 } \end{aligned}$	$\overbrace{8}^{2}$	$\stackrel{0}{9}$		Great Britain and Ireland．			
						$\begin{aligned} & \text { 茄 } \\ & \frac{\pi}{8} \\ & 8 \end{aligned}$	家	
1890	30，128	10．991	85.548	10，298	139．979	20.653	57．484	218，116
1891	38，318	13，34t	109.415	10.382	137.881	22．190	58.446	218.507
1892	41.275	17．049	74，681	10，442	133,815	23.325	52.902	210,047
1893	37.504	18，778	40，545	9.150	134．045	22，637	52.132	208．814
1894	9.678	5，642	17.792	4.105	99.590	14，432	42.008	156.030
1805	15.104	6，207	36.725	3.607	112，538	18.294	54．349	185．18E
1896	12，919	6.679	32，127	2，876	102，837	16，865	42，212	161，925
1897	\＄．926	4.669	18．107	2，260	94，658	16，124	35，678	146，460
1898	$\begin{array}{r}7.321 \\ \hline 1\end{array}$	4.859	27，853	2，340	90，679	15.570	34.395	140,644
1899	12,028 16,414	6,699 10,931	63,101 02,833	2,795 3,570	87.400 $102+448$	16,072 20,472	42.890 45.905	146.362 168,825
1900	16，434	10.931	92，833	3.570	$102+448$	20，472	45.905	168，825
1901	20，464	12，745	87，431	4.657	171，585	20，920	39，210	171，715
1902	33，477	20.343	110，453	6,823 8,214	137，121	26，285	42，256	205.662 250.950
1903	35.975	26．784	140，2 11	8，214	177.581	36，801	45．568	259，950
1904	－	22.264	－	9.034	175.733	37.445	56，257	271，435
1905	－	21，039	－	8.051	170.408	41，510	50， 159	262，077

[^27]Since 1880 over twenty million persons have emigrated from Europe to countries beyond the sca．The greater part of this emigration has been to the United States of North America．The history of emigration is well shown in the following tahle of emigra－ tion from Great Britain and Ircland．Down to 1853 the figures include all emigrants from British ports；after 1853 emigrants of British and Irish origin only．
it was speedily reammed on an enlarged scale owing expecially to the improved means of ocean transportation．It culminated in the decade $1880-1890$ ，and declined after the commercial crisis of 1893 Later there was another increase．
The relative movement of nationalities is best presented by the statistics of the United States．The nationality（country of origin of immigrants coming to the United States，1871－1895）is shown in the following table：－

Emigration from Greal Britais and Ireland，z8is－1gos．

All Emigrants．					
，		To United States．	To Australia．	To other Places．	Total．
1815－1820（ 5 years）	70．438	50，359		2.731	123，528
1821－1830（10 ．	139.269	99，801	9，036	1，805	2.49 .911
1831－1840 ${ }^{10}$＂）	322.485	308，247	67，882	4.536	703.150
$1891-1850$（10 1 ）	429.044	1，094．556	127，124	34.168	1，684，892
$185 \mathrm{t}-1852$（ $2, \quad$, ）．	75．478	511，618	109．413	8，221	704．730
1815－1852（37 years）．	1．036，714	2，064．581	313.455	51，461	3．466，211
Enigrants of British and Irish Origin．					
1853－1860（8 years）．	123，408	805，596	365.307	18，372	1，312，683
186518870 （10 \quad.	130.310	t．132，626	267，358	41，535	1，57，829
1871－1880 10 \％	177.976	1，087，372	303，367	110，204	1，678，919
1881－1890（10 ．	301,922	1，713．953	372，744	$169,916^{1}$	2，558，535
1891－1900（10＂）．	176，336	1，090，685	119，018	258942^{2}	1，644，981
1901－1905（ 5 ，	181，504	290，679	27.120	$8_{5,607}{ }^{1}$	584，910
1853－1905（53 years）．	1，091，456	6，120，911	1，454，914	684．576	9，351，857

The general direction of emigration from Europe is shown in the

Emigration from oarious Countries of Europe．

Country．	Coundry of Destination．							
	United States．	British North America．	Brazil．	Argentine．	Australasia．	Alrica．	All other．	Total．
Great Britain and Ireland， 1905	122，370	82.437	二	二	15，139	26，307	15，824	262，077
Norway， 1905 ．．．．	19.638	1，386	二					21，C59
Sweden， 1903 ．．．－	35.439	329	－	－674	51	118	38	35.975
Germany， 1905	26，005	243	333	674	${ }_{5}^{84}$	57	7 366	27.403 8.051
Denmark， 1905 ：：： Holland， 1905	7，158		－	－	\＄5	is	366	8,051 2,297
Belgium． 1905 ：．．：	2，162	－	No	－	2	101	275	2，540
France， 1905 －．．．．			$21.449{ }^{\text {No }}$	information	available．			
Spain，1902 ：．．：	Cannot	given．	21,449 1,120	8，767	二	20，460		27.925 44.401
Iraly， 1905 ．．．．	316，797	5.930	30，079	88，840	765	13.072	3.866	479．349
Switzerland．1905 ${ }_{\text {a }}^{\text {Austria－Hungary，} 1905}$ ：：	48.349 28.967	10，399	53	477 5.346	二	－	\rightarrow	5.049

Stabistics of Inmigration．The statistics of the United States are the most important and the most complete．The statistics since 1820 are shown in the following table：－

Decade ending	Agrregate	$320-1005 .$ Annual
zoth June．	Arrivals．	Average．
1830	143．439	14.343
1840	599.125	59.912
1850	－5，713．25t	171.325
1860	－2，598，2t4	259，821
1870	．2．314．824	231，482
1880	－2，812，191	281，219
1890	5，246，613	524.661
1900	3，844，422	384.442
1901－1905	3，833．076	766，615

Prior to 1820 there was no official record of immigration，but it is estimated that the total number of immigrants from the close of the Revolutionary War was 250,000 ．During the decade from 1820 to 1830 the movernent was very moderate．From 1830 to 1840 it steadily increased，but never reached 100,000 per annurn．In 1846 came the lrish potato famine，and an enormous emigration began， followed by a very large Geiman emigration from similar causes． The Civil War of the United States interrupted the movement，bur

1 Of these， 77,409 went to the Cape of Good Ilope and Natal．
2 Of these， 152.797 went to the Cape of Good Hope and Natal．
＇Of these， 69,052 went to the Cape of Good Hope and Natal．

A very important transformation has taken place in the proportionate number coming from different countries during the last half of the 19th century. At first the Jrish and Germans were most prominent. Of later years, the Italians, Czechs, Hungarians and Russians were, as wilt be seen from the following table, aumerously represented.

The following table shows the relative number of different nationalities represented in the immigration to the United States:-

Country.			$1861-70$.	$1871-80$	$1881-90$.	$1891-1900$.
		$\%$	$\%$	$\%$	$\%$	

Sex and Afe.-Of all the immigrants (1871-1895), $61 \cdot 25 \%$ were males and 38.75% were femakes.
This percentage remains fairly constant, but the proportion differs tomewhat among different nationalities. The following table shows the proportions lor $1905:-$

	Malea.	Females
Austria-Hungary	207,034	77
	${ }^{51.574}$	3,889 15.357
Holland		1,758
${ }_{\text {Russia }}$	216,268	- 51.27
		${ }_{18,105}$
United Kingdom-		
England		
Scotland	(18,754 ${ }^{1}$	

The immigrants were in the most vigorous period of life, few children and few old people, as shown in the following table:-

Ages of Immigrants to the United States, 1881-1890.

Country of Origin.	Under 15.		From 15 to 40.		Over 40 years.	
	Number.	Pcr cent.	Number.	Per cent.	Number.	$\begin{array}{\|c} \text { Per } \\ \text { cent. } \end{array}$
Germany	386,934	26.6	904.002	62.2	162.034	$11 \cdot 2$
Ireland	92,308	14.1	515,089	78.6	48,085	$7 \cdot 3$
England ${ }^{\text {Sweden and }}$	151,315	23.5	420,303	65.2	73,062	11.3
Norway .	104,254	18.3	414,609	73.0	49.499	8.7
Itaily ${ }^{\text {Rusia }}$ (inciad	47,603	$15 \cdot 3$	212,475	69.2	47,771	15.5
Ruscia (includ ing Poland)	65.427	24.7	174.754			4
Austria . .	50.027	22.1	149.909	66.3	24,009 $\mathbf{7 6 , 1 0 9}$	11.6
Scouland	36,192	$24 \cdot 2$	97.819	65-2	15,858	10.6
Hungary	18,785	14.7	95.635	74*9	\$3,261	10.4

Occupation.-The immigrants are for the most part unakilled Jabourers. The atatistics for the United States show the following figures for the years 1881-1890:-

Occupation of Immigrants to the United States.

	Makes.	Females.	Total.
Profemional Sxilled.	25.257 514.552	1.749 25.859	27,006 540,411
Misceilaneous		25.859 $\mathbf{2 4 5 , 8 1 0}$	540,411 $\mathbf{2 , 0 7 9 , 1 3 5}$
Not stated.	-73,327	42,830	2,09,115 116,157
Without occupation	759,450	1,724,454	2,483.904
Total	3,205,911	2,040,702	5,246,613

Those " without occupation " are mostly women and children. The " miscellaneous " are day labourers. It is probable that about 20% of the adult males are "skilled."
Immigpation to Other Cosumtries.-In no other country is immigration conducted on so important a scale as in the United States. The statistics are very imperfect. The main figures have already been given in the table of emigration. Australia has an annual immigration of about 250,000 , mostly of British origin. This is offset by a very heavy emigration, which sometimes exceeds the immigration in certain of the states. The immigration to Canada for the year 1905 was put down as 146,266, but a portion of this consisted of immigrants passing through to the United States. Brazil has had a large immigration (in 1895 equal to 169.524 , but in 1904 onty 12.447). The Argentine is credited with an immigration in 1905 of 172,117 . and Uruguay with an immigration in 1903 of 6247. In all the South American immigration the countries principally represented ere those of southern Europe, especialiy Italy. The majority of the immigrants are adult males and farm labourers.

Bolance of Emigration and Imprigration.-Even In the case of emigration (rom Europe to countries beyond the seas there is some return movement. Emigrants who have been successful in business return in order to end their days in the old country. Those who have not sucoeeded return in order to be cared for by friends and relatives, or simply from home-sickness. Thus, for Great Britain and Ireland, while the emigration of persons of British and Irish origin was, in 1905. 262,077, the immigration of persons of the sa me category was i22,712, leaving a net emigration of only 139.365. In the United States statistica we cannot distinguish in the outgoing passenger movement emigrants from other persons. But if for a period of years we take the tocal inward passenger movement and subtract from it the totat outward passenger movement, we ought to have the net immigration. By this method we arrive at the conclusion that while the gross immigration during the five years 1901-1905 was 3,833,076, the net immigration was only $1,779.976$, showing an out: ward movement of 273.134 , or about 7.12% of the total number of immigrants.
Temporary Emitration.-In ${ }^{\text {a many }}$ European countries there is not only emigration beyond seas, but a vary considerable movement to neighbouring countries in search of vork, and generally with the intention of returning. Thus in ltaly, the "permanent "emigration (i.e. to countries beyond seas) numbered. in 1905. 447.083: the "temporary " emigration to Europeas or Mediterranean countriea amounted to 279.248 . This temporary emigration is strongest in the spring, and consists principally of adult males (agriculturists. farm and day labourers, bricklayers and masons) in scarch of work. It resembles somewhat the movement of Irish labourers into Great Britain at harvest time. It is notorious that the ltalians who emigrate to the Uniced States largely return.
Effects of Emigration.-There are two views with regard to emigration: one unfavourable, viz. that it is a drain on population. reducing its economic strength and disturbing social and political relations; the second looking upon it as a relief from over-population and a congested labour market. As a matter of fact, emigration has not succeeded in diminishing the population of Europe, which, on the contrary, doubled during the pith century. The one great exception is Ireland, where poputation declined from 8,175,124 in 1841 to 4,458 , 745 in 1901 . From 1858 to 1901 the total emigration from Ireland was $3,88 \mathrm{t}, 246$ or 72.5% oL ithe average population. Emigration, by carrying of the young men and women, also reduced the Iriah marriage and birth rates, which were almoss the lowest in Europe. But hitherto the countries of strongest emigration (Eng land, Germany, \&ce.) have shown practically undiminished birth and marriage-rates and a steady growth in population.
The intensity of emigration is measured not by the absolute number of emigrants, but by the number of emigrants to the tatal population. Its effect is shown by comparing the number of emigrants with the excess of birthe over deaths per 1000 of the population. This is shown in the following table (1905):-

	Euctes of births over deaths per Ioco lahahizants.	$\begin{gathered} \text { Emigrants } \\ \text { perio00 } \\ \text { Inhabiants. } \end{gathered}$
Great Britain and Ireland	11.4	6.06
England and Wales . .	$12 \cdot 0$	4.96
Scotland	$12 \cdot 2$	8.45
Ireland	$6 \cdot 3$	11.42
Germany	13.2	.45
Switserland	$9 \cdot 5$	1.45
Sweden (1903)	106	6.89
Norway	$12 \cdot 6$	9.11
Denmark	13.5 10.6	3.12 14.33
Austria-Hungary	10.6 12.2	14.33 6.29

It will be observed that, with the exception of Ireland and Italy, wherever there is a heavy emigration there is umally a considerable excess of births over deaths, i.e. natural increase more than makes up for the loss by emigration. Even taking Great Britain and Ireland together, the loss by emigration per annum has not been very large, as is shown by the following table:-

Annual Emigration per 1000 of the Average Popxlation of Great Britain and Ireland.

Even in particular districts where emigration is heavy the loss is made up by births. For instance, in 1891 the emigration Irom the provinces of West Prussia and Posen was extraordinarily heavy10.9 and 10.4 per mille respectively-but the excess of births over death was $19: 6$ per mille. Emigration may give temporary relief to congested districts, but it is not in itself a remedy for so-called over-population.
It is difficult to analyse closely the economic effect of emigration, because so much depends upon the character of the emigrants and the condition of the labour market. The following considerations have been urged at different times: Although emigration does not diminish population, yet, as the emigrants are in the most productive period of life (15 to 45), the country of emigration loses adults and replaces them with children. It thereby loses the cost of rearing that number of people to adult age, and is left with a disproportionate number of children and old people. The age distribution of the population of Ircland lends some support to this view. In the same vein it is urged that voluntary emigration takes away the cream of the working-clasces It is the man of encrgy, of some means, of ambition, who takes the chances of success in the new country, leaving the poor, the indolent, the weak and crippled at home. I_{1} is maintained that such emigration institutes a process of selection which is unfavourable to the home country.
On the other side, it is said that the men who are doing well at bome are the ones least likely to emigrate, because they have least to gain. Modern means of transportation have made the voyage so cheap that almost any one is able to go. It is therefore the restbess, the unsuccessful, or at least those not fitted for the strenuous competition of the older countries, who are tempted to go. Emigration affords a natural outlet for the superfluous labour lorce of a country. The supply of labour is somewhat reduced, but wages are kept up for those who remain. Those who go find means of bettering their own condition beyond the seas, where they become producers of food and raw material for the bome country, and at the same time customers for her manufactured products. Emigration is therefore an cconomic gain, both directly and indirectly. It is evident from these arguments that no general answer cant be given to the question. In some cases it may be an evil; in most, when conducted under normal conditions, it would seem to offer lintle danger.

The same remark would hold true in regard to the social and political effects of emigration. In some cascs, by taking away the strong. self-reliant and energetic, it may result in the deterioration of the home population. In other cases it allows restlens spirits who have failed at home to try again elsewhere. Often in cascs of political revolution the members of the defeated party have sought reluge eloewhere, as after the revolutionary movements of 1848 . In case of conquest the conquered nationality takes to emigration on an extensive scale, as after the absorption of Alsace-Lorraine by Gcrmany in 1871. The movement may be aided either by the slate or by private associations. Of such character have been the skete-aided emigration from Ireland, and the assisted emigration of paupers, criminals and other persons in the effort to relieve a congested population, or simply from the desire to get rid of undesirable members of the communly. Such efforts fail if the new coumtries are unwilling to admit these persons. Finally, we have the expulsion of the Jews from Ruscia as an example of the effort of a communiny to get rid of an element which has made itself abnoxious to the local seatiment.

Effects of Immigration. -The effects of emigration are negative in character; those of immigration are positive. (a) On population: immigration, of course, is a direct addition to the population of mew countries, and greatly accelerates the growth by natural increase especially as the immigrants are in the most productive ages of manhood and womanhood. In the United States, for instance, out of a population of $76,303,387$ (in 1900), there were $26,147,407$ persons who were either foreign-born or who had one or both parents forrignborn. This does not mean that the population would bave been twenty-six millions less if it had not been for immigration; for ihe rate of natural increase among the native-born might have maintained itself. Nevertheless, immigration has probably stiraulated the growth of population. (b) Economic effects: The economic gain of immizration to new countries is evident. It adda directly to their available labour force, that is, to the number of adults engaged in the work of producing wealth.
According to the United States cenmus of 1900, out of 29.073 .233 (1900) persons engaged in gainful occupations, $\mathbf{j}^{2} 851,399$ or 20.1% were of foreign birth. If we add to these the native whites of foreign parentage $(5,300,924)$ we have $11,152,323$ persons of forcign extraction or 39.4% of the total labour force. The foreign whites alone constituted 10.4% of the total number of persons engaged in agricultural pursuits; 11.4% of thowe in professional services; 25.7% in domestic and personal scrvices; $19 \cdot 2 \%$ in trade and transporta. tion; and 30.6% of those engaged in manulacturing and mechanical industriea. In addition to these, the native whites of foreign parentage constituted, in agriculture, \&c., 10.6% i in professional service, 20.6%; in domestic and personal service, 16.4%; in trade and transportation, $\mathbf{3 5 \cdot 7} \%$ in manufacturing and mechanical, $\mathbf{2 5 . 4} \%$ of all those engaged in those occupations. The labour force of ite United States is thus made up very largely of immigrants and the children of immigrants.
Attempts have sometines been made to put a money value on the economic gain by immigration. The amount of money brought by the immigrante is not large, and is probably more than offset by the money sent back by immigrants for the support of families and friends at home or to aid them in following. The valuable element is the able-bodied immigrant himself as a lactor of production. It is said, for instance, that an adult slave used to be valued at from 8800 to $\$ 1000$, so that every adult immigrant may be looked upon as worth that sum to the country. Or, it has been said that an adult immigrant represents what it would cost to bring up a child from infancy to the age, say, of 15 . This has been estimated by Ernst Engel as amounting to $\$ 550$ for a German child. The most scientific procedure, however, is to calculate the probable earnings of the immigrant during the rest of his lifetime, and deduct therefrom his expenses of living. The remainder represents his net carnings which he will contribute to the well-being of the new country. W. Farr reckoned this to be, in the case of unskilled English emigrants, about 6175. Multiplying the total number of adult immigrants by any one of these figures, we get the annual value of immigration. Such attempts to put a precise money value on immigralion are futile. They neglect the question of quality and of opportunity. The immigrant is worth whar it has cost to bring him up only if he is able-bodied, honest and willing to work. It he is diseased, crippled, dishonest or indolent, he may be a direct loss to the community instead of a gain. So, too, the immigrant is worth his future net carnings to the community only if there is a demand for his labour.

Social and Political Effeets of Immigration.-The influx of millions of persons of difierent nationality, often of a loreign language and generally of the lower classes, would seem to be a danger to the homogeneity of a community. The United States, for instance, has felt some inconvenience from the constant addition of foreigners to its electorate and its population. The forcign-born are mnre numerously represented among the criminal, defective and dependent classes than their numerical surength would justify. They also tend to segregate more or leas, especially in large cities. Neverthcless, the process of assimilation goes on with great rapidity. Intermarriage with the native-born occurn to a considerable extent. The influence of the physical environment leads to the adoption of the same mode of life. The most powerful inlluences, however, seem to be social. These are common school education and the adoption of one language (English); participation in political life, which is granted to all adult males after five years' tesidence; and the gencral infuence of social standards embodied in laws, institutions and "ustoms already establiched. Doubtews innmigration in the last ifity years of the 1gth cenzury had a modifying effect on American life; but on the whole the power of a modern civilized community working through individual freedom io assimilate elements not differing from it too radically has beea displayed to a remarkable degree.

Restriction of Inmigration.-Ncw countries have sought to escape certain evils of indiscriminate immigration. These evils were as follows: (a) The immigrition of criminals, paupers, perpons discased in mind or body, ind perwom unable to aupport themmelyes By the Acts of 1882 and 1893 such persons were refysed admimion to the Uniscd Statcs, and, when rejected, she sieamship companies that brought them were conpelled to take them back. The number debarred from 1896 to 1905 is shown in the following table :-

Causen	1896	1897	1898	1899	1900	1901	1902	1903	1904	1905
$\begin{aligned} & \text { Insane } \\ & \text { papners. } \end{aligned}$	10	6	12	19	32	16	27	23	33	
Paupers Diseased	2010	1277	2261	2599	2974	2798	3944	5812	479\%	7808
Diseased : :		1	258	348	393	309	709	1773	1560	2198
Rosisted . . .	二	3	79	82 8	2	50	-	9	38 35	19
Prostitates . . .	-	- ${ }^{1}$	2	8	4	7	9	51	35	39
Contract Labourers	776	328	417	741	83.3	$\begin{array}{r}3 \\ 3 \\ \hline\end{array}$	275	13 1086	1501	24 1164
All other	1	1	,	1	,	6	7	2	20	445
Total deberred.	2799	1617	3030	3798	4246	3516	4974	8769	7994	11.879

No law of international comity is violated by the refusal to receive these unfortunates. They should be taken care of at bome. The English legislature in 1905 passed an act to prevent the landing of undesirable aliens, and the number refused admission in 1906 was 493 . (b) Immigration sometimes increases the competition in the labour market, and thus lowers wagen. One case is particularly aggravating, viz. when employers import foreign labourers in order to take the place of their men who are on strike. In 1885 the United States passed what is called the Contract Labor Law, forbidding the landing of any person who is under contrect to perform labour in the United States. It is very difficult to discover such cases, but the number rejected is fairly large (see table above). (c) The immigration of men of alien race who refuse to assimilate with the natives is said sometimes to be a danger to the country. This at least is the excuse for the entire exclusion of Chinese labourers from the United States since 1882 (provisions made more severe in 1888 and 1892) (see also the article COOLIE).

Internal Migration.-In modern times there is constant movement of population within national lines, from section to section, and especiaily from rural districts to the cities. No record is kept of this, and we can trace it only through the census statistics of birthplace. In the United States, for instance, it was shown in $\mathbf{5 9 0}$ that more than 21.5 per cent. of the native-born inhabitants were living in a state other than that in which they were born. Still further, it appears that about one-half of the native-born inhabitants had moved out of the county in which they were born. In 1890 there were $1,233,629$ natives of the state of New York living in other states. The movement is principally westwards in direction and along.parallels of latitude. For instance, New York has made large contributions to the popuiation of Ohio, Michigan, Illinois, Wisconsin, Iowa and so on. Virginia has contributed largely to the populadion of West Virginia, Kentucky, Ohio, Indiana, Illinois and Missouri. In Europe there is a similar movement; but it Is difficult to make comparisons, because of the differences in the administrative areas In England in 1891, 71.6% of the population were residing in their native county; in Prussia, 69.7% in the kreis; in France, $\mathbf{8 1 . 7 \%}$ in the department: in Austria, $\mathbf{8 0 . 2 \%}$ in the bexirk; in Switzerland, $82 \cdot 1 \%$ in the canton where they were born (Weber, Growth of Cities, p. 249). The most important phase of internal migration is the movement from the rural districts to the cities. The statistical resulas are shown in the following table extracted from the admirable work of Weber, just quoted:-

Percentage of Population living in Towns of ro,000 and aver at Three Periads.

\begin{tabular}{|c|c|c|c|}
\hline \& About 2800 or 1801. \& About 1850 . or 1851. \& About 1890 or 1891.

\hline England and Wales \& 21.3 \& ${ }_{32.2}^{39.5}$ \& 61.7
50.0

\hline Australia (7 colonies) \& - \& \& 41.4

\hline ${ }^{\text {Belpium }}$ Netherlands ${ }^{\text {a }}$ \& 13.5 \& 20.8 \& $34 \cdot 8$

\hline (etherlands \& 29.5 \& 29.0 \& 31.3
30.0

\hline PUnsted States \& 7.3
3.8 \& 12.0. \& 30.0
27.6

\hline France. \& \& 14.4 \& 25.9

\hline Dentmark \& 10.9 \& 9.6 \& 23.6

\hline $\xrightarrow{\text { Italy }}$ Ireland: \& 7.8 \& 10.1 \& 30.6

88.0

\hline Norway ${ }^{\text {Nata }}$ \& 3-3 \& ${ }_{5} 5$ \& 36.7

\hline Switzerland (1822) \& $4 \cdot 3$ \& $7 \cdot 3$ \& 16.5

\hline Austria - \& 4.4 \& 3.8 \& 15.8

\hline - $\begin{aligned} & \text { Hungary } \\ & \text { Sweden }\end{aligned}$ \& 5 \& $9 \cdot 1$ \& 16.1

\hline $\underset{\substack{\text { Sworden } \\ \text { Portugal }}}{ }$ \& $\begin{array}{r}3.9 \\ 12.9 \\ \hline\end{array}$ \& 4.7
2.9 \& 13.7
12.7

\hline Ruasia \& 12.7
3.7 \& 2.9
5.3 \& 12.7
9.3

\hline
\end{tabular}

Everywhere the city population is increating faster than the rural. In the United States the rate of increase per decade was as follows:-

In England and Walem the rural population increased in the aggregate during the first half of the 1gth century, but at a gradually diminishing rate; in the second half of the century the population declined with varying regularity, unt il the decennium 189i-1900, when there was an increase. But notwithstanding this aggregate increase there are many rural districts which atill show a steadily declining population. The urban population is increasing, as shown in the following table:-

Decennial Rate of Increase or Decrease.

Somewhat the arme phenomenon is seen in France. According to the census of 1891 not less than 55 out of the 87 departmenti had decreased in population; and out of the 32 that had increased, 7 showed a decrease in their rural parts when the large towns were deducted. In Germany the towns of 10,000 and over show a much more repid increase than the rural districts; and the'same fact it gencrally true of the other countries of Europe. This more rapid increase of population in cities is due only in part to migration from the country. Until the 19th century deathe gewerally exceeded births in cities, so that if it had not been for constant immigration the citics would not only not have grown, but would have decreased in population. Cities grow more rapidly now than tormerly, because the excess of deaths over births has been turned into an excess of births over deaths. Thereby the cities are becoming less depandent upon immigration for increase of population than formerly, but the migration still goes on. The causes of migration from country to city are mainly economic. In early stages of culture men are scattered over the country, or at most gathered together in hamlets and villages. Each of these is self-sufficing, having its own artisans and handicraltsmen, and producing what it needs. With the beginning of exchange commercial centres spring up, situated on navigable streams and especiaily at points where land and water journeys are broken. With the growth of manufactures. industrial centres spring up where the division of labour can be fully provided for. In modern times two factors have accelerated this process, viz.: (1) the building of railways, which have developed commerce to a very great degree and favoured the large towns at the expense of the small; and (2) the inveation of machinery, which has greatly increased the posssibility of division of tabour and manufactures on a large scale. The old handicraftsman has been superseded by machine labour and the village artisan by the factory hand. At the same time improvements in agriculture and the opening up of new countries have enabled the modern community to gain its lood and raw material with a less expenditure of labour force, and the surplus agricultural population has gone to the city. The attractive influences upon individuals have been higher wages greater scope for the ambitious, aad the social advantages of city life.
The general laws of internal migration may be summarized (according to Ravenstein) as follows:-

1. The great body of migrants proceed only a short distance.
2. The process of absorption goes on as follows: The inhabitants of the country immediately surrounding a town of rapid prowth flock into it; the gaps thus left in the rural populiation are filied up by migrants from more remote districts, until the attractive force of one of the rapidly-growing cities makes its influence felt. step by step, to the most remote corner of the land. Migrants enumerated in a certain centre of absorption will consequently grow less with the distance, proportionately to the native population. Which furnishes them.
3. The process of dispersion is the Inverve of that of abtorption, and exhibits similar features.
4. Each main current of migration produces a compenating countercurrent.
5. Migrants proceeding long distances generally go by preference to one of the great cities of commerce or induatry.
6. The natives.of towns are less migratory than those of the rural parts of the country.
7. Females are more migratory than males-

Authorities.-The statistics of migration are to be found in the official returns of diferent countries, especially the statistical tables relating to emigration and immigration published by the British Board of Trade, and the Reports (annual) of the CommissionerGeneral of 1 mmigration of the United States. For general discussion see Philippovich, Auswarderung und Auswanderungspolitik (Leipzig, 1892). An exhaustive bibliography will be found in an article by "same author, "Auswanderung," in Handworterbuch der Stactswissenschaften, R. Mayo-Smith, Emigration and Immigration, with bibliography (New York, r8go). For internal migration see A. F. Weber, Growth of Cisies (New York, 1899). See also Ravenstein, "The Laws of Migration," in Journal of Royal Statistical Socity (1885 and 1889). Professor Flinders Petrie, in his Huxley Lecture for Igo6 on Migralions (reprinted by the Anthropological Institute), deals with the mutations and movements of races from an anthropological stardpoint with profound knowledge and originality.
(R. M.-S. ; T. A. I.)

Migration, in Zoology. In zoology considerable importance attaches to the prohlems of migration, by which is meant the wandering of living creatures into another, usually distant, locality in order to breed there; this implies a return, and tho double phenomenon is annual. All other changes of the abode are either sporadic, epidemic, or fluctuating within lesser limits. Further, migration should not be confounded with " spreading," which proceeds steadily, and in epicycles, with a totally different result. It need not be emphasired that hard and fast lines between these phenomena do not exist; they are often a question of degree. For instance, when the common toad, which is a strictly terrestrial creature, wanders every spring to a frequently distant pool in order to spawn there, this is a true migration. The same applies, strictly speaking, to those insects which hibernate in the ground, at the root of the tree on which they feed and breed. The grey plover breeds in the arctic circle and winters in equatorial countries. To complicate matters further, it is not necessary that the migration be undertaken periodically, more than once, by the same individual. For instance, the common eel ascends the rivers as an elver in its youth; years after it returns to the sea, there to breed and to die, whilst other fishes come and go, year after year. Further, some of the larger birds, for instance swans and cranes, are still immature in their second year, and yet they migrate like their older relations. It seems permissible to use this fact as an indication that the breeding as such is not the prime reason of their wanderings. The fundamental impelling agent must have been the want of food, and what we usually understand by migration cannot suddenly have sprung into existence to its full extent, but is more likely the cumulative effect of the doings of countless generations. The faculty of shifting the abode was of course always there, the necessity of moving further on was also present, and those which went in the wrong direction came to grief, while the others flourished and returned with their progeny. They did not at first cover enormous distances, but just enough to find unoccupied ground. The annual repetiton became an established habit, at last at ineradicable instinct. There can be but little doubt that the prime impulse was want of food. The new growing grass on the prairie or on the veldt attracts every year those creatures which live upon pasture. The inter-tropical belt of the world is so crowded with creatures that there is the keenest competition, whilst in the temperate and cold regions is a long winter quiescence unfit for the support of many creatures, whereas in the summer these same regions are covered with new vegetation, with its concomitant abundance of insects and other invertebrates. The tables are decked again, and these opportunities are not wasted.

The process of migration, in its most striking cases, is now very complicated. Many a bird goes actually to the arctic regions for the shortest of summers, but spends most of the year within the tropics. On the other hand there are many
species which do not go so far north, but stop to breed in the intermediate regions. We must not take the extremes when trying to unravel the development of the problem. The periodical migrations of mammals, with their more limited extent and greater leisure, are less perplexing.

It has been argued with some show of reason that the real home of a bird is that country in which it was born, in other words where the species hreeds, but this is not in every case a valid conclusion. It applies to most creatures, but it can well bear exceptions if we leave sentiment aside. When it comes to a question of domicile, the ten weeks' sojourn of the swift, Cypselus, in England are more than weighted down by the nine months or more which these birds spend in southern countries, although we do not know whether they are resident there or roam about. The breeding time is the busiest period of a bird's life; then the numbers of each species are suddenly multiplied, and so is the stress of providing food, and the par. ticular food which is best for the young may not be available in every country. The idea that the arctic circle is the original home of the numerous kinds of birds which breed in ft , whence they are now periodically driven away by stress, has been coupled with the glacial epoch, that supposed solution of so many diffculties. We have only to assume that the old, permanent home of these migrants was in the arctic region, that the progressing glaciation drove them away, of course towards the equator, and that, when times improved again, the birds returned to their old bome. This sounds very plausible, but it involves huge assumptions. The birds, not the individuals, but the species, are supposed to have inherited such a loving reminiscence of their old home, that after thousands of years-with most of the small birds meaning as many generations-they returned at the first opportunity. It implies that their long continued sojourn in forcign lands, where-under this assumptionthousands of generations must have been hred and have spent all their lives, was not sufficient to naturalize them, so to speak, in other words to supplant the instinctive love of the primary ancient home. That the last glacial epoch has driven the limit of many kinds of animals and plants farther south is as certain as that many have recovered the lost ground after the reversion of the glaciation, but it must bave been a very slow and steady process of spreading. It may, and probably does, account for the present annual visitations of arctic lands, as a phenomenon which has been evolved de novo, which would have come to pass even if no birds had existed in pre-glacial times.

How do birds manage to find their way, thousands and thousands of miles across land and water? This question has been extolled as a mystery of mysteries. It has been stated that the old birds show the way to the young, a speculation which does not apply to those many cases in which old and young notoriously travel at different times. It has been assumed that they travel by sight, taking advantage of certain landmarks; another untenable idea, since-experience having to be excluded in a flock of birds. which made the journey for the first time-it implies that the young must have inherited the reminiscence of those landmarksl Others have likened the bird to a kind of compass, because in eastern Siberia \mathbf{E}. von Middendorfi found some migration routes to coincide with the direction of the magnetic pole. The whole question reduces itself to a sense of direction, a faculty which is posseased by nearly all animals; in some it is present to an astonishing extent; but the manifestations of this sense vary only in degrea. The cat which escapes out of the bag finds its way back, directly or after many adventures. The bee, after having loaded itself with pollen, returns by the proverbial line to the hive which may be a mile away, but, move the small entrance hole in the meantime an inch to the right or left, and the bee will knock its bead against the hive and blunder about; move the hive a few yards and bee after bee returning will be puzzled to find its hive again. They, maybe with the help of landmarks, have accustomed themselves to steer a course. Such instances have accustomed themselves to steer a course. Such instances
need not be multlpiled. The principle is the same whether
$2 a$
the journey be one of a few yards or of many miles. Given the sense of direction, it is no more difficult to steer a course due north than it is to lay one south-east by east, provided always the impetus to be on the move. There is no mystery, except that we, the most intellectual of mankind, should so well nigh have lost this sense, and even this fact is simply an instance of the loss of a faculty through long-continued disuse.
Birds.- (The following account is to a great extent based upon A. Newton's article "Birds " in Ency. Brii., 9 th ed.)

In admost all countrics there are some species which arrive in spring, remain to breed, and depart in autumn; others which arrive in autumn, stop for the winter and depart in apring; and others again-and these are strictly the "birds of passage "which show themselves but twice a year, passing through the country without staying long in it, and their transient visits take place about spring and autumn. These three apparently different categories of migrants are all acted upon by the same impulse in spite of the at first bight dissimilar nature of their movements. The species which resort to Britain and to other temperate countries in winter are simply those which have their breeding quarters much nearer the poles, and in returning to them on the approach of spring are but doing exactly as do thooe species which, having their winter abode nearer the equator, come to us with the soning.

The birds-of-passage proper, like our winter visitants, have their breeding quarters nearer the pole, but like our summer visitants, they seek their winter abode nearer the equator, and thus perform a somewhat larger migration. As H. Seebohm puts it (Geograph Distrib. of the family Charadriudae, London):-
"They all represent birds which breed in the north and winter in the south. Every migratory bird wintering in England gocs north to breed, and every migratory bird breeding in Englani goes south to winter. It is a rule without exception in the norther hemisphere that each bird breeds in the extreme north point of its migrations. To make the rule apply to the southera hemisphere as well it must be modified as follows: each bird breeds in the coldest climate which it visits on its migrations. . . It is a remarkable fact that whilst there are many birds breeding in the northern hemisphere and wintering in the southern, it is not known that any land-bird breeds in the southern and habitually winters in the northern! This is probably owing to the difference in the distribution of the land, there being no antarctic breeding grounds.

Birds breeding in the tropics are always resident, except when they breed on mountains, where the climate causes them to descend into the valleye for the winter."

In many countries we find that while there are some species, guch as in England the swallow or the fieldfare, of which every individual disappears at ouc period of the year or another, there are other species, such as the pied-wagtail or the woodcock, of which only the majority of individuals vanish-a few being always present-and these species form the so-called "partial migrants." In England the song-thrushes receive in the autumn a considerable accession in numbers from the birds which arrive from the north, though the migration is by no means so well marked as it is on the continent, where the arrival of the strangers sets all the fowlers at work In most localities in Britain the newcomers depart after a short sojourn, and are accompanied by so many of the homebred birds that in some parts of the island it may be safely declared that not a single song-thrush can be found from the end of November to the end of January, while in others examples can always be seen. Much the same may be said of the redbreast. Undeniably resident as a species, attentive scrutiny will reveal the fact that its numbers are subject to very considerable variation, according to the scason of the year. At no time do our redbreasts collect in bands, but towards the end of summer they may be seen in the south of England successively passing onward, the travellers being mostly-il not wholly-young birds of the year; and so the great majority disappear, departing it may be safely presumed for more southern countries, since a few weeks later the markets of most towns, first in France and then in Italy, are well supplied with this species But the migratory influence affects, though in a less degree, many If not most of the redbreasts that remain with us Every bird of the northern bemisphere is to a greater or less degree migratory in some part or other of its range.
Want of food, and perhape of the special, proper kind during the breeding season, seems to be the most obvious cause of migration, and none can wonder that those animals which posesess the power of removing themselves from a place of scarcity should avail themselves of it, while it is unquestionable that birds possess this laculty in the greatest degree. Even among those species which we commonly speak of as sedentary It is only the adults which maintain their ground throughout the year. It has long been known that birdo-of-prey custonnarily drive away their offspring from their own haunts so soon as the young are able to shilt for themselves. The reason generally, and no doubt truly, given for this behaviour, which at Grat sight appears so unnatural, is the imposeibility of both parents and progeny getting a livelihood in the same vicinity. The practlce, however, is not limited to the binds-of-prey alone. but io much more univerull. We find it to obtain with the rect-
breast, and if we watch our feathered neighbours closely we shall perceive that most of them indulge in it. The period of expulsion, it is true, is in some birds deferred from the end of summer or the autumn, in which it is usually performed, uncil the following spring. when indeed from the maturity of the young it must be regarded as much in the light of a voluntary secession on their part as in that of an act of parental compulsion, but the effect is ultimately the same.
The mode in which the want of sustenance produces migration may best be illustrated by confining ourselves to the unquestionably migrant birds of our own northern hemisphere. As food grows scarce towards the end of summer in the coost nort hern limits of the range of a specics, the individuals affected thereby ocek it elsewtere Thus doing, they press upon the haunt of other individuals: these in like manner upon that of yet others, and so on, until the movement which began in the far north is communicated to the indiv luals occupying the extreme southern range of the species at thit season; though, but for such an intrusion, these last might lu content to stay some time longer in the enjoyment of their existirg quarters.
This seems satisfactorily to explain the southward movement of all migrating birds in the northern hemisphere; but when we consider the rev unn movement which takes place some six months later, doubt inay be entertained whether scarcity of food can be assigned as it sole or sufficient cause, and perhaps it would be safest not to come 10 aay decision on this point. On one side it may be urged that 11 : more equatorial regions which in winter are crowded with emigrants from the north, though well fitted for the resort of so great a population at that season are deficient in certain necessaries for the nursery. Nor does it seem too violent an assumption to suppose that even if such necessaries are not absolutely wanting yet that the regions in. question would not supply sufficient food for both parents and offspring-the latter being at the lowest computation twice as numerous as the former-unless the numbers of both were diminished by the casualtics of travel. But on the other hand we must remember what has above been advanced in regard to the pertinacity with which birds return to their accustomed breeding-places, and the force of this passionate fondress for the old home cannot hut be taken into account, even if we do not allow that in it lies the whole stimulus to undertake the perious voyate.
A. R. Wallace in some remarks on the subject (Nalure, x. 459) ingeniously suggests the manner in which the babit of migration has come to le adopted ${ }^{1}$:-
'It appears to me probable that here, as in 80 many other cases. 's survival of the fittest' will be found to have had a powerful inlluence. Let us suppoee that in any species of migratory bird, breeding can as a rule be only safely accomplishod in a given area; gnd furiher, that during a great part of the rest of the year sufficient food cannot be obtained in that aree. It will follow that those birds which do not leave the breeding area at the proper season will suffer, and utimately become extinct; which will also be the fate of those which do not leave the feeding area at the proper time. Now, if we suppose that the two areas were (for some remote ancestor of the existing species) coincident, but by geological and climatic changes gradually diverged from each other, we can easily understand how the habit of incipient and partial migration at the proper seasons would at last become hereditary, and so fixed as to be what we term an instinct. It will probably be found that every gradation still exists in various parts of the world, from a complete coincidence to a complete separation of the breeding and the subsistence areas: and when the natural history of a sufficient number of species is thoroughly worked out we may find every link between species which never leave a restricted area in which they breed and live the whole year round, to those other cases in which the two areas are absolutely separated.'
A few more particulars respecting migration are all that can here be given, and it is doubtful whether much can be built upon them. It has been ascertained hy repeated observation that in the springmovement of most species of the northern hymisphere the cockbirds are alwuys in the van of the advancing army, and that they appear some days, or perhaps weeks, before the hens. It is not difficult to imagine that, in the course of a journcy prolonged throughout some 50° or 60° of latitude, the stronger individuals
${ }^{1}$ If the relative proportion of land to water in the southern hemisphere were at all such as it is in the nort hern, we should no doubt find the birds of southern concinents beginaing to press upon the tropical and equatorial regions of the globe at the scason when they were thronged with the emigrants from the north, and in such a case it would be only reasonable that the latter should be acted upon by the Corce of the former, according to the explanation given of the southward movement of northern migranis. But, though we know almost nothing of the migration of birde of the other hemisphere, yet, when we regard the comparative deficiency of hand in southern latitudes all round the werld, it is obvious that the feathered population of such as nowadays exists can exert but little influence, and its effects may be practically disregarded.
${ }^{2}$ In principle F.W. Hutten had atready foreshadowed the amme heory (Trame. New Zooh. Info, 1872, p-235).
should outstrip the weaker by a very perceptible distance, and it can hardly be doubted that in most species the males are stronger, as they are bigger than the females. Some obeervers assert that the same thing takes place in the return joumey in autumnSeebohm, for instance, mays that, from Europe, first go the young. then the males, having fnished their moult of autumn, and lastly the females-but on this point others are not so sure, which is not surprising when we consider that the majority of observations kave been made towards what is the northern limit of the range of the Pasteres. to which the remark is especially applicable-in the British islands, France, North Germany and the Russian empirefor it is plain that at the beginning of the journey any inequality in the speed of travelling will not have become so very manifest. There is also another matter to be noticed. It has been suspected that where there is any difference in the size of birds of the same species, particularly in the dimensions of their wings, the individuals that perform the most extensive journeys would be naturally those with the longest and broadest remiges, and in support of this visw it certainly appears that in some of the smaller migrants-such as the wheatear (Suxicolo oemanthe) and willow-wren (Phydloscopus trochuhus) -the examples which reach the extreme north of Europe and there pass the summer possess greater mechanical powers of flight than those of the same species which stop short on the shores of the Mediterranean. It may perhaps be also inferred, though precise evidence is wanting, that these same individuals push further to the southward in winter than do those which are less favoured in this respect. It is pretty nearly certain that such is the case with some species, and it may well be so with individuals H B Tristram has remarked (Ibes, 186s. p. 77) that, in many genera of birds, "those species which have the most extended northerly have also the most exiended southerly range: and that those which resort to the highest latitudes for nidification also pass further than others to the southward in winter." fortifying his opinion by examples adduced from the genera Turdus, Fringulla, Cypselus and Turtur
For many years past a large number of persons in different countries have occupied and amused themselves by carefully registering the dates on which various migratory birds first make their afpearance, and there is now an abundance of records so compiled. Still it does not seem that they have been able to determine what connexion, if any, exists between the arrival of birds and the weather: in most cases no corresponding observations bave been made about the weather in the places whence the travellers are supposed to have come. As a rule it would seem as though birds were not dependent on the weather to any great degree. Occasionally the return of the swallow or the nightingale may be somewhat delayed, but most sea-fowls may be trusted. it is smid, as the almanac itself. Foul weather or fair, heat or cold, the puffins (Fralercula arctica) repair to some of their stations punctually on a given day as if their movements were regulated by clockwork. Whet her they have come from far or from near we know not, but other birds certainly come from a great distance, and yet make their appearance with scarcely less exactness. Nor is the regularity with which certain species disappear much inferior: every ohserver knows how abundant the swift (Cypselus apus) is up to the time of its leaving its summer-home-in most parts of England, the first days of August -and how rarely it is seen after that time is past.
It must be allowed, however, that, with few exceations, the mass of statistics above spoken of has never been worked up and digested 00 as to allow proper inferences to be made from it, and therefore it would be premature to say that little would come of it, but the result of those exceptions is not very encouraging. E. von Middendorff carefully collated the records of the arrival of migratory birds throughout the Russian Empire, but the insight into the queation afforded by his published labours is not very great. His chief object has been to trace what he has termed the isepipteses (toos = aequalis, drismons $=$ actolatus) or the lines of simultaneous arrival, and in the case of seven species these are laid down on the maps which accompany his treatise. The lincs are found by taking the average date of arrival of each species at each place in the Russian dominions where observitions have been regularly made, and connecting those places where the dates are the tame for each species by lines on the map. The curves thus drawn indicate the inequality of progress made by the species in different longitudes, and assuming that the advance is directly across the isepiptesial lines, or rather the belts defined hy each pair of them, the whole course of the migration is thus most accurately made known. In the case of his seven sample species the maps show their progressive advance at intervals of a few days. and the issue of the whole investigation, according to him, proves that in the middle of Siberia the general direction of the usual migrants is almost due north, in the east of Siberia from south-cast to northweat, and in European Russia from south-west to north-east. Thus nearly all the migrants of the Russian empire tend to converge upon the most northern part of the continent. the Taimyr peninsula, but it is almost need less to say that few of them reach anything like so far, since the country in those high latitudea is utterly unfit to support the majority. With the exception of some details this treatise fails to show more. The routes followed by migratory. birds have been tha subject of a very exhaustive
memoir by J. A. Palmen, but it would be beyoud our limits to do more than mention his results concisely. He enters very fully into this part of the inquiry and lays down with much apparent probability the chiel roads taken by the mont migratory birds of the palacarctic region in their return autumnal joumey, further asserting that in the spaces between these lines of flight such hirds do not usually occur. Broadly speaking, the birds of Europe, Russia and Western Siberia go for the winter to Africa, those of middle Siberia to Mongola, and those of Siberia east of the Lena go towards Japan.
But lay down the paths of migratory birds, observe their coming: and goings, or strive to account for the impulse which urges them lorward as we will, there sill remains for consideration the most marvellous thing of all-how do the birds find their way 00 unerringly from such immense distances? This seems to be by far' the most inexplicable part of the matter. Year after year the migratory wagtail will build her nest in the accustomed spot, and year after year the migratory cuckoo will deposit her eggs in that nest. and yet in each interval of time the former may have passed some months on the shores of the Mediterranean, and the latter, abeent for a still longer period, may have wandered into the heart of Africa. That particular form of bluethroat which yearly repaira to breed upon the mosses of the subalpine and northern parts of Scandinavia (Cyanecula swecica) is hardly ever seen in Enrope south of the Baltic. Throughout. Germany it may be said to be quite unknown, being replaced by a conspicuously different form (C. Leucocyama), and as it is a bird in which the collectors of that country, a numerous and well-instructed body, have long taken great interest, we are in a position to declare that it is not known to stop in its transit from its winter haunts, which we know to be Egypt and the valley of the Upper Nile, to its breeding-quarters. Other instances, though none so crucial as this, could be cited from among European birds were there room here for them. In New Zealand there are two cuckoos which are annual visitors: one, a species of Chrysococcyx, is supposed to come from Australia, the other, Eudynamis tailensis is widcly spread throughout Polynesia, yet both these birds yearly make two voyages over the enormons waste of waters that surrounds the country to which they resort to breed. But space would utterly fail us were we to attempt to recount ail the examples of these wonderful lights Yet it seems impossible that the sense of sight ohould be the faculty wherehy they are so guiled to their destination, any more than in the case of those which travel in the dark. J. A. Palmen asserted (op. cil. P. 195) that migrants are led by the older and stranger individuals aniong them, and, observing that most of those which stray from their right course are yearlings that have never before taken the journey, he ascribed the due performance of the fight to "experience." There are many birds which cannot be said to migrate in company. While swallows, to take a sufficiently evident example, conspicuously congregate in vast flocks and so leave our shores in large companies, the majority of our sumper-visitors slip away almost unobserved, each apparently without concert with others. Experience here can only signify the result of knowledge acquired on former occasions and obtained by sight. Now it was stated by C. J: Temminek (Manued d'ornuhologic, III. Introd., 1820) many years ago, and 50 far as would appear the statement has not been invalidated, that among migrants the young and the old always joumey apart and most generally by different routes. The former can have no "experience," and yet the greater number of them safely arrive at the haven where they would be. The sense of sight, essential to z knowledge of landmarks, is utterly insufficient to account for the success that attends birds which travel by night, or in a single flight span oceans or continents. Yet without it the idea of "experience " cannot be substantiated. We may admit that inherited but unconscious expericnce, which is really all that can be meant by instinct, is a factor im the whole matter-certainly, as Wallace. geems to have proved. in originating the migratory impulee, but yet every aspect ol the question is fraught with difficulty.
Less than nothing is known about the speed at which birde fly during their long stretches of migration. Gaecke, in his otherwise very intercsting book, has startled ornithologists by various state. ments, but his calculations were based upon such crude observations that the results are ridiculous. For instance, be proved to his satisfaction that the grey or hooded crow, Corous cornix, which notoriously is not a last bird, Alies from Heligoland to the coast of Lincolnshire in England at the rate of one hundred and twenty miles an hour. To the little bluethroat he assigned a velocity of two hundred and forty miles an hour, a statement as silly as that made by some fanciful observer in Portugal who convinced himseff that "Turtle-doves leaving Kent or Surrey at dawn might easily be the very birds that a few hours later were skimming over the Portuguese pine forests on their way to Central Africa.". Fifty miles an hour would be a high average speed for most migratory birds, and there are no reliable data to telt how long such birds cas continue their fight without interruption. All we weem to know is that not a few kinds manage, in various parts of the world, to cross enormous distances without the chance of a break. It was Gaetke's notion that migration was for the most port carried oa at auch a beight io che air ast to be beyond our ken, and that what
comes to oar perception conaists chiefly of the abortive or ansuccestful attempts, when birds are checked in their course, and being unable to proceed present themselves to our eight and hearing. Now for obvious reasons birds could not well fy at very great heights in very thin air, as experiments with pigeona released from halloons have shown, and the condor soaring far above the topa of the Andes is a myth. The few trustworthy instances in which birds have been observed through a telescope paseing acroes the face of the moon have naturally yielded but vague calculationa as to distance and height. W. E. D. Scott (Bull. Nellall Ors. Club, vi. 97-I00), computed heights varying from 1 to 2 m . F. M. Chapman's observations (Auk, 1888, pp. 37-39) resulted in a height of from 1500 to $15,000 \mathrm{ft}$.; average, say, I m. If the eky is clouded and the birds fy above the clouds the migration proceeds beyond our ken, and if for some reason or other they are below the clouds the phenomenon becomes to us very noticeable. It is well known "that on clear and bright nights birds are rerely heard passing overhead, while on nights that are overcast, misty and dark, especially if slight rain be falling, flocks may often be heard almost continuously." It is in such weather, continues Newton, that birds while migrating are most vociferous, doubtless with the result that thereby the company of fellow-travellers is kept together.
There yet remain a few words to be said on what may be termed Exceptional Migration, that is when from some cause or other the ordinary practice is broken through. The erratic movements of the various species of crosebill (Loxia) and some allied forms afford pertaps the best-known examples. In England no one can eay in what part of the country or at what season of the year he may not fall in with a company of the common crossbill (L. cxrvirostra), and the like may be soid of many other lands. The food of these birds consista mainly of the seeds of conifers, and as its supply in any one locality is intermittent or precarious, we may not unreasonably guess that they shift from place to place in its quest, and may thus gued an easy way of accounting for their uncertain appearance. The great band of autcrackers (Nucifroga caryocalocles) which in the autumn of 1844 pervaded western and central Europe (Bull. Acad. Bruxelles, x1. 298), may also have been actuated by the same motive, but we can hardly explain the roaming of all other birds so plausibly. The iaroads of the waxwing (Ampelis garrulus) have been the subject of interest for more than 300 years, and by persons prone to superstitious auguries were regarded as the forepersonse of dire calamity. Sometimes years have passed without the bird being seen in central, western or southern Europe, and then perhaps for two or three geasons in succession vast flocks have suddenly appeared. Later observation has shown that this species is as inconstant in the choice of its summer as of its winter-quarters. One of the most extraordinary events known to ornithologists is the irruption into Europe in 1863 of Pallas's sand-grouse (Syrrhaples paradoxus). Of this birid, hitherto known only as an inhabitant of the Tatar ateppes, a single specimen was obtained at Sarepta on the Volga in the winter of 1848. In May 1859 a pair is said to have been killed in the government of Vilna, on the western borders of the Russian empire, and a few weeks later five examples were procured, and a few others seen, in western Europe-one in Jutland, one in Holland, two in England and one in Wales. In 1860 another was obtained at Sarepta; but in May and June 1863 a horde comreaching Sweden, Norway, the Faeroes and Ireland in the northwest, and in the eouth extending to Sicily end almost to the frontiers of Spain. On the sandhills of Jutland and Holland some of these birda bred, but they were all killed off. A much greater visitation took place in 1888 , which met with the mame fate. The number of birds was quite incalculable, the wave extending from Norway to southern Spain.

In comparison with the periodic annual migrations of so very many bircs, thoee of other creatures are scarce and insignificant, excepting fishes.
Mammals.-Few trustworthy observations have been recorded. The most regular and least limited migrations seem to be those of the eared seala. The walrus also goes each year to the north in the summer, further south in the winter. Delphinaplerus loucas, one of the Cetacea, ascends the Amoor regularly on the breaking of the ice, a distance of 400 m . up the stream, Some bats are mupposed to migrate. The American bison used to roam north and south, according to the season, in search of pasture; and aimilar periodic wanderinga have of ten been recorded of various kinds of game on the South African veldt. They are all obviously a mere matter of commissariat and have little to do with the breeding, except in the case of seals,
In one way the lemming's "migrations" are instructive. They are quite sporadic. When, owing to combination of some favourable circumstances they suddenly increase, enormous numbers forsake the highlands for the lowlands of Norway; not in a methodical way, but quite lawlessly; that means to say they radiate from their centres of disperaal. At ary given spot, however, they seem to keep to the mame direction, and no obstacles seem to divert their course. Those which arrive at the much indented coast are known even to rush into the sea. where of course they get drowned. Thero is no sense in this The overcrowded condition of their
home impels them to leave, and this impulse continues blindly. They do not attempt to settle anywhere between their home and the sea. A year or two after the irruption not a lemming is there to be found, and where during their stampede they come across suitable districtes, they find these already occupied by resident lemmings
Such and similar irruptions have no doubt taken place often during the world's history; and yet such sporadic stampedes into a foreign country hardly ever lead to its regular settlement. especially when such a country possesses already a kindred fauna of its own.
Fishes.-Many fishes make periodic migrations for breeding purposes, which by their numbera and the distances travelled much resemble those of birds, hut very little is known about these fishes. Take the incredible masses of herrings and their kindred; the collecting of the cod and its allies on their breeding-ground. According to D. S. Jordan (A Guide to the Study of Fishes, New York, 1905) some kinds are known mainly in the waters they make their breeding-homes, as in Cuba, southern California, Hawaii or Japan, the individuals being scattered at other times through the wide seas. The tunny, which has a world-wide distribution, arrives of the south coast of Portugal in the month of May: enormous numbers pass through the Straits of Gibraltar and support great fishing industries in the Mediterranean. In the month of August they return to the ocean (Apesca do Atum no Algarte ems 1808, por D. Carlos de Braganza, Lisboa, 1809 ; with many maps).
Many fresh-water fishes, as trout and suckers (quoting Jordan) forsake the large strcams in the spring, ascending the small brooks where their young can be reared in greater salety. Still others, known as anodromous fishes, feed and mature in the sea, but ascend the rivers as the impulse of reproduction grows strong. Among such fishes are the salmon, shad, alewife, sturgeon and striped bass in American waters; Clupea alosa, the Allis shad, and C. finta, the Twait shad, Alepoccphalus rostratus, the "maifisch" of the Rhine, in Europe. "The most remarkable case of the anadromous instinct is found in the ling-salmon or quinnat (Onchorhynchus ischowyischa), of the Pacific coast. This great fish spawns in November, at the age of four years and an average wejght of twentytwo pounds. In the Columbia river it begins running with the spring freshets in March and April. It spends the whole summer, without feeding, In the agcent of the river. By autuma the individuals have reached the mountain streams of Idaho. greatly changed In appearance, discoloured, worn and distorted. On reaching the spawning-beds, which may be 1000 m . from the sea in the Columbia, over 2000 m . in the Yukon, the female deposits her eggs in the gravel of some shallow brook. The male covers them and scrapes the gravel over them. Then both male and female drift, tail foremost, helplessly down the stream; none so far as certainly is known, ever survive the reproduction act. The same habits are found in the five other species of aslmon in the Pacific. The salmon of the Atlantic has a similar habit, but the distance travelled is everywhere much less, and most of the hook-jawed males drop down to the sea and recover, to repeat the act of reproduction.
Few fishes are kaladromous, i.e. their usual habitat is in rivers and lakes, but they descend into the sea for breeding purposes. The common eel is the classical example.
Insects.-D. Sharp makes the following remarks (Cambridfe Nah Hish vi.): "Ocionata are among the few kinds of insects that are kaown to form swarms and migrate. Swarms of this kind have been frequently observed in Europe and in North America; they ubually consist of a species of the genus Libellula, but species of various other genera also swarm, and sometimes a swarm may consist of more than one species.
"Locust swarms do not visit the districts that are subject to their invasions every year, but as a rule only after intervals of a considerable number of years. The irregularity seems to depend upon three facts, viz that the increase of locusts is kept in check by, parasitic insects; that the eggs may remain more than one year in the ground and yet hatch out when a favourable season occurs, and that the migratory instinct is only effective when great numbers of superfluous individuals are produced. : It is well established that locuste of the migratory species exist in countries wlthout giving rise to swarms or causing any serious infuries. . . When migration of locusts does occur it is attended by remarkable manifestations of instinct. Although eeveral generations may elapse without a migration, it is believed that the locusts when they migrate do so in the direction taken by predecessors. They are said to talre trial flights to ascertain the direction of a favourable wind, and that they alight and wait for a change. The most obecure point is their disappearanco from a apot they have invaded. A swarm will alight on a locality, deposit there a number of eggs, and then move on. But after n lappe of a meason or two there will be few or none of the species preserit in the spot invaded. In other cases they again migrate after growth to the land of their ancestors It has been ascertained by the United States Entomological Commission that such return swarma do occur."

See J. A. Palmen, Om. Foplarmes Aytmingsodgar (Helsingors, (1874). The same in 1896). In this and the work of von Middendorff, already
cited, reference is made to almont every fraportant publication on the subject of migration, which renders a notice of its very extensive literature needless here, and a pretty full bibliographical list is given in Giebel's Thescurus ornithologice (i. 146-155). Yet mention may be made of Schlegel's Ooer hat trekken der Vogeds (Harlem, 1828); Hodgson's "On the Migration of the Nolatores and Grallatores as observed at Kathmandu" in Assafic Researches (xviii. 122-128), and Marcel de Serres's Des Causes des migrations des animonu af parliculidrement des oiseour at des poissons (Aurlem, 1842). This last, though one of the largest publications on the subjoct, is one of the least zatisfactory. S. F. Baird's excellent treatise "On the Distribution and Migrations of North American Birds," Am. Jourm. Sc. and A ils (2nd ser. 1866). Pp 78-90, 187-199. 337-347: reprinted Ibis 1867. pp. 257-293. N. A. Severzoff, "Etudes sur le passage des oiseaux dans l'Asie centrale," Bull. Soc. Naf. (Moscow, 1880)، pp. 234-287; Menzbier, "Die Zugstrassen der Yógel im europaischen Russland," op. cit. (1886), pp. 291-369: Palmén, Referal uber den Sland der Keminiss des Vogelzires, Intern. Ornith. Congr., Budapest. 189r; W. W. Cooke and C H. Merriam. Report on Berd Migration in the Mississippi Valley, U.S. .:p. Agric.-Economic Ornithol,, publ. 2 (Washingtonia 1888) ; Gaeth Oif Vogetracte Hebgoland (Braunschwelg, i891). In English: II ingoLand as an Ornithologual Observatory (Edimburgh, 1895): A. Nocusm, article " Migration, Duch. Berds (1893).
(H. F. C., y

MIGUEL, MARIA EVARIST (1802-1866), usually known as Dox Micuel, whose name is chiefly associated with his pretensioas to the throne of Portugal, was the third son of King John VI. of Portugal, and of Carlota Joaquina, one of the Spanish Bourbons; he was born at Lisbon on the 26th of October 1802. In 1807 he accompanied his parents in their flight to Brazil, where he grew up an uneducated and fanatical debauchee; in 1821, on his return to Europe, it is said that he had not yet learned to read. In 1822 his father swore fidelity to the new Portuguese constitution which had been proclaimed in his absence; and this led Carlota Joaquina, who was an absolutist of the extremest Bourbon type, and hated her hushand, to seek his dethronement in favour of Miguel her favourite son. The insurrections which ensued (see Portugal) resulted in her imprisonment and the exile of Miguel (1824), who spent a short time in Paris and afterwards lived in Vienna, where he came under the teaching of Metternich. On the sudden death of John VI. in May 1826, Pedro of Brazil, his eldest son, renounced the crown in favour of his daughter Maria da Cloria, on the understanding that she should become the wif of Miguel. The last named accordingly swore allegiance to Pedro, to Maria, and to the constitution which Pedro had introduced, and on this footing was appointed regent in July 1817. He arrived in Lisbon in February 1818, and, regardless of his promises, dissolved the new Cortes in March; having called together the old Cortes, with the support of the reactionary party of which his mother was the ruling spirit, he got himself proclaimed sole legitimate king of Portugal in July. His private life was characterized by the wildest excesses, and he used his power to oppose all forms of liberalism.

The public opinion of Europe became more and more actively hostile to his reign, and after the occupation of Oporto by Dom Pedro in 1832, the destruction of Miguel's fleet hy Captain (afterwards Sir Charles) Napier of Cape St Vincent in 1833. and the victory of Saldanha at Santarem in 1834, Queen Christina of Spain recognized the legitimate sovercignty of Maria, and in this was followed by France and England. Dom Miguel capitulated at Evora on the 2gth of May 1834, renouncing all pretensions to the Portuguese throne. He lived for some time at Rome, where he enjoyed papal recognition, but afterwards setired to Bronnbach, in Baden, where he died on the 14th of November 1866.

MIHRAB, a term in Mahommedan architecture given to the niche which in a mosque indicates the direction of Mecca, towards which the Moslems turn when praying-

IIKADO (Japanese for "exalted gate"), the poetical title associated hy foreign countries with the sovereign of Japan; the Japanese title, corresponding to "emperor," is' tenno, the term holei being used of his function in relation to external affairs. By the constitution of 1889, the emperor of Japan translerred a large part of his former powers as absolute monarch to the representatives of the people, but as head of the empire
he appoints the ministers, declares war, makes peace and concludes treaties, acting generally as a constitutional sovereign but with all the personal authority attaching to his august position. The history of the mikados goes back to very early times, but from 1600 to 1868 the real power was in the hands of the shoguns, who nevertheless were in ceremonial theory always successively invested with their authority by the mikado. The revolution of 1867 restored the real power into the mikado's bands. (See Japan: Hislory; and Mutso-Hrro.)

MIKIRS, a hill tribe of India, occupying two or three detached tracts in Nowgong and Sibsagar districts of Eastern Bengal and Assam, known as the Mikir hills. In 1901 their total number was returned as 87,056 . Mikir is the name given to them by the Assamese; they call themselves Arleeng, which means "man " in general. They have long settled down to agriculture, and are distinguished from the tribes around them hy the absence of savagery. Their language, which has been studied by missionaries, seems to connect them with the Kuki-Chin stock on the Burmese frontier.

See Sir C. Lyall, The Mikirs (1908).
MIKLOSICH, FRANZ VON (1813 -1891), Austrian philologist, was born at Luttenberg, Styria, on the 2gth of November 18 r 3. He graduated at the university at Gratz as a doctor of philosophy, and was for a time professor of philosophy there. In 1838 he went to Vienna, where he took the degree of doctor of law. He devoted himself, however, to the study of Slavonic languages, ahandoned the law, and obtained a post in the imperial lihrary, where he remained from 1844 to 1862 . In the former year he published a noteworthy review of Bopp's Comparaine Grammar, and this began a long series of works of immense erudition which completely revolutionized the study of Slavonic languages. In 1849 Miklosich was appointed to the newly created chair of Slavonic philology at the university of Vienna, and he occupied it until 1886. He became a member of the Academy of Vienna, which appuinted him secretary of its historical and philosophical section, a member of the council of public instruction and of the upper house, and correspondent of the French Academy of Inscription. His numerous writings deal not. only with the Slav languages, but with Rumanian, Albanian, Greek, and the language of the gypsies. . Miklosich died on the 7th of March 1891.

MILAN (Ital Milano, Ger. Mailand, anc. Mediolanmm, q.o.), a city of Lombardy, Italy, capital of the province of Milan, 93 m. by rail E.N.E. of Turin. Pop. (1881), 321,839; (1906), 560,613 . It is the seat of an archbishop, the headquarters of the II. army corps, the chief financial centre of Italy and the wealthiest manufacturing and commercial town in the country. It stands on the little river Olona, near the middle of the Lombard plain, $4 \infty \mathrm{ft}$. above sea-level.

The plain around Milan is extremely fertile, owing at once to the richness of the alluvial soil deposited by the Po, Ticino, Olona and Adda, and to the excellent system of irrigation. Scen from the top of the cathedral, the plain presents the appearance of a vast garden divided into square plots hy rows of mulberry or poplar trees. To the east this plain stretches in an unhroken level, as far as the eye can follow it, towards Venice and the Adriatic; on the southern side the line of the Apennines from Bologna to Genoa closes the view; to the west rise the Maritime, Cottian and Graian Alps, with Monte Viso as their central point; while northward are the Pennine, Hielvetic and Rhaetian Alps, of which Monte Rosa, the Saasgrat and Monte Leone are the most conspicuous features. In the plain itself lie many small villages; and here and there a larger town like Monza or Saronno, or a great building like the Certosa of Pavia, makes a white point upon the greenery. The climate is changeable and trying; in summer it is intensely hot, in winter very cold. Snow is often seen, and the thermometer is frequently below freezing-point.

In shape Milan is a fairly regular polygon, and its focus is the splendid Piazza del Duomo, from which a number of broad modern streets radiate in all directions. These streets are connected by an inner circle of boulevards, constructed just outside the canal, which marks the site of the town moat. The
arches of Porta Nuove are almost the last trace of the inner circuit, constructed after the deatruction of the city by Frederick Barbarossa, to which also belonged the Porta dei Fabbri, demolished in 1900. Curious reliefs from the Porta Romana are to be seen in the museum. Within this circle the majority of the streets are nartow and crooked, while those between it and the bastions, though broader on the whole, have but little regularity. An outer circle of boulevards, planted with trees and commanding the view of the suburbs, lies just beyond the present walls of the city, erected by the Spaniards in the 161 h century, the entire length of these boulevards is traversed by an electric tramway 7 m . long.

Occupying one end of the Piazza del Duomo is the famous cathedral. It is built of brick eased in marble from the quarrics which Gian Galeaszo Visconti gave in perpetuity to the cathedral chapter. It was begun in $\mathbf{1 3 8 6}$. The name of the original architeet is unknown, but it is certain that many German mastermasons were called to Milan to assist the Italian builders. It was then the largest church in existence, and now, after St Peter's at Rome and the cathedral of Seville, the Duomo of Milan is the largest church in Europe; it covers an area of $\mathbf{1 4 , 0 0 0}$ sq. yds. and can hold 40,000 people. The interior is 486 ft . long, 189 ft . wide; the nave is 157 ft . high, and the distance from the pavement to the top of the tower is 356 ft . The style is Gothic, very elaborately decorated, but it shows many peculiarities, for the work was continued through several centurics and after many designs by many masters, notably by Amadeo, who carried out the octagonal cupola (the pinnacle of which dates from 1774), and by Tibaldi, who laid down the pavement and designed a baroque facade. This last feature was begun after Tibaldi's design in 1615 , but was not finished till 1805 , when Napoleon caused the work to be resumed. Witb its Renaissance windows and portals this facade, though good in itself, was utterly out of keeping with the general style of the church, and in 1900 the removal of the inharmonious teatures was begun, to be replaced in a style strictly in accordance with the Gothic style of the rest of the building from the designs of Giuseppe Brentano. In shape the church is cruciform, with double aisles to the nave and aisles to the transepts. The roof is supported by fifty-two pillars with canopied niches for statues instead of eapitals; the great windows of the choir, reputed to be the largest in the world, are filled with stained glass of 1844. To the rigbt of the entrance is the tomb of Archbishop Heribert, the champion of Milanese liberty, while beside him rests Archbishop Otio Visconti, the founder of that family as a reigning house. The large bronze candelabrum in the left transept is said to be 13th century work. In a crypt under the choir lies the body of the cardinal saint Carlo Borromeo, who consecrated the cathedral in 1577 . It is contained in a rock-crystal shrine, encased in silver, and is vested in cull pontifical robes blazing with jewels. The roof of the cathedral is built of blocks of marble, and the various levels are reached by staircases carried up the buttresses; it is ornamented with a profusion of turrets, pinnacles and statues, of which last there are said to be no fewer than 4440, of very various styles and periods. In front of the catbedral rises a colossal bronze equestrian statue of Victor Emmanuel II.

There are two noteworthy palaces in the Piazza del Duomo. The first is the Palazzo Reale deting from 1772, but occupying the site of the carliest mansion of the Viscontis and the Sforza; its great hall is a handeome chamber with a gallery supported by caryatides. Built into the palace is the ancient church of San Gottardo, a Romanesque building which was built by Azzone Viscontl in r328-i339, and was the scene of the murder of Giovanni Maria Visconti in tiri. Its campanile is a beautiful cxample of early Lombard terra-cotta work. The second palace is that of the archhishops, the fine facade of which is the work of Eabio Magnone. It has an older north colonnade, by some attributed to Bramante, but, like many other buildings. without sufficlent evidence, and a fine court with double colonnades by Tibaldi, 10 whom the back façade is due. The Palazzo della Ragione, erected in the Pingza dei Mercanti, just west of
the Piazza del Duomo, the central point of the medieval city, in 1223^{-1238} by the podestà, Oldrado da Tresseno, whose equestrian portrait in high relief adorns it, still exists in fine preservation. It is a brick edifice with a portico on the ground floor and a large hall on the upper. Close by to the south is the beautiful Loggia degli Osii, erected in 1316, with wo loggie or open porticos, one ahove the other, in black and white marble.
Among the most interesting buildings in Milan is the ancient church of S. Ambrogio. Here St Ambrose baplized St Augustine. here he closed the doors againat the emperor Theodostus alter his cruel masagere at Thessalonica, here the Lombard kings and the early German emperors caused themselves to be crowned with the iron crown of Lombardy, and the piliar at which they took their coronation oaths is preserved under the lime-trees in the prazza. The church was buile by St Ambrose carly in the th-century (on the site of a temple of Bacchus it is sand). but as it stands it is a Romaneaque basilica of the $\mathbf{3 t h}$ century, recently well restored (like many other churches in Milan), with a brick exterior, like so many churches of Milan and Lombardy, curious galleries over the facade, and perhaps the most perfecily preserved atrum in existence. The wooden door belongs to the original tih century church: it has carvings with scencs from the bife of David. In a great silver reliquary (modern) in the crypt lie the bones of St Ambrose, above which rises the high altar. which retains its original decorations, the only intact example of its period (835). Thesc consist of reicfs in gold and silver enriched with enamel and gems, and are the work of one Vuolfvinus, a German. The baldacchino. with sculptures of the 1 sth or early i3th cembury, is borne by four ancient columns of porphyry, with gth-century capitals. In the tribune are fine mosancs of the gth century, which, Burckhardt remarks, completely break with Byzantine cradition. In the side chapel of S . Satiro are cven carlier mosaics (sth century); there are also fine frescoes by Borgognone and Bernardino Laninl. The lofty brick campanile (789-824) is among the earliest in Italy, and is decorated with coloured majolica disks. The court of the neighbouring canonica is by Bramante, and so also may be the design of the cloisters of the monastery of S. Ambrogio, now the military hospilal. S. Lorenzo. in the south portion of the town, dates from before A.D. 538, thus being practically contemporary with S. Vitale at Ravenna fahough Burckhardt considers it to belong to about A.D. 300 and to be a part of the thermae or palace of Mlaximian), but was burnt down and restored in 1071 (in the restoration Corinthian capitals were used as bases). Thirt y-three years later part of it collapsed. and a second fire followed in 1124 . It was restored, but collapsed again in 1573, and a great part of it had to be reconstructed, including the dome (1574-1591). (The chapel of S. Aquilino, possibly a part of the original structure. contains mosaics of the 5th or 6ih century.) In plan the church is an octagon, supported at the corners by four square towers in brickwork, which belong to the original structure. The interior with its two orders is a very fine one, and its influence on Renaissance architects has been very considerable. S. Eustorgio. one of the largest Gothic churches in Milan, with some Romanesque survivals, dates, as it stands, with its campanile, from the end of the 13 th century, and has a modern façade in the old style It has some interesting medicval works of sculpture, and a fine chapel (Cappella Portinari), with a trod dome and a beautiful fricze of angels. built by Michelozzo in 1 +íi2-1468, and containing the splendid cculptured tomb (a marble sarcophagus with reliefs, supporied by statues) of Peter Martyr (q.v.). the masterpiece of Giovanni di Balduocio of Pisa (1339); the witls of the chapel are decorated with important frescoes by Vincenzo Foppa of Brescia. S. Simpliciano, too though originally Romanesque, is now in the main Gothic, and has been much alterisd.
S. Vincenzo in Prato (833), now reatored to its basilican form, with nave and two aisles divided by columns and three apses, and with small, hat arcading on the exierior, which is in brickwork; \mathbf{S}. Satiro, founded in 879; S. Babila, also restored to its original form, ac., are interesting for their Romanceque architecture. The small domed structure on the left of S. Satiro is earlice than the cburch. while the campanile is part of the original structure, though preceded in date by that of S. Ambrogio, which is one of the earticat genuine campanili in hialy ($789-824$): The reconstruction of the church of S. Satimo was Bramante's carlices work in Alilan (after 1476). The choir is painted in perspective (there was no room to build one), the earlicst example of this device, which was so (requently used in baroque architecture. The octagonal sacristy (before 1488), with niches below and a gallery above, with stucco decorations by Bramante himself (the fricze with putti and medaltions is ascribed 10 Caradosso), is a masterly work, and one of his best. The Cistercian abbey-church of Chiaravalle, 51 m . south of Milan, is a fine brick building in the plan of a Latin cross, with nave and cwo aisles with round pillars, with a lofty domed tower, in the so-called Romanesque Transition style. having comparatively slender round pillars and cross vaulting, while the exterior is sill quite Romanesque. It was founded in 1135 by St Bernard and conserrated in 1221. It is interesting as the model for the plan of many other cbunches in Lombardy, e.g. S. Maria del Carmine and
S. Francesco in Pavia. S. Marco, modernixed inside, still retains a beautiful façade of 1254 and a tower-in brick as elsewhereand contains another tomb by Balduccio. S. Maria Incoronata is unique as a double Cothic church. in the horizontal sense (145t1487).

Of the secular buildings of the beginning of the 15 th century, the most notable is the Palazzo Borromeo, which still preserves its Gothic courtyard. It has a good collection of Lombard pictures. At no great distance from S. Ambrogio, in the Corso Nlagenta, is the church of Santa Maria delle Grazie, built by the Dominicans sbout 1460 , to which the Gothic façade and nave belong. The choir, crossing, and beautiJul sixteen-sided dome, with the elegant external decorations in terra-cotta and marble, are by Bramante (c. 1492). Adjoining the church is the convent, long used as barracks. Leading from the fine cloisters. also the work of Bramante, is the former refectory, on the walls of which Leonardo da Vinci painted his celebrated "Last Supper," a work which is unfortunately in a bad state of preservation.

Farther along the Corso, but ncarer the Piazza del Duomo, is San Maurislo, the interior of which is covered by exceedingly effective frescoes by Luini and his contemporaries. The interior was erected by Giovanni Dolcebuono, a pupil of Brnmante, to whom is also due S. Maria presso S. Celso (the interior and the baroque facade are by Alessi). Thence the Via Bollo leads to the Piazza della Rose, in which is situated the renowned Biblioteca Ambrosiana, erected in 1603-1609 by Fabio Manzone, to whom the Palazzo del Senato is also due, rich in MSS. In the same building there is also a picture gallery, in which is Raphacl's cartoon for his fresco the "School of Athens" in the Vatican. Situated just within the Naviglio, the canal encircling the inner town (adjacent to San Nazsro. which contains Bernardino Lanini's [ft. I546] masterpiece, the "Martyrdom of St Catherine "), is the Ospedale Maggiore. This institution, which can accommodate 2400 patjents, was founded in the reisn of Francesco Sforza. The princtpal court (there are nine in all) is surrounded by fine arcades of the 17 th century by Ricchini. The entire edifice is covercd externally with terra-cotta, and its facade. designed by the Florentine Antonio Averulino (Filarete) and begun in 1457, is superior to any other of the kind in Milan.

The city is rich in works of art, for Milan, with the introduction of the early Renaissance atyle hy Filarete and Micheiozzo after 1450, became the home of a Lombard school of sculpture, among the chief masters of which may be mentioned Ciovanni Antonio Amadeo, or Omodeo, ${ }^{1}$ of Pavia (1447-1522), Cristoforo Solari, and, the last of them, Agostino Busti, known as Bambaia (c. 1480-1548), whose work may be seen in the cathedrals of Como and Milan and in the Certosa di Pavia. Subsequently, towards the close of the 15 th century, the refined court of Lodovico Sforza attracted such celebrated men as Bramante, the architect, Gaufino Franchino. the founder of one of the earliest musical academies, and Leonardo da Vinci, from whose school came Luini. Boltraftio, Gaudenzio Ferrari. Marco d'Oggiono, \&c. Later, Pellegrino Tibaldi and Galeazzo Alessi of Genoa (the former a man of very wide activity) were the chief architects, and Leone Leoni of Arezzo the chief sculptor. In still more recent times Beccaria (1738-1794) as a jurist, Monti (1754-1828) as a poet and Manzoni ($1785-1873$) as a novelist, haverwon for the Milanese a high reputation.

The picture gallery of the Brera, one of the finest in Italy, oceupies an imposing palace with a good courtyard by Ricehin. It was built as a Jesuit college in $165!$, but since 1776 has been the seat of the Accademia di Belle Arti, and contains besides the picture gallery a library of some 300,000 volumes. a collection of coins numbering about 60,000 . and an excellent observatory founded in 1766. The Brera Gallery, the nucleus of which was formed in 1806. poseesees Raphael's famous "Sporalizio." and many pictures and frescoes by Luini. Guadenzio Ferrari and Bramantino; the collection of the works of Carlo Crivelli (f. 1480) affords an instructive survey of his work. which connects the Paduan echool winh the Venctan. here particularly well represented by works of Paolo Veronese. Paris Bordone. Gentile Bellini. Cims da Conegliano. Bonifazio, Moroni and Carpaccio. Additions are continually made to it.
The Castel Sforzesco. or Castle of Milan. stands in the Parco Nuovo, it was built in I480 by Franceaco Storza on ihe site of one erected by Galcazzo 11 . Visconti (1355-1378) and demolished in 1447 by the populace afier the deaih of Filippo Maria Visconti. Alter suffering many visisstudes, and being partially destroyed more than once, it was rest ored-including especially the aplendid entrance tower by Antonio Averulino (Filareie, 1451-1453). destroyed by a powder explosion in 1521 -in the isth-century style
${ }^{1}$ See F. Malaguzzi Valeri, G. A. Amadeo, scultore e architello (Bergamo, 1905).
in 1893 -94., and it is mow a mort impooing pile Some of the fire windows with their terra-cotia decoralions are preserved. The archacological museum is housed bere on the ground floor; besides Roman and pre-Roman objects it contains fragments of the 9th century basilica of Santa Alaria in Aurona, one of the first examples of vaulted Lombard archirecture: the bas-relicts of the ancient Porta Romana of Milan. representing the retura of the Milanese in 117^{1} after the defuat of Barbarossa; she remains of the church of Salla Maria in Brera, the work of Balduccio da Pisa : the grandiose sepulchral monument of Bernabo Visconsi formerly in the church of San Giovanni in Conca; the tomb of Regina della Scala, the wife of Bernabo: the funcral monument of the Rusea family; the great portal of the palace of Pigello I'ortinari, seat of the Banco Medicco at Mitan, a work of Michelozzo: a series of Renaissance sculptures. including works by Amadeo Mantegazza, Agostino Busti (surnimed Bambaia), including fragnents of the tomb of Gaston de $F_{u i x}$. Scveral of the rooms occupied by the arehacological muscum bear traces of the decorations excecuted under Galeazzo Maria and Lodovico il Moro, and one of them has a splendid ceiling with trees in full foliage, painted so as to cover the whole vaulting, ascribed to Leonardo da Vinci. In the upper rooms is placed a large collec. tion of Milancse and central labian ceramics. stuffs, furniture, bronzes, ivories, enamels, glass and historical relics; together with a picture gallery containing works by Vincenzo Foppa. Giunpietrino, Bolerafio. Criveth. Pordenone. Morone, Cariani. Correggio, Antonello da Mussina, Tiepolo, Guardi, Potter, V'an Djck and Kibera.

The finest of the modern thoroughfores of Milan is the Via Dante, constructed in 1888; it runs from the Piazza de' Mercanti to the spacious Foro Bonaparte, and thence to the Parco Nuovo, the great public garden in which stands the Castello Sforzesco. This park was once a national drilling ground, which was taken over by the municipality with a view to erecting upon it a new residential quarter, rendered necesaary hy the phenomenal growth of the city during the last twenty-five years of the rgth century. This design was happily abandoned, and around the Parco Nuovo has grown up a new quarter of wide streets, spacious gardens and private vilias.

To the north of the castle is the Arenn, a kind of circus erected by Napoieon in 1805 ; while facing the castle on the opposite side of the park is the Arco dells Pace, begun by Napoleon in 1806 from the designs of Cagnola to mark the beginning of the Simplon Road, hut finished hy the Austrians in 1833. Leading east-north-east from the Piaras del Duomo, the centre of Milanese traffic, especially of electric trams, is the Corso Vittorio Emanuele. Connecting the piases with the neighbouring Piazza della Scala is the famous Galleria Vittorio Emanuele, ${ }^{5}$ great arcade in the form of a Latin cross, with an octagon in the centre, crowned at the height of 160 ft . with a glass cupola; it is roofed with glass throughout, and is 370 yds. lont, 16 yds. wide and 94 ft . high. It has splendid fagader at each end, and was constructed in $1865-1867$ at the cost of $\mathbf{6 3 2 0 , 0 0 0}$; it is the finest of its kind in Europe.

In the Via Morone near the Piaze della Scala is a collection of art treasures bequeathed to the town in 1879 hy a Milanese patrician, the Cavaliere Poldi-Pessoll. It comprises valuable pictures, textile fahrics, arms, armour and a number of antiquities, and is exhihited in the house once occupied hy the founder. In the middle of the neighbouring Piazza della Scala stands Magni's monument of Leonardo da Vinci (i872). Opposite is the celebrated Teatro della Scala, huilt in 1778 on the site of a church tounded hy Beatrice della Scaja, wife of Bernabd Visconti. After the San Carlo at Naples it is the largest theatre in Europe, and can seat 3600 spectators. Looking on to the piasea is the fine Palazzo Marino, the seat of the municipality since 1861 ; it was huilt hy Galeazzo Alessi in 1598, to whom the side facade and the court are due, hut was not completed until 1890 , when the main facade was erected hy Luca Beltrami. S. Fedcle by Tibaldi (1560) is close by. Milan has a royal scientific and literary academy with a faculty of philosophy, wroyal technical institute, a school of veterinary science, a royal school of agriculture, a polytechnic with the Bocconi commercial school (founded 1898) and numerous other learned and educational institutions. Milan has long been famous as one of the great musical centres of Europe, and numerous students resort here for their musical education. There are many philanthropic institutiona, the most interesting of which is the Albergo Popolare, an eatahlishment conducted on lines similar to the houres establisbed in England
by Lond Rowton in $\mathbf{8 8 9 4}$. Sport and athletics are provided by a number of clubs, notably the Touring Club Italiano, founded in 1894. The modern industrial developmeat of Milan, with its suburbs and neighbouring towns, such as Monsa, Gailarate, Saronno, Busto Arsizio and Legnamo, has been noteworthy. Machine-making on a large scale is carried on by firms widely celebrated for the conatruction of locomotives, railway truckes and carriages, steamboilers and motors, turbines, pumpe, metal bridges and roofs. Minor industries are represented by workshops for the production of surgical, musical and geodetic instruments; of telephone and telegraph sccessories; dynamos, sewing-machipes, bicycles and antomobiles. There is also a large carriage industry. In textile lindustries silk holds the fint place. The amount of silk handled and woven in Milan is greater than that dealt with at Lyons. Spinning and twisting are as highly developed as the weaving industry. Milan is also the centre of the Italian cotton industry. Cocton-weaving, dyeing and printing are extensively carried on. Linen, flax, jute and wool are also spun and woven. The Milanese manufactures of articles in caoutchouc and of electric cables have acquired a world-wide reputation. In typography Milan is renowned principally for its musical editions and for its heliotype and zincotype extablishments. There is, besides, a huge production of posters for advertisement. The manufacture of furniture of all kinds is still extensively carried on, Milan being the chief Lombard market and centre of exportation. The towns of Cantu, Meda, Lissone and Carugo supply Milanese firms with most of their merchandise, the furniture being made by the workmen at their own homes with materials supplied by the Milanese buyers, who also edvance the capital necessary for working expenses. Theatrical coatumes and appliances are also made in Milan, which is an important theatrical centre. House industry is still widely diffused in Milan itself, especially as regards working in gold, silver, vulcanite, bronze and leather. The motive power for much of the house industry is supplied by electricity. The electricity is partly furnished by hydraulic works at Paderno, 24 m . from Milan: the horse-power is continually being increased dwing to new needs. Gas is also much used. Milan is also a centre of the export trade in cheese; chocolate, biscuits, \&c,, are also manufactured.

The municipal schools of Milan are as well organized as any in Italy, and the exhibit in connexion with them at the great international exhibition of 1906 was of interest. There were, in 1907, 76 buildings for schools and 47,968 pupils, while in the evening and holiday classes there were $\mathbf{1 0 , 7 2 4}$ older pupila; 2,109,920 iree rations and 215,135 paid rations were distributed to 16,526 pupils, and douches were supplied. Pizzoli's Tavolo Psicoscopico for examining the mental qualities of the pupils is of interest. The international exhibition of 1906 held in Milan was of considerable importance. all the leading states of the word taking part in it. The retrospective exhibition of means of transport was interesting in view of the recent opening of the Simplon tunnel, the occasion of the exhibition. Among the most noteworthy exhibits were those of machinery, of automobiles and bicycles, of agriculture, of transports by see, of modern art and architecture, of ftalian home industries, of the city of Milan; besides which, all the countries exhibiting had their own separate pavilions

Until 1898 the octroi circle did not extend beyond the walls; but in that year it was found necescary, owing to the growth of the city and of municipal expenditure, to include the external quarters or Corpl Santi (a name also applied to the extramural portions of Cremona and Pavia), with their large industrial population. Since that time municipal finance has been in a prosperous condition.

The water supply, from wells some 150 ft. deep in the sub-soil, Is fairly good; one of the towers of the Castello Sforzesco is used as a distributing ceatre, whik the cewerage system consists of 48 m . of cewers on the single channel principle, with collectors discharging into the Vettabla, a tributary of the Lamhro.

In 1860 a large cemetery, the Cimitero Monumentale, was opened, but found to be insufficient, it is reserved for important monuments, that of Musocco, 3 m . from the city, being used for general purposes.

History-(For earlier history see Medololanus).-After the eatablishment of the Lombard capital at Pavia in 569 Milan remained the centre of Italian opposition to the foreign conquest. The Lombards were Arians, and the archbishops of Milan from the days of Ambrose had been always orthodor. Though the struggle was unequal, their attltude of resolute opposition to the Lombards gained for them great weight among the people, who felt that their archbishop was a power around whom they might gather for the defence of their liberty and religion. All the innate hatred of the foreigner went to atrengthen the hands of the archbishops, who slowly acquired, in addition to their spiritual authority, powers military, executive and judicial. These powers they came to administer through their delegates, called viscounts. When the Lombard kingdom fell before the Franks under Charlemagne in 774, the archbishogs of Milan ware still
further strengthened by the close alliance between Charies and the Church, which gave a sort of confirmation to their temporal authority, and also by Cheries's policy of breaking up the great Lombard fiefs and dukedoms, for which he substituted the smaller counties. Under the confused government of Charles's immediate successors the archbishop was the only real power in Milan. But there were two classes of dificulties in the situation, ecelesiastical and political; and their presence had a marked effect on the development of the people and the growth of the commune, which was the next stage in the history of Milan. On the one hand the archbishop was obliged to contend against the beretics or against fanatical reformers who found a following among the people; and on the other, since the archbishop was the real power in the city, the emperor, the nobles and the people each desired that he should be of their party; and to whichever party he did belong he was certain to find himself violently opposed by the other two. From these causes it sometimes happened that there were two archhishops, and therefore no central control, or no archbishop at all, or else an archbishop in exile. The chief result of these difficulties was that a spirit of independence and a capacity of judging and acting for themselves was developed in the people of Milan. The terror of the Hunnish invasion, in 899, further assisted the people in their progress towards freedom, for it compelled them to take arms and to fortify their city, rendering Milan more than ever independent of the feudal lords who lived in their castles in the country. The tyranny of these nobles drove the peasantry and smaller vassals to seek the protection for life and property, the equality of taxation and of justice, which could be found only inside the walled city and under the rule of the archbishop. Thus Milan grew populous, and learned to govern itself. Its inhabitants became for the first time Milanese, attached to the standerd of St Ambrose-no longer subjects of a foreign conqueror, but a distinct people, with a municipal life and prospects of their own. For the further growth of the commune, the action of the great archbishop, Heribert (ror8-1045), the establishment of the carroccio, the development of Milanese supremacy in Lombardy, the destruction of Lodi, Como, Pavia and other neighbouring cities, the exhibition of free spirit and power in the Lombard league, and the battle of Legnano, see the articles Iraly and Lombards. In 1157 an almost circular moat, still preserved in the inner canal or Naviglio, was constructed round the town; but in 1162 Frederick Barbarossa took and almost entirely destroyed the city, only a few churches surviving. The city with its walls was, however, rehuilt five years later by the allied cities of Bergamo, Brescia, Mantua and Verona.

Alter the battle of Legnano, in 1154, although the Lomberd cities failed to reap the fruit of their united action, and fell to mutual jealousy once more, Mitan internally began to grot in material prosperity. After the peace of Constance (in83) the city walls were extended; the arts flourished, each in its own quarter, under a syndic who watched the interests of the trade. The manufacture of armour was the most important industry. During the struggles with Barbarossa, when freedom seemed on the point of being destroyed, many Milanese vowed themselves, their goods and their families to the Virgin should their city come safely out of her troubles. Hence arose the poweriul fraternity of the " Umiliati," who established their headquarters at the Breta, and began to develop the wool trade, and subsequently gave the first impetus to the production of silk. From this period also date the irrigation works which render the Lombard plain a fertile garden. The government of the city consisted of (a) a parlamento or consiglio grande, inciuding all who possessed bread and wine of their own-a council soon found to be unmanageable owing to its size, and reduced first to 2000, then to 1500 and finally to 800 inembers; (b) credenza or committee of 12 memhers, elected in the grand council, for the despatch of urgent or secret business, (c) the consuls, the executive, elected for one year, and compelled to report to the great council at the term of their office.
The bitter and well-balanced rivalry between the nobles and the people, and the endless danger to which it exposed the city
owing to the fact that the nobles were always ready to claim the protection of their feudal chief, the emperor, hrought to the fromt two noble families as protagonists of the contending factionsthe Torriani of Valsassina, and the Visconti, who derived their name from the office of delegates which they had held under the archhishops. After the battle of Cortenova, in 1237, where Frederick II. defeated the Guelph army of the Milanese and captured their carroccio, Pagano della Torre rallied and saved the remnants of the Milanese. This act recommended him to popular favour, and he was called to tbe government of the city -but only for the distinct purpose of establishing the "catasta," a property tax which should fall with equal inciaence on every citizen. This was a democratic measure which marked the party to which the Torriani belonged and rendered them hateful to the nohility. Pagano died in 1241. His bephew Martino followed as podestà in 1256, and in 1259 as signore of Milanthe first time such a title was heard in Italy. The nobles, who had gathered round the Visconti, and who threatened to bring Ezzelino da Romano, the Ghibelline tyrant of Padua, into the city, were defeated hy Martino, and 900 of their number were captured. Martino was iollowed by two other Torriani, Filippo his brother (1263-1265) and Napoleone his cousin (1265-1277), as lords of Milan. Napoleone ohtained the title of imperial vicar from Rudolph of Hapsburg. But the nobles under the Visconti had been steadily gathering strength, and Napoleone was defeated at Desio in 1277. He ended his life in a wooden cage at Castel Baradello above Como.
Otto Visconti, archbishop of Milan (1262), the victor of Desio, became lord of Milan, and founded the house of Visconti, who ruled the city-except from 1322 to 1310 -till 1447, giving twelve lords to Milan. Otho (1277-1295), Matteo (1310-1322), Galeazzo (1322-1328), A2ro (1328-1339), Lucchino (1339-1349) and Giovanni (1349-1354) followed in succession. Giovanni left the loidship to three nephews-Matteo, Galeazzo and Bernabo. Matteo was killed (1355) hy tis brothers, who divided the Milanese, Bernabd reigning in Milan (1354-1385) and Galearzo in Pavia ($1354-1378$) Galeazzo left a son, Gian Galeazzo, who became sole lord of Milan by scizing and imprisoning his uncle Bernabd. It was under him that the cathedral of Milan and the Certosa di Pavia were hegun. He was the first duke of Milan, having obtained that title from the emperor Wenceslaus. His sons Giovanni Maria, who reigned at Milan (1402-1412), and Filippo Maria, who reigned at Pavia (1402-1447), succeeded him. In 1412 , on his hrother's death, Filippo united the whole duchy under his sole rule, and attempted to carry out his father's policy of aggrandizement, hut without success.
Filippo was the last male of the Visconti house. At his death a republic was proclaimed, which lasted only three years. In 1450 the general Francesco Sforza, who had married Filippo's only child Bianca Visconti, became duke of Milan by right of conquest if by any right. Under this duke the castello was rehuilt and the canal of the Martesana, which connects Milan with the Adda, and the Great Hospital were carried out. Francesco was followed hy Give of the Sforza family. His son Galeuza Maria (1466-1476) left a son, Gian Galeazzo, a minor, whose guardian and uncle Lodovico (il Moro) usurped the duchy (1479-1500) Lodovico was captured in 1500 hy Louis XII. of France, and Milan remalned for twelve years under the French crown. In the partial setilement which followed the batle of Ravenna, Massimiliano Sforza, a prolege of the emperor, was restored to the throne of Milan. and held it by the help of the Swiss till 1515 , when Francis I. of France reconquered the Milanese hy the battle of Marlgnano, and Massimiliano resigned the sovereignty for a revenue from France. This arrangement did not continue. Charles V. sutceeded the emperor Maximilian, and at once disputed the possession of the Milanese with Francis. In 1522 the imperialists entered Milan and proclaimed Francesco Sforza (son of Lodoviro). Francesco died in $\mathbf{1 5 3 5}$, and with him ended the house of Siorza. From this date till the War of the Spanish Succession (1714) Milan was a dependency of the Spanish crown. At the close of that war it was handed over to Austria; and under Austria it remained till the Napoleonic campaign of
1796. For the results of that campaign, and for the history of Italian progress towards independence, in which Milan played a prominent part hy opening the revolution of 1848 , with the insurrection of the Cinque Giornate (March 17-22), by which the Austrians were driven out; the reader is referred to the article Italy. The Lombard campaign of 1859, with the battles of Solferino and Magenta, finally made Milan a part of the kingdom of Italy.
Litgratyre-Pietro Verri, Sloria di Milano; Corio, Sloria di Milano: Cantu, Illiustrazione grande del Lombardo Veneto; the Milanese chroniclers in Muratori's Rer. Ilal. scriplores; Sismondi, It:Iian Republics: Ferrari, Rivolusione do Mclia; Litta. Famralie ceicbri, s.p. "Torriani." "Visconti," "Sforza" and "Trivola'"; Muratori, Annali dillalia; Hallam, History of the Middle Ages; and Mediolonum (4 volso, 1881) L. Belerami, /l Castello di Mifano (Mitan, 1894); L. del Mayno, Vicende militari del Castello di Milano (Milan. 1894); F. Malaguzzi Valeri, Milario, 2 vols. (Bergamo, 1906): and C. M. Ady, A llistory of Milan auder the Sforsa (1907).
(H. F. B.; T. As.)

MILANESL, GAETANO (1813-r895), Italian scholar and writer on the history of art, was born at Siena, where he studied law, and in 1838 he obtained an appointment in the public library. In 1856 be was elected member of the Accademia della Crusca, in which capacity he took part in the compilation of its famous but still unfinished dictionary, and two years later was appointed assistant keeper of the Tuscan archjves, in Florence; then he took charge of the famous Medici archives, whence he collected a vast body of material on the history of Italian art, not all of which is yet published. In 1889 he hecame director of the archives, but retired in 1892, and died three years later. His most important publication is his edition of Vasari's works in nine volumes, with copious and valuable notes (Florence, 18781885). Of his other writings the following may be mentioned: $I l$ diario inedito di Alessandro Sosini (in the Arckivio storico Ilalidno, 1842); Documenti per la storia dell' arte senese, 3 vols. (Siena, 1854-1856) and Discorsi sulla sloria civile od artistice di Siena (Siena, 1862). He also edited a number of Italian classics.

See E. Ridolf's article in the Nuova antologia (May 15, 1895); and A. Virgili's articie in the Alti della regia Accedemia della Crusce (Florence, I898).

MILAM OBRENOVICH IV. ($1854-1901$), king of Servia, was born on tbe 22nd of August 1854, at Jassy. He was the grand-nephew of the famous Milosh, whose hrother Jefrem (d. 1856) had a son, Milosh (1829 -1861), who married Maria Katardyi, a Moldavian. Milan was their son. While still very young, he lost both his parents, and was adopted by his cousin, Michael Ohrenovich, who returned to Servia on the expulsion of the Karageorgeviches in 1858 and became ruling prince on the death of his father, Milosh, in 1860 . During the reign of Michael young Milan was educated in Paris, at the Lycé Louis-le-Grand, where he displayed censiderahle precocity, hut he was only fourteen years of age when in 1868 his cousin was assassinated and he succeeded to the throne under a regency. In 1872 he was declared of age, and taking the reins of government into his own hands, soon manifested great intellectua! power, coupled with a passionate headstrong character. Eugene Schuyler, who saw him about this time, found him "a very remarkahle young man . . . dingularly intelligent and well-informed." By a careful balencing of the Austrian and Russian parties in Servia, with a judicious leaning towards the former, Prince Milan was enabled in 1878, at the end of the Turkish Wax, to induce the Porte to acknowledge his independence, and was proclaimed king in 1882. (The history of his reign is told in detail under Servia.) Acting under Austrian infaence, King Milan devoted all his energics to the improvement of means of communication and the development of natural resources; hut the cost, which was unduly increased hy reckless extravagance, led to proportionately heavy taxation. This, coupled with increased military service, rendered King Milan and the Austrian party most unpopular; and his political troubles were further increased by the defeat of the Servians in the war against Bulgaria, 1885-86. In 1885 (Sept.) the union of Rumelia and Bulgaria caused widespread agitation in Servia, and Milan precipitately declared war upon his kinama. Prince Alexander on the istb of November. After
a short but decisive campaign, the Servians were utterly routed at the battles of Slivinaka and Pirot, and Milan's throne was only saved by the direct intervention of Austria. Domestic difficulties now arose which rapidly assumed a politleal significance. In October 1875 King Milan had married Natalie, the sixteen-years-old daughter of Peter Ivanovich Ketchko, a Moldavian Boyar, who was a colonel in the Russian army, and whose wife, Pulcheria, was by birth Princess Sturdza. A son, Alexander, was born in 1876, hut the king and queen showed signs of friction. Milan was anything but a faithful hushand. Queen Natalie was greatly influenced by Russian sympathies, and the couple, ill-asorted both personally and politically, separated in 1886, when the queen withdrew from the kingdom, taking with her the young prince, Alexander, afterwards king, then ten years of age. While she was residing at Wiesbaden in 1888, Kint Milan succeeded in recovering the crown prince, whom he undertook to educate; and in reply to the queen's remonstrances, be exerted considerable pressure upon the metropolitan, and procured a divorce, which was afterwards annulled as illegal. King Milan now ecemed master of the situation, and on the 3 rd of January 1889 promulgated a new constitution much more liberal than the existing one of 1869. Two months later (March 6) he suddenly abdicated in favour of his son, a step for which no satisfactory reason was assigned, and settled as a private individual in Paris. In February 1801 a Radical ministry was formed, Queen Natalie and the ex-metropolitan Michael returned to Belgrade, and Austrian influence began to give way to Russian. Fear of a revolution and of King Milan's return led to a compromise, by which in May 1891 the queen was expelled, and Milan was allowed a million franca from the civil list, on condition of not returning to Servia daring his son's minority. Milan in March 1892 renounced all his rights, and even his Servian nationality. The situation altered, however, after the young King Alexander in April 1893 had effected his comp d'Hat and taken the reins of government into his hands. Servian politics began to grow more complicated, and Russian intrigue was rife. In January 1894 Milan suddenly appeared at Belgrade, and his son gladly availed himself of his experience and advice. On the 2gth of April a royal decree reinstated Milan and Natalie, who in the meantime had become ostensibly reconciled, in their position as members of the royal family. On the $21 s t$ of May the constitution of 1869 was restored, and Milan continued to exercise considerable influence over his son. The queen, who had been residing chiefly at Biarritz, returned to Belgrade in May 1805, after four years' absence, and was grected hy the populace with great enthusiasm. In $\mathbf{1 8 9 7}$ Milan was appointed commander-in-chief of the Servian army. In this capacity he did some of the best work of his life, and his suceess in improving the Servian military system was very marked. His relations with the young king also remained good, and for a time it seemed as though all Russian intrigues were being checked. The good relations between father and son were interrupted, however, by the latter's marriage in July 1900 . Milan violently oppoed the match, and resigned his post as commander-inchief, and the young king banshed him from Servia and threw himself into the arms of Russia. Milan retired to Vienna, and there he died unexpectedly on the 11th of February 1gor. Milan was an able, tbough headstrong man, but he lived a scandalously irregular life, and was devoid of moral principle. In considering his relations with his young son, it must be remembered that in the dynastic and political condition of Servia natural feeling mas inevitably subordinated in Milan to other considerations.
(H. Cr.)

IILA T PONTANALS, TANUEH (1818-1884), Spanish scholar, born at Villafranca del Panadés, near Barcelona, on the 4th of May 3818, was educated first at Barcelona, and alterwards at the university of Cervera. In 1845 be became professor of literature at the university of Barcelona, and held thas post till his death at Villafranca del Panadts on the $\mathbf{1 6 t h}$ of July 1884. The type of the scholarly recluse, Mita y Fontanats was aimost unknown outside the walls of the university till 1859 , when he was appointed president of the jueges fiprales at Barcelona.

On the publication of his treatise, De Los trosadores en Espane (1866), his merits became more generally recognized, and his monograph, De La poesla herbico-popular castellane (1873) revealed him to forcign scholars as a master of scientific method.

MILAZZO, a seaport on the north coast of Sicily, in the province of Messina, 32 m . W. of Messina by rail. Pop. (1901), $\mathbf{1 6 , 4 2 2}$. It is mainly built on the low isthmus of a peninsula, which stretches some 3 m . farther north and forms a good harbour: hut the old town, which contains a castle, mainly the work of Charles V., lies on a hill above. Milazzo is the ancient Mybee, an outpost of Zande, occupied before 648 I.c., perhaps as early as 716 B.C. (E. A. Freeman, History of Sicily, I., pp. 395, 587). It was taken by the Athenians in 426 B.C. The people of Rhegium planted here the exiles from Naxos and Calana in 395 B.c. as a counterpoise to Dionysius' foundation of Tyndaris; but Dionysius soon took it. In the bay Duilius won the first Roman naval victory over the Carthaginians (260 b.c.).

MILDENHALL, a market town in the Stowmarket parliamentary division of Suffolk, England, $76 \frac{1}{2}$ m. N.N.E from London by a branch of the Great Eastern railway from Cambridge. Pop. (1901), 3567. It lies on the edge of Mildenhall Fen, the great Fen district stretching northward and westward from here. The church of St Andrew has an Early English chancel with fine east window and chancel arch. The remainder is principally Perpendicular with a magnificent carved oak roof, ornate north porch and lofty tower with fan tracery within. There is a wooden market cross of the 15 th century; the manor house is a picturesque gabled building of the 17 th century, and there is a modern public hall. Flour milling is an industry. The discovery of Roman remains indicates a small settlement.

MILDEW (O. Eng. mededdaw or mildecw, explained as " meatdew," cf. Ger. Mehllhas, with more probability, as "honeydew," Goth. meluth, honey, cf. Lal. med, Gr. M'̀le), a popular name given to various minute fungi from their appearance, and from the sudden, dew-like manner of their occurrence. Like many other popular names of plants, it is used to denote different species which possess very small botanical affinity. The term is applied, not only to species belonging to various systematic groups, hut also to such as foliow different modes of life. The corn-mildew, the hop-mildew and the vine-mildew are, for example, parasitic upon living plants, and the mildews of damp linen and of paper are saprophytes (Gr. ourpos, rotten), that is, they subsist on matter which is already dead. As regards mildews in general, the conditions of life and growth are mainly suitable nutrition and dampness accompanied by a high temperature. The life hiscory of the same species of mildew frequently covers two or more generations, and these are often passed on hosts of different kinds. In some cases again the same generation confines its attack to the same kind of host, while in others the same generation grows on various hosis (see Fungr; Hop; and Whear).

MILES, NELSOX APPLETOA (1830-), American soldier, was born in Westminser, Massachusetcs, on the 8th of August 1839. He was engaged in mercantile pursuts in Boston when the Civil War began, and he entered the army in September $\mathbf{1 8 6 1}$ is a lieutenant in the a2nd Massachusetis volunteer infantry. He served with distinction in the Penusular campaign, and at Antietam, Fredericksburg and Chancellorsville, where he received a wound whicb incapacitated him up to the opening of Grant's Virginia campaign of ${ }^{1864}$. He had been commissioned in September 1862 colonel of the 61 st New York valunteers, commanded a hrigade at the Wilderness and Spoltsylvania, and in May 1864 was rewarded for his gallant leadership hy the grade of hrigadier-general of volunteers. He fought in the Cold Harbor and Petersburg operntions in 1864-65, was brevetted major-general of volunteers for his conduct at Reams Station, and at the close of the war was in temporary command of an army corps. In July 1806 he was made colonel of a regular inlantry regiment, and in 1867 he was brevetted brigadiergeneral in the regular army for his services at Chancellorsville and major-general for his services at Spottsylvama. He was promoted to be brigadier-general U.S.A. (Dec. 1880), and to be
major-general (April 1890), and in 1895 aurceeded General John McA. Schofield as commanding general of the United States army. He was conspicuously succeasful ($1869-1886$) in dealing with Indian outbreaks, fighting the Cheyenne, Kiowa and Comanche on Llano Estacado (1875) and the Sioux in Montana (1876), capturing the Nez Perces under Chief Joseph (1877), and defeating the Chiricahua Apaches under Geronimo (1886), and be commanded the United States troops sent to Chicago during the railway riots in 1894. He was in nominal direction of mibtary operations during the war with Spain in 8898 , though his personal share of the operations was contined to directing the almost unopposed Porto Rico expedition. He was raised to the rank of lieutenant-general in June 1900, and retired Irom active gervice in August 1903. In 1905-1906 he was adjutant-general and chiel-of-staff under Governor William L. Douglas in Mlassachusetts. He Wrote Personal Recollactions (1890), Military Europe (1898) and Observalions Abroad (1899).
MILETUS (mod. Polatia), an ancient city of Asia Minor, on the southern shore of the Latmic Gulf near the mouth of the Maennder. Before the lonic migration it was inhabited by Carians (Iliad ii. 876; Herod. i. ru6), and pottery, lound by Th. Wiegand on the spot prowes that the site was inhabited, and had relations with the Aegean world, in the latest Minoan age. The Greek settiers Irom Pylos under Neleus are said to have massacred all the men in the old city, and buitt for themseives a new one on the coast. Miletus occupied a very favourable situation at the mouth of the rich valley of the Maeander, and was the natural oullet for the trade of southern Phrygia (Hipponax, Fr. 45). It had four harbours, one of considerable size, and its power extended inland for some distance up the valley of the Maeander, ad along the coast to the south. where it founded the elty of Iasus. Its enterprise extended to Egypt, where it had much to do with the settlement of Naucratis (q.v.). Very litile " Naucratiti "pottery, however, was found on the site by Wiegand, and only in the Athene temple. The Black Sea trade, bowever, was the greatent source of weath to the Ionian citics. Miletus, like the rest, turned its attention chiefly to the north, and succeeded in almost monopolizing the trafic. Along the Hellespont, the Propontis and the Black Sca coasts it founded more than sixty cities-among them Abydus, Cyzicus, Sinope, Dioscurias, Panticapaenm and Olbia. All these cilies were founded before the middle of the $7^{\text {th }}$ century; and before 500 B.c. Miletus was decidedly the greatest Greek city. During the time when the enterprise of the seafaring population raised Aliketus to sucb power and wealth nothing is known of its internal history, though the analogy of all Greck cities, and some casual state. ments in later writers, suggest that the usual struggies took place between oligarchy and democracy, and that tyrants sometimes raised themselves to supreme power. Mitetus was equally distinguished at this early time as a seat of literature. The Ionian epic and lyric poerry indeed had its home larther north; philosophy and history were more akin to the practical race of Miletus, and Thales, Anaximander, Anazimenes and Hecataeus all belonged to this city. The poet Timotheus and the famous Aspasia were also natives. The tbree Ionian citics of CariaMiletus, Myus and Priene-spoke a peculiar dialect of Ionic.
The Mermnad kings of Lydia found in Miletus their strongest adversary. War was carried on for many years, till Alyattes 111. concluded a peace with Thrasybulus, tyrant of Miletus; the Milesians afterwards seem to have acknowledged peaceably the rule of Croesus. On the Persian conquest Miletus passed under a new master; it headed the lonian revolt of $500 \mathrm{B.c}$. , and was taken by storm after the battie of Lade (see lonia), Darius massacred most of the inhabitants, transported the rest to Ampe at the mouth of the Tigris, and gave up the city to the Carians. This disaster was long remembered in Greece and made the theme of a tragedy by Phrynichus. Henceforth the history of Miletus has no special interest. It revived indeed when the Persians were expelled from the coast in 479 g.c., became a member of the Delian League (q.v.), revolted to Sparta in 412, passed into Carian hands, and opposed Alexander on his southward march. succumbing only to a siege in form (334 B.c.). It was a
town of commercial importance throughotat the Graeco-Roman period, and received special attention from Trajan. Its harbours, once protected by Lade and the other Tragasaean islands, were gradually silted up by the Maeander, and Lade is now a hill some miles from the coast. Ephesus took its place as the great Ionian harbour in Helleniatic and Roman times. Miletus became the seat of a Christian bishopric and was strengthened by a Byzantine castle (adorpoy rûm Ma ${ }^{\text {a }}$ arlest) built above the theatre; but its decay was inevitable, and its site is now a marsh.
Since 1899 Miletus has been the scene of extensive excavations directed by Dr Th. Wiegand for the Berlin Acadermy. The ruins lie about the base of a hillock projecting north-east into a bend of the Macander. On the north is a well-preserved theatre of Roman times on the site of an older Greek building. When complete it had 54 rows of seats. It was as large as any theatre in Asia Minor. and is still imposing, the auditorium, though deprived of its upper ranks and colonnade, rising nearly 100 ft . Cyriac of Ancona described the buildiag at practically complete in has day (1446). The front is over 150 yds. long. East or this was the ancient north harbour. now sitted up, and on the hillaide above it stood a large heroon of Hellenistic time remarkable lor being. like the tomb of Brasidas at Ansphipolis, within the walla. South of the harbour head lics the Hellenistic agora with ruins of large magazines of Doric style. South of these again lie a nymphacum of the age of Titus, and a senate-house of theatral form. On the cast opens a great hall surrounded by porticoes and enclosing a high aliar of Artemis, once richly adorned with reliefle. The Roman agora lics beyond this again. A straight sirect leads south-west from the north harbour to the Didyma Case in the wall, which runs across the neek of the peninsula and was rebuili by Trajan, when he undertook to raise the level of the outer quarters of the city: and streets cross this at right angles in the geometric Hellenisic manner. A Sacred Way lined with tombs, led to Didymi. Two temples have been discovered by Dr Wiegand. one, on the woulh-east, being a large sanctuary of Apollo Delphinius with triple colonnade enclosing a court with central tripod. This seems to have been the chicf temple of the city and the place where public records treaties, \&c., were engraved. The ofher temple, an archaic sanctuary of Athena, lies west of the stadium.
See 0 Rayet and A. Thomas. Afilet et le golfo Latmique (18;7); Th. Wiegand. "Vorlaufige Berichte uber die Auagrabungen in Milet, in Sitzungsberchte of the Berlin Acaderny (1900, foll): A. von Salis, "Die Ausgrabungen in Milet und Didyma " in Nexe Jahrb. f. d. k. All., xxv. 2, 1910 .
(D. G. H.)

MILFORD, a township of New Haven connty, Connecticut, U.S.A., on Long Island Sound, separated from the township of Stratford on the W. hy the Housatonic river, and about 10 m . S.W, of New Haven. Pop. (1800), 3811 ; (1900), 3783 , including 541 foreign-born and 173 negroes, (1910), 4366. Area, about 16 sq. m. Millord is served by the New York, New Haven \& Hartford railroad, and by an electric line connecting with Bridgeport and New Haven. Within its borders are various popular beaches, including Woodmont (incorporated as a borough in 1003), Pond Point, Bay Yiew, Fort Trumbull Beach (where a fortification, named Fort Trumbull, was erected in 1776), Myrtle Beach, Meadow's End, Walnut Beach and Milford Point. The township is traversed by the Wepowaug river, which here empties into the Sound. Milford is a typical old New England town, and many of the permanent inhabitants are descendants from the first settlers. The burying ground includes the tomh of Robert Treat (1622-1710), commander of the Connecticut troops in King Philip's War, leader of the company that founded Newark, New Jersey, governor of Connecticut (Irom 1683 to 1698) at the time its charter was demanded by Governor Andros in 1686-1687, and deputy-governor in 1676-1683 and 16981708; and also that of Jonathen Law (1674-1751), governor of Connecticut from 1742 to 175I. Spanning the Wepowaug river near a gorge and not far from its mouth is a granite bridge and tower, built, as a memorial to the first settiers, in 1889 , in connexion with the celebration of the asoth anniversary of the founding of the town. Milford has a beautiful green of about four acres, containing a soldiers' monument. It has also the Taylor Library (founded in 1894), and along the Sound are many summer residences. Named after Milford, England, it was founded in 1639 by Rev. Peter Prudden and his followers from New Haven and Wethersfield. The land was parchased from the Indians for 6 coats, 10 blankets, i kettle, 12 hatchets, 12 hoes,

MILFORD-MILITARY FRONTIER

24 knives and 18 small mirrors. A. church-state" whs immediately organized after the model of that of New Haven, but two or three years later the town bestowed suffrage on six of its inhabitants who were not church members These citizens were an obstacle to the town's admission to the New Haven Jurisdiction, which was formed in 1643 , but in the following year a compromise was effected and Milford was admitted on condition that, in the future, suffrage should be granted only to church members and that none of the ohjectionable six should be elected to any office of the Jurisdiction. In 1664 Milford, with the other members of the Jurisdiction, was absorbed by Connecticut; this caused considerahle dissatisfaction and some of the inhabitants under the lead of Robert Treat removed to New Jersey and assisted in the founding of Newark. The regicides Whalley and Gofte were concealed in Milford from r66I to 1664
See M. Louise Greene, "Early Milford," in the Comnecticut Magarine, vol. v. (Hartford, 1899).
MILFOAD, a township of Worcester county, Massachusetts, U.S.A., about 16 m . S.E. of Worcester. Pop. (1890), 8780; (1900) 11,376 , of whom 3342 were foreign-born; (1910 centus) 13,055. Within its area of about 15 sq . m. are a large rural population and the village of Milford, on the Charles river, about 33 m. S.W. of Boston, served by the Boston \& Albany, the New York, New Haven \& Hartiord and the Grafton \& Upton railways (the last named having its passenger department operated by electricity and its freight by steam, and connecting Milford with North Grafton), and by inter-urban electric lines. The village has a memorial hall, housing the public library, and in the township there is an excellent hospital, the gift of Eben. S. Draper. The village is a shipping point for an agricultural and manufacturing district. In 1005 the value of the township's factory products was $\$ 3,390,504$ (32.8% more than in 1900). The most important manufactures are boots and shoes; the industry was established in 1795, and for many years the special product was brogans for Southern negroes. In 1908 there were 12 large granite quarries in the township (north and north-east of the village). Milford granite is the typical stone of an area reaching into Rhode Island south of the southern boundary of Providence county; it is a biotite granite of post-Cambrian age, is gencrally pinkish-gray in colour (owing to the large proportion of feldspar among its constituents), and is widely used for building purposes. The township was the east precinct of Mendon until 1780, when it was incorporated; in 1835 paŕts of Holliston and Hopkinton were annexed; in 1886 a part was separated as Hopedale.

See Adin Ballow, Fislory of Milford (Boston, 1882); and T. Nelson Date. The Chicf Commercial Granites of Massachuselts, New Hampshire and Rhode Island (Washington, 1go8), Bulletin 354 of the U.S. Geological Survey.

MILPORD HAVEN, a market town, seaport, urben district and contributory parliamentary borough of Pembrokeshire, Wales, situated on the north shore of the celebrated harbour of the same name. Pop. (1901), 5102, including the adjacent village of Hakin. Milford Haven is the terminus of a branch-line of the South Wales section of the Great Western railway. The town possesses a pier and important dock accommodation, including a graving-dock 600 ft . bong, and is the centre of a valuable and incressing fishing industry. The promenade of Hamilton Terrace commands a fine view of the broad expanse of the Haven with its various towns and forts.

The present town of Milford Haven, originally a hamlet in the parish of Steynton, is of modern growth, and was first called inte existence by the exertions of the Hon. R. F. Greville, nephew of Sir William Hamilton, who in 1790 laid out a town on this spot, the advantages of which as a convenient port for the Irish traffic he clearly recognized. - In the opening years of the 1gth century a royal dockyard was established here, but in 1814 dockyard and arsenal were removed to Paterchurch near Pembroke. The growth of the town was furtber checked twenty years later by the development of Neyland, or New Milford, further east on the Haven, whither the Irish pecket service was transferred; but towards the close of the reth century the town recovered much of lis former prosperity. The importance of the
place is wholly due to its excellent situation on the splendid land-locked harbour, which is here a m. broad.

Milford Haven itself, designated by the Welsh Aberdaugleddau, as the estuary of the united East and West Cleddy rivers, has played an important part on several occasions in the course of history. Throughout Plantagenet cimes it formed the chief point of embarcation for Ireland. It was from Milford Haven that Henry II. set sail for the conquest of Ireland in 1172, and to this harbour be made his return journey. In 1399 Richand II. landed at Milford Haven from Ireland, shortly before his surrender to Henry of Lancester, afterwards Henry IV., in whose reign a French fleet with 12,00 men on board sailed to the Haven and disembarked with the object of assisting the rebellion of Owen Clendower. In 148s Henry, earl of Richmond, disembarked here on his return from France. and was welcomed on landing by Six Rhys ap Thomas and much of the chivalry of Wales. In 1588 the leading persons of Pembrokeshire, with Bishop Anthony Rudd of St David's at their head, petitioned Queen Elizabeth to fortify the Haven against the projected Spanish invasion, upon which the block-bouses of Dale and Nangle at either side of the mouth of the harbour were accordingly erected. .During the roth century numerous forts have been constructed for the protection of the Haven and of the royal dockyard at Pembroke Dock.
MILCZ, or Mulrracis (d. 1374), Bohemian divine, was the most influential among those preachers and writers in Moravia and Bohemia who, during the 14 th century, in a certain sense paved the way for the reforming activity of Huss. The date of his birth is not known, but he was in holy orders in 1350, in $\mathbf{1 3 6 0}$ was attached to the court of the emperor Charles IV., whom he accompanied into Germany in that year, and about the same time also held a canonry in the cathedral of Prague along with the dignity of archdeacon. About 1363 be resigned all his appointments that he might become a preacher pure and simple; he addressed scholars in Latln, and (an innovation) the laity in their native Czech, or in German, which he learnt for the purpose. He was conspicuous for his apostolic poverty and soon roused the enmity of the mendicant friars. The success of his labours made itself apparent in the way in which he transtomed the notorious "Benatki" street of Prague into a benevolent institution, "Jerusalem." As he viewed the evils inside and outside the church in the light of Scripture, the conviction grew in his mind that the "abomination of desolation" was now seen in the temple of God, and that antichriat had come, and in 1367 he went to Rome (where Urban V. was expected from Avignon) to expound these view. He affized to the gate of St Peter's a placard announcing his sermon, but before be could deliver it was thrown into prison by the Inquisition. Urban, however, on his artival, ordered his release, whereupon he returned to Prague, and from 1369 to 1372 preached daily in the Teyn Church there. In the latter year the clergy of the diocese complained of him in twelve articles to the papal court at Avignon, whither he was summoned in Lent 1374, and where he died in the same year, not long after being declared innocent and anthorized to preach beiore the assembly of cardinals. He was the author of a Libellus de Aulichristo, written in prison at Rome, a series of Postillae and Lectiones quadragesimales in Latin, and a similar series of Postils (devotional tracts) in Ceech.
See Count Lotsow, Lifis and Tímes of Master John Hes (rgo9), Pp. 27-38.

LILITARY PRORTIESR (Ger. Mitidrgenes, Slav. Granitac), a narrow strip of Austrian-Hungarian territory stretching along the borders of Turkey, which had for centuries a peculiar military organization, and from 1849 to 1873 constituted a crown-land. As a separate division of the monarchy it owed its existence to the necessity of maintaining during the 16th and 17th centuries a strong line of defence against the invasions of the Turks, and may be aaid to have had its origin with the establishment of the captaincy of Zengs (a coast town about 35 m . south-east of Fiume) by Matthias Corvinus and the introduction of Uskoks (q.e.) into Croatia. By the close of the 17 th century there were three froatier "generalates."-Cerlstadt, Warasdia and Petrinia
or Petrinja (the last also called the Banal). After the defeat of the Turkish power by Prince Eugene it wes proposed to abolish the military constitution of the frontier, but the change was successfully resisted by the inhabitants of the district; in fact a new Slavonian frontier district was eatablished in 1702, and Maria Theresa extended the organization to the march-lands of Transylvanis (the Szekler frontier in 1764, the Wallachian in 1766). ${ }^{1}$

As a reward for the service it rendered the government in the suppression of the Hungarian insurrection in 1848, the Military Frontier was erected in 1849 into a crown-land, with a total area of $15,182 \mathrm{sq}$. m_{1} and a population of $1,220,503$. In $\mathbf{2 8 5 1}$ the Transylvanian portion ($1177 s q . \mathrm{m}$.) was incorporated with the rest of Transylvania; and in 1871 effect was given to the imperial decree of 1869 by which the districts of the Warasdin regiments (St George and the Cross) and the towns of Zengg, Belovar, Ivanix, \&c., were "provincialized" or incorporated with the Croatian-Slavonian crown-land. In 1872 the Banat regiments followed suit; and in 1873 the old military organization wras abolished in the rest of the frontier. Not till 1881, bowever, were the Croatian-Slavonian march-lands completely merged in the kingdoms to which they naturally belonged.

The social aspect of the military frontier regime is interesting. The sadruge system of land tenure was artificially kept in existence (see Survul). Watch-towers with wooden clappersand the bescons which flashed the alarm along the whole frontier in a few hours-are still features in the landscape.

MiLTARY LAW, "the law which governs the soldier in peace and in war, at home and abroad. At all times and in all places the conduct of officers and soldiers as such is regulated by military law." The above is the definition as given in the opening chapter of the Manual of Milivary Law, which is issued under the authority of the English War Office, and which is the textbook used by all English courts martial. The definition is, however, somewhat too wide, as the British system does not exclude in time of peace the action of the civil courts. In time of peace all persons who belong to the military class in most Earopean continental countries are judged by military law and by military courts. There is also in most continental countries an intermediate stage bet ween war and peace, known as in that de sidge, which may be declared for a fixed period for a district, or even a city, by reason of domestic insurrection or the presence of an enemy. It requires legislative enact ment. Thirdly comes a state of war, when the military authorities are supreme; and whilst they can call upon the civil power to act in concert with them, the military authority is final. This is a brief summary of the system of military law that prevails in most countries of the continent. The cardinal point of difference between the British and the continental systems lies in the fact that in the United Kingdom the soldier is not only a soldier, but a citizen also; and although he may be tried for civil offences by a military tribunal, the power is not exercised in all cases. Thus treason, treasonfelony, murder, manslaughter, rape, are brought before a civil court in times of peace, if the offence is committed in the United Kingdom, or if it is committed anywhere else in the king's dominions, except Gibraltar, within a hundred miles from a place where the offender can be tried by a civil court. Minor civil offences, when not committed within military lines, or when the person affected by the offence is a civilian, or when it is a case for a jury, or where intricate questions of law may arise, may also be brought before a civil tribunal. But an offence, of Whatever nature, committed on active service would be brought before a military tribunal.

The military law of England in carly times existed, like the
${ }^{1}$ By 1848 the following had come to be the division of the Military Frontier: (1) The Carlstadt (Carlowata), Warasdin and Banal Goneralate; corresponding to the original three generalates. (2) The Slavonian Generalate: (district of Mitrovica). (3) The Banat Gencralate; south and cast of Temesvar, and (4) The Transybanian Gencralale. Twelve towns, known as "military communities," had communal constitutions not unlike those of the free towns of Hungary-Carlopago, Zenge. Petrinia, Kostajnica, Belovar, Ivanic, Brod, Peterwardein, Carlowitz, Semlin, Pancsova and Weiakirchen.
forces to which it applied, in a period of war only. Troops were raised for a particular service, and were disbanded upon the cessation of hostilities. The crown, of its mere prerogative, made laws known as Articles of War, for the government and discipline of the troops while thus embodied and serving. Except for tbe punishment of desertion, which offence was made a felony by statute in the reign of Henry VI., these ordinances or Articles of War remained almost the sole authority for the enforcement of discipline until $\mathbf{6 8 9}$, when the first Mutiny Act was passed and the military forces of the crown were brought under the direct control of parliament. Even the Parliamentary forces in the time of Charles I. and Cromwell were governed, not by an act of the legislature, but by articles of war similar to those issued by the king and asthorized by an ordinance of the Lords and Commons, ezercising in that respect the sovereign prerogative. This power of law-making by prerogative was, however, held to be applicable during a state of actunl war ouly, and ettempts to exercise it in time of peace were ineffectual. Subject to this limitation it eristed for considerably more than a century after the passing of the first Mutiny Act. From 1689 to 1803 , although in peace time the Mutiny Act was occasionally suffered to expire, statutory power was given to the crawn to make Articles of War to operate in the colonies and elsewhere beyond the seas in the same manner as those made by precogative operated in time of war. In 1715 , in consequence of the rebellion, this power was created in respect of the forces in the kingdom. But these enactments were apart from and in no respect affected the principle acknowledged all this time-that the crown of its mere prerogative could make laws for the government of the army in foreign countries in time of war. The Mutiny Act of 1803 effected a great constitutional change in this respect: the power of the crown to make any Articles of War became altogether statutory, and the prerogative merged in the act of parliament. So matters remained till the year 1879, when the last Mutiny Act was passed and the last Articles of War were promulgated. The Mutiny Act legislated for offences in respect of which death or penal servitude could he awarded, and the Articles of War, while repeating those provisions of the act, constituted the direct anthority for dealing with offences for which imprisonment was the maximum punishment as well as with many matters relating to trial and procedure The act and the articles were found not to harmonize in all respecta. Their general arrangement was faulty, and their language sometimes obscure. In $\mathbf{x 8 6 9}$ a royal commission recommended that both should be recast in a simple and intelligible shape. In 1878 a committee of the House of Commons endorsed this view and made certain recommendations as to the way in which the task should be performed. In 1879 the government submitted to parliament and passed into law a measure consolidating in one act both the Mutiny Act and the Articles of War, and amending their provisions in certain important respects. This measure was called the "Army Discipline and Regulation Act 1879." After one or two years' experience of its working it also was found capable of improvement, and was in its turn superseded by the Army Act 2881, which now forms the loundation and the main portion of the military law of England. It contains a proviso saving the right of the crown to make Articles of War, but in such a manner as to render the power in effect a nullity; for it enacts that no crime made punishable by the act shall be otherwise punishable by such articles. As the punishment of every conceivable offence is provided for by the act, any articles made thereunder can be no more than an empty formality having no practical effect. Thus the history of English military law up to 1879 may be divided into three periods, each having a distinct constitutional aspect: (I) that prior to 1689, when the army, being regarded as so many personal retainers of the sovereign rather than servants of the state, was mainly governed by the will of the sovereign; (2) that between 1689 and 1803, when the army, being recognized as a permanent force, was gpverned within the realm by statute and without it by the prerogative of the crown; and (3) that from 1803 to 1879, when it was governed either directly by statute or by the sovereign under
an authority derived from and defined and limited by statute. Although is 1879 the power of making Articles of War became in effect altogether inoperative, the sovereign was empowered to make rules of procedure, having the force of law, which regulate the administration of the act in many matters formerly dealt with by the Articles of War. These rules, however, must not be inconsistent with the provisions of the Army Act itself, and must be laid before parlinment immediately after they are made. Thus in 1879 the government and discipline of the army became for the first time completely subject either to the direct action or the close supervision of parlisment.

A further sotable change took place at the same time. The Mutiny Act had been brought into force on each occasion for one year only, in compliance with the constitutional theory that the maintenance of a standing army in time of peace, unless with the consent of parliament, is against law. Each session therefore the text of the act had to be passed through both Houses clause by clause and line by line. The Army Act, on the other hand, is a fixed permanent code. But constitutional traditions are fully respected by the insertion in it of a section providing that it shall come into force only by virtue of an annual act of parliament. This annual act recites the illegality of a standing army in time of peace unless with the consent of parliament, and the neceasity nevertheless of maintaining a certain number of land lorces (exclusive of those serving in India) and a body of royal marine forces on shore, and of keeping them in exact discipline, and it brings into force the Army Act for one year.

Military lav is thus chiefly to be found in the Army Act and the rules of procedure made thereunder, the Militia Acts, the Reserve Forces Acts and the Volunteer Acts, together with certain acts relating to the yeomanry, the Territorial and Reserve Forces Act 1907, and various royal warrants and regulations. In the Army (Annual) Act 1906 important amendments were made to the Army Act for the purpose of preventing soldiers convicted of offences against discipline under the act, and not discharged with ignominy, being subjected to the stigma altaching to imprisonment. This was effected by creating a new punishment, termed detention, the places in which soldiers undergo detention being termed detention barracks. The change, while principally one of nomenclature, removed an undoubted grievance. The Army Act itself is, however, the chief authority. Although the complaint has been sometimes made, and not without a certain amount of reason, that it does not accomplish much that it might in point of brevity, simplicity and clearness of expression, it is a very comprehensive piece of legislation, and shows some distinct improvements upon the old Mutiny Acts and Articles of War.
When a person subject to military law commits an offence be is taken into military custody, which means either arrest in his own quarters or confinement. He must without unnecessary delay be brought before his commanding officer, who upon investigating the case may dismiss the charge, if in hls discretion he thinks it ought not to be proceeded with, or may take steps to bring the offender before a court martial. Where the offender is not an officer be may dispose of the case summarily, the limit of his power in this respect being seven days' imprisonment with hard labour, a fine not exceeding too. for drunkenness, certain deductions (rom pay, confinement to barracks for twenty-eight days, this involving severe extra drills, deprivations and other minor punishments. Where the offence is absence without leave for a period exceeding seven days, the commanding officer may award a day's imprisonment in respect of each dayof such absence up to twenty-one. It is only in the case of the imprison. ment exceeding seven days that the evidence before the commanding officer is taken on oath, and then only in the event of the accused so desiring it. The commanding officer is enjoined by regulation not to punish summarily the more serious kind of offences, but his legal jurisdiction in this reapect is without limit at regards any soldier brought before him, and when he bas dealt summarily with a case the accused is free from any other liability in reapect of the offence thus disponed of. In any instance where
the commanding officer has summarily awarded fmprisonment, fine or deduction from pay, the accused may claim a district court martial instead of submitting to the award.

Ordinary courts martial are of three kinds, viz. (1) a regimental court martial, usually convened and confirmed by the commanding officer of the regiment or detachment, presided over by an officer not under the rank of captain, composed of al least three officers of the regiment or detachment with not less than one year's service, and baving a maximum power of punishment of forty-two days' detention; (2) a district court martial, usually convened by a general officer having authority to do so, consisting of not less than three officers, each with not less than two years' service, and having a maximum power of punishment of two years' imprisonment; (3) a general court martial, the only tribunal having authority to try a commisaioned officer, and with a power of punishment extending to death or penal servitude, for offences for which these penalties are authorized by statute; it consists of not less than nine officers in the United Kingdon, India, Malta and Gibraltar and of Give ehsewhere, each of whom must have had over three years' service, five being not under the rank of captain. There is another kind of tribunal, viz. a field general court martial. It is convened (I) by any officer in command of a detachment or portion of troops beyond the seas when not on active service, or by any officer in immediate command of a body of forces on active service where it appears to him on complaint or otherwise that a person subject to military law has committed an offence. The officer must be satisfied that it is not practicable, with due regard to the public service, to try the person by an ordinary court martial. The quorum of the court is three, if consistent with military exigencies, and each member must have held a commission for not less than a year. The quorum may be reduced when the public service requires it. The procedure of ordinary courts martial is observed as far as possible, and the proceedings always should be in writing when possible. But in the circumstances in which these courts are assembled, it is not always possible to adhere to the technical rules which obtain in the ordinary tribunals, although the broad principles are not violated. The evidence on a field general court martial is taken on oath. The prisoner may cross-examine the witnesses for the prosecution, and may call any available witnesses for his defence. The prisoner is allowed to address the court in his own defence.
The Army Act prescribes the maximum punishment which may be inflicted in respect of each offence. That of death is incurred by various actes of treachery or cowardice before the enemy, or by, When on active gervice, interfering with or impeding authority, leaving without orders a guard or post, or when sentry seeping or being drunk on a post. plundering or committing an offence against the person or property of an inhabitant, intentionally causing falee alarms, or deverting. Whecher upon active service or not, a soldier also becomes liable to the punishment of death who mutinies or Incites to or joins in or connives al a muliny, who uses or offers violence to or defiantly disobeys the lawful command of his superior officer when \ln the execution of his office. Penal servitude is the maxirnum punishment for various acus and irregularities upon active service not distinctly of a treacherous or willully injurious character. for using of offering violence or insubordinate language to a superior, or disobeying a lawful command when upon active service. The aume puniahment is applicable when nor upon active service to a second ofience of desertion or fraudulent enfistumeal (i.e. enlistment by one who already belongs to the wervice). certain embezzlements of public property, wilfuly releasing without authority a prisoner or wriffully permitting a prisoner to escape, enlisting when previously discharged from the service with disgrace without disclosing the circumstances of such discharge, or any other oflence which by we ordinary criminal law of England is punishable with penal servitude. Imprisonment for two years is che maximum punishment for minor forms and degrees of those offences which if committed upon active service would involve death or penal servitude, such es using or offering violence or insubordinate language to a superior or disobeying a hwful command and for the following offences: reasting an escort. breaking out of barracks, neglect of orders, a first offence of desertion or attempted demertion or aiding or conniving at deser* tion, or of Iraudulent enlistment, absence without leave, failure to appear at parade, golng beyond prescribed bounde, abeence from gchool, malingering or producing divease or infirmity, maiming with intent to render a coldier unfit for service, an act of a fraudulent nature, disgraceful conduct of a cruel, indecent or unnatural kind, drunkennem, relasaing a privoner without proper, autbority or
allowing him to excape, beins concerned in the tinreasonable detention of a person a waiting trial, escaping or attempting to escape from lawful custody, conniving at exorbitant exactions, making away with, losing by neglect, or wilfully injuring military clothing or equipments, ill-treating a horse used in the service, making false or fraudulent representations in public documents, making a wilfully false accusation against an officer or coldier, making a false confession of desertion or fraudulent enlistment, or a false statement in respect of the prolongation of furlough, misconduct as a witners before a court martial or contempt of cuch court, giving false evidence on oath, any offence specified in relation to billeting or the imprensment of carriages, making a false answer to a question put upon attestation, being concerned in unlawful enlistment, using traitarous or distoyal words regarding the sovereign, disclosing any circumstance relating to the nu mbers, position, movements or other circumstances of any part of His Majesty's forces to as to produce effects injurious to His Majesty's service, fighting or being concerned in or conniving at a duel, at tempting euicide, obstructing the civil authorities in the apprehension of any officer or soldier accused of an offence, any conduct, disorder or neglect to the prejudice of good order and military discipline, any offence which if committed in England would be punishable by the law of England. There is another offence which can be committed hy officers only, namely "scandalous conduct unbecoming the character of an officer and a gentleman." It necessitates cashiering, a punishment which in the case of an officer may be awarded as an alternative to imprisonment in several other instances. There is also an offence peculiar to officers and noncommissioned officers, that of striking or itl-treating a soldier or unlawfully detaining his pay. A sentence of cashiering as distinguished from that of dismissal in the case of an officer involves an incapacity to serve the crown again. An officer may be also sentenced to forfeiture of seniority of rank and to reprimand or severe reprinand. A non-commissioned officer may be sentenced to be reduced to a lower grade or to the ranks, and where sentenced to penal servitude or imprisonment the tribunal also has power to deprive him of his seniority. The Army Council in England, or the commander-in-chief in Indin or in either of the presidencies, may aleo cause a non-commissioned officer to be reduced to a lower grade or to the ranks. An acting non-commissioned officer may be ordered by his commanding officer for an offence or for inefficiency or othervise to revert to his permanent grade-in other words, to forfeit his acting rank.

It will have been observed that persons subject to military law are liable to be tried by court martial for offences which if committed in England would be punishable by the ordinary law, and to suffer either the punishment prescribed by the ordinary criminal law or that authorized for soldiers who commit offences to the prejudice of good order and military discipline. The effect of the latter alternative is that for many minor offences for which a civilian is liable to a short term of imprisonment. or perhaps oniy to a fine, a soldier may be awarded two years" imprisonment or detention. A court marial, however, cannot take cognizance of the crimes of treason, murder, manslaughter, treason-felony or rape if committed in the United Kingdom. If one of thesc offences be committed in any place within His Majesty's dominions ot her than the United Kingdom or Gibraltar, a court martial can deal with it only if it be committed on active service or in a place more than 100 miles from a civil court having jurisdiction to try the offence. With regard to all civil ofences the military law, it is to be understood, is aubordinate to the ordinary law, and a civilian aggrieved by a soldier in respect of a criminal offence against his property or person does not forfeit his right to prosecute the soldier as if he were a civilian.

The crimes for which soldiers are most usually tried are desertion, absence without leave, loss of nocessaries, violence or insubordination to tuperiors, drunkenness, and various forms of conduct to the prcjudice of discipline. The punishments are, generally speaking, gauged as much with regard to the character and antecedents of the prisoner as to the particular offence. For a first offence of an ordinary kind a district court martial would give as a rule fifty-six days imprisonment with hand labour, for a gecond or graver crime cighty-four days. There are not many instances in which the period of imprisonment exceeds six months. Corporal punishment, which had been practically limited to offences committed upon active service, and in 1879 to erimes punishable with death, was finally sbolished in 1881, and a summary punishment gubstituted. The practice of marking a soldier with the letters " D " (deserter) or "BC" (bad character), in order to prevent his re-enlistment, was abolished in 1879 in deference to public opinion, which erroneously adopted the idea that the "marking "was effected by red-hot irons or in come other manner involving torture. Many military men regretted ite abolition, and maintained that if the practice were still in force the army would not be tainted by the presence of many bad characters who find means of eluding tbe vigilance of the authorities and enlisting after previous discharge.

The course of procedure in military trials is as follows. When a soldier is remanded by his commanding officer for trial by a district or general court martial. a copy of the charge, together with the statements of the witnesses for the prosecution (called the summary of evidence), is furnished to him, and he is given proper opportunity of preparing his dufence, of communicating with his witnesses

Fr legal adviser, and of procuring the attendance of bis witnesene. Further, if be desires it, a list of the officers appointed to form the court shall be given him. Any officer is disqualified to sit as a member who has convened the court, who is the prosecutor or a witness for the proeecution. who has made the preliminary inquiry into the facts, who is the prisoner's commanding officer, or who has a personal interest in the case, The prisoner may also object to any officer on the ground of bias or prefudice, similarly as a civilian might challenge a juror. Except as regards the delay caused by the writing out of the evidence, the procedure at a court martial is very much the same as that at an ordinary criminal trial-the examination and cross-examination of the witnesses, addresses of the prosecutor and prisoner, and the rules goveraing the admission or rejection of evidence being nearly identical. At a general court martial, and sometimes at a district court, a judge advocate representing the judge advocate general officiates, his functions being very much those of a legal assessor to the court. He advises upon all poins of law, and sums up the evidence just as a judge charges a jury. When the prisoner pleads guilty the court finds a verdict accordingly, reads the summary of evidence, hears any statement in mitigation of punishment, and takes evidence as to character before procecding to pase eentence. The sentence is that of the majority of the court, except where death is awarded, when twothirds of the members in the case of a general court martial and the whole in that of a field general court martial must concur. When an acquittal upon all the charges takes place the verdict is announced in open court, and the prisoner is released without any further proceeding. When the finding is "guilty," evidence as to character is taken, and the court deliberates in private upon the sentence, but the result is not made known until the proceedings are confinmed and promulgated. No conviction or sentence has any effect until it is thus confirmed hy the proper authority. The confirming authority in the case of a regimental court is the commanding officer, in that of a district court martial an officer authorized to convene general courts martial or some officers deriving authority to corifirm the findings and sentences of district courts martial, and in that of a general court, if held in the United Kingdom, His Majesty, and if abroad in most cases the general officer commanding. the confirming authority may order the reassembling of the court in order that any question or irregularity may be revised and corrected, but not for the purpose of increasing a sentence. He may. however, of his own discretion and without further reference to the court, refuse confirmation to the whole or any portion of the finding or sentence, and he may mitigate, commute or entirely remit the punishment. In the case of a general court martial the proceedings are sent to the judge advocate general, who submits to the sovereign his opinion as to the legality of the trial and statenee. If they are legal in all respects he sends the proceedings to the Army Councill, upon whom rests the duty of advising the sovereign regarding the exercise of clemency. In addition to confirmation, however, every general or district colnt martial held out of India has another ordeal to go through. It is reviewed and examined in the office of the judge advocate general, and any illegality that may be disclosed is corrected and the prisoner is relieved of the consequences. To a eertain extent a protection against illegallty also exists in the catse of regimental courts martial. A monthly return of those held in each regiment is laid before the general commanding, by whom any question that might appear to him doubtiul would be referred to the adjutant general or the judge advocate general for decision. It is to be noted, however, that the judge advocate gencral, although fuifiling duties which are in their nature judicial, is only an advieer. He is not actuaily a judge in an executive senee, and has no authority directly to interfere with or correct an illegal conviction. In many cases the law thus provides no remedy for an officer or soldier who may have been wronged by the finding or ecntence of a court martial -for instance, through a verdict not justified by the evidence or through a non-observance of the rules and practice preseribed for theae tribunale. A person who has suffered injustice may appeal to the king's bench division of the high court of justice. But, speaking generally, that tribunal would not interfere with a court martial exercising its jurisdiction within the law as regards the prisoner, the crime and the sentence. In most cases, therefore, the virtual protector of an accused person against illegality is the judge advocate general, who personally advises the sovereign and the military authorities that the law shall be complied with (see Judge Advocate General).

The Army Act applies to European officers and soldiers serving in India in the same manner as to the rest of the army, but natives of India are governed by their own Articles of War, and in the case of civil offences they are dealt with according to the provisions of the Indian penal code. There are judge advocates general for each of the presidencies, and a deputy judge advocate at each of the more important military centres.
Important changes were made in the system of courts of inquiry by an Army Order of the roth of February 1902. A court of inquiry is and has been an assembly of officers directed by a commanding officer to collect evidence and report with respect to a transaction into which be cannot conveniently
himself make inquiry. But now, whenever any inquiry affects the character or military reputation of an officer or soldier, full opportunity must be given him of being present at the inquiry and of giving any evidence or making any statement, or cross-examining Conertr af adverse witnesses, or producing witnesses, on his own behalf. Evidence may now be ordered to be taken on oath if the assembling officer thinks the case requires it. No proceedings of a court of inquiry, no confession, statement or answer, is admissible in a court martial. But an officer or soldier tried by court martial in respect of matter which has been the subject of a court of inquiry is entitled to a copy of the proceedings on payment of the cost of the copy. The finding and sentence are only valid after confirmation by the proper military authority. A sentence of death or penal servitude can only be confirmed by the general or field officer in command of the forces with which the prisoner is present. The rule which allows the prisoner and his wife to tender their evidence on oath under the Criminal Evidence Act 1808 as regards evidence is applicable to field general courts martial. It is useful to note that the Army Act, sec. 70, enables His Majesty to make new provisions under the hand of a secretary of state for, amongst other things, the assembly and the procedure of courts of inquiry. The power to make changes by Army Order or rule is only limited by the principle that the rules must not be contrary to or inconsistent with the act.
; In an authoritative report published by the Norwegian. government, and compiled by a trained Norwegian lawyer who Conamentron visited the various countries, the systems of twentymanament two states are reviewed. The earliest military law Lew. still in force is found in Norway and Denmark, and dates from 1683, while England and Sweden date from 2881. Sweden has a military penal code, and England is ruled by the Army Act. There are two kinds of military courts of first instance: (1) those belonging to separate military bodies, such as divisions, brigades, regiments; (2) those having jurisdiction in a certain territory, and their seat determined. In times of war the courts must follow the military bodies. In Bavaria and Switzeriand a military jury is attached to a court martial. In several states "auditors," i.e. judicial guides, are attached to courts martial. In some a military jurisconsult (lawyer) is attached as judge, always a fixed post. This obtains in Sweden, Finland, Austria-Hungary, Switzerland and Portugal. In Norway, Denmark, Sweden, Finland, Belgium, Great Britain, Germany, Austria, United States, Spain, Württemberg and Switzerland the presiding officer is chosen for the single trial. In qther states the military judges are appointed for a certain term, usually six months. The quorum of judges required on military courts on the continent differs, Seven judges sit in Belgium, Holland, France, Spain, Portugal, Greece, Turkey and Warttemberg; three only, in cases of ordinary offences committed by non-commissioned officers and soldiers in Switzerland, Russia, the United Kingdom, United States and Bavaria. In grave cases in the United Kingdom five to nine sit, nine in Russia, five to thirteen in the United States. In Norway and Denmark the court is of thirtecn up to twenty-five ${ }_{2}$ unless replaced hy a commission and a military lawyer.
In Norway, Denmark, Sweden, Finland, and Bavaria and other places in Germany, special summary courts martial are summmy held when necessary. Certain forms and legal Courte guarantees are then dispensed with. Such are held Alarthal in Belgium and Holland "in a town or place in state of siege." La Pretobte is a special court of a judge assisted by a registrar, for vagabonds, servants, sutlers, and with a very limited competence over soldiers who have committed a petty offence, held in time of war in France, Rumania and Greece.

The United Kingdom has a summary court martial when the regular court martial cannot be held without injuring the military service. In the United States there are the "field officers' court martial " and " military commission," consisting of three officers. The second is for judging spies and some other matters that escape the jurisdiction of the regular courts martial.

A special mailitary tribunal in Germany judges the officials attached to the army. Courts of honour exist in Russia, Germany, Bavaria, WUrttemberg, Austria-Hungary and Spain. Great Britain and the United States have the system of a "court of inquiry." This was only a commission of inquiry, but it is now public, the accused is present, and the witnesses are sworn.

Saldiers not on active service, says the Swedish report, shouid be answerable for infractions of common law under the jurisdiction of the civil courts. All infractions of military order or discipline committed by soldiers, ofmpenterse whetber on active service or no, shouid be judged by comith military courts. In time of war, it is equally admitted, military courts must judge all offences, even offences at common law, committed by soldiers forming part of an army on campaign. The difference lies in regard to offences committed in time of peace. Sweden, Great Britain, France, Itaiy and the United States, as a general rule, place offences against the common law (infractions de droit comman) in time of peace under the jurisdiction of the civil courts. In the United States offences against good order, in Great Britain personal offences (such as drunkenness), are judged by courts martial. In most other states the general nule is that soldiers, even in time of peace, if on actual service are judged by courts martial. In the case of complicity between a soldier and a civilian, sometimes one is judged by a military and the other by a civil court (in Germany, Switzerland and Spain), sometimes both by a military court (Belgium, Italy, Servia, Rumania and Greece); sometimes it depends on the nature of the crime-in the United Kingdom, United States, Sweden, Finland, Holland and Portugal. In Norway a mixed tribunal judges them.

The procedure in military courts differs according to the countries. In some systems (a) the examination and preparation of evidence are confided to a juge d'insfruction; (b) in other systems they are confided to a special commission of inquiry; Proandme (c) aqain, is other places they are left to the court marnal itself that will judge the case. The United Kingdom and the United States follow the last plan. There is no preparatory examination in these two countries. A commission of inquiry for the preparation of evidence is held in Norway, Denmark, Germany, Wartemberg, Austria-Hungary, Servia, Belgium and Holland. An audizor directs these courts of inquiry. In Russia an officer acts as juge dinstruction; in grave cases he must be a military jurisconsalt. In Italy, Spain, Rumania, Greece and Turkey an officer acts as juge d'instruction.
The proceedings before a court martial are usually public, except in the case of matters that offend morality, compromise public order, or where publicity is considered injurious to the phele interests of the service (cases of discipline, disclosing pmbleky. plans, \&c.). This does not apply (except in Great Britain and the United States) to the proceedings before the courts charged with preliminary investigation. In several states, i.e. Norway, Denmark, Holland, Austria, Servia, Germany and Wurtemberg. the public prosecutor is also the counsel of the accuscd. The auditor whodirects the court of inquiry fills these offices (except in cases of small importance in Germany and Wurttemberg). In other states there is a special office of public prosecusor. In Spain, Portugal, Rumania. Greece and Turkey he is an officer. In Russia, Belgium, Bavaria. Switzerland and Italy he is a military lawyer. In these countries the accused has the right to choose a coungel, or one is assigned him. In the United Kingdom and the United States, when the matter is grave, the direction of the case ia put in the hands of a judge advocate. Ia the United States the judge advocate is the public prosecutor.
There is no superior tribunal to which to appeal in Denmark, Great Britain and the United Statce In Denmark the cases are sent to the auditor-gencral, who can annul if there is error in form, and send back the case to be tried anew. In Great Britain and the United States judgment in ordinary cases must be confirmed by the commanding officer by whose order the court was called. He can lighten the sentence. In certain cases of great cravity it when. to the head of the state, after passing the revision of must go advocate general, who in Great Britain is the constitutional adviser of the crown as regards courts martial from the view of legality. There is also in these two countries a special revision of judgments in the judge advocate general's office. This revisional power is the safeguard of military justice, as all decisions are reviewed, and if any illegality is pointed out the proceedings are consequently quashed. The effect of this disapproval is not merely to annul the
propectingh but it aleo grevenes the accuing of any dinability or corfiture. The Brainh judge advocate's office bee been much strengthened. It now consints of: (I) The judge advocate general (ope of H.M. judges): (2) a deputy judge advocate general, who is a trained Lawyer: (3) a deputy judge advocute, also a trained lawyer; (4) a militery officer of the rank of cotonel who has been culled to the bar; (5) in South Arrica (since 1899. and on a five-years' appointment from 1go2) a colonel who has been called to the bar.
In Germany there is no appeal, except for officinls attached to the army. In Austria-Hungary the sentence can be lightened by the commanding officer. it can also be returned for trial by a superior court if it appears to him too light. In Spain all judgments have to be confirmed, and if confirmation in refused, it is carried before the tuppreme court of the navy and army. The condemned has no power of appeal himself, but all cames of death or life sentencen go before the supreme court of the navy and army. Rusia only requires the conn Girmation of the commanding officer. In Rumanis and Greece all condemned prisoners in time of peace can demand a court of revition, composed of a general and four superior officers. In time of war the court may be composed of three.
Certain forms of punishment, in all countries but the United Statem, can be given by the superior officer, without judicial intervention,

anopernany

 for cmall purely military offences, where a mummary Prathemeats be carried beqore court-martial. The punishment is immediately carried into force, but the person puniahed can complain to higher military authority. In that case, if the complaint is not admitted, the punishment is enhanced. The commoneter of these disciplinary punishments are deprivation of liberty, confined to barracks, arrento and prison. Certain apecial panish: ments obtain in certain countrieo-for instance, imprisonment in Turkey may be accompanied by a bread-and-water diet; and officers in Finland and Russia may be deprived of advancement.
In 1908 France took steps to abolich courto-martial in time of peace, all common law offences to be judged by the ordinary courts, and breaches of military discipline such as rebellion, insubordination, desertion and the like by mixed courts composed of civil and military megistrates.
See Clode, Military Forces of the Crown; T. Gram, Fonctionnement de la fustice militairs dans les diffictuls Elats de l'Rurope. (JNo. S.)

IILMIA (Fr. milica, Ger. Milis, from Lat. miles, soldier, mititia, military service), a term used generally for organized military forces which are not professional in character and not permanently embodied. All ancient armies, with the exception of the personal guards of their leaders, were militias or national levies, remaining under arms for the war or the campaign and returning to their ordinary occupations at the close of each military episode. Militias such as those of the Greek city-states and that of Rome were of course highly trained to the use of arms; so were the barbarian "nations in arms "; which overcame the professionalited Roman armies of the Empire; and although in the Eastern Empire these new fighting elements were aboorbed into a fully organized regular arm, in the West the tribal militia system gradually developed into feudalism. The noble and the knight indeed spent the greater part of their lives in the field and devoted themselves from their youth to the cult of arms, but the feudal tenantry, who were bound to give forty days' war service and no more, and tbe burghers wbo, somewhat later in the history of civilization, formed the efficient garrisons of the walled towns were true militias. The English Ycomanry indeed almost ruled the battlefield.
In the 5 th century tbe introduction of firearms began to weigh down the balance in favour of the professional soldier. Artillery was always the arm of the specialist. The development of infantry, "fire-power," with the early arquebus and musket, called for'the highest skill and steadiness in the individual soldier, and cavalry too adopted the new weapon in the form of long and expensive wheel-lock pistols. In the new military organization there was no place for the unprofessional soldier. The role of the unprofessional combatant, generally speaking, was that of an insurgent-harassing small detachments of the enemy, cutting off stragglers, and plundering convoys. Towards the end of the first civil war in England (1645) the country-folk banded themselves together to impose a peace on the two warring armies, but their menace was without effect, and they were easily disarmed by Fairiax and Cromwell, who did not even trouble to hold them as prisoners. The calling out of the errizre ban of Franche-Comté in 1675 displayed its ludicrous mefficiency, and thereafter in France, which set the fashion to

Europe in all military matters, the "provincial militia," which Louvois and Barberieux raised in place of the discredited arribre ban, was employed partly to find drafts for and partly to augment the regular army.

When a first line army was large enough to absorb the fighting strength of the country there was neither room nor need for a true militia force. This was the case with France under Napoleon's regime, but things were different elsewhere. In Great Britain the county militia (whose special history is briefly sketched below) was permanently embodied during the greater part of the Napoleonic Wars. Destitute as it was of technical and administrative services, of higher staffs and prganization, and even of cavalry, this militia was a regular army in all but name. Combining continuous service with territorial recruiting as it did, it consisted of men of a better stamp than the casually recruited regular forces. In fhose days, the militia was a county force commanded by the lordslieutenant and officered by men of influence; it was not administered by the War Office.

In other countries, Napoleon's invading armies had only to deal with regular or professional troops. Once these were crushed, nothing remained for the beaten side but to make peace with the conqueror on such terms as could be obtained. Militiss existed in name as organizations, for the production of more or less unwilling drafts for the line, but the fundamental militia obligation of defending the fatherland as distinct from defending the shate, produced only local and occasional outbursts of guerrilla wariare. In the Crimean War, the 1859 war in Italy, the 1866 war in Germany, and otber wars (the Hungarian War of 1848-49 excepted) tbe forces, other tban the regular troops, engaged in first line were guerrilleros, insurgents, Garibaldians, \&c., and behind the forces in first line there were draft-supplying agencies, but no true militia. Only the Britiah militia and tbe Prussian landwehr represented the self-contained army of second line, and of these tbe former was never put to the test, while the latter, responding feebly to a political call to arms in 185°, was in consequence so entirely reorganized that it formed a mere reat rank to the line troops. This latter system, consecrated by the German successes of 1870, became the universal model for the continent of Europe, and organized and self-contained militios to-day are only to be found in states maintaining first line armies of " general service "professionals, or in states which maintain no first line troops whatever. In the first class are the auxiliary forces of the British Empire and the United States, in the second the Swiss, Norwegian, Dutch and Spredish forces.

Militia of the United Kingdoy

The title of "militia" disappeared from the list of the British forces in 1908, on the conversion of the existing self-contained militia into an army ${ }^{.4}$ special reserve " which is restricted to the role of providing drafts for the first line. ${ }^{1}$ The "self-contained" second fine army of the present day is the Territorial Force (see Unitrd Kingdom : Army).
The county organization of England, with which throughout the militia was closely ascociated, began with the advent of the Saxons. The prototype of the militia was the Fyrd. In this force as reorganized by Alfred liability of service was general on the part of every able-bodied male between the ages of 16 and 60 . Although the title of "The Fyrd" survived until long after the Norman Conguest, the force established by King Alfred was known as the general levy, which was bound to appear armed when ordered to aid in suppressing domestic riots as well as ia defending the realm against invasion by foreign foes. Service was restricted to the counties, except In case of invasion, when it was extended to the whole kingdom. For centuries these remained with little alteration as the principles governing the national forces of the kingdom, and form in effect with certain developments the basis of the modern militia system. The Norman Coaquest was inmediately followed by the introduction of the feudal levy ia addition to the general levy, the distinction between these forces being that vhile obligation to eerve in the latter rested upon every male within certaia limits of

[^28]age, zervice in the feudal levy depended upon tenure of lend under the king as feudal tord. The general levy was not in any case tiable for service overseas, but the king for a long time employed hits feudal tenants in continental wars until they too, successefully reaisted the demand. Personal service formed the basis of both leviea, but cervice by deputy, or payment in lieu of personal service, and the calling out of a quota only, were allowed rom very early times. The feudal levy was discontinued during the Commonwealth and abolished at the Restoration; but liability to serve in the gencral levy has never been extinguished, but remaina in the statutory and practical form of liability to serve both in the general and local militia. Even at the abolition of these forces the statutory liability to zervice in them was not done nway with. Inspections of arms and the assembiy and training of the men raised under thia nationa! system. were secured from time to time by means of "assizes of arms," "views of armour," "commiskions of array." and "commissions of musters," dating from early in the 12 th century down to the 16th century. The machinery employed to carry out the law formed the basis of the existing procedure for the enforcement of the ballot for the militia, which thus bears-a strong resemblance to the means adopted from ancient times. These constitutional powers were frequently abused by "electing " or impressing men to serve gut of the kingdom, but this was checked in the year 1327 by an Act of Parliament, which strictly regulated the scope and limits of military service within the kingdom at the charge of the parishes or countics, but provided for service abroad at the charge of the Crown. "Commissions of musters" were a develogment of preceding measures for raising men and material for military service, under which the commissioners registered and mustered persons liable to serve, sorted them into bands and trained and exercised them at the charge of the county. These bands became known as train or bained bands, and were mustered annually. With them were associated lieutenants of counties, first appointed in 1549 by Edward VI., subsequently in Queen Mary's reign called lords lleutenant, and after the Restoration appointed as atatutory officers for the militis, their commisoions at the present day being isusued under the Militia Act. There does not appear to have been any clearly defined regimental organization in existence until these bands or compenies were called into active service, but the Acts of the Commonwealth supplied this defect, and initiated a permanent regimental system. One of the earliest attempts to reform the force ance the time of King Alfred was made by Chatics I. in 1629, when Orders in Council were issued instructing lords lieutenant to put the militia on a better footing and to fili up vacancies among the officers. Cromwell subsequently issued similar orders couched in strong terms, though under the Commonweaith the duties of lords tieutenant were not recognized, the militia being raised by commisaioners. The great ecrvices rendered by the militia in the "crowning mercy " of Worcester are a historic exception to the pencrai decadence of second line troops in the 17 th and 18th centuries (see Great Rebellion). At the Restoration an act was passed declaring that the control of the militia was the prerogative of the king. By the same statute the militia of each county was placed under the lieutenant. who was vested with the appointment of officers, but with a reservation to the Crown in the way of commissioning and dismismal. The coot of the annual training-for fourteen day--fell upon the local authority. Offences against discipline were dealt with by the civil magistrates, but with a power to the officers of fining and of imprisoning in de fault. Upon this footing the militis of England rernained for nearly a century with the general approval of the community. It was recognized as an instrument for defence and for the preservation of internal order, while it was especially popular from the circumstance that from its constitution and organization the Crown could not use it as a means of violating the constitution or abridging the liberty of the eubject. It was controlled and regulated in the county; it was officered by the landowners and their relatives, its ranks were Gilled by men not depending for their subsistence or advancement upon the favour of the Crown; its numbers and maintenance were beyond the royal control; its government wan by statute. While the supreme corumand was distinctly veated in the Crown, every practical security was thus taken against its use by the Crown for any object not constitutional or legitimate It was regarded as, and was, in fact, the army of the state as distinguished from the standing army, which was very much the army of the king personally. The latter consisted of hired soldiers, and was more than once recruited by a conscription, confined, however, to pirsons of the vagraut class not having a lawful employnient, while the former waa mainiy composed of those having a fixed ahode and status. The militia thus enjoyed for many years as compared with the regular forces a social as well as a constitutional superiority. To this, however, along with the gencral breakdown of militia systems under the new "profesaiona!" conditions of warfare, explained above, and perhape the practice of trying military offences by civil courts, may be attributed the disrepute into which the militia fell and the inefficiency it displayed, with the exception of the trained bands of London, until it was reorganized in 175%. Under the act of 1662 all train bands were discontinued in the counties, but thowe of London, with their auxiliaries, remained until 1794, when they were reorganized as the City of London Militia. In 1688 an act wras pamed raising the militia for one year, and for come time it was an
annually manctioned force te the regular arny is to-day. In r690, on the occasion of the threatened French invasion. the millitia was erabodied; and again in 1715 and 1745 during the troubles caused by the Old and Young Pretenders. In a pamphlet of 1712 the English militia was estimated at 7450 hone and 84.391 (oor soldiera From 1715 uatil 1734, and again from that year until 1757, with the exception of 1745, so votes were talicen in parliament for the militia.
The foresoing remarks apply only to the English millitia and its predecesors. Ireland and Scotland did not furnish any regular militia until 1715 and 1797 respectively, alchough in Scotland militia existed long before 1797. e.g. in Perthshire in 168 fi and in additioa corpa of lencibles were raised and embodied. The Irish militian when first raised in 1715 was restricted to Protestants between the ages of 16 and 60 , who were bound to appear or provide subatitutes. The force was not made subject to military law, but variour military offences were punishable by fine or imprisonment. Several amendmeats and other acts followed until 1793, when a new act was paseod providing for raising a force of militia by ballot among men between the ages of 18 and 45. to eerve for Cour yearn. Each county was liable to a fine of fs for each man deficient, and enlistment is the army was prohibited. Other amendments followed from time to time, and notably one in 1797 abolishing religious restrictions for the aupplementary militia, and another in 1802 removing the same restrictions in the case of the general militia. Finally, all the acts were conmolidated in 1809 by an act which fixed eatablishmente, provided for raising the men by ballor, but gave power to the lord-lieutenant to authorize voluntary enlitement by means of bounties, and also to suspend the raising of any regiment. The Soottish militia was at first raised by ballot among men between the ages of 19 and 30 . In 1802 former acts were replaced by an Act providing for the organization of the militia on a besis similar to that on which the militia of England was organized by the Consolidation Act passed in that year.

To return to England, the immediate cause of the organic reform carried out in 1757 was the disclosure of the inefficiency of the militia during the Rebellion of 1745 . The act of 1662 followed the old law by requiring owners of property to furnish men, horyes and arms in proportion to the value of their property, and the liability of persons of amali property was to be discharged out of a rate levied in the parish. This was entirely altered in 1757, a liability on tbe part of the county or pariah being subatituted for a liability on the part of individuals. Each county was required to furnish a quota apportioned among the various parishes; men were to be chooen by lot to serve for three years (chis being the first provision of a fixed term of eervice) or to provide, or pey fio for the provision of, a subatitue. and vacancies were to be flled from time to time by a like procese of ballot. The eqees of liability were from 18 to 45 . The system thus Icgalized is pratically the existing though suspended baliot systern. The force was to be annually trained and exercised for a limited period, and in cave of iavasion or danger thereof or in case of rebellion, the Crown could order it or any portion of it to be embodied; but only on condition of informing parliament (which was if not sitting to be sum:noned for the purpose). During the embodiment or annual trainine, it was subject to the Mutiny Act, except that no punishment diring training was to extend to "life or limb"; to prevent an unconstitutional use of the militia by the Crown, the estimate for its training was framed each year not by an executive minister of the sovereign, but by the House α Commons itsclf. Upon the initiative of a committee of the house, an act was passed providing for the pay and clothing of the militia for the year. The king directly appointed the permanent atafif and was given a veto on the appointment and promotion of the officers, who were to have a property qualification.
Under this act 30,000 millitiamen were raised by ballot and em. bodied from 1759 to 1763. This force was excluaively " Procestant," and remained so until 1803. The service of the militia as thus arranged remained pearly in the mame state until 1870. Pitt's reform, however, was followed by numerous amendmente, new enactmenta, and other changes, of which the following is a summary in chronological order:-
1758. Men volunteering to serve recognised as counting towards the quota.
1761. Raising of quota made compulsory on counties under penalty of fines.
Mutiny Act applied to militia when out for triaining as well as when embodied.
1775. (American War.) Act pessed empowering embodiment of militia in case of colonial as well as domertic rebellion.
1786. Charge on parishes for otorage of arms, ac., transferred to counties.
1795. Enlistment into requlars cocouraged.

179\%. Supplementary milhtia formed, conaisting of 63,878 men.
1798. (Irish Rebellion.) English militia volunteered for service in Ireland.
1799. Irish militia volunteered to serve in Great Britain. 15000 militiamen volunteered to regular army.
1803. 45.492 men raised for militia by ballot, but of these 49990 were substitutes.
1805. Militia afflisted to line for parpones of recruiting for regulare.
1806. Training Act to ralive by ballot 500,000 mes to be trained for one whole year, and then to discharge them from trining for two year.
1808. Difficulties having arisen under above Act, local militit (which is in effect the old general bovy) eatablished in addition to general militia then embodied.
27,000 militinmen voluntered to regular army during preceding twelve months.
18xy. English militia, hitherto not liable to serve out of the king: dom, now made liable to serve in any part of the United Kingdom under certain reatrictions, which ware subbequently (in 1859) removed.
Method of obraining aen from militia for requilars further systematized.
1812. In this year there were 250 regiments of local militia, with an entablishment of 240.388 men and 254.418 actually enrolled.
2813. During ten years, from 1803 to 1813 , nearly $\mathbf{1 0 0 , 0 0 0}$ militimen joined the regular army.
Act passed to enable militia to serve abroad te milltia with their own officers. Throe strong battalions joined the British amy in France.
1815. Militiamen recruited in great numbers the army which fought at Waterloo.
Local militia ceased ta be raised.
i816. Local militia and Ballot Act suspended
General militia disembodied.
1800-21-25. Militia called out for training.
1829. Act passed sumpending ballot for the general miritia.
.1831. Militiamen raised by ballot in accordance with Order in Council, 27th of December 1830 . This was the last ocestion on which the bealiot was put in force.
In the latter stages of the great French war the tendency of the government was to use the gencral militia rather as a retervoir producing drafts (in the end whole units) for service abroad. and the hocal militia as the real defensive force. Dunng the beight of the war (in 1812) the relative position of the various branches of the army was as follows: First line, the standing army; second line. the general or regular militia, which as the war went on were more and more used abroad; third line, the local militia, with the survivors of the voluntcers, who at that time numbered about 68,000 man. After the peace of 1815 the militia was allowed practically to fall into abeyance, and although the permanent staff was maintained it had no duties to perform. In 1848 the Prime Minister intimated in parliament his intention to re-estahlish the militia, but it was not until 1852, after an unsuccesoful attempt to resuscitate the local militia, that the general militia of England nas reorganized under a system of voluntary calistment with the ballot in reserve, Scotland and ireland being included in 1854. The property qualification of officers which had bitherto existed (with exception in favour of ex-officers of the army and navy) was reduced and after a further reduction in 1854, abolished in 1869. Larger powers respecting the militia were conferred upon the Crown, and during the Crimean War the queen was authonzed to embody the militia whenever a state of war existed with any forcign power. In that war the milituz was embodied and did garrison duty not only in the United Kingdom but in the Mediscrranean garrisons. thus enabling the authorities to send most of the available regular troops to the scene of hostilities. It further contributed many officers and some 30,000 men to the line. Durins the Indian Mutiny it Clicd scarcely less useful functions when again called out. The acceptance of voluntary offers of mervice in the Channel Islands and isle of Man was definitely authorized in 1859, and extended to service in Malta and Gibraltar in 1875;
In 1871 an important constitutional change was made. It was part of the new army syatem inaugurated in that ycar that the control of the militia should be removed from the lord-licutenant of the county and vested wholly in the Crown. It now virtually ceased to exist as a diatinct body, and in 1881 it became a part of the regular forces with a limitation as to the time and area and other conditions of service. Militia battalions were united with the line battalions to form territorial regiments, the artillery and engineers being also closely asmociated with the regular services Varous amendmenta and new enactments followed, all in the direction of increasing the utefulness of the militia, rendering it more efficient and readier for vervice, though at the same time maling it more and more a meane for eupplying recruite, both officers and men to the regular army. The oficers, who were commissioned by the Crown, were in 1877 made subject at all times to military lav. Non-commissioned officers and men were only so subject when embodied or out for training, with extension in the cape of men convicted of offerces committed duriag training until the expiration of the punichment. ${ }^{1}$ Ealistment was voluntary, compulsory service by ballot remained
${ }^{1}$ This, though here mentioned as part of a process of " regularizing "the militia, was in fact a reform that was advisable under any conditions. The new Teritorial Force when creeted out of the Volunteer Force (which bad no such liabilities except when training or serving with regulars) was made subject to military law, officers at all times, men whenever under instruction.
legal, but aupeaded. The period of eagngerbent wat for six years, reengatements for periods of four years up to the age of 45 being permitted. Bountiea were paid to militiamen at various rates upon enlistment, conclusion of training, re-engagement, enliatment into reserve or specia! service section, and other special circumstances Recruit training, maxisum six months, as a rule did not exceed three months. Kecruite were either drilled immediately upon enlistment at any time of the year, which is now the most usual system, or eloo at preliminary drils (first instituted in 1860), immediately preonding the annual training of the corpa. The annual training varied with the diferent branches of the service. The usual term for infantry was 27 days, but when on manceuvres this was generally extended to 34 dayn, 36 days being the legal maximum. Artillery and fortress enginecrs trained for 41 days and submarine mining engineers for 35 days Trainings took place for the most part in camp or barracter, and large numbers of militia battalions were latterly called on to take part in field mancruvrea. The militia dépdts occupied as a rule the same barracks, and officers and men wore (with dight dietinctions) the same uniform as the requlars The millitia occupied an important position in the mobilization echeme for national defence. The permanent staff (adjutant, quartermaster, and an extablishment of non-commissioned officers and buglers or drummers, all regulars) was engaged during the nom-tralning period of the year in recruiting, care of armes, clothing \&co, and in drilling recruits The general lines of the system, as regards training are still followed with the Special Reserve, though the constitution of the new force is very different.
The militia ordinarily was liable only for service in the United Kingdom, but by legislation in 1809 may voluntarily serve in any part of the world, including India. During 1899-1900, 22,000 militiamen were thus accepted for service abroad, the bulk of them proceeding to the seat of war in South Arrica.

The militia reserve consisted of men selected from the ranks of the militia for epecial enlistment for eervice in the regular army wben called upon in emergencies, in the following proportions to the establishments of the various corps: Artillery, one-third; engineers and infantry, one-fourth; medical staff corps, one-hall. The militia reserve was first formed in 1867, and in 1900 numbered 30,000 men. During an emergency in 1878, 20,000 silitia reservisti joined the regular army. The term " militia "reserve was therefore a complete misnomer, and the force so called was purely an army reserve. The special service section of the militia was formed by royal warrant in 1898 , and consisted of (1) millitia units and (2) individual militiamen. A militia unit was considered as available for special tervice if not less than 75% of the officers and men present at training mado a voluntary offer to engage for upecial service in any part of the world; and if in the infantry at least 500 and in the artiliery at least 250 men were accepted as qualified. Individual militiamen engage to serve either with their militia unit if it were regietered for aervice, or else for special service with the regular forces Liability for service was limited to twelve months Men of the special service section could also belong to the militia reserve, and receive a bounty in addition to that given for the reserve. The renult of this special section was not up to 1900 satisfactory. Very few units could quatify for registration, and the response of individual men was comparatively insignificant.

During and after the South African War, while militin recruiting for the regulars ahowed a constant increase compared with preceding years the strength of the militia itsell decreased year alter year. Its militia character had been diminishing ever since the creation of the "militia reserve" and the clome affiliation of the force to the regular army. For good or evil, then, it had become in the first place a draft-producing agency, and on the reorganization of the forces of the Crown into two lines by Mr Haldane the old "constitutional force" was frankly reorganized as a reserve for the line, enlistment and training conditions remaining somewhat similar to those in vogue in the militia, but the liability for ervice abroad becorint the first and mont important condition in the "special remervist's "enlistment.

IIT. (O. Eng. meoluc; from a common Indo-European root, cf. Lat. mulgere, Gr. duk λ (6v), the fluid secreted by the mammary glands of the division of vertebrate animals called Mammalla (see Mamary Gland), and primarily devised for the nourishment of their own young.
The milk of various domesticated animals is more or less used by man for food. The milt of the cow, which may be taken as typical of all others, and is indeed by far the most important and valuable of all (see Darry and Dargy Faruang), is, when newly drawn, an opaque white fluid, with a yellowish tinge، soft, bland and swestish to the taste, and possessed of a faintly animal odour. This odour, according to Schreiner, is due to the presence of sulphuretted hydrogen, and disappears after a short exposure. The specific gravity of milk ordinarily ranges from 1 -0a9 to 1 -033, very seldom reaching 1 -035 or falling so low as 1-027. In chemical constitution it conaists of an emulsion
of fatty globutes（cream）in a watery allaline colution of cascin， and a variety of sugar，peculiar to milk，called lactose．The fat（which when separated we know as butter）and the lactose constitute the carbonaceous portion of the milk regarded as food．The casein，which forms the principel constituent of cheese，and a certaln proportion of albumen which is present， form the nitrogenous，while the complex saline substances and water are the mineral constituents．These various substances ate present in the proportions which render millk \＆perfect and typical food suitabie to the wants of the young of the various animals for whom it is provided by nature．The milk of animals，so far as is known，contains them，although they are present in somewhat different proportions．It is probable that the roilk of ruminants possesses certain physical and physio－ logical distinctions from that of non－ruminant animals，which will account for the virtues attributed to the milk of the ass and mare．The following table exhibits the chemical constitution of the kinds of milk most frequently used by man：－

	Cow．		Goet．	Ewe．${ }^{\text {a }}$	Mare．	As．	Human．
	侐安	号	$\begin{aligned} & \hline \text { 总 } \\ & \text { 营 } \\ & > \end{aligned}$	景	姁		菏
Water． Fat	$\left\lvert\, \begin{gathered} 86 \cdot 87 \\ 3 \cdot 50 \end{gathered}\right.$	$\begin{array}{r} 87.00 \\ 4.00 \end{array}$	$\begin{array}{r} 84.48 \\ 6.11 \end{array}$	$\begin{array}{r} 83.70 \\ 4.45 \end{array}$	90－310 1.055	$\underset{0.11}{91.65}$	$\begin{array}{r} 88.02 \\ 2.90 \end{array}$
Camein and albumin．	$\} 4.75$	$4 \cdot 10$	3.94	5．16	－953	1.82	1.60
Sugar ：：	4.00 0.70	$\begin{gathered} 4.28 \\ 0.68 \end{gathered}$	$\begin{aligned} & 4.68 \\ & 0-79 \end{aligned}$	$\begin{aligned} & 5.73 \\ & 0-96 \end{aligned}$	$\begin{aligned} & 6.285 \\ & 0.369 \end{aligned}$	$\begin{aligned} & 6.08 \\ & 0.34 \end{aligned}$	$7-03$ 0.31

In addition to these constituents milk contains amall propor－ tions of the gases carbonic acid，sulphuretted hydrogen，nitrogen and orygen，and minute quantities of other principles，the constant presence and essential conditions of which have not been determined．These consist of galactin and lactochrome， suibstances peculiar to milk，discovered by Winter Blyth，with certain animal principles such as leucin，pepton，kreatin， tyrosin，\＆c．The salts in milk consist，according to the average of numerous analyses by Fleischmann，of the following constltuents：－

Milk thus is not to be regarded as a definite chemical compound nor even as a mixture of bodics in fixed and invariable propor－ tions．Not only does the milk of different races and breeds of cows vary within comparatively wide limits；the milk of the same animal is subject to extensive fluctuation．The principal causes of variation in the undividual are age，period of lactation， nature and amount of food，state of bealth，and treatment，such as frequency of milking，\＆c．The following table indicates the range of normal variations：－

The average quantity of milk yielded by cows is also highly variable，both in individuals and breeds．

Milk and Disease．－Alihough the milk of a perfectly healthy cow may be abeolutely sterile，it is difficult in obtain it in that condition． In the report of the joint committee appointed for the purpose by the county boroughs of Bradford．Huli，Leeds，Rotherham and Sheffield in 1908，the following conciusions were drawn：（1）Cows milk freshly drawn from the udder by ordinary methode containa bacieria．They are more numerous in the firs low of the milk． （2）There is a great increase in contamination in the milk at each stage before it reaches the customer．This is due to（a）the dirty condition of the cows＇udders，（b）the imperfect cleansumf of the cana and of the hands of the milkers．The committee recommend：
－Ewe＇s milk is exceedingly variable，especially in its percentage of fat．The above analysis is one of nine by Dr Arthur Voelcker，in which the fat was found to range from about 2 to $12!\%$
＂（v）The waching of the udder asd fanko with soap asd water，and similar attention to the handa of the milber．（2）Efficient steriliza－ tion of all vesaele by eteam if ponable，of by abundance of boiling water．（3）Rejection of the firat draw of the milk from each teat． （4）Avoldance of any wort raining duat immediately before or during milking．（5）Removal of the milk of each cow immediately from the shed．（6）Ventilation and cleanlinems of the cowahede．＂This provides for the reduction as lar as posaible of contamination during the milloing procemitsolf．As any becteria preseat in the milk tend to multiply rapidly on the way to the convumer，it is mainly a question of the time which chapres bofore consumption．It is，there－ Tore，further rocommended（a）that the milk be rapidly cooled or chillod，as the lower the temperature the leme do the bacteria mudtiply， （b）that contamination during railway transit be avoided by duat－ proof locked milk cane

By treating milk，at a temperature of $60^{\circ} \mathrm{C}$ ．for one hour， $70^{\circ} \mathrm{C}$ ． for ten minutes，and $95^{\circ} \mathrm{C}$ ．for one minute，tubercle becili，if present． will certainly be killed．Cholers and typhoid organismg are lema resistant，and are killed more quickly than tubercle bacilli at the above temperatarge Only a single pathogenic speciea can with－ stand the short boiling to which milk is ordinarily treated in domentic management，and this is the anthrax becillus containing epores． The danger from this source is remote，at the microbe does not form sporea within the animal body．Even in the warst cases，therefore， only vegetable forms，easily dentroyed by boiling，can find their way into the milk from the body of the cow．
The lactic acid becillus，al whys presest in unboiled milk（to which the wouring of milk is due），is eanily destroyed by heat（ but the bacillus mesmutariaus，of ten found in it，forms spores，which are not destroyed by ordinary boiling，and germinate when the milk is kept at a moderately warm temperature，producing a brisk fermentation thereby a large volume of gas is liberated．The fundamental idea of Soxhler＇s method for sterilizing milk is to boil it for forty minutes in amall botles holding just enough for one meal， and closing the same with an impervious stopper，which is only re－ moved jute before use．Milk so treated will keep at the ordinary room temperature，as the spores of the B．mesentericus do not develop below $15^{\circ} \mathrm{C}$ ；but if it be introduced into the alimentary canal of a child the opores will rapidly multiply，and in such cases large quanti－ ties of gas，siving rise to llatulency，will be formed，and posibly also poisonous decompocition products of albuminoid matter．To render milk sterile in the strict sense of the word it is necewary to raise it to a temperature of about $120^{\circ} \mathrm{C}$ ．fin t wenty minutes．Undes these condltions the lactose decomposes into dart－brown fisaion products，the fat loees its emulsified condition and separates out as cream which cannot be made to diffuse again even by shaking，and the albuminoids are converted into a form very difficult of digestion．

In short，there is the greatest difficulty in froeing milk on a large scale from germs without at the same time seriously prejudicing its flavour and nutritive value．Since，then，the destruction of the hardy germs is so difficult，the greater care should be taken，by wash－ ing the udder，hands and mill veasels，to secure extreme cleanfiness in the preparation of milk intended for infant consumption．Steriliza． tinn then becomea an easier task，the milk drawn under these con－ ditions being very poor in spore－fortulng bacteria．It is imperative that cream deatined for butter－maling should be frce from patho－ genic organisms The organisms of cholera，typhoid fever and tuberculosis present in butter retain their vitality for a long time． As butter is consumed in the raw otate，a trustworthy prefiminary treatment of the cresm is in the highest degree desirable．Schuppan has shown that it is possible to produce good buteer from Pasteurized or even sterilized cream，and Weigmann introduced the plan of arti－ fically souring cream by means of pure cultures of B，acidi lactici．
Sunce Metchnikof＇s introduction（see Longevity）of the use of soured milk for dietetic purposes－the lactic acnd bacillus destroying pathogenic bacteria in the intestine－a great impetus has been given to the multiplication of laboratory preparations containing culturee of the bacillus；and in recent yeare much benefit to bealth has， in certain casea．been derived from the discovery．

See also the articics Adultbration．Dairy and Dairy Farmino； Infancy，Dietetics；Food and Food Preservation；in the last of which the preparation of condensed millk s deacribed．

MILKWORT，in botany，the common name for plants of the genus Polygala（natural ordar Polygalaceae），a large genus widely dispersed in temperate and tropical regions and represented byy a few species in Britam．The common species，P wigaris，is a small wry perennial found on heaths and in meadows through． out the Britush lsles．The stems are 2 to 10 in ．long and bear narrow rather tough leaves and small，$\frac{1}{}$ to $\frac{1}{\frac{1}{i n} \text { ．long，white，}}$ pink，blue，lilac or purple flowers．The flowers（see fig）are peculiar in form and arrangement of parts，they bave five free sepals the two inner of which（b）are large petalord and winglike， forming the most conspicuous part of the flower，the petals are onited below mit the sheath of the eight stamens forming a tube eplit at the base behind，their form recalls that of the pee family．The nume Polygala is from the Greek rohtr，much，
and $\boldsymbol{\gamma} \mathrm{d} \lambda a$, mill, the plant being supposed to increase the yield of milk in cows. Some species with showy flowers are known in cultivation as greenhouse, or hardy annual or perennial, herbs or shrubs. The root of P. Senega, snake-root, a North American species is officinal. Sea milkwort is the common name for Glaux mariima, a small succulent herb found on seashores and in estuaries in the British Isies; it belongs to the primrose order (Primulacene).

Ahter Bers \& Schmidh, from Strasburger'g Lehronch dor Becanih, by perminden of Gustav Fischer.
Polygala Scnega.
A, Flower; a, small sepals; b, large sepals; c, keel, representing the annerior petal; d, its fimbriated edge; e, lateral petals. B, The 8 tamens united into a sheath below; k_{1} anthers (magnified).
MILL, JAMES ($1773-1836$), historian and philosopher, was born on the 6th of April 1773, at Northwater Bridge, in the parish of Logie-Pert, Forfarshire, the son of James Mill, a shoemaker. His mother, Isabel Fenton, of a good family which had suffered from connexion with the Stuart rising of 5745 , resolved that he should receive a first-rate education, and sent him first to the parish school and then to the Montrose Academy, where be remained till the unusual age of seventeen and a balf. He then entered the university of Edinburgh, where he distinguished bimselt as a Greek scholar. In October 5798 he was licensed as a preacher, hut met with little success. From 1790 to 1802, in addition to holding various tutorshipe, he occupied himself with historical and philosophical studies. Finding little prospect of a career in Scotland, in r8oz he went to London in company with Sir John Stuart, then member of parliament for Kincardineshire, and devoted himself to literary work. From 1803 to 1806 he was editor of an ambitious periodical called the Lierary Journal, which professed to give a summary view of all the leading departments of human knowledge. During this time be also edited the St James's Chronicle, belonging to the same proprietor. In 2804 he wrote a pamphlet on the corn trade, arguing against a bounty on the exportation of grain. In 1805 he published a translation (with notes and quotations) of C. F. Villers's work on the Reformation, an unspering exposure of the alleged vices of the papal system. In 8805 he married Harriet Burrow, whose mother, a widow, kept an establishment for lunatics in Hoxton. He then took a house in Pentonville, where his eldest son, John Stuart Mill ($q . v$.), was born in 1806 . About the end of this year he began bis History of India, which he took twelve years to complete, instead of three or four, as be had expected.
In 1808 be became accquainted with Jeremy Bentham, and was for many years his chief companion and ally. He adopted Bentham's principles in their entirety, and determined to devote all his energies to bringing them before the world. Between 1806 and 1818 he wrote for the Anti-Jacobin Review, the British Revisw and the Electric Review; but tbere is no means of tracing his contributions. In 1808 he began to write for the Edinourgh Review, to which he contributed steadily till 1813 , his first known article being "Money and Exchange." He also wrote on Spanish America, China, General Miranda, the East India Company, and the Liberty of the Press. In the Annual Review for $\mathbf{x} 808$ two articles of his are traced-a " Review of Fox's History," and an article on "Bentham's Law Reforms." probably his first published notice of Bentham. In 18 ri be co-operated with William Allen ($1770-1843$), quaker and chemist, in a periodical called the Philonthropish He contributed largely to every number-his principal topics being Education,

Freedom of the Press, and Prison Discipline (under which he expounded Bentham's "Panopticon"). He made powerful onslaughts on the Church in connexion with the Bell and Lancaster controversy, and took \& prominent part in the discussions which led to the foundation of London University in $\mathbf{8 8 2 5}$. In 1814 be wrote a number of articles, containing an exposition of utilitarianism, for the mupplement to the fifth edition of the Encyclopaedia Britannica, the most"important being those on " Jurisprudence," "Prisons" and "Government."

In 1818 the History of Indis was published, and obtained a great and inmediate success. It brought about a change in the author's position. The ycar following he was appointed an official in the India House, in the important department of the examiner of Indian correspondence. He gradually rose in rank till he was appointed, in 1830, head of the office, with a salary of $f 1900$, raised in 1836 to $£ 2000$. His great work, the Elements of Political Economy, appeared in 1821 (3rd and revised ed. 1826).

From 1824 to 1826 Mill contributed to the Westminester Revicw, started as the organ of his party, a number of articles in which he attacked the Edinburgh and Quarterly Reviews and ecclesiastical cstablishments. In 1829 appeared the Analysis of the Human Mind. From 183I to 1833 Mill was largely occupied in the defence of the East India Company, during the controversy attending the renewal of its charter, he being in virtue of his office the spokesman of the court of directors. For the Londom Review, founded by Sir William Molesworth in 1834, he wrote a notable article entitled "The Church and its Reform," which was much too sceptical for the time, and injured the Revices. His last published book was the Fragment on Mackintosh (1835). He died on the 23 rd of June 1836 .

Mill had a thorough acquaintance with Greek and Latin literature, general history, political, mental and moral philosophy. His intellect was logical in the highest degree; he was clear and precise, an enemy of loose reasoning, and quick to refute prevailing fallacies. All his work is marked by original constructive thought, except in a few suhjects, in which he confessedly expounded Bentham's views. At a time when social subjects were as a rule treated empirically, he brought first principles to bear at every point. His greatest literary monument is the History of India. The materials for narrating the acquisition by England of its Indian Empire were put into shape for the first time; a vast body of political theory was brought to bear on the delineation of the Hindu civilization; and the conduct of the actors in the successive stages of the conquest and administration of India was subjected to a scvere criticism. The work itself, and the author's official connexion with India for the last seventeen years of his life, effected a complete change in the whole system of governing that country.

Mill played a great part also in English politics, and was, more than any other man, the founder of what was called "philosophic radicalism." His writings on government and his personal influence among the Liberal politicians of his time determined the change of view from the French Revolution theories of the rights of man and the absolute equality of men to the claiming of securitics for good government through a wide extension of the franchise. Under this banner it was that the Reform Bill was fought and won. His Elements of Political Economy, which was intended only as a textbook of the subject, shows all the author's precision and lucidity. As Dr J. K. Ingram said, it has the "character of a work of art." It followed up the views of Ricardo, with whom Mill wes always on terms of intimacy. Its interest is mainly historical, as an accurate summary of views which are now largely discarded. Among the more important of its theses are: (1) that the chief problem of practical reformers is to limit the increase of population, on the assumption that capital does not maturally increase at the same rate as population (ii. 82 , art. 3); (2) that the value of a thing depends entirely on the quantity of labour put into it; and (3) that what is now known as the "unearned increment " of land is a proper object for taxation. The work as a whole is a striking example of the weaknest of treating
economic problems from a purely 2 priori standpoint by the deductive method.

By his Analysis of the Mind and his Fragment on Mackintosk Mill acquired a position in the bistory of psychology and ethics. He took up the problems of mind very much after the fashion of the Scottish school, as then represented by Reid, Stewart and Brown, but made a new start, due in part to Hartley, and still more to his own independent thinking. He carried out the principle of association into the analysis of the complex emotional states, as the affections, the aesthetic emotions and the moral sentiment, all which he endeavoured to resoive into pleasurable and painful sensations. But the salient merit of the Analysis is the constant endeavour after precise definition of terms and clear statement of doctrines. The Fragment on Mackinlosh is a severe exposure of the flimsiness and misrepresentations of Sir James Mackintosh's famous Dissertation on the Progress of E(hical Philosophy (1830), and discusses the foundations of ethics from the author's utilitarian point of view.

Bibltography.-Leslie Stephen, The English Utilitarians, vol. ii. (1900), and article in Dict. Nat. Biog.; A. Bain, James Mill (1882); G. S. Bower. Hartley and James Mill (1881); James McCosh, Scoutish Philosophy (1885): J. S. Mill, Aulobiography (1873): Th. Ribot, La Psychologie anglaise (1870; Eng. trans. I873); f. Morley in Fortnightly Resiex, xuxvii. (1882); Graham Wallas, The Life of Francis Place (1898).

MILL, JOHN (c. 1645-1707), English theologian, was born about 1645 at Shap in Westmorland, entered Queen's College, Oxford, as a servitor in 1661, and took his master's degree in 1669 in which year he spoke the "Oratio Panegyrica" at the opening of the Sheldonian Theatre. Soon afterwards be was chosen fellow and tutor of his college; in 1676 he became chaplain to the bishop of Oxford, and in 168s be obtained the rectory of Bletchington, Oxfordshire, and was made chaplain to Chartes IL From 1685 till his death he was principal of St Edmund's Hall; and in 1704 be was nominated hy Queen Anne to a prebendal stall in Canterhury. He died on the 23rd of June 1707 , just a fortnight after the publication of his Greek Testament.

Mill's Nooum testamentum gracum. cxm lectionibus pariantibus MSS. exemplarium, versionum, editionum SS. patrum el scriplorum ectiestaslicorum, el in easdem notis (Oxford, fol. 1707), was undertaken by the advice and encouragement of John Fell (q.v.), his predecessor in the field of New Testament criticism; it represents the labour of thirty years. and is admitted to mark a great advance on all that had previously been achicved. The text indeed is that of R. Siephanus (1550), but the notes, besides embodying all previously existing collections of various readings, add a vast number derived from his own examination of many new MSS, and Oriental versions (the latier unfortunately he used only in the Latin transla. tions). Though the amount of information given by Mill is emall compared with that in modern editions, it is probable that no one person, exeept perhaps Tischendorf, has added so much maierial for the work of textual criticism. He was the first to notice, though only incidentally, the value of the concurrence of the Latin evidence with the Codex Alcxandrinus, the only representative of an ancient non-Western Greek text then sufficiently known; this hint was not lost on Beniley (see Westcott and Hort, Introduction to New Testament). Mill's various readings, numbering about thirty thousand, were attacked by Danicl Whitby (1638-1726) in his Examen as destroying the validity of the text; Antony Collins also argued in the same sense though with a different objoct. The latter called forth a reply from Beniley (Phileleutherus lipsiensis). In $17 \mathrm{IO}_{0}$ Kuster reprinted Mill's Tescament at Amsterdam with the readings of twelve additional MSS.

MILL, JOHN STUART (r806-1873), English philosopher and economist, son of James Mill, was horn on the 20th of May $\mathbf{r 8 0 6}$ in his father's house in Pentonville, London. He was educated exclusively by his father, who was a strict disclplinarian, and at the age of three was taught the Greek alphabet and long lists of Greek words with their English equivalents. By his eighth year he had read Acsop's Fables, Xenophon's Anabasis, and the whole of Herodotus, and was acquainted with Lucian, Diogenes Laêrtius, Isocrates and six dialogues of Plato (see his Aulobiography). He had also read a great deal of history in EnglishRobertson's histories, Hume, Gibbon, Robert Watson's Philip II. and Philip III., Hooke's Roman History, part of a translation of Rollin's Ancient History, Langhorne's Plutarch, Burnet's Hislory of My Own Times, thirt y volumes of the Annual Register, Millar's Historical Visw of the English Gosernment, Mosheim's

Ecclesiastical History, M'Crie's Knox, and two histories of the Quakers. A contemporary record of Mill's studies from cight to thirteen is published in Bain's sketch of his life. It shows that the Aulobiography ratber understates the amount of work done. At the age of eight he began Latin, Euclid, and algebra, and was appointed schoolmaster to the younger children of the family. His main reading was still history, but he went through all the Latin and Greek authors commonly read in the schools and universities, besides several that are not commonly read by undergraduates. He was not taught to compose either in Latin or in Greek, and he was never an exact scholar; it was for the subject matler that he was required to read, and by the age of ten he could read Plato and Demosthenes with ease. His father's History of India was published in 1818; immediately thereafter, about the age of twelve, John began a thorough study of the scholastic logic, at the same time reading Aristote's logical treatises in the original. In the following year he was introduced to political economy and studied Adam Smith and Ricardo with his father.

Not unnaturally tbe training which the younger Mill received has aroused a mazement and criticism; and it is reasonable to doubt whether the material knowledge which he retained in the result was as valuable to him as his father imagined. It is important, however, to note that the really important part of the training was tbe close association which it involved with the strenuous character and vigorous intellect of his father. From his earliest days he spent much time in his father's study and habitually accompanied him on his walks in North London. Much therefore of what he acquired was assimilated without difficulty, and the accuracy of his impressions was tested by his subsequently drafting a resume of their conversations. He thus learned early to grapple with difficuities and to accustom himself to the necessity of precision in-argument and expression. It was an inevitable result of such an education that Mill acquired many of his facher's speculative opinions, and his father's way of defending them. But he did not receive the impress passively and mechanically. "One of the grand objects of education," accordiag to the elder Mill, "should be to generate a constant and anxious concern about evidence." The duty of collecling and weighing evidence for himself was at every turn impressed upon the boy; be was taught to accept no opinion on authority. He was deliberately educated as an apostle, but it was as an apostle of reasoned truth in human affairs, not as an apostle of any system of dogmatic tenets. It was to prevent any falling of from this high moral standard till it should become part of his being that his father kept the boy so closely with himself. Mill expressly says that his childhood was not unhappy. It seems unhappy only when we compare it with the normal life of a boy and dectine to imagine its peculiar enjoyments and aspirations. Mill complains that his father often required more than could be expected of him, hut his tasks were not so severe as to prevent him from growing up a healthy and high-spinited boy, though he was not constitutionally robust, and his pursuits were so different from those of other boys of the same age.

From May 1820 till July 1821 Mill was in France in the family of Sir Samuel Bentham, brother of Jeremy Bentham. Away from his father he maintained his laborious habits. Copious extracts from a diary kept by him at this time are given by Bain; they show how methodically be read and wrote, studied chemistry and botany, tackled advanced mathematical problems, made notes on the scenery and the people and customs of the country. He also gained a thorough acquaintance with the French language. On his return in 1821 be added to his work the study of psychology, and that of Roman law, which he read with John Austin, his father having half decided on the bar as the best profession open to him. In 1822, however, when he had just completed his seventeenth year, this intention was abandoned, and he entered as a clerk in the examiner's office of the India House, " with the understanding that he should be employed from the beginning in preparing drafts of despatches, and be thus trained up as a successor to those who then filled the highest departments of the office."

Mill's work at the India House, which was henceforth his Iivelihood, did not come before the public; bence some have scouted his political writings as the work of an abstract philosopber, entirely unacquainted with affairs. From the first be was more than a clerk, and after a short apprenticeship he was promoted, in 1828, to the responsible position of assistantexaminer with a salary of $£ 600$ a year. The duty of the so-called examiners was to examine the letters of the agents of the Company in India, and to draft instructions in reply. The character of the Company's govemment was almost entirely dependent upon their abilities as statesmen. For twenty years, from 1836 (when his father died) to 1856 , Mill had charge of the Company's relations with the native states, and in 1856 he became chief of the office with a salary of $£ 2000$. In the hundreds of despatches that he wrote in this capacity, much, no doubt, was done in accordance with established routine, but few statesmen of bis generation had a wider experience of the responsible application of the principles of government. About this work be said little in the Aulobiography, probably because his main concern there was to expound the influences that effected his moral and mental development.
About the time of his entering the India House Mill read Dumont's exposition of Bentham's doctrines in the Traite de Legislation, which made a lasting impression upon him. When he laid down the last volume, he says, he had become a different being. It gave unity to the detached and fragmentary parts of his knowledge and belicfs. The impression was confirmed by the study of the English psychologists, as well as Condillac and Helvetius, and in 1822-1823 he established among a few friends the "Utilitarian" Society, taking the word, as be tells us, from Gait's Annals of the Parish. Two newspapers were open to him-the Traveller, edited hy a friend of Bentham's, and the Morning Chronicle, edited by his father's friend Black. One of his first efforts was a solid argument for freedom of discussion, in a series of letters to the Chronicle apropos of the prosecution of Richard Carlile. But he watched all puhlic incidents with a vigilant eye, and seized every passing opportunity of exposing departures from sound principle in parliament and courts of justice. Another outlet was opened up for him (April 1824) by the starting of the Westminster Review, and still another in the following year in the Pasliamentary History and Review. This year also he found a congenial occupation in editing Bentham's Rationale of Judicial Evidence. All the time. his mind full of public questions, he discussed eagerly with the many men of distinction who came to his father's house. He engaged in set discussions at a reading society formed at Grote's house in 1825 , and in set debates at a Speculative Society formed in the same year.
From the Aulobiography we learn that in 1826 Mill's enthusiasm was checked hy a misgiving as to the value of the ends which he had set before him. This expression was the result, no doubt, of his strenuous training and the comparative lack of congenial friendships. His father was reserved, undemonstrative even to the pitch of chilling sternness, and among young Mill's comrades contempt of feeling was almost a watchword. Himself absorbed in abstract questions and projects of general philanthropy, be had been careless of personal attachment. On the other hand without experience he could not have been prepared for the actual slowness of the reformer's work. In 1826 he looked back to four years of eager toil. What were the results? He had become convinced that his comrades in the Utilitarian Society, never more than ten, had not the stuff in tbem for a world-shaking propaganda; the society itself was dissolved; the Parliamentary Revicw was a failure; the Westmisster did not pay its expenses; Bentham's Judicial Evidence produced little effect on the reviewers. His own reception at the Speculative Debating Socicty, where be first measured his strength in public confict, was calculated to produce selfdistrust. He found himself looked upon with curiosity as a precocious phenomenon, a "made man," an intellectual machine set to grind certain tunes. The outcome of this period of depression was a broadening of. his outlook on the problems
which he had set himself to solve. Fien now saiw that regard for the public good was too vague an object for the satisfaction of a man's affections. It is a proof of the dominating force of his father's character that it cost the younger Mill such an effort to shake of his stern creed about poetry and personal emotion. Like Plato, the elder Mill would have put poets under ban as enemies of truth, and he subordinated private to public affections. Landor's maxims of "few acquaintances, fewer friends, no familiarities " had his cordial approval. These doctrines the younger Mill now felt bimself forced in reason to abandon. Too much in awe of his father to make him a confidant, he wrestled in the gioomy solitude of his own mind. He gained from the struggle a more catholic view of human happiness, at delight in the poetry of nature and the affections as well as the poetry of heroic unselfishness, a disposition to study more sympathetically the point of view of opponents, a more courteous style of poiemic, a hatred of sectarianism, an ambition, no less noble and disinterested, but moderated to practical possibilities.

In the course of the next few years be wrote comparatively littie, but he continued his reading, and also derived much benefit from discussions held twice a week at Grote's bouse in Threadncedie Strcet. Gradually also he had the satisfaction of seeing the debates in the Speculative Society becoming famous enough to attract men with whom it was profitable for him to interchange opinions, among others Maurice and John Sterling. He ceased to attend the society in 1829, but he carried away from it the strengthening memory of failure overcome by persevering effort, and the important doctrinal conviction that 2 true system of political philosophy was "something much more complex and many-sided than be had previously had any idea of, and that its office was to supply, not a set of model institutions but principles from which the institutions suitable to any given circumstances might be deduced."

The first sketch of Mill's political philosophy appeared in a series of contributions to the Examiner in the autumn of 1830 entitled "Prospects in France." He was in Paris soon after. the July Revolution, and made the acquaintance of the leading spirits among the younger men; in his discussion of their proposals we find the germs of many thoughts afterwards more fully developed in his Representalive Government. It is from this time that Mill's letters supply a connected account of his life (see Hugh Elliott, Letlers of John Stuarl Mifl, 1910).
The letters in the Examiner may be taken as marking the close of his period of meditative search, and his ret urn to hopeful aspiring activity. It was characteristic of his nature that he should be stirred to such delight by the Revolution in France, and should labour so earnestly to make his countrymen understand with what gravity and sobriety it had been effected. Their own Reform Bill came soon after and it is again characteristic of Mill-at once of his enthusiasm and of his steady determination to do work that nobody else seemed able or willing to do-that we find him in the heat of the struggie in 1831 writing to the Examiner a series of letters on "The Spirit of the Age" which drew from Carlyle the singular exclamation "Here is a new mysticl" How litile this criticism was justified may be scen from the fact that Mill's inductive logic was the direct result of his aspirations after political stability as determined by the dominion of the wisest (Examiner letters). "Why is it," he asked, "that the multitude accept implicitly the decisions of the wisest, of the specially skilled, in physical science?" Because in physical science there is all but complete agreement in opinion. "And why this agreement?" Because all accept the same methods of investigation, the same tests of truth. Is it possible then to obtain unanimity as to the methods of arriving at conclusions in social and political matters, so as to secure similar agreement of opinion among the specially skilled, and similar general respect for their authority? The same thought appears in a review of Herschel's Nalural Philosophy, written about the same time. Mill remarks that the uncertainty banging over the very clements of moral and social philosophy proves that the means of arriving st the truth in those sciences are not yet
properly understood. "And whither," he adds, "cun mankind so advantageously turn; in order to learn the proper means; and to form their minds to the proper hahits, as to that branch of knowledge in which hy universal acknowledgment the greatest number of truths have been ascertained, and the greatest possible degree of certainty arrived at ?"
I By 1831 the period of depression bad passed; Mill's enthusiasm for humanity had heen thoroughly reawakened, and had taken the definite shape of an aspiration to supply an unimpeachable method of search for conclusions in moral and social science. No mystic ever worked with warmer zeal than Mill. But his zeal encountered a check which baffled him for several years, and which left its mark in various inconsistencies and incoherences in his completed system. He had been bred by his father in a great veneration for the syllogistic logic as an antidote against confused thinking. He attributed to his early discipline in this logic an impatience of vague language which in all likelihood was really fostered in him by his study of the Platonic dialogues and of Bentham, for he always had in himself more of Plato's fertile ingenuity in canvassing the meaning of vague terms than the schoolman's rigid consistency in the use of them. Be this as it may, enthusiastic as he was for a new logic that might give certainty to moral and social conclusions, Mill was no less resolute that the new logic should stand in no antagonism to the old. In his Westminster review of Whately's Logic in 1828 (invaluable to sll students of the genesis of Mill's logic) he appears, curiously enough, as an ardent and brilliant champion of the syllogistic logic against highfiers such as the Scottish philosophers who talk of "superseding" it by " a supposed system of inductive logic." His inductive logic must "supplement and not supersede." But for several years he searched in vain for the means of concatenation.
I Meantime, while recurring again and again, as was his custom, to this cardinal difficulty, Mill worked indefatigably in other directions where he saw his way clear. The working of the new order in France, and the personalities of the leading men, had a profound interest for him; he wrote on the subject in the Examiner: He had ceased to write for the Westminster in 1828; but during the years 1832 and 1833 he contributed many essays to Tail's Magazine, the Jurist, and the Monthly Reposiory. In 1835 Sir William Molesworth founded the London Review with Mill as editor; it was amalgamated with the Wesminster (as the London and Wesiminster Review) in 1836, and Mill continued editor (latterly proprietor also) till 1840 . Much of what he wrote then was subsequently incorporated in his systematic works: some of his essays were reprinted in his first two volumes of Dissertations and Discussions (1859). The essays on Bentham and Coleridge constituted the first manifesto of the new spirit which Mill sought to breathe into English Radicalism. But the reprinted papers give no just idea of the immense range of Mill's energy at this time. His position in the India Office, where alone he did work enough for most men, cut him off from entering parliament; but he laboured hard though ineffectually to influence the legislature from without hy combating the disposition to rest and be thankful. In his Autobiography he admits that the attempt to form a Radical party in parliament at that time was chimerical.

It was in 1837, on reading Whewell's Inductive Sciences and re-reading Herschel, that Mill at last saw his way clear both to formulating the methods of scientific investigation and joining on the new logic as a supplement to the old. The Logic was published in 1843. In 1844 appeared his Essays on Some Unselled Questions in Political Economy. These cssays were worked out and written many years before, and show Mill in his first stage as a political economist. Four out of the five essays are elaborate and powerful solutions of perplexing technical problems-the distribution of the gains of international commerce, the influence of consumption on production, the definition of productive and unproductive labour, the precise relations between profits and wages. Though Mill appears here purely as the disciple of Ricardo, striving after more precise statement, and reaching forward to further consequences, we
can well understand in reading these essays how about the time when he first sketched them he began to be conscious of power as an original and independent thinker.
That originality and independence became more conspicuous when he reached his second stage as a political economist, struggling forward towards the standpoint from which his systematic work was written. It would seem that in his fits of despondency one of the thoughts that marred his dreams of human improvement was the apparently inexorable character of economic laws, condemning thousands of labourers to a cramped and miserable existence, and thousands more to semistarvation. From this oppressive feeling he found relief in the thought set forth in the opening of the second book of his Political Economy-that, while the conditions of production have the necessity of physical laws, the distribution of what is produced among the various classes of producers is a matter of human arrangement, dependent upon alterable customs and institutions. There can be little douht that this thought, whether or not in the clear shape that it afterwards assumed, was the germ of all that is most distinctive in his system of political economy. This system, which for many years subsequently was regarded as authoritative, has been subjected to vigorous criticism hy later economists, and it is perhaps not too much to say that it now possesses mainly an historical interest. Its chief importance is perhaps the stress which it laid on the vital connexion which must suhsist between true economic theory and the wider facts of social and national development.
While his great systematic works were in progress, Mill wrote very little on events or books of the day. He turned aside for a few months from his Political Economy during the winter of the Irish famine ($1846-1847$) to advocate the creation of peasantproprietorships as a remedy for distress and disorder ia Ireland. He found time also to write elaborate articles on French history and Greek history in the Edinburgh Review apropos of Michelet, Guizot and Grote, besides some less elaborate essays.
The Political Economy was published in 1848. Mill could now leel that his main work was accomplished; he remained, however, on the alert for opportunities of useful influence, and pressed on with hardly diminished enthusiasm in his search for useful truth. Among other things, he made 2 more thorough study of socialist writers, with the result that, though he was not converted to any of their schemes as being immediately practicable, he began to look upon some more equal distribution of the produce of labour as a practicability of the remote future, and to dwell upon the prospect of such changes in human character as might render a stable society possible without the institution of private property. This be has called his third stage as a political economist, and he says that he was helped towards it by the lady, Mrs Taylor, ${ }^{1}$ who became his wife in $\mathbf{1 8 5 1}$. It is generally supposed that he writes with a lover's extravagance about this lady's powers when he compares her with Shelley and Carlyle. But a littie reflection will show that he wrote with his usual accuracy and sobriety when he described her influence on him. He expressly says that he owed none of his technical doctrine to her, that she influenced only his ideals of life for the individual and for society; the only work perhaps which was directly inspired by her is the essay on the enfranchisement of women (Dissertations, vol. ii.). It is obvious from what he says that his inner life became very different after he threw off his father's authority. This new inner life was strengthened and enlarged by Mrs Taylor.

During the seven years of his married life Mill published less than in any other period of his career, but four of his most
${ }^{1}$ Mrs Taylor (Harriet Hardy) Was the wife of John Taylor, a
wholesale druggist in the city of London. She was a confirmed invalid, and lived in the country, where Mill visited her regularly for twenty years, with the full consent of her husband. a man of limited mental powers, but of high character and unselfishness. Mill's friendship with Mra Taylor and their marriage in 1851 involved a break with his family (apparently due to his resentment at a fancied slight, not to any bitterness on their part). and his practical disappearance from soriety. (On these points see Mary Taylor, Mrs Mill's grand-daughter, in Elliott's edition of the Lethers.)
clowely reasoned and charecteristic works, the Liberty, the Usibliarianism, the Thoughts on Parliamentary Reform, and the Subjection of Women, besides his posthumously published easays on Nalure and on the Utility of Religion, were thought out and partly written in collaboration with his wife. In 1856 he became head of the examiner's office in the India House, and for two years, till the dissoution of the Company in 8858 , his official work, never a light task, kept him fully occupied. It fell to him as head of the office to write the defence of the Company's government of India when the transier of its powers was proposed. Mill was earnestly opposed to the transfer, and the documents in which he substantiated the proud boast for the Company that "few governments, even under far more favourable circumastances, have attempted so much for the good of their subjects or carried so many of their attempts to a beneficial issue," and exposed the defects of the proposed new government, are models of trenchant and dignified pleading.

On the dissolution of the Company Mill was offered a seat in the new council, but declined, and retired with a pension of E 1500 . His retirement from official work was followed almost immediately by his wifc's death at Avignon, whither they had come in the course of a tour. So great was the shock that for the rest of his life be spent most of his time at a vills at St Veran, near Avignon, returning to his Blackheath residence only for a sbort period in each year. He sought relief in active literary occupation, in politics, sociology and psychology. He published, with a touching dedication to bis wife, the treatise on Libarty, which they had wrought out together. He then turned to politics, and published, in view of the impending Reform Bill, a pamphlet on parliamentary reform. The chief feature in this was an idea concerning which he and Mrs Mill often deliberated -the necessity of providing checks against uneducated democracy. His suggeation of a plurality of votes, proportioned to the elector's degree of edueation, was avowedly put forward oniy as an ideal; he admitted that no autbentlc test of education could for the present be found. An anonymous Conservative caught at the scheme in another pamphiec, proposing income as a test. Soon after Mill supported in Fraser's, still with the same object, Hare's scheme for tbe representation of minorities. In the zutumn of the same year he turnod to psycbology, reviewing Bain's works in the Edinburgh Revicw. In his Representatioe Governmext ($\mathbf{2 8 6 0}$) he systematized opinions already put forward in many casual articles and essays. His Utiilharianism (published in Fraser's in 1861) was a closely-reasoned systematic attempt to answer objections to his ethical theory and remove misconceptions of it. He was especially anxious to make it clear that be included in "utility" the pleasures of the imagination and the gratifcation of the higher emotions, and to show how powerfully the good of mankind as a motive appealed to the imagination. His next treatise, The Subjection of Women, was not published till 1869.1 His Examination of Hamillon's Philosophy, published in 1865, had engaged a large share of his time for three years before.

While mainly occupied in those years with philosophical studies, Mill did not remit his interest in current politics. He supported the North in the American crisis of 1862, using all his strength to explain what has since been universally recognized as the issue really al stake in the struggle, the abolition of slavery. It was charicteristic of the closeness with which be watched current events, nad of his zeal in the cause of "lucidity," that when the Reader, an organ of science and unpartisan opinion, fell into difficulties in $\mathbf{1 8 6 5}$ Mill joined with some distinguished men of science and letters in an effort to keep th afloat. He supplied part of the money for carrying it on, contributed several articles, and assisted tbe editor, Fraser Rac, with his advice. The effort was vain, though such men as Herbert Spencer,
${ }^{2}$ He was one of the founders, with Mra P. A. Taylor, Miss Emily Davies and others, of the first wormen's suffrage socieety, which developed into the National Union of Women's Suffrage Societics, and his writings are stiil the most important theoretical statement of the case for wormen's suffrage. He presented to Parliament the Grat petition on the subject (see further Blackbura, Women's Sufrige Record).

Huxley, Tyndall, Cairnes, Mark Patison, F. Harrison, Sir Frederick Pollock and Lockyer were a mong the contributors.

In 1865 he agreed to stand as parliamentary candidate for Westminster, on conditions atrictly in accordance with his principles. He would not canvass, nor pay agents to canvass for him, nor would he engage to attend to the local business of the constituency. He was with difficulty persuaded even to address a meeting of the electors. The story of this remarkable election has been told hy James Beal, one of the most active sapporters of Mill's candidature. In parliament he adhered to his life-long principle of doing only work that needed to be done, and that nobody else seemed equally able or willing to do. It may have been a consciousness of this fact which prompted a remark, made by the Speaker, that Mill's presence in parliament cevated the tone of debate. The impression made by him in partiament is in some danger of being forgotiten, because he was not instrumental in carrying any great measure that might serve as an abiding memorial. But, although bis first speech on the bill for the provention of cattle diseases excited the opposition of country members, and a subsequent speech against the suspension of the Habeas Corpus Act in Ireland was very unfavourably received, Mill thoroughly succeeded in gaining the ear of the House. The only speecb made by him during his three years in parliament that was listened to with impatience was, curiously enough, his speech in favour of counteracting democracy by providing for the representation of minorities. His attack on the conduct of Governor Eyre in Jamaica (q.o.) was listened to, but with repugnance by the majority, although his action in this matter in and out of parliament was far from being ineffectual. He took an active part in the debates on Disracli's Reform Bill (moving an amendment to omit the word "man" and insert "person"", and belped to extort from the government several useful modifications of the Bill for the Prevention of Corrupt Practices. The reform of land tenure in Ireland, the representation of women, the reduction of the national debt, the reform of London government, the abrogation of the Declaration of Paris, were among the topics on which he spoke with marked effect. He took occasion more than once to enforce what he had often advocated in writing, Engiand's duty to intervene in foreign politics in support of the cause of freedom. As a speaker Mill was somewhat hesitating, pausing occasionailly as if to recover the tbread of his argument, hut he showed great readiness in extemporaneous debate. Viewed as a candidate for ministerial office, be might be regarded as a failure in parliament, but there can be no douht that his career there greatly extended his influence.

Mill's subscription to the election expenses of Bradlaugh, and his attitude towards Governor Eyre, are gencrally regarded as the main causes of his defeat in the general election of 1868. But, as he suggests himseli, his studied advocacy of unfamiliar projects of relorm had made him unpopular with "moderate Liberals." He retired with a sense of relief to bis cottage and his literary life at Avignon. His parliamentary duties and the quantity of correspondence brought upon him by increased publicity had absorbed nearly tbe whole of his time. The scanty leisure of his first recess had been devoted to writing his St Andrews rectorial address on higher education and to answering attacks on his criticism of Hamiiton; of the second, to annotating in conjunction with Bain and Findlater, his father's Analysis of the Mind. Now he looked forward to a literary life, and his ietters show how much be enjoyed the change. His little cottage was filled with books and newspapers; the beautiful country round it furnished him with a variety of walks; be read, wrote, discussed, walked, botanized. He was extremely fond of music, and was himself a fair pianist. His step-daughter, Miss Tayior (d. January 1907), was his constant companion after his wife's death. "Helen," he wrote to W. T. Thornton, an old colleague in the India House, " bas carried out ber long-cherished scheme (about which she tells me she consulted you) of a 'vibratory' for me, and has made a pleasant covered walk, some 30 ft . iong, where I can vibrate in cold or rainy weather. The terrace, you must know, as it qoes round two sides of the house, has got itself
dubbed the 'semi-circumgyratory.' In addition to this, Helen has built me a herbarium, a little room fitted up with closets for my plants, shelves for my botanical books, and a great table whereon to manipulate them all. Thus, you see, with my herbarium, my vibratory, and my semi-circumgyratory, I am in clover; and you may imagine with what scorn I think of the House of Commons, which, comfortable club as it is said to be, could offer me none of these comiorts, or, more perfectly speaking, these necessaries of life." Mill was an enthusiastic botanist all his life long, and a frequent contributor of notes and short papers to the Phytologisl. One of the things that he looked forward to during his last journey to Avignon was seeing the spring flowers and completing a flora of the locality. His delight in scenery frequently appears in letters written to his friends during his summer and autumn tours.

Yet he did not relax his laborious hahits nor his ardent outlook on human affairs. The essays in the fourth volume of his Dissertalions-on endowments, on land, on labour, on metaphysical and psychological questions-were written for the Fortnighly Review at intervals after his short parlinmentary carcer. One of his first tasks was to send his treatise on the Subjection of Women (written 1861, publisbed 1869, many editions) through the press. The essay on Theism was written soon after. The last public work in which he engaged was the starting of the Land Tenure Reform Association. The interception by tbe state of the unearned increment, and the promotion of co-operative agriculture, were the most striking features in his programme. He wrote in the Examiner and made a public speech in favour of the association a few months before his death. The secret of the ardour with which he took up this question prohably was his conviction that a great struggle was impending in Europe between labour and capital. He regarded his project as a timely compromise.

Mill died at Avignon on the 8th of May 1873. He was a man of extreme simplicity in his method of life. Though occasionally irritable in speech, in his written polemics be was remarkahle for courtesy to opponents and a capacity to understand their point of view. His references to his friends were always generous, nnd he was always ready to assist those whose work needed belp. For example, he desired to guarantee the cost of the first books of Bain and Herbert Spencer. A statue in bronze was placed on the Thames Embankment, and there is a good portrait by Watts (a copy of which, by Watts himself, was hung in the National Gallery).

The infuence which Mill's works cxerised upon contemporary English thought can scarcely be overestimated. His own writings and tlose of his successors (e.g. J. E. Cairnes and Alexander Bain) practically held the field during the third quarter of the 19th century and even later. In philosophy his chief work was to systematize and expound the utilitarianism of his lather and Bentham (sce UTilitarianism). He may, in fact, be regarded as the final exponent of that empirical school of philosophy which owed its impulse to John Locke, and is generally spoken of as being typically English. Its fundamental chameteristic is the emphasis laid upon human reason, i.e. upon the duty incumbent upon all thinkers to investigate for themsclves rather than to accept the authority of others. Knowledge must be based upon experience. In reasserting and amplifying the enpirical conclusions of his predecessors, especially in the sphere of ethies, Mill's chief function was the introduction of the humanist element. This was due, no doubt, to his revulsion from the sternnese of his upbringing and the period of stress through which he passed in early manhood, but also to the sympathetic and emotiona! qualities which manifested themselves in his carly manhood. We have seen, for example, that he was led to investigate the subject of logic because he found in attempting to advance his humanitarian schemes in politics an absence of that fundamental agreement which he recognized as the basis of scientific advance. Both his logical and his metaphysical studies were thus undertaken as the pre-requisites of a practical thwery fl Dusw development. Though be believed that the lower classes were not yet ripe for socialism, with the principles of which he (unlike James Nill and Bentham) was in general agreement, his whole life was devoted to the amelioration of the conditions of the working classes. This tact, no doubt, should be taken into account in any detailed criticism of the philomphic work: it was taken up not as an end but as ancillary to a social and ethical system. Reference to the articles on Locic, METAPMysics, \&c., will ahow that subsequent criticism, bowever much it has owed by way of stimulue to Mill's strenuous rationalism, has been able to point to much that is inconsisten, inadequate and even superficial in his
writings. Two main intellectual movements from widely different standpoints have combined to diminish his influence. On the one hand there has arisen a school of thinkers of the type of Thomas Hill Green, who have brought to bear on his metaphysical views the idealism of modern German thinkers. On the other hand are the evolutionists, who have sulstituted for the utilitarian ideal of the "greatest happiness " tho t of " race-preservation " and the "survival of the fittest " (eee ETHICs, ad. fin; SPENCER), In the sphere of psychology, likewise-e.g. in connexion with Mill's doctrine of Association of Ideas (q.t.) and the phrase " Mental Chemistry," by Which he sought to meet the problems which Associntionism left unsolved-modern crisicism and the experimental methode of the psycho-physiological school have set up wholly new criteris. With a new terminology and different fields of investigation (see Isychology).
A similar inte has befallen Mill's economic theories. The title of his work, Principles of Political Economy, with some of thair Applications to Social Philosophy, though open to criticism, indicated a less narrow and formal conception of the field of the science than had been common amongst his predecessorg. He aimed in fact at producing a work which might replace in ordinary use the Weallh of Nations, which in his opinion was " in many parts obsolete and in all imperfect." Adam Smith had invariably associated the general principles of the subject with their applicatione, and in treating those applications had perpetually appealed to other and often far larger considerations than pure political economy affords. And in the same spirit Mill desired, whilst incorporating all the results arrived at in the special science by Smith's successors, to exhibit purely economic phenomena in relation to the most advanced conceptions of his ourn tiate in the general philosophy of society, as Smith had done in relicence to the philosophy of his century. This design he certainly failed to realize. His book is very far indeed from being a "morlern Adam Smith." It is an admirably lucid, and even elegant, exposition of the Ricardian economics, the Malthusian theory being of course incorporated with these; but, notwithstanding the introduction of many minoc novelties, it is in its scientife substance little or nothing more.

With respect to economic method he shifted his position, yet to the end occupied uncertain ground. In the fifth of his early essays he asserted that the method a priori is the only mode of investigation in the social sciences, and that the method a poeteriori "is altogether incfficacious in those eciences as a means of arriving at any considerable body of valuable truth." When he wrote his Logic he had learned from Comte that the a posteriori methodin the form which he chose to call "inverse deduction "-was the only mode of arriving at truth in general sociology; and his admission of this at once renders the essay obsolete. But, unwilling to relinquish the a prion ntethod of his youth, he tries to establish a distinction of two sorts of economic inquiry, one of which, though not the other, can be handled by that method. Sometimes he epeaks of political, economy as a department "carved out of the general body of the science of society;" whilst on the other hand the title of his systematic work implies a doubt whether political economy is a part of "social philosophy" at alf, and not rather a study preparatory and auxiluary to it. Thus, on the logical as well as the dogmatic side, he halts between two opinions NotWithstanding his misgivings and even disclaimers, be yet remained as to merhod a member of the old school, and never pasoed into the new " historical " schoul.
Bibliography,- Works: System of Logic (2 vols. 1843 ; 9th ed. 1875:" People's" ed., 1881); Essays on some Unsetiled Questions of Political Economy (1844, cd. 1874): Principhes of Palitical Ecomomy $(2$ vols, 1848 ; many ed., especialiy ed. by W. J. Ashley, 1909): On Liberty (1859 : cd. Courtney, 1892, W. B. Columbine, 1903: with introd. Pringle-Pattion, 1910); Thoughts on Parliamentary Reform (1859): Dissertalions and Discussions (i., II., 1859; iii., 1867; iva 1876); Considerations on Reprasentative Government (1861; 3rd cd. 1865); U'ilitarianism (1863); Eramination of Sir W. Hamillon's Philosophy (1865); Aug. Comte and Positivism (1865, ed. 1908); Inauguyal Addriss at the Universily of St Andrews (1867); England and Ireland (186c); Subjection of Women (1869; ed. with introd, by Stanton Coit, 1906); Chapters and Speechers on the Irish Land Qacstion (1870). Tle Aulobiography appenred in 1873 (ed. 1908), and Three Essays on Religion (1874). Many of these hava been translated into Germian, and there is a German edition by Th. Gomperz (12 vols., $1473-1880$). A convenient edition in the New Universal Library appeared between 1905 and 1910.

Biographical and Criticul-Many of Mill's letters are published in Mrs Grote's life of her hubband, in Duncan's Life of Herbert Spencer, in the Memories of Caroline Fox, and in Kingaley's letters. There are also editions of the eorrespondence with Gustave d'Eichtnl and Conte (specially that of Levy-Bruhl, 1899). By far the most illuminating collection is that of Hugh Ellioth Letters of Joho Stuert Mill (2 vols., 1910), which contains letters to John Sterling, Carlyle, E. Lytton Bulwer (Lord Lytton), John Austin, Alex. Bain, and many leading French and German writers and politicians. These Ietters are essenvial to an understanding of Mil!'s life and thought. Besides the Aulobiography end many references in the writings of Mill's friends. (e.g. Alcx. Bain's Amobiography. 1904), we further
A. Bain, John Stuart Mill, a Personal Criticism (1882): Fox Bourne. Life of J. S. Mill (1873): John (Viscount) Morley, Miscellonees (1877), ひi. 239-327; J. E. Cairnes, J. S. Mill (1873), on economic theones: W. L. Courtney, Malaphysics of J. S. Mill (1879) and Life (1889): Douglas, John Stuant Mall. a Study of his Phulosophy (1895), and Ethics of J. S. Mull (1897); Albee. Hist. of Enp. LithLarianism (1902): Sir Leslie Stephen. The English Utilitarians (1900); J. MacCunn, Six Radical Thinkers (1907): Fred. Harrison, Tennyson, Ruskin. Mill (1899); John Watson, Comte, Mrll and Spencer (1895): T. Whittaker, Comte and Mill (1905); Charles Douglas, J. S. Mill, a Siudy of his Philosophy (1895): J. Riekaby, Free Will and Four English Philosophers (1906); J. M. Robertson, Modern Ilumanists (1891); D. G. Ritchic, Principles of State Interference (1891): W. Graham, English Political Philosophy from Hobbes to Maine (1899). There are also a number of valuable French and German criticisms, e.e. Taine, Positivisme anglais, élude sur Stuart Mill (Paris, 1864): F. A. Lange, Mills Ansichien über die sosiale Frage (Duisburg, 1866); Littre, A. Comte el Suart Mill (3rd ed., Paris, 1877): Cauret. Philosophie de Stwart Mill (Paris. 1885): Gomperx, John S. Mill, ein Nachruf (Vienna, 1889); S. Sanger. J. S. Mill, sein Leben und Lebenswerk (Stuttgart, 19nt); S. Becher, Erkenninistheoretische Untersuchungen zu Stuart Mills Thaorie der Kausalita! (1906): E. M. Kantzer, La Religion de J. S. Mill (1906). See also histories of modern phitosophy.
See further Logic (Historical Sketch); Psychology: Association of Ideas.
(V. M.: 〕. M. M.)

111 L (O . Eng. mylen, later myln, or miln, adapted from the late Lal. molina, cf. Fr. moulin, from Lat. mola, a mill, molere, to grind; from the same root, mol, is derived "meal;" the word appears in other Teutonic languages, cf. Du. molen, Ger. mikhe), the term given to the apparatus or machinery used in the grinding of corn into flour, and hence applied to similar mechanical devices for grinding, crualing to powder, or pulping other substances, e.g. coffee-mill, powder-mill. "Mill" was first used of the bullding containing the apparatus, frequently with a word atteched descriptive of the motive power, e.g. wind-mill, watermill, te. It was not the early word used of the actual grinding mechanism. The old hand-mill was known as a "quern," a word which appears in this sense in many Indo-European languages; the ullimate root is gar-, to grind. "Quern" (see FLoUR) is only remotely connected with "churn" (q.p.). The word is also applied to many mechanical devires by which raw material is transformed into a condition ready for use or into a stage preparatory to other processes, e.g. saw-mill, rolling-mill. \&c., or still more widely to huildings containing machinery used in manufactures, e.g. cotton-mill. In mining it is applied 20 various machincs used in breaking and crushing the ore (see Ore-Dressing).
In the engineering industries milling machines constitute a very important class of machine tools, the characteristic of which is that rotary cutters are employed for shaping the metal (see Toors). In coins the " milling is the serrated edge, called "crenneling" hy John Evelyn (Discourse on Medals, 1697. p. 225), which is formed on them to prevent clipping and filing. Coins made hy the old process of hammering were apt to have irregular edges which invited mutilation; but the introduction of the screw press, which came to be known as a mill (cl. W. Lowndes, Amendm. Sizter Coinage, 1695, p. 93), permitted the production of a regular edge with serrations, which in consequence were termed milling. This machine also enabled legends to be impressed round the edges of coins, such as the Deaws at butamen suggested hy Evelyn (see W. J. Hocking, Catalogus of the Coins, Sc., in the Museawn of the Rayal Mint, 1906). It was invented about the middle of the 16 h century, and has generally been attributed to Guyor Brucher (d. 1556), who was succeeded at the Paris mint hy his hrother Antoine. Introduced into England by one Eloye Mestrel in 1561, it was used for twelve years, and was then abandoned owing to the opposition of the mint officials to Mestrel, who was executed for counterfeiting and striking money outaide the precincts of the Tower of London; hut it was again introduced by one Peter Blondeau in i662, when it permanently superseded bammering. In the United States of America the term " milling" or " milled" is applied to the raised edge on the face of the coin; this is known in the British mint as "marking" (see Mnnt).
MILLAIS, 81R JOHN EVERETT ($8829-1806$), English painter, was born at Southamption of the seh.of June -8830, the son of

John William Millais, who belonged to an old Norman family sectled in Jersey for many generations, and Emily Mary, nes Evamy, the widow of a Mr Hodglinson. After his birth the family returned to Jersey, where the boy soon began to sketch. At the age of eight he drew his maternal grandfather. He went to school for a short time, but showed no inclination for study, and was afterwards educated entirely by his mother. In 8835 the family removed to Dinan in Brittany, where he sketched the French officera, to their great amusement, and in 1837, on the family's return to Jersey, he was laught drawing by a Mr Bissel.' In 1838 he came to London, and on the strong recommendation of Sir Martin Archer Shee, P.R.A., his future was decided. He was sent at once to Suss's school, and entered the Academy' schools in 8840 . He won a silver medal from the Societ y of Arts in 1839, and carried of all the prizes at the Royal Academy. He was popular amonest the students, and was called "the child," because he wore his boyish costume till long after the usual age. In 8840 and the immediately succeeding years he', made the acquaintance of Wordsworth and other interesting and useful people. He was at this time painting small pictures, \&c., for a dealer named Thomas, and defraying a great part of the household expenses in Gower Street, wherc his family lived.' In 1846 be exhibited "Pizarro seizing the Inca of Peru" at the Royal Academy, and in 1847 "Elgiva seized by the Soldiers of Odo." In the latter year he competed unsuccessfully at the exhihition of designs for the decoration of the Houses of Parliament, sending a very large picture of "The Widow's Mite,". which was afterwards cut up. In the beginning of 1848 he and W. Holman Hunt, dissatisfied with the theory and practice of British art, which had sunk to its lowest and most conventional level, initiated what is known as the Pre-Raphaelite movement, and were joined by Dante Gahricl Rossetti, and afterwards by ive others, allogether forming the Pre-Raphaelite Brotherhood. Rossetti was then engaged, under the technical guidance of Hunt, upon bis picture of "The Girlhood of Mary Virgin," which, with Hunt 's " Light of the World "and Millais's "Christ in the House of His Parents," forms what has been called the trilogy of PreRaphaclite art. According to Millais, the Pre-Raphaelites had but one idea-" to present on canvas what they saw in Nature." Millais's first picture on his new principles was a banquet scene from Keats's "Isabella " (1849), and contains all the characteristics of Pre-Raphaclite work, including minute imitation of nature down to the smallest detail, and the study of all persons and objects directly from the originals. The tale was told with dramatic force, and the expression of the heads was excellent. His next important pictare, "Christ in the House of His Parents," or "The Carpenter's Sbop" ($\mathbf{1 8 5 0}$), represented a supposed incident in the childhood of our Lord (reated in a simply realistic manner, and drew down upon him a storm of abuse from nearly all quarters, religious and artistic. The rest of his more surictly Pre-Raphaelite, pictures-" The Return of the Dove to the Ark," "The Woodman's Daughter" and the "Mariana" of 1851 , "The Huguenot" and "Ophelia" of 1852 ," The Proscribed Royalist " and "The Order of Release " of 1853 -met with less opposition, and established his reputation with the public. Indeed, this may be said to bave been accomplished hy the "Huguenol "and " Ophelia," the refined sentiment and exquisite execution of which appealed to nearly all who were unprejudiced. The public were also greauly infiuenced by the splendid championship of Ruskin, who, in letters to The Times, and in a pamphlet called "Pre-Raphaelitism," enthusiastically espoused the cause of the Brotherhood. In 1851 Millais, who had refused to read Modern Painters, where the supposed principles of the Brotherhood were first recommended, became acquainted with Ruskin, and in 1853 went to Scotland with him and Mrs Ruskin, be latter of whom sat for the woman in "The Order of Release." He made several designs for Ruskin, and painted his portrait. In ${ }^{18} 55$ Millais exhibhited "The Rescue," a scene from a fire, which drew great attention, from the frantic expression of the mother and the brilliant peinting of the glare. In the Paris Exhibition of this year he was represented hy "The Order of Release," "Opbelia "and "Tbe Return of the Dove." This was aloo the
year of his marriage with Mrs Ruskis (Euphemia Chalmers, daughter of Mr George Gray of Bowerswell, Perth), who had obtained a decree of the nullity of her previous marriage. The newly-wedded couple went to live at Annat Lodge, near Bowerswell, where "Autumn Leaves," described by Ruskin as "the first instance of a perfect twilight," was peinted. This and "Peace Concluded" were singled out for special praise by Ruskin in his notes on the Academy Exhibition of 1856, which contained, with other works by Millais, the picture of "A Blind Girl," with a beautiful background of Icklesham and its common. The principal pictures of 1857 were "Sir Isumbras at the Ford," and "The Escape of a Heretic," both of which were violently attacked by Ruskin, who was kinder to the "Apple-blossoms" and "Vale of Rest " of 1859 , extolling the power of their painting, but still insisting on the degeneracy of the artist. The "Black Brunswicker" of 1860 was in motive very like the "Huguenot," but it was less refined in expression, and a great deal broader in Execution, and may be said to mark the end of the period of transition from his minute Pre-Raphaelite manner to the masterly freedom of his mature style. From 1860 to 1869 the invention of Millais was much employed in illustration, especially of Trollope's novels, beginning with Framley Parsorage in the Cornkill Magaxine. He made altogether eighty-seven drawings for Trollope, and was the cleverest and one of the most prolific of the book illustrators of the 'sixties. He contributed to Moron's illustrated edition of Tonnyson's Pooms, and made occasional drawings for Once a Week, the Illustrated London News, Good Words, and other periodicals and books. In 1803 he was elected a Royal Academician. The most Important pictures of this and the next few years were "The Eve of St Agnes," remarkable for the painting of moonlight, "Romans leaving Britain" (1865), " Jephthah " (1867), "Rosalind and Celia " (1868), "A Flood," and "The Boyhood of Raleigh" (1870). All these were executed in a very broad and masterly manner. In many of his pictures of this period, such as "The Boyhood of Raleigh," his children were his models, and formed the subject of many more, like "My First Sermon," "My Second Sermon," "Sleeping," " Awake," "Sisters," "The First Minnet," and "The Wolf's Den." He now painted many single figures with more or less sentiment, like "Stella," "Vanessa," and "The Gambler's Wife," with occasionally a more important composition, like "Pilgrims to St Paul's," and "Victory, O Lord" (exhibited 1871), representing Aaron and Hur holding up Moses' hands (Exod. xvii. 12). With it was exhibited the first and most popular of his pure landscapes, called "Chill October," which was followed at intervals by several others remarkable for literal truth to nature and fine execution. They were all from Perthshire, where be generally spent the autumn, and included "Scotch Firs" and "Winter Fuel" (painted in 1874), "Over the Hills and Far away," and "The Fringe of the Moor" (1875) and "The Sound of Many Waters" (1876). A later series was painted in the neighbourhood of Murthly, a village in the parish of Little Dunkeld, Perthshire, where he rented a house and shooting from 1881 to 1891. It was to painting nature and the world around him that he principally devoted himself for the last twenty-five years of his life, abandoning imaginative or didactic themes. To this period belong a number of pictures of children, with fancy titles, like "Cherry Ripe," "Little Miss Muffet," "Bubbles," and others well known by reproductions in black and white and in colour for the illustrated papers; and also some charming studies of girlhood, like "Sweetest eyes were ever seen," and "Cinderella." Amongat his more serious pictures were "The Princes in the Tower" (1878), "The Princess Elizabeth" (1879), two pictures from Scott-"Effie Deans " and "The Master of Ravenswood"painted for Messrs Agnew in 1877 and 1878, and "The NorthWest Pasaage," sometimes regarded as his masterpiece, repren senting an old mariner (painted from Edward John Trelawney, the friend of Byron) listening to some tale of Arctic exploration in a room overbooking the sea and strewn with charts. "A Yeoman of the Guard " (1877) was perhaps his most splendid piece of colour, and was greally admired at the Paris Exhibition
of 1878 , where it was sent with "Chill October " and three others of his pictures. But perhaps the works of his later years by which be will be most remembered are his portraits-especially his three portraits of Gladstone (1879,1885 and 1890), and those of John Bright, of Lord Tennyson, and of Lord Beaconsfield, which was left unfinished at his death. He also painted the marquess of Salisbury, Lord Rosebery, the dukes of Devonshire and Argyll, Cardinal Newman, Thomas Carlyle, Sir James Paget, Sir Henry Irving, George Grote, Lord Chief Justice Russell, J. C. Hook, R.A., and himself (Ufizi Gallery, Florence). He drew Charles Dickens after his death Amongst his finer portraits of women were those of Mra Bischoffsheim, the duchess of Westminster, Lady Campbell and Mrs Jopling.

No very scrious interruption of his usual life as a prosperous English gentleman occurred in these years, except the death of his second son, George, in 1878. In 1875 he went to Holland, one of his few visits to the Continent. In 1879 he left Cromwell Place for a house at Palace Gate, Kensington, which he built, and where he died. In 1885 le was created a baronet, on the suggestion of Mr Gladstone. In 1892 his health began to break down. After a bad attack of influenza he was troubled with a swelling in his throat, which proved to be due to cancer. He suffered much from depression, but worked when he could, and derived much pleasure in painting several pictures, including "St Stephen," "A Disciple," "Speak I Speak I" (which was bought out of the Chantrey Beqnest), and "The Forerunner" his last exhibited subject-picture. His finely-characterized portraits of Mr John Hare, the actor, and Bir Richard Quain belong also to his last years. In 1895, in consequence of the illness of Lord (then Sir Frederick) Leighton, he was called upon to preside at the annual banquet of the Royal Academy, and on the death of Lord Leighton he was elected to the presidential chair. He died on the 13th of August 1896, and was buried in St Paul's Cathedral. The Winter Exhibition of the Royal Academy in 1898 was devoted to his works. The list of his honours at home and abroad is a long one. Millais was one of the greatest painters of his time, and did more than any other to infuse a new and healthy life into British art. He had not the imagination of an idealist, but he could paint what he saiv with a force which has seldom been excelled. As a man he was manly, frank and genial, devoted to his art and his family, and very fond of sport; especially hunting, fishing and shooting. He was greatly loved by a very large circle of friends. He was singularly handsome, and had a fine presence. The National Gallery of British Art possesses many of his finest works. He is also represented in the National Gallery, in the National Portrait Gallery, the Victoria and Albert Museum, and in the public galleries at Manchester, Liverpool and Birmingham.
Authorities-I. G. Millais, Life and Letters, \&ic.; Ruskin's Modarm Painters, Noles on Royal Academy Exhibilions, Pre-Raphaelit ism, Ecc. C Cotalogues of Grovenor Gallery (summer of 1886); and of Royal Academy (winter of 1898); M. H. Spielmann , Millais and his Works (London, 1896); A. L. Baldry, Sir J. E. Millais, his Art and Infucuce (London, 1899).
(C. Mo.)

MILLAR, ANDRET ($1707-1768$), British puhlisher, was born in 1707. About 1729 he started business as a bookseller and publisher in the Strand, Landon. His own judgment in literary matters was amall, but be collected an excelleni staff of literary advisers, and did not hesitate to pay what at the time were considered large prices for good material. "I respect Millar, sir," said Dr Johnson in 1755, "he has raised the price of literature." He paid Thomson fios for The Secsons, and Fielding a total sum of $£ 700$ for T om Jomes and $£ 1000$ for Amedia. He was one of the syndicate of booksellers who financed Johnson's Diclionary, and on him the work of seeing that book through the press mainly fell. He also published the histories of Robertion and Hume. He died at his villa at Kew Green, near London, on the 8 th of June 1768.

MILLAD, $\&$ town of southern France, capital of an arrondiseement in the department of Aveyron, on the right bank of the Tarn at its confluence with the Dourbie, 74 m . N. of Bezziers on the Southern railway. Pop. (19e 5), 16,853 . Millau lies in a
rich valley 1200 ft . above the see surrounded by the spurs of the Levezou, Causse Noir and Lerzac ranges. The streets are narrow and some of the houses of great antiquity, but the town in surrounded by spacions boulevards. One of its squares is bordered on two aides by wooden galleries supported on stone columns. The only buildings of special interest are the Romanesque church of Notre Dame, restored in the 16th century, and the fine Gothic belfry of the old botel de ville. Millau is seat of a sub-prefect, and poseesses tribunals of first instance and of commerce, a board of trade-arbitrators, a chamber of commerce and a communal college. The principal industry is the manufacture of gloves, and various branches of the leather industry are carried on. The chief articles of trade are akins, wool, wine and Roquefort cheese.
In the middle ages Millan was the seat of a viscounty held By the counts of Barcelona and afterwards. by the counts of Armagnac. In the 16th century it became one of theleading strongholds of Calvinism in southern France. In 1620 it revolted against Louis XIII., and after its submission Richelieu caused its fortifications to be dismantled. The edict of Nantes hastened the decline of the town, which did not recover. Its prosperity till after the Revolution.
i MILIBURY, a township of Worcester county, Massachusetts, on the Blackstone river, 5 m . S.S.E of Worcester. Pop. (18 go), 4428; (1900) 4460 (1176 fortign-bom); (1905, Ptate censuis) 4631 ; (1910) 4740 Ares, 15.79 sq. m. Millbury is served hy the.New York, New Haven \& Hartford, and the Boston \& Albany railways, and by electric interurben railways. It lies for the most part in the valley of the Blackstone river, from which water-power is derived for its mills; among its manufactures are cotton, linen, felt and woollen goods, hemp thread, and foundry and machine-shop products. The municipality owns and operates the waterworks and electric-lighting plant. Millbury was formed in 1813 from the North Parish of Sutton; in 1851 a part of Auburn was annexed to the township.

MLLESDGEVILLs, a city and the county-seat of Baldwin county, in the central part of Georgia, U.S.A., on the Oconee river; at the head of navigation, 32 m. E.N.E. of Macon. Pop. (1890), 3322; (1900), 4219 (2663 negroes); (1910), 4385. It is served by the Georgia and the Central of Geotgia railways. Milledgeville is situated in the Cotton Belt, and its principal industry is the preparation of cotton for the markets. The importance of the place, however, is mainly educational and historical. It is the seat of the Middle Georgia Military and Agricultural College, which occupies the old capitol building, and of the Georgia Normal and Industrial College for girls (1889; enrolment 1908-1909, 653), which is a part of the University of Georgia, and occuples the site of the old state penitentiary. About 2 m . north-west of Milledgeville is the state juvenile reformatory; 2 m . south of the city are the siate asylums for white and negro insane; and 3 m . north-west is the state prison farm. Milledgeville was founded in 1803, and was named in honour of John Milledge (1757-1818), a representative in Congress in 1792-1793 and 1795-1802, governor of Georgia in 1802-1806, a United States senator in 1806-1800, and a benefactor of the state university. In 1804 it was made the seat of the state government in place of Louisville (capital in 1795-1804; pop. in 1900, 1009), a dignity it heid until 1868. The city was first chartered in 1836 . Atthough admirably situated for trade and manufacturing, Milledgeville was surpassed in both by Macon, whlch became the commercial emporium of middle Georgia; but it was a favourite place of residence for the wealthy and cultivated class of Georgians before the Civil War. It was seized by General William T. Sherman on the a3rd of November 1864. In order to remove the state documents beyond reach of the enemy, Governor Joseph E. Brown called upon the convicts in the penitentiary for aid, granting them pardons in return for their services.

MILENRIUM (a pseudo-Latin word formed on the analogy of biennium, triensium, from Lat. mille, a thousand, and annus, year), literally a period of a thousand years. The term is specially used of the'period of 1000 years during whlch Christ,
as has been believed, would return to govern the earth in person. Hence it is used to describe a vague time in the future when all fiaws in human existence will have vanished, and perfect goodneas and happiness will prevail. The attribution of a mystic significance to the millennium-period, though perhaps not prominent in that theory of Christian eschatology to which the names Millenarianism and Chiliasm (from Gr. xidehs, a thousand) are given, is quite common in non-Christian religions and cosmological systems.

Faith in the nearness of Christ's second advent and the establishing of bis reign of glory on the earth was undoubtedly a strong point in the primitive Christian Church. In the anticipations of the future prevalent amongst the early Christians (c. 50-1 50) it is necessary to distinguish a fired and a fluctuating element. The former includes (1) the notion that a last terrible battle with the enemies of God was impending; (2) the faith in the speedy return of Christ; (3) the conviction that Christ will judge all men, and (4) will set up a kingdom of glory on earth. To the latter belong views of the Antichrist, of the heathen worldpower, of the place, extent, and duration of the earthly kingdom of Christ, \&c. These remained in a state of solution; they were modified from day to day, partly because of the changing circumstances of the present by which forecasts of the future were regulated, partly because the indications-real or supposed-of the ancient prophets always admitted of new combinations and constructions. But even here certain positions were agreed on in large sections of Christendom. Amongst these was the expectation that the future kingdom of Christ on earth should have a fired duration-according to the most prevalent opinion, a duration of one thousand years. From this fact the whole ancient Christian eschatology was known in later times as "chiliasm"-a name which is not strictly accurate, since the doctrine of the millennium was only one feature in its scheme of the future.

1. This idea that the Messianic kingdom of the future on earth should have a definite duration has-like the whole eschatology of the primitive Church-its roots in the Jewish apocalyptic literature, where it appears at a comparatively late period. At first it was assumed that the Messianic kingdom in Palestine would last for ever (so the prophets; cf. Jer. wriv. 6; Ezek. xuxvii. 25; Joel iv. 20; Dan. vi. 27; Sibyll. iii. 49 seq., 766; Psalt. Salom. zvii. 4; Enoch Lxii. 14), and this seems always to have been the most widely accepted view (John xii. 34). But from a comparison of prophetic pasages of the Old Testament learned apocalyptic writers came to the conclusion that a distinction must be drawn between the earthly appearance of the Messiah and the appearance of God Himself amongst His people and in the Gentile world for the final judgment. As a necessary consequence, a limited period had to be assigned to the Messianic kingdom. According to the Apocalypse of Baruch (cl. 3) this kingdom will last "donec finiatur mundus corruptionis." In the Book of Enoch (xci. 12) "a week" is specified, in the Apocalypse of Eara (vii. 28 seq .) four hundred years. This figure, corresponding to the four hundred years of Egyptian bondage, occurs also in the Talmud (Sanhedrin 99a). But this is the only passage; the Talmud has no fixed doctrine on the point. The view most frequently expressed there (see Von Otto in Hifgenfad's Zeiksckrift, 1877, p. 527 seq.) is that the Messianic kingdom will last for one thousand (some said two thousand) years. "In six days God created the world, on the seventh He rested. But a day of God is equal to a thousand years (Ps. xc. 4). Hence the world will last for six thousand years of toil and labour; then will come one thousand years of Sabbath rest for the people of God in. the kingdom of the Messiah." This idea must have already been very common in the first century before Christ. The combination of Gen. i., Dan. ir. and Ps. xc. 4 was peculiarly fascinating.

Nowhere in the discourses of Jesus is there a hint.of a limited duration of the Messianic kingdom. The apostolic epistles are equally free from any trace of chillasm (neither i Cor. Iv. 23 seq nor I Thess. Iv. I6 seq. points in this direction). In Revelatior however, it occurs in the following abave (ch II.). Aites

Christ has appeared from heaven in the grise of a warrior, and vanquished the antichristian world-power, the wisdom of the world and the devil, those who have remained steadfast in the time of the last catastrophe, and have given up their lives for their faith, shall be raisod up, and shall reign with Christ on this earth as a royal priesthood for one thousand years. Al the end of this time Satan is to be let loose again for a short setson; he will prepare a new onslaught, but God will miraculously destroy him and his hosts. Then will follow the general resurrection of the dead, the last judgment, and the creation of new heavens and a new earth. That all believers will have a share in the first resurrection and in the Messianic kingdom is an idea of which the author of Revelation knows nothing. The earthly kingdom of Christ is reserved for those who have endured the most terrible tribulation, who have withstood the supreme effort of the world-power-that is, for those who are actually members of the church of the last days. The Jewish expectation is thus considerably curtailed, as it is also shorn of its sensual attractions. "Blessed and holy is he that hath part in the first resurrection; on such the second death hath no power; but they shall be priests of God and of Christ, and shall reign with Him a thousand years." Other ancient Christian authors were not so cautious. Accepting the Jewish apocalypses as sacred books of venerable antiquity, they read them eagerly, and transferred their contents bodily to Cbristianity. Nay more, the Gentile Christians took possession of them, and just in proportion as they were neglected by the Jews-who, after the war of Bar-Cochba, became indifferent to the Messianic hope and hardened themselves once more in devotion to the law- they were naturalized in the Christian communities. The result was that these books became "Christian" documents; it is entirely to Christian, not to Jewish, tradition that we owe their preservation. The Jewish expectations are adopted for example, hy Papias, by the writer of the epistle of Barnabas, and by-Justin. Papias actually confounds expressions of Jesus with verses from the Apocalypse of Baruch, referring to the amazing fertility of the days of the Messianic kingdom (Papias in Iren. v. 33). Barnabas (Ep. 15) gives us the Jewish theory (from Gen. i. and Ps. xc. 4) that the present condition of the world is to last six thousand years from the creation, that at the beginning of the Sabbath (the seventh millennium) the Son of God appears, to put an end to the time of "the unjust onc," to judge the ungodly and renew the earth. But he does not indulge, like Papias, in sensuous descriptions of this seventh millennium; to Barnabas it is a time of rest, of sinlessness, and of a holy peace. It is not the end, however; it is lollowed by an eighth day of eternal duration-"the beginning of another world." So that in the view of Barnabas the Messianic reign still belongs to outros δ alür. Justin (Dial. 80) speaks of chiliasm as a necessary part of complete orthodoxy, although be knows Christians who do not accept it. He believes, with the Jews, in a restoration and extension of the city of Jerusalem; he assumes that this city will be the seat of the Messianic kingdom, and he takes it as a matter of course that there all belicvers (here he is at one with Barnabas) along with patriarchs and prophets will enjoy perfect felicity for one thousand years. That a philosopher like Justin, with a bias towards an Hellenic construction of the Christiau religion, should nevertheless have accepted its chillastic elements is the strongest proof that these enthusiastic expectations were inscparably bound up with the Christian laith down to the middle of the and century. And another proof is found in the fact that even a speculative Jewish Christian like Cerinthus not only did not renounce the chiliastic hope, but pictured the future kingdom of Christ as a kingdom of sensual pleasures, of cating and drinking and marriage (cstivities (Euseb. H. E. iii. 28, vii. 25).

After the middle of the and century these expectatlons were gradually thrust into the becisground. They would never have died out, however, had not circumstances altered, and a new mental attitude been taken up. The spirit of philosophical and theological speculation and of ethical reflection, which began to spread through the churches, did not know what to make of the old hopos of the future. To a new generation they seamed paltry.
earthly and facitastic, and far-aceing mex had good reason to regard them as a source of political danger. But more than this, these wild dreatns about the glorious kingdom of Christ began to disturb the organization which the churches had seen fit to introduce. In the interests of self-preservation against the world, the state and the heretics, the Christian communities had formed themselves into compact societies with a definite creed and constitution, and they felt that their existence was threatened by the white heat of religious subjectivity. So early as the year 170 , a church party in Asia Minor-the so-called Alogi-rejected the whole body of apocalyptic writings and denounced the book of Revelation as a book of fahles. All the more powerful was the reaction. In the so-called Alontanistic controversy (c. 160-220) one of the principal issues involved was the continuance of the chiliastic expectations in the churches. The Monanists of Acia Minor defended them in their integrity, with one slight modificetion: they announced that Pepusa, the city of Alontanus, would be the site of the New Jerusalem and the millennial kingdom. After the Montanistic controversy chiliastic views were more and more discredited in the Greek Church; they were, in fact, stigmatized as "Jewish" and consequently "heretical." It was the Alexandrian theology that superseded them; that is to say, NeoPlatonic mysticism triumphed over the early Christian hope of the future, first among the "cultured," and then, when the theology of the "cultured" had taken the faith of the "uncultured " under its protection, amongst the latter also. About the year 260 an Egyptian bishop, Nepos, in a treatise called
 theology and vindicate chiliasm by exegetical methods. Several congregations took his part; but ultimately Dionysius, bishop of Alexandria, succeeded in healing the schism and asserting the allegorical interpretation of the prophets as the only legitimate exegesis. During this controversy Dionysius became convinced that the victory of mystical theology over "Jewish" chiliasm would never be secure so long as the book of Revelation passed for an apostolic writing and kept its place among the homologoumena of the canon. He accordingly raised the question of its apostolic origin; and by reviving old difficulies, with ingenious arguments of his own, he carried his point. At the time of Eusebius the Greek Church was saturated with prejudice against the book and with doubts as to its canonicity. In the course of the 4 th century it was removed from the Greek caoon, and thus the troublesome foundation on which chiliasm might have continued to build was got rid of. The attempts of Methodius of Tyre at the beginning of the 4th century and Apollinarius of Laodicea about 360 to defend chiliasm and assail the theology of Origen had no result. For many centuries the Greek Church kept Revelation out of its canon, and consequently chiliasm remained in its grave. It was considered a sufficient safeguard against the spiritualizing eschatology of Origen and his school to have rescued the main doctrines of the creed and the regula fodei (the visible advent of Christ; eternal misery and hell-fire for the wicked). Anything beyond this was held to be Jewish. It was only the chronologists and historians of the church who, following Julius Africanus, made use of apocalyptic numbers in their calculations, while court theologians like Eusebius entertained the imperial table with discussions as to whether the dining-hall of the emperor-the second David and Solomon, the beloved of God-might not be the New Jerusalem of John's Apocalypse. Euschius was not the first who dabbled in such speculations. Dionysius of Alexandria had already referred a Messianic prediction of the Old Testament to the emperor Gallienus. But mysilism and political servility between them gave the deathblow to chiliasm in the Greek Church. It never again obtained a footing there; for, although, late in the middle ages, the book of Revelation-by what means we cannot tell-did recover its authority, the Church was by that time so hopelessly trammelled by a magical cultus as to be incapable of fresh developments. In the Semitic churches of the East (the Syrian, Arabian and Ethiopian), and in that of Armenia, the apocalyptic literature was prescrved much longer than in the Greck Church. They were very conservative of ancient traditions in general, and beace
chiliasm survived amongot them to a later date than in Alexandria or Constantinople.

But the Western Church was also more conservative than the Greek. Her theologians had, to begin with, little turn for mystical speculation; their tendency was rather to reduce the gospel to a system of morals. Now for the moralists chiliasm had a special significance as the one distinguishing feature of the gospel, and the only thing that gave a specifically Christian character to their system. This, however, holds good of the Western theologians only after the middle of the 3rd century. The earlier fathers, Irenaeus, Hippolytus, Tertullian, believed in chifiasm simply because it was a part of thetradition of the church and because Marcion and the Gnostics would have nothing to do with it. Irenacus (v. 28, 29) has the same conception of the millennial kingdom as Barnabas and Papias, and appeals in support of it to the testimony of disciples of the apostles. Hippolytus, although an opponent of Montanism, was nevertheless a thorough-going millennarian (sce his book De Antichristo). Tertullian (cf. especially Ads. Marcion., 3) aimed at a more spiritual conception of the millennial blessings than Papias had, but he still adhered, especially in his Montanistic period, to all the ancient anticipations. It is the same all through the 3 rd and 4th centuries with chose Latin theologians who escaped the inluence of Greek speculation. Commodian, Victorinus Pettavensis, Lactantius and Sulpicius Severus were all pronounced millennarians, holding by the very details of the primitive Christian expectations. They still believe, as John did. in the return of Nero as the Antichrist; they still expect that after the first resurrection Christ will reign with his saints "in the flesh " for a thousand years. Once, but only once (in the Gospel of Nicodemus), the time is reduced to five hundred years. Victori. nus wrote a commentary on the Apocalypse of John: and all these theologians, especially Lactantius, were diligent students of the ancient Sibylline oracles of Jewish and Christian origin, and treated them as divine revelations. As to the canonicity and apostolic authorship of the Johannine Apocalypse no doubts were ever entertained in the West; indeed an Apocalypse of Peter was stili retained in the canon in the 3 rd century. That of Ezra, in its Latin translation, must have been all but a canonical book-the numbers of extant manuscripts of the so-calied 4 Ezra being incredibly great, while several of them are found in copies of the Latin Bible at the beginning of the 16th century. The Apocalypse of Hermas was much read till far through the middle ages, and has also kept its place in some Bibles. The apocalyplic "Testamenta duodecim patriarcharum" was a favourite reading-book; and Latin versions of ancient apocalypses are being continually brought to light Irom Western libraries (e.g. the Assumplio Mosis, the Ascensio Jesajae, \&c.). All these lacts show how vigorousiy the carly hopes of the future maintained themselves in the West. In the hands of moralistic theologians, like Lactantius, they certainly assume a somewhat grotesque form, but the fact that these men clung to them is the clearest evidence that in the West millennarianism was still a point of " orthodoxy " in the 4 th century.

This state of matters, however, gradually disappeared after the end of the 4th century. The change was brought about by two causes-first, Greek theology, which reached the West chiefly through Jerome Rufinus and Ambrose, and. second, the new idea of the church wrought out by Augustinc on the basis of the altered political situation of the church. Augustine was the first who ventured to teach that the catholic church, in its empirical form, was the kingdom of Christ, that the millennial kingdom had commenced with the appearing of Christ, and was cherefore an accomplished fact. By this doctrine of Augustine's. the old millennarianism, though not completely extirpated, was at least banished from the official theology. It still lived on. however, in the lower strata of Christian society; and in certain undercurrents of tradition it was transmitted from century to century. At various periods in the history of the middle ages we encounter sudden outbreaks of millennarianism, sometimes as the tenet of a smail sect, sometimes as a far-reaching move ment. And, since it had been suppressed, not, as in the East, by
mystical speculation, its mightiest antagonist, but by the political church of the hierarchy, we find that wherever chiliasm appears in the middle ages it makes common cause with all enemies of the secularized church. It strengthened the hands of church democracy; it formed an alliance with the pure souls who held up to the church the ideal of apostolic poverty; it united itself for a time even with mysticism in a common opposition to the supremacy of the church; nay, it fent the strength of its convictions to the support of states and princes in their efforts to break the political power of the church. It is sufficient to recall the well-known names of Joachim of Floris, of all the numerous Franciscan spirit ualiste, of the leading sectaries from the 13th to the 1 sth century who assailed the papacy and the secularism of the church-above all, the name of Occam. In these men the millennarianism of the ancient church came tolife again; and in the revolutionary movements of the 1 gth and 16 h centuriesespecially in the Anabaptist movements-itappears with all its old uncompromising energy. If the church, and not the state, was regarded as Babylon, and the pope declared to be the Antichrist, these were legitimate inferences from the ancient traditions and the actual position of the church. But, of course, the new chiliasm was not in every respect identical with the old. It could not hold its ground without admitting certain innovations. The "everlasting gospel " of Joachim of Floris was a different thing from the announcement of Christ's glorious return in the clouds of heaven; the "age of the spirit" which mystics and spiritualists expected contained traits which must be characterized as " modern "; and the " kingdom" of the Anabaptists in Nünster was a Satanic caricature of that kingdom in which the Christians of the 2nd century fooked for a peaceful Sabbath rest. Only we must not form our ideas of the great apocalyptic and chiliastic movement of the first decades of the 16 th century Irom the rabble in Mtinster. There were pure evangelical forces at work in it; and many Anabaptists need not shun comparison with the Christians of the upostolic and post-apostolic ages.

The Gcrman and Swiss Reformers also believed that the end of the world was near, but they had different aims in view from those of the Anabaptists. It was not from poverty and apocalypticism that they hoped for a reformation of the Church. In contrast to the fanatics, after a brief hesitation they threw millennarianism overboard, and along with it all other "opiniones Judaicae." They took up the same ground in this respect which the Roman Catholic Church had occupied since the time of Augustine. How millennarianism nevertheless found its way, with the hejp of apocalyptic mysticism and Anabaptist influences into the churches of the Reformation, chiefly among the Reformed sects, but afterwards also in the Lutheran Church, how it became incorporated with Pietism, how in more recent times an exceedingly mild type of "academic" chiliasm has been developed from a belief in the verbal Inspiration of the Bible, how finally new sects are still springing up here and there with apucalyptic and chiliastic expectations-these are matters which cannot he fully entered upon here.
Sce Schârer, Lehrbuch der neuteslamentlichen Zeiteaschichte (1874), 55 28. 29; Conodi. Kilitsche Geschichte des Chiliasmms (1781); R. H. Charles, The Doclrime of a Future Life (1899): Bcok of the Secrets of Enoch (1806). pp. xxvii-xxx, ch. xxxii. 2-xxxiii. 2; A pocalypse of Baruch (1896), xxix. 3-8 (notes): Bock of Enoch (index. s.v. "Messianic Kingdom"); Bousset, Religzon des Judenthums (1903), 273-276: C. A. Briggs, The Messiah of the A postles, p. 284 eq. ; Sabaticr. Les Origimes litheraires et la composition de P. A pocalypse de St Jean (1887): Spitta, Du Offenbarnng des Johanues untersuch (i889). See also Eschatolocy and works there quoted. (A. Ha.)

MILLER, HUGH (1802-1856), Scottish geologist and man of letters, was born in humble circumstances at Cromarty, on tbe toth of October 1802; his father, Hugh Niller, a seaman, was drowned when he was bat five ycars old. His primary education was acquired at a dame's school and afterwards at the parish school, and at the age of six he had learned that "the art of reading is the art of finding stories in books." At the age of twelve he began to write verses. Two of his mother's brothers, James and "Sandy" Wright, hard-working men at Cromarty.
offered to assist him to enter the ministry, but he felt no call to the sacred office, and from 1820 to 1822 he was apprenticed to a stone-mason. During the next few years he obtained employment as a journeyman mason in Edinburgh, Inverness and various other parts of Scotland. The writing of verses occupied his leisure hours, and in 1826 he sent to the Scolsman an "Ode on Greece" which was refused. It was not until 1829 that he met with his first success in the publication of Poems worillen in the Leisure Hours of a Journeyman Mason. These were printed and issued from the office of the Inverness Courier. Miller now turned his attention to prose and contributed many easays to the Inverness Courier. As remarked by Sir A. Geikie, "These made so favourable an impression that they were soon afterwards reprinted separately. They marked the advent of a writer gifted with no ordinary powers of narration and with the command of a pure, nervous and masculine style."

At the age of thirty-two he was still a stone-mason, but in the latter part of 1834 he was offered a post as accountant in the Commercial Bank of Scolland, and was almost immediately transferred to the Cromarty branch. His prose writings had now attracted much notice, and be next issued in 1835 Scenes and Legends of the North of Scolland, or the traditionat history of Cromarty, in which he introduced some memoranda on the geology. This work met with a cordial reception. Miller, while still a stone-mason, had observed the abundant fossils in the Jurassic shales on the shores of Ethie, but it was not until 1830 that he first obeained remains of fossil fishes in the Old RedSandstone. These for many years be collected and studied as far as he could, and in 1837 some of his specimens were brought to the notice of R. I. Murchison and Professor Agassiz. In the following year he was in communication with Murchison and his career as a geologist was definitely opened.

In 1837 Miller married Lydia Falconer Frazer (1811 1 -1876), a lady of good position and great natural ability, whom he had met six years previously. He set up his houschold in Cromarty, on a salary of sixty pounds a year, aided by the small sums he then earned by literary work; and his wife took a few pupils. Mrs Miller eventually became well known under the pseudonym of Mrs Harrict Myrtie as author of the Oceas Child (1857) and other story-books for children.

Soon after his marriage, Miller became greatly stirred by the internal dissensions in the Church of Scolland, of which he was a staunch member, and he published two pamphlets which brought him to the notice of some of the prominent members of the liberal church party. In 18_{80} he went by invitation to Edinburgh to edit a new Whig newspaper, the Witness, which was intended to support the views of those who after the disruption in 1843 formed the Free Church. The paper rapidly attained a large circulation; and this was no doubt largely due to his own literary and scientific essays. In 1840 he contributed a series of articles on The Old Red Sandslone, and these were reprinted in book form in the following year. The charm of this work was widely appreciated, as was also the natural sagacity shown in the descriptions and restorations of some of the fossil fishes. His Footprints of the Crcator was published in 1849, and My Schools and Schoolmasters in 1854 He was engaged on the final proofs of his Testimony of the Rocks on the day of his death. During the last year of his life he suffered from inflammation of the lungs; and the strain of ill-health proving too severe, be died by his own hand in Edinburgh on the ajrd of December 1856 . By request of his wife, The Cruise of the Betsey, with Rambles of a Geologist (1858) previously printed only in the Wiiness newspaper was published under the editorship of the Rev. W. S. Symonds.

In memory of Hugh Miller a monument was ereeted by public subscription in 1860 at Cromarty; and the cottage in which he was born was acquired at a later period by his son Hugh. In it have been placed part of his library, a set of the Witncss newspaper, some ictiers addressed to him, and a number of geological specimens, including many referred to in his Old Red Sendsione. On the a2nd of August 1902 the centenary of his birth was celebrated at Cromarty, and was attended by scientific representatives from all parts of the world.

His elder son, Hugh Miller (1850-1896), passed through the Royal School of Mines and joined the Geological Survey in England in 1873; afterwards he was transferred to Scotland and surveyed the country around Cromarty and other parts of Ross-shire and Sutherlandshine. He was author of Lardscape Cealogy, 1891.
See The Life and Letlers of Hugh Miller, by Peter Bayme (2 vols, 1871); Hugh Miller; his reork and infiuence, address by Sir A. Geikie, at the centenary celebration.
(H. B. Wo.)
miller, Joaquia (Cincinnatus Heine) (i84i-), American poet, was born in Indiana, on the roth of November 1841 , and was educated for the law. After some experiences of mining and journalism in Idaho and Oregon, he settled down in 1866 as judge in Grant county, Oregon, and during his four years' tenure of this post he began to write verse. In 1870 he travelled in Europe, and in 1871 he published his first volume of poetry, full of tropical passion, Songs of the Sierras, on which bis reputation mainly rests. His Songs of the Sunlands (1873) followed in the same vein, and after other volumes had appeared, his Collecied Poems were published in 1882. He also wrote plays, The Danites in the Sierras having some success as a sensational melodrama. On his return from Europe he became a journalist in Washington, but in 1887 returned to California. His penname, " Joaquin Miller," by which be is known, was assumed by him when he published his first book, in consequence of his having written an article in defence of Joaquin Murietta, the Mexican brigand.
Revised editions of his Complete Poelical Works appeared at San Francisco in 1902.

MILLERR, JOE (Josepi or Josus(($1684-1738$), English actor, first appears in the cast of Sir Robert Howard's Commillee at Drury Lane in 1709 as Teague. Trinculo in The Tempest, the First Grave-digger in Hamlet and Marplot in The Busybody, were among his many favourite parts. He is said to have been a friend of Hogarth. He died on the 16th of August 1738. After his death, John Mottley (1692-1750) brought out a book called Joc Miller's Jests, or Wil's Vade Mecum (1739), a collection of contemporary and ancient coarse witticisms, only three of which are toid of Miller. Owing to the quality of the jokes in Mottley's book, their number increasing with each of the many subsequent editions, any time-worn jest has, somewhat unjustly, come to be called "a Joe Miller."

MILLER, SA置UEL FREBEAN (1816-1890), American jurist,' was born in Richmond, Kentucky, on the 5 th of April 1816, of Pennsylvania-German stock. He was brought up on a farm, was a clerk in a drug-store, graduated from the medical department of Transylvania University in 1838, and practised medicine in Barboursville, Kentucky, until 1847. In that year he was admitted to the bar, and entered politics as a Whig. His antislavery sympathies induced him to settle in Iowa, where in 1850 he freed his slaves and began to practise law in Reokuk, and he soon became a leader of the Republican party in the state. In r862 he succeeded Justice Peter V. Daniel ($1784-1860$), as a justice of the U.S. Supreme Cnurt, and served until his death in Washington, D.C., on the 13th of October 1890, when he was senior justice. Miller was a man of great mental force and individuality, and his judgments carried great weight. In 1877 he was a member of the electoral commission, which adopted his motion that Congress could not "go behind the returns" as properly accredited by state officials. He was a prominent member of the Unitarian Church and for three years was president of its national conference. He published a volume of Lectures on the Constitution of the United States (New York, 1891).
See Wm. A. Maury, in The Juridical Revirto of Edinburgh (for January 1891), and Chas. M. Gregory, in Yale Law Jowrmal (for April 1908).

MILLER, WILLLAM ($1782-1849$), leader of the Second Adventists in America, was born on the sth of February 1782 at Pittsfield, Massachusetts. He was a recruiting officer at the beginning of the War of 1812, and after Plattsburg he was promoted captain, retiring from the army in 1815. About 1816 he settled in Low Hampton, Washington county, New York.

Be now joined the Baptist Church at Low Hampton, and, after two years of minute study of the Bible, about 1858 became a Second Adventise. In 8831 he began to lecture, arguing that the "two thousand three hundred days " of Daniel viii. 14 meant 2300 years, and that these years began with Eara's going up to Jerusalem in $457 \mathrm{~B} . \mathrm{C}$., and therefore came to an end in 1843, and urging his hearers to make ready for the final coming of Christ in that year. To his many followers, after the year 1843 had passed, he proclaimed that 1844 was the year, that his error whis due to following Hebrew instead of Roman chronology, and that the 22nd of October was to be the day. There was reaewed excitement among Miller's fotlowers; many of them left their bustiness, and in white muslin robes, on house tops and hills, awaited the epiphany. In spite of disappointment, many still believed with bim that the time was near. He returned to Low Hampton and died there on the zoth of December 1849. The Adventists or Millerites, who were formed into a single body in a convention called by him in April 1845, have since separated into several sects: the Evangelical Adventists (1147 in the United Seates in 1go8), who believe in everinsting panishment; the Seventh Day Adventisus (64,332), who observe the seveath day, and practise the sacrament of foot-washing; the Advent Christians $(26,500)$, the Churches of God in Jesus Christ (2878), and the Life and Advent Union (3800). Their total number in the United States in 1908 was about 99.300 . Miller published in 1833 a pamphlet which was the basis of his lectures; these were published in 1842 as Evidence from Scriptwre and History of the Second Coming of Christ about the Year 3843.
See Sylvester Blise, Memoirs of William Miller (Boston. 1833): James White, Sketches of the Christian Life and Public Labors of William Miller (Battle Creek, 1875); and Edward Eggleston's novel, Exd ofthe World (1872).

MILLER. WILLIAM (1795-1861), British soldier, who took a prominent part in the South American Wars of Liberation, entered the British artillery service in 1815, and till 1814 he was continuously on active service with Wellington's army in the Peninsula. In the latter year he accompanied the ill-fated New Orleans expedition. After the general peace he travelled for two years about Europe, and then went to South America. The war which culminated in the expulsion of the Spenlards was just hreaking out, and he took command in the Chilean artillery, with which he served during the Chilean part of the war. As a major he commanded the marines on Cochrane's vessel, the "O'Higgins." In 183 I he landed in Peru, to assist General San Martin against the Spanish General Canterac. He was made general of brigade, and became very intimate with Simon Bolivar. He rendered the most conspicuous services at Junin (Aug. 6, 1824), and his regiment, the "Hussars of Junin," covered itself with glory in the decisive victory of Ayacucho (Dec. 9, 1824). From 1830 to 1839 he filled various high military and political offices in Pers. In the latter year he was involved in the fall of Santa Cruz, and went into exile. For some years he filled the post of British Consul-Gencral of the Pacific Coast. He died on board H.M.S. "Naiad " at Callao, on the 31st of October 186 r .

Sce the Memoirs published by his brotherJohn Miller(London,1827).
MILLER, WILLIAM ($1796-1882$), Scottish line-engraver, was born in Edinburgh on the 28th of May 1796. After studying in London under George Cook, a pupil of Basire's, he returned to Edinburgh. He executed plates after Thomson of Duddingston, Macculloch, D. O. Hill, Sir George Harvey, and ather Scottish landscapists, but his chief works were his transcripts from Turner. The first of these was the Clovelly (1824). of The Southers Coast, a publication undertaken by George Cook and his brother William B. Cook, to which Miller also contributed the Combe Martin and the Portsmouth. He was engaged on the illustrations of England and Wales, 1827-1838; of The Rivers of France, 1833 $_{3}$ 1835 ; of Roger's Poems, 1834; and very largely on those of The Prose and Poetical Works of Sir Walter Scoll, 1834. In The Provincial Antiquilies and Pictwresque Scenery of Scolland, 1826, he executed a few excellent plates after Thomson and Turner. Among his larger engravings of Turner's works may be mentioned "The Grand Canal, Venice"; "The Rhine. Osterprey and

Feltzen "; "The Bell Rock "; "The Tower of London "; and "The Sbepherd." The art of William Miller was warmly appreciated by Turaer himself, and Ruskin pronounced him to be on the whole the most successful translator into line of the paintings of the greatest English landscapist. His renderings of complex Turnerian sky-effects are especially delicate and masterly. Towards the end of his life Miller abandoned engraving and occupied his leisure in the prodaction of water-colours, many of wbich were exhibited in the Royal Scottish Academy, of which he was an honorary member. He resumed his burin, however, to produce two final series of vigncttes from drawings hy Birket Foster illustrative of Hood's Pocms, puhlished by Mozon in 1871 . Miller, who was a Quaker, died on the 20th of January 1882.

MILLER, WILLIAM HALLOWES (18or-1880), British mineralogist and crystallographer, was born at Velindre near Llandovery, Carmarthenshire, on the 6th of April 1801. He was educated at St John's College, Cambridge, where he graduated in 1826 as fifth wrangler, and became a fellow in 1829. For a few ycars be was occupied as a college tutor and during this time he published treatises on hydrostatics and hydrodynamics. He also gave special attention to crystallography, and on the resignation of W. Whewell he succeeded in 1832 to the professorship of mineralogy, a post which be occupied until 1870. Hls chief work, on Crystallography, was published in 1838. He was elected F.R.S. in 1838. In 1852 he edited a new edition of H. J. Brooke's Elementary Introduction to Mineralogy. He assisted in 1843 the committee appointed to superintend the construction of the new Pariliamentary standards of length and weight (see Phil. Trans., 1856). He died in Cambridge on the 20th of May 1880.

MILLERAND, ALEXANDRE ($1859-$), French socialist and politician, was born in Paris on the roth of February 1859. He was educated for the bar, and made his reputation by his defence, in company with Georges Laguerre, of Ernest Roche and Duc-Quercy, the instigators of the strike at Decazeville in 1883; he then took Laguerre's place on M. Clemenceau's paper, La Justice. He wals elected to the Chamber of Deputies for the department of the Seine in 188 s as a radical socialist. He was associated with MM. Clemenceau and Camille Pelletan as an arbitrator in the Carmaux strike (1892). He had long had the ear of the Chamber in matters of social legislation, and after the Panama scandals had discredited so many politicians his inlluence grew. He was chief of the Socialist left, which then mustered sixty members, and edited until 1896 their organ in the press, La Petite Republique. His programme included the collective ownership of the means of production and the international association of labour, but when in June 1899 he entered Waldeck-Rousseau's cabinct of "repuhlican defence" as minister of commerce he limited himself to practical reforms, devoting his attention to the improvement of the mercantile marine, to the devclopment of trade, of technical education, of the postal system, and to the amelioration of the conditions of labour. Labour questions were cntrusted to a separate department, the Direction du Travail, and the pension and insurance office was also raised to the status of a "direction." The introduction of trades-union representatives on the Supreme Labour Council, the organization of local labour councils, and the instructions to factory inspectors to put themselves in communication with the councils of the trades-unions, were valuable concessions to labour, and he further secured the rigorous application of earlier laws devised for the protection of the working-classes. His name was especially associated with a project for the establishment of old age pensions, which became law in 1005 . He became in 1808 editor of La Lanterme: His influente with the extreme Socialists had already declined, for it was said that his departure from the true Marxist tradition had disintegrated the party.

For his administration in the Waldeck-Rousseau cabinet see A. Lavy, L'Guvre de Millerand (1902): his speeches betwoen 1899 and 1907 were published in 1907 as Trasail ad masaillcurs.

MILLERITE, a mineral consisting of nickel sulphide, NiS. Crystais belong to the rhombohedral aystem and have the form
of slender needies arranged in divergent groups or of delicate fibres loosely matted together. The colour is bract-yellow and the lustre metallic. Before the chemical composition of the mineral had been determined it had bein known as "capillary pyrites" or "hair pyrites" (Ger., Haarkies), and was not distinguishod from the capillary forms of pyrites and marcasite: the name millerite was given hy W. Haidinger in 1845 , in honour of W. H. Miller. The bardnest is 3-3i and the specific gravity 5.65 . There are perfect cleavages parallel to the faces of the rhombohedion (100); and gliding planes parallel to the faces of the rhombohedron (iio), on which secondary 2 winning may be readily produced artificially by pressure.

Typical specimens of millerite are found in the coal measures in the neighbourhood of Merthyr Tydvil in South Weles, where the delicate needles and fibres occur with crystals of quartz and pearl-spar in the fissures of septarian modules of clayironstone. Radiating groups of needles are found with ankerite in cavities in haematite in the Sterting mine at Antwerp in Jefferson county, New York. At the Gap mine in Lancaster county, Pennsylvania, the mineral occurs as fibrous encrusting masses with a velvety lustre. The most perfect crystals are those formerly found with calcite, diopside and a bright green chrome-garnet in a nickel mine at Orford in Sherbrooke county, Quebec.
(L. J. S.)

MILEER'S THUMB (Couns gobio); a small fish, abundant in all rivers and lakes of northerm and central Europe with clear water and gravelly bottom. The genus Cottus, to which the miller's thumb belongs, is easily recognized by its broad, flat head, rounded and scaleless body, large pectoral and narrow ventral fins, with two dorsal fins, the anterior shorter than the postcrior; the pracoperculum is armed with a simple or branched spine. The species of the genus Cotlus are rather numerous, and are confined to the north temperate zone of the globe, the majority being marine, and known by the name of "hullhesds." The miller's thumb is confined to fresh water; and only one other freshwater species is found in Europe, C. poecilopus, from rivers of Hungary, Galicia, and the Pyrenees; some others occur in the fresh waters of northern Asia and North America. The miller's thumb is common in all suitable localities in Great Britain, but is extremely rare in Ireland; in the Alps it reaches to an altitude exceeding 7000 ft . Its usual length is from 3 to 5 in. Generally hidden under a stone or in a hollow of the bank, it watches for its prey, which consists of small aquatic animals, and darts when disturbed withextraordinary rapidity to some other place of refuge. The female deposits her ova in a cavity under a stone, whilst the male watchesanddefends them until the young are hatched and able to shift for themselves.

MILET, FRANCIS DAVIs (1846), American artist, wes bora at Mattapoisett, Massachusetts, on the 3rd of November 1846. He was a drummer boy with the Union forces in the Civil War; gradunted from Harvard College in 1869; and in 1871 entered the Royal Academy of Fine Arts, Antwerp, where he studied under Van Lerius and De Keyser. In 1873 he was made secrelary of the Massachusetis commission to the Vienna Exposition. During the Russo-Turkish War of $1877-78$ he was correspondent of the London Doily News and Graphic, and of the New York Herald. On his return he was made a member from the United States of the International Art Jury at the Paris Exposition of 1878. He was director of decorations at the Columbian Exposition, Chicago, 1893, and in 1898 he went to Manila as war correspondent for The Times and for Harper's Weekly. In 1880 be became a member of the Society of American Artists, and in 1885 was elected to full membership In the National Academy of Design, New York, and was for one term its viec-president; he became a member also of the American Water Color Society and of the Institute of Painters in Oil Colouns, London. As a decorative artist his work may be seen at Trinity Churrh. Boston; the Bank of Pitishurg; and the Capitol at St Paul, Minnesota. His pietures are in many public collections: among them are "A Cosy Corner," in the Metropalitan Museum of Art، New York; "At the Inn," in the

Union League Club, New York; and "Between two Fires," in the Tate Gallery, London. He also wrote esasys and short stories, and an English version of Tolatoi's Sebastopal (1887); and among his publications are The Dawnbe (1891), Capillary Crime and other Stories (1892), and Expoduion to the Phulitpines (1899).
MILLET (or Milf), JRAM FRAMg018 (c. 1642-1679), comsmonly called Francisque, was borm at Antwerp about 1642, and is senerally clased amonget the painters of Flanders on account of the sccident of his birth. But his father was a Frenchman, a turner in ivory of Dijon, who took service with the prince of Conde and probably returned after a time to his native country. He remained long enough in Antwerp to apprentice his son to an obscure member of a painter family called Laurent, pupil of Gabriel Franck. With Laurent, Francis. que left Antwerp for Paris, and there settled in 1660 after marrying his master's daughter. He was received a member of the Academy of Painting at Paris in 1673, and after gaining consideration as an imitator of the Poussins be died in 1679, bequeathing his art and some of his talents to one of his soms. Franclsque probably knew, as well as imitated, Nicolas Poussin, Gaspar Dughet and Sebastian Bourdon; and it is doublleas because of hin acquaintance with these travelled artists that, being himself without familiarity with the classic lands of Italy and Grecee, he was able to imagine and reproduce Italian and Arcadian scenery with considerable grace and effectiveness It is indeed surprising to observe, even at this day how skilfully he executed these imaginary subjects, enlivened them with appropriate figures. and shed over them the glow of a warm yet fresh and sparkling tone. Twelve of his most important landscapes, which remained in the palace of the Tuileries, were destroyed by fire; and though many of his pieces may still be found catalogued in Continental and English collections, others in great number remain unknown and unacknowledged.
His son Jean Francois Millet, the younger (2066-1723), also called Francisque, was born in Paris, and was made a member of the Academy of Painting in 1709 . He is not quite so independent in his art as his father; but he had clever friends, and when he wanted figures to his landscapes, he consulted Watteau, and other followers of the "court shepherdess" school. In the museum of Grenoble is a "Paysage" by him which is prettily adorned with Waticau's figures.

MILLET, JBAN FRANCOIS (1814-1875). French painter, who came of a peasant family, was born on the 4 th of October 1814 in the hamlet of Gruchy, near Gréville (La Manche), in the wild and picturesque district called La Hague. His boyhood was passed working in his father's fields, but the sight of the engravings in an old illustrated Bible tet him drawing, and thenceforth, whilst the others slept, the daily hour of rest was spent by Millet in trying to render the familiar scenes around him. From the village priest the lad learnt to read the Bible and Virgil in Latin, and acquired an interest in one or two other works of a high class which accompanied him through life; he did not, however, attract attention so much by his acquirements as by the stamp of his mind. The whole family seems, indeed, to have worn a character of austerity and dignity, and when Millet's father finally decided to test the rocation of his son as an artist, it was with a gravity and authority which recalls the parriarchal households of Calvinist France. Two drawings were prepared and placed before a painter at Cherbourg named Mouchel, who at once recognized the boy's gifts, and accepted him as a pupil; but shortly after (1835) Millet's father died, and the eldest son, with heroic devotion, took his place at home, nor did he return to his work until the pressing calls from without were solemnly enforced by the wishes of his own family. He accordingly went back to Cherbourg, but after a short time spent there with another master (Langlois) started wibl many misgivings for Paris. The council-general of the department had granted him a sum of 600 francs, and the town council promised an annual pension of 400 , but in spite of friendly help and introductions Millet went through great dificulics. The system of the Eccle des Beaux Arts
was hateful to him, and it was not until after much hesitation that he decided to enter an official studio-that of Delaroche. The master was certainly puzzled by his pupil; he saw his ability, and, when Millet in his poverty could not longer pey the monthly fees, arranged for his free admission to the studio, but he tried in vain to make him take tbe approved direction, and lessons ended witb " Eh, bien, allez a votre guise, vous ĉtes si nouveau pour moi que je ne veux rien vous dire." At last, when the competition for the Grand Prix came on, Delaroche gave Blillet to understand that he intended to secure the nomination of another, and thereupon Millet withdrew himself, and with his Iriend Marolle started in a little studio in tbe Rue de l'Est. He had renounced the beaten track, but he continued to study hard whilst he sought to procure bread by painting portraits at so or 15 francs apiece and producing small "pasticbes" of Watteau and Boucher. In 1840 Miliet went back to Greville, where he painted "Sailors Mending a Sail" and a few other pictures-reminiscences of Cherbourg life.

His first success was obtained in 18.4, when his "Mink woman" and " Lesson in Riding" (pastel) attracted notice at the Salon, and friendly artists presented themselves at his lodgings only to learn that his wife had just died, and that be himsell had disappeared. Millet was at Cherbourg; there he remarried, but having amassed a few bundred francs he went back to Paris and presented his "St Jerome "at the Salon of 1845. This picture was rejected and exists no longer, for Millet, short of canvas, painted over it "Oedipus Unbound," a work which during the following year was the object of violent criticism. He was, however, no longer alone; Diaz, Eugene Tourneux, Rousseau, and other men of note supported him by their confidence and friendship, and he had by his side tbe brave Catherine Lemaire, his second wife, a woman who bore poverty with dignity and gave courage to her husband through the cruel trials in which be penetrated by a terrible personal experience the bitter secrets of the very poor. To this date belong Millet's "Golden Age," "Bird Nesters," "Young Girl and Lamb," and "Bathers "; buito the "Bathers " (Louvre) succeeded "The Mother Asking Alms," "The Workman's Monday," and "The Winnower." This last work, exhibited in 1848, obtained conspicuous success. but did not sell till Ledru Rollin, informed of the painter's dire distress, gave him 500 francs for it, and accompanied the purchase with a commission, the money for which enabled Millet to leave Paris for Barbizon, a village on the skirts of the forest of Fontainebleau. There he settled in a three-roomed cottage for tbe rest of his life-twenty-seven years, in whicb he wrought out the perfect story of that peasant life of whicb he alone has given a "complete impression." Jules Breton has coloured the days of toil wit b sentiment; others, like Courbet, whose eccentric "Funeral at Ornans" attracted more notice at tbe Salon of 1850 than Millet's "Sowers and Binders," have treated similar subjects as a vehicle for protest against social misery; Millet alone, a peasant and a miserable one himself, saw true, neither softening nor exaggerating what he saw. In a curious letter written to M . Sensier at this date (1850) Millet expressed bis resolve to break once and for all with mythological and undraped subjects, and the names of the principal works painted subsequently will show how steadfasily this resolution was kept. In 1852 he produced "Girls Sewing," "Man Spreading Manure "; 1853 , "The Reapers "; 1854. "Church at Griville "; 1855-the year of the International Exhibition, at which he received a medal of second class-"" Peasant Graiting a Tree "; 1857." The Gieaners "; 1859, "The Angelus," "The Woodcutter and Death "; 1860, "Sbeep Shearing"; 186 r , "Woman Shearing Sheep," "Woman Feeding Child ": 1862, "Potato Planters." "Winter and the Crows "; 1863, "Man with Hoe," "Women Carding "; 1864, "Shepherds and Flock, Peasants Bringing Home a Calf Born in the Fields "; 1869, "Knitting Lesson"; 1870, "Buttermaking; 1871, "November-recollection of Gruchy." Any one of these works will show how great an influence Millet's previous practice in the nude had upon his style. The dresses word by his figures are not clothes, but drapery through which the forms and movements of the body are strongly felt, and
their contour shows a grand breadth of line which strizes the eye at once. Something of the imposing unity of his work was also, no doubt, due to an extraordinary power of memory, which enabled Millet $t 0$ paiat (like Horace Vernet) without a model; be could recall witb precision the smallest details of attitudes or gestures which he proposed to represent. Thus he could count on presenting free from afterthoughts the vivid impressions which he had first received, and Blillet's nature was such that the impressions which he received were always of a serious and of ten of a noble order, to wbicb the character of bis execution responded so perfectly that even a "Washerwoman at her Tub" will show the grand action of a Medea. The drawing of this subject is reproduced in Sowtenirs de Barbizon, a pamphlet in which M. Piedagnel has recorded a visit paid to Millet in 1864. His circumstances were then less evil, after seruggies as severe as those endured in Paris. A contract by which be bound himself in 1860 to give up all his work for three years had placed him in possession of 1000 francs a month. His fame extended, and at the exhibition of 1867 he received a medal of the first class, and the ribbon of the Legion of Honour, but he was at the same moment deeply shaken by tbe death of his faithul friend Rousseau. Though be rallied for a time be never completely recovered his health, and on the zoth of January 1875 be died. He was buried by his friend's side in the churchyard of Chailly. His pictures, like those of the rest of the Barbison school, have since greatly increased in value.
See the article Barbizon; also A. Sensier, Vie ef awore de J. F. Millet (1874); Picdagnel, Souwenirs de Barbisen, \&cc. (1876): D. C. Thomson, The Barbison School (1891); Richard Muther. J. F. Millet (1905); Censel, Millet und Ronsseas (1902). (E. F. S. D.)
miller (Fr. millet; Ital miglietto, diminutive of miglio= Lat. mille, a thousand, in allusion to its fertility), a name applied with little definiteness to a considerable number of often very variable species of cereals, belonging to distinct genera and even subfamilies of Graminese. Common millet is Panicum miliacesm (German Hirse). It is probably a native of Egypt and Arabia but has been cultivated in Egypt. Asia and soutbern Europe from prehistoric times. It is annual, requires rich but friable soil, grows to about 3 or 4 ft . bigh, and is characterized by its bristly, mucb branched nodding panicles. Onc variety has black grains. It is cultivated in India, southern Europe, and northern Africa, and ripens as lar north as southern Germany, in fact, wherever the climate admits of the production of wine. The grain, which is very nutritious, is used in the form of groats, and makes excellent bread when mixed with wheaten flour. It is also largely used for feeding poultry, for which purpose mainly it is imported. Hungarian grass, Sctaria ifalica (also called Panicum italicum), a native of eastern Asia is one of the most wholesome and palatable Indian cereals. It is annual, grows 4 to 5 ft . high, end requires dry light soil.. German Millet (Ger. Kolbenhirse, Mohar) is probably merely a less valuable and dwarf varicty of S. italica, having an erect. compect, and shorter spike. The grains of both are very small, only one half as long as those of common millet, but are exceedingly prolific. Many stalks arise from a single root, and a single spike often yields 3 or. of grain, the total yield being five times that of wheat. They are imported for poultry feeding like the former species and for cage-birds, but are extensively used in soups, \&c., on the Continent. Numerous other species belonging to the vast genus Panicum-the largest among grasses, of which the following are among the most important-are also cultivated in tropical or subtropical countries for their grain or as fodder

Sederia italice
grasses, or both; each variety of soil, from swamp to desert. having its characteristic forms.

Polish millet is P. sanguinale; P. frumentaceum, shamalo, a Deccan grass, is probably a native of tropical Airica; P. deconspositum is the Australian millet, its grains being made into cakes by the aborigines. P. maximum is the Guinea grass, native of tropical Africa; it is perennial, grows 8 ft . high, and yields abundance of hiythly nutritious grain. P. spectabile is the coapim of Angola, but has been acclimatized in Brazil and other tropiel countries. Other gigantic species 6 or 7 ft . high form the tailcrops on the banks of the Amazon. Of species belonging to atiod genera, Pennisetum syphoideum, bajree, sometimes also called Egyptian millet or pearl millet, is largely cutivated in tropical Asia, Nubia and Egypt. Species of Paspalum, Eleusine and Milimm, are also cultivated as millets. For Indian millet, se Durra.
MILLIGAK, WILLIAF (1821 -1892), Scottish theologian, was born on the 15th of March 1821, the eldest son of the Rev. George Milligan and his wife Janet Fraser. He was educated at the High School, Edinburgh, and, from the age of fourteen, at the university of St Andrews, where he graduated in 1830 . In 1843 at the disruption he took the side of those who remained in the Establishment, and in 1844 became minister of Cameron in Fifeshire. In 1845, his health having given way, he went to Germany, and studied at the university of Halle. After his return to Scotland and his resumption of bis clerical duties he began to write articles on Biblical and critical subjects for various reviews. This led to his appointment in 1860 to the professorship of Biblical criticism in the university of Aberdeen. In 1870 he was appointed one of the committec lor the revision of the translation of the New Testament. His fervent piety, and his wide interest in educational and social questions, extended his influence far beyond the circle of theologians. His contributions to periodical literature for many years were numerous and valuable; but bis reputation chiefly rests on his works on the Resurrection (1890) and Ascension of our Lard (1892), his Baird lectures (1886) on the Revelation of St John, and his Discussions (1893) on that book. All these volumes are distinguished by great learning and acuteness, as well as hy breadth and originality of view. He died on the inth of December 3892.

MILLINER, originally a dealer in goods from the city of Milan in Italy, whence the name. Such goods were chiefly steel work, including cutlery, needles, also arms and armour and textile fabrics, ribbons, gloves and "Milan bonnets." Tbe " milliners " of London, though never formed into a Livery Company seem to have been associated with the "Cappers and Hurers," which later were amalgamated with the "Haberdashers " (q.o.). Minsheu's derivation of the word from mille, thousand (" as baving a thousand small wares to sell "), though a typical instance of guessing etymologies, shows the miscellaneous character of their trade in the 16th and 17th centuries. The modern use of the word is confined chiefly to one who makes and sells bonnets and hats for women; but articles of "millinery" include ribbons, laces, \&c., usually retailed by haberdashers.
MILLIPEDE, the popular name of the best known members of a group of the Arthropoda, scientifically known as Diplopoda, and formerly united with the Chilopoda (see Centipede), the Pauropoda and the Symphyla as an order of the class Myriapoda. This classification, however, has of late years been ahandoned on account of the recognition of closer affinity between the Chilopoda (centipedes) and the Hexapoda (insects) than between the Chilopoda and Diplopoda. By modern writers the abovementioned groups of "tracheate" Arthropoda are either regarded as independent classes of this phylum Arthropoda, or associated in two superclasses, the Opisthogonea or Opisthogoneata for the Chilopoda and Hexapoda; and the Prosogonea or Prosogoneata for the Diplopoda, Pauropoda and Symphyla. The structural character upon which these superclasses are based is the position of the generative apertures which open anteriorly in the Prosogonea and posteriorly in the Opist hogonea. Alihough the Pauropoda and Symphyla are not, strictly speaking, Diplopoda, these three groups of prosogoneate arthropods are here for convenience considered together.

CLAES DIFLOPODA.

Structure.-The anterior extremity is provided with a distinct head which by its general form and the nature of its appendages is as aharply marked off from the body as is the case in the Hexa. poda. It always bears at least three pairs of appendages, the eyes when present and, in the Oniscomorpha a peculiar sense organ.

The infcrior edge of the head plate overhangs the mouth and is termed the labrum. The exoskeleton of a typical momite consists of the following elements: a dorsal plate, a ventral plate, and a pleural plate on cach side. To the external margin of the ventral plate or sternum is articulated a pair of legs and between the leg and the pleural plate is situated the spiracle of the tracheal system. But the segmentation of the Diplopoda presents two marked peculiaritics. The first is the fact that, with the exception of a few of the anterior leg-bearing segments and perhaps one or two of those at the posterior end of the body, a single dorsal plate or tergum with its pleural plates overlies two sternal plates, two pairs of legs and two pairs of spiracles. Hence the segments appear to be double and to be furnished with twioe as many legs as is normal in the Arthroporla -a peculiarity which has suggested the term "Dip. lopod "or "double-footed,"

 sc., 1V., HI. XXI, bg. 8, $28_{\text {p4. }}$
Fig. 1.-Spirostreplexs villatus, ad Oriental species of the Spirostreptoidca, lateral vicw, showing the repugnatorial pores on the sides of the segmehts.
c. head with eyes and antennae.
is ${ }^{1}$, tergal plate of first segment.
a.lg. tergal plate of last. or anal segment.
a.st, sternal plate of ditto.
for this group. It is generally believed that ench tergal plate results from the coalescence of the terga of two originally distinct anjoinings sismints: luit the same effect would be produced by the enlargement of one of a pair of terga and the complete excalation of the other. It is in fayour of the hatter view that there is only a single pair, and not two pairs, of stink-glands on each so-called dlouble tergal plate. Unfortunately the history of the development of the segments does not clear up the difficulty since the terga of the double segments are single from the first, and no evidence either of fusion or excalation is supplied. The second of the two peculiaritics above-mentioned is the great development of the tergal sclerite as compared with the sternal. Only very rarely (i.e. in Plotydesmus) is there a broad sternal ares. In the majority of caser the hateral edges of the $2 e r g u m$ are bent downwards and inwards tuwards the mid wentral line: the sternum at the same time is so much reduced that the basal segments of the legs of opposite sides are almont in contact. The

Fig. 2.-The Gnathochilarium or jaws of second pair of various Chilongatha.
A, of Spirostreplus.
c_{1} cardo.
si, stipes.
l_{k} linguae.
B, of Julus.
${ }_{c}^{\text {m. }} \begin{gathered}\text { C. of Clom } \\ \text { pint }\end{gathered}$
${ }^{2} \mathrm{hm}_{1}$ promentum.
pleural plate on each side usually disappears either by suppression or by fusion with the tergum. The sterna with their attached legs often remain free. But quite commonly the coalescence of the skeletal clements is carried to such an extreme that cach segment is a solid riog with two pairs of movable appendages. The last segment is dificrently constructed from the others. It is always limbless, and usually consists of a complete tergal ring, a single sternal plase, and a pair of movable anal valves which are normally elosed, but are capable of being opened for the passage of fueces. These anal valves are possibly the homologues nf the plural scutes of a normal segment. The appendages are modified
as a single pair of entennac, two or three pairs of jaws and a variable number of walking-legs, of which one or more pairs may be transformed into gonopods. The antennae are short and very similar to the legs. They are preoral in position, and usually consist of seven segments. the seventh or distal segment being small, as a rule, and furnished with a sense organ which is probably olfactory or tactile in function. The mandibles or jaws of the first pair are the most anterior of the postoral appendages. They are large, powerful, and usually consist of three or iwo scgments, a basal or

Alter tiofes.

Ftg. 3--Inner view of ventral area of a single segment of Julus, much enlarged to show the structure and arrangement of the tracheal organs. The two pairs of tracheae are seen in sifm, the posterior pair overlapping the anterior.
h. Posterior margin of the body. t, Fine tracheae given off from it. ring (tergum).
ms. Respiratory muscle attached - Anterior border.
if, Tubular chamber of tracheae. m. Ventral body muscle.
cardo, which is sometimes absent, a second or stipes, and a third or mala, the latter being supplied with a strong tooth and pectinate lamellae. In all Diplopods, with the exception of the Pselaphognatha, there are only two pairs of jaws, those of the second pair forming a large plate, the gnathochilarium, which acts as a lower lip. It consists of several distinct sclerites, two external on each side, the proximal known as the cardo, the distal as the stipes, the latter being tipped with one or two lobes (malae) and far exceeding the cardo in size. Between the external plates there is a median proximal plate (mentum) generally of large size and often itself subdivided, and a pair of distal plates (linguac). Behind the base of the grathochilarium there is a single large transverse plate, the hypostoma. In the Pselaphognatha, the jaws representing the grathochilarium are differenly constructed and an additional pair, the maxillulae, has been recently detected between the gnathochilarium and the mandibles. Behind the gnathochilarium, which from embryological data appears to result from the modification of a single pair of appendages, a legless somite has been detected in some embryos. Possibly the plate referred to above as the hypostoma is its sternal element.

The heart is a median dorsal vessel composed of a ceries of chambers each giving off a pair of arteries and furnished with a pair of orifices or ostia. According to Newport, the anterior chamber lying in the second segment is prolonged into an aortic trunk from which arise three pairs of lateral arterics dipping down on each side of the alimentary canal and uniting beneath it in a common ventral vesecl. The heart is enveloped in a delicate pericardial membrane and is supported by lateral alary muscles. The alimentary canal is a simple tube extending usually straight through the body from mouth to anus. Only in the Oniscomorpha is it looped, thus suggesting the origin of this short-bodied group of millipedes from longer, more vermiform ancestors. A pair of so-called selivary glands opens into the fore-gut ncar its anterior extremity and one or two pairs of malpighian tubes communicate with the hind-gut at its junction with the broad mesenteric portion of the canal. Respiration is effected by means of tracheal tubes which communicate with the exterior by means of spiracles situated fust above the bases of the walking limbs. Each piracle leads into a longer or a shorter pouch whence the trachear, which are of two kinds, arise. Ia the majority of the orders the tracheae are tufted, that is to say, they form two bundles of short simple tubules springing from the innermost corners of each pouch. In the Oniscomorpha, however, each pouch gives rise to a number of long tubes which extend through the body and somewhat rescmble those of the Chilopoda except that they neither branch nor are extensive. As in the Chilopoda and Hexapoda the tracheae are strengthened and kept expanded by a slender spiral filament.

The ventral nerve cord consists of two strands so closely approximated an to be practlcally fused, with a small ganglionic enlargement for cach pair of legs. Hence in the double segments there are two such ganglia, which in addition to the crural nerve give off
on each side a large branching nerve to other organs in the segment. In the Opisthospermophora (Julus, Spirostreptus) and the Oniscomorpha (Glomeris, Sphoerotherium) the ganglia are spaced at equal distances on the cord, but in the Merochaeta (Polydesmus) they are grouped in pairs to correspond to the spacing of the legs. The apodous penultimate and anal sesments are innervated from the last ganglion of the cord, as are also the gonopods of the males of

Aiter C C Bourbe, J. Lhan Smed. PL. so. y8Ra
Fig. 4--Diagram of the nervous and circulatory system of Sphasrotherium obtusum, it South Arrican species of Oniscomorpha.

c. Head.

\propto, \quad Eye-cluster.
ant. Antenna.
wd, Basal segment of mandible.
15 and tis. Part of the terga of the second and thirteenth segments.
cb, Cerebral ganglia supplying the eyes and antennae. oes, Oesophagus, cut through.
F. Tracheal tubes with filament. sb.gh, Suboesophageal or first. genglion of ventral chain.
the Oniscomorpha. The first (subocsophageal) gangion of the cord supplies the mandibles and gnathochilarium and is connected by the ocsophageal commissures with the bilobed cerebral nerve whence arises the nerves for the eycs, when present, and the antenrae.

Eyes are sometimes absent, as in all the genera of Merochacta and in many genera of other froupa as in Siphonophora, one of the Colobognatha, and several of the Juloidea (Typhloblamiums). In other cases they are represented by one or two ocelli on each side (Stemmiuloidea); or by a vertical series of ocelli as in the Clomeroidea and Polyzontixm amongst the Colobognatha. But in the majority of the orders they are represented by triangular or subspherical aggregations of ocelli recalling in a certein degree those of the Lithobiomorpha amongst the Chilopoda. They are simple in structure and consist extermally of a cuticular corncal thickening or lens and internally of a retinular layer of enlarged epidermic cells, the
internal or proximal ends of which are continuous with the fibres of the optic nerve. The ovary is unpaired and extends almost the entire length of the body beneath the alimentary canal. The oviducts are sometimes separate tubes (L yssopetalum), sometiones confluent and divided just before terminating in the two orifices behind the base of the legs of the second pair (Julus). The testes and teminal ducts occupy the same position and extent as the ovary and oviducts. The ducts are sometimes coiled, sometimes divided, sometimes united. The two testes are sometimes united by transverse branches acrosis the middle line, and are sometimes branched posteriorly They bear short caecal diverticula in which the semen is developed. There are no accessory glands associated with the generative organs; but in some forms, ef. Polyxenss, there is a pair of receptacula seminis extending backwards alongside the ovary and opening into the oviduct.

c

Alter Prococt. f. Linn. Sec. xd., P1. 15 .
Fic. 5.-Conopods of Trigoniulus andersoni, one of the Opisthospermophora (Spiroboloidea).
A, Anterior view, and B, lateral views of the apparatus. ont, anterior, and post, posterior portions of the coleopod ensheathing the phallopod, of which the proximal portion, ph, is shown.
C. Phallopod removed from the coleopod.

The secondary sexual characters of the males are of great taxonomic importance. The ceminal ducts, like the oviducts, open behind the legs of the second pair. Associated with them in the Limacomorpha (Glomeridesmus), there is a pair of very long retractile penes. In the Spirostreptoidea and Juloidea the penes are much shorter and have coalesced. Sometimes they are undeveloped (Spiroboloidea). In other cases, the Merochaeta, Oniscomorpha, \&c., the ducte traverse the conae of the legs of the eccond pair. But in all these groupe, with the exception of the Oniscomorpha, eemen is transferred from the genital orifices, with or without the aid of the penes, either into the first or second pairs of appendages of the seventh eegment which are modified in various ways, and are termed phallopods. When the posterior legs are so modified the anterior are $2 s$ a rule even more profoundly altered to form a protective sheath, or coleopod, for the phallopod; and as a further precaution the entire apparatus is usually withdrawn within the seventh segment. In the Oniscomorpha the semen is transferred into a pair of receptacles developed upon the coxae of the legs of the last pair, which are chelate. The male appendages that are modified in the above described ways are comprehensively spoken of as gonopods. Other secondary sexual characters, like the stridulasing organs of the males of some Oniscomorpha, the suctorial pads on the legs of Spirostreptoidea, the development of angular processes upon the mandibte or first tergal plate, or of fine tidges in the gmathochilarium-all of which are concerned in enabling the male to maintain a secure hold upon the female-are of great taconomic use in distinguishing the genera and species.

The most important glands in the Diplopoda are the repugnatorial or stink-glands, which, except in the Oniscomorpha, Limacomorpha and Ascospermophora, open by pores upon the sides of more or fewer of the segments. They eecrete a fluid with an unpleasant odour. breaking up in one case into cyanide of potassium, and are practically the only means of protection, apart from the hard exoskeleton, which Diplopods possess. in some millipedes silk glands also exist and open upon papillae upon the posterior border of the last tergal plate. They are found in the Ascospermophora, Stemmiuloides and Proterospermophora, and are used for spin: ning nests for the eggs and protective casce for the young during exuviation.

Classification.-The existing members of the claes Diplopods may be claseified as follows:-

Subclass 1. Psela phognatria.
Order: Penicillala (Polywoness).
Chilognatha.
Order: Ontscomor pha (Glomeris, Zephronia).
Lemacomorpha (Glomeridesmus).

- Colobograila (Palytonixm. Siphomophera).
* Ascosperwophore (Chordew.me).
* Proverospermophora (Lysiopadalun).
- Merochocta (Pol rdetmes)
- Opishhospermophora.
"Suborder; Stemmiuloidea (Stememiulws).
" Spiroboloidea (Spirobolus).
* Spirostreptoidea (Spirosdreplus).
" Juloidga (fulus Namempma).

Subchas Pselapmogmatan.

Diplopods with the soft integument arengthened by meakty chitinized aclerites and furnished above and on the head with tranitverse rows of short, stout, somewhat squamiform bristles; laterally. on each side of the principal regments, with a thick tuft of long bristles and with a large, silky, white tuft projecting backwards from the posterior extremity, Mandibles one-jointed. Behind them a peir of small, one-pointed maxillulae, atlached to a median membranous "Ingua." Gehind the "lingua "and maxillulae, a large double, transverse plate with a bong, external sclerite bearing distally in Polyxenus an inner short-lobate process and an outer long spiny palpiform branch. The lavter, however, is abment in Lophoproctus. These aclerites probably represent the gnathochilarium of the Chilognatha, but the homology between the skeletal elements of the faws in queation is sot clearly understood. It has been suggested that they represent two pairs of jaws, but embryological proof of this doen not exist.

> Fig. 6.-Jaws of Polyxenus lagurwa.
A. Jaws of second and third pairs. mxl. maxillula; mxep, palpiform branch of maxilla; mx. 16 , lobate process of maxilla, muexh external plate of maxilla perhaps corresponding to the stipes of the gnathochilarium of the Chilognatha; mx ins, internal plate of maxila, perhaps corresponding to the mentum and promentum of the gnathochilarium (by Carpenter mx.mnt is regarded at an appendage posterior to the maxilla); mb, membrane.
B, Mandibles of Polyxenus Lagurus.
Order Penicillata (= Ancyrotricha).
Head large, usually with lateral eyes. Antennae eight-jointed attached near the middle of the front of the head. On the dorsal side of the body there are eleven segments, simple and compound. The first lour of these bear one pair of legs each, the aucceeding four two pairs of legs, the ninth scegment one peir. making a total of thincen pairs of legc. The tenth and eleventh or anal segmene are legless. There is a narrow sternal area separating the bases of the legs of the two sides. There are no repugnatorial glands In the male none of the legs are modified as gonopods, but the coxa of each of the legs of the second pair is furnished with a conical penis. which during copulatlon, ti may be supposed, is inserted into the genital orifice of the female, which occupies a corresponding position in that sex. The young when first hatched has only three pairs of legs and five segments The millipedes of this order are all of small size, measuring at most only a few millimetres in length. The best-known gencra are Polyxenus and Lophoproctus. both of which occur in Europe. Other forms have been discovered in the Wert Indies, North and South America, and Ceylon: and it is probable that the group has an almont cosmopolitan range. They live under stones or the loosened berk of trees. The carbonifferous fossil, Palacocampa, is msually reterred to this subclasa.

Subclace Cullognatha.

Diplopods with firmly chtinised exoskeleton, sometimes thickly, sometumes sparsely covered with short, simple hairs, sparsely covered with short, simple hairs,
but aover decoraced. wish tufis or aow of poculiarly modisied briatlea.

Ater Bode.

Fig. 7. - Ventral view of Polyxenus logures much enlarged, actual kength a little over finth of en inch.
a. Pocition of gener. ative opening

Mandibles, two- or three-jointed; maxillulae abeens, the jaws of the second pair being represented by the gnathochilarium described above:

Order Oniscomorpha.

Body short and broad, hemispherical in transverse section: conver above, flat below, and capable of being spherically coiled. The exoskeleton of a typical compound segment consists of a vaulted tergum, a pair of free pleural sclerites, two pairs of small tracheal sclerites and two pairs of legs, the latter attached to the ventral membrane, which has no sternal plates. The tergal plates are twelve or thirteen in number, whereof the first is very small, the eecond enormously expanded laterally, and the last, also en. larged and probably representing at least three segments, extends laterally and potteriorly like a hood over the ponterior end of the

Fic. 8.-Sphaeropocus hercules, a Sumatran species of the Oniscomorpha.
A, Lateral view of the entire animal. c. head: ant, antenna; $t_{2}{ }^{2} \cdot t_{t}{ }^{2}$ and tglat tergal plates of first, second and thirteenth segments l_{g}, extremities of some of the anterior legs.

B, Gonopods of the male. εp^{\prime} and εp^{2}, anterior and posterior pairs of gonopods, both being chelate claspers: pen. processea arising from the basal segments of ihe gonopods of the second pair, which act as penes.
C. Vulvae or genital plates attached to the basal eegments of the legs of the second pair in the female. 8.0. gental orifice.
body without forming a chitinous ring round the anal valves and sternum. In the male the legs of the penultimate pair are sometimes modified as claspers: those of the last pair are always enlarged and prehensile. and bear on their coalesced basal segments a pair of sperm-carrying procisses analogous to the phallopods of other groups. Apart from these organs the male has no penis, the seminal ducts perforating the coxae of the legs of the second pair This order contains two well-marked suborders, the Glomeroidea and the Zephronioidea. The Glomeroidea, comprising the lamilics Glomeridae, Gervaisiidor. Onomeridae, have the antennae approximated on the head, the eyes uniserial and twelve (rarely eleven) tergal plates. To this group belong the common pill-millipedes of Europe and North Africa In North America the Onomeridee alone are found. The Zephronioidea, with the single family Zephponisdac, have the antemae at the sidies of the head, the eyes composed of a spherical cluster of ocellh, and always thirteen tergal plates. This group is common in the tropical and southern continente of the Old World. having representative genera in South Africa, Madagascar, India, Malaysta. Australia and New Zealand. They are much larger firms than the Glomeroidea, large specimens reaching two or three lnches in length. In addition to the characters mentioned above the Oniscomorpha differ from all other Diplopods in having long zuhular tracheae and the alimentary canal bent upon ithell.

Order Limacomorpha.

Resembling the Oniscomorpha in the shape and structure of a typical segment. except that the tracheal plates are unrepresented; in the lacts that the last tergal plate does not form a complete ring round the anal area. and that the last pars of legs in the male are modified: but differing from them in that the body consirts of nineteen or twenty segments. is elongate, and tapers anteriorly and posteriorly. the second and last tergal plates being small. in the presence in the male of a pair of long haury protrusible penes bet ween the legs of the second and third pairs, and in the structure of the gonopods, which, instead of being chelate. terminate in a slender, lapering tarsal segment. This order contans 1 wo fa milices. Zephronıodesmidae (Zephromiodesmus) and Glomeridesmudoe (Clomernsdes. $m u s)$, the former from tropical Asia, the later from tropical America. The largest of theee millipedes reach a length of only about 7 mm . Nothing special is known of their habits.

Order Colabognatho.

Body elongate, capable of being spirally coiled, consisting of a large and indefinize number of segments, each being furnished with a distinct often large sternal area, and with the pleural sclerite or membrane distinct from the tergum. The last tergal plate formi a complete ring round the anal valves. Legs with coxal pouches; those of the seventh segment transformed into gonopods of a very simple type in the male, which is also furnished with a double penis completely or partially confluent with the coxae of the legs of the second pair. Head always small, frequently triangular or piriform, in the latter case the gnathites reduced in size and complexity. Repugnatorial poree present and lateral. The genera of this order

B

Alter Pocock. J. Ling. Soc. sivv., PL. 3\%.
Fic. 9.-Clomeridesmus marmarews, one of the Limacomorpha.
A, Lateral view. c, head with antennae; t_{g}, tergal plate of fint segment ; an.tg, tergal plate of last or anal segment.
B, Lower view of one of the segments. ig, inferior edge of the tergal plate: p, pleural sclerite: $/ \mathrm{g}^{\prime}$, basal segment of leg
C. Posterior extremity of body. an.fg, tergal plate of anal sepment : cop Jg. gonopod or copulatory leg.
D. Legs of the third pair with extruded penes, pen, in front of them.
are divisible into three lamilies: the Platydesmidae (Platydesmaxs, Pseudodesmus). Polyzontdae (Polyzonium, Siphonotus), Siphonophoridoe (Siphomophora). Of these the Platydermidac have departed least and the Siphonophoridat moat from the typical Diplopod in the structure of the mouth parts. The group is for the most part tropical. one genus only, Polyzomimm, extending as far north as Central Europe.

Order Ascospermophora.

Body elongate, consisting of from t wenty-six to thirty-two segments, but not varying within specific limits; the pleurae coalesced with the terga, the sterna free. More or fewer of the anteriop ten pairs of legs may be modified in the males, but no true phallopods are differentiated, the function of seminal receptacles being performed (according to C. Verhoeff) by the exserile coxal pouches of the two pairs of legs of the eighth segment. The seminal ducts in the male perforate the coxae of the legs of the second pair. There are no repugnatorial pores, and the terga are furnished with three pairs of symmetrically placed hairs or hristles. On the posterior border of the last tergal plate there is a pair of apmonirg papillae. The millipedes of this order, also called Coelochoeta, are referable to several families: Chordenmidae (Chordexma), Craspedosomidor (Craspedosoma). Heterochordeumidat (Ileterochor: dewma). \& The Heterochordenmidae belong to the Oriental region. extending from India to New Zealand. The ot hers are particularly ahundant in genera and speries in North and Central America and Europe; but are unknown in Africa, south of the Sahara.

Order Proterospermophora.

Differing from the Ascospermophora in that the number of segments is large and variable; they are furnished with repugnatorial pores, and not with the three pairs of setae. In the males the anterior appendages of the seventh segment are modified as phallopods. and the seminal ducts perforate the coxae of the legs of the eecond pair
This order, containing the family Lysiopetalidae (Lysiopetalum). is widely distributed in Europe and North America. Large examples of nome of the species, c.e. L. xanthinum, reach a length of 4 or 5 ine.

Order Merachoeta.

Resembling the Proterospermophora in having only the anterior appendages of the seventh segment converted into phallopods and the seminal ducts perforating the coxae of the second legs in the males; but differing ereentially in that the aerma are
colidly welded to the rest of the exorkeleton of the segments, which are either nineteen or twenty in number, in the absence of eyes and of spinning papillae, and in having sixjointed legs. This order is cosmopolitan in distribution and consists of a very large number of genera which by some authors are referred to the single family Polydesmidac: by others to numerous families Many species are brightly coloured, and some individuals of the Oriental genus
 Fic. 10.
Platywachus mirendus. a Sumatran species of Polydesmudae. to show the form characterisric of the order Merochacta.
c. Head.
and. Antenna.
if ${ }^{\prime}$. Tergal plate of first body ecgment.
s8. Ditto ol seventh.
a th, Tergal plate of anal segment.
The Ggure aleo shows the repugnatorial pores which are present upon the majority of the segments, the laterally expanded tergal plates, and the presence of two pairs of legs for each of the segments except the two last, the four first and the seventh; the latter, since the figured specimen was a male, has the anterior leg converted into phallopod which is conceated bencath the body.
Platyrkachus may reach a length of 5 ins. The segments are usually provided with lateral laminate or tubercular expansions bearing the repugnatorial pores, which are only very rarely abeent.

Order Opisthospermophors.

Resembling the Proterospermophora in possessing a large and variable number of segments, each of which, with the exception of the last and the anterior four or five, is furnished with a pair of repugnatorial pores, but differing eseentially from them in that the posterior pair of appendages of the seventh segment are converted into phallopods, and the anterior into protective coleopods in the male, and that the seminal ducts in this sex do not perforate the coxae of the legs of the second pair but are usually aseociated with a distinct penis situated immediately behind them. The genera of this order present greater diversity of structure than is found in the other orders and are referred to lour suborders, which by some zoologists are erected to ordinal rank, namely, the Stemmiuboidea (Monochaeta); the Spiroboloidea (Anochaeta); the Spirostreproidea (Diplochaeta); and the Juloidea (Zygochateta).

In the Stemmiulordea the sterna are free and the pleurae partially 00; the terminal segment of the legs is bisegmented; there are two pairs of spinning papillae on the last tergite; the penis is a single long tube, and the eyes are represented by one or two large lences on each side of the head. The genus Stemmiulses, constituting the Stemmiulidoe, is represented by a few species recorded froni the Oriental, Ethiopian and Neorropical reglons. In the poemession of silk-glands this suborder resembles the Aecoepermophora and Proterospermophora, and should perhapa rank as an order apart from the Opisthospermophora.

The Spiroboloidea, containing one family, the Spiroboludae (Spirobolus. Rhinocricus, \&c.), have the sterna and pleurae coalesced. the tarsi undivided; no spinnins papillae, no penis, the eyes represented by an aggregation of ocelif; and the first five segments each with a single pair of legs, the sixth carrying two pairs. This group attains its maximum of development in the tropics, where species and genera are numerous and specimens of large size, i.e. 6 ins. or over, are met with.
The Spirostreptoidea resemble the Spiroboloidea in many parelculars, but the fourth segrent is foolless, and the fifth has two pairs of limbs; the male has a dietinct and double penis, and in both sexes the stipites of the grathochilarium extend to the proximal end of the mentum, which is relatively small. The distribution of this order, which contains several families: Spirostreptsdae (Sparosircpros, Rhynchoproctus), Cambaludae (Cambala, Julomorpha), \&c., is practically the same as that of the Spiroboloidea. Specimens over 6 ins. in length are met with in the tropics of Arrica and Asia.

The Juloidea differ from the Spiroat reptoidea in having the third segment limbless, the first, second and fourth with a single pair of appendages, and the stipites of the gnathochilarium much expanded and mecting for a considerable distance in the middle line hehind the very small promentum.
The best marked family of this group is the Julidec, which is widely distributed in the northern hemisphere. Its speries and genera (Jwius, Pochyaulms) are abundant in Europe. Another European lamily, the Nemasomidos, is lounded for the genus Nemosoma, which is remarkable for having the sterna free

Habits, Grc.-Millipedes are principally eryptozoic, living under
stones or logs of wood in damp, secluded localities. They feed almost wholly upon decaying vegetable matter, and drink a considerable quantity of water. Some of the tropical species emerge in numbers from their hiding-places after heavy rains, and crawi over the ground and bushes in search of moisture in broad daytyght. Their method of progression over level ground is quite peculiar. The body is held in a straight line and is propelled by a succession of wave-like movements of the legs, which are moved in groups, the groups on the right and lefit side exactly corresponding. Some forms, e.g. Stemmimes, have been described as attempting to evade capture by a hopping action caused by vigorous jerking and wriggling of the body. Many of the speciea are very conspicuousiy coloured and the association of brilliant colouring writh the existence of the nauseous secretion of the repugnatorial giands auggeata that the coloration is aposematic or of warning agnificance.
Copulation between the seres takes place before oviposition. In the Opishospermophora the males and females coil together with the ventral surface of the anterior ends of their bodies oppoted the male holding the female securely by the head while the extended phallopods carrying the semen are brought into contact with her genital orifice. In the Polydesmadae pairing is effected in the same way except that the male and female instead of intercoiling remain extended, the male clasping the female with his legs. In the Oniscomorpha the sexes also pair tront to front, not head to head, however. but head to tail. so that the gonopods in the anal segment of the male can he applied to the aecond pair of postoral appendages in the female. Some males of this group, e.g. Sphaerotherium, have a stridulating organ on their posterior gonopods and etridulate when finding the females.
The method of disposing of the young, which usually have only three pairs of legs at hatching, differs in various groups. In Julses and Polydesmas the female burrows below the surface and makes a subspherical nest of small blocks of earth which are moistened with the salivary secretion and moulded to the proper shape between her jaws and anterior legs. When the receptacle is nearly finished she deposits her eggs in it, and, closing the aperture. leaves the whole to its iate. On the other hand, female specimen of the South Airican epecies, Archrspirostreptus erythracephelus, that lived in the London Zoological Gardens, buried herself, coiled round the eggs, and remained with her young for some dime after they were hatched. Again, millipedes, like the Stemmiuloidea and Ascospermophora, which poseess silk-glands, spin silken cases for the protection of their eggs. Immature specimens of these groups spin similar silken cases at the time of exuviation : and cases, resembling the nets, are likewise made for purposes of moulting by immature forms of some exotic species of Polydesmidae, e.\&. by the tropical African Orydesmus. There is good reason to think, however, that the animal make use of its own voided excrement in the formation of these receptacles.

A considerable number of Chilognatha of doubsful systematic position have been recorded from beds of the carboniferous formation. The beat known are Acantherpestes and Emphoberna. Specimene referred to existing genera have been discovered in amber beds of Oligocene age.

CLAIt PAOBORODA.

As In the Diplopoda there is a distunct head bearing a pair of antennae and two pairs of jaws. On each side of the head there is an eye-like spot which may conceivably represent a degenerate eye. although the external cuticle shows no corneal thickening nor the epidermis retinular specialtzation. and optic nerves are absent from the brain. The antennac are structurally unique in the Arthropoda. There are four shor basal segments Irom the distal of which arise two one-jointed branches, an external thinner and an internal thecker. The external or postaxial branch is tipped with a single long annulate fagelliform bngtle with a rounded apical knob; and the internal or preaxial branch with two similar but shorter brist les and a globular, usually pedunculated, sense organ between them. The mandibles or jaws of the first pair are large and one-jointed. Thoee of the second pair are very short, pirilorm, and attached so the ventral side of the head by a long, rod-like sclerite. Between thewe two pairs of jaws there is a horny framework forming a kind of lower lip to the mouth. The correspondence between these mouth parts and those of the Diplopoda is not understood. No doubt the mandibles are homologous in the two groups; but whether the jaws of the second pair in the Pauropoda correspond to the maxillulae of the Pselaphognatha, or to part of the gnathochilarium in the Chalognatha, or whether the chitinous framework alone or in conjunction with the pair of jaws answers to tbe gnathochilariurs
ore questions to which no answer can as yet be given. Judging from the segmentation and the appendages the body is composed of twelve somites, including the last or anal, which, like the penultimate somite, is limbless. Each somite in front of the penultimate

 1901. P1. VI., fes. 34; D. and E, atter Eenyon.

Fig. 12.-Pauropus.
A. Pauropus hxcleyi (?). c, head; ant. antenna: tg^{1} and t^{5}, first and fifth double tergal plates; lg', first walking-leg (and postcephatic appendage); lé, ninth walking-leg; ause, anal segment; st, setac.
B. Eurypamropms spicosus. Lettering as in A.
C. Brachypauropus superbus. Lettering as in A and B; $\left(L_{8}{ }^{2}\right)=$ frot and second terga; ig ${ }^{2}$, $=$ ninth and tenth terga.
D. Jaws of Pawropws huvteyi; md, mandible; mx, maxilla; \mathfrak{b}, labial framework.
E. Anteana of Eurypauropus spinosus; A, flagella; gl, sensory organ.
bean a single pair of legs, nine pairs of which are fully developed ambulatory limbe, while those of the first egment are reduced to

Alter Lobbock.

Fig. 13.-Enlarged view of Pawopus huxleyi, from ventral aide. a pair of bud-like processes. The first and last pairs of ambulatory limbe consist of five eegmenta; in the remaining paiss the terminal egment may be subdivided into two, so that there may be six segments in ali. The ambulatory limbs are usually terminated by three claws, a principal and two subsidiary, each claw being accompanied by a membranous pad. Between these limbs, which are relatively longer and stronger thaa in the Diplopoda and evenly epeced on esech side of the body, extends a soft-akinned sternal ares. The distensible pleural region of the body is aleo membramous, but the dorsal area is covered by chitinous plates or terga,
usually six in number, excluding that of the anal segment; ench of the anterior five of these overlies two linb-bcaring comites, the first covering the somite of the rudimentary limbe and of the finat pair of locomotor legs, the second those of the second and third pairs of locomotor leps, and so on. This condition is an adumbration of the far completer fusion of somites seen in the Diplopoda. The sixth tergal plate belongs to the timbless penultimate somite. The duplex character of the first five terga is suggested in Pamropus by the presence of two rows of sensory bristles; there being only one such row upon the sixth tergum. In the aberrant genus Brachyposropus the evidence is practically completed by the correspondence in number between the terga and pairs of legs, there being a divisional line between the two rows of setae. On each side of the body there are five long pubescent tactile setae situated on the second to the sixth terga in Pauropus, and on the pleural area corresponding to these terga in Brackypauropus.
The cerebral manso of the nervous system is large and when viewed from above is seen to consist of two lobes defined by a median groove. in the abeence of eyes no optic nerves are given off. Beneath these are two antennal lobes whence arise, close together, the antennal nerves. Two short commissural cords connect the cerebral mass with the suboesophageal ganglion, a composite mass formed of the nervous centres which supply the two pairs of jaws and the rudimentary lege of the first pulr. Behind this large ganglion the cord, which shows superficially no trace of its double origin, presents a ganglionic swelling for each pair of legs. No cireulatory or respiratory organs have been detected.
The alimentary canal consists of a short. narrow fore-gut, a large, straight mid-gut. and a moderately long hind-gut which is itself composed of two parts, an anterior narrow tube which opens into

 Fto. 14-Pauropoda.

A. Alimentary canal of Pauropus; fa, fore-gut: 5g, walivary gland; mg. mid-gut; hg, anterior portion of hind-gut; a, anus: m.p.t., malpighian tubule.
B. Female genital organs of Ewrypaurophy; ∞, ovary; onid. oviduct; ${ }^{\text {ps }}$, receptaculum seminis ; to, genital orifice.
C. Male genital organs of Paxropks: I' and β, anterior and posterior portions of teates; pd^{2}, pd^{2}. vd d^{2}, vasa delerentia; psss, vesicula semlnalis; cd, common duct; 80 . genltal orifices.
D. Lateral view of Pouropus; c, head; ant. antenna; $\operatorname{tg}^{1},{ }^{1}{ }^{1}$, first and fifth tergal plates; ars, anal segroent; sf, lateral bristles; is.r, rudimentary leg; lg' and lg_{g} ' first and ninth fully formed walking legs: p, penis
a dilated, piriform, posterior portlon, narrowing gradually to terminate in the anus. Opening into the anterior extremity of the fore-gut there is a pair of "salivary" glands. Malpighian tubes have been found ia some forms. i.e. females of Exrypauropus spinasus; but not in any examples, male or female, of Pauropus huxleyi. Where prement they open at the point of union of the mid-
and hiod-guts. The generative organs in the female are very simple, and much like thoee of the Diplopoda. In the male they are highly complex, and unike thone of any known Arthropod in certain particulars. The wide, unpaired ovary extends nearly to the posterior end of the body. Anteriorly it passes into an oviduct which ts unpeired throughout its length. The posterior portion of the duct is wide. The anterior, an abruptly narrowed tube, curves round the nerve-cord and opens by a aingle sub-median orifice in the third megment. Just within the orifice there opens jato the oviduct the short duct of a spherical receptaculum seminis. In the male the testis is never paired. Sometimes it is single, sometimes divided jato an anterior and a posterior mass, and sometimes merely constricted. It liea above the intestine in the ponterior half of the body in the adult, but at least in the young in some cases, where as many as four divisions have been detected, its position is more lateral. Leading from the sperm masses there may be as many as three slender short ducts which soon expand into wider tubes. These tubes, regarded as seminal vevicies, after forming a compler of loops, coils and caecal prolongations, ultimately unite bencath the intestine in a single tube which pasaing forwards divides on each side of the alimentary canal to terminate in the two penes situated just behind the bases of the second pair of complete legs, that is to say, the legs of the third segment. fust at the root of the penis there is an accessory gland on the duct, and a little larther back a much larger glandular swelling.

The Pauropoda are divided into three rather sharply defined groups or families which may be briefly characterized as follows :-

Pauropodidae.-Head not covered by the first tergal plate. Anal segment not covered by the sixth tergal plate. Terga of the first zen body segmente fused in couples. Tactike setae situated on the lateral portions of the terga which are neither sculptured nor apinous. (Pauropus, Stylopauropus.)

Brachypauropodidoe.-Head and anal segment free and the terga smooth as in the last ; but each of the double terga of the Pouropodidae divided into an anterior and posterior plate by a transverse band of membrane and each of these into a pair of plates by a longitudinal integumental strip. The tactile setae arising from the pleural area of the segments. (Brackypauropus.)

Eurypakropodidac.-Body wide and onisciform, the head and the anal segment concealed dorsally by the first and penultimate terga respectively. Terga fused as in the Pauropodidae, but thickly spinous or aculptured. The tactile setae situated beyond the edge of the terga, as in the Brachypauropodidoe. (Eurypauropas.)

The genus Pauropus is probably world-wide in distribution, since it has been disoovered in Europe, North and South America, and in Stam. The two known species of Brachypewropus were found respectively in Italy and Austria. Exrypauropus has rej resentatives in North America and Europe. Examples of Pauropus a re extremely agile, recalling the centipede Lilhobiks in their movements: those of Eurypouropus, on the contrary, are extremely slow and quite comparable in lack of agility to the common pill-millipede. They are usually found in woods, under stones. lallen branches, dead leaves or other damp situations. They are believed to be vegetable feeders and are oviparous. The young upon hatching has four segments and three pairs of legs representing the first three pairs of ambulatory legs of the adult. The two last segments are apodous, the first bears the first pair of legs, and the second the second and third paira. The young pastes through four successive moults, and gradually acquires its full complement of eegmente and limbs.

CLAES STMPHYLA.

Prosogoneate Arthropods, differing in many importaat particulars from the Diplopoda and Pauropoda. The axis of the head lies in the same straight line as that of the body, as in the Chilopoda, and not at right angles to it as in the Dipiopoda and Pauropoda. There are no eyes. The antennac are very long and many-jonted. Four pairs of gnathites attached to the under-side of the head have been detected. The first pair (mandibles) are two-jointed, as in many Diplopods. The second pair (maxillulae) are minute, one jointed and articulated to a median lobe or hypopharynx which is supported by two chitinous akeletal rods. The third pair (maxille) consist of a long, basal segment terminating distally ia two lobes; near the distal end of the basal eegments there is externally a minute one-or two-jointed process, regarded as a palpus. Between the maxillae lies a large, double plate (labium or maxillae of second pair) which is attached proximally to two rod-like basal segments and terminates distally in two pairs of short lobes. The body is long and narrow and bears on ite dorsal side filteen tergal plates. The first of these. immediately succeeding the head, is very short; the remainder are large and sub-equal in size. The adult animal is furnished with twelve pairs of walking leps, which, with the exceptlon of the Grat pair, are alike in size and segmentation. Each consists of five segments, the distal of which is long and terminates with two powerful claws. The proximal eegment bears internalily a dender, cylindrical procese which may be termed the parapod. It has been aseerted that the segment bearing this parapod ts in reality the eecond and that the true bacal segment or coxa is embedded in the ventral iniegument. The legs of the fira and second pairs pever have the parapod, but they are invariably prenent in the remaining ten pairs. The lege of the first pair
ate never more than four-jointed; they are always maller than the others, and are sometimes reduced to mere bud-like proccsses. They belong to the first segment behind the bead. Tha perment represented by the last tergal plate has no ambulatory limbs: but articulated to its posterior border is a pair of large, backwardly directed sclerites, whicht are perforated by the ducts of two spinning glands These seginents are regarded by some iauthors as the appendages of the last

After Latzel, Die Myr. Osf Uns. Mom, II. PL I. 1884.
A. Mandibles or jaws of frrst pair of Scolopendrello: md ${ }^{1}$, mid? first and second segments; f, tendon: c, part of ventral akeleton of head.
B. Jaws of second pair: mxl, maxillula; Ryp, hypopharynx

Jaws of third and fourth pairs: $m x$, araxilla; p.mx, maxillary palp; il.mx: Inaxillary lobes: lb.st, sternal plate of jiaw of fourth pair or labium; $l b^{1}, l b^{3}$, first and second segments of labium (Figs, A, B, C modified from Hansen, Q.J.M.S., $47, \mathrm{pl}$. I.)
D. Posterior end of body from below; l^{4}, leg of thth pair: lg^{2}, rudimentary leg of 12th pair of immature specimen; sic. exscrtile sac: enl., parapod: pop, tensory papida; cerc, cercus or spinning sclerite: df, duct of silkgland; a,

Fic. 15
segment, and have been compared to the cercopods of insects. Atthed also to the sides of the last segment in Iront of the spinning mriamilla there is a sub-conical papilla bearing an apical seta arising From a cuplike depression. It has been suggested that these papillac also represemt a pair of appendages. In that case the last segment musr be double and bear two pairs of appendages. Thus there may be as many as fourteen pairs of trunk appendages. There are, however, only twelve pairs known to exist with certainty. These are represented by as many segments on the ventral side; but are numerically less by two than the terga. It is not known whether this very unusual phenomenon is to be accounted for by the addition of two supernumerary terga or by the excalation of two pairs of appendages. The legs of the first pair are basally in contact; the rest are scparated by a triagular sternal area. At the base of the legs, with the exception of those of the first and last pair, there is a slit-like orifice recalling the coxal sacs of rertain Diplopoda (e.g. Lysiopetalum, Platydesmus). In internal anatomy the Symphyla closely resemble the Diplopoda. The alimentary canal is straight and simple, with a pair of "salivary" glands opening into the fore-gut, and a pair of malpighian tubes joining the hind-gut close to its communication with the mid-gut. There is a dorsal heart with segmental ostia and valves, and also a suprancural vessel. The silk iglands, which occur in both sexes, are situated as in Lysiopetalum. The generative glands and ducts, which are paired, lie between the alimentary canal above and the normally constructed nerve-cond below, and are accompanied in the male by a pair of seminal vesicles; and the orfice lies ventrally in the third begment behind the head. A peculjanty in which the Symphyla differ from all " tracheate " arthropoda is the presence of a single pair of tracheal tubes opening by a pair of bpiracles on the lower surface of the head behind the antennae.

The newly hatched young has a smaller number of appendages than the adult, the full complement of legs being reached only alter sucressive moults.
The known species of Symphyla are referred to two genern. mlopendrello and Sculigerella, which together constitute the lamily scolopendrellidae. The chief difference between the two liea in the form of the tergal plates, which in Scolopendrelle have the peacerior
anden produced and angulbr, wheree thi Santiecrolla they are rounded. Both penere are widely diztributed and are represented, in Europe. South America, Siam, \&c. Large specimens reach a limit of between six and seven millimetres. They live in earch, beneath stones, dead leaves or fallen branches, and resemble diminutive centipedes (Scolopeandra or Lithobies) both in appearance and movements. The Symphyla have frequently been compared with the Thysanuroua Hexapodes the parapods with their adjacent exsertile vesicles in Scolopendrellh being very similar to the abdominal appendages and veicies of such an insect as Machilis; while the posterior spianing ecleritee or cerci of the former beer much resemblance to the cercopods of Japyx. It must be remembered, however, that the spinning ghando of certain Diplopods occupy the same position as those of the Symphyla 2nd open upon papilliform processes of the last tergal plate, which are certainly not appendages. Hence, if the papillae are the homologues of the cerci in Scolopondrella. these cerci cannot be morphologically comparable to the cercopode of Japyx or other inosects. But even if the full force of the arguments in favour of relationship between the Symphyla and the Hexapoda be admitted. the Symphyta, nevertheless, differ esentially from the Hexapoda in the anterior position of the generative orifice, and in the presence α twelve pairs of similar ambulatory limbe.
(R. 1. P.)

HILNOM, a market town in the Egremont parliamentary division of Cumberland, England, in the extreme south-west of the county, on the Furness raiway. Pop. of urban district (1901), 10,426. The church of Holy Trinity, Early Norman and Decorated in date, is chiefty of interest for its curious pillars, alternately round and octagonal, and for a window in the north aisle, which has five lights, and is known, on account of its unique shape, as the "fish-window." A massive roodstone stands in the churchyard. Millom Castle, dating from shortly after the Conquest, was fortified in the i4th century by Sir John Huddlestone, whose descendants held it until 1774 . For centuries, they exercised the power of life and death; a stone stands where the gallows were formerly erected, and indicates that here they exercised jutra regalia. Though strongly huilt, the castle was never of great size, and it has been largely dismantled. A fine carved staircase, bowever, still exists in the main chapel. In 1648 the Parliamentary forces besieged Millom Castle, and early in the reth century its park was converted into farmland. In the neighbourhood of Millom there are hlast furnaces and highly productive mines of red haematite ore. The deposit lies partly under the foreshore of the river Duddon, and a company has expended upwards of fir 20,000 upon a sea-wall and embankment to protect the mine from the sea.
MILLS, JOHN (d. 1736), English actor, was a memher bf the company at Drury Lane from 1695 almost uninterruptedly to the time of his death, playing and creating hundreds of parts. He was at his best in tragedy. His wife was an actress, and their son William-" the younger Mills "-was also an actor of some merit.
MILLS, ROGER QUARLES ($1832-$ -), American legislator, was born in Todd county, Kentucky, on the 30th of March 1832. He went to Texas in 1839 , studied law, and was admitted to the bar by a special act of the legislature before he was twenty-one. He entered the Confederate army in $\mathbf{1 8 6 1}$, took part as a private in the batule of Wilson's Creck, and as colonel commanded the Tenth Texas Infantry at Arkansas Post, Chickamauga (where he commanded a brigade during part of the battle), Missionary Ridge and Atlanta. He served in the national House of Representatives as a Democrat from 1873 to 1892 and in the Senate from 1892 to 1899 . He made the tariff his special study, and was long recognized as the leading authority in Congress. As chairman of the Ways and Means Cornmittee of the House of Representatives in 1887 -r889 during President Cleveland's first administration, he led the fight for reform. From his committee he reported in April 1888 the "Milts Bill," which provided for a reduction of the duties on sugar, earthenware, glassware, plate glass, woollen goods and other articles, the substitution of ad valorem for specific duties in many cases, and the placing of lumber (of certain kinds), hemp, wool, fiax borax, tin plates, salt and other articles on the free list. This bill was passed by the Democratic House on the arst of July, and was then so amended by a Republican Senate as to be unacceptable to the house. The tarif thus became the chief issue in the presidential campaign of 1888 . In 189x Mills was a candidate in the

Democratic caucus for Speaker of the house, but was defeated by Charles F. Crisp ($1845-1896$) of Georgia. During the free silver controversy be adhered to the Cleveland section of the Democratic party, and failed to be re-elected when his term in the Senate expired in 1899. He then retired to Corsicana, Texas, where he engaged in business and the practice of law.

MILLSTONE GRIT. in geology, a series of massive sendstones, grits and conglomerates with alternate shales, the whole resting directly upon the Carboniferous Limestone or upon intervening shales (Yoredale, Limestone Shales), usually in stratigraphical continuity. Its occasional coal-scems show that conditions of coal-formation had already begun. In Great Britain its outcrop extends from the Bristol Coalfield through South and North Wales to its fullest development in the north-midland counties, Lancashire and Yorkshirc, and thence to Scotland, where the Roslin Sandstone of the Lothians and the Moor Rock of Lanark and Stirling are considered its equivalents. Characterized hy grits and sandstones of the same general type, though individually variahle, as sandbanks formed on the shoaling of the Carhoniferous sea, yet often persistent over wide areas, the formation, estimated ass 5000 ft . thick in Lancashire, contains typically the following grits in descending order: First, or Rough Rock; second, or Haslingden Flags (Lancashire); third, or Chatsworth Grit (the last two heing the Middle Grits of Yorkshire); fourth and fifth, or Kinderscout Grits and the Shale Grits. The first and third, the most persistent, are often coarse and pebbly, like the Kinderscout Grits. In the north of England these grits lose their identity. In South Wales the Millstone Grit, immediately succeeding the Carbonilerous Limestone, consists of 450 ft . of grit and shale, its upper member being the massive pehbly Farewell Rock. It extends into the Bristol Coalifeld, though not recognized in the Devonshire Culm. In Ireland certain grey grits and fags are assigned to it.
In northern France and Belgium it loses its individuality and is merged in the Coal-measures. It reappears east of the Rhine, but is unrecognizable in the somewhat different Carboniferous succession of eastern Europe. In America the Pottsville Conglomerate, 1500 ft . thick in the south Appalachians, with workahle coals, and widely unconformable upon the Mississipplan, introduces the PennsyIvanian (Upper Carboniferous) system, and approximately represents the Millstone Grit of western Europe, as does the red conglomerate of Nova Scotia.
The shales of the Milistone Grit include thin beds of marine goniatites (Clyphioceras bilingxe, Gastrioceras carbonarium), Pterinopeden papyraceus, and Lingula myliloides, while the grits contain Lepidodendran, Stigmaric and calamites. In Scotland plants and estuarine fishes differ markedly above and below the Roslin Sandstone.
The English Millstone Grit produces a characteristic scenery of vild mooriand plateaux, or alternations of shale-valleys and rugged grit-ridges. The grits furnish valuable buildingstones and grindstones. They also afford an excellent water supply.
(C. B. W.")

MILLVILLE, a city of Cumberiand county, New Jersey, U.S.A., on the Maurice river, 40 m . S. hy E. of Philadelphia. Pop. (2800) 10,002; (1900) 10,583 (508 foreign-born); (1905, state census) 11,884 ; (1910) $\mathbf{1 2 , 4 5 1 \text { . It is served by the West Jersey }}$ \& Seashore railway, by electric lines to Philadelphia, Bridgeton, Vineland and Fairton, and by schooners and small freight boats. Peaches and small fruit are cultivated extensively in the surrounding country. In the north part of the city is a large public park, in which a beautifui lake 3 m . long and about i m . wide has been formed by damming the river. Glass and moulding sand is found in the vicinity, and the city is engaged, principally in the manufacture of glass (especially druggists' ware). The value of the city's factory products increased from $\$ 2,513,433$ in 1900 to $\$ 3,719,417 \ln \times 905$, or 48%; and of the total value in $1905, \$ 2.332 .614$, or $62 \cdot 7 \%$, was the value of the glass products. Millville was incorporated as a town in 1801, was chartered as a city in $\mathbf{1 8 6 6}$, and its charter was revised in 1877.

CILMAM, HEARY HAET (1791-1868), English historian and ecclesiastic, third aon of Sir Francis Milman, Bart., physician to George III., was born in London on the roth of November 1791. Educated at Eton and at Brasenose College, Oxford, bis university career was hrilliant. He gained the Newdigate prize with a poem on the Apollo Beloidere in 1812, was elected a fellow of Brasenose in 1814, and in 1816 won the English essay prize with his Comparative Estimate of Sculplure and Painding. In 1816 he was ordained, and two years later was presented to the living of St Mary's, Reading. Milman had already made his appearance as a dramatic writer with his tragedy Fazio (produced on the stage under the title of The Italian Wife). He also wrote Samor, the Lord of The Bright Cify, the subject of which was taken from British legend, the " bright city " being Gloucester; but he failed to invest it with serious interest. In subsequent poetical works be was more successful, notably the Fall of Jerusalem (1820) and the Martyr of Antioch (1822). The influence of Byron is seen in his Belshaszar (1822). A tragedy, Anne Boleyn, followed in 1826; and Milman also wrote "When our beads are bowed with woe," and other hymns; an admirable version of the Sanskrit episode of Nala and Damayanti; and translations of the Agamemmon of Aeschylus and the Bacchace of Euripides. In 1821 he was elected professor of poetry at Oxford, and in 1827 he delivered tbe Bampion lectures on the character and conduct of the apostles as an evidence of Cbristianity. His poetical works were published in three volumes in 1839.

Tuming to another field, Milman published in 1829 his History of the Jews, which is memorable as the first by an English clergyman which treated the Jews as an Oriental tribe, recognized sheikhs and amirs in the Old Testament, sifted and classified documentary evidence, and evaded or minimized the miraculous. In consequence, the author was violently attacked and his inevitable preferment was delayed. In 1835, howèver, Sir Robert Peel made him rector of St Margaret's, Westminster, and canon of Westminster, and in 1849 he became dean of St Paul's. By this time his unpopularity had nearly died away, and generally revered and beloved, be occupied a dignified and enviable position, which he constantly employed for the promotion of cuiture and in particular for the relaration of subscription to ecclesiastical formularies. His History of Christianity to the Abolition of Paganism in the Roman Empire (1840) had been completely ignored; but widely different was the reception accorded to the continuation of his work, his great History of Latin Christianily (1855), which has passed through many editions. In 1838 he had edited Gibboa's Decline and Fall of the Roman Empire, and in the following year puhlished his Life of Gibbon. Milman was also responsible for an edition of Horace, and when he died be had almost finished a history of St Paul's Cathedral, which was completed and published by his son, A. Milman (London, 1868), who also collected and published in 1879 a volume of his essays and articles. Milman died on the 24th of September 1868, and was buried in St Paul's Cathedral. By his wife, Mary Ann, a daughter of Lieut.-General William Cockell, be had four sons and two daughters. His nephew, Robert Milman ($1816-1876$), was bishop of Calcutta from 1867 until his death, and was the author of a Lifc of Torquato Tasso (1850).
See A. C. Tait, Sermon is Memory of H. H. Milman (London, 1868), and Arthur Milman, H. H. Mifwam (London, 1900). See also the Memorrs of R. Milman, brshop of Calculte, by his sister, Frances Maria Milman (1879).
1 MILNE-EDWARDS, HENRT (1800-1885), French soologist, the son of an Englishman, was born in Bruges on the a3rd of October 1800, but spent most of his life in France. At first he turned his attention to medicine, in which be graduated at Paris in 1823; but his passion for natural history soon prevailed, and he gave himself up to the study of the lower forms of animal life. One of his earliest papers (Recherchas analomigucs sur les crustocts), which was presented to the Academy of Sciences in 1829, formed the theme of an claborate and eulogistic report by \mathbf{G}. Cuvier in the following year. It embodied the sesults of two dredging expeditioas undertaken by him and his friend J. V.

Audouin during 1826 and 1828 in the neighbourhood of Granvilie; and was remarkable for clearly distinguishing the marine fauna of that portion of the French cosst into four zones. Much of his original work was published in the Anvales des sciences naturelless, with the editorship of which be was associated from 1834. Of hus books may be mentioned the Histoire maluralle de crusfocts (3 vols., 1837-1841), which long remained a standard work: Histoire naturelle des coralliaires, published in 1858-1860, but begun many years before; Lecons swe la physiologie a Гanalomie comparde de l'homme at des animamx (1857-1881), in 14 volumes; and a little work on the elements of zoology, originally published in 1834, but subsequently remodelled, which enjoyed an enormous circulation. He was appointed in 1841 professor of entomology at the museum d'histoire naturelle, where twenty-one years later he succeeded Geoffroy SaintHilaire in the chair of zoology. The Royal Society in $\mathbf{1 8 5 6}$ awarded him the Copley medal in recognition of his zoological investigations. He died in Paris on the 29th of July 1885 . His son, Alphonse Milne-Edwards (1835-1900), who became professor of ornithology at the museum in 1876 , devoted himself especially to lossil birds and deep-sea exploration.

MILNER, ALFRED MILNER, VISCOUNT (1854-), British statesman and colonial administrator, was born at Bonn on the 23rd of March 1854, the only son of Charies Milner, M.D., whose wife was a daughter of Major-Ceneral Ready, sometime governor of the Isle of Man. His paternal grandfather, an Englishman, settled in Germany and married a German lady; and their son, Charles Milner, practised as a physician in London and became later Reader in English at Tubingen University. Alfred Milner was educated first at Tabingen, then at King's College, London, and under Jowett as a scholar of Balliol College, Oxford, from $\mathbf{1 8 7 2}$ to 1876. He graduated in 1877, with a first class in classics, having won the Herford, Craven, Eldon and Derby scholarships, and was elected to a fellowship of New College. At Oxford be formed a close friendship with Arnold Toynbee, and was associated with his schemes of social work; and subsequently he wrote a tribute to his friend, Arnold Toymbee: a Reminiscence (1895). In 1881 be was called to the bar at the Inner Temple and joined the staft of the Pall Mall Gaselte under John Morley, becoming assistant editor under W. T. Stead. In 1885 he abendoned journalism, and became Liberal candidate for the Harrow division of Middlesex at the general election, but was defeated. He acted as private secretary to Mr (afterwards Lord) Goschen, and in 2887, when Goschen became chancellor of the exchequer, was appointed his principal private secretary. It was by Goschen's influence that in 1889 he was made under-secretary of finance in Egypt. He remained in Egypt four years, his period of office coinciding with the first great reforms, after the danger of bankruptcy had been avoided. Milner returned to England in 1892, and was appointed chairman of the Board of Inland Revenue, being made C.B. in 1894 and K.C.B. in 1895 . Shortly after his return to England he published bis England in Egypl, which at once became the authoritative account of the work done since the British occupation.
Sir Alfred Milner remained at the Board of Inland Revenue until 1897. He was regarded as one of the clearcst-headed and most judicious officials in the Briush service, and his position as a man of moderate Litheral views, who had been so closcly associated with Goschen at the Treasury, Cromer in Egypt and Hicks-Beach (Lord St Aldwyn) and Sir W. Harcourt while at the Inland Revenue, marked him out as one in whom all parties might have confidence. The moment for testing his capacity in the bighest degree had now come. In April Lord Rosmead resigned his posts of high commissioner for South Africa and governor of Cape Colony. The situation resuling from the Jameson rajd (see Transvaal and Soutr Africa) was one of the greatest delicacy and difficulty, and Mr Chamberlain, now colonial secretary, selected Milncr as Lord Rosmead's successor. The cboice was cordially approved hy the leaders of the Liberal party, and warmly recognized at a farewell dinner presided over by Mr Asquith (March 28ih, 1897). The
appointment was avowredily made in order that an acceptable British statesman, in whom public confidence was reposed, might go to South Africa to comider all the circumstances, and to formulate a policy which should combine the upholding of British interests with the attempt to deal justly with the Transvaal and Orange Free State governments.
Sir Alfred Milner reached the Cape in May 1897, and after the diffculties with President Kruger over the Aliens" Law had been patched up he was free by August to make himself personslly acquainted with the country and peoples before deciding on the lines of policy to be adopted. Between August 1897 and May 1898 be travelled through Cape Colony, the Bechuanaland Protectorate, Rhodesia and Basutoland. The better to understand the point of view of the Cape Dutch and the hurghers of the Transvaal and Orange Free State, Milner also during this period learned both Dutch and the South Airican "Taal." He came to the conclusion that there could be no hope of peace and progress in South Africa while there remained the " permanent subjection of British to Dutch in one of the Republics." He also realized-as was shown by the triumphant re-election of Mr Kruger to the presideacy of the Transvaal in Fehruary 1898 -that the Pretoria government would never on its own initiative redress the grievances of the "Uitlanders." In a speech delivered at Graaf Reinet, a Bond stronghold, on the 3rd of March 1898, he made it clear that he was determined to secure freedom and equality for the British subjects in the Transvaal, and he urged the Dutch colonists to induce the Pretoria government to assimilate its institutions, and the temper and spirit of its administration, to those of the free communities of South Africa. The effect of this promouncement was great, and it alarmed the Afrikanders, who at this time viewed with apprehension the virtual resumption by Cecll Rhodes of his leadership of the Progrescive (British) party at the Cape. That Milner had good grounds for his view of the situation is shown in a letter written (March in) hy Mr J. X. Merriman to President Steyn of the Free State: "The greatest danger (wrote Mr Merriman) lies in the attitude of President Kruger and his vain hope of building up a State on a foundation of a narrow unenlightened minority, and his obstinate rejection of all prospect of using the materials which lie ready to his hand to establish a true reprablic on a hroad liberal basis. Such a state of affairs cannot lest. It must break down from inherent rottenness." Though this was recognized hy the more far-seaing of the Bond leaders, they were ready to support Kruger, whether or not he granted reforms, and they sought to make Milner's position impossible. His difficulties were increased when at the general election in Cape Colony the Bond obtained a majority. Acting strictly in a congtitutional manner, Milner thereupon (Oct. 1898) called upon Mr W. P. Schreiner to form a ministry, though aware that such a ministry would be opposed to any direct intervention of Great Britain in the Transvaal. Convinced that the existing state of affairs, if continued, would end in the loss of South Africa hy Britain, Milner came to England in November 1898. He returned to the Cape in February 1899 fully assured of the support of Mr Chamberlain, though the government still clung to the hope that the moderate section of the Cape and Free State Dutcli would induce Kruger to deal justiy with the Uitlanders. He found the situation more critical than when he had left, ten weeks previously. Johannesburg was in a ferment, while General Sir William Butler, who acted as high commissioner in Milner's absence, had allowed it to be seen that be did not take a favourable view of the Uitlander grievances. On the 4th of May Milner penned a memorable despatch to the Colomial Office, in which he insisted that the remedy for the unrest in the Transvaal was to strike at the root of the evil-the political impotence of the injured. "It may seem a paradox," he wrote, "but it is true that the only way for protecting our subjects is to help them to cease to be our subjects." The policy of leaving things alone only led from bad to worse, and (" the case for intervention is overwhelming." Milner felt that only the enfranchisement of the Uitlanders in the Transvaal
would give stablity to the South African situation. He had not based his case against the Transvaal on the letter of the Conventions, and regarded the employment of the word "suzerainty" merely as an "etymological question," but he realized keenly that the spectacle of thousands of British subjects in the Transvaal in the condition of "helots" (as he expressed it) was undermining the prestige of Great Britain throughout South Africa, and he called for "some striking proof "of the intention of the British government not to be ousted from its predominant position. This despatch was telegraphed to London, and was intended for immediate publication; but it was kept private for a time by the home government. Its tenor was known, however, to the leeding politicians at the Cape, and at the instance of J. H. Hofmeyr a conference was held (May 31-June 5) at Bloemfontein between the high commissioner and the president of the Transvaal. Milner then made the enactment by the Transvaal of a franchise law which would at once give the Johannesburgers a share in the government of the country his main, and practically his only, demand. The comference ended without any agreement being reached, and the diplomatic discussion which followed (see Trasesvand) gradually became more and more contentious. When war broke out, October 1899, Milner rendered the military authorities "unfailing support and wise counsels," being, in Lord Roberts's phrase "one whose courage never faltered."
In February igor he was called upon to undertake the administration of the two Boer states, hoth now annexed to the British Empire, though the war was still in progress. He thereupon resigned the governorship of Cape Colony, while retaining the post of high commissioner. The work of reconstructing the civil administration in the Transvaal and Orange River Colony could only he carried on to-a limited extent while operations continued in the field. Milner therefore returned to England to spend a "hard-begged holiday," which was, however, mainly occupied in work at the Colonial Office. He reached London on the 24th of May 1gor, had an audience with the king on the same day, was made a G.C.B. and privy councillor, and was raised to the peerage with the title of Baron Milner of St James's and Cape Town. Speaking next day at a luncheon given in his honour, answering critics who alleged that with more time and patience on the part of Greal Britain war might have been avoided, he asserted that what they were asked to "conciliate" was "panoplied hatred, insensate ambition, invincible ignorance." Meanwhile the diplomacy of 1899 and the conduct of the war had caused a great change in the attitnde of the Liberal party in England towards Lord Milner, whom Mr Leonard Courtney even characterized as "a lost mind." A violent agitation for his recall, in which Sir Henry Campbell-Bannerman joined, was organized, but without success, and in August he returned to South Airica, where he plinged into the herculean task of remodelling the administration. In the negotiations for peace he was associated with Lord Kitchener, and the torms of surrender, signed at Pretoria on the 31st of May 1go2, were drafted by him. In recognition of his services he was, oh the I 5 th of July, made a viscount.
Immediately following the conclusion of peace Milner published (June 21) the Letters Patent establishing the system of crown colony government in the Transvaal and Orange River colonies, and exchanging his title of administrator to that of governor. The reconstructive work necessary after the ravages of the war was enormous. He provided a steady revenue by tbe levying of a tax of 10% on the annual net produce of the gold mines, and devoted special attention to the repatriation of the Boers, land settlement by British colonists, education, justice, the constabulary, and the development of railways. While this work of reconstruction was in progress domestic politics in England were convulsed by the tariff reform movement and Mr Chamberlain's resignation. Milner, who was then spending a brief holiday in Europe, was urged by Mr Balfour to take the vacant poat of secretary of state for the colonies. This offer he declined (Oct. 1, 190.3), considering it more important to complete his work in South Africa, where economic depression
was becoming pronounced. He was back in Johannesburg in December 1903, and had to consider the crisis in the gold-mining industry caused by the shortage of native labour. Reluctantly he agreed, with the sasent of the home government, to the proposal of the mineowners to import Chinese coolies on a three years' contract, the first batch of Chinese raching the Rand in June 1904.
In the latter part of 1904 and the early months of 1005 lord Milner was engaged on the claboration of a acheme to provide the Transval with a system of "representative" government, a balf-way house between crown colony administration and that of welf-government. Letters patent providing for representative government were issued on the 3 1st of March 1905. ${ }^{1}$ For some time be had suffered in health from the incessant strain of work, and be determined to retire. He left Pretoria on the and of April and sailed for Europe on the following day. Speaking at Johannesburg on the eve of his departure, he recommended to all concerned the promotion of the material prosperity of the country and tbe treatment of Dutch and British on an absolute equality. Having referred to his share in the war, be added: "What 1 shouid prefer to be remembered by is a tremendous effort subsequent to the war not only to repair the ravages of that calamity but to re-start the colonies on a higher plane of civilization than they have ever previously attained." He left South Africa while the economic crisis was still acute and at a time when the voice of the critic was audible everywhere; but, in the words of the colonial secretary (Mr Alfred Lyttelton) be had in the eight eventiful years of his administration "laid deep and strong the foundation upon which a united South Africa would arise to become one of the great states of the empire." On his return bome his university honoured him with the honorary degree of D.C.I.
Experience in South Africa had shown him that underlying the difficulties of the situation there was the wider problem of imperial unity. In his farewell speech at Johannesburg he concluded with a reference to the subject. "When we who call ourselves Imperialists talk of the British Empire we think of a group of states bound, not in an alliance-for alliances can be made and unmade-but in a permanent organic union. Of such a union the dominions of the sovereign as they exist today are only the raw material." This thesis he further developed in a magazine article written in view of the colonial conference held in London in 1007 . He advocated the creation of a permanent deliberative imperial council, and favoured preferential trade relations hetween the United Kingdom and the other members of the empire; and in later years he took an active part in advocating the cause of tarifif reform and colonial preference.

In March 1906 a motion censuring Jord Milner for an infraction of the Chinese labour ordinance, in not forbidding light corporal punishment of coolies for minor offences in lieu of imprisonment, was moved by a Radical member of the House of Commons. On behalf of the Liberal government an amendment was moved, stating that "This House, while recording its eondemnation of the flogging of Chinese coolies in breach of the law, desires, in the interests of peace and conciliation in South Africa. to refrain from passing censure upon individuals." The amendment was carried by 355 votes to i35. As a result of this left-handed censure, a counter-demonstration was organized, led by Sir Bartle Frere, and a public address, signed by over 370,000 persons, was presented to Lord Milner expreswing high appreciation of the services rendered by him in Africa to the crown and empire.
See alo E. B. Iwan-Moller. Lord Milmer and South Africa (London, 1902); W. B. Worfold. Lord Milner's Work in Soulk Afrce (London, 1906); W. T. Sread. "Sor Alfred Milner." in The Review of Remews, vol. xx. (1899); and the bibliography to South Araica.
MILNER, JOSEPF ($\mathrm{r} 744^{-1} 997$), English evangelical divine. was born at Leeds and eductied at Loeds grammar-school and Cambridge. Atter taking his degree be went to Thorparch,
' Owing to the advent of a Liberal ministry in England, December rgo5, this ccheme remained inoperative (soe TaNKSVAAL: Hashory).

Yorkshire, as curate and assistant schoolmaster. Subeequenty he becume head master of Hull grammar-school, and in ${ }_{17} 88$ he was chosen afternoon lecturer at Holy Trinity church, Huh. He became a strong supporter of the evangelical movement of the period, and greatly contrihuted to its success in Hull. In addition to his work as head master, he took charge of North Ferrihy parish, about 9 m . from Hull. His puhlished works include esseys and numerous sermons, but his best known work is the History of the Church of Chist (London, $1794-1809$). He lived to complete the first three volames, and two more were added hy his hrother, Leance Milner ($1750-$ 1820), dean of Carlisle, who re-edited the whole work in 18 IO.
miligavie (locally pronounced Millguy), a police burgh of Dumbartonshire, Scotland: Pop. (roon), 3485. It lies 6 m. N.N.W. of Glasgow hy the North British railway. The chief industries include bleach-fields, dye-works, a distillery and a paper mill; but the town is largely a residential quarter for Clasgow business men. Close to the town are two reservoirs, Mugdock (62 acres) and Craigmaddie (88 acres), in which is stored the water from Loch Katrine. Mugdoct Castle, it m. N. of Milingavic, is an old stronghold of the Grahams; in Baldernock parish, about 2 m . E., stands a cromioch, called "the Auld Wives' Lift " (400 ft . high), commanding a fine view of the lands between the Forth and Clyde. Dougalston Loch, i m. S.E., contains several rare aquatic plants.
Milo, or Milon, of Crotona, Greek athlete, Uived about the end of the 6th century b.c. He was six times crowned at the Olympic games and six times at the Pythian for wrestling, and was famous throughout the civilized world for his feate of strength-such as carrying an ox on his shoulders through the stadium at Olympia. In his nntive city he was much honoured, and he commanded the army which defeated the people of Sybaris in 511. The traditional scoonat of his death is often used to point a moral: he found a tree which some woodcutters had partially split with a wedge, and altempted to rend it asunder; hut the wedge fell out, and the tree closed on his hand, imprisoning him till wolves came and devoured him. His name became proverbial for personal strength (Diod. Sic. xii. 9; Pausanias vi. 14; Strabo vi. 263; Herodotus iii. 137).

MILO, TITUS ANNIUS, Roman political agitator, was the son of C. Papius Celsus, but was adopted hy his mother's father, T. Annius Luscus. He joined the Pompeian party, and organized bands of mercenaries and gladiators to support the cause by public violence in opposition to P. Clodius, who gave similar support to the democratic cause. Milo was tribune of the plebs in 57 b.c. He took a prominent part in bringing about the recall of Cicero from exile, in spite of the opposition of Clodius. In 53, when Milo was candidate for the consulship and Clodius for the practorship, the two leaders met hy accident on the Appian Way at Bovillae and Clodius was murdered (January 52). Milo was impeached; bis guilt was clear, and his enemies took every means of intimidatiog his supporters and his judges. Cicero was afraid to speak, and the extant Pro Wilone is an expanded form of the unspoken defence. Milo went into exile at Massilia, and his property was sold by auction. He joined M. Caelius Rufus in 48 in his rising against Caessar. but was slaln near Thurii in Lucania. His wife was Fausta, daughter of the dictator Sulla.
MILO OF GLOUCESTER, lord of Brecknock and cart of Hereford (d. :143), was the son of Walter of Gloucester, who appears as sheriff of that county between 1104 and riai. Milo succeeded his father about the latter year. He was high in the service of Henry 1. between II3O and 1135, and combined the office of sheriff with that of local justiciar for Gloucestershire. Atter the death of Henry I. he declared for Stephen, at whose court he appears as constable in r136. But in 1139 , when the empress Matilda appeared in England, he declared for her, and placed the city of Gloucester at her disposal; he was further distinguished by sacking the royalist city of Worcester and reducing the county of Hereford. In si41, at Matilda's corodation, he was rewarded with the earldom of

Aferelond. Fe remained loyal to the empress after her defeat nt Winchesser. John of Salisbury clasees bim witb Geofrey de Mandeville and others who were non tam comices regui guam hashos publuch The charge is justified by his public pollicy; but the materials for appraising hin personal character do not exist.
See the Continuation of Morence of Worcester (od B. Thorpe, 18488849) : the Cartulary of Glouncenter Abbey (Rolis neries); and J. H. Round's Geoffrey di Mamderills (1892).
MILORADOVICH, MICHAEL ANDRIJEVICH, COUNT (17701825), Rusian general, saw service under Suvarov in the wars against Turkey and Poland, and in the campaign of Italy and Switzerland (1799) earned much distinction as a commander of advanced troopa. In 1805 , having attained the rank of lieutenant-gencral, be served under Kutusov in the campaign of Austerlitz, taking part in the actions of Enns and Krems and in the decisive batite of the and of December, in which his column held the Pratzen herghts. In the Turtish War be distinguisbed himself at Giurgevo (1807). Promoted general of infantry in 18 xa , he commanded a corpe at Borodino, and subsequently inflicted the defeat of Tarulino (or Winkovo) on Mural, king of Naples (October 18, 18:2). His corps was one of those most active In the pursuit of Napoleon's Grande Armek, and in 2813 he led the rear-guard of the Allies after their earlier defeats. At the victory of Kulm be was present in command of a Russian-Prussian corps, whicb be led at Leipzig and in the campaign of 1814. From 1818 to the time of his death be was military governor of St Petersburg. He perisbed in the popular outbreak in the capital, on the 26th (14ib o.s.) of December 1825 .

MILOBH OBRENOVJCH 1. (1780-1860), prince of Servia, founder of the Obrenovich dynasty, was born in 3780 of poor Servian peasants. Wben he later became prince of Servia he used to tell how for a penny a day he drove cattle from Servia to Dalmatia. His balifbrother, Milan Obrenovich, who had developed into a successind exporter of catte and pigs into Austria, associated him in bis own export trade and otherwise supported him. Parily from gratitude and parly because the family name of his half-brother was already honourably knowt in the country, Milosh adopted that name as his own, and called himsell Obrenovich, Instead of Theodorovich. Karageorge, the leader of the first Servian revolution against the Turks, appointed Milosh Obrenovich in 1807 a voyvode, i.e. district commander of the national army and civil administrator. As such he distinguished himself in many batties, and was reputed a wise and energetic administrator and a just judge. When in 1813 the Turks under the Grand Vixier Khurshid occupied Servia, and Karageorge and almoat all his voyundes beft the country for Austria, Milosh, althougb strongly advised to follow thefr example, refused to do so. He remained in the country, sarrendered to the Turks, and was recognized by them as the voyvode of Rudnik (Central Servia). As he was then practically the only chief of the nation, the Turks called him to Belgrade, wbere be was kept through the year 1814 as a bostage. But be found means to prepare a new rising of the Servians egainst the Torks, and on Palm Sunday 1815 be appeared with his voyvode's standard before the people round the small church of Takovo, and started the second and successful insurrection. Not so much by his victories on the battlefields as by his clever exploitation of the international difficulties of Turkey, and of the known weakness of the Turkish pasbas for " baksbeesh "-no doubt also by his statesmanlike modera-thon-be succeeded in less than two years ln obtaining from the Porte the practical recognition of the Servian peopie's right to sell-government. The National Assembly in 1817 elected him prince of Servia.
From that year began the organization of Servia by the Serviens as an autonomous province of the Ottoman Empire. But its existence as such rested on no sale and legal basis, except on the readiness of the Servians to defend it with all their might and on the goodwill of the sultan and his" Sublime Porte." Milook therefore worked bard to obtain some cort
of international recognitiom of the sem-ladependent stafus of Servia. Russia came to his assistance, and by the Treaty of Adrianople of 1829 the Porte engaged formally to grant Servia full autonomy. This engagement was somewhat devel. oped in the Hati-sherif of 1839 , which added to Servia three districts (Krushevats, Alexinats, Zeechar), acknowledged her full autonomy, recognized Miloah as hereditary prince of Servia, and declared that the Turks in Servia could have properties and live only in forified places wbere there were Turkish garrisons, and not in other towns and villages. Milosh won for his family the hereditary right to the throne of Servia without the co-aperauion of Russia. The creation of a hereditary dynasty in Servia was outside the Russian Balkan policy of that time, and this great and independent success of Milosh was the first cause of Russia's dissatisfaction witb him. The second cause was that, yielding to the pressure exercised on him by his own people, he gave the country a constitution without asking "the protector of Servia," the ttar, for his approval of the step. The third cause was that Milosh consistently resented the interference of Russia in the internal affairs of the principality. The climax of his misdeeds, from the Russian point of view, was that on the occasion of his visit to the Sultan Mahmud II. in 1836 be persuaded the British ambassador, Lord Ponsonby, that it would be useful to establish a British consulate in Belgrade. The first British consul in Servia, Colonel Hodges, became speedily an intimate friend of Prince Milosh, who-probably under his new friend's influence-began to agitate to replace the excluaive protectorate of Rusaia by the joint protectorate of all the great Powers of Europe. The cabinet of St Petersburg now decided to remove Milosh from the throne of Servia, and, supported by the Russian consulgeneral, the leaders of the Servian opposition, who posed as champions of a constitutional system, succeeded in forcing him to abdicate in 1839. After his abdication Milosh bived mostly on his estates in Rumania, or in Vienna. In December 2858 the National Assembly of Servia, having dethroned Prince Alexander Karageorgevich, recalled Milost to the throne of Servia. Milosh came, accompanied by his son Michad, and began to reigm in his own old fashion; but death closed his activity on the 14tb (27 th n.s.) of September 1860 . He was buried in the cathedral of Belgrade.
(C. ML)
militiades, the name of two Athenian stalesmen and generals of a family (the Philaidae) of Aeginetan origin, which claimed descent from Aeacus.

1. Miritides (6 ch century b.c.), the son of Cypeelus, a nrominent opponent of Peisistratus. According to Herodotus (vi. 36, 37) he led a colony to the Thracian Chersonese ac the request of tbe Doloncians, who, hard pressed by the Absinthians (or Apsinthians), were advised by the Delphian oracle to invite to their country the man who should firse show them hoopitality after leaving the remple. Since, however, the Athenians had from c. $600-590$ 日.c. held Sigeum in the Troad, whence they had fought against Mityiene, it is probable that the Doloncians appealed for belp to Athens, and that Peisistratus took the opportunit; of getting rid of one of bis chiel opponents by sending Milliades. He became "tyrant" of the Chersonesus, whicb be fortifed by a wall across the isthmus from Cardia to Pactya. He was captured by the people of Lampsacus, but reieased on the intercession of Croesus of Lydia. He was succeeded by Stesagoras, son of his hall-hrother, Cimon.
2. Miltindes (died c. 488 b.c.), the victor of Maratbon, was anotber son of Cimon. On the death of Stesagoras, he was sent to the Chersonese ($?$ about 518-516) by Hippias-no doubt to support Hegessistratus at Sigeum (see Peisistratus). He entrapped and imprisoned the chicf men of Chersonesus, wbich was tben in a turbulent condition, and serengthened himself by an alliance with Hegesipyle, daughter of the Thracian prince Olorus (Herod, vi. 39). He led a contingent in the Scythian expedition of Darius Hystaspis and, according to Herodotus, advised the leaders who were left at the Danube bridge to destroy it and leave Darius to bis fate. This story is improbable, as Darius left Miltiedes in poseemion of the Chersomese for some
tweaty years longer, though Persian forces were frequently in the neighbourhood. Miltiades was, according to Herodotus, expelled by Scythisn invaders, but was brought back by the Doloncians, and subsequently captured Lemnos and Imbros for Athens from the so-called Pelasgian inhabitants, who were Persian dependents. Having thus (probably) incurred the enmity of Darius, Miltiades fled to Athens on the approach of the Persians under Datis and Artaphernes, leaving his son Metiochus a prisoner in Persian hands, and was at once impeached unsuccessfully on the charge of tyranay in the Chersonese. ${ }^{\text {I }}$ Possibly the story of his having tried to destroy the Danube bridge was invented or exaggerated at this time as an argument In his favour (see Grote, History of Greece, I vol., ed. 1907, p. It9 note). Since, however, Herodotus almost certainly relied on Alcmaeofid tradition, which was hostile to Miliades, the whole story is uncertain; the statement that he fied before a Scythian invasion is eapecially improbable. If Miltiades really recommended the destruction of the bridge, we may infer that the Herodotean story of his flight before the Scythians is a misunderstanding of the fact that his residence in Chersonese after the Scythian invasion was insecure and not continuous.
On the approach of the Persians Miltiades was made one of the ten Athenian generals, and it was on his advice that the polemarch Callimachus decided to give battle at Marathon (q.o.). Subsequently he used his influence with the Athenians to induce them to give him a fleet of seventy ships without any indication of his object (Herod. vi. 132-136). Cornclius Nepos (Militades, c. vii.), probably on good authority (? Ephorus), states that he had a commission to regain control over the Aégean. No doubt his object was to establish an outer line of defence against future Persian aggression. Herodotus says that, having besieged Paros vainly for nearly a month, he made a secret visit to Timo, a priestess of Demeter in Paros, with a view to the betrayal of the island, and being compelled to flee wounded himself severely in attempting to leap a fence (but see Ephorus in Fragm. hist. gr. 107).

On his return to Alhens be was impeached by Xanthippus, who was allied by marriage to the Alcmaeonids, on the ground that he had "deceived the people," and only escaped on the dtrength of his past services with a fine of 50 talents. The facts of the trial and the charge are difficult to recover, nor do we know why the siege was raised. Some authorities hold that he was hribed to this course, and hence that the charge was one of treason; others suggest that he retired in the belief that a Persian fleet was approaching. All that is known is that he died of his wound ($489-488$), without peying the fine which was paid subsequently by his son Cimon (g.v.). He appears to have been a man of strong determination and great personal courage, of a type characteristic of the pre-Cleisthenic constitution. His absence in the Chersonese during the first years of the new democracy ($508-493$?) and bis patrician line age account naturally for the difference which existed between him and the popular leaders-Themistocles and Aristides.

Ser the passages of Herodotus and Cornelius Nepos, quoted above, and histories of Greece. On the Parian expedition and ihe trial, R. W. Macan. Herodotus iv.-wi., vol. 2, appendix xi.: on the foreign policy of Miltiades see Themistocles.
(J. M. M.)

MILTON, JOHN (1608-1674), English poet, was born in Bread Street, Cheapside, London, on the gth of December 1608. His father, known as Mr John Milton of Bread Street, scrivener, was himself an interesting man. He was a native of Oxfordshire. the son of a Richard Milton, yeoman of Stanton-St-John's, one of the sturdiest adherents to the old Roman Catholic religion in his district, and was educated at Christ Church, Oxford, where he turned Protestant. According to the poet's earliest biographer, John Milton senior was disinherited in the beginning of Queen Elizabeth's reign for reading the Bible. With a good education and good abilities, especially in music, he may have lived for some time in London by musical teaching and practice.
-So Herodotus; but the story is difficult to believe in view of the fact that the family of Miltiades was distinctively meortpanne. Posaibly the trial is merely a hoetile version of the ordinary tese of a man's qualification for office (boumeta),

Not till 1595, at all evente, when he must have been long past the usual age of apprenticeship, do we hear of his preparation for the profession of a scrivener, and not till February 1590-1600, whun he was about thirty-seven years of age, did he become a qualified member of the Scriveners' Company. It was then that he set up bis " house and shop " at the sign of the Spread Eagle in Bread Street, and began his business of drawing up wills, marriage-settlements, and the like, with such related business as that of receiving money from clients for investment and lending it out to the best advantage. It was at the same time that he married, not, as stated by Aubrey, a lady named Bradshaw, but Sarah Jeffrey, one of the two orphan daughters of a Paul Jeffrey, of St Swithin's, Londor," citizen and merchanttaylor," originally from Essex, who had died before 1583 . At the date of her marriage she was about twenty-eight years of age. Six children were born to the scrivener and bis wife, of whom three survived infancy-Anne, who married Edward Phillips; John, the poet; and Christopher (roris^{-1693}), who was knighted and made a judge under James 11.

The first sixteen years of Milton's life, coinciding exactly with the last sixteen of the reign of James I., associate themselves with the house in Bread Street. His father, while prospering in business, continued to be known as a Lute and man of "ingeniose" tastes, and acquired distinction in the London musical world of that time. He contributed a madrigal to Thomas Morley's Trimmph of Orianc (1601). four motels to Sir William Leighton's Tears and Lamentationt of a Sorrowful Sow (1614), and some hymn tunes-one of which, "Yor," is still in common use-in Thomas Ravenscroft's Whole Book of Psalms (Iא2I). Music was thus a part of the poet's domestic education from his infancy. Again and again Milton speaks with gratilude and affection of the ungrudging pains bestowed by his father op bis early education. "Both at the grammar school and also under other masters at home," is the statement in one passage, " he caused me to be instructed daily." When Milton was ten years of age his tutor was Thomas Young (i587-1655), a Scoltish divine, who afterwards became master of Jesus College, Cambridge. Young's tutorship lasted till 1622 , when he accepted the pastorship of the congregation of English merchants in Hamhurg. Already, however, for a year or two his teaching bad been only supplementary to the education which the boy was receiving by daily attendance at St Paul's public school, close to Bread Street. The headmaster of the school was Alerander Gill, an elderly Oxford divine, of high reputation for scholarship and teaching ability. Under him, as usher or second master, was his son, Alexander Gill the younger, also an Oxford graduate of acholarly reputation, but of blustering character. Milton's acquaintanceship with this younger Gill, begun ar St Paul's school, led to subecquent friendship and rorrespondence. Far more affectionate and intimate was the friendship formed by Milton at St Paul's with his schoolfellow Charies Diodati, the son of an Italian physician, Dr Theodore Diodati, a naturalized Englishman settled in London, and much respected, both on his own account and as being the brother of the famous Protestant divine, Jean Diodati of Geneva. Young Diodati, who was destined for his father's profession, left the school for Trinity College, Oxford, early in 1623; but Mi)ton remained till the end of 1624. In that year his elder sister, Anne, married Edward Phillips, a clerk in the Government office called the Crown Office in Chancery.

Milton had then all but completed his sixteenth year, and was as acholarly, as accomplished and as bandsonie a youth as St Paul's school had sent forth. We learn Irom himsclf that bis exercises "in English or other tongue, prosing or versing, but chiefly this latter," had begun to attract attention even in his boybood. Of these prems the only specimens that now remain are two copies of Latin verses, preserved in a commonplace book of his (printed by the Camden Saciety in 1877), and his "Paraphrase on Psalm CXIV " and his " Paraphrase on Psalm CXXXVI." At the age of sixtcen years and two months, Milton was entered as a student of Christ's College, Cambridge,
in the grade of a "Leseer Pensioner", and he matriculated two months later, on the gth of April 1625 . The master of Christ's was Dr Thomas Bainbrigge; and among the thirteen fellows were Joseph Meade, still remembered as a commentator on the Apocalypee, and William Chappell, afterwards an Irish bishop. It was under Chappell's tutorship that Milton was placed when he first entered the college. At least three students who entered Christ's after Milton, but during his residence, deserve mention. One was Edward King, a youth of Irish birth and high Irish connexions, who entered in 1626, at the age of fourteen, another was John Cleveland, afterwards known as royalist and satirist, who entered in 1627; and the third was Heary More, subsequently facmous as the Cambridge Piatonist, who entered in 1631, just before Milton left. Milton's own brother, Christopher, joined kim in the college in February 1630-1631, at the age of fifteen.
Milton's academic course lasted seven years and five months, bringing him from his seventeenth year to his twenty-fourth. The first four years were his time of undergraduateship. It was in the second of these-the year 1626-that there occurred the quarrel between kim and his tutor, Chappell, which Dr Johnson, making the most of a lax tradition from Aubrey, magnified into the supposition that Milton may have been one of the last students in eilher of the Engliah universities that suffered the indignity of corporal punishment. The legend deserves no credit; but it is certain that Milton, on account of some disagreement with Chappell, left college for a time, though he did not lose his term; and that when he did return, he was transferred from the tutorship of Chappell to that of Nathaniel Tovey. From the first of the Latin elegies one infers that the cause of the quarrel was some outbreak of self-assertion on Milton's part. We learn indeed, from words of his own elsewhere, that it was not only Chappell and Bainbrigge that he had offended by his independent demeanour, but that, for the first two or three years of his undergraduateship, he was generally unpopular, for the same reason, among the younger men of his college. They had nicknamed kim "the Lady" -a nickname which the students of the other colleges took up, converting it into "the Lady of Christ's"; and, though the allusion was chiefly to the peculiar grace of his personal appearance, it conveyed also a sneer at what the rougher men thought his unusual prudishness, the haughty fastidiousness of his tastes and morals. A change in this state of things had certainly occurred before January 1628-1629, when, at the age of twenty, he took his B.A. degree. By that time his intellectual preeminence had come to be acknowledged. His reputation for scholarship and literary genius, extraordinary even then, was more than confirmed during the remaining three years and a half of his residence in Cambridge. A fellowship in Christ's which fell vacant in 1630 mould undoubtedly bave been his had the election to such posts depended then absolutely on merit. As it was, the fellowship was conferred, by royal favour on Edward King, his junior in college standing by sixteen months. In July 1632 Milton completed his career at the university by taking his M.A. degrec. Tradition still points out Milton's rooms at Christ's College. They are on the first floor on the first stair on the north side of the great court.
Of Milton's skill at Cambridge, in what Wood calls "the collegiate and academical exercises," specimens remain in his Prolusiones quaedam oratoriac. They consist of seven rhetorical Latin essayz, generally in a whimsical vein, delivered hy him, either in the hall of Christ's College or in the public university schools. To Miiton's Cambridge period belong four of his Latin "Familiar Epistles," and the greater namber of his preserved Latin poems, including: (x) the seven pieces, written in r6a6, which compose his Elegiarum liber, two of the most interesting of them addressed to his friend, Charles Diodati, and one to his former tutor, Young, in his exile at Hamburg; (2) the five short Gunpowder Plot epigrams, now appended to the Elegies; and (3) the first five pieces of the Sybarum liber, the most important of which are the hexameter poem "In quintum novernbris" (1626), and the piece entitiled Naturam
non pali semium (roz28). Of the English poems of the Cambridge period the following is a dated list: "On the Death of a fisir Infant " (1625-16a6), the subject being the death of the first-born child of his sister Anne Phillips; "At a Vacation Exercise in the College" (1628), the magnificent Christmas ode; "On the Morning of Christ's Nativity " (1629); the fragment called "The Passion" and the "Song on May Morning," both probably belonging to 1630; the zonnet "On Shakespeare," certainly belonging to that year, printed in the Shakespeare folio of $16_{32}{ }^{2}$ the two facetious pieces "On the University Carrier" ($1630-$ 1631); the "Epitaph on the Marchioness of Winchester" (1631); the sonnet "To the Nightingale," probably of the same year; the sonnet "On arriving at the Age of twentythree," dating itself certainly in December $\mathbf{1 6 3 3}_{31}$.
Just before Milton quitted Cembridge, his father, then verging on his seventieth year, had practically retired from his Bread Street business, leaving the active management of it to a partner, named Thomas Bower, a former apprentice of his, and had gone to spend his declining years at Horton in Buckinghamshire, a small village near Coinbrook, and not far from Windsor. Here, in a bouse close to Horton church, Milton mainly resided for the next six yeara-from July 1632 to April 1638 .
Although, when he had gone to Cambridge, it had been with the intention of becoming a clergyman, that intention had been abandoned. His reasons were that "tyranny had invaded the church," and that, finding he could not honestly subscribe the oaths and obligations required he "thought it better to preserve a blameless silence before the saered office of speaking, begun with servitude and forswearing."' In other words, he was disgusted with the system which Laud was establishing and maintaining in the Church of England. "Church-outed by the prelates," as he emphatically expresses it, he seems to have thought for a time of the law, but he decided that the only life possible for himself was one dedicated wholly to scholarship and literature. His compunctions on this subject, expressed already in his sonnet on arriving at his twenty-third year, are expressed more at length in an English letter of which two drafts are preseived in Trinity College, Cambridge, sent by kim, shortly after the date of that sonnet, and with a copy of the sonnet included, to some friend who had been remonstrating with him on his "belatedness" and his persistence in a life of mere dream and study. There were gentle remon-: strances also from his ereellent father. Between such a father and such a son, however, the conclusion was easy. What it was may be learnt from Milton's fine Latin poem Ad patrem. There, in the midst of an enthusiastic recitation of all that his fatber had done for him hitherto, it is intimated that the agreement bet ween them on their one little matter of difference was already complete, and that, as the ton was bent on a private life of literature and poetry, it had been docided that he should have his own way, and sbould in fact, so long as he chose, be the master of his lather's means and the chief person in the Horton household. For the six years from 1632 this, accordingly, was Miltan's position. In perfect keisure, and in a pleasant rural retirement, with Windsor at the distance of an easy walk, and London only about 17 m . off, he went through, he tells us, a systematic course of reading in the Greek, and Latin classics, varied by mathematics, music, and the kind of physical science we should now call cosmography.
It is an interesting fact that Milton's very first public appearance in the world of English suthorshtp was in so bonourable a place as the second foiio edition of Shakespeare in 1632. His enthusiastic eulogy on Shakespeare, written in 1630 , was one of three anonymous pieces prefixed to that second folio. Among the poems actually written by Milton at Horton the first, in all probability, after the Latin bexameters Ad patrem, were the exquisite companion pieces L'Allagro and II Penseroso. There followed, in or about 1633, the fragment called Arcades. It was part of a pastoral masque performed by the young people of the noble family of Egerton before the countess-dowager
'See the preface to Book II. of his Reasow of Church Gooermment ($1641-1642$), which is of great hiographical interest.
of Derby, at her mansion of Harefield, about 10 m . from Horton. That Milton contributed the words for the entertainment was, almost certainly, owing to his friendship with Henry Lawes, who supplied the music. Next in order among the compositions at Horton may be mentioned the three short pieces, "At a Solemn Music." "On Time," and "Upon the Circumcision"; after which comes Comus, the largest and most important of all Milton's minor poems. The name by which that beautiful drama is now universally known was not given to it by Milton himsell. He entitled it, more simply and vaguely, "A Masque presented at Ludlow Castle, 1634, on Michaelmas night, before John Eart of Bridgewater, Lord President of Wales " (1637). The carl of Bridgewater, the head of the Egerton family, had been appointed president of the council of Wales; among the festivities on his assumption of the office, a great masque was arranged in the hall of Ludlow Castle, his official residence. Lawes supplied the music and was stage manager; he applied to Milton for the poetry; and on Michaeimas night, the 29th of September 1634, the drama furnished hy Milton was performed in Ludlow Castle before a great assemblage of the nobility and gentry of the Welsh principality, Lawes taking the part of "the attendant spirit," while the parts of "first brother," " second brother "and "the lady," were taken hy the earl's three youngest children, Viscount Brackley, Mr Thomas Egerton and Lady Alice Egerton.
From September 16_{34} to the beginning of 1637 is a comparative blank in our records. Straggling incidents in this blank are a Latin letter of date December 4, 8634 , to Alexander Gill the younger, a Greck translation of "Psalm CXIV.," a visit to Oxford in $\mathbf{x} 635$ for the purpose of incorporation in the degree of M.A. in that university, and the beginning in May 1636 of a troublesome lawsuit against his now aged and infirm father. The lawsuit, which was instituted by a certain Sir Thomas Cotton, bart., nephew and executor of a deceased John Cotton, Esq.، accused the elder Milton and his partner Bower, or both, of having, in their capacity as scriveners, misappropriated divers large sums of money that had been entrusted to them by the deceased Cotton to be let out at interest.
The lawsuit was still in progress when, on the 3rd of April 1637, Milton's mother died, at the age of about sixty-five. A flat blue stone, with a bricf inscription, visible on the chancelpavement of Horton churcb, still marks the place of her burial. Milton's testimony to her character is that she was "a most excellent mother and particularly known for her charities through the neighbourhood." The year 1637 was otherwise eventful. It was in that year that his Comus, after lying in manuscript for more than two years, was published by itself, in the form of a small quarto of thirty-five pages. The author's name was withheld, and the entire responsibility of the pablication was assumed by Henry Lawes. Milton seems to have been in London when the little volume appeared. He was a good deal in London, at all events, during the summer and autumn months immediately following bis mother's death The plague, which had been on one of its periodical visits of ravage through England since early in the preceding year, was then especially severe in the Horton neighbourhood, while London was comparatively free. It was probably in London that Milton heard of the death of Edward King, who had sailed from Chester for a vacation visit to his relatives in Ireland, when, on the roch of August, the ship in perfectly calm water atruck on a rock and went down, he and nearly all the other passengers going down with her. There is no mention of this event in Milton's two Latin "Familiar Epistles" of September 1637, addressed to his friend Charles Diodati, and dated from London; but in November 1637, and probably at Horton, he wrote his matchless pestoral monody of L ycidas. It was his contribution to a collection of ohituary verses, Greek, Latin and English, inscribed to the memory of Edward King hy his numerous friends, at Cambridge and elsewhere. The collection appeared early in 1638 . The second pert contained thirteen English poems, the last of which was Milton's monody، signed only with his initiala " J. M."

Milton was then on the wing for a foreign tour. He had long set his heart on a visit to Italy, and circumstances now favoured his wish. The vexatious Cotton lawsuit, after hanging on for nearly two years, was at an end, as far as the elder Milton was concerned, with the most absolute and honourable vindication of his character for probity, though with some continuation of the case against his pertner, Bower. Moreover, Milton's younger brother Christopher, though but twenty-two years of age, and just about to be called to the bar of the Inner Temple, bad married; and the young couple had gone to reside at Horton to keep the old man company.
Beiore the end of April 1638 Milton was on his way across the channeh, taking one English man-servant with him. At the time of his departure the last great news in England was that of the National Scotish Covenant. To Charles the news of this "damnable Covenant," as he called it_{4}, was enraging beyond measure; but to the mass of the English Puritans it was far from unwelcome, promising, as it seemed to do. for England herself, the suhversion at last of that system of "Tborough," or despotic government by the king and his ministers without parliaments, under which the country had been groaning since the contemptuous dissolution of Charies's third parliament ten years belore. Through Paris, where Milton received polite attention from the English ambassador, Lord Scudamore, and had the honour of an introduction to the famous Hugo Grotius, then ambassador for Sweden at the French court, he moved on rapidly to Italy, by way of Nice. After visiting Genoa, Leghorn and Pise, he arrived at Florence, in August 1638. Enchanted by the city and its society, he remained there two months, frequenting the chies academies or literary dubs, and even taking part in their proceedings. Among the Florentines with whom he became intimate were Jacopo Gaddi, founder of an academy called the Svoglieti, young Carlo Dati, author of Vite da' pittori axdichi, Pietro Frescohaldi, Agoctino Coltellini, the founder of the Academy of the Apatisti, the grammarian Benedetto Buommattei, Valerio Chimentelli, afterwards professor of Greek at Piss, Antonio Francini and Antonio Malatesti. It was in the neighbourhood of Florence also that be "found and visited " the great Galileo, then old and blind, and still nominally a prisoner to the Inquisition for his astronomical heresy. ${ }^{1}$

By way of Florence and Siena, he reached Rome some time in October, and spent about another two months there, not only going about among the ruins and antiquities and visiting the galleries, but mixing also, as he had done in Florence, with the learned society of the academies. Among those with whom he formed acquaintance in Rome were the German scholar, Lucas Holstenius, librarian of the Vatican, and three native Italian scholars, named Alessandro Cherabini، Giovanni Salzilli and a certain Selvaggi. There is record of his having dined once, in company with several other Englishmen, at the hospitable tahle of the English Jesuit College. The most picturesque incident, however, of his stay in Rome was his presence at a: great musical entertainment in the palace of Cardinal Francesco Barberini. Here he had not only the honour of a specially kind reception by the cardinal himself, but also, it would appear, the supreme pleasure of listening to the marvellous Leonora Baroni, the most renowned singer of her age.
Late in November he lefit Rome for Naples. Here he met the agod Giovanni Battista Mansoc marquis of Villa (1560-1645), the friend and biographer of Tasso, and subsequently the friend and patron of Marini. He had hardly been in Naples a month, however, when there came news from England which not only stopped an intention he had formed of extending his tour to Sicily and thence into Grecce, but urged his immediate return home. "The sad news of civil war in England," he says, "called me back; for I considered it base that, while my fellow. countrymen werc fighting at home for liberty, I should be travelling at my case for intellectual culture" (Defensio secunde). In December 1638, tberefore, he set his face northwards
'This Interview forms the subject of one of W. S. Landor's Imagmary Contronsalions.
again: His retum fourney, however, probably because he leant that the news be had first recoeived was engegerated or premature, was broken into stages. He apent a second January end February (i638-1639) in Rome, in some denger, he says, from the papal police, because the English Jesuits in Rome had taken offence at his habit of free speech, wherever be west, on the subject of religion. From Rome be went to Forence, his second visit to the city, including an excuraion 20 Lucca, extending over two months; and not till April 1639 did he tike his leave, and proceed, by Bologna and Ferrara, to Venice. About a month was given to Venice; and thence, having shipped for England the books he had collected in Italy, he went on, by Verona and Milan, over the Alps, to Geneva. In this Protestant city he spent a week or two in June, forming interesting acquaintanceships there too, and having diily conversations with the great Protestant theologian Dr Jcun Diodati, the uncle ol his friend Charks Diodati. From Geneva be returned to Paris, and so to England. He was home again in August 1639, having been aboent in all fifteen or sixteen months.

Milton's Continental tour, and especially the Italian partion of i, which be describes at some length in his Defensio secureda, remained one of the chief pleasures of his memory through all his subsequent life. Nor was it without fruits of a literary kind. Besides two of his Latin Epistolae fomiliares, one to the Florentine grammarian Buommattei, and the other to Luces Holstenius, there have to be assigned to Milton's sixteen months on the Continent his three Latin epigrams Ad Lconoxam Romae cawentem, his Latin scarons Ad Salrillum poedam romanum egrocancem, his fine Latin hexameters entitled Mansus, addressed to Giovanni Baltista Manso, and his five Italina sonnets, with a camzone, in prise of a Bolognese lady.

His bosom friend and companion from boybood, Charles Diodati, died in Blackfriars, London, in August r638, not four months after Milton had gone away on his tour. The intelligence did not reach Milton till some months afterwards, probably not till his second stay in Florence; and, though he must bave learm some of the particulars from his friend's uncle in Geneva, be did not know them fully till his return to England. How profoundly they affected him appears from his Epilc phium Damonis, then written in memory of bls dead frlend. The tmportance of this poem in Mihon's hiograpby cannot be overrated. It is perhspe the noblest of all hls Latin poems; and, thougb written in the artifcial manner of a pastoral, it is unmistakably an outburst of the most passionate personal grief. In tbis respect Lycidas, artistically perfect though that poem \& cannot be compared with it; and it is only the fact that Lycidas is in English, while the Epilaphium Domonis is in Latin, that has led to the notion that Edward King of Christ's College was peculiarly and preeminently the friend of Milton in his youth and early manhood.

We should not have known, but for an incidental passage in the Epitaphium Damonis, that, at the time of his return from Italy, he had chosen a subject for a great poem from the Arhurian legend. The passage (lines $160-178$) is one in wbich, after referring to the bopes of Diodati's medical career so suddenly cut short by bis death, Milion speaks of bimself and of his own projects in his profession of literature. Milton wrote that be was meditating an epic of whicb King Arthur was to be the central figure, but which should include somehow the whole cycle of British and Arthurian legend. This epic was to be in English, and he bad resolved that all his poetry for the future should be in the same tongue.
Not long after Millon's return the house at Horton ceased to be the family home. Christopher Milton and bis wife went to reside at Reading, taking tbe old gentleman with them, while Milton himself preferred London. He had first taken lodgings in St Bride's Churchyard, at the foot of Fleet Street; but, - after a wblle, probably early in 1640 , he removed to 2 "pretty garden bouse " of his own, at the end of an entry. in the part of Aldersgate Street wbich lies immediately on the city side of what is now Maidenhend Court. His sister, whoce first
husband had died in 1631, had married a Mr. Thomes Agar, his successor in the Crown Office; and it was arranged that her two sons by her first busband should be educated hy their uncle. John Phillips, the younger of them, only nine years ald, had boarded with him in the St Bride's Church yard lodgings; and, after the removal to Aldersgate Street, the other brother, Edwasd Phillips, only a year older, became his boarder also. Gradually a lew other boys, the sons of well-to-do personal friends, joinad the two Phillipses, whether as boarders or for daily lessons, so that the house in Aldersgate Sureet became a small private school.
The Arthurian epic had been given up, and his mind was roving among many other subjects, and balancing their capabilities. How he wavered between Biblical subjects and heroic subjects from British history, and how many of each lind guggested themselves to him, one learns from a list in his own handwriting among the Milton MSS. at Cambridge. It contains jottings of no fewer than fifty-three subjects from the Old Teatament, eight from the Gospels, thirty-three from British and English history before the Conquest, and five from Scottish history. It is curious that all or most of them are headed or described as subjects for "tragedies," as if the epic form had now been abandoned for the dramatic. There are four separate drafts of a possible tragedy on the Greek model under the title of Parodise Losf, two of them merely enumerating the dramatis personae, but the last two indicating the plot and the division into acts. In 1641 be wrote in the Reasos of Church Covernment that he was meditating a poem on high moral or religious subjects. But the fulfiment of these plans was indefinitely postponed. Milton became abeorbad in the ecclesiastical controversies following on the king's attempt to force the episcopal system on the Scots.

Of the first proceedings of the Long Parliament, including the trial and execution of Strafford, the impeachment and imprisonment of Laud and others, and the breakdown of the system of Thorough by miscellaneous reforms and by guarantees for parliamentary liberty, Milton was only a spectator. It was when the church question emerged distinctly as the question paramount, and there had arisen divisions on that question among those who had been practically unanimous in matters of civil reform, that he phunged in as an active adviser. There were three parties on tbe church question. There was a highchurch party, contending for episcopacy by divine right, and for the mainteaance of English episcopacy very much as it was; there was a middle party, defending episcopacy on grounds of usage and expediency, but desiring to see the powers of bishops greatly curtailed, and a limited episcopacy, with councils of presbyters round each bishop, substituted for the existing high episcopacy; and there was the root-andbranch party, as it called itself, desiring tbe entire abolition of episcopacy and the reconstruction of the English Church on something like the Scottish Presbyterian model. Since the opening of the parliament there had been a storm of pamphlets from these three parties. The manifesto of tbe bigh-cburch party was a pamphlet by Joseph Hall, bishop of Exeter, entitled "Humble Remonstrance to the High Court of Parliament." In answer to Hall, and in representation of the views of the root-and-hranch party, tbere had stepped forth, in March 1640-1641, Give leading Puritan parish ministers, the initials of whose names, clubbed togetber on the title-page of tbeir joint production, mado the uncoutb word "Smectymnuus." These were Stephen Marshall, Edmund Calamy, Thomas Young, Matthew Newcomen and William Spurstow. Thomas Young was the Scottish divine who had been Milton's tutor in Bread Street; he had returned from Hamburg in 1628, and had been appolnted to the vicarage of Stowmarket in Suffolk. The famous Smectymnuan pamphlet in reply to Hall was mainly Young's: What is more interesting is that his old pupil Milton was secretly in partnership with him and his brother-Smectymnuans. Milton's band is discernible in a portion of the original Smectymnuan pemphlet; and he continued to aid the Smectymounss in thoir subrequent rejoinders to Hall's defences
of himself. In May 1641 he put forth a defence of the Smectymnuan side in Of Reformation lonching Churck Discipline in Englend and the Causes that hilherto have hinderal it. He reviewed English ecclesiastical history, with an appeal to his countrymen to resume that course of reformation which be considered to have been prematurely stopped in the preceding century, and to sweep away the last relics of papacy and prelacy. Among all the root-and-hranch pamphlets of the time it stood out, and stands out still, as the most thorough-going and tremendous. It was followed by four otbers in rapid succession, -Of Predatical Episcopacy and whethers it may be deduced fram the Apastolical Times (June 1641), Animadversions upor the Remonstrant's Defence against Smectymmus (July 1641), The Rearon of Churck Govermment urged against Prelaty (Feb. 1641-1642), Apology against a Pamphtet called a Modest Confutation of the Amizadversions, \&cc. (March and April 1641-1642). The first of these was directed chiefly against that middle party which advocated a limited episcopacy, with especial reply to the arguments of Archbishop Ussher, as the chief exponent of the views of that party. Two of the others, as the tilles imply, belong to the Smectymnuan series, and were castigations of Bishop Hall. The greatest of the four, and the most important of all Milton's anti-episcopal pamphlets after tbe first, is that entitled The Reason of Church Government. It is there that Milton takes his readers into his confidence, speaking at length of himself and his motives in becoming a controversialist. Poetry, he declares, was his real vocation; it was withreluctance that he had resolved to "leave a calm and pleasing solitariness, fed with cheerful and confident thoughts, to embark in a troubled sea of noises and hoarse disputes"; but duty had left him no option. The great poem or poems he had been meditating could wait; and meanwhile, though in prosepolemics he had the use only of his "left hand," that hand should be used witb all its might in the cause of his country and of liberty. The Apology was in answer to a Modest Confulation of a Slanderous and Scurrilous Libel, the joint work of Hall and bis son, attacking Milton's personal character.

Tbe parliament had advanced in the root-and-branch direction so far as to have passed a bill for the exclusion of bishops from the House of Lords, and compelled the king's assent to that bill, when, in August 1642, the further struggle between Charles and his subjects took the form of civil war. The Long Parliament moved on more and more rapidly in the root-and-branch direction, till, by midsummer 1643 , the abolition of episcopacy had been decreed, and the question of the future non-prelatic constitution of the Church of England referred to a synod of divines, to meet at Westminster under parliamentary authority. Of Milton's life through those first months of the Civil War little is knowh. He remained in his house in Aldersgate Street, teaching his nephews and other pupils; and the only scrap that came from his pen was the semi-jocose sonnet bearing the tille "When the Assault was intended to the City." In the summer of 1643, however, there was a great change in the Aldersgate Street household. About the end of May, as his nephew Edward Pbillips remembered, Milton went away on a country journey, without saying whitber or for what purpose; and, when be returned, about a month afterwards, it was with a young wife, and with some of her sisters and other relatives in ber company. He had, in fact, been in the very beadquarters of the king and the Royalist army in and round Oxford; and the bride he brought back with him was a Mary Powell, the eldest daughter of Richard Powell, of Forest Hill, near Oxford. She was the third of a family of eleven sons and daughters, of good standing, but in rather embarrassed circumstances, and was seventeen years and four months old, while Milton was in his thirty-fifth year.. However the marriage came about, it was 2 most unfortunate event. The Powell family were strongly Royalist, and the girl herself seems to have been frivolous, and entirely unsuited for the studious life in Aldersgate Street. Hardly were the honeymoon festivities over, when, her sisters and other relatives having returned to Forest Hill and left her alone with her busband, ahe pined for bome
again and begged to be allowed to go back on a visit. Milton consented, on the understanding that the visit was to be a brief one. This seems to have been in July 1643. Soon, however, the intimation from Forest Hill was that he need not look ever to have his wife in his bouse again. The resolution seems to have been mainly the girl's own; but, as the king's cause was then prospecing in the field, Edward Phillips was probably right in his conjecture that the whole of the Powell family had repented of their sudden connexion with $s 0$ prominent a Parliamentarian and assailant of the Cburch of England is Milton. While his wife was away, his old father, who had been residing for three years with his younger and lawyer son at Reading, came to take np his quarters in Aldersgate Street.

Milon's conduct under the insult of his wife's desertion was most characteristic. Always fearless and speculative, he converted his own case into a public protest against the existing law and theory of marriage. The Doctrine and Discipline of Divorce, Restored to the good of boith Sexces from the Bondaft of Canon Lawe and other Mistakes was the title of a pamphlet put forth by him in August 1643, without his name, but with no effort at concealment, declaring the notion of a sactamental sanctity in the marriage relation to be a clerically invented superstition, and arguing that inhereat incompatibility of character, or contrariety of mind, between two maried persons is a perfectly just reason for divorce. If the date, the ist of August, is correct, the pamphlet must have been written almost immediately on his wife's departure and before ber definite refusal to return. There was no reference to his own case, except by implication; but the boldness of the speculation roused attention and sent a shock through London. It was a time when the authors of heresies of this sort, or of any sort, ran considerable risks. The famous Westminster Assembly of Divines, called by the Long Parliament, met on the ist of July 1643. Whether Milton's divorce tract was formally discussed in the Assembly during the first months of its sitting is unknown; but it is certain that the London clergy, including not a few members of the Assembly, were then angrily discussing it in private. That there might be no obstacle to a more public prosecution, Milton put his name to a second and much enlarged edition of the tract, in February 1644, dedicated openly to the parliament and the assembly. Then, for a month or two, during which the gossip about him and his monstrous doctrine was spreading more and more, he turned his attention to other subjects.

Among the questions in agitation in the general ferment of opinion brought about by the Civil War was that of a reform of the national system of education and especially of the universities. To this question Milton made a contribution in Juac 1644, in a small treatise, Of Education, in the form of a letter to Samuel Hartlib, a German then resident in London and interesting himself busily in all philanthropic projects and schemes of social reform. In the very next month, however, July 1644, he returned to the divorce subject in a pamphlet addressed specially to the clergy and entitled The Judgment of Martin Bucer concerning Divorce. The outcry against him then reached its height. He was attacked in pamphlets; he was denounced in pulpits all through London, and especially by Herbert Palmer in a sermon preached on the 13th of August, before the two Houses of Parliament; strenuous efforts were made to bring him within definite parliamentary censure. In the cabal formed against him for this purpose a leading part was played, at the instigation of the clergy, by the Stationers' Company of London, which had a plea of its own against him on the ground that his doctrine was not only immoral, but had been put forth in an illegal manner. His first divorce treatise, though published immediately after the "Printing Ordinance" of the parliament of the 14th of June 1643 , requiring all publications to be licensed for press by one of the official censors, and to be registered in the books of tbe Stationers' Company, had been issued without license and without registration. Complaint to this effect was made against Milton, with some others
linble to the same charge of contempt of the printing ordinance, in a petition of the Stationers of the Howse of Commons in August 1644; and the matter came before committer hoth in that House and in the Londs.
It is to this circumstance that the world owes the most popular and eloquent, if not the greatest, of all Milton's prose writings, his famous Areopagitica, a Speech of Mr John Millon for the Liberty of Unlicensed Prinding, to the Pardiament of Englamd. It appeared on the a5th of November 1644, deliberately unlicensed and unregistered, and was a remonstrance addressed to the pariament, as if in an oration to them face to face, against their ordinance of June 1643 and the whole system of licensing and censorship of the press. Nohly eulogistic of the parliament in other respects, it denounced their printing ordinance as utterly unworthy of them, and of. the new era of English liberties which they were initiating, and called for its repeal. Though that effect did not follow, the pamphlet virtually accomplished its purpose. The licensing system had received its death-blow; and, though the Suationers returned to the charge in another complaint to the House of Lords, Milton's offence against the press ordinance was condoned. He was still assailed in pamphlets, and found himself "in a world of disesteem "; but he lived on through the winter of 1644/5 undisturbed in his house in Aldersgate Street. To this period there belong, in the shape of verse, only bis sonnets ix. and x_{n}, the first to some anonymous lady, and the second "to the Lady Margaret Ley," with perhaps the Greek lines entitled Philosophus ad regen quexdam. His divorce speculation, however, still occupied him; and in March 1644/s he published simultaneously his Tetrachordon: Expositions upon the four chief places of Scripture which treat of Marriage, and his Colastarion, a Reply to a nameless Ansoer against the Doctrine and Discipline of Divorce. In these he replied to his chief recent assailants, lay and clerical, with merciless severity.
Through the latter part of 1644 , Milton had been saved from the penalties which his Presbyterian opponents would have inflicted on him by the general championship of liberty of opinion by Cromwell and the army Independents. Before the middle of 1645 be, with others who were on the black books of the Presbyterians as heretics, was safer still. Milton's position after the battle of Naseby may be easily understood. Though his first tendency on the Church question had been to some form of a Presbyterian constitution for the Church, he had parted utterly now from the Scots and Presbyterians, and become a partisan of Independency, having no dread of "sects and schisms," but regarding them rather as bealthy signs in the English body-politic. He was, indeed, himself one of the most noted sectaries of the time, for in the lists of sects drawn out by contemporary Presbyterian writers special mention is made of one small sect who were known as Millonisls or Divorcers.
So far as Milton was concerned personally, his interest in the divorce speculation came to an end in July or August 1645, when, by friendly interference; a reconciliation was effected between him and his wife. The ruin of the king's cause at Naseby had suggested to the Powells that it might be as well for their daughter to go back to her husband after their two years of separation. It was not, however, in the bouse in Adersgate Street that she rejoined him, but in a larger bouse, which he bad taken in the adjacent street called Barhican, for the accommodation of an increasing number of pupils.
1 The house in Barbican was tenanted by Milton from ahout Angust 1645 to September or October 1647. Among his first occupations there must have been the revision of the proof sheets of the first edition of his collected poems. It appeared as a tiny volume, copies of which are now very rare, with the title, Pooms of Mr John Milion, botk Englisk and Lalin, compos'd at seseral times. Printed by his true Copics. The songs woere sed is Musick by Mr Hewry Lowes. . . . The title-page gives the date 1645 , hut the and of January $1645 / 6$ seems to heve been the eract day of its pulaication. Whether because his pedagogic duties now engrossed him or for other reasone, very
few new pieces were added in the Barbican to those that the little volume had thus made public. In English, there were only the four sonnets now numbered ri.-xiv., the first two entitled "On the Detraction which followed upon my writing certain Treatises," the third "To Mr Henry Lawes on his Airs," and the fourth " To the Religious Memory of Mrs Catherine Thomson," together with the powerful anti-Presbyterian invective or "tailed sonnet " entitled "On the New Forcers of Conscience under the Long Parliament "; and in Latin there were only the ode Ad Joonnem Rousiwm, the Apologus de Rustico et Hero, and one interesting " Familiar Epistle " (April 1647) addressed to his Florentine friend Carlo Dati.

Some family incidents of importance belong to this time of residence in Barbican. The fall of Oxiord in 1646 compelled the whole of the Powell family to seek refuge in London, and most of them found shelter in Milton's bouse. His first child, a daughter named Anne, was born there on the 29th of July that year; on the 1st of January $1646 / 7$ his father-in-law Richard Powell died there, leaving his affairs in confusion; and in the following March his own father died there, at the age of eighty-four, and was buried in the adjacent church of St Giles, Cripplegate.

From Barbican Milton removed, in September or October 1647, to a smaller house in that part of High Holborn which adjoins Lincoln's Inn Fields. His Powell relatives had now left him, and he had reduced the number of his pupils, or perhaps kept only his two nephews. But, though thus more at leisure, be did not yet resame his projected poem, but occupied himself rather with three works of scholarly labour which he had already for some time had on hand. One was the compilation in English of a complete history of England, or rather of Great Britain, from the earliest times; another was the preparation in Latin of a complete system of divinity, drawn directly from the Bible; and the third was the collection of materials for a new Latin dictionary. Milton had always a fondness for such labours of scholarship and compilation. Of a poctical kind there is nothing to record, during his residence in High Holborn, but an experiment in psalm-translation, in the shape of Ps. Low.-lrarviii. done into service-metre in April 1648, and the sonnet to Fairfax, written in September of the same year.

The crushing defeat of the Scottish army by Cromwell in the three days' battle of Preston (164^{8}) and the simultaneous suppression of the English Royalist insurrection in the southeast counties by Fairiax's siege and capture of Colchester, left King Charles at the mercy of the victors. Milton's sonnet "On the Lord General Fairfax, at the siege of Colchester," attested the exultation of the writer at the triumph of the parliamentary cause. His exultation continued through what followed. When the king was beheaded (1649) the first Englishman of mark out of parliament to attach himself openly to the new republic was John Milton. This he did by the publication of his pamphlet entitled "Tenure of Kings and Magistrates, proving that it is lawful, and hath been held so in all ages, for any who have the power, to call to account a Tyrant or wicked King, and, after due conviction, to depose and put him to death, if the ordinary Magistrate have neglected or denied to do It." It was out within a fortnight after the king's death, and was Milton's last performance in the bouse in High Holborn. The chiefs of the new repuhlic could not but perceive the importance of securing the services of a distinguished man who had so opportunely and so powerfully spoken out in favour of their tremendous act. In March 1649, accordingly, Milton was offered, and accepted, the secretaryship for foreign tongues to the council of state of the new Commonwealth. The salary was to be $£ 388$ a year (worth about $f 1000$ a year now). To be ncar his new duties in attendance on the council, which held its daily sittings for the first few weeks in Derby House, close to Whitchall, but afterwards regularly in Whitehall itself, he removed at once to temporary lodgings at Charing Cross. In the very first meetings of council which Milton attended he must have made personal acquaintance with President Bradshaw. Fairfax, Cromwell himself, Sir Henry Vane, Whitelocke.

Henry Marten, Haselrig, Sir Gilbert Pickering and the other chiefs of the council and the Commonwealth, if indeed he had not known some of them before. After a litule while, for his greater convenience, official apartments were acsigned him in Whitchall itself.
At the date of Milton's appointment to the secretaryship he was forty years of age. His special duty was the dratting in Latin of letters sent hy the council of state, or sometimes hy the Rump Parliament, to foreign states and princes, with the examination and translation of letters in reply, and with personal conferences, when necessary, with the agents of foreign powers in London, and with envoys and ambassadors. As Latin was the language employed in the written diplomatic documents, his post came to be known indifierenuly as the secretaryship for foreign tongues or the Latin secretaryship. In that post, however, his duties, more paricularly at first, were very light in comparison with those of his official collengue, Walter Frost, the general secreiary. Foreign powers beld aloof from the English republic as much as they couldi and, while Frost bad to be present in every mecting of the council, teeping the minutes, and conducting all the general correspondence, Milton's presence was required only when some piece of foreign business lurned up. Hence, from the firsic his employment in very miscellaneous work. Especially, the council looked to him for everything in the nature of literary vigilance and literary help in the interests of the struggling Commonwealth. He was employed in the examination of suspected papers, and in interviews with their authors and printers; and he executed several great literary commissions expressly entrusted to him by the council. The first of these was his pamphet entited Obseroctions on the Articles of Peace (between Ormonde and the Irish). It was published in Miay 1640, and was in defence of the republic against a complication of Royalist intrigues and dangers in Ireland. A passage of remarkable interest in it is one of elequent eulogy on Cromwell More important still was the Eikonoklastes (which may be translated "Image-Smasher"), published by Milton in October 1649, by way of counterblast to the famous Eikon Basilike ("Royal Image"), which had boen in circulation in thousands of copies since tbe king's death, and had become a kind of Bihle in all Royalist households, on the supposition that it had been written by the royal martyr himself (see Gatdex, Joss). In the end of 1649 there appeared abroad, under the title of Defensio regia pro Carolo I., a Latin vindication of the memory of Charles, with an attack on the English Commonwealth. As it had been written, at the instance of the cxiled royul family, hy Salmasins, or Claude de Saumaise, of Leiden, then of enormous celebrity over Europe as the greascal scholar of his age, it was regarded as a serious blow to the infant Commonweallh. Milton threw his whole strength into a reply through the year $\mathbf{8 6 5 0}$, interrupting himself only by a new and enlarged edition of his Eikonoklastes. His Latin Pro populo anglicana defensio (1651), ran at once over the British Islands and the Continent, and was received by scholars as an annibilation of Salmasius. Through the rest of 16 gr the observation was that the two agencies which had co-operated most visibly in raising the reputation of the Commonwealch abroad were Milton's books and Cromwell's battles.
Through the eventful year $\mathbf{i 6} 5 \mathrm{gr}$, in addition to the ot her duties of his eecretaryship, silton acted as licenser and superintending editor of the Mercurius politicus, a newspaper issued twice a week, of which Marchamont Nedham was the working editor and proprietor. Milton's hand is discernable in some of the leading articlea.
About the end of 8655 Milton left his official rooms in Whitehall for a "garden house" be bad taken on the edge of St James's Park in what was then called Petty France, Westminster, but is now York Street. The house, afterwards 19 York Street, was occupied by James Mill and William Haditt in succession, and was not pulled down till 1877 . Milton had now more to do in the apecial work of his offioe, in consequence of the increase of correspondence with foreign powers. But he had for some time bean in ailing bealth; and a dimnees of eyesight which had
been growing upon him gradually for ten years had been setuling rapidly, since his labour over the answer to Sajmasius, into total hlindness. Before or about May 1652, when be was but in his forty-fourth year, his blindness became total. and he could go about only with some one to lead him. Hence a rearrangement of his secretarial duties. Such of these duties as he could perform at home, or by occasional visist to the Council Oftce near, be continued to perform; but much of the rouune work was done for him by an assistant, a well-known German, George Rudolph Weckherlin, sucreeded later by Philip Meadows and, eventualiy, by Andrew Marvell. Precisely to this time of a lull in Milton's secretaryship on account of his ill-health and blindness we have to refer his two greal companion sonnets "To the Lord Geseral Cromwell " and "To Sir Henry Vane the Younger."

In 1632 dicd his only son, who had been born at Whitehall in the March of the preceding year. His wife died in 1053/4, just after she had given hirhb to his third daughter. Deborah. With the three children thus left him-Anne, but six years old. Mary, not four, and the infant Deborah--the blind widower lived on in his bouse in Petty France in such desolation as can be imagined. He had recovered sufficiently to resume bis secretarial duties; and the total number of his dictated state leters for the single year 1652 is equal to that of all the state letters of his preceding term of secretaryship put together. To the same year there belong also three of his Latin "Familiar Epistles." In Decernber 1652 there was published Joonnis Philippi Angli responsio ad apologiam anonymi cujusdom lenebrionis, being a reply by Milton's younger nephew, John Phillips, but touched up by Milton himself, to one of several pamphlets that had appeared against Miltor for his slaughter of Salmasius.

In December 1653 Cromwell's formal sovereignty began under the name of the Protectorate, passing gradually into more than kingship. This change from Government by the Rump and its council to government by a single military lord protector and his council was regarded by many as treason to the republican cause, and divided those who had hitherto been the united Commonwealth's men into the "Pure Republicans," represented by such men as Bradshaw and Vane, and the "Oliverians," adhering to the Protector. Milton, whose boundless admiration of Cromwell had shown itself already in his Irish trect of 1649 and in his recent sonnet, was recognized as one of the Oliverians. He remained in Oliver's service and was his Latin secretary through the whole of the Protectorate. For a while, indeed, his Latin letters to foreign states in Cromwell's name were but few-Thurloe, as general secretary; officiating as Oliver's righthand man in eversthing, with a Philip Meadous under him, at a salary of $f 200$ a year, as deputy for the blind atilton in foreign correspondence and translations. The reason for this temporary exemption of Dtitton from routine duty may have been that be was then engaged on an answer to the pamphlet fram the Hague entitled Regii sanguinis damor ad codum adaersus parricidas anglicanos (March 1652). Salmasius was now dead, and the Commonwealth was too stable to suffer from such attacks; but no Royalist pamphlet had appeared so able or so venomous as this in continuation of the Salmasian controversy. All the rather because it was in the main a libel on Milton himself did a reply from his pen seem necessary. It came out in May 1654, with the title Joannis Milloni Angli pro populo anglicano defensio secunda (Second Defence of John Milton, Englishman, for the Pcople of England). The author of Regii sanguinis clamor was Dr Peter du Moulin the younger, a naturalized French Presbyterian minister, then moving about in English society, close to Arilton; but, as that was a profound secrec, and the work was universally attributed on the Continent to an Alexander More or Morus, a French minister of Scotlish descent then a professor at Middelburg, who had certainly managed the printing in consulation with the now deceased Salmasius, and had contributed some portion of the matter-Milton made More the responsible person and the one object of his invective. The savage altact on More's personal character, however, is but part of the Defonsio secunda. It cantains passages of singular autobiographical and historical value, and includen laudatary setetches of surb eminent

Commonwealth's men as Bradshaw, Fairfax, Fieet wood, Lambert and Overton, together with a long panegyric on Cromwell himself and his career, which remains to this day unapproached for elaboration and grandeur by any estimate of Cromwell from eny later pen.

From about the date of the publication of the Defensio secunde to the beginning of 1655 the only specially literary retica of Milton's life are his translations of Ps. i.-viii. in different metres, done in August 1654 , his translation of Horace's Ode, i. 5, done probably about the same time, and two of his Latin "Familiar Epistles." The most active time of his secretaryship for Oliver was from April 1655 onwards. In that month, in the course of a general revision of official salaries under the Protectorate, Milton's salary of $£ 288$ a year hitherto was reduced to $\mathrm{f}_{2} 00 \mathrm{a}$ year, with a kind of redefinition of his office, recognizing it, we may say, as a Latin secretaryship extraordinary. Philip Meadows was to continue to do all the ordinary Foreign Office work, under Thurloe's inspection; but Milton was to be called in on special occasions. Hardly was the arrangement made when a signal occasion did occur. In May 1655 all England was horrified by the news of the massacre of the Vaudois Protestants (Waldenses) by the troops of Emanuele II., duke of Savoy and prince of Piedmont, in consequence of their disobedience to an edict requiring them either to leave their native valleys or to conform to the Catholic religion. Cromwell and his council took the matter up with all their energy; and the burst of indigriant letters on the suhject despatched in that month and the next to the duke of Sa voy himself, Lowis XIV. of France, Cardinal Mazarin, the Swiss cantons, the states-general of the United Provinces, and the kings of Sweden and Denmark, were all by Milton. His famous sonnet "On the Late Massacre in Piedmont "was his more private expression of feeling on the same occasion. This sonnet was in circulation, and the case of the Vaudois Protestants was still occupying Cromwell, when, in August 1655, there appeared the last of Milton's Lat in pamphlets. It was his Pro se defensio... in answer to an elaborate selfdefence which More had put forth on the Continent since Milton's attack on his character. In that year also appeared Milton's Scriplum domini protectoris . . . contra hispanos.
Through the rest of Cromwell's Protectorate, Milton's Life was of comparatively calm tenor. He was in much better health than usual, bearing his blindness with courage and cheerfulness; be was steadily busy with important despatches to forcign powers on behalf of the Protector, then in the height of his great foreign policy; and his house in Petty France seems to have been, more than at any previous time since the beginning of his blindness. a meeting-place for friends and visitors, and a scene of pleasant hospitalities. The four sonnets now numbered xix.uxii., one of them to young Lawrence, the son of the president of Cromwell's council, and two of the others to Cyriack Skinner, once his pupil, belong to this time of domestic quiet, as do also no fewer than ten of his Latin "Familiar Epistles." His marriage with Katherine Woodcock on the 12th of November 1656 brought him a brief period of domestic happiness; but, after only fifteen months, he was again a widower, by her death in childbitth in February 1657/8. The child dying with her, only the three daughters by the first marriage remained. The touching sonnet which closes the scries of Milton's Sonnels is his sacred tribute to the memory of his second marriage and to the virtues of the wife he had so soon lost. Even after that loss we find him still busy for Cromwell. Andrew Marvell, in September 1657 succeeded Meadows, much to Milton's satisfaction, as his assistant secretary; but this had by no means relieved him from duty. Some of his greatest despatches for Cromwell, including letters. of the highest importance, to Louis XIV., Mazarin and Charles Gustavus of Sweden, belong to the year 1658.

There is, unfortunately, no direct record to show what Cromwell thought of Milton; but there is ample record of what Milton thought of Cromwell. "Our chief of men," he had called Cromwell in his sonnet of May 1652; and the opinion remained unchanged. He thought Cromwell the greateat and beat man
of his generation, of of many generations; and he regarded Cromwell's assumption of the supreme power, and his retention of that power with a sovereign tille, as no real suppression of the republic, but as absolutely necessary for the preservation of the republic, and for the saleguard of the British Islands against a return of the Stuarts. Nevertheless, under this prodigious admiration of Cromwell, there were political doubts and reserves. Milton was so much of a modern radical of the extreme school in his own political views and sympathies that he cannot but have been vexed by the growing conservatism of Cromwell's policy through his Protectorate. To his grand panegyric on Oliver in tbe Defensio securde of 1654 he had ventured to append cautions against self-will, over-lcgislation and over-policing; and he cannot have thought that Oliver had been immaculate in these respects through the four subsequent years. The attempt to revive an aristocracy and a House of Lords, on which Cromwell was latterly bent, cannot have been to Milton's taste. Above all, Milton dissented in tolo from Cromwell's church policy. It was Milton's fixed idea, almost his deepest idea, that there should be no such thing as an Established Church, or state-paid clergy, of any sort or denomination or mixture of denominations, in any nation, and that, as it had been the connexion between church and state, begun by Constantine, that had vitiated Christianity in the world, and kept it vitiated, so Christianity would never flourish as it ought till there had been universal disestablishment and disendowment of the clergy, and the propagation of the gospel were left to the zeal of voluntary pastors, self-supported, or supported modestly by their flociks. He had at one time looked to Cromwell as the likeliest man to carry this great revolution in England. But Cromwell, after much meditation on the subject in 1652 and 1653, had come to the opposite conclusion. The conservation of the Established Church of England, in the form of a broad union of all evangelical denominations of Christians, whether Presbyterians, or Independents, or Baptists, or moderate Old Anglicans, that would accept state-pay with state-control, had been the fundamental notion of his Protectorate, persevered in to the end. This must have been Milton's deepest disappoint ment with Cromwell's rule.
Cromwell's death on the 3 rd of September 1658 left the Protectorship to his soa Richard. Milton and Marvell continued in their posts, and a number of the Foreign Office letters of the new Protectorate were of Milton's composition. In October 1658 appeared a ner edition of his Defexsio prima, and, early in 1659, a new English pamphlet, entitled Treatise of Civil Power in Ecclesiastical Cawses showing that it is not lawful to compel in Matters of Religion, in which he advocated the eeparation of Church and State. To Richard's Protectorate also belongs one of Milton's Latin "Familiar Epistles."
The last of his known official performances in his Latin secretaryship are two letters in the name of William Lenthall, as the speaker of the restored Rump, one to the king of Sweden and one to the king of Denmark, both dated the 15 th of May 1659 . Under the restored Rump, if ever, he seemed to have a chance for his notion of church-disestablishment; and accordingly, in August 1659, he put forth, with a prefatory address to that body, a pamphlet entitled Considerations touching the likeliest means to remose Hirelings out of the Church. The restored Rump had no time to attend to such matters. They were in struggle for their own existence with the army chiefs; and to prevent the restoration of the monarchy, to argue against it and fight against it to the last, was the work to which Milton set himself; the preservation of the repuhlic in any form, and by any compromise of differences within itself, had become his one thought, and the study of practical means to this end his most a.xious occupation. In a Letter to a Friend concerning the Ruplures of the Commonweallh, written in October 1659, he had propounded a scheme of a kind of dual government for reconciling the army chiefs with the Rump; through the following winter, marked only by two of his Latin "Familiar Epistles," his anxiety over the signs of the growing emthusiasm throughout the country for the recall of Charles II. had risen to a passionate vehemence which found vent in a pamptlet entitled The Reody and Eary Wey to EstaWish
a Free Commonweallh, and the Excellence thereof compared with the Incowoeniences ond Dangers of readmitting Kingship to this Nation. An abridgment of this pamphlet was addressed by him to General Monk in a letter entitled "The Present Means and Brief Delineation of a Frec Commonwealth" (March 1660). Milton's proposal was that the central governing apparatus of the British Islands for the future should consist of one indissoluble grand council or parliament, which should include all the political chiefs, while there should be a large number of provincial councils or assemblics sitting in the great towns for the management of local and county affairs.

Not even when the king's cause was practically assured would Milton be silent. In Brief Notcs upon a late Sermon, published in April $\mathbf{3} 600$, in reply to a Royalist discourse by a Dr Matthew Griffith, he made another protest against the recall of the Stuarts, even hinting that it would be better that Monk should become king himself; and in the same month he sent forth a second edition of his Ready and Easy Way, more frantically carnest than even the first, and containing additional passages of the most violent denunciation of the royal family, and of prophecy of the degradation and disaster they would bring back with them. This was the dying effort. On the 25 th of April the Convention Parliament met; on the ist of May they resolved unanimously that the government by King, Lords and Commons should be restored; and on the 20th of Dfay, Charles II. made his triurophal entry into London. The chief republicans had by that time scattered themselves, and Milton was hiding in an obscure part of the city.

How Milton escaped the scaffold at the Restoration is a mystery now, and was a mystery at the time. The Commons voted that he should be taken into custody hy the serjeant-atarms, for prosecution by the attorney-general on account of his Eikonokjastes and Defensio prima, and that all copies of those books should be called in and burnt by the bangman. There was a story that Milton had once protected Davenant and now owed his immunity to him; but it is more likely that he was protected by the influence of Marvell, hy Arthur Annesicy, afterwards earl of Anglesey, and by other friends who had infiuence at court. At all events, on the 29th of August 1660, wben the Indemnity Bill did come out complete, with the king's assent, Milton did not appear as one of the exceptions on any ground or in any of the grades. From that moment, therefore, he could emerge from his hiding, and go about as a free man. Not that he was yet absolutely saie. There were several public burnings by the hangman at the same time of Milton's condemned pamphlets; and the appearance of the blind man himself in the streets, though he was legally free, would have caused him to be mohbed and assulted. Though the special prosecution ordered against him by the Commons had been quashed hy the subsequent Indemnity Bill, the serjeant-at-arms had taken him into custody. Entries in the Commons journals of the ryth and 19th of December show that Milton complained of the exorbitant fees charged by the serjeant-at-arms for bis release, and that the matter was referred to a committee at the instance of Andrew Marvell.

Milton did not return to Petty France. For the first months after he was free he lived as closely as possible in a house near what is now Red Lion Square, Holborn. Thence he removed, apparently early in 166r, to a house in Jewin Street, in his old Aldersgate Street and Barhican neighbourhood. In Jewin Street Milton remained for two or three years, or from 1661 to 1664. This is the time of which he says:-

> thouget fallen on evil days,

On evil days though fallen, and evil tongues,
In darkness, and with dangers compassed round. And solitude."
The "evil days" were those of the Restoration in its first or Clarendonian stage, with its revenges and reactions, its return to high Episcopecy and suppression of every form of dissent and sectarianism, its new and shameless royal court, its open proclamation and practice of anti-Puritanism in morals and in literature do less than in politics. For the main part of this world of
the Restoration Milton was now nothing more than an infamom outcast, the detestable blind republican and regicide who had, by too great clemency, been left unhanged. The friends that adhered to him still, and came to see him in Jexin Street, were few in number, and chiefly from the ranks of those nonconforming denominations, Independents, Baptists or Quakers, who were themselves under similar obloquy. Besides his two nephews, the faithful Andrew Marvell, Cyriack Skinner and some others of his former admirers, English or foreign, we bear chiefly of a Dr Nathan Paget, who was a physician in the Jewin Street neighbourhood, and of several young men who would drop in upon him by turns, partly to act as his amanuenses, and partly for the benefit of lessons from him- one of them a Quaker youth, named Thomas Ellwood. With all this genuine attachment to him of a select few, Milton could truly enough describe his condition after the Restoration as one of "solitude." Nor was this the worst. His three daughters, on whom he ought now to have been able principally to depend, were his most serious domestic trouble. The poor motheriess girls, the eidest in her seventeenth year in 1662, the second in her fifteenth and the youngest in her eleventh, had grown up, in their father's blindness and too great self-absorption, ill-looked-after and but poorly educated; and the result now appeared. They " made nothing of neglecting him"; they rebelled against the drudgery of reading to him or otherwise attending on him; they "did combine together and counsel his maid-servant to cheat him in her marketings"; they actually " had made away some of his books, and would have sold the rest."
It was to remedy this state of things that Milton consented to a third marriage. The wife found for him was Elizabeth Minshull, of a good Cheshire family, and a relative of Dr Paget. They were married on the 24th of February 1662/3, the wife being then only in her twenty-fifth year, while Milton was in his fifty-fifth. She proved an excellent wife; and the Jewin Street bousehold, though the daughters remained in it, must have been under better management from the time of her entry into it. Meanwhile, be had found some solace in renewed industry of various kinds among his books and tasks of scholarship, and more particularly he had been building up his Paradise Lost. He had begun the poem in earnest, we are told, in 1658 at his house in. Petty France, not in the dramatic form contemplated eighteen years before, but deliberately in the epic form. He had made hut little way when there came the interruption of the anarchy preceding the Restoration and of the Restoration itself; but the work had been resumed in Jewin Street and prosecuted there steadily, by dictations of twenty or thirty lines at a time to whatever friendly or hired amanuensis chanced to be at hand. Considerahle progress had been made in this way before his third marriage; and after that the work proceeded apace, his nephew, Edward Phillips, who was then out in the world on his own account, looking in when he could to revise the growing manuscript.

It was not in the housc in Jewin Street, however, that Paradise Lost was finished. Not very long after the third marriage, probahly in 1664, he removed to another house, with a garden, in "Artillery Walk, leading to Bunhill Fields"" Here Paradise Lost was certainly finished before July 1665 -Auhrey says in 1663 -for when Milton and his lamily, to avoid the Great Plague of London, went into temporary country-quarters in a cottage in Chalfont St Giles, Buckinghamshire, ${ }^{1}$ the finished manuscript was taken with bim; in probably more than one copy. This we learn from Thomas Ellwood, who had taken the cottage for him, and was allowed to take a copy of the manuscript way with him for perusal, during Milton's stay at Chalfont (Life of Thomas Elluood, r714). The delay in the publication of the poem may be explained partly by the fact that the official licenser hesitated before granting the necessary imprimatur to a book by a man of such notorious republicas antecedents, and partly by the paralysis of all business in London by the Great Fire of September 1666. It was not till the 27th of April 1667 that Milton concluded an agreement, still preserved in the British ${ }^{1}$ Mitton's cottage here is still standing, and is open to visitors.

Museum, with Samuel Stmmons, printer, of Aldersgate Street, London, to dispose of the copyright for is down, the promise of another fs after the sale of the first edition of 1300 copies, and the further promise of two additional sums of es each after the sale of two more editions of the same size respectively. It was as if an author now were to part with all his rights in a volume for $£ 17,10 s$. down, and a contingency of [52, 108 , more in three equal instalments. The poem was duly entered by Simmons as ready for publication in the Stationers' Registers on the 20th of the following August; and shortly after that date it was out in London as a ncatly printed small quarto, with the title Paradise Lost: A Poess wrillen in Ten Books: By John Millon. The reception accorded to Paradise Lost has been quoted as an example of the neglect of a great work, but the sale of an edition of 1300 copies in eighteen months proves that the poem found a wide circle of readers. "This man cuts us all out, and the ancients too" is the saying attributed to Dryden on the oceasion; and it is the more remarkable because the one objection to the poem which at first, we are told, "stumbled many" must have "stumbled" Dryden most of all. Except in the drama, rhyme was then thought essential in anything professing to be a poem; blank verse was bardly regarded as verse at all; Dryden especially had been and was the champion of rbyme, contending for it even in the drama. That, notwithstanding this obvious blow struck by the poet at Dryden's pet literary theory, he should have weloomed the poem so enthusiastically and proclaimed its merits so emphatically, says much at once for his critical perception and for the generosity of his temper. According to Aubrey, Dryden requested Miton's leave to turn the poem into a rhymed drama, and was told he might "tag his verses if he pleased." The result is seen in Dryden's opera, The State of Inrocence and the Pall of Man (1675). One consequence of Milton's renewed celebrity was that visitors of all ranks again sought him out for the honour of his society and conversation. His obscure house in Artillery Walk, Bunhill, we are told, became an attraction now, " much more than he did desire," for the learned notabilities of his time.
Accounts have come down to us of Milton's personal appearance and habits in his later llfe. They describe him as to be seen every other day led about in the streets ln the vicinity of his Bunhilt residence, a slender figure, of middle stature or a little less, generally dressed in a grey cloak or overcoat, and wearing sometimes a small silver-hilted sword, evidently in lecble health, but still looking younger than he was, with his lightish hair, and his fair, rather than ayed or pale, complexion. He would sit in his garden at the door of his house, in warm weather, in tbe same kind of grey overroat, "and so, as well as in his room, received the visits of people of distinguished parts, as wel! as qualiry." Within doors he was usually dressed in neat black. He was a very early riser, and vary regular in the distribution of his day, spending the first part, to his midday dinner, always in his own room, amid his books, with an amanuensis to read for him and write to his dictation. Music was always a chief part of his afternoon and evening relaxation, whether when be was by himself or when friends were with him. His manner with friends and visitors was extremely courteous and affable, with just a shade of stateliness. In free conversation, cither at the midday dinner, when a friend or two happened, by rare accident, to be present, or more habitually in the evening and at the light supper present, or more habitually in the evening and at the light supper bis "flow of subject" and his "unaffected cheerfulness and civility." though with a marked tendency to the satirical and sarcastic in his criticisms of men and things. This tendency to the sarcastic was coanected by some of thove who observed it with a peculiarity of his voice or pronunciation. "He pronounced the letter $\%$ very hard," Aubrey tells as, adding Dryden's note on the subject: "litera canina, the dog-letter, a certain sign of a satirical wit." He was extremely temperate in the usc of wine or any strong liquors, at meals and at atl other times; and when supper was over, about nine o'clock. "be, smoked his pipe and drank a glass of water, and went to bed." He suffered much from gout, the effects of which had become apparent in a stiffening of his hands and finger-joints, and the recurring attacks of which in its acute form were very painful. His favourite poets among the Greeks were Homer and the Tragedians; expecially Euripides; among the Latins, Virgil and Ovid; among the English, Spenser and Shakespeare. Among his English contemporarics, he thought most highly of Cowiey. He had ceased to attend any church, belonged to no religious communion, and had no religious observances in his family. His reasons for this were a matter for curious surmise among his friends. because of the profoundly relipious character of his own mind; but he docs not reem ever to have
furnished the explanation. The matter became of lessintereat perhaps after 1669, when his three daughters ceased to reside with him, having been sent out "to learn some curious and ingenious sorts of manufacture that are proper for women to learn, particularly embroideries in gold or silver." Aiter that the houschold ia Bunhill consisted only of Mifon, his wife, a single maid-servant, and the " man " or amanuensis who came in for the day.
The remaining years of Milton's life, exteading through that part of the reign of Charjes II. which figures in Euglish history under the name of the "Cabal Administration," were by no means unproductive. In 1669 he published, under the title of Accedence commenced Grammar, a small English compendiutn of Latin grammar that had been lying among his papers. In 1670 there appeared, with $\&$ prefured portrait of him by Faithorne, done from the life, his History of Britain . . . to the Norman Conquest, being all that he had been able to accomplish of his intended complete history of England; and in the same year a Latin digest of Ramist logic, entitled Artis logicae plenior instinutio, of no great value, and doubless from an old manuscript of his earlier days. In 1671 there followed his Paradise Regained and Samson Agonistes, bound together in one small volume, and giving ample proof that his poetic genius had not exhausted itself in the preceding great epic. In 1673, at a moment when the growing political discontent with the government of Charles II. and the conduct of his court had burst forth in the special form of a "No-Popery" agitation and outcry, Milton ventured on the dangerous experiment of one more political pamphlet, in which, under the title "Of True Religion, Heresy, Schism, Toleration, and what best means may be used against the growth of Popery," he put forth, with a view to popular acceptance, as mild a version as possible of his former principles on the topics discussed. In the same year appeared the second edition of his Poems . . . botk Enslish and Latin, which included, with the exception of the Sonnets to Cromwell, Fairfax, Vane and the second address to Cyriack Skinner, all the minor poems.

Thus we reach the year 1674, the last of Milton's life. One incident of that year was the publication of the second edition of Paradise Lost, with the poem rearranged as now-into twelve books, instead of the original ten. Another was the publication of a small volume ${ }^{1}$ containing his Latin Epistolee familiares, together with the Prolusiones orotorice of his student-days at Cambridge-these last thrown in as a substitute for his Latin state-Jetters in his secretaryship for the Commonwealth and the Protectorate, the printing of which was stopped by order from the Foreign Office. A third publication of the same year, and probably the very last thing dictated by MiJon, was a translation of a Latin document from Poland, relating to the recent election of the heroic John Sobieski to the throne of that kingdom, with the title A Dedaralion or Letlers Potents of the Election of this present King of Poland, John the Third. It seems to have been out in London in August or September 1674. On Sunday the 8th of the following November Milton died, in his house in Bunhill, of "gout struck in," at the age of sixty-five years and eleven months. He was buried, the next Thursday, in the church of St Ciles, Cripplegate, beside his father; a considerable concourse attending the funeral.

Bcfore the Restoration, Milton-what with his inheritance from his father, what with the official income of his Latin secretaryshipmust have been a man of very good means indced. Since then, however, various heavy losses, and the cessation of all official income, had greatly reduced his estate, so that he left but $£ 900$ (worth about or over $£ 2700$ now) besides furniture and housebold goods. By a word-of-mouth will, marle in presence of his brother Christopher, he had bequeathed the whole to his widow, on the ground that he had done enough already for his "undutiful " daughters, and that there remained for them his interest in their mother's marriage portion of £1000, which had never been paid, but which their relatives, the Powells of Forest Hill, were legally bound for, and were now in
1 Joannis Millonii Angli epistolarmm fomiliarmm liber wnus; quibus accesserunt ejusdem (jam olim in collegio adolescentis) prolusiones quacedam orclorice (1674 ; tranalation by J. Hall, 1829).
circumstances to make good. The daughters, with the Powells probably abetting them, went to law with the widow to upset the will; and the decision of the court was that they should receive $\{100$ each. With the $\$ 600$ thus left, the widow, after some further stay in London, retired to Nant wich in her native Cheshire. There, respected as a pious member of a local Baptist congregation, she lived till 1727, having survived her husband fifty-three years. By that time all the three daughters were also dead. The eldest, Ann Milton, who was somewhat deformed, had died not long after her father, having married " a masterbuilder," but left no issue; the second, Mary Milton, had died, unmarried, before 1694 ; and only the third, Deborah, survived as long as her step-mother. Having gone to Ireland, as companion to a lady, shortly before her father's death, she bad married an Abraham Clarke, a silk-weaver in Duhlin, with whom she returned to London about 1684, when they setted in the silk-weaving husiness in Spitalfields, ruther sinking than rising in the world, though latterly some public attention was paid to Deborah, by Addison and others, on her father's account. One of her sons. Caleb Clarke, had gone out 20 Madras in 1703, and had died there as "parish-clerk of Fort Gcorge" in 1719. leaving children, of whom there are some faine traces to as late as 1727, the year of Deborah's death. Except for the possibility of further and untraced descent from this Indian grandson of Milton, the direct descent from him came 10 an end in his granddaughter, Elizabeth Clarke, another of Deborah's children. Having married a Thomas Foster, a Spitalficlds weaver, but afterwards set up a small chandler's shop, first in Holloway and then in Shoreditch, she died at Islington in 1754, not long after she and her husband had received the procceds of a performance of Comus got up hy Dr Johnson for her bencfit. All her children had predeceased her, leaving no issue. Milion's brother Christopher, who had always been on the opposite side in politics, rose to the questionable honour of a judgeship and k nighthood in the latter part of the reign of James I1. He had then become a Roman Catholic-which religion he professed till his death in retirement at Ipswich in 1692. Descendants from him are traceable a good way into the 18th century. Milton's two nephews and pupils, Edward and John Phillips, both of them known as busy and clever hack-authors before their uncle's death; continued the career of hack-authorship, most industriously and variously, though not very prosperously, through the rest of their lives: Edward in a more reputahle manner than John, and with more of enduring allegiance to the memory of his uncle. Edward dicd about 1695 ; John was alive till 1706. Their half-sister, Ann Agar, the only daughter of Milton's sister by her second husband, had married, in 1673, 2 David Moore, of Sayes House, Chertsey; and the most flourishing of all the lines of descent from the poet's father was in this Agar-Moore branch of the Miltons.

Of masses of manuscript that had been left by Miton, some portions saw the light posthumoualy. Prevented, in the last ycar of his life from publishing his Latin Siale Letlers in the phatimamese same volume with his Latin Familiar Epistles, he had
commited the charge of the State Letters, prepared for the press, cogether wihh the corapleted manuscript of his Latin Treadise of Christian Doctines, to a young Cambridge scholar, Dantel Skinner, who had been among the last of his amanuenses, and had, in fact, been employed by him especially in copying out and arranging those iwo important MSS. Negotiations were on foot, after Mliton's death, between this Danicl Skinner and the Amsterdam printer, Daniel Elzevir, for the publication of both MSS., when the English government interiered, and the MSS. were sent back by Elzevir, and thrown asidc. as dangerous rubbish, in a cupboard in the State Paper Office. Meanwhile, in 1676 , a London bookseller. named Pitt, who had somehow got into his posession a less periect, but still tolerably complete, copy of the State Letters. had brought out a surreptitious edition of them. under the tinle Leiterae psendo-senatus anglicani, Cromuellii . . . nomine es jussu conscriptae a Joanne Miltomo. No other posthumous publications of Mitron's appeared till 1681, when another bookseller put forth a slight tract entitled Mr John Millon's Charucter of the Long Parliament and A ssembly of Disines, in 1641, consisting of a page or two, of rather dubious authenticity, sid to have been withheld from his History of Britain in the edition of 1670 . In 1682 appeared A Brief History of Maxcevic. and of other Less-knoton Countrues lying Eastward of Russia as jar as Cathay .. . Undoultedly Milton's, and a specinien of
those prose compilations with which he sometimes oceupied his leisure. Of the late of his collections for a new Latin Dectionary, which had swelled to three folio volumes of MS., all that is known is that, after having been used by Edward Phillips for his Emehrridion and Speculum, they came ino the hands of a committec of Cambridge scholars, and were used for that Latin dictionary of 1693 , called The Cambridge Dictionary, on which Ainsworth's Ductionary was based. In 1698 there was published in three folio volumes, under the editorship of Juhn Toland, the first collective edition of Milton's prome works. procesing to have been printed at Arusterdam, though really printed in London. A very interesting Iolio volume, publishod in 1743 by " John Nickolls, junior," under the ticle of Original Letlers and Papers of Slate addressed to Oliser Crampell, consists of a number of intimate Cromwellian ducuments that had somehow come into Midton's posiession immediatcly after Cromwell's death, and were left by him confidentially 10 the Quaker Ellwood. Finatly a chance scarch in the London State Paper Offec in 8823 having discovered the long-lost parcel containing the MSS. of Mition's Latin State Letters and his Latin Treatuse of Christian Doctrine, as thesc had been scrit back from Amsterdam a hundred and Gilty ycars belore, the Treatise on Christiam Doctrime was, by the command of George IV. edited and published in 1825 by the Rev. C. R. Sumner, keeper of the Royal Library, and afterwards bishop of Winchester. under the title of Joanmus Mudeni Angli de doctrma christiana libra due posthumi. An English translation, by the editor, was published in the same year. Those state papers of Milton which had not been already printed were edited hy W. D. Hamilton for the Canden Sociely, in 1859.

Milton's literary life divides into three almost mechanically distinct periods: (1) the time of his youth and minor poems, (2) his middle twenty years of prose polemics, and (3) the time of his later Muse and greater poems.
Had Mikon died in 1640, when he was in his thirty-second year, and had his literary remains been then collected, he would have been remembered as one of the best Latinists of his gencration and one of the most exquisite of Characeers, minor English poets. In the latter character, more particularly, he would have taken his place as one of that interesting group or series of English poets, coming io the next forty years after Spenser, who, because they all acknowledged a filial relationship to Spenser, may he called collectively the Spenserians. In this group or series, counting in it such other true pocts of the reigns of James I, and Charles I. as Phineas and Giles Fletcher, William Browne and Drummond of Hawthornden, Miiton would have been entitled, by the small collection of pieces he had left, and which would have included his Ode on the Nativity, his L'Allegro and Il Penseroso, his Comus and his Lycidas, to recognition as indubitably the very highest and finest. There was in him that peculiar Spenserian something which might be regarded as the poetic faculty in its essence, with a closencss and perfection of verbal finish not to be found in the other Spenserians, or even in the master himself. Few as the pieces were, and owning discipleship to Spenser as the author did, he was a Spenserian with a difference belonging to his own consti-tution-which prophesied, and indeed already exhibited, the passage of English poetry out of the Spenserian into a kind that might be called the Miltonic. This Mitonic something, distinguishing the new poet from other Spenserians, was more than mere perfection of literary finish. It consisted in an avowed consciousness already of the os magna soniturum, "the mouth formed for great utterances," that consciousness resting on a peculiar substratum of personal character that had occasioned a new theory of literature. "He who would not be frustrate of his hope to write well hereafter on laudable things ought himself to be a true poem " was Milton's own memorable expression afterwards of the principle that had taken possession of him from bis earliest days; and this principle of moral manliness as the true foundation of high literary effort, of the inextricable identity of all literary productions in kind, and their coequality in worth, with the personality in which they have their origin, might have been detected, in more or less definite shape, in all or most of the minor poems. It is a specific form of that general Platonic doctrine of the invincihility of virtue which runs through his Comus.
That a youth and early manhood of such poetical promise should have been succeeded by twenty years of all but incesaant prose polemics has been a matter of regret with many. But this

Is to ignore his political and social side. If Burke, whose whole public career consisted in a succession of speeches and pamphets, is looked back upon as one of the greatest men of his century on their account, why should there be regret over the fact that Milton, after having been the author of Comns and $L y$ cidas, became for a time the prose orator of his earlier and more tumultuous gencration? Milton was not only the greatest pamphleteer of his generation-head and shoulders above the rest-but there is no life of that time, not even Cromwell's, in which the history of the great Revolution in its successive phases, so far as the deep underlying ideas and speculations were concerned, may be more intimately and instructively studied than in Miton's. Then, on merely literary grounds, what an interest in those prose remains! Not only of his Areopagitica, admired now so unreservedly hecause its main doctrine has become axiomatic, but of most of his other pamphlets, even those the doctrine of which is least popular, it may be said confidentiy that they answer to his own definition of "a good book," by containing somehow "the precious life-blood of a masterspirit." From the entire series there might be a collection of specimens, unequalled anywhere else, of the capabilitics of that older. grander and more claborate English prose of which the Eliza bethans and their immediate successors were not ashamed. Nor will readers of Mitton's pamphlets continue to accept the hackneyed observation that his genius was destitute of humour. Though his prevailing mood was the severcly earnest, there are pages in his prose writings, both English and Latin, of the most laughable irony, reaching sometimes to outrageous farce, and some of them as worthy of the name of humour as anything in Swift. Here, however, we touch on what is the worst feature in some of the prose pamphlets-their measureless ferocity, their boundiess licence in personal scurrility.
While it is wrong to regard Milton's middle twenty years of prose polemics as a degradation of his genius, and while the fairer contention might be that the youthful poet of Comus and Lycidas actually promoted himself, and became a more powerful agency in the world and a more interesting object in it for ever, by consenting to lay aside his " singing robes " and spend a portion of his life in great prose oratory, who does not exult in the fact that such a liie was rounded off so miraculously at the close by a fina! stage of compuisory calm, when the "singing robes "could be resumed, and Paradise Lost, Paradise Regained and Samson Agonistes could issue in succession from the blind man's chamber? Of these three poems, and what they reveal of Mition, no need here to speak at length. Paradise Lost is one of the few monumental works of the world, with nothing in modern epic literature comparable to it except the great poem of Dante. This is best perceived by those who penetrate beneath the beauties of the merely terrestrial portion of the story, and who recognize the coherence and the splendour of that vast symbolic phantasmagory hy which, through the wars in heaven and the subsequent revenge of the expelled archangel, it paints forth the connexion of the whole visible universe of human cognisance and history with the grander, pre-existing and still environing world of the eternal and inconceivable. To this great epic Paradisc Regained is a sequel, and it ought to be read as such. The legend that Milton preferred the shorter epic to the larger is quite incorrect. All that is authentic on the subject is the statement by Edword Phillips that, when it was reported to his uncle that the shorter epic was "generally censured to be much inferior to the other," he " could not hear with patience any such thing." The best critical judgment now confirms Milton's own, and pronounces Paradise Regained to be not only, within the possibilities of its briefer theme, a worthy sequel to Paradise Lost, but also one of she most artistically perfect poems in any language. Finally, the poem in which Ailton bade farewell to the Muse, and in which he reverted to the dramatic form, proves that to the very end his right hand had lost none of its power or cunning. Samson Agonistes is the most powerful drama in the English language after the severe Greek model, and it has the additional interest of being so contrived that, without any deviation from the strictly objective inkidents of the Biblical story which it
enshrines, it is yet the poet's own epitaph and his condensed autobiography.
Much light is thrown upon Milton's mind in his later life, and even upon the poems of that pcriod, by his posthumous Latin Trealise of Christian Doctrine. It differs from all his other prose writings of any importance in being cool, abstract and didactic. Professing to be a system of divinity, derived directly from the Bible, it is really an exposition of Milton's metaphysics and of his reasoned opinions on all questions of philosophy, ethics and politics. The general effect is to show that, though he is righty regarded as the very genius of English Puritanism, its representative poet and ideelist, yet he was dot a Puritan of what may be called the first wave, or that wave of Calvinistic orthodoxy which broke in upon the absolutism of Charles and Laud, and set the English Revolution agoing. He belonged distinctly to that larger and more persistent wave of Puritanism which, passing on through Independency, and an endless variety of sects, many of them rationalistic and freethinking in the extreme, developed into what has ever since been known as English Liberalism. The treatise makes clear that, while Milton was a most fervid theist and a genuine Christian, believing in the Bible, and valuing the Bible over all the other books in the world, he was at the same time one of the most intrepid of English thinkers and theologians.
(D. MA.; X.)

Considerable interest attaches among collectors to the varietyof prints representing portraits of Milton. So far as the original contemporary portraits are concerned, which have inspired the large number of engravings, the following Portrater may be mentioned: (1) The existing Janssen painting, 1618° (" oelatis suae 10 "), which belonged to Mrs Milton. (2) An unknown painting of 1623 (? 1620), from which was taken an engraving in the Genlleman's Nagazine for September 1787 ("aet. suac 12 "). (3) The "Onslow " painting of Mithon when a Cambridge scholar (lost), which beionged to Mrs Mitton and in 1794 was in Lord Onslow's possession; a copy by Van der Gacht was made for Lord Harcourt and is still at Nuneham. (4) William Marshal's engraved front ispiece to Moseley's edition of the poems (1645). (5) William Faithorne's engraving of Mithon Irom life, at the age of sixt y-two, in Milton's History of Britain (1670). (6) Faithorne's original dra wing for the above, belonging in 1909 to Sir R. H. Hobart. (7) The Bayfordbury (or Tonson) drawing (probably by Faithorne, or (?) by White or Richardson) at Bayfordbury Park near Hertford. (8) A drawing by George Vertue in Dr Williamson's collection. (9) A clay bust (? by Pierce or Simon) at Christ's College. (10) A miniature by Cooper (1653), which is, however, considered by Dr G. C. Williamson not to be of Alition at all. (ii) A painting by Pieter Van der Plas (d. 1704) in the National Portrait Gallery. (12) An oil painting at Christ's College. (13) The "Woodcock " miniature of Milton when about forty-eight. In Poets' Corner, Westminster Abbey, a bust by Rysbrack was put up in 1737. A monument in St Giles, Cripplegate, by John Bacon, R.A., was erected by Samuel Whitbread in 1793: and a modern statue by Horace Montford also stands there. A memorial window in St Miargaret's, Westminster, with an inscription by J. G. Whitticr, was presented by G. W. Childs, of Philadelphia.
Bibliograpity.-MSS. of the poems of Mitton's carlics period in his own handwriting are preserved in the library of Trinity College. Cambridge. These are not enumerated among the gifts made by Sir Henry Newton Puckering in 1691 , but presumably belonged to him, and came to the library at his deait in 1700 , as they were found by Charles Mason, a fellow of the college, among papers and books which had been his. They were bound in a folio volume by the care of Thomas Clarke, alterwards Master of the Rolls, in 1736. Besides the poems, with many interlineations and corrections. the MS. contains suggemtions. and in some cases fully developed plans. for works generalty dramatic in form. This manuscript volume, invaluable as an index to Alition's methods of work, was reproduced in lacsimile (Cambridgr. 8899) by W. Aldis Vright.

The first complete cdition of The Poetical Works of Mr John Milton was prined hy Jacob Tonson in 1695 . In 1732 Richard Bentley put forward a curious edition of Paradise Last in which long passages were reiccted and placed in the margin on the. ground that they were inicrpolations made possible by Milton's blindness. The Latin and Italuan poems, with a tranalation by William Cowper,

Were printed by W. Hayley in 1808. The mone important of the numerous later editions of Milton's poetical works are Uy H. J. Tidd (6 vols., 1801): J. Mitford ("Aldine cdition." 3 vols., 1832): T. Keigheley (2 vols, 1859), whose notes are most original and interesting; D. Masson ("Library" or" Cambridge "edition, 3 volsa, 1874; ó which a new ectition appeared in 1890 , with memoir, introduction, notes and an essay on Mileon's English and versification): John Bradshaw (new" Aldincedition," 2 vols. 1802) : also a careful reprint retaining the peculiarities of the earlier printed copies, by H. C. Beeching ("Oxford edition." 1904); and another, with variant readings, by W. Aldis Wright (Cambridge University Press, 1903). The prose works were first partially collected in 1697. They were edied by J. Toland (3 vols., 1698), by C. Symmons (7 vols., 1806), by Pickcring (8 vols., 1851) with the poetical works, and by J. \mathbf{A}. Se John for Bohn's" Librarics" (5 vols., 1848-1853). There are Dumerous annotated editions of separate rorks.

The carlicst life of Milton is contained in Wood MS. D. 4 in the Bodlcian Library, Oxtord. and was printed in the Eng. Hist. Rerter for January 1902 , also by E. S. Parsons in Colorcdo College Studier, No, X (1903). The author, who sympathized with the pot ${ }^{\text {b }}$ political views, is unknown, but the name of Milton's Iriend, Dr Nathan Paget, is suggested. His account formed the basis of the life given by Anthony a Wood in Fasti oxonienses (169t). Wiod was also indebted to John Aubrey, whose Bricf Lives were not printed until later. The life by his nephew Edward Phillips was prefixed to the Leilers of Skote printed in 1 Ggt, and reprinted by Willim Godwin in his Liscs of E. and J. Phillips (1815). Samuel Johnson's Gamous Life of Millon (1779), which contains some valuable criticism, is written from a somewhat unfriendly standpoint. The records of Milton's official life, available in the State Papers, wo first made use of by H.J. Tokd in a third edition (1829) of his Milim. All the available information was gathered in Professor Niassca's Life of John Milton; narrated in Connexion wilh the Political. Eccletiastical and Literary History of his Timie (6 vols., $1859-1880$, wh index. I894; new ed, of vol. i., 1881) which contains ample reference to original authorities. Shorter works are Millom und seine 7eit (2 pes., 1877,879), by Alfred Srern; Mil6on (1879), by Mark Pattison in the "Enclish Men of Letters" serius, and Life of John Muiton (1890) by Dr Richard Garnett in the "Great Writers" series, with a bíbliography by \&. P. Anderson.

The sources of Paradise Lost have given rise to much discussion: It has been supposed to owe something to Adamo, a comedy by Giovanni Battista Andreini $(1578-1652)$, to the Paraphrase as socinted with the name of Caedmon which was printed at Amsterdam in s6ss by Francis Junius, and to the Lacifer and other plays of Joost van den Vondel. Parallelisms between Vondel and Milton were pointed out by Mr Edmund Cosse in Literatures of Norlhern Europe (1879), and the comparison was carried further in Mr C. Edmundton's Milion and Vondel; A Curiosily of Literalure (1885), a book which aroused much discussion. A valuable contribution to Miltonic criticism was made in I893 by Mr Robert Bridges in an essny on Milton's Prosody. This was neprinted in IgoI, with sortie additional matter and an essay on "Classical Mctres in English Verse" by W. J. Stone. Amongst other critical essiys should be mentioned essays by Macaulay (Edinburg Review, 1825); Walter Bagehot (Literary Simdies, vol. i., 1879); S. T. Coleridge (Sepen Lectures on Shakespeare and Millon 1856): Edward Dowden (Transcriphs and Sludies, 1888); Edmond Scherer (Eludes sur la likerature conlemparaine, vol. vi., 1882); Augustine Birrell (Obiter dicla, second series 1887); Walter Ralcigh (Milton, 1900): E. Allodoli, Giononni Milom - lilialia (Prato, 1907).

Concordances ol Milton's Poetical Works were compiled by G. L. Prendergast (Madras, 1856-1857); by C. I. Cleveland (1867), based on a verbal index used in an American edition 1853, of the Poelical Works; by John Bradshaw ((1894), by L. E. Lockwood. Lexicon to the Exilish Poetical Works of John Millom (New York, 1907).
The tercentenary of Milton's birth was celebrated in 1908 in Cambridge, London and elsewhere. An exhibltion of the portraits of Milton, authentic and supposed, with a great collection of valuable editions of the poet's works, was held in yune and July at Christ's College. Cambridge. The catalogue of this exhibition, drawn up by DrG. C. Williamson, forms a valuable bibliography and iconography of the poet. A collection of Milton autographs, early editions and portraits was also held in December at the British Museum, and the anniversary itself was celebrated by a special meeting of the British Academy, at which papers by Professors W. J. Courthope, Edward Dowden and others were read. There was a religious service at St Mary-le-Bow, Cheapside, and a banquet at the Mansion House.
l MILTON, a township of N.E. Norfolk county, Massachusetts, U.S.A., about 7 m . S. of Boston, the Neponset river forming a large part of its N. and N.W. boundary. Pop. (1890), 4278; (1900), 6578 (1840 being foreign-born); (1905 , state census), 7054 ; (1gio) 7924. It is served by the New York, New Haven \& Hartford railway, and is primarily a residential suburb of Boston, with which it is connected by electric lines. The township covers an area of about $13 \mathrm{sq} . \mathrm{m}$., and includes the villages of

Milton, East Milton and Mattapen: The country is rolling and hilly, the Blue Hills (with the exception of a part included in Braintree in 1712 and now in Quincy) lying in Milton. On Great Blue Hill, the highest (635 ft . above tide-level), great fires were kindied at the news of the repeal of the Stamp Act, of the adoption of the Declaration of Independence, and of the surrenders of Burgoyne and Cornwallis; beacon fires were hurned during the American War of Independence; an "observatory" for tourists was built at an cariy date; and in 1885 the Blue Hill Observatory for meteorological investigation was established by Abbott Lawrence Rotch (b. 1861), who made important investigations concerning clouds, and attracted attention by his use of kitea for obtaining meteorological data. Milon Academy (a non-sectarian school) was (ounded in 1798, opened in 1805, and suspended in 1867; a new academy was opened in 1885 . There is a public library, which was opened in 1871, and in 1909 had more than 20,000 volumes. Cunningham Park is under the control of the trustees of a fund ieft for the benefit of the fownship, and contains a gymnasium, skating-pond, tennis courts, \&s., open to townspeople only. Hutchinson Field, another public park, is a part of the estate of the last royal governor, Thomas Hutchinson; Governor Jonathan Belcher also lived in Milton for a time. There are two granite quarries in the township immediately north-west of the Blue Hills; the granite is of the "dark Quincy" variety-dark bluish grey in colour-and is used chiefly for monuments. Milton, originally a part of Dorchester, was first settled in 1640, and was called Uncataquissett. The township was separated from Dorchester and incorporated in 1662. It owes its name cither to its early paper and grist mills (Mitton being ahbreviated from Milltown) ór to Milton Abbey, Dorset, whence members of the Tucker family came, it is supposed, to Milton about 1662. In 1712 the Blue Hill lands were divided between Milton and Braintree, and in 1868 part of Mitton was included in the new township of Hyde Park. In Milton, on the oth of September 1774, at the house of Daniel Vose, a meeting, adjourned from Dedham, passed the bold " Suffolk Resolves" (Milton then being included in Suffolk county), which declared that a sovereign who breaks his compact with his subjects forfeits their allegiance, that parliament's repressive measures were unconstitutional, that tax-collectors should not pay over money to the royal treasury, that the towns should choose militia officers from the patriot party, that they would obey the Continental Congress and that they favoured a Provincial Congress, and that they would seize crown officers as hostages for any political prisoners arrested by the governor; and recommended that all persons in the colony should abstain from la wlessness.
Sce A. K. Teele; History of Millon, Mass., 1640 to 1887 (Miton, 1887).

IIITON, à borough of Northumberland county, Pennsylvania, U.S.A., on the Susquehanna river at the mouth of Limestone Run, about 66 m . N. of Harrisburg. Pop. (1890), 5317 ; (1900), 6175 (166 forcign-born); (1910), 7460 . It is served by the Pennsyivania, and the Philadelphia \& Reading railways, and is connected with Lewisburg and Watsontown by an electric line. Mitton has an attractive public park, is in an agricultural region, and has various manulactures. It was founded in 1792, and incorporated as a borough in 1817. In 1880 it was in great part destroyed by fire.

MILTAUKEB, a city and the county-seat of Milwaukee county, Wisconsin, U.S.A., the largest city of the state, at the mouth of the Milwaukee river on the W. shore of Lake Michigan, about 85 m . N. of Chicago. Pop. (1900), 285.315; (1910), 373,857. The Milwaukee fiver entering the city from the north is joined about $\$ \mathrm{~m}$. from its mouth by the Menominee flowing from the west and a short distance from the lake by the Kinnikinnic flowing from the south. These rivers are navigable for lake traffic into the heart of the city. Milwaukee Bay, into which their combined waters empty, is an inlet of Lake Michigan. about 6 m . across. By the construction of extensive piers and breakwaters a fine harbour of refuge has been created; and its inner harbour is deep enough for the largest lake-stenmers.

From the shore of the lake the land rises, rather abruptly in most places, to a height of from 75 to 100 ft . Frora a broad plateau overiooking the lake the land slopes gradually westward to the river, again rising on the north, west and south to a beight of 125 ft . or more. The rivers separate the city into three distinctly marked divisions of varying character known as the east, west and south sides. The manufactories are largely on the flats " along the rivers and on the south side. The extensive use as building material of cream-coloured brick made in the vicinity gives the city its nickname, " the Cream City."

The city has many beautiful parks and squares, the most picturesque of which is Juneau Park, along the lake bluff. It contains statues of Leif Ericsson and Solomon Juncau. Other parks are Lake Park, also on the lake shore, at North. Point, where stands the waterworks pumping station with its tall tower; Riverside and Kilbourn Parks, east and west respectively of the upper Milwaukee river, in the northern part of the city. Washington Park on the west side, containing a menagerie and a herd of deer; Sherman Park on the west side, and Kosciusko, Humboldt and Mitchell Parks on the south side. McKinley Park on the lake shore south of the city, and Whitefish Bay 6 m . north of the city, are popular bathing resorts. In addition to the statues in Juneau Park there is a statue of Kosciusko in the park of that name; one of Washington and a soldiers' monument on Grand Avenue; a statue of Henry Bergh in front of the city hall; one of Robert Burns in the First Ward Park, and, in Washington Park, a replica of Ernst Rietschel's Schiller-Goethe monument in Jena, given to the city in 1908 by the Germans of Milwaukee. Of the several cemeteries, that of Forest Home, south-west of the city, is the largest and most beautiful. The city is well sewered, and has an excellent water-supply system owned by the municipality and representing an investment of more than $\$ 5,000,000$. The water is obtained from Lake Michigan through an intake far out in the lake. Through a tunnel $\ddagger \mathrm{m}$. long, constructed in 1888, water is pumped by means of one of the largest single pumps in the world from the lake into the upper Milwaukee river, which is thus completely flushed by fresh water every twenty-four hours
Milwaukee is one of the most healthful of the larger cities of the United States. Its average annual death-rate for $1900-1904$ was 13.6. The proximity of Lake Michigan cools the atmosphere in summer and tempers the cold in winter. As a result, the extremes of beat and cold are not as great as those in most inland cities. The mean monthly temperatures vary between 20° in January and 70° in July, with extremes of 100° and -25°. The mean annual precipitation is $31 \cdot 4$ in.

Suburbs.-Milwaukee proper occupies 221 sq. m., a small areè as compared with other cities near it in population-Detroit (36 sy. m.) and Washington, D.C. (Ggat sq- m.). As a result, ihe population has overflowed into several populous suburbe industrially a part of a "greater" Milwaukee. Of these by lar the most imporant are the township of Wauwatosa (pop.. 1905. I11.132: 1910.11 .536). and the city of the same name, separated from the township in 1897 and having in 1910 a population of 3346 : ©he city and township are on the Menominee river, immediately adjoining the city on the west. The first mettlement was made here in 1835 . Wauwatosa has important manufactures. including machinery. brick. lime, beer, chemicals and wooden-ware, and extensive market gardens and nurseries and valuable stone quarries. It has a Carnegic library, and is the seat of an Evangelical Lutheran theological scminary (1865). of Lutheran homes for the aged and orphan, of the Milwauket county hospital for the insane. of the Milwauk ce sanatorium fo: nervous discases, and of the north-western branch of the national poddiers' home, which has grounds covering 385 ac ces and with main huilding and barracks affording quarters for over 2000 dissbled vetcrans, and has a hospital. a theatre, and a library of 15.004 volumes. Within the limits of Wauwatosa also are the S atc F grounds. Other suburbs are West Allis pop., 1995, 2306: U. S. census 1900, 6645). an incorporated rapidy growing manufacturing city on the west: Cudahy (pop., 1910. 3691), a manulacturing village south or Milwaukee, largely devoted to meat packing: South Milwaukee (pop. 1910. G092). hn incorporated city with several harge manufactaries, and North Milwaukee (pop.., 1910, 1860), a village immediately adjoining the city on the north.
Pxblic Buiddings. Imstiuxtions. ©Gc.-The principal public building in the city is the Federal building ($1895-1898$). . he poss office, customhouse and local headquarters for the United States courts The public tibrary and museum, on the north side of Grand Avenue, in
addition to an excellent collection of natural history. palaeontology. dec., tontained in 1909 a library of about 190,000 volumes The ciry hall on the east side is surmounted by a tal! clock-tower containing one of the largest bells in the world. The Layton Art Gallery contains one of the best collections of paintings west of the Alleghanies. The chamber of commerce, and the Pabst. Mitchell. North-Western Life Insurance, Germania Sentinel and Wells build:ingh, are among the principal business structures. In Milwaukee are St John's Roman Cathulic Cathedral and All Saints Protestant Episcopal Cathedrat-the city is the see of a Roman Catholic archbishopric (established in 1892) and of a Protestant Episcopal bishopric. Among other church structures are Plymouth Congregational, Westminster Presbyterian. Church of Gesu (Roman Catholic) and Trinity Lutheran. The hotels include the Pfister on the east side and the Plankinton, the Republican and the Schlitz on the west side. Among the theatres are the Davidson. Majestic, Schubert, Bijou. Alhambra and the Pabst German. During the summer there are openair thentres in several private parks or "gardens." The socia clubs include the Milwaukee. Deutscher-Concordia, University and Marquette clubs. The predominance of Germanic influence in the city is evidenced by at least 75 musical clubs and numerous Turneretin societies. There are 12 hospitals (3 of them city institutions), 6 orphan asylums, 4 homes for the aged, a foundlings' home and a state industrial school for girls.
The educa tional institutions are numerous. Marquette University was ertablished in 1906 by a union of Marqucte College (1888), a Roman Catholic sch ool of high rank, and existing schools of medicine, pharmacy, dentistry and lawi in 1908 it added a department of engineerngs. and in that year it had 81 instructors and 630 students. Milwaukee-Downer College (for girls), in the north-east part of the city was established in 1895 by a consolidation of Milwaukee College for girls, and Downer Colloge, formerly at Fox Lake. Other institutions are Concordia College (1881, Lutheran), a state normal school (1880), the Wisconsin College of physicians and surgeons (1893), the national German-American teachers' seminary (normal), Milwaukec academy ($\mathbf{8 8 6 4}$), Milwaukee University school, Milwaukee school of engineering (1904). Milwaukee Turnvercin school of physical culture, one of the largest schools of the sort in the United States, St John's Catholic institute. Our Lady of Mercy academy (Roman Catholic), Wisconsin acaderny of music, the Wisconsin schoot of art (art students' league). a Catholic normal school. St Rose's manual training school, the industrial chemical institure (the only technical school for brewers in the United States) and several business and commercial schools. At St Francis, adivining the city on the south, is the seminary of St Francis of Salcs (Roman Catholic), and St Joseph's institute for deaf mutes (Roman Catholic). The Milwaukee pullic school system comprises four high schools, a high school of trides, and in addition to the ordinary grades, a kindergarten department and day schools for the blind and dcaf.

Transportation.-Milwaukee is favourably situated commercially. with excellent facilities for shipping both by lake and rail afforded by four trunk lines and a dozen lines or lake stcamboats It is served by the Chicago \& North-Western, the Chicago, Milwaukee \& St Paul, the Minneapolis, St Paul \& Saule Ste Marie, the Grand Trunk, and the Petre Marquette railways. The last-named connects with the main line at Ludington, Michigan, by means of a railway ferry across Lake Michigan: the Grand Trunk has a railway (erry from Milwaukee to Grand Haven. The city's extensive strect railway system connects with interurban electric lines Icading to Waukesha, Conomowoc and Watertown on the west, Sheboygat and Fond du Lac on the north, and Chicago and intermediate points along the take shore on the south.
Trade and Commerce.-Commercially Milwaukee is one of the mose important of the inland cities of the United States, although its trade it largely domestic. It is a distributing point for a considerable part of Wisconsin, and several states farther west, ite wholesale butiness aggregating about $8350,000,000$ annually. The country produce sold in Milwaukee avcrages about $\$ 75,000,000$ a year in value. The chief commoditics of crade are coail, grain, lumber. four and various products of the city's own manufactories. Milwaukre is an important grain shipping port-in 1908 it shipped 28,618,519 bushels of grain and 3.752.033 barrels of flour, and its 25 elevators have a capacity of over $12.500,000$ busbels. It is one of the largest distributing centres in the country for coal, which is received by lake. and stored in enormous coal docks for trantshipment by rail throughout the west and north-west. The city is a port of entry, and in 1908 its imports were valued at $83,080,437$. and its exports at only 875,525 -

Manufactures.- In 1905 the total value of Milwaukee's factory products was. $8138,881,545,25.3 \%$ more than in 1900 . In the manulacture of mali liquors and malt Milwaukee stands first among the cities of the United States and of the world. The tocal value of these products for 1905 was $829.909,248$, of which $822,134.580$ was the value of malt liquors and 83.774 .668 was the value of malt. In 1905 Milwaukee manufactured $77 \cdot \bullet \%$ of the malt liguors manufactured in the state and 7.4% of the entire product of the United States Other producten exceeding $81,000,000$ in . value were: leather ($\mathbf{1 4 . 0 7 4 . 3 9 7 \text {). Milwaukee being second in the manufacture }}$ of leather a mong the cities of the United States; foundry and machine
 grist-mill products ($\$ 6,320,428$): slaughtering and meat-paeking products ($\$ 5.95 \% .515$): men's clothing ($5_{4} .759 .5+^{8}$): boots and
 ($\$ 2,257.2$ 29): chewing and smoking tobacco ($\$ 1.960,930$) and cigars and cigarettes ($\mathbf{S t}, 5 \neq 0.019$); (urniture ($\mathbf{S 1 , 7 6 7 . 2 9 0 \text {); Irunks }}$ and valises ($\$ 1,623.310$): hosicry and knit goods ($\$ 1,535.176$): confectionery (8 I .379 .668): stoves and furnaces ($\$ 1.288,931$): leather gloves and mittens ($\$ 1.207 .633$); structural iron work ($\$ 1,037.217$); wooden packing boxes ($\$ 1,024.750$): and paints ($\$ 1,015.774$). Among Milwaukec's largest industrial establishments are: the Pabst and the Schlitz breweries. on the west side of the city, the machine shops (35 acres) of the Allis-Chalmers Company at West Allis, employing about 5000 men and making engines of all kinds; and the plani of the lllinois Steel Company. at Bay View on the south side. which covers 154 acres The flour mills of Milwaukee have a capacity of about 12,000 barrels a day. Two of the city's tanneries are among the largest in America. In the Menominee river valley the peculiar cream coloured Alilwaukee bricks are made. North of the city on the Alilwaukee river are extensive cement works.
Newspapers.-The first newspaper in Milwaukee. the Adpertiser. began publication in 1836 . The fisst German newspaper was established in 1844. In 1909 there were eleven daily newspapers, as follows: Eventng Wisconsin (i847; Republican), Free Press (1901; Independent Republican), Journal (1882: Independent Democrar). News (1886: Independent), and Sentinel (1837: Repuisican), the oldest paper in continuous publication, Daily Cominescial Letter (Commerciab), Reporler (legal and commercial). Dzıennik Mitwauckz (Polish), Kuryer Polski (1888; Republican; Polish). Germania Abendpost (1872; Independent: German); and Der Herold (1854: Independent; German). Of more than a hundred other publications thiry-two, 10 monithly or quarterly and 22 weekly, were published in German. There are 5 Polish weekly publications, 3 Bohemian. I Italian and one periodical for the blind.

Population.-The population of Milwaukee in $\mathbf{1 8 4 0}$ was only 1712. During the lollowing decade there was a steady flow of immigrants from the eastern states and from Europe, with the result that in 1850 , two years aiter the admission of Wisconsin to the Union, the population was 20,06 . The population at the succeeding decennial censuses was as follows: (1860), 45,246; (1870), 71,440; (1880)، 115,587 ; (1890), 204,468; (1900), 285,315 . In 1905, according to the state census, the population was $\mathbf{3 1 2 , 9 4 8}$. The fact that out of a population of 285,315 in $\mathbf{1 9 0 0}$, 88,99 r were foreign-born, and 235,889 were of foreign parentage, that 53,854 were born in Germany, that 124,211 had both parents born in Germany, and that 26,834 additional had one or the other parent born in Germany, stamps the character of Milwaukec's population. The negro population in 1900 was only 862. The proportion of illiterates is small. Of the male population, aged to years or more, only 3206 (2968 foreign-born whites; 194 native-born whites) were illiterate in 1900.

Government.-Milwaukee is governed under a city charter of 1874, providing the form of city government most common in America, a mayor (elected biennially) and a single board of aldermen. There are the usual administrative boards whose members are appointed by the mayor, some of them with the approval of the board of aldermen, though the board of schoo! directors is elected by direct popular vote. Two boards of civil service commissioners, one for fire and police departments and one for all other departments, have supervision over the city's civil service.

The assessed valuation of taxable property, in the city, in August 1906 was $\$ 201,585.127$. of which $\$ 157.611 .560$ represented realty and $\$+3.973 .567$ personality. The valuation is about 60% of the actual value. The tax rate for all purposes in that year was 32.26 per $\$ 100$. According to a special report of the census the cost of the city government of Aitlwaukee in 1906 was smaller per capita than that of any other city in the country with a population of over 300,000. At the close of the year 1906 the lotal debt was $88.835,049$. and the funded debt was $\$ 8,106,500$.

History.-The first Europeans known to have visited the site of Milwaukee were Father Jacques Marquette, the Jesuit missionary, and his companion, Louis Joliet, who on their return In the autumn of 1673 to the mission of St Fraticis Xavier at De Pere from their trip down the Mississippi, skirted tbe west shore of Lake Michigan in their canoes from Chicago northward. Milwaukee Bay is distinctly marked in the map attributed to Marquette, the original of which is now in the Jesuit College at

Montreal, Canada; it was discovered in a convent in Montreal by Felix Martin (2804-1886), of the Society of Jesus, and was copied by Parkman. In 1679 La Salle and his party probably stopped here on their way south, and in the Jesuit Rclations of that year the name Milwauke first appears, as "Millioke." This, and the various other spellings of the name, attempted to reproduce the Indian name of the village here, which Kelton thinks was pronounced Minewagi and meant "there is a good point " or "there is a point where huckleberries grow," in allusion to the fertile soil. Doubtess the courcurs d_{m} bois who at this time began to frequest the Wisconsin forests, touched at the bay many times within tbe succeeding years as the place was known to be a favourite rendezvous of the Fox (or Outagamie) Indians. In $1600-1700$ Father St Cosme, a Recollet Iriar, was here, finding bands of Mascoutens, Fox, Winnebago and Potawatomi. He called the river " Melwarik," "Melwarck" and "Meliwarik."
For more than half a century no definite reference to the place can be found. In 1760 its advantageous situation attracted the adventurous trader, Alexander Henry, the first Englishman known to have visited the spot. Three years later (1763) there was a French fur-trading post here, but it is uncertain just when it was established or how long it was maintained. In $1 ; 95$ Jacques Vieau, a Frenchman in the employ of the North. Western Fur Company, established a permanent post here, which seems to have continyed, under his direction. with practically no interruption until 1820, when it was superseded by that of Astor's American Fur Company. Vieau bullt a dwelling and a warebouse and conducted extensive trading operations. In 1888 there joined the settlement a young Frenchman named Laurent Solomon Juncau (1793-1856). who married one of Vieau's daughters and eventually bought out his business. Juneau and several olhers who arrived at about the same time built homes on the east side of the river near the foot of the present Wisconsin Street. Vieau's house and store was at this time on the south side. Milwaukee was on the direct route of travel between Fort Dearbom (Chicago) and the fourishing settlement at Green Bay. and at once after the treaties between the United States and the Menominee in 1831 and 1833 for the extinguishing of the Indian titles, setlers began to come to 'the neighbourhood. A map of 1830 shows a small settlement on "Milwalky Bay"; and the treaty of the 8th of February 8831 speaks of the " Alilwauky or Manawauky River." Morgan L. Martin (i805-1887) of Green Bay, a lawyer and judge, and a delegate to Congress in 1845-1847 from Wisconsin territory, explored the harbour facilities in 1833 and made a map of the place which he called " Alitwaukie." He entered into an agreement later in the same year with Juneau and Michacl Dousman for its development. A saw-mill was built in 1834, and settlers began to arrive. The east side was platted in the summer of 1835 , and very soon afterward the plat of a settlement on the west side was also recorded, Byron Kilbourn being the chief projector and proprietor of the latter. Tbe nual settlements, officially known as Milwaukee East Side and Milwakee West Side, bore the popular designations of "Juneautown " and "Kilbourntown." A third settlement, begun on the south side by George H. Walker and known as "Walker's Point," was subsequently platted independently. The rivalry between the east and west side towns was intense, the plats were so surveyed that the streets did not meet at the river, and there were bitter quarrels over the building of bridges. Milwaukee county was set off from Brown county in 1834, and in 1836 the establishment of townships was authorized. Under this act the east and west sides were independertly incorporated in February 1837. A realization that the continuation of independent and rival corporations retarded growth eventually led to a compromise by which the two were united as two wards of the same village in 1839. the autonomy of each being still recognized by an odd arrangement whereby each maintained practically independent management of its finances and affairs. Walker's Point, the south side, was annexed as a third ward in 1845, and in $\mathbf{1 8 4 6}$ the three wards were incorporated as the city of Milwaukee, of which Solomon Juneau was elected first
mayor. The influence of this early rivalry may be seen in several provisions of the existing city charter.
About 1840 a strong tide of immigration from Germany set in, continuing steadily for a half-century. It was greally accelerated by the German revolutionary movements of the late 'forties, which added to the city's population a considerable clement of educated Germans of the upper class, From this time the Teutonic character of the population was marked. The first newspaper, the Advertiser, began publication in 1836; the first hank was established in 1837. In 1839 George Smith and Alexander Mitchell estahlished the Fire and Marine Insurance Company Bank. As "Mitchell's Bank" this institution was known for forty years as one of the strongest banking houses west of the Alleghanies, its notes passing at par during panics in which even the government issues were depreciated. Through it the Chicago Milwaukee \& St Paul and other western railways were financed. Beer was first hrewed in Milwaukee in 1840. Milwaukee was connected with Chicago by telegraph in 1849, and by railway in 1856 . Previous to this, however in 1851, the first train ran over the Chicago Milwaukee \& St Paul railway to Waukesha, and in 1857 through trains were run over the same road to the Mississippi at Prairie du Chien.

See J. S. Buck, Pioneer History of Milvouukee (4 vols, Milwaukee, 1876-1886): A. C. Wheler, Chronicles of Mifroakee (Milwaukee, 1861); E. S. Mack. "The Founding of Milwaukee " in Proceedings of the State Historical Society for rgoo (Madison, 1907); and L. M. Larson, Administralue History of Milwauke (Madison, Wisconsin. 1908).

MIMETITE, a mineral consisting of lead chloro-arsenate, $(\mathrm{PbCl}) \mathrm{Pb}_{3}\left(\mathrm{AsO}_{4}\right)_{3}$, crystallizing in the hexagonal system and closely resembling pyromorphite (q.v.) in appearance and general characters. The arsenic is usually partly replaced hy equivalent amounts of phosphorus, and there may thus be a gradual passage from mimetite to pyromorphite. The two species can, as a rule, only be distinguished by chemical analysis, and because of their close resemhiance the less frequently occurring chloro-arsenate was named mimetite or mimetesite, from Gr. $\mu \mu \mu \eta t / s$, Imitator. Crystals of pyromorphite though usually optically uniaxial are sometimes blaxial, but in mimetite this anomalous character is almost always present; a cross-section of a hexagonal prism of mimetite shows a division into six optically biaxial sectors or a complex lamellated structure. In colour mimetite is usually ycllow or brown, rarely white or colourless; the lustre is resinous to adamantine. The hardness is 31 , and the specific gravity $7 \cdot 0-7.25$. Like pyromorphite, mimetite is found in the upper parts of veins of lead ore, where it has been formed by the oxidation of galena and mispickel. When lound in large amount it is of importance as an ore of lead. The best crystallized specimens are those from Johanngeorgenstadt in Saxony and Wheal Unity in Cornwall. It was formeriy found in considerable amount at Dry Gill in Cumberland, as six-sided barrel-shaped crystals of a brownish-red or orangeyellov colour and contnining a considerable proportion of phosphoric acid; this variely has been called campylite. from Gr. majuxihos, curved, on account of the remarkable curvature of the faces of the crystals.
(L. J. S.)

MIMICRY, in roology, the deceptive and advantageous resemblance presented by defenceless and edible species of animals to other species of animals living in the same locality. which are harmiul or distasteful and are consequently avoided by all or by a majority of the enemies of the class to which the mimetic and usually the mimicked species belong. Afimicry is a special form oi protective resemblance, differing from ordinary protective resemblance as exemplified by the similarity of the resting goat-sucker to a piece of hark or of leaf-and stick-insects to the objects after which they are named, in that the imitated object belongs to the animal kingdom and not to the vegetable kingdom of to inorganic nature. Although, like protective resemblance. quite independent of affinity between the organisms concerned in the likeness, mimicry occurs most commonly between animals st ruct urally similar, and therefore related, 10 one another. the relationship may be close or remote. For instance, the commonest and best-known cases are found in insects where
both mimic and model may belong to the same genus, sub-family, family or order, or to different orders. More rarcly it occurs between members of distinct classes of the same sub-lingdom, i.e. between spiders and ants or spiders and beetles; yet even in this casc both mimic and model have in common certain fundamental structural points to which the finishing touches completing the mimelic likeness are superadded. Still more rarely mimicry exists between totally unrelated species like caterpillars and snakes or spiders and snails. But in no case does it appear that the modifications in shape and colour, which contribute to bring about a mimetic resemblance, are greater and more elaborate than those which result in the simpler examples of ordinary protective resemblance.

The principle of protective resemblance, for which the term mimicry, as above defined, was originally employed, was first explained by H. W. Bates. Subsequently the meaning of the word was extended by F. Muller to include cases of mutual resemblance between two or more noxious species inhabiting the same area. Hence the resemblances belonging to the first catcgory are commonly termed "Batesian mimicry," and those belonging to the second category "Mullerian mimicry," or more properly "Millerian resemblance." The difference between the two phenomena is essential and evident; but without experimental information as to palatability it is impossible to know with certainty to which of the two a particular case of mimicry is to be assigned. Over and over again extended knowledge on this point and inferences drawn from other facts have shown the certainty or probability of examples of mimicry being in reality "Müllerian," which were previously accepted without question as "Batesian." A simple illustration will serve to explain these two aspects of mimicry and to show the advamage in the struggle for existence that mimicry confers upon the species concerned.

There is a common English Syrphid fy (Eristalis tenax) known as the dronc-fly from its resemblance to a large hive or honey bee. Honey bees are protected from a large number of insect encmies because they sting and are disiasteful. Insect-eating birds soon learn to associate distastefulness with the size, form and colour of the bees, and consequently leave them alone after one or more trials. But flies of the drone-dy kind cannot sting, and, so lar as is known, are perfectly innocuous and cdible. The advantage to the fly of its deceptive resemblance to the bee is theoretically perfectly evident and practically can be demonstrated by experiment. It is in the first place a matter of common knowledge that human beings who have been taught to avoid handling bees invariably fear to touch drone-fies, unless specially trained to distinguish the one from the others. Moreover, Professor Lloyd Morgan found that young birds that had tasted and rejected workers of the hive bee as unpalatable subsequently refused to taste not only drones, which have no sting, but also dronc-lies. So far as our information at present extends the resemblance bet ween these two insects is a simple case of mimicry in the Batesian sense of the word. That is to say, an edible species is protected by resembling one that is inedible. But if it be discovered, as is possihle, that the drone-fly is also inedible, the mimicry must be ascribed to the Millerian category, and the reason for it becomes less evident. In what way, it may be asked, are two or more distasteful species of insects, occurring in the same locality, benefited by resembling each other? The ingenious explanation suggested by Fritz Muller for similar cases met with in butterlies is probably the true answer. This explanation depends upon what is now an experimentally demonstrated fact that insectivosous birds, and probably other animals, have no instinctive knowledge of what insects are cdiblc and what inedible. This knowledge is acquired by experience; and since it is not, at all events as a rulc. taught by the first taste to any individual bird, it is reasonable to infer that a considerable amount of injury, sufficient to disable if not to kill, is annually inflicted upon insects belonging to species protected by distastefulness or kindred quaities. Now insects that possess noxious attributes, and the same is truc of other animals, usually have a conspicuous waming coloration which appeals to the eyes of enemies and helps them to remember more casily the cause of an
unpleasant experience, helps in lact to establish a psychical association between a particular style of coloration and a nasty taste or a painful wound. This being so, it is evident that if all the distasteful species in a given area are differently coloured, some individuals of all the species will be annually sacrificed to the experimental tasting of inexperienced foes before the numerous lessons have been learnt. But if all the species in question resemble each other the resemblance will be mutually beneficial to them because the association between the two attributes they have in common, namely distastefulness and a particular scheme of colour, will be rapidly established. One lesson only, instead of many, has to be learnt; and once learnt at the expense of a few individuals of one or two species it will thereafter be applied indiscriminately to all. This type of mimicry bas been well defined by Professor E. B. Poulton as the unification of warning colours.

Since belief in the adequacy of the two theories, above outlined, to account for the facts they profess to explain, depends ultimately upon the testimony that can be brought lorward of the usefulness of warning eharacters, of the deception of mimiery and of the capacity for learning by experience possessed by enemies, it is necessary to give some of the evidence that has been accumulated on these points. (1) In South America there are butcerfics formerly grouped as Heliconidae which are conspicuously coloured, slow of flight and abundant in individuals so as to be susceptible of easy capture. They possess ecent glands. By observation and experiment it was discovered independently by. Messrs Bates, Wallace and Bell that they are not attacked by birds nor by many other enemies that prey upon unprotected Lepidoptera. (2) As the result of a series of trials made in Calcutta F. Finn came to the conclusion that young birds have no instinctive knowledge of the unpalatability of distasteful insects, but that experimental tasting soon teaches them to recognize and avoid species they have previously rejected with distike, and that having once learnt the lesson they long remember it. (3) That birds may also be deceived by insects that mimic those they have found to be uneatable has been shown by the abovequoted experiment with the drone-fly and the honey-bees made by Professor Lloyd Morgan. He also found that chickens that had been given meal moistened with quinine and placed upon glass slips banded black and yellow, afterwards refused to touch meal moistened with water and spread upon the same slips, although they had previously eaten it with readiness off plain coloured stips. With two exceptions, these chickens that bad learnt to associate black and yellow banding with a bitter taste also refused to touch the caterpillar of the cinnabar moth (Euchelia jacoboeoe), which is banded with these colours. Moreover, young birds that had been taught hy experience that these caterpillars are uneatable also left wasps untouched. (4) Guy Marshall once offered to a baboon a distastelul butterfly (Acraea anemosa), holding the insect in such a way as to display its bright red and black markings to the monkey. It was taken but rejected after being tasted. A specimen of another butterfly (Precis sesamps) which mimics the Acroea was then offered in the same manner. The baboon took it, held it in her hands for a few moments, and then let it escape uninjured without trying to taste it. But when another butterfly of the same species, but with the wings cut off, was offered to her she promptly ate it without showing any sign of distike. The results of this experiment with the baboon and of those with the birds are precisely what would be expected if the theory of mimicry is true. Experiments to test distastefulness have also been made with various kinds of insectivorous Arthropoda, like spiders and mantises. These experiments have shown that Arthropods also have their likes and dislikes in the matter of insect-food and frequently refuse to eat insects which are warningly coloured and are distasteful to vertebrated enemies. They appear, however, to have no appreciation of mimetic and warning colours, and have therefore not influenced in any way the evolution of mimetic resemblances dependent upon hues and patterns. Nevertheless, as explained below, it seems to be highly probable that ant-imitating insects and spiders, when the resemblance is dependent to a greater extent upon size. shape and movement than upon tint, have acquired their mimetic likeness especially to protect them from the attacks of such insect-enemies as predaceous wasps of the family Pompilidae. fies of the family Asilidae. and from so called parasitic hymenoptera of the family Ichneumonidae, as well as from other insect-eating Arthropods.

The term mimicry has also been applied to resemblances of a different kind from the two enumerated above-resemblances, that is to say, by which predaceous species are supposed to be enabled to approach or mir without detection with animals they prey upon or victimize in other ways. To this end the resemblance may be actually to the species victimized or preyed upon or else to a species which the species preyed upon does not fear. This phenomenon is termed " aggressive mimicry " as opposed to
the Batcsian and Miilerian phenomena, which are termed "protective mimicry." A few possible cases of aggressive mimicry are enumerated in the following summary of some of the recorded cases of mitncry in different classes of the animal kingdom; but the phermenon is of comparatively rare occurrence, and the supposed instances may be susceptible of other interpretations, excludiag them altogether from mimicry, or bringing them under the: Batesian or Müllerian interpretation of the phenomenon.
Among mammalia the e are no certain cases of mimicry known. It has been claimed thit the resemblance between some of the Oriental tree-shrews of the genus Tupaza and squirrels comes under the category of aggressie mimicry, the tupaias being enabled by their likeness to appros h and pounce upon small birds or other animals which, mßtakin. them lor the vegetable-feeding squirrels, make no effort to get ou: of the way. But this hyporhesis cannot ic accepted as furilishing a satisfactory explanation of the likeness For in the first place the seems to be no good reason for thinking litat the Tupaias feed to any considerable extent upon prey of that kind, and in the sccond lace the resemblance is due to characters which may be merely a prations to a similar mode of life. A long and bushy tail, for instance, is a useful balancer and is a not uncimmon feature in mammals which lead an active arboreal life. Smilarly the dull coloration of the two sets of animals is very pos:ibly procryptic and seres to hide both shrews and squirrels from enemics. Hence there tem to be good reasons for regarding the likeness in question as die to similarity in habitat and not as mimetic.
In East and South Africa there is a genus of Mustelidae known as Iflonyx (Zortlla) which jossesses a foetid odour and is warningly coloured with black and white bands after the manner of skunks. There also occurs in Suth Africa another member of this family (Pacilogale albinucha). that this resemblance and that the Poecilogale hishly offensive and other hand. Poecilogale caudal stink-glands aro tribe. If this be the instance of true Mult considerable superficial (Speothos veraalicus) of C animal of the same layra is, when adult. commonly lias a consid In these particulars. a rescmbles the weasel: a that the later is prote quite possible that the Canidae is protected fro by his likeness to the tive cuckoo and some other rescmble sparrow hawk of using the nests of s young may be reared that the object of the the cock cuckoo either nests or to lure them and without molestat sexes of the cuckoo ro this suggested explana smaller passerine bird prey, it may be that from larger hawks on hawk. Another speci apparently mimics th resemblance between th is a fieree and powerfi, of the size of a cuckoo to the drongo, the hel lay her ege in the nes ror one of its own kind mimic the drongo. w necessizy for the hen resemblance to the pug ing the defenceless cur Some observations. of certain birds sugges hawks on the one hand
he susceptible of anol itheory of mimicry as p Alrican drongo (Dier: tine or two attempls nlera) which had be The drongo is blue anc I'he same mongoose a
luides) and a bubby (

A few cases of mimicry have been recorded in birds. The common uich is very similarly coloured. It is possible mimetic in the Batesian sense of the word, if inofensive, profits by its likeness to the arningly coloured Ictonyx. But, on the inay itself be a protected form since subcommonly found in species of the weasel ase the two species probably furnish an an mimicry. In South America there is resemblance between the little bush dog uiana and Brazil and the large weasel-like intries-the tayra (Galera barbora). The cck beneath and on the legs, and not unlable quantity of greyish hair on the head. vell as in size and shortness of leg, the dog I since there are good reasons for believing ed alike by ferocity and stink-glands, it is og, of unusual coloration and form for the n the attacks of pumas, jaguars and ocelots hav species inhabiting Arrica and Asia closely Some cuckoos are singular for their habit Uler birds to lay their eggs in, so that the foster-parents: and it has been suggested keness exhibited to the hawk is to enable o frighten the small birds away from thelt pursuit of him, while the hen bird quietly disposes of her egg. The fact that both mble the hawk does not necessarily prove in to be false; but if it be true that the re duped by the similarity to the bird of ie cuckoos themselves escape molestation count of their resemblance to the sparrowof this group, the black cuckoo of India black drongo-shrike (Dtcrurus ater), the two species being very close. The drongo bird which will not tolerate a strange bird or its nest, yet on account of its resemblance suck0o is enabled, it has been claimed, to of the drongo, which mistakes the cuckoo In this case also both sexes of the cuckoo reas according to the theory it would be rd alone to do so. This suggests that the acious drongo may be beneficial in protecto from encmies.
wever, of Guy Marshall on the inedibility that the resemblance between cuckoos and and cuckoos and drongos on the other may -r explanation in full agrement with the pounded by Bates. He found that a South is (Buchanga) assimilas) was rejected after cat it by a hungry mongoose (Herpestes starved for purposes of the experiment. Hack and is, he bellieves, warningly coloured. refused to eat a kestrel (Cerchneis rupico. ice subbusteo)., although it devoured certain
ocher biods that were tiven to it, It is clearly pamible, therefore. that cuckoos which mimic drongos and hawks may be protected from thooe enemics which find these birda distasteful.
One of the most perfect cases of mimicry in birds is presented by a Madayascar thrush or babbler (Tylas edmards), which resembles feather for feather a shrike (Xenopyostris polleni), from the same island. The Tylas has departed from the normal coloration of its group to take on that of the shrike, a comparatively powerful and pugnacious bird. Analogous cases are supplied by the mimicty that exists between some of the orioles (Mameta) and the friar-birds (Philemon or Troprdorkynchass) of the Austro-Malayan Islands. The friar-birds are noisy and pugnacious species of the group of honeycaters, and mob hawks and ather birds of prey, which leave them unmolested. The general style of coloration of orioles is gaudy yellow and black, rendering them invisible in sunlit foliage, and quite different from the more sombre hues of the frar-birds; but in the islands of Bourou, Timor and Ceram the orioles have not only assumed the tints of friar-birds in general, but in each of the islands mamed a species of oriole has acguired the little peculiarities in colour of plumage possessed by the friar-bird of the same locality. There seem to be no reasons for doubting that these are cases of genuine protective mimicry.
Appayently the only instances of mimicry known amongst reptiles occur amongst snakes; and in all the cases quoted by Wallace harmless snakes mimic venomous species. In tropical America the genus Elaps, which is both poisonous and warningly coloured. is a model for several innocuous snakes. In Guatemala Elops fulvus is mimicked by Pluocerus equalis; in Mexico Elaps coralinus by Homalocranium semscinctum, and in Brazil, Elaps Lemniscatus by Oxyrhopus trigeminus. In South Africa the harmiess egg-eating suake (Dasypeltis scaber) is very like the Cape adder (Bitis atropos); and in Ceylon the harmless Colubrine Lycodon aulicus is alleged to mimic Bungarus ceylonicus, an ally of the deadly krait of India. Considering, however, the numbers of venomous and innocuous snakes that occur in most tropical countries, it might be supposed that mimicry in this order of reptiks would be of commoner occurrence than appears to be the case. It must be remembered, however, that apart from size and colour all snakes resemble each other in a general way in their form and actions. They present a strong general way in their form and actions. They prosent a strong animals with exception of some lizards and possibly Caecilians amongst the Amphibia. So close indeed is the similarity that many monkeys, apes and human beings have an apparently instinctive fear of all snakes and do not discriminate between poisonous and non-poisonous forms. Hence it may be that innocuous snakes are in many instances sufficiently protected by their likeness in shape to poisonous species that close and exact reaemblance in colour to particular species is superfluous

As a possible instance of mimicry in fistes, A. T. Masterman recalls the fact that two species of weever (Trachinus draco and T. vipera), have the same habitat in British waters as certain species of soles (e.g. Solea vulgaris). The weevers are poisonous and the venom is concentrated principally in the six spines of the first dorsal fin. These spines are sharp and connected by a black membrane which projects, when the fish is disturbed, as a danger singal, it is believed, above the surface of the sand in which the fishes lie hid awaiting prey. For protective purposes soles, which are edible, also lie buried in or on the sand which they match in colour, with the exception of the right or upper pectoral fin which has a large black patch. When disturbed the soles raise this black fin and, as a rule, hold it rigid so that it becomes a very conspicuous object. If the view that the sole is protected by the blackness of the pectoral an resembling the blackness of the dorsal fin of the weever, be correct, these fishes furnish an instance of Batesian mimicry. Furthermore, there is a common littoral Gsh in the Mediterrancan (Uranoscopus scaber), beionging to the same family as Trachinus, exhibiting the same habits and living on the same ground, which also has a jet black erectile dorsal Gn , and is believed to be poisonous. It is probable that the resemblance between Uranoscopus and Trachinms with respect to the colour of the dorsal in is mutually beneficial to the two fishes. If 90 , the likeness must be regarded as an instance of Malktian mimicry.

It is amongst Arthropods, however-and especially amongst insecto-that mimicry, both Batesian and Mollerian, occurs in greatest profusion and perfection.

In insects of the order Orthoptera, departure from the normal in form and colour, carrying with it similarity to other living things, usually takes the line of protective resemblance to parts of plants. This is well exemplified by the leaf-insects (P hylifm) and stickinsects (Bactra), where the likeness to the models after which they are named is procryptic; and also by vatious species of tropical Mantidae which resemble flowers for the purpose of alluring insects within striking distance and perhaps also for concealing their rdentity from enemies. Some cases of genuine mimicry, however, are known in the order. Pernape the best is that of the Sudancse Locustid (M yrmecophane fallax), which is atriking y ant-like. The head is large, the neck slender, the antennae short and the legs longish, and the appearance of the long stalk-like waist of the ant is produced by a patch of whitish hair on each side of the forepart of the abdomen which has the effect of cutting away the parts of
the regmeats so covered, leaving a parrow dark-coloured median area to represent the waist. This at least is the method of disguliee suggested by examination of the dried insect; but representatives of the same or an allied species found in Mashonaland were observed in the living state to be green with the antike parts represented in black pigment. These parts were quite conspicuous against the green of the plants frequented by the insects, wherever the green portions were rendered iavisible by the same background. Antmindicry has also been recorded in the case of the larva of one of the Indian species of Mantidae. Again, several species of this order have become profoundly modified in form in imitation of inedible beetles In the Philippines, a cricket (Scapastus packyrkymelhoides). has taken on the shape and coloration of a apecies of Apocyrtass, a hard and inodible weevil (Curculionidae); and Phoraspis, 2 kind of grasshopper similarly resembles ladybirds (Coccincllidoe). A species of beetle (Caria dilatala) of this family in Borneo is mimicked by a species of a genus allied to Gam marotellix not only in shape and coloration but also in the habit of remaining still when disturbed. In the same island a species of Gryllacris mimica Pheropsophus aqualus, a " Bombardier " beetle which ejects a puff of volatile formic acid when attacked; and Condylodera tricondyloides mimics different species of tiger-bectles (Cucindelidae) at different stages of its growth. Finally the larva of one of the Bornean Mantidac, which is a foral simulator in its pupal and adult stages, cosely resembles in its black and red coloration the larva of the stinking and warningly coloured bug Eulyes amoena.
Comparatively few cases of mimicry in the Neuroptera have been observed. There are records, however, of species of Mantispa mimicking the wasp Polistes in North America and Borneo and Belonogasier in South Africa; and other species of the genus imitate parasitic hymenoptera of the genera Bracon and Mesostenus.
Coleoptera (beetles) sul ply instances of mimicry of ants, waspe and Ichneumonids, and su me defenceless forms of this order mimic others that are protected. A good illustration of wasp-mimicry is furnished by a large heteromerous beetle (Coloborhombus fasciatipennis) from Borneo which is remarkably like a large wasp (Myg^{2} nimia aviculus) from the enme island. The front wings of the wasp have a conspicuous white patch near the tip and a patch similar in size and colour is present on the wings of the beetle, which, unlike the majority of beetles, habitually keeps its wings extended, and since the elytra are exceptionally short the wings are not covered by them when folded. The resemblance also extends to the general form of the body and to the length and thickness of the wings and antennae. The elytra are equally reduced, and apparently for the same purpose, in an Australian Longicom beetle (Esihesis ferruyineus), which, like 90 many wasp-like Hymenoptera, has the body banded red and black. This beetle probably mimics the Australian hornet (Abispa australis). In the European Longicorn (Clytus arictis), on the other hand, the elytra are of normal length and are banded with yellow stripes. The beetle, moreover, is of slender build and all its actions are suggestively wasp-like. This may, however, be an instance of Mallerian rather than of Batesian mimicry, the beetle being itself inedible; for Shelford has stated his conviction that the Bomean represcntatives of the sub-Family (Clytinae), to which Cl:us ariefis belongs, are all ighly distasteful and are warningly coloured, as are members of this sub-fanily from other parts of the world.

In the Philippine Islands several species of Longicorns of the genus Doliops mimic hard inedible neevils (Curculionidae) of the genus Pcchythynchus. The antennac of these weevils are short and end in a knob; those of the Longioms are very much langer, but the wr cvil-fike look is produced by the presence of a knob-like swelling uFn the third joint, the terminal portion of the antenna being so extremely fine as to be almasi' invisible. Similir modification of the antennac in the Longicorn Estigmenida pariabrlis brings about the resemblance between this heetle and a beetle, Estigmena chinemsis, one of the Phytopherst of the family Hispidae. Numerous instances of mimicry iat inis order of insects have recently been recorded from Bornec by R. W. C. Shelford, a large number of them being in all probability Mullerian.

Instances of ant-mimicry, unique in the method employed to bring about the resemblance, are supplied by some insects of the Homopterous group of the Rhynchota, belonging to the family Membracidae. In one of these (Heteronotus trinodosus), the dorsal an: of the forcrart of the thorax is developed into a plate which projects backwards over the body of the insect, which retains its normal form, and conceals all but the head, wings and legs. This shield if shaped in such a manner as to resemble clevely the body of an ant, the median portion of the shield being de ply constricted in imitation of the waist and the terminal portion sal>globular like the abdomen of the ant. This insect comes from Central America. Still more curious is the mumicry of another of th -se insects from Venczuela which is found in company with a leaf-cutting ant (Oecodona cephalotes) of that country. When pursuing their operations of leaf-storage. these ants present the appearance of a crawling crowd of leaf-particles, fragments of leaves being carried by the insects in such a way as to conceal to a great exient the insect underneath, of which little more than the dark coloured legs project beyond the burden. The ammature form of the above-rnentioned spocies of Membrecidae mimics both ant
and leal-perticte. The legie and lower part of the body are dark coloured, but the dormal curface of the thorak and abdomen is coloured green and is raised no ats to form a crest with jagged edges exactly reppoducing the irregular marein of a fragment of leal cut out by the mandiblee of the ant. In Bomeo the Homopteron Issus bruchorder mimics a species of Curculionid beete of the genus Akides.

In the Hemipacrous group of the Rhynchota ant-mimicry is illustrated by the larva of a British species of Reduviidae (Nabas lateroentis) in which the forepart of the abdomen is fumished on each side with a patch of white hairs leaving a central narrow dark portion in imitation of the waist of the ant; and also by an East Artican species (Myrmophasta mora) which in its general form exhibits a close resemblance to an ant (Polyrrhacys gagates) which occurs in the same neighbourhood. Anotber instance in this group is supplied by a Borncan species of Reduviidae which mimics a species of the genus Bracon, one of the parasitic Hymenoptera.

Typical dipterous insects (flies) cosely resemble in general form aculeate Hymenoptera belonging to the families of bees and wasps The changes in colour and structnre required to complete the resem. blance to particular species are coniparatively slight and much less complicated than those needed to produce a likeness to other progected Insects. Hence we find that the majority of flies that mimic insects of other orders have bees or wasps for their models. Many of the Syrphidae are banded black and yellow and present a general resemblance to wasps, especituly when they alight, the pesemblance being enhanced by a twitchi a action of the abdomen imitating the 2 similar action so lamiliar in species of stinging hymenoptera. These fies are characterized by a pertibis met hod of fight. They commonly hang poised in the air, then sart with lightning swiftness to a nother spot and poise themsclves ag ins. This habie, the origin of the name "hover-Ales," is probably cemanted with their minnetic coloration. If they licw like ordinary flies their resemblance to Hymenoptera mould be obscured by the rapility of their fight and they might be caught on the wing by firscctivorous birds or other insects; but when poised they display their coloration. When the latter is lost during fight, the rapicity of their movement defies pursuit. The particular likeness to a honcy-bee presented by one member of this family, the drone-f? (Eristalis tenax), has been already referred to. But the likenes, probably goes deeper than superficial resemblance that appeals to the eye: for spiders which distinguish Alies from bees by touch and not by sight, treat drone-fics after touching them, not in the fearless way they evince towards blucbottles (Celliphora), but in the cautious manner they display towards bees and wasps, watily refrainitg from comins to close quarters until their prey is securely enswathed in sik. Tluis forcibly suggests that the drone fly mimics a honey-bee not only in appearance but also in the feel of its hairs or the nature of its buzz. Other fies of the genus Valucella, larger and heavier in build than Eristalis, resemble humble-bees in colour and form, and it was formerly supposed that the purpose of this similarity was to enable the flies to enter with impunity the nests of the humble-bees and to lay their eggs amongst those of the latter insectis. But it has been ascertasned that the species of Volucelle which behave in this manner, also visit for a like purpose the nests of wasps, which they do not resemble. Hence it is prohable that this case of mimicry is purely of a protective and not of an aggressive naturo and sorves to save the fies from destruction by insectivorous enemies. The same explanation no doubt applies to the mimicry, both in Bornco and South Africa, of hairy bees of the family Xylocopidae by Asilid elies of the genus Hyperechia, and also to other cases of mimiery of Hymenoptrfa as well as of incdible beetles of the family Lycidae by Diptera. Numernus other cases of mimicry between Diptera and Hymenoptera might be cited.

The Lepidoptera furnish more instances of mimicry, both Batesian and Mullerian, than any other order of insects. In the majority of cases both model and mimic belong alike to the Lepidoptera, and it is often uncertain whether both are inedible (Müllerian mimicry) or whether inedibility is the attribute only of the modet (Batesian mimicry). A large number of cases that were
lormerly regarded as belonging to the latter category are now suspected of belonging rather to the former. Sometimes Lepir doptera minic protected members of other orders of insects-sueb as Colcoptera, Hymenoptera and Hemiptera; but perhaps the most singular illustrations of the phenomenon known in the order are exemplified by the larvae of the hank-noth Chacrocampa, which imitate the beads of snakes. Professor Poulton lang ago suggested. and supported the suggestion by experimental evidence on a lizard. that the lartae of two British species, C. elpenor and C. porcellus are protected by the rescmblanoe to the heads of snakes presented hy the anterior extremities of their bodies which are ornamented Fith large eye-like spots. When the larvae are disturbed the similarity is produced vith startling suddenness by the telescnpic contraction of the anterior segments in such a manoer as to suggest a triangular. pointed head with two large dorsal eyes Subsequent obscrvers (A. Wcismann, Lady Verney) have shown by experimenting upon birds that this ruggestion is correct; and Guy Marahall found that baboons which are afraid of sonkes are also asraid of the make-tike hrva of the. South Arican Characampa asiris
Finafly Shelford states that the anterior end of a Bornean species
(C. mrodon) onfers a striting and decilled resethblance to the buthe of a snake (Dexdrophis picta).

Instances of ant-mimicry in this order are sometimes confined to the larval stage. The early larval stage of the "Lobster Moth". (Sla wropus fagi) for example, presents a general resemblance. due to a combination of shape, colour, attitude and movements, to black ants, the swollen head and the caudal disk with its two teptacles representlig respectively the abdomen and antenna bearing thead of the model. A parallel case of mimicry exists at Singapore be. tween the larva of a Noctuid moth and the common red tree-ant (Oecoptylla smarapdina). In this case also the porterior' end of the larva represents the anterior ead of the ant. Another instance of mimicry affecting the larval form is supplied by the moth Endromis serscolor, the caterpiilars of which resemble the inedible larvae of saw-flics. The resemblance that certaln moths-e.g. Trochinium apiforme, crabromiforme-present to bees and wasps is effected in the main by the loss of the scales from the wings, leavifig these organs transparent. It is important to note that the scales are present when the moths first emerge from the pupa-case, but are loosely attached and lall off with the first light.
Or the multitudes of cases of mimicry between differcat apecies of Lepidoptera, a few only can be selected for description. These cases, however, have a pecuftar interest and importance for thes trave been studied in fuller detail than any others and the discovery of a particular instance in South America first suggested to Bates the theoretical explanation of this bionomical phenomenon. On the Amazons and in other parts of South America there are butterfies of the group thominae which are distasteful and have all the characters of specially protected species, being conspicuously coloured, slaw of flight, carefess of exposure and abundant in incividuals. The wings are transparent and are black-bordered and black-barred. the anterior wing having two black bars and the posterior one. This type of colouring is also lound in genera of quite distinct sub-famities of butterflics, namely in Danainac and Pierinac, as well as in some diurnal moths, all of which occur in the same district as the Ithomiinac. The following species may be cited as instances of this type of pattern: Jethona confusa, Thyridia psidii, Eulresis imilabix and Dirgenne dero. (Ithominae); Ilura lione and I, phonarele (Danainae): Dismor phia orise (Pierinac); Anlhomyza buckleyi (mnth of the family Pericopidae) and Casinia linus (moth of the Gamily Castniidae). So alike in form, colour and mode of Dight are those Lepidaptera that when on the wing it is almost or quite impossible to distinguish one from the other, and the resemblance between. members belonging to diferent sub-fomilies canuot be assigned to affinity. Microscopical examination of the wings, rarcover, has, shown that the transparency of the wings, cammon 10 all, bas been acquired by a different modification of the scales in each of the genera exhibiting the Ithomiine cype of coloration. That the Danaine and lthomine species are distasteful is knova. Ihura, for example, belonging to the former, has prowusible scent-emitting processes at the cud of the abdomen: and Thyridia has scent-pro ducing tufts of hair on the edge of the posterior-wing. Bites offered. no satisfactory explanation of the resemblance between thesef two genera and others of the same protected sub-families; bur be. did not hesitate to ascribe the rescrmblance to them presented by the Pierine, Dismorphia (Leptalis) or ise, ta mimicry, believing Dismor phia to be unprotected and noting that it departed widely in the matter of coloration from typical members of the sub-family to which. it belongs. Although mimicry in the Lepidaptera has been carricd to a greater extreme in South America than in any other country of the world, remarkable instances of it have takep place in the Ethiopian and Oriental regions. A classical and hishly coraz Pl. x case first investigated and explained by R. Trimien ie that of sented by scveral sub-species or geographical races. The most primitive of these is aminorii from Abyssinia, which is non-mimetic, and has the two sexes nearly alike. The males of the other subspecies ate much like the malcs of antimoris; but the females are widely different and mimic various species of inedible butterflies belonging to the protected groups of the Danainae and Acracinae. Onc of these sub-species, merope, which ranges from the west coast to Victoria Nyabza, is polymorphic and occurs under, three formes. namely (a) hippocoon, which mimics the Danaine Amawris, ziqpius; (b) trophonius, which mimics the Danaine Liminas chyyuippus: (6) planemoides, which naimics the Acraciлe Plonema paggei. Oddly' cnough one or more of these forms may occur in other sub-apeciass. For example, the sub-species cchru, which, oceur, in sputh and south: cast Alrica not only has the lorm cenca minicking iwo Danaines; Amauris echeria and A. allimarulata, but also the hippocpon form which resembles a local race of Amauris niarius. known as domins casur. The sub-species polytrophas frona the Kikuyu Eucarpanente also has the planemoides and cenect forms and another form irimesi. which is intermediate betwcen the unmodified fearale of antinorion aod hippocopn, and tike the latter is mimetic of A mauris mavius dominicanus. Fimally the sub-species tibullus from the cast coast! has the rener-form, the trimeniform and probably the planernoideri form. The study of this intricate case is not yer completed and it is at present unknown whether it is an inctance of Batesian ot Mülerian mimicry. Special atcencion may be drawn to two phesor mena connected with it, both of not uncommon accurceper in
nipmetic Lepidpptera. The firse is tho opcurpence of mimiory only in the female wex. The reason for this is to be found in the greater need of protection of the female which is slower in fighte than tho malo and is expoeced to special danget of a track. when rosting to ley ber eqgs. The second noteworth phemometoin is the atimit cry of more than one protected specios by members of a single specio. This is a not uncommon occurrence. and in the case of Batesian timimicry the explanation is probably this. When an edible species gaing protect is a like thood of its fncreating in mumbers until it equals or curpasers its moget in this refpect. Were this to take place the purpose of the mmicry pould be abortive, because enemies would probably not tofrain frden shaughter if even every alternate capture proved paluthtitie. It im duantageons therefore that the numbers of the mimetit specio should be fever then thome of the mogiel ; and ahis appears to be afpicved in some cases by the individ uala of the nimetic speties divit thig themselves between two or more models
Spiders furnit numerous instances of mimicry." Though simple ia kind, many ofthese are as perifect iltustrations of the phenotmenon as any found in the animal kingdom:
Ampongst the orb weavers of the family Arsyopidae there ate species belonging to the genera Cyclosa and Cymophora which ciosely resemble small snaithtike gastropods as they cling to the underside of leaves'with their kegs drawn up. Other mombers of the same family-fike Araneus coccinella. and Parathectoma morneowiimitate beetles of the family Coccimelididy which, ano knowna to be distatefful: and certain genera of the family Salticidae (Homolatus and Rhanis) clowely rescmble sraall hard-shelled beetles.
The most perfect cases, however, ate exhibited by those species Hhich qmitare ants. The structurat modifications required to con
 chapacter, than thom that merve the pame purpose in an incect. All ingectu have the same regional division of the body into head, thorax and abdomen, the same number of tegs, a pair of amtennae and a *egmented abdomen. Spiders on the contrary have no antennae. mo separate" "head,": an unsegmented abdomen and an additional pairad hapt In chat. mnjority of ant-imitating spiders the forepars of the eqphalothorax in constricted on each side to resemble the nock presence of a stripe of white hairs which has the optical effect of cutting out an extra piece of integument, oxactly as oocurs 热 analomons, cases in inmects. Narrowing of the posterior portions of the spider's eephalothorax and sometimes of the anterior end of the abdomen reproduces the slender waist of the ant, and frequently transverse bands of hairs represent the sementation of this region in the insect. The tegs become slender, tind those of the frot or of the setond pairs ere held up andicarriod in front of the bead to simulate the attenpee of the ant. Added to this the spiders commonly copy to the fife the mode of progression and the rentless activities of their models.
The likeness presented paries considerably in tegree fiom a generel
 (PPockhamia picsuts) of North America, (0a cloposimilarity to particular species. To this categnry belong Myrmarachme plataleqiets. one of the Salticidae, and $4 m y$ ciaca Porticeps, one of the Thomisidae which in India imitate and tive with the vicious little red ant
 the ped ane blact ladian unt (Sima rufomieq); and the Sout American species of Clubionidac, e.e. Myrmecium nierrm which is an accurate copy of the large black ant (Packycondyla vitiosa).
Somet mes \% Winty the males of a spociob of splder. blat maimic
 Two South American epecien of the fantily Axsyopidae, in which the females are protected by strong spincerruarure The rates are without these protectivo spines and are exposed $t=$ special dangers ds they wandet in search of the webs of the femiates. In'Sobth Africa too the makes of a epecies of Eresidat (Stoothrra) reembit zod aro doond in company with a large ant (Camponotus funoopitamety), yhich is common on the veld. Like the males of Illeboata, those of Seoshyra wander about by day in search of the females which live concealed in burrows. Many other spiders belonging to the Therididae and Zinyphildae atso mimic anta; bnt it is needeso to enumarare them, thy mose zerfiect examples: of this phempomenos bying foned in the Samilies Clubionidae and Salicidae.

Ant-mimicking spidens bave been seen now and again to devour their modets It has therefore been suggested by some and taken for granteef by ochers that the resemblance comes under the category
 tutance into tegasdingsthe spifiders as membery of their own species That the ants do not destroy them is certain: but that they are geceived by the superficial similarity of the spiders to themselves It highly improbable, for these insects are capeble of distidguishing
 edony. Moneovor, the aboveraugecmed explanation-dpes mot epincide with the oxplanation of the fikeness to ants shown by cerraim insects such as Myrecopkana fallax, the ant and leaf-liive Meombracd Homopteron and the larvac of the liobster-moth (Slasro-

 explanation lics in all probability in the immunity from the attacks
of most ingeotivorout enemios that ants enjay, and espocially from predaceous wasps of the family Pompilidae which annually destroy thousands upon thousands of spiders to leed their larvae; and since mope than ope obverver has testified to the fear and abhorrence these wasps bave of ants, it is meedless to look farther for che benefit ont-mimicry if to spiders. These wasps, moreover, also provision their munserion with caterpillars, passchoppers and other insects. Honce it may be inferned that the insects which imitate ants profit in the same: way that spiders do from this form of mimicry.

In the abovecited historical instarice of mimicry amongst some South American Lepidoptera which formed the foundation of Bater' theary, pecies of butterfies, belonging to the Ithomiine genus Jiure and tho Danaine geans Thyridia, both unpalatable forms eramble esch ether. This it a vory simple cate of the postession of the satme type of colotation by two of more protected insects inlabiting the same district. The significance of this phemorucnon, as alroady stated, was first explainod by Fritz Muller; but although the rerm "Mallerian mimicry" has been assigned to this and similar instances, they are not strictly speaking cases of mimiery at all but of warning coloration. Poisonous or noxious animals usually have some special advertising, attributc, sometimes the display of conepicuous colotation, as in the skunk: wometimes the emission of sound as in the rattlesnake; sometimes a combination of the two min the common porcupine and the large black scorpions of Africa atd India. Such claracters have beentermed by l'rolessor Poulton "aposematic." Neither of the above-mentioned animals is mimicked; but where two or more noxious a dimals, inhabiring the esme district, resmble each other, both beng aposematically or warningly coloured, the likeness is said to be "synaposematic." Synaposemasy is Mullerian minicry. Finally, the likeness of an edible species to a warningly coloured inedible one in the same lorality is termed "pseudaposematic." in allusion to the pretemtiousne si or lalsity of the warning signal. Pscudaposemasy is Batesian minicry.

An important phenomenon cormeoted wieh insect zaimicry is the convertence of several specics in the same area towards a common type of coloricin and ehape, exhibited hy one or more than one protected forin The resemblance shows various grades of complete. ness; and the cinvergent mimics may be themsctves naxious, or edible and inaocuous. In other words the inscets entering into the combinat ian nay furnish instances of Batcerian and of Malleriat mimicry. Vu 7 sommonly diferent species of aculeate Hymonoptera, inhabitim: Ghe same distriet, form the cemtres of mimetic str racthon for insect os various opders, to that a comsideribile percentage of the insect yam na can be arranged in groups according to the pattern of th, farticular'modet the species have copied Good illustrations of this law have been discovered by Guy Marshall in Mastonaland. He found on the same day on a bud of vetch, specimens of black ants (Campenolus sericens asd C. cosmicirs), black ant-like Hemipterous insects (Mogageters atratus) and the antBike Orthnptergn ($\mathrm{H}_{\text {y }}$ ymecophana fallax) (cf. suipra). In this fittle coterie the ants are beyond question the models towands which the bug and the grasshopper have converged in appoarance. Since
many of the insecs of the order Hemiptera are distasteful, the mimicry of the bug (Megapetus) is in this case probably Mullerian or gynaposematic t the grasshopper (Myymecophana), on the other hand, is probably edible and the mimicry is Batesian or pseadaposeratic This is a simple case consisting of a stmall number of component epries. Others are more complex, numerous species being inwolved. In Mashonaland, for instance, a lange number of genera and species of Hymenoptera belonging to the Apidac. Eumenidae, Sphegidae, Pompilidae, Scollidae, T'phitdac and Mutilidae, resemble, ench other in having black loodies and dark blue wings. The same ety le of colomation is found in Coleoptera of the families Cetonidae gid Cantharidac; in Diptera of the families Asilidac, Bombylidae, Tabanidae and Tachinidae; in Hemiptera of the family Reduvidae and in Lepidoptera of the family Zygaenidae. In this instanee the H: nessoptera, of which the coloration is synaposematic, form torether a composite model which the other insects have mimieked. Of the latter, the Lepidoptcron (Tascia homochroo) is distasteful. as also are the beetles of the family Cantharidae (e.g Lyta moesta). Probably the bugs too (e.g. Marpactor tristis) are protected. The mimicry of these insects therefore is synaposematic: but some, at all evars, of the flies like the Bombylid Exoprosopa umbrosa, probably form pseuda posematic clements in the group. Into another category Hy menopecra enter not as models but as mimics, the models being Faidible Malacodermatons beetes mosely belonging to the genus Lyins and characterized by omage coloration set off by a large black patch upon the posterior end of the clyera and a smaller black spost up the thorax. Towards this Lecoid centre have comverged
Colloptera (beetles) of the sub-order Lamellicornia (Copridae). Ph vtophaga: Heteromera (Cantharidae) and longicornia: Hemiptera of the lamilles Pyrrhocoridae, Lygaeidac and Redusidae: Lepidoptofn of the famities Arctidae and Zygaenidae; Diptera of the lamily Asilidae; and lastly Hymenopuera of the families Braconidae, Pompil dae, Crahronidae and Eumenidae, With the exception of the Asilid fly and perhaps some of the Longicorn ant Phytophagous beiles, which are probabiy protected Batesian mimics, all the other Betcies constituting the above-mentioned assemblage are, it is
cited above, with the exception of the first, the synaposemati mimics are vastly in excess of the pseudaposematic; this appear to be the gencral rule elsewhere. Frequently the groups are composel 1 solely of protected species, so far as is at present known; and some. times solely, in all probability, of unprotected species with exceptin of course of the model. An example of the latter occurs in Singaport where the vicjous red spinningant (Oecophyla smaragdina) it mimicked by the larva of a Noctusd moth a and by spiders belonging t, two distinct families, namely. Sallicus platabeoides (Salticidac) ani Amyciaed forliceps (Thomisidae), there being no reason to suppise that either the moth larva or the spiders are protected forms, Mimets aggregations of species similar to those mentioned above have beea found in other countries; but the instances cited are sufficient 1 . show how widespread are the influences of mimicry and how prim foundly it has modified the insect fauna of various parts of the worl.

Bibliography.-H. W. Bates, Trans. Linn. Soc. (Lond., 1862 : id. The Naturalist on the Amazons (1879): T. Belt, The Naturalist t Nicaragua (2nd ed. 1888): F. A. Dixey, Rep. Brit. A ssoc. (1894) p. 692 : id. Tr. Ent. Soc. (London. 1894), p. 249: id., op. cif. (1896); p. 65 ; id., op, cit. (1897), p. 317, also Proc. Ent. Soc. (Lond. 1897). pp. xx. xxxii. and xxoiv,-xdvil. ; F. Finn. Journ. Asiatic Soc. Bengat, lxiv. (1895) ; lxv. (1896) and lxvi. (1897); E. Haase. Bibliotheca zoologic., (t891-1893. Stutegart; English trans. by C. M. Child, 1896); G.A.K. Marshall, Trans. Ent. Soc. (London, 1goz), pp. 287-584 (annotated by E. B. Poulton): A. T. Masterman, Journ. Linn. Soc., xxx., 239-2.44 (1908): R. Meldola, Proc. Ens. Soc. London (1877), p. 12 : id. Ann. Mag. Nat. Hist. (5)x. (1882); C. Lloyd Morgan, Habil and Instimcl (London. 1896): id. Animal Behaviour, pp. 164 -165 (London, 1900); F. Müller, Kosmos (May 1879), p. 100 : (trans.) Proc. Enf. Soc.Londom (1879), xx.: A. Newton, A Diclionary of Birds, p. 572-575 (London, 1893-1896); E. G. Peckham, Occasional Pop. Nal. Hist. Soc. Wisconsin, i. (I889); R. I. Pocock, Journ. Linn. Soc. Zool., pp. 256-270 (1909) ; id. Proc. Zool. Soc. London, 944-959 (1909); E. B. Poulton, Proc. Zool. Soc. London (1887), 191-274: id. The Colours of Animals, 216-244 (1890); id. " Natural Selection the Cause of Mimetic Resemblance and Com. mon Warning Colour," Journ. Linn. Soc. Zooh, xxvi. (1898) ; revised and amplified in Essays on Evolution, pp. 220-270 (1908) ; id. "Mimicry and Natural Selection;" Verhandl. d. V. internat. zool. Congr. Berlin (Jena, 1902); revised in Essays on Evolution, 271-292; id. "The Place of Mimicry in a Scheme of Defensive Coloration," Essays on Evolusions, Pp. 293-382 (1908); W. P. Pycraft, The Story of Bird Life, pp. 32-23 ("Mimicry"), (1899): M. Roclofe. C.R. Soc. Ent. Bclg. (2), No. 59 (1878); R. Shelford, Proc. Zool. Soc: (1902), ii, part 2, 230-284; R. Trimen, Trans. Linn。Soc., xxvi. p. 497 (1870): A. R. Wallace, Proc. Zool. Soc. (1863), pp. 26-28; id. Trans. Linn. Soc., xrv. pp. 19-23 (1866): id. The Malay Archipelago, ii. (London, 1869): id. ContriButions to the Theary of Natural Selection, pp. 103-106 (London, 1875); id. Darwinism, pp. 239-265 (London. 1889); A. Weismann, The Enolu sion Theory, Eng. trans. (London, 1904).
(R.1. P.)

MIMNERMUS of Colophon, Greek elegiac poet, flourished about $630-600$ b.c. His life fell in the troubled time when the Ionic cities of Asia Minor were struggling to maintain themselve against the rising power of the Lydian kings. One of the extant fragments of his poems refers to this struggle, and contrasts the present effeminacy of his countrymen with the bravery of those who had once defeated the Lydian king Gyges. But his most important poems were a set of elegies addressed to a flut eplayer named Nanno, collected in two books called after her name. Mimnermus was the first to make the elegiac verse the vehicle for love-poetry. He set his own poems to the music of the flute, and the poet Hipponax says that he used the melancholy vópos xpaoins, "the fig-branch strain," said to be a peculiar melody, to the accompaniment of which two human purificatory victims were led out of Athens to be sacrificed during the festival of Thargelia (Hesychius, s.v.).
Edition of fragments in T. Bergk, Poetoe lyrici Graeci; see als, G. Vanzolini, Mimnermo (1883), a study of the poet, with notes anil a metrical version of the fragments.

MIMOSA (so named from the movements of the leaves in many species which " mimic " animal sensibility), a genus of the natural order Leguminosae, which gives its name to the large sub-order Mimoscae (characterized by usually small regular flowers with valvate corolla), to which belongs also the nearly allied genus Acacia. They are distributed throughout almost all tropical and subtropical regions, the acacias preponderating in Australia and the true mimosas in America. The former are of considcrable importance as sources of timber, gum and tannin, but the latter are of much less economic value, though 4 few, like the talh (M. ferpuginea) of Arabia and Central Africa, are important trees. Most are herbs or undershrubs, but some South Amertcen specties are tall woody chmbers. They are ofter prictly

The roots of some Braulian species are polsonouts, and that of M. pudico, has irritating properties. The mimosas, however, owe their interest and their extensive cultivation, partly to the beauty of their usually bipinnate foliage, but still more to the remarkahle development in some species of the sleep movements manifested to some extent by most of the pinnate Leguminosae, as well as many other (especially seedling) plants. In the so-called "sensitive plants" these movements not only take place under the influence of light and darkness, but can be easily excited by mechanical and other stimuli. When stimulated-say, at the axis of one of the secondary petioles-the leaflets move upwards on each side until they meet, the movement being propagated centripetally. It may then te communicated to the leafiets of

Branch and leaves of the sensitive plant (Mimose put dica), showing the petiole in its erect state, a_{1} and in its depressed state, b; also the leafiets closed (c), and the leafiets expanded (d): p. pulvinus. the other secondary petioles, which close (the petioles, too, comverging), and thence to the main peliole, which sinks rapidly downwards towards the stem, the bending taking place at the pulvinus (p in figure) or swollen base of the leafstalk. When shakien in any way, the teaves close and droop simultaneously, but if the agitation be continued, they reopeg as if they had become accustomed to the shocks. The common sensitive plant of hothouses is M. pudica, a native of tropical America, but now naturalized in corresponding latitudes of Asia and Africa, but the hardly distinguishable M. sensition and others are also cultivated. Species of the closely allied genus Schrankia are known as sensitive-briar in the southern United States.

MIMOLUS, in botany, a genus (nat. order Scrophulariaceae), of showy, hardy or half-hardy, herbaceous, rarely shrubby plants, natives of the extra-tropical or mouncainous parts of both old and new worlds excepting Europe, hut chiefly American. The plants have opposite, undivided leaves, and axillary, generally solitary flowers with a two-lipped, gaping corolla. The herbaceous species thrive best in damp situations; the shrubby species, of which M. glutinosus (formerly called Diflacws) is best known, are adrpted for pot culture in the greenhouse. M. lulcus, the monkey-flower of gardens, has yellow flowers with two dark marks in the mouth of the corolla; \boldsymbol{M}. Langsderfit, an American species, has become naturalized by river-sides in many parts of Britain.
M. moschatus, musk, a native of north-western America, with small, nearly regular, yellow flowers, diffuse hairy stem and hairy scented leaves, is a well known and favourite perennial for pot culture and outside borders.

IMAA, FRANCISCO ESPOZ Y (1781 1-1836) Spanish guetrillero leader and general, was born at Ydozin in Navarre on the 17 th of June 1781. His father, Juan Esteban Espos y Mina, and his mother Maria Teresa Hundain y Ardaiz, belonged to the class of yeomen. Mina remained working on the small family inheritance till 1808. When Napoleon endeavoured to seize Spain in that year hecolisted in the regiment of Doyle, and then paseed to the guerrilla band commanded by his nephew Xavier Mina. When Xavier was captured by the French on the 21st of March 1810, seven men of the band elected to follow Francisco; and on the ist of April of the same year the Junta of Aragon gave him the command of the guerrilleros of Navarre. His first act was to arrest and shoot at Estella, one Echevarria, who, under pretence of being a patriotic guerrillero, was in fact a brigand. The national government at Cadiz gave him rank, and by the 7th of September 1812, he had been promoted to be commander-inchief in Upper Aragon, and on the left bank of the Ebro. In the interval he claimed that he had fought 143 actions big and little, had been repeatedly wounded with bullet, sword and lance, had taken 13 fortified posts, and 14,000 prisoners, and had never beem
supprised by the Freach. Though some maintain that he was not at his best as a leader in battle, as a strategist he was very succesaful, and be displayed great organizing capacity. The French authorities were compelied to allow him to levy customs dues on all goods imported into Spain, except contraband of war, which be would not allow to pass without fighting. The money thus obtained was used to pay his bands a regular salary. He was able to avoid levying excessive contributions on the country and to maintain disciplize among his men, whom he had brought to a respectabic state of efficiency in 1812 . Mina claimed that he immohilized 26,000 French troops which would but for him have served with Marmont in the Salamanca campaign. In the campaign of 1813 and 1814 he served with distinction under the duke of Wellington. After the restoration of Ferdinand he fell into disfavour. On the 25th and 26th of September he attempted to bring about a rising at Pamplona in favour of the Liberal party, but failed, and went into exile. His political opinions were democratic and radical, and as a yeoman be disliked the hidalgos (nobles). The revolution of 1820 hrought him back, and be served the Liberal party in Galicia, Leon and Catalonia. In the last district he made the only vigorous pesistance to the French intervention in favour of Ferdinand VII. On the ist of November $18 x 3$ he was compelled to capitulate, and the French allowed him to escape to England by sea. In 1830 he took part in an unsuccessful rising against Ferdinand. On the death of the king be was recalled to Spain, and the government of the regent Christina gave him the command against the Carlists in 1835, though tbey feared his Radicalism. By this time, years, exposure and wounds bad undermined his health. He was also opposed to Thomas Zumalacarregui (q.v.), an old officer of his in the War of Independence, and an even greater master of irregular mountain warfare. His health compelled him to resign in April 1835, and his later command in Catalonis was only memorable for the part he took in forcing the regent to grant a constitution in August 1836. He died at Barcelona on the 24th of December 1836 . Mina was a brave and honest man, who would have conducted the war against the French in 1810-12 with humanity if they had anowed him, but as they made a practice of shooting those of his onen whom they took, he was compelled to retaliate. IIe finally forced the French to agree to an exchange of prisoners.

AUThozities.-In 1825 Mina published A Shart Extract from the Life of General Mine, in Spanish and English. in London. Mention is made of him \ln all bistories of the affairs of Spain during the first third of the Igth century. His full Memoirs were published by his widow at Madrid in $1851-1852$.
(D. H.)

MPMARET (from the Arabic mandrat; manar or minar is Arabic for a lighthouse, a tower on which nar, fire, is lit). a lofty, turret peculiar to Mabommedan architecture. The form is derived from that of the Pharos, the great lighthouse of Alexanitria, in the top storey of wbich the Mahommedan conquerors In the $7^{\text {th }}$ century placed a small praying chamber. The lighthouse form is perpetuated in the minarets which are found attached to all Mahommedan mosques, and probably had considerable influence on the evolution of the Christian church tower (see an exhaustive study in Hermann Thiersch, Pharos Amike, Islom wad Occident, 1909). The minaret is always square from the base to the height of the wall of the mosque to which it is attached, and very often octangular above. The upper portion is divided into two or three stages, the wall of the upper storey being slightly set back behind the one below, so as to admit of a narrow balcony, from which the aztn, or call to prayer, is chanted by the monaseir (muewin, moeddin). In order to give greater width to the balcony it is corbelled out with stalactitle vaulting. The balconies are surrounded with stone balustrades, and the upper storeys are richly decorated; the top storey being surmounted with a small hulhous dome. The earliest minaret known is that which was built hy the caliph Walid (A.D. 705) in the mosque of Damascus, the next in date being the minaret of the mosque of Tulun, at Cairo (A.D. 879), with an extemal spiral flight of steps tike the observatory towers in Astyrian architecture. This minaret as also the example of El Hakim (996), is raised on great square towers. The more remarkable of theother Cairene minarets are those of Imam esh-Shafi (1218), Muristan al Kalann (2280),

Fascan (1354), Barkuk (a.D. 1382) and Fsit Bity (a.d. 1468). Of the same type are the two minarets added to the mosque of Damascus in the igth century. In Persin the minarets are generally circular, with a single balcony at the top, corbelled out and covered over. In India, at Ghazni, there are no balconies, and the upper part of the tower tapers upwards; the same is noticeahle at Delhi, where the minaret of Kutab is divided into six storeys with balconies at each level. In the well-known tomb of the Taj Mahal the four minarets are all brilt in white marble, in three storeys with balconies to each storey, and surmounted hy open lanterns. The minarets of Constantimople are very lofty and wire-drawn, but contrast well with the domes of the mosques, which are of tlight elevation as compared with those at Cairo.
MIMAS [MIMOIDIEs] (c. 1790-1860), Greek' scholar, was a native of Macedonia. During the Greck War of Independence he migrated to Paris, where he tried to enlist the sympathies of Europe on behalf of his countrymen and to promote the studs of ancient and modern Greek. But his chief claim to recognition consists in his discovery of two important MSS. (amongst others) in the monastery of Mt Athos during his exploration of the libraries of Turkey and Asia, at the instance of M. Villemain, minister of public instruction in France. One of these contained the last part of a treatise on the Refulation of all Heresies, now generally admitted to be the work of Hippolytus ($q . v$.), the other the greater portion of the Fables of Bahrius.

MINAS GRRAES (i.e. "general mines"), popularly Minas, an inland state of Brazil, bounded N. by Goyaz and Bahia, E. by Bahia, Espirito Santo and Rio de Janeiro, S. hy Rio de Janeiro and Sáo Paulo, and W. hy Saxo Paulo, Matto Grosso and Goyaz. It is very irregular in outhine and covers an area of $221,86 \mathrm{sq} \mathrm{sq} . \mathrm{m}$. upon the great Brazilian plateau. Among the Brazilian states it is fifth in size and first in population-3,184,099 in 1890, and 3,594,471 in 1900.

The surface of Minas Geraes is broken by mountain ranges and deeply eroded rivercourses, the latter forming fertile valleys shut in by partly barren uplands, or campos. The reckless destruction of forests along the watercourses also adds to the barren aspect of the country. The principal mountain ranges are the Serra da Mantiqueira on its soutbern frontier and its N. extension, the S. do Espinhago, which runs parallel to the Serra do Mar, or coast-range, and separates the inland or campo region from a lower forested zone bet ween the two ranges. Mast of the wooded district south of the Mantiqueira belongs to the states of Såo Paulo and Rio de Janeiro, but east of the Espinhaço it belongs to Minas Geraes and extends eastward to the Serra das Aymores, on the frontier of Espirito Santo. This zone has an ahundant rainfall, dense forests and a fertile soil. It is drained by the Doce, Mucury, Jequitinhonha and Pardo, which have their sources on the eastern slopes of the Espinhaço and cut their way through the Aymores to the sea. The tributaries of the Rio Doce cover the slopes of the Serra do Espinhaço for a distance north and south of about 200 m . The southern part of this region is well populated, and is covered with coffee and sugar plantations. On the western frontier a northern extension of the great central chain of Goyaz forms the water-parting between the drainage basins of the Saso Francisco and Tocantins, and is known at different points as the Serra do Paranat, Serra de Szo Domingos and Serra das Divisoes South-east of this chain, between the headwaters of the Paranh and Sio Francisco, are the Serra da Canastra and Serra da Matta da Corde, an irregular chain of moderate elevation running north and south. The highest elevalions in the state, so far as known, are Itatiaya (8898 ft .) in the Serra da Mantiqueira, and Caraç (6414 ft .), near Ouro Preto, in the Serra do Espinhaço. The bydrography of the campo region of Minas Geraes is extremely complicated. The Mantiqueira-Espinhaco chain shuts out the streams flowing directly east to the Achantic, and the boundary ranges on the west shut out the streams that flow into the Tocantins, though their sources are on the actual threshold of the state Belween these two mountain chains the head streams of the Parame and Sto Francisco are intermingled-the one flowing inland and
somuhrard to the greas La Plata cstuary, bee cetier nothtyrasd and eqectward across the arid highlands of Brazil to the Aulantic coast in $10^{\circ} 30^{\prime} \mathrm{S}$. lat. Less than 100 m . from the city of Rio de. Jancire and about 60 mm . icom the coast in the source of the Rio Grande, the larger of the two rivers that form the Parama. It rises near the peak of Itatiaya, on the northern slopes of the Mantiqueisa, and flowt north west and west across the Mimas plateau, repeiving several lange tributaries from the south. North and paralled with its course is a jow watershed, which sepasatea its drainage basim both from that of the Siso Francieco and from that of the Pamahyba, the northorn confluent of the Parank. The latler fines on the western slopes of the Serra da Matea da Corde, and pae of its nonthern tributaries has its source in a "Lnot" of the Serra dos Pyreneos, from which streams flow eastward to the Săo Francisoo and nertbward to the Toctation The centeral and greeler part of the state, however, is included in the draiage tasin of the upper Sao Francisco. Its source is in the Serra da Canestre, and its genetal course acroas the state is porth by east, during which it receives the Partcati, Urucuia, Pardo and Caminhanha from the weat and the Vexde Grande and das Vellas from the east. Part of these rivers ate aayigable for small stenmats, and the Sio Francisco must some day be of great importance in the developmelt of Central Bresil. All these rivers of the Bezzilian platetu are interrupted by iells and rapids. The climate of Minss Geraes is characeerised by high sum tempera. tures and cool nights, the latter often dropping below the freezing point on the higher campoo. The mean annall temperaturt is about 85° in the Sio Francisco valley, 77° on the canapos of the S.E.r, and 70° on the campos of the W. The year is divided into two seasons-wet and dry-the focmer lasting.from November to May. This division is not so clearly marked in the south, especially in the "matte" (forest) regions, where the rainfall sanges from 59 to 65 in . There is much makaria in the wooded districts of the east and on the higher campos, where the daily eatremes of teraperature are great, huag and bronchial disetses ane common. Some of the high plains, however, as at Barbacema, serve as health resorts for the coast districts.

Minas Geraes is a mining state, though the mining industry has lost mach of its importance through the decline in the output of gold and diatnonds. Cold.is widety diffused, and abandoned "washings" all over the state show how geadral the industry was at one time. There were in 1908 five deep mines worked by Dagtish companies and one by a French company. One of these, the Marro Vetho mine, belonging to an Englist company, Is ant onty the deepest gold-mine in existence (over, 2000 ft .), but it has been worked since 1725 , and since 4855 by its present owners. Silver is not mined by itself, but is found in combination with gold. In ygos a rich goldfield was discovered in the northetn part of the state, 5 m . from Montes Claros, in the valley of the vetde Grande River, and attracted large numbers of minens. There are many rich deponits of iron owes in the state, bat they only produce a small quantity of charcoal iron for local cort sumption. . Manganese ore is mined for export, and bismuth is meported to have been disoovered. Mitras Geraes is most widely known for its dimmonds, which are found in widely separaled parts of the state. The largest and nost prodective field is that of Dlamantina (p, x) on the head-waters of the Jequitinhonha Rivot, where diamoteds were discovered about 1725 , and where the ceiebrated "diamond reservation" - an ovad-shaped termitory S leaguea wille by 16 iengues long (Mawte, with Tejuco, now Diemantima, very nearly it the cemtre-was matablished in 8730 Thise mintes bocame crownt peoperty, goldtraining was forbidden, and no one was permatted to enter the meservation without a fictace. The state monopoly was abolished in 1832 , and mining bas sinct been carried on by private enterprise. Jehn Mawe estimakes that the anmual product mas 1000 on during the first twenty yeass, and Cestelatim eatmates the velue of the total outpot down to 1849 at 300,000 ,doo fr. No eximate can be made of the contraband, which mast have beem large. -A great dectine in the owtpra acourred during the lan hat of the toth tentury; but it new fild was discovered. in 1908 int. Abbudia dos Dounados, in the mestern part of ithe istale.

Other valuabte stones, the topet, chryodita, aquaranian amethys and tourraline are found.

Agriculture and graxing have become the main dependence of the population-the former in the lower, forested region of the south-east, where coffee and augar-cane are the principal pwo ducts, and the latterion the higher compor and river valleys, and on the mountain slopes, where hage herds of calle are to be found, and mill, butter and cheese are,produced. The shipping of fresh mill to Rio de Janeiso and butles-making are comparar cively new iadustrics The river valleys of the carapo region are also tultivated to some extent. Among the gencral products are Indian. corn, tohaco, madioca, beam, pork and cotton. Wheat has been produced in sorne localitics, but not on a pasing basis; and experiments have alco been minde wh ten. These is a large variety of fruits, and the cultivation of gapes for winemaking is developing into it profitahle industry.. Railuay commuaication with Minas Geraes includes the felloying linges: the Central do Brazil (formerly known as she Dom Redro IL), whick statta from Rio de Jancime and penetrates nearly to Pirapors (its objective pointh, at the head of mavigation of the Sto Francisco River, wilh branchas into neighbouring dittricts; the Leopoldine, from Btio de Jameino into the forested negion of eastem Minam; the Minas and Rio, from Cruseiro, on the Sano Paulo branch of the Ceatral do Brazi, into aculhern Minas; the Mogyena, from Campiaas, SEo Paula, and runs to Uberaba in westera Minas, and is intended to cross into Goytas; and the Bahia IL Minas, from the port of Caravellas, in southern Bahia, which rups a ahort distance into Minas Gerace; and is planned 10 extend to Philh delphia and beyond. Anothey line from, the port of Victoria Espirito Santo, northwrand to Diamantina, Minas Geraes, was under construction in 1go8. River transport has some lecal value on the upper Sio Francisto and ita larger tributaries, and this will be greally increaped whea the Central do Brazil railway reaghes the head of navigation on that sives

The population of Ninss Gerass is chiefly of Portugnest origin, which has been constantly strengthened by imanigrants from the mot her oountry. A considerable admixture from otheir mationalities has resulted from the influx of mining advencurera; and some Germate colonies have been established in the state The negro population is large, and there is a still larger cosinterat of mixed races. The capital is Bello Horizonte (q.v.), or Cidade de Minas; other important cities and towns are: the lormet capital, Ouro Preto, Barbacena, Diamantina, Bacpendy (pop. 22,817 in 1800), on the head-waters of the Rio. Verde, the ceotre of a rich sebacco-producing district; Curvello (807 r) , narth of Sabart in the Rio des Velhas Valley, the centre of a cotlongrowing district and conton memiactures; Entre Rios (2681), in the coffee district of soun hetest Alinss; Januaria (5888), a rivep port pi the Sta Franctaro la northerra Minos; Juia de Fora; Marianata (47 51), nt episcopal tomn east of Ouno Prete, Mar de Hespanha (18,712), the centse of a productive and populoum agricultural municipality of south-east Minas; Paracatí (25,418), an important comreercial centre of western Mlinas near the Goyat frontiet; Qualua (12,600), on the Central do Brazil railway; Congonhas to Campo (10,902), in the munisipality of, Qucluf; celebrased for its miracle-working imagen its great church and chapels, and the pilgrionages to its shrine; Sabarif (4959). a raitway junction on the Centrad do Brazil, and port on the Rio das Vellas; Congonhas de Sabara (14006), in the reunicipality of Stbard, where the celeboated Morro Velho gold-mine is situated; Sac Jono d' El-Rei (1 ; 820) an important commercial mining and pastoral centre, near the Rio das Mertes, connecled with the Cemtral do: Brazil kaidway by a branch cailed the Oeste de Minasp and Ubraba ($\mathbf{5 2 , 2 3 1 \text {), a cemmencial Lowa of the western campos }}$ of Minas, connecied with Sap Paulo by the Mogyma and.Smo Panlo railways.

Minas Getates was fees explered by Ferazado Dias Pacs Leme hetween 1664 and 1677, though he was not the first European to pentrate it. The discovery of gold in $5692-6695$ by bands of edventurens from the $\$$ so Payla setifements, led to every occupation and profiession beiag abandowed in the mad rush for the rew whet., Minas. Geraes at first formed, part of the
 ment and wws brought mewe directly under the Portugeese crown. The atbitrary restritions Anposed upow the colonises arowed dissalisfaction mong them and eventuathy lod to conspiwacy in ry80, finspited by a fear that the Poituguese govetnntert was sfourt to emtover the collection of its "fifths of the miniag output, which had fargely fallen into errears. Among the conspitators was ont Jose Alves Maciel, who had jost refuracd from Prance where he had met Thomas Jeferton and had become infected with French revolutionsty ldatk. Ai number of resideints became involved, imong them the poet Themat Artonic Gonzaga. Reckless talk in public places led to the arrest of the conspirators. Only one was extected, a poor, unedurated subattert militia officer Joaquim Jose da Sivh Xavior, mitknamed O TAradentey (the Tooth-pulter), the others being imprisoned br banished. Tiradentes has strice bean glorified as the pro-martye of Brazilian independenco. In.182a B inmis betame a province of the empire'created by Dom Pedro I.r, though a revolutionary outbreak had occurred in Oaro Preto the year before. In 1842 a long series of quarrels in Rio de fanctro culminated in at rewolution in Minas Ceracs and Sao Paulo, which was suppressed at Santa Lusta, Minas Gertass, of the zoth of August of that year. The abolition of thevery in 1888 caused much discontent among the planters and in the following year Minas Geraes promptly adhered to the dectaration of the republite in Rio de Janeiro.
TINBAR, or Mnrbar, a term in Mahommedan architecture for the pulpit in a mosque from which the Fiday or Malommidan Sabbath setmon is given (see Pulpit).
MINEU, a district and division of Upper Burtna. The dietrict has an area of $3299 \mathrm{sq} . \mathrm{m}$., and a popalation (rgor) of 233.377, showing an metease of 8% In the decade and a density of $7 \boldsymbol{z}$ inhabltants to the sq. m . The diatrict may be said to consist of low plain-land towards the Irtawaddy, and of undulating country inland rising higher and higher westwards towards the Arakan hills. Between the plain and the Arakan Yoms anges is a distinct line of hills rurining north and south, and wsually called the Nwa-Madaung hills. The sabmontane valleys are largely cultivated, but are deadly except to those born in them. The chici streams besides the Itrawaddy are the MOn, the Maw, and the Salin, which are largely used for irrigation. At Mintre town the lrrawaddy is 3 miles wide, with many islands and sandhianks. There are considerable froheries along the Irrawaddy' and on the Paunglin lake, which is a lagoon fed from the Itrawaddy. The rights are sold yearly by public auction, and realize an average of frooo. Oi has been discovered near the mura polcanoes of Mlnbu, but it seems to lie at too great a depth to be profitably worked.
There is a large area of reserved forest in the district. The thief crops raised are rice, gram, millet, beans, peak, sesamum and tobacto. The betel-vine is largely culivated along the Mon Riyer. The district, which was in a chronically disturbed state before the annexation, was not redaced till two years afterwards, many officers losing their lives, among them Phayre, the first deputy-commissioner. The annual rainfah varies greatly over the distrifo. It is very considerable on and under the Arakan Yomas, and very slight lowards the Irravaddy. The thermometer rises to over 100° in the hot moniths, and the mean of minimsm in December is about 49°. Minbu, the district headquarters, stands on the Irrawaddyr It had a population of 5780 in 1901. The river steamers in the dry season can come no nearer than two miles to the south of the town.

The division includes the districts of Thayetmyo, Pentekti, Minbu and Magwe. It has a total area of 17,17: sq. m. and : population (rgar), of $1,076,280$, showing in increase of 8% in the decade and giving a density of 63 mhabitants to the square mile. It best rides the Irrawaddy.
(J. G. Sc.)
minchimhain PTOL, a town in the Stroud partamentary division of Gloucestershire, England, 4 m . S.E. of Stroud. Pop. (1901), 3737. It hies high on a slope of the Cotswold Hrils; Ninchinhampton Common being a fine open upland. The churefis of Roly THinity, largely reconsttueted, tontains many brassers
and menoriak. The mamufecture of woolten thoth is the longs established ctaple of Minthinhampton. Pretistoric remajes have been discovered on the common, and earthuariks are also sean; white the rame of Woelul.Dure Bottom, a neighbouring valley, perhaps indicates the scene of a defeat of the Danea (c. gr8).

Inanden, a town of Germany, in the Prassian province of Westphalia, 44 m . by mil to the W.S.W. of Hanover, on the deft bank of the Weser, which is spanned by two bridges. Pop: (rooy), 25,418. The older parts of the town retain their narrow and crooked streess. The cathedral tower dating from the itth contury, illustrates the first step in the growth of the Gothic spire in Cermanty. The nave was epected at the end of the 13 th century, and the choir in 1377-1379. Among the chief edifices are the ofd church of St Martin; the town hall, with a Gothic fagade; the law courts and the govenment offices, constructed, like ma dy of the other bwildings, of a pecmiar veined browa sandstone found in the district. The town has a statue of Frederich Witliam I.. the great elector of Brandenburg. Minden comtains a gymnasium and several hospitals, besides other cheritable institations. Int industries irclude tinen and cotion weaving, dyeing, calico printing, brewing, ship-buitding and the marnfacture of tobacco glase, soap, chocolate, leather, lamps, chicory and chemicals.' There is sloo some tectivity in the buiding of small craft.

Minden (Mindora, Mindo), apparently a tradiag place of some importanct in the time of Charlemagne, was made the seat of a bishop by that monarch, and subsequestly became a flourishing member of the Harseatic Leagoce. In the igth-century it wis sutrouinded whi walls. Punished by military occupation and a fine for its reception of the Reformation, Minden underweat similar triaks in the Thitty Years' War. In 1548 the bishopric was converted inso a secalar priocipality ander the elector of Brandenburg. From 1807 to 1814 Minden was iveluded in thr tingfom of Wesphalia, and in the latter year it passed to Prussia. In' 1816 the fortifications, which had been rased by Frederick the Great after the Seveh Years' War, were restored mod strengtherred, and as a fortsess of the second rank it remained the chief military place of West phalia down to 4873 , when the werkis were fanily dernolished. Abotat 3 场. to the south of Minden is the so-called "Porta Westfalica," a narrow defile by whith the Weser quits the momotains. The bishopric of Matden embreced an arta of about 400 sq. m. and.had aboat 70,000 inhabitants.
The battle of Minden was fought on the 152 of August 8759 between the Anglo-Ahied army cormanded by duke Ferdisand of Brunswick and the French under Marshad Contades, the latter Being defeated. The most brillinat episode of the battle-was the entire defest of the French cavairy by the Brituch infantry (with whem there were mome. Hanotreran treops), but Minders, though it is one of the brightex daysin the kistiony of the Baitish atmy, has its dark side also, fur the British cavalty commander Lord George Sackville (nee Sackimle, Viscouns) retused to obey the order to advance, several times sont by Dute Ferdiand, and thereby robbed the victory of the decisive remalts which wem to be expected from the success of the hiniastry. For an atcount of the battee and of tho camperign of which it is the centre, set Siven Yeaks' War.
See Stoy, Rurar Abriss doe Ceschithte Mindens (Minden. 1879):

 1877).
minBanmb, a market town and seaside resort in the Welling: ton parfinmemary diviston of Somersechire, Eagland, 188 m . W. by S. of London by the Gest Wester railway. Pop. of urban district (1901), sgrt. The coiwn thes titre purts: the Uppes, burit on the sides of a lofty forviand known as North Efili; the Lower; and the Quay Town, whit many andent mouses, stretcting for about a mile betide the harbour. It is much visited for the sake of its mild chimate, the grated cliffs, treortand hills of the neighbourhood, and the beach, adminubly suited fir Bathing. St Michael's; the parish elureh, hes an arfing Perpen-

chancel, a magnificent rood-loft, and a isth-century monument doubtully described as the tomb of Bracton, the famous lawyer, whose birthplace, according to local tradition, was Bratton Court in the vicinity. Coaches for Porlock and Lynton start from the town.
There is no evidence of the existence of Minebead (Mannhere, Manchafd, Myuncheved) in Roman or Samon times. The town owed its origin and growth to its position on tbe shores of the Bristol Channel, and its good harbour developed an oversea trade with Bristol, South Wales and the Irish ports. The De Mohun family wcre overlords of the town from 1086 to the 14th century, when they were followed by the Luttrells, who are the present owners. It is possible that Minehead had a corporate existence during the 15 th century, as certain documents executed by the portreeve and burgesses at that date are preserved, but no record of the grant of a charter has been found. A charter of incorporation given by Elizabeth in 1558 vested the government in a portreeve, a steward and iwelve burgesses, the continuance of the corporation being subject to the port and harbour being kept in repair. This condition being unfulfilled, the charter lapsed in the reign of James I., and an attempt to ohtain its renewal in the 18 th century failed. The corporation was replaced by two constables chosen annually in the court lect of the manor until 1894 , when an urban district council was appointed. The borough returned two members to parliament from 1558 until disfranchised by the Reform Act of 8832. A weekly market on Tuesdays and a fair (Sept. 29 to Oct. 2) were held by the lord of the manor from the $15^{\text {th }}$ century, but the date of the grant has not been found. In 1465 a second annual fair on the ist of May was granted by Edward IV., which is still held on the Wednesday in Whitsun week. The other fair has been discontinued, and the market day has been changed to Wednesday. During the 16th, $17^{\text {th }}$ and 18 th centuries Minehead had a considerable coast wise trade in wool, grain and wine, but began to decline owing to the migration of the woollen industry to the north of Englund, and to the decay of the berring fishery. A renewal of prosperity began when it acquired a reputation as a watering-place.
See Victoria County History: Somersed; F. Handcock, Parisk and Borough of \mathbf{M} ineheod (1903).
MMESO, a town of the province of Catania, Sicily, 34 m . S.W. of Catania by rail. Pop. (1901), 9828. It occupies the site of the ancient Menaenum, founded by Ducetius in 459 b.c. There is come doubt as to whether this town was also the birthplace of Ducetius, owing to confusions in nomenclature (see E. A. Frecman, History of Sicily, ii. 361). Remains of ancient fortifications still exist, though it seems uncertain whetber they are of Greek or of Byzantine origin (Notizie degli Scadi, 1899, p. 70). Four miles to the north is the Lacus Palicorum, a small lake in a crater, which still sends up carbonic acid gas. By it was the temple of the Palici, t win Sicel gods, the most holy place in Sicily, where an oath taken was especially binding, and an inviolable asylum for fugitive slaves. There is now nothing to suggest twin deities; in ancient times there were probably two craters, whereas now there is only one. It was here that Ducetius, a few ycars later, founded a new seat for his power, the city of Palica
MINERAL DEPOSITS. The subject of mining (q.v.) can only be properly understood after the general features of mineral deposits have been elucidated. In this article deposits of all kinds of useful minerals are included, whether they are metalliferous or earthy. In general practice it is customary to treat the former under the name "ore-deposits" and the batter as the " ron-metallics." This is warranted because in a large degree different geological problems are presented anil different methods of mining are pursued. Nevertheless there are other important similar or common features and they may be classed together without great disedvantage
The word " ore " is used in several meanings, each of which depends for its special significance upon the conncxion. In on parely scientific applications "ore" implies simply in works on mineralogy and petrology. In former years and in
connexion with practical mining an ore was defined as a compound of metal or of metals with one or more non-metallic elements, called mineralizers, of which oxygen and sulphur were the chief. The ore must, in addition, be sufficiently rich to be mined at a profit. Native metals not being compounds were not considered ores. The product of the copper mines on Keweenaw Point, Lake Superior, was, and to a great extent is still, called copper rock rather than copper ore, and native gold in quartz is often described as gold quartz mather than gold ore, but these restrictions are gradually disappearing. An ore may therefore be defined as a metaliferous mineral or aggregate of metalliferous minerals mingled with a greater or less amount of barren materials called the "gangue," and yet rich enough to be mined at a proft. When not proved to be sufficiently rich to be remunerative, the aggregate is called " mineral." The " mineral" of to-day may be changed by the advent of a railway or the rise in the price of metal into the "ore" of to-morrow. The question has repeatedly appeared in litigation involying contracts or property rights.
Since the greater number of the ores are believed to have been precipitated from aqueous solution, or to have been otherwise formed through the agency of water, the term "ore-deposit" has resulted; and inasmuch as nearly all the other useful minerals owe their origin to the same agent, the term " mineral deposit " is equally well justified. A few, however, have been produced in a different way, such as certain iron ores of igneous origin; certain igneous rocks used for building stone, as in the case of granite; and the accumulations of vegetable material in coal beds. These latter, the igneous masses and the vegetable accumulations, being placed in two divisions by themselves, we may group the larger number into two main classes, depending on their precipitation from solution or from suspension. In the case of solution we will further subdivide on the place, and therefore in large part on the cause, of precipitation, since these are the questions chiefly involved in actual development.

Especially in connexion with ore-deposits widening experience has modified the older conceptions of relative values in the several lypes. In the early days of geology, Cornwall and Saxony were the two regions where the most active and influential students of ore-deposits were trained and where the principal books relating to mining originated. The pronounced and characteristic Gissure veins of England and Germany became the standards to which the phenomena met elsewhere were referred, and by means of which they were described. This particular form, the Gssure vein along a fault, assumed a predominating importance, both in the thought and in the literature of the day. Widening experience, however, especially in the Cordilleran region of North America, in the Andes of South America, in Australia and in South Africa, has brought other types into equally great and deserved prominence. Comprehensive treatment to-day therefore departs somewhat from carlier standards.
As far as analyses and estimates permit, the common useful metals occur in the earth's crust in approximately the followling percentages:-

Ocmarretice.

By the letter x is meant some undetermined digit in the corresponding place of decimals. Apart from aluminium, iron, manganese and nickel, the figures show how small is the contribution made by even the commoner metals to that portion of the mass of the globe which is open to observation and investigation.

As compared with the earth's crust at large certain of the metals are known to be locally present in favourable, usually igneous, racks in richer amounts, according to the following determinations which have been made upon large samples of carefully selected materials. Copper, 0.009% lead.
$0.0011-0-008$; zine, $0.0048-0.009$; sllver, $0.00007-0.00016 ;$ gold, $0.00002-0.00094$. Lron and aluminium seldom fail, and vary from 1 to 2% as a minimum, up to 25% as a maximum.

In order that the several metals may constitute ores, their percentages must he the following-the percentages of each vary with favourable or unfavourable conditions at the mine, and can therefore be expressed only in a general way; ores favourable to milling and concentration may go below these limits, and the mingling of two metals of which one facilitates the extraction of the other may also reduce the percentages:-

Aluminium	30	Nickel	2-5
Copper -	2-10	Platinum	0.00005
Gold.	0-003-00016	Silver	0.03-0.16
Iron.	35-65	Tin.	1.5-3
Leat.	2-25	zinc.	5-25

Cobalt is a by-product in the metallurgy of nickel and is usually in much inferior amount to the latter.

When we compare the first and second tabulations with the third it is at once apparent that with the possible although only accasional exception of iron the production of an ore-body from the normal rocks which constitute the outer mass of the earth requires the local concentration of each of the metals hy one or several geological processes, and to a degree that is only occasion. ally developed in the ordinary course of nature. It is, therefore, an instance of somewhat exceptionally good fortune when one is discovered, and it is only the part of ordinary prudence to develop and utilize it as one would treat a resource which is limited and subject to exhaustion.

The minerals which constitute ore-bodies are divided into two Cleswes of great classes: the ores proper, which contain the moorat metals; and the barres minerals or gangue, which seduce the yield.

The ores are generally and naturally subdivided into two groups: first, the sulphides and related compounds containing arsenic, antimony, tellurium and selenium; and, second, the oxidized compounds embracing oxides, earbonates, sulphates, silicates, phosphates, arsenates, chromates, \&c. With the oxides are placed, because of related geological occurrence, a few rare compounds with chlorine, bromine and iodine into which silver more than any other metal enters, and to the same group we may add a $\mathbf{f w}$ metals which occur in the native state. Iron, mangamese, aluminium and tin difer from the rest of the metals in their original occurrence in the oxidized form, whereas the others with the exceptlon of gold, platinum, and possibly copper, in their first precipitation in ore-bodies are in the form of sulphides or related compounds. Only hy subsequent changes, characteristic of the upper parts of the deposits, do they pass by oxidation into the minerais of the second group.

With regard to the nature and source of the water which serves to gather up the widely disseminated metals and concentrate them in ore-bodies two contrasted views are now current, not necessarily antagonistic but applied in different degrees hy different observers. The older vicw attributes the water primarily to the ainfall, and therefore it is called meteoric water. After falling upon the surface the meteoric water divides into three parts. The first, and smallest, evaporates; the second, the largest portion, joins the surface drainage and is called the run-off; while the third, intermediate in amount, sinks into the ground and mingles with the ground-waters. The ground-waters rise in springs, usually fed from no great depth, and themselves pass into the surface drainage after a small subterranean journcy. While as a rule the ground-water level is fairly definite, yet it sometimes displays even in the same mining district great irregularity.

The section of active circulation and work of the descending meteoric waters between the surface and the ground-water level was called by Franz Posepay (1836 -1895) the vadose or shallow region ("Genesis of Ore-deposits," Trans. Amer. Inst. Min. Eng., xxiil., xxiv., 1893; reprinted as a book, 2nd ed.، 1902). It has been long recogaized by miners as the home of the oxdized ores, and the place of the work of the doscending waters. The
deep-waters are relatively motionless and their movements as far as visible are comparatively slow. But the really important feature of the ground-water as regards the filling of veins is the depth to which it extends. This remained a somewhat indefinite matter until L. M. Hoskins showed matheratically that cavities in the firmest rocks became impossibilities at about 10,000 metres. Down to some such limiting depth as an extreme the groundwater was believed by many to descend; to migrate laterally; to experience the normal increase of temperature with depth; the effect of pressure; the increased efficiency as a solvent peculiar to the conditions; and finally with a burden of dissolved gangue and ore to rise again, urged on by the " head " of the descending column. In its ascent it was supposed to fill the veins. Mining experience has, however, indicated that the known groundwaters are comparatively shallow and seldom extend lower than $500-600$ metres. It is conceivable that during faulting and the formation of great dislocations this upper reservoir might be tapped into greater depths and set in limited circulations tbrough decper-seated rocks. But so far as these objections have weight they have greatly restricted the vertical range of the meteoric ground-waters as they were formerly believed to exist.

In contrast with the meteoric waters outlined above, other waters are believed by many geologists to be given off by the deep-seated intrusive rocks, and are generally called magmatic. We are led to this conclusion by observing the vast quantities of steam and minor associated vapours which are emitted by volcanoes; by the difficulty of accounting in any other way for the amount and composition of certain hot springs; and by the marked and characteristic association of almost all ore-deposits in the form of veins with eruptive rocks. That igneous masses have been connected with the formation of veins is further brought out by the following general consideration, which has hitherto received too little attention. Aside from pegmatites, veins rich enough to be mined and even large veins of the barren gangue-minerals are exceptional phenomena when we compare the regions containing them with the vast areas of the earth which have been carefully searched for them and which have failed to reveal them. As components of the carth's crust the useful metals except iron and aluminium are extremely rare. Some sharply localized, exceptional, and briefly operative cause must have hrought the veins into being. The universal circulation of the ground-water of meteoric origin fails to mect this test, since if it is effective we ought at least to find veins of quartz and calcite fairly universal in older rocks. In North America, morcover, by lar the greater number of veins which have been studied date from the Mesozoic and Tertiary times. The ore deposits of older date are chiefly of iron and manga nese and can be satisfactorily explained in many cases hy the reactions of the vadose region, or by crystallization from molten masses.

In summary it may be staled that the meteoric waters are of great importance and of unquestioned efficiency in the shallow vadose region, or, as named by C. R. van Hise, " the zone of weathering." In it the disintegration of rocks exposes them to the searching action of solutions, and the portions of ore-bodies already deposited undergo great modifications. The deeper and far more immovable ground-water probably extends to but moderate depth and is chiefly affected as regards movement by the bead of waters entering heights of land and by local intrusions of igneous rocks. It is very doubtful if the normal increase of temperature with depth produces much effect. The meteoric waters are of altogether predominant importance in all surface concentrations of a mechanical character. The magmatic waters, on the other hand, seem to be of paramount importance and of great efficiency in producing the deposits of ores in the contact zones next eruptives, and in the formation of veins which are reasonably to be attributed to uprising heated waters in regions of expiring vulcanism. They start with their burden of dissolved metals and minerals under great heat and pressure, amid conditions favouring solution, and migrate to the upper world into cooling and greatly contrasted conditions which favour precipitation. Uadoubtedly they are responsible for many low-grade deposits
which have later been enriched by the action of discending metcoric waters. They ate more copiously yielded, so far as we may judge, by acidic magmas than by basic ones. lo muntal
The natural waterways are furnished hy the cavities in rocks. They vary in size from very minute pores, where movement is slow because of friction, but where solution takes place, through others of all dimensions up to great fault-zones. The smallest cavities are the natural pores of minerals; cleavage cracks; the voids along the contacts of different minerals; cracks from crushing during dislocation; cellular lavas; volcanic necks; voids among the grains, pebbles, or boulders of fragmental rocks; joints; caves, and faults. So far as waters have deposited ores and yielded ore-bodies by subterranean circulations the lat ter are guided by some such controlling infuence as these in all cases, and they will be sclected as the governing principle in a large part of the scheme of classification. The types will be reviewed in the following order:-

1.-Or Igneous Origin.

A. Eruptive masses of non-metalliierous rock.
B. Basic scgregations from fuscd and cooling magmas.
C. Deposits produced in contact metanorphism, most commonly by the action of intrusive masses on limestones.
D. Regmatites,

II.-Precipitated frox Solution.

A. Surface deposits.

B. Impregnations in naturally open-sextured rocka! bot man sil
C. Impregnations and replacements of naturaily soluble rociks.
D. Deposits along broken anticlinal summits and ia synclinal troughs
E. Deposits in shear zones.
F. Deposits in faults.
G. Deposits in volcanic necks.
111.-Deposited from Suspenstorenon apod aymd
A. Placers.
B. Residual deposits.
IV.-Carbonaceous Deposits from Vegetation.

1. Of IGneous Origin.-A. Eruptive Masses of Non-metulliferous Rock.-Amonk the non-metallic objects of mining and quarrying which are of igneous nature, building stone is the chief. Granites, which are of igneous nature, builaing stone is the chief. Grantes. These rocks occur as intrusive masses cafled bosses when of limited extent and diameler, aud bathyliths when of vast, irregular areaz. should in each case yield blocks as nearly rectangular as possible so as to save tool treatment. Dark, basic igneous rocks in dikes, sills and surface flows are employed for macadam, and are often of excellent quality for this purpose.
B. Basic Segregalioas from Fused and Cooling Magmas.-A Iew ore-bodies, of which the best-known involve iron, are believed to result directly in the igneous processes by which molten rock cools and crystallizes. Thus magnetite, one of the common iron ores, is a widely distributed component in the eruptive rocks, rarely if ever failing in any varicty. It is one of the first minerals to crystallize, and it possesses a much higher specific gravity than the other constituents. There is reason, therefore, to belicve that, forming in some molten magmas in relatively large quantity, it sinks to or toward the bottom of the mass until the latter is at least greatly enriched with it, if not actually changed to inon ore. If the molten rock, alter passing through a stage of partial crystallization, moves toward the surface of the earth, the body of ore may occupy almost any position in it other than the bottom. The flowing of the magma in original movenents or from prossure sustained in subsequent metamorphic processes, or both, may give the ore the lenticular slape which is quite characteristic of magnetite bodics the world nver. Almost all iron ores of recognized eruptive origin contain titanium oxide in amounts from a fer units to over 40%. They are most frequently found in dark basic rocks. These orces are not at present of much commercial value because of the difficulties of treating titaniferous varivties in the modern blast furnace practice, tat there is little doubt that in the near future they will be extensively mined.
Non-titaniferous magnetites, which often form lenses in gneissoid rocks of more acidic character than those with which the titaniferous are associated, are likewise belicved by some obyirvers to be of igneous origin, but there are equally positive believers in sedimentary deposition lollowned by metamorphism.
Y Bexides magnetite, chromite is a characteristically igneous mineral and is always found in the richly magnoaian rucks. Wheiher the relatively large mases which appear in serpentinc are direst crystal. lizations from fusion, or whecher they have segresated from a fincly disseminated condition during the change of the original cruptive to serpentine, is a matter of lispute, but the general irend of later opinion is toward an uriginal isneaks origin Aldhough not strictly
an ore, corundum is another mineral which is the dircet product of
igneous action. A form of
A form of ore borly which marks a connecting and transitional member betwenn those just treated and those of the next group is: furaished by the sulphides of iron, nickel and copper which are found in the outer borders of basic igneous intrusions. Observers differ, somewhat as to the relative importance to be attributed to reactions purely of the nature of erystallization from fusion or those brought' about by the agency of gasce or other highly heated solvents in the cooling stages. The most important example is afforded by the mingled ores of nickel and copper which are developed in their largest form in the region of Sudbury, Ontario, Canada, and are now the principal source of nickel for the world. 'The ores are chalcopyrite' and pyrthotite, the latecr containing throughout its mass at Sudbury the mineral pentlandite e rich nitkel-iron sulphisle and the real source of the nickel. With the base metal there are also found minute traces of the metals of the platitum group. Wherever these ore-bodies have been observed they invariably occur in the borders of intrusive masses. The sulphides constitute an integral part of the rocky mass, which shows almost no signs of alteration or vein production in the ordinary sense, Only some slight rearrange-1 ments have subsequently taken place through the agency of water., but all this is a small factor in the total.
C. Ore-Bodies produced by Conlact Afetamorphism.-Great bodics of igneous rock have ofeen been forced in a molten and highly heated! condition through other rocks when at a distance below the surface. of the tarth. After coming to rest they have remained during the cooling stages for long periods in contact with the surrounding walls, All molen igneous magmas are more or less richly charged with aqueous vapour, doubtess in a dissociated state: with carbonic. acid and probably with other gases, especially those involving sul-; plur. During the cooling stages the gases are emitted and carry with them silica, iron, alumina and metallic elements in less amount, of which copper is the commonest, but among which are also num-1 bered lead, zinc, gold and silver. If the rock sta nding next the intru-, sive mass is limestone, the silica and iron, and to a less degree the; alumina, combine with the lime to the climination of the carbonic acid and produce extensive zones of lime silicates, of which garnet is the most abundant. Disseminated throughout these garnet-zones' are large and small masses of pyrite and chalconyrite, of temtimes. in anounts sufficient to yield large ore-bodies. A gain in the lime-, stone outside the garnet-zones, but none the less closely associated' with them, are boolics of sulphides containlng copper. The copper ores of Bislsec and Morerici, Arizona, of Aranzazu near Concepcion: del Oro, Mexico, and of many other parts of the world not yet studied in detail are of this type. The eruptive which most frequently, produces contact zones is of a marked acidic or siliceous character. since among cruptives these are the ones most richly charged with: gases. When the copper ores are of low. grade in their originaldeposition it often happens that processes of ecoondary enric hment, which are later described, are required to bring them up to a richness which warranis mining. Less often than copper appear lead, zinc or gold ores in the same relations.
2. Pegmatites.-One other phase of eruptive activity needs also to be briefly mentioned before passing to the discussion of the orebadies, which have hitherto chix.fy occupied students of the sulaject. In the regions surtounding intrusive masses of granite we almost. ahways see dikes or veins of coarscly crystalline quartz, felspar and mica radiating outward, it nay be, for very long distances. They are believed to be produced by emissions from the eruptive similar to those which yield the garnet-zones just mentioned. The veins are technically called pergnatites. They are characteristic carriers of tin and of minerals containing the rare earths, and less commonly are known to yiekd gold or copper.
I1. Prectpitated riom Solutton-A. Sarface Deposits.-The chiel ore-body under this type is furnished by iron. The peculiar chemical property possessed by this metal of having two oxides, a ferrous, which is relatively soluble, and a ferric, which is insoluble. leads to its frequent precipitation from bodies of atanding or comparatively quiet waters. Ferruginous minerals of all sorts, but more particularly pyaite and siderite, pass into solution in the descending. oxidizing or carbonated surlace waters, cither as ferrous sulphate. or as silts of organic acids, or ferrous carbonate, the last-named dissulved in an excess of carbonic acid. On belng exposed to the atmosplere when the solutions come to rest, or to the breaking up of organic acids, or to alkaline reagents, or sometimes to fresh-water algae, the hydrated sesquioxide $2 \mathrm{Fe}_{3} \mathrm{O}_{2}, 3 \mathrm{H}_{2} \mathrm{O}$ is precipitated as the famillar beds of bog ore. The ore usually forms casthy aggregates or crusts and cahes, but may also, as in the imercesting case of the Swedish lake deposits, yield small concretions. Bog ores ane not: vers rich in iron and are ape to have much sand and clay intermingled. II subseyurntly buried under hater sediments they may become dehydrated and changed to red liematite, as in the case of some of the Clinton iron orcs of the ensern United States. These widely extended bode in the lower strata of the Upper Silurian are ofter oolitic red heunatites, consisting of concentric ahells of iron oxide and
Ti A H. Burlow, "On the Sudbury Dcpoaits" Ged. Surary of Canade Ann. Rept., vol. xiv., part H: A. P. Coleman, Ann. Repora; of the Ontario Bureau of AFiner, vol, xiv, , part iii. (1905).
chaleedonic ssilica, extensive of all ore beposited around grains of sand. The most and Belgian amekink industry, are the Jurassic orest, locilly called minette, of Luxemburg and the neighbouring territorica Three principal and several subordinate, beds are distinguishod, which furnish a product ranging from 301040% of iron and between 1 and 2% of phosphoric oxide ($\mathrm{P}_{2} \mathrm{O}_{3}$). They are gencrally trelieved to have been deposited on the bottoms of embayments of the Jurassic sea. The iron was furnished by the drainage of the land and was precipitated, according to Van Werweke, as silicate, cartonate, sulphide and as several forms of oxide. More than two billions of tons are believed to be a vailable. Very similar deposits occur in the Cleveland diserict, England, in the Middle Lias-

In the prescrace of much organic matter whicn creates reflucing conditions, concrations and even beds of spathic ore or black-band may result and afferd the ores of this type extensively utilized in the Scettish irop industry and forracrly of some importance in the eastern United Sta les.

Tha browa hematites often have more or less manganese, and mangancee ores the meslves may result by closely related riactions, siace maganese is very similar to iron in its chemical propertics. Aluminium is yielded by deposits of bauxite, the hydrated oxide, which in the states of Georgia and Alabama, of the United States. are the result of marface precipitations. In the depths it is believed that pyritous shales exist. The oxidation of the pyrite stipplies sulpburic acid which rakes into solution the alumina of the shales. Rising to the surface along a narked series of tauts, the aluminium sulphate ments cakium carbonate in an overiying limestone, and the aluminium hydrate is precipitared as concretions at the veres of the springte

Of scientite importance but as yet not of commercial value are the siliczous binters deposited around the vents of hot springs which yield appraciable anounts of both the precious and the base metals. While surface precipitations in every particular, they are yet chiefy imporant in casting light on the processes of vein formation in the Non-matallic tai surface of the eatci are the salines, rock-salt, related potassium sales, gypsuma and the rarer nitrutes. The alkaline chlorides and gypsum are derived, in nearly all cases, from impouaded bodies of mas-water, whiche exposed to evaporation with or without constant renewal, finally yinld beds of rock salt and related minerals. Shallow estuaries cut off from the sea, it may be by the sudden rising of a bar during a. heav a shallow conaeri given rise to the teasively miecd. as yet ia large qu seem to be nue to drynese The nit ane the result of 1 allaline minerala net 100 much wa

Anosher wery in from colution is a voorid. but eapecik Sea, chat petrolon bos evaporsted, an of asplalt suitabib Agrain, if large deposited from a carbonic acid, ber known as Mexion
B. Impregratiot is vaiows parts no raiacrele as yo be duced in actution. noty becauso of it mopencommon ca mined at St Georg and cenargytite; seiciter, and in thestandstone itself. Over wide areas in the northern United States, ed : er in various minerals has been dincovered in sandsomes of Permin or Triassic age. At Silver Cliff, Colorado. sitver ores have'lay, regrased a volranic ruff, while at the Boleo mine in Lowes Galecrmia tuffs sield copper ores. In at least two of the great copper mines on lake Superior the mative metal im pregnacs a congherate, and is a number of others it has enriched a celiadar baselte: fitiling the how-holes with shots and pellets. In the Cormmern inthict berween Bonn and Aachen, sandstones of the Trinsile Burr rsiandstein contain knots of galena. distributed dver wide aroasans impregnations. Organic matter is leclicved to havte, precipitated the galena by a reducing action upon percolating solutionse of lead.

entored along .mis
rocks have been fed by solutions which have
is rocks have been fed by solutions which have
breaks which have provided introductory conduits. The solutions have then been tappedi of from the main passiges by the porous rock. They are, therefore, closoly connected with fauts.
Non-metallic minerals in the form of petroleum and asphalt may also impregnate sedimentary beds or other rocks of open texture. Many oil wells derive their supplies from ienticular beds of sandstnne in the midst of impervious shales, and others, as those in the Mexican fields near Tampico. from volcanic tufs. Asphalt may saturate both eandstones and limestones in uch richness as to furnish a natural paving material when crushed, heated and laid. Brines are also yielded by porous strata and supply much of the salt uf the world
C. Impregnations and Replacements of Naturally Soluble Rocks:-Ore-deposits of great importance appear in different regions which can only be interpreted as having been formed by the replacement of some or afl of a rock with the metallic minerals. The most common rock to yield in this way is limestone, hecause of its solubio nature, but important cases occur of others composed of silicates. Replacement implies the precipitation of the ore and gangue. molecule by molecule, in the position of the original minerais but without, as in pscudomorphs, the necessary reproduction of crystalline forms. Some waterway must of course introduce the orebearing solutions, but it may be slight compared with the great size of the resulting ore-bodies. Lead and zinc ores, often carrying sonte silver, are those mose widely distributed, as they were also the earliest recognized in deposits of this character. More than any other metals their association with limestone is pronounced. The replacements may be found near the supply fissure as in the great zinc deposits near Aachen, or the supply fissures may be obscure as at Leadville, Colorado. While ones aceur in the limestone, they are often close along its contact with some relatively impervinus stratum, which seems partly to have directed the circulations. partly to have checked or stagnated them, while, precipitation took place. With the lead and zine sulphides, pyrites and chalcopyrite are conmonly associated in preater or less degrec. the copper increasing locally. All the sulphides are exposed to oxidation above the ground-waters and mining in the upper levels has been often directed againgt the carbonate ansl sulphate of lead, of the mingled carbonate and hydrated silicate of zinc.
A non-merallic deposit fonmed by replacement aad of much scientific interest is furnished by sulphur when derived from gypsum, as in the Sicilian and other localities of Europe.
D. Deposits alons Anticlinal Swmmuts and in Syndinal Troughs.When strata experience folding they are violently strained at the bends, and, if stiff or brittle like limestone, ofeen crack in limited fissures, winich in ansticlines open upward and in synclines downward. They thus yicld joints in relatively great numbers. Softer rocks, such as shales, are moulded by the strains without fracturing. Yery gentle folds seem to have yielded such abundance of cracks in the kad and zinc district of the Upper Mississippi Valley as to cause the so-calked "gash veins" which have been worked fors many years. The crevices are not all vertical. but often run horizontally and are due to the parting and buckling of individual beds. The resulting ore-bodies a re chiefly limited to a single great stratum, and are believed to have beert formed by the inflitration of galena, blende and pyrite from overlying forntations.
When etrata are stiff enough to buckle under violent folding and part so as to prnduce opening" of a crescentic eross-section which afterwards become filletl, there result the "saddle-reefs" so re-d markably illustrated in the gold veins of Victoria, Australia, and in pitching anticlines of a much larger character in Nowa Scotia.
Of far the greatest importance of all the ore-hodics in troughs are the iron ores of the lake Superior region, now the niost productive of all the iron-mining districts. In a series of sedimentarys formations, generally of Huronian age, and with associated eruptives. there occur strata consisting of a cherty iron carbonate, which werch probably originally marine deposits akin to glauconite. They resti upon relatively impervious rocks, a nd are often penctrated bys basaltic diless. The entire series has been folded, no that the chert vt carbomates, shattered by the strains, have coine to rest in troughaio of relatively tight, impervious rocks. The descending surfacy waters have next altered them, have taken the iron into solution.t and have revepoyited it in the troughs as a slightly hydrated rets hematite. The silica hats ustally been precipitated cosewhere

The most important of the non-metallics which occur along anticlinal summits are petroleum and natural gas, but it is trust only in a very limited sense that they are insroduced in solutions The general rause of the accunulation is, however, the same at that of the metallic minerala, ie. that storage cavities are afforded. In the most productive oil-helds it is the general experience to find the oil and sas impounded in porous pocks, eishes sandstones nt limentones, at the crests of anticlines and beneath imperviou* shales which do not shater or crack with gentle folding.
E, Deposits in Shear-Zones.- It sometimes happens both in massive rocks and in sediments that strains of compression have been cesed by local crushing along oomparatively narrow bell withnut appreciable or measurable displarement of the sides surlt as would be required by a irnoounced fautt. The word shear-zond has become quite widely usod in recent years as a descriptive ternt applicable to theso cases.

The gold-bearing reefs of the Transval present a good illustration. Beds of conglomerate consisting chiefly of quartz and quartzite pebbles have experienced crushing and shattering, and have had their natural porosity much enhanced by these after-effects. Solutions of gold, coming through, have encountered pyrites and have had the gold precipitated upon the pyrites, which is itsclf often broken and granulated. In ocher regions shearing has led to sheeting and opening of the rocks by many perallel cracks but almost always with such marked displacement that the next type most correctly describes them. From any point of vicw the shearzone is a natural transition to the fault and closely related to it.
F. Deposifs in Fauls.-This type of ore-body was one of the earliest established, and has always figured very prominestly in the minds of students of the subject since the first systematic formulations of our knowledge. The dislocation of the carth's crust by faults has furnished either clean-cut fissure or else lines of closely cet parallel fractures, whose combined thisplacement has beea comparatively great. The faules go to rehutively profound depehs and they furnish therefore waterways of extended character. which may reach from regions of heat and preseure in depth to regions of cold and diminishing pressure above: thus from conditions favourable to solution below to conditions favouring precipitation toward the surface. Faults often oocur, moreover, in conncxion with eruptive outbreaks, and therefore in circumstances especially favourable to ore deposition. From all these raseons it is not surprising that the "true fissure vein" based on a profound fault has been the ideal of the prospector's mearch in many parts of the world, and has often been his reward. The historic veins of Cornwall and of Saxony are of this type, also the great silver veins of Mexico, the gold veins of California, the great silver-gold deposits af the Comstock lode, and many in South America.

Faulting often leads to great shattering of the country rock, and instead of being a clean-cut open cavity, there results a brecciated belt which may then be cemented by infiltrating ore and gangue. In the midst of this the richer ore occurs as bonanzes or chutes, which are succeeded by leaner stretches. The movement of the walls, produces the polished surfaces specifically called "stickensides," parallel to which the ore-chuten often run. The change in the character of the entering colutions from time to time gives a banded character to the deposit, so that from both walls toward the centre corresponding layers succeed one another. At the centre the last layers may moet as interlocking crystals in the familiar comb-incomb structure or they may leave cavitics called "vugs" into which benutiful and perfectly formed crys tals project (ree fg.). Fault fiseures swell and pinch affording wide and narrow places in the resulting ore-body. They often intersect each other and onte may throw or heave another, according to the mechanics of faulting as set forth under the sricle on Geotocy.

While fault-fissures have in no way failed in later years to be appreciated by mining geologists, yet they do not hold that predominant place which in the days of more limited experience was theirs. On the contrary, other types such as contact zones, feplacements and impregnations are found to be of acarcely inferior importance. Neverthelcos the last two, at least, must usually owe to the fault-fissure the waterway which has brought in the solutions.
A very peculiar non-metallic deposit found in fault-fiseures and imitating the ordinary veins in all esentials is furnished by the asphaltic minerals, often described as asphaltic coals and known in mineralogy as "grahamite," "albertite," "uintaite" "gilsonite," \&c. Petroleurns with asphaltic bases have percolated into fault-fissures and have there deposited on evaporation and oxidation their dissolved burdens. The black coaly mineral presents all the geological relations of a fasure vein and is mined fite to much ore.
G. Volconic Necks.-A very unumal ore-body is furnished by this type, which is nnly known in a few instances. In two mines, however, in Colorado, the Bastick and the Bull-Domingo, there occur chimneys of elliptical croaseection filled with rounded boulders, and believed with much reason to be the tubes of emall explosive volcanoes. After brief periods of activity they became waterways for uprising heated whintions which filled the interstices with ore.
III. DEPOATED Fion Susfensiox. \rightarrow The cres which result from this proces are all formed upon the surface of the earth and through the action of water. They are primarily the result of the weathering of rocks and of the removal of the looe products thus afforded in the ordinary procemes of erosion.
A. Pacers.-Many useful minerals, including some of a metallic character, are very tesistant to the eqents of decomposition which cause the disintegration of the common rocks. Thus magnetite is a mineral present in a minor capacity in all eruptives and in fairly Jarge percentage in many of the basic types. It is proof against protracted exposure to natural reagenta, and it is heavy. Becomis
the transported materials of running streams. and settles with other heavy minerals wherever the current siackens to a sufficient degree. Concentration may thus ensue and beds of black sand result. If agein deposits of loose sand containing more or less magnetite are exposed to the surf of the ocean, or even to the waves of lakes, similar sorting action takes place on the beach. The magnetite remains behind while the undertow removes the lighter materials. Iron ands of tither of these varietics are usually too rich in titanium to be of commercial value, but with the magnetite may be gold or platinum in sufficient amonnt to be of value.

While magnetite is the commonest of the ores to be found in placers, goid is the metal which usually gives them value. Wherever systems of drainage have eroded gold-bearing rocks, the gold has passed into the streams with the other detrital materials, and even though in very fine flakes, being yet very heavy has sunk to the tootom in the slackened water and has there enriched the gravel. The gold tends to work its way through the gravels even to the bed-rock, or to some bed of interstratified and impervious clay, and there to be relatively rich. It favours also the insides of bends and the heads of quiet reachee. When a small tributary stream joins a larger one and is both checked itself and checks the current of the large one, the gold, as in the Klondike, tends to tettle in relatively great abundance.

Pot-holes, strangely enough, or related rock-cavities, of ten fan to yield the nuggets, apparently because the swirt of the water and grit has ground them to impalpabie powder. The particles have then been washed elsewhere.

When the gold-bearing gravels are panned down a small reaidue is obtained of all the heavy minerals in the gravel. Magnetite is the commonest and gives the technical name of "black sand" to the concentrate. With it, however, there are almost always found garnet and other les familiar minerals. If the stream valley has been hunted over by sportsmen with shot-guns or rifles, the loot shot and bullets are commonly caught in the pen. Even diamonds have been rarely noted and they may, indeed, be epecially sought in gravels.

Along sea-beaches where grat beds of auriferous gravel have been attacked by the surf, concentrated bars carrying nuggets and flakes of gold in workable quantity have not infrequently resulted. Cape Nome, Alaska, is perhaps the most productive of all. The fold in the beach-placers is usually wom by the constant attrition into extremely fine particles, and the flakes or colours are more dificult to ate than in the case of stream-placers.

In some regions of gold-bearing rocks, as in the south-eastern United States, the productis of superficial decay of rocks may remain ins sitm and be aufficiently charged with gold to be wahed for the yellow metal. They are different from the asual pheer deposit although hydraulicked in the seme way. They might be properly conaidercd residual deposits under the next head.
Auriferous stream-gravels of ancient and long-abandoned systems of drainage may remaia bereath lava flows or later sedimentary accumulations and be the objects of underground mining. Both in Australia, where they are called " deep leads," and in California, where they are called "buried channels" or "deep gravels" they have been for many years the objects of mining. In California the bed-rock is usually slate or schist and a eeries of technical terms have resulted descriptive of the rich tereaks. The bed-rock is called the rim-rock; the pay-streaks which appear on its sides, bench-gravels, and the lowest one the channel-gravel. Tunnels are of ten very skilfully driven through the sim-rock to strike the channel-gravel and at the same time preserve the proper slope for dminape and extraction. The buried channels in California have proved of much scientific interest from the remains of prehistoric man, siculls, mortars and pestics which they have yielded.

Amnng the non-metalice minerals sought from placens, phowphates for fertilisers hold a position of great importance.
B. Residual Deposits.-As contrasted with the placers whoes materials are derived by transport from a distance, we sometimes Gind beavy and resimant minerale, once contrined in the roct but freed by the process of decmy and disintegration. The lishter looe materials are washed away and deposited elsewhers. The heavy remain behind in a concentrated condition. Iron onep of this character are known, and chromite is set frea in the same may by the decomposition of serpentine.

In the decay of ferruginous rocks lice limestones the iron may be changed to the insoluble ferric hydrate, brown hematite, and remain as vinlets and crusts throughout a mantle of clay. The brown bematite may be freed try artificial washing and used as an iron ore.
IV. Cardonactous Derosits pron Vecetation, -Farthe mort important of the non-metallic minerals are thoee compoeing the coll weries. They yield entire \&trata analogous to other sedimentary rocks, but in moet cases from vegetation which has grown in sin. They are found in all stages from nearly carhonized leaves and Foody timue in peat, through much more altered materialy in Iignite and bituminoos coal to extremes in anthracite and graphite. The prime necessity for their preservation from decay is furnished by water, in or near which they must grow, and beneath which they must be deposited, so that oxidation may be retarded. In instances they have been heaped together by rivers, especially when at flood. The gethod of origin is fully dincumed urier COAL and under

Mining, but it may be remarked here that once formed they underpo all the foldings, faultings and disturbances which have affected the edimentary rocks of other kinds.

B18LIOGRAPIIY. - The following are general works on the deposits of the useful minerals, in addition to Posepny's volume already thentioned: In English-I. A. Phillips, revised by Henry Louis, Treatise om Ore-Deposits (London, 1896): J. F. Kemp, Ore-Deporits of the United States and Canada (New York, r900); Prime's eranslition of Von Cotta's Ore-Deposits (New York, 1870): H. Ries, Econ wic Ceology of the United Stales (New York, 1906); W. H. Weed's tranthation of Beck's The Nature of Ore-Deposits (New York, 1905); Genesis of Ore-Deposits (American Institute of Mining Engineers, (go1): G. P. Merrill, The Non-Metallic Minerals (New York, 1904). In German-B. von Cotta, Dic Lehre won den Erzlagerstatten (Freiberg. 1859): A. von Groddeck, Die Lehre von des Lagerstallen der Erze (Leipzig, 1879): R. Beck, Lehre won den Erzlagershalten (Berlin, 1904): A. W. Stefzner and A. Bergeat, Die Erzlagerställen (Leipzig. 1905-1906). In French-E. Fuchs and L, de Launay, Traite des giles minéraux ef mílalliflres (Paris, 1893): G. Moreau. Eirudc industrielle des fites mítalliferes (Paris, 1821).
(J.F.K.)

MINERALOGY, the acience which describes and classifies the different kinds of mineral matter constituting the material of the earth's crust and of those extra-terrestrial bodies called meteorftes. The study of minerals is thus a hranch of natural history, but one in which certain of the exact sciences find an application. The determination of the composition and constitution of minerals is a chemical problem; their optical and ocher physical properties are determined according to the principles of physics; the study of their crystalline form and structure belongs to crystallography; their modes of occurronce, origins, associations and changes come within the province of geology and petrology; while a consideration of the localities at which they are found requires some acquaintance with geography. Finally, there is the economic side, dealing with the mining and application of useful minerals, the extraction of metais from their ores, and the uses of minerals for huilding, decoration and jewelry.

In this article we shall treat only of the general characters of minerals; their special characters will be found in the articles on the individual minerals.

After a brief historical sketch the suhject will be treated under the following headings:-

I. Characters of Minerals.

1. Morphological Characters. a. Crystalline Form. b. State of Aggregation: Structure.
2. Physical Characters. a. Optical Characters (Colour, \&c.). b. Magnetic, Electrical and Thermal Charactersc. Characters depending on Cohesion (Hardness, Ac.). d. Specific Gravity. e. Touch, Taste and Smell.
3. Chemical Characters. Synthesis of Minerals.

11. Occurrence and Origin of Minerals

Alteration of. Minerals: Pseudomorphs.
111. Nomenclature and Classification of Minerals.

History.-Owing to their numerous applications for useful and decorative purposes, minerals have attracted the attention of mankind from the earliest times. The stone and hronze implements of prehistoric man and many of his personal ornaments and charms were directly or indirectly of mineral origin. The oldest existing treatise on minerals is that written about 315 B.c.
 by John Hill, 1746), of which only a portion is now in existence. Minerals were then classed as metals, stones and earths. The last five books of Pliny's Eistoria maturalis, written about A.D. 77, treat of metals, ores, stones and gems. Some of the Arabian philosophers devoted themselves to the study of minerals, and ahout 1262 Albertus Magnus wrote his De mineralioxs. In the 16th century Georgius Agricola published several large volumes, dealing more especially with the mining and metallurgy of metalliferous minerals, in which more exact descriptions were given of the external characters: he mentioned several minerals by names (e.g. blende, fluor, quartz) which are now in common use. About the same period there appeared
the systematic treatise on minerals of K . Geaner (1565), and that on precious stones by Anselm Boethius de Boodt (1609). The remarkable researches of Erasmus Bartholinus on Iceland-spar were published in 1669, and J. F. Henckel's Pyrilologia in 1725. Later came the Systeme maturce of C. Linnaeus (1735). Although the importance of chemical properties was recognized by the Swedigh chemists-J. G. Wallerius (1747) and A. F. Cronstedt (1758)-the external characters of minerals formed the basis of the mixed systems of classification of A. G. Werner (1774) and of other authors, and even as late as the Notural History System of Mineralogy of F. Mohs (1820).

It was not until the end of the r8th and beginning of the roth century, when the foundations of crystallography were laid by Romé de l'Isle and R. J. Haïy, and chemistry had assumed its modern phase, that any real advance was made in scientific mineralogy. It was then recognized that chemical composition and crystalline form were characters of the first importance, and that external (natural history) characters were often more or less accidental During this period numerous mineral substances were analysed by Scheele, Klaproth, Charles Hatchett, Vauquelin, Kirwan, Berzelius, Rose and other chemists, and many new mineral-species and chemical elements discovered. After W. H. Wollaston's invention of the reflecting goniometer in 1800 , exact measurements of the crystalline forms of many minerals were made. The principles of isomorphism and dimorphism enunciated by E. Mitscherlich in 1819 and 1821 respectively cleared up many difficulties encountered in the definition of mineral-species. About the same time also the discovery by E. L. Malus of the polarization of light gave an impetus to the optical examination, by Sir David Brewster and others, of natural crystals. Later, the investigation of rocks in thin section under the microscope led to the exact determination, particularly by A. Des Cloizeaux (1867), of the optical constants of rock-forming minerals.

For a detailed account of the history of mineralgy (including crystallography), sce F. von Kobell, Geschichte der Mineralogie vom 1050-1800 (Munchen, i864). The recent history of mineral-spectes may be well traced in the six editions of J. D. Dana's System of Mineralogy (1837-1892).

1.-Characters of Mmerals.

A distinction is to be made bet ween essential and non-essential characters. Essential characters are those relating to chemical composition, crystalline form, crystallo-physical properties and specific gravity; these are identical, or vary only within certain defined limits, in all specimens of the same mineral-species. Non-essential characters-such as colour, lustre, hardness, form and structure of aggregates-depend largely on the presence of impurities, or on the state of aggregation of imperfectly formed crystalline individuals. In an absolutely pure and perfectly developed crystal all the characters may be said to be essential, hut such crystals are of exceptional occurrence in nature, and certain of the characters are subject to modification under different conditions of growth. For example: a wellformed crystal of haematite ("specular iron ore"), with its smooth black faces and hrilliant metallic lustre, is strikingly diferent in appearance from a piece of massive haematite (" red iron ore ' $'$, which is dull and earthy and bright red in colour; the former is so hard that it can only with difficulty bescratched with a knife, while the latter is quite soft and soils the fingers. Both specimens will, however, be found on analysis to have the same chemical composition ($\mathrm{Fe}_{3} \mathrm{O}_{3}$), the same crystalline structure (as determined hy the optical characters under the microscope in the case of the massive variety), and very nearly the same specific gravity (especially if this be determined upon finely powdered material, the effect of cavities being thus eliminated). The essential characters being identical, the difference between the two specimens lies in the state of aggregation of the material: with "speculary iron are" we have a single crystal, while with the "red iron ore" we are dealing with a confused aggregate of minute crystalline individuals, which have interfered with each other's growth to such an extent that no crystal-faces have been developed. Such differences do
not therefore depend on the nature of the material, but only on the conditions which prevailed during its growth. (Sce e.g. Quartz and Calcite.)

In the following enumeration of the more salient characters of minerals it is to be noted that many of the terms used for non-essential characters are purely descriptive and have no exact definition; on the other hand, essemtial characters gin be expressed numerically and are therefore perfectly definite.

1. Morphological Characters.

a. Cryslolline Form.-This most important character of minerals can, of course, be determined only when the material available is in the form of crystals (i.c. crystallized), which is not always the case. Massive aggregates of crystallinc material are of much more frequent occurrence; when small fragments or thin sections of such inaterial are transparent, the crystalline symmetry may be determined, within certain limits, by the help of the optical characters (see below). External crystalline form must not, however, be considered alone apart from all other characters, for crystals of substances quite different chemically, e.g. silver iodide, zinc oxide and zinc sulphide, are sometimes almost identical in crystalline form; further, in groups of isomorphously related minerals the degree of symmet ry will usually be the same and the angles vary only slightly, and unless the crystals are perfectly developed and suitable for exact goniometric measurement no crystallographic distinction can be made bet ween two such species.

All the six systems of crystals and most of the thirty-two symmetry-classes are represented amongst minerals (sec Crystallography). Crystals of the sime mineral-species may differ very widely in general form or habit; c.g. crystals of calcite (q.v.) may be rhombohedral, prismatic, scalenohedral or tabular in habit. Other descriptive terns of the habit of crystals are pyramidal, acicular or neenle-shaped (from the Lat. aciculid, a needle), capillary or hair-like (from the Lat. capillus, hair), \&c.; and these peculiarities of habit may sometimes be characteristic of certain minerals. Sometimes also there are characteristic kinds of groupings of crystals: thus parallel, divergent or radiating (c.g. scolecite), rosette-shaped (c.g. haematiteEiscmrosen), reticulated (e.g. rutile), or matted. The faces of natural crystals may be smooth, rough, striated, curved or drusy, ${ }^{1}$ i.e. studded with small crystal faces and angles.
b. State of Aggregation: Strudure.-According to the parficular state of aggregation of a number of imperfectly develoned crystals, which have grown together, various kiuds of structure may be presented even by the same mineral species. The descriptive terms applicd to these structures are almost selfexplanatory: thus the structure may be granular (c.g. marble), fibrous (asbestos), radio-fibrous or stellated (wavellite), columnar (heryl), laminar or lamellar (talc), bladed (cyanite), \&c., according to the relative shape and sizes of the individual crystals composing the aggregate. When the constituent crystats are invisible to the unaided eye the material is described as compact; incoherent aggregates are powdery or earthy. Mincrals which are really amorphous, i.e. without any crystalline structure, are comparatively few in number (e.g. opal); many which are apparently amorphous are really microcrystalline (e.g.turquoisc) The term massive is often used loosely for a crystalline mineral not showing crystal-faces. Crystal-aggregates often assume more or less accidental and imitative caternal forms to which the following descriptive terms are applicd: dendritic or arboreseent (e.g. copper, pyrolusite), mossy (copper), leafy (gold), wiry or filiform (silver), capillary (millcrite), coralloidal (aragonite), globular (aragonite, with concentric structure; wavellite, with radiated structure), mamillary or with breast-like protuberances (arsenic), nodular (malachite), warty (menjlite), botryoldal or resembling a bunch of grapes (from Bórpus, a bunch of grapes) (dolontite), reniform or kidney-shaped (menilite), amygdaloidal or almond-shaped (agatc), stalactitic (calcite, chalcedony), \&ic.
${ }^{2}$ This is from a German word, drase, originally meaning " brush." and applied by minera to hullow stones, lined with suinute pro. jecting cryseats.

2. Plyysical Characiers.

a. Ophical Characters. - The action of crystallized matter on transmitted light is a character of the ligbest importance in mincralogy. Even when the substance is opaque in large masses, it may le sufficiently transparent when in small splimers or in thin sections for the determination of the optical chatacters. The refractive indices, strength of the double refraction, optic axial angle, extinction angles on certain faces, \& c., are characters. capable of exact measuremeutand numerical expredsion, end are constant for each mineral-species. (Sec Crystal dobraphy.)' In their "diaphancity," or degrec of tramsparency, minerals differ very widely evetr in the same species. Sone, such as metala and most metallic sulphides are always opaque;' white others may vary in different specimens from perfect transparency to perfect opacity (in the latter case, however, minute fragments will, as a rule, still be transparent). A good example of this' is afforded by the varicties of quartz: rock-crystal is water-clear. chalcedony is translucent, and jasper opaque.
The "colour " of minerals is the character which first arrests' attention; but being a character which may vary almost in- ${ }^{\dagger}$ defnitely in one and the same kind of mineral, it affords a typteal. example of a non-essential character. Thus, fluor-spar and quartz, when in well-formed and chemically pure crysfals, are' quite colourless and transparent; but it would le easy to collect a series of each of these minerals in which almost cveryshade of colour is represented. Crystals of fluor-spar of an cmerald-green; purpie, golden-yellow, bright pink or other colour are at first sight very different in appearance, and yet the difference is due solely to the presence of traces of colouring matters so smah in amount that their exact nature is difficult or impossible to determine. The value of diamond, corundum and other gem-' stones depends largely on these accidental differences in coldor. Such substances, which are essentially colouriess and owe their' colour to the presence of colouring matter as an impurty, are snid to be "allochromatic": any colour they may possess is nonessential. In some other substances, known as "idiochromatic,": the colour is a definite and essential character; for cxample the yellow colour of gold, the red of cinmabar, \&c.; but, eyen here, owing to differences in the state of aggregation and the presence of various impurities, they may be wide variations in colour. Colour is thus a character of little determinative value, especially in minerals which are allochromatic; but it is sometimes a useful guite when taken in conjunction with other characters. An elaborate list of colour-names for descriptive use vas drawn up by A. G. Werner in 1774.
An important character of transparent crystals is that of unequal absorption in different directions; so that light will, as a rule, be differently coloured according to the direction in which it has travelled through the crystal: this is known as dichrotsm or pleochroism (see Crystillograpiy). Certain minerals (e.g. zircon, almandine and those containing cerium) when examined with a spectroscope by transmitted light exhibit characteriatic absorption spectra.
The colours of mincrals may also be due to the taterference. of rays of white light at the surfaces of thin crevices or minute inclusions, either tabular or fibrous in form, in the nineral; for example, the play of colours of opal; the change of colours of Labradorite; the bands of mainbow colours (Ňwton's rings) scen along cleavage cracks and irregular internal fractures (e.g. in quartz); the iridesecnt tarnish due to a superficial film of a decomposition product (e.g. "peacock copper ore"); or the bluish opalescence of raon-stone and cat's.cye.

The true colour of a mineral is best revealed by its "streak." i.c. the colour of its powder. This is obeained by scratching the minetal, or by crushing a fragment of it on a shect of white paper, or rubbing it upon unglazed porcelain. The streak of allochromatic minerals is white, white that of idiochromatic minerals is coloured and is often of determinative value. Ores of iron may, for example, generally be distinguithed by their. strcaks: that of magnetite being Slack; haematite, blood-red;
 may be sicher alhining (d.g. treentite) or dull
Amather cloasacter depending on light is last of lusire, which is often very chacaclatistic in dertain miperala though it may te considerebly modified by the state of aggregation. For eramploy the msial edamant bue luatre of dianond is not eubibited by the conpact agetetate known as carbonedo; while garthy passen of ary mineral will be devoid of lustre. Descriptive cecms applied to the hions of lastre are: metalic. (e,fe pyriiesh masmantiod (diamond), vitreots (quentos), resinous (pysamorphito), greasy (csseoli(e), waty (chaloedony)y pearly (talc beulandite and othes minecsis with a perfect cloavaged, silly (satin-spar), itow. The degtees of inlensity of lustre are described at aptendent, abining, glisteniggy dimmering and dull, and dopend ansually on the smoothaess of the crystal-facos.
The phenotnent of phesphorescence (ga), fuonesceace (g.en)
 elinemala (Sce Eluor-spar, Duscove, tic)

1. Magadic, Eleclrical and Therwal Characters:-These, as far has velatedto crystallino form, ase discussed under crysifallogesphy (ino). Mageotile ("4 ledestone") is the only minered which is ztworgly megnotic with polarity; a few athem, euch at pynholite andpativerplatidub, prosese this cheracter to ai much lees degree Ment mimerala ase, bowever, atracted by the pole of a strong

 graplite is a grod conduckpos whele dearhond is a bad conderton. Hionicouddetort of wlectricity become electified by fuictions, some
 and-aniboth The-keigth of time lating which different exutatoret atain their charge of frietional electricity was made aso af hy R. H. Hatis as a doteminative ciraractes. For the pytoultetideal and thommelectrical characters of crystals
 sylvite and blende-are highly diathermanoeas, ie. transparent bor heritrays.

Therspecticic beit and mefriog point of minerais are essentiol
 sion, but they are not often made ase of. : Difereat. minerals Mfier whdedy in their "fusiblity ": the following soale of Musi*ilizy wat proposed by F. von Sobell:-

". t. 5tibntte	c.)	5. Ortheclase	(
		6. Bramite	,
Imandiper	($269^{\circ} \mathrm{C}$))	7. Quarts	

The ndeling poirtis given above in parentheses ware detiermised by f. Joly. Sulbite readily fuses to a ghobote in a candleflame, While puatis is Infasible even on thic thimesti edge before the - trdinary blotriye.
c. Chameders detpenditer ow Cofarimu-Seme minerals (aff: zhicet of matea) are highly elastic, sporinging back to theit originad shape after boinn went.' Others (eng. tulc) may be readily bert, buit do net relurn to their orightal form whea recemsed; these ate suld to te phitibld of flexitele. Sectile minerala (erg. chorarsfrixe) may be cut with a halfo withoat being fowturedt releted Charatters tre' melleability (2.8 , argentite) and ductility (e.g. cilvert. The rentiaty, or degree of ftangibility of disterent minetals vates wilety; they may be britte, cough, goft or Ytiable. The ifructurted strfate protuced when a mineral is
 of determbutive value; deschpetve teress are! conchoidal (ase. quartz, whete may often be recosmized by lts slaseyi cocechofidal Fracture), suibeotichoidal; utieven, dven, aplintery (eg. jade), thackly or with short sharp points (e.g. copper); icei

- In thatiy cajes when a crysualmied minerai' is btoken it separates in certain definite directions alorg plade sorfaces. Thes 'propety' of "cleavaye" (see Cryetarlography) is an fitiportant evertal character of talacrals, and one.which is often of cohsiderable asstatance in their recogrition. For example, calket, with fis three diwections of perffet deanage parablet to the fwees of a fliorabebodion, ing alway be.reatity
distinguished (mop ongmaita or equater or agin, the parfect cubieal cleavaga pf galena renders this mineral always easy of recognition.
"Hardness," or the, remistance which a substance offers to being scratched by a harder body, is an important character of minerals, and being a test readily applied it is frequently made wec of. It must, however, be rempmbered that the bardness of eo inceherent or earthy aggregate of small crystals will be very diffrent from that of a single crystal. A comparative "scale of hardness" was devised by F. Mohs in 1820 for the purposef of giving a mumerical statoment of the bardness of minerats.

Mohs's Scale of Hordnass.

$$
\begin{array}{ll}
\text { 1. Tale. } & \text { 6. Orthoclase. } \\
\text { 2. Gypsum. } & \text { Calcite. } \\
\text { 3. Quartz. } \\
\text { 4. Fluor-spar. } & \text { 8. Topaz. } \\
\text { 5. Apatite. } & \text { 9. Corundurn. } \\
\text { 10. Diamand. }
\end{array}
$$

These minerals, arbitranily selected for standards, are suc. ceasively harder from talc the noftest, to diamond the hardest of at miaerads: 2 piote of talc is readily scratched by gypsum, and so on throughout the scale. A mineral which is capable of scratching calcite and itself be as easily scratched by fuor-spar is midid to have a hardnesto of 3t. Some care is roquired to avoid error in the determination of hardness: it is best ω select a wnosoth asystaf-face, clenvage-surface or fracture on which to ruban shap coraer of the seratching mineral; the powder should be maped off and the surface examined with a bens to sec if a scratch has really been produced or only powder rubbed of the corner of the mineral with which the scratching was attempted. With a little practice a fuir idea of the hardness of a mineral may be obtained with the use of a knife or file, which will scratch all pinemala.with a hardness of 6 or less Thus iron-pyrites (H. $=61$) and apper-pyrites $(H,=31)$, apatite $(H .=5)$ and beryl
 readily distinguishad by this test. Talc and gypsum can be raadily. sceathed with the finger-nid.

Flapes of parting, etchong figures, pressare- and percussionfrgupes are sometimes characters of importance in describing and distingtishige mbrerals. (See Cryszazlectirery.)
d. Sproific Grandy.-The densidy or specific gravity of mimerals is an esceatial character of considerable determinative value. In minerals of constant composition it bas a definite vilue, but in inomorphous groups it varies with the composition: it aloo, of cource, varies wih the purity of the matcrial. It is a character, which has the edvantege of numerical expression: mianmes range in specific graviay from 101 for copalite to 22.84 for tridimes. The exact delermigatio of the specific gravity of minmals is thertfore a matter of serne importance. Three melteds ate in cotmmon use, viz hydrostatic weighing, the pyocoopoter, and the use of heavg liquids. The first two methods are only applicable when a weighable amount of pure miateriat uan bo mecfed or pieked out; this is, howe ver, generally a mboribus operation, since impurities are often present and msualby zevetat ceptries of snindrals are, closely associatcch, and in selpoting material it is often nexessary to determine some other charactor to make certain that only ope hind is being selecled. Fer.cract determimations the pyonometer method is usually to be recommended, uside for material the pure fragments which have becri meted for quantitative chemical amalysis. With 2 single pare naystal or a faceted gemstone the method of hydrostaic weighing is useally applicsble, providing the stope is not too small. The mote ready wethod, bowever, is that aflorded by the use of a heavy liquid and the most convenient biquid for this purpose is methylene iodide. This is e clear, mobilc liquid with a spesific gravity of 3.33 , and by the addition of benzene, drop hy drop, the specific gavily may be reduced to any desired atmome. With sach a niquid the specific gravity of the minutest frygetat, the panity of which has previousty been scmutinized under the micrescope, tay be rapidty deterrained. The liquid is diuted with benerne ontil the fragment just remains suspended, neither flatiog nor sibking; the specific gravity of the fragment will then be the seme as that of the liquid, and the latter may be deternind by hydmstatic veighing or; more canvenically, by
means of indicators. Small recognizable crystals of the following minerals may be kept at hand as a set of indicators: gypsum (sp. gr. 2.32), colemanite ($2 \cdot 42$), orthoclase ($2 \cdot 56$), quartz (2.65), calcite (2.72), aragonite (2.93), rubellite (3.02), apatite (3.20), dioptase ($3 \cdot 32$), \&c. With a series of tubes containing mixtures of methylene iodide and benzene of different densities and suitable indicators, specific gravities may be rapidly and accurately determined. Values intermediate between those of the indicators may be estimated by a diffusion column of the liquid, or by noting the rate at which the benzene evaporates and the specific gravity of the liquid increases. For use with minerals of specific gravity greater than 3.33 various other heavy liquids have been suggested; the best being thallium silver nitrate ($\operatorname{TlAg}\left(\mathrm{NO}_{3}\right)_{2}$), which melts at $75^{\circ} \mathrm{C}$. to a clear liquid with a density of $4 \cdot 8$, and is miscible with water.
e. Touch, Taste and Smell.-In their action on the senses of touch, taste and smell a few minerals possess distinctive characters. Talc is unctuous or soapy to the touch; tripolite and trachyte are respectively meagre and harsh. Some porous minerals (e.g. clays and hydrophane) adhere to the tongue. Gem-stones may often be distinguished from their glass imitation hy the fact that they feel colder, since they are better conductors of heat. Bitumen and clays, when moistened, have a characteristic smell; pyrites and some other sulphides when rubbed emit a sulphurous odour. Minerals which are soluble in water have taste: e.g. saline (salt), alkaline (natron), bitter (epsomite), astringent (chalcanthite), \&c.

3. Chemical Characters.

Chemical composition is the most important character of minerals, and on it all modern systems of classification are based. A mineral-species cannot, however, be defined by chemical composition alone, since many instances are known in which the same chemical element or compound is dimorphous or polymorphous (see Ceystallography). Thus both the minerals diamond and graphite consist of tbe element carbon; both calcite and aragonite consist of calcium carbonate; and rutile, anatase and brookite consist of titanium dioxide. In such cases a knowledge of some other essential character, preferahly the crystalline form, is necessary, before the mineral can be determined.

All the known chemical elements have been found in minerals; and of many of them minerals are the only source. On the other hand, nitrogen, which is frequently present in organic substances, is rare in minerals; carbon has a wide distribution in mineral carbonates. It is estimated that the minerals of the earth's crust consist of about 47% by weight of oxygen, 27 of silicon and 8 of aluminium; silicates, and especially aluminosilicates, therefore predominate, these being the more important rock-forming minerals.
The chemical composition of minerals is determined by the ordinary methods of analytical chemistry. Since, bowever, minerals of different kinds usually occur intimately associated, it is often a matter of some difficulty to select a sufficiency of pure material for analysis. For this reason the exact composition and the empirical formulae of several minerals, particularly amongst the silicates, still remain doubtful. There are even cases on record in which the chemical composition and the crystalline form have been determined on different materials in the belief that they were the same. Whenever possible, therefore, the chemical analysis should be made on small pure crystals which have been previously determined crystallographically. For the qualitative chemical examination of minerals, when only a small amount of material is available, the methods of blowpipe analysis and microchemical analysis are often convenient. (See G. J. Brush, Manual of Determinative Mineralogy, 16th ed., hy S. L. Penfield, New York, 1903 ; H. Behrens, Manual of Micruchemical A nalysis, London, 1894.)
The principle of isomorphism (see Crystallograpey) is of the highest importance in mineralogy, and on it the classification of minerals largely depends. In some minerals (e.g. quartz) momorphous or vicarious replacement is not known to occur;
but in the majority of mincrals one or other of the predominetting clements (generally the bise, rarely that of the acid radicke) may be isomorphously replaced by equivalent amounts of other chemically-related elements. In some isomorphous groups of minerals replacement takes place to only a limited extent, and the element. which is partly replaced always predomintics; while in otber groups the replacement may be indefinite in exteat, and between the ends of the series the different members may vary indefinitely in composition, with no shapp demarcation between species. Thus in the group of rboanhohedral carbonates the different apecies are usually sharply defined. In well-formed crystals of calcite the calcium is replaced by only small amounts of magnesium, iron, lead, \&c.; in chalybite, however, iron is often morc largely rephaced by calcium, magnexium, manganese, ac., and the "brown spars" are not always readily distinguishable. In the dimorphous group of orthorhombic carbosates isomorphous replacement is less frequent, and the different species (aragonite, cerussite, \&c.) are quite sharply defined. In other groups of minerals, particularly amongst the silicates, isomorphoas replacement of the basic elements is so general that the several members of the series vary almost indefinitely in chernical composition, and will scarcely be the same for any two specimens, though it may be reduced to the same type of formula. For example, the formula of all varieties of garnet may be expressed generally as $\mathrm{R}^{\prime \prime}, \mathrm{R}^{\prime \prime}{ }_{2}\left(\mathrm{SiO}_{4}\right)_{3}$, where $\mathrm{R}^{\prime}=\mathrm{Ca}, \mathrm{Mg}, \mathrm{Fe}$, Mn , and $\mathbf{R}^{\prime \prime}=\mathrm{Al}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{Cr}, \mathrm{Ti}$. Tourmaline affords another good example. In the plagioclase fespars (see Plagiocinss) we have an example of the isomorphous mixing of two endmembers, albite ($\mathrm{NaAlSis}_{5} \mathrm{O}_{2}$) and anorthite ($\left.\mathrm{CaAl}_{2}\left(\mathrm{SiO}_{4}\right)_{2}\right)$ in all proportions and with no sharp line between the several subspecies. In some other similar cases the end-members of the series are purely hypothetical: e.8. in the scapolite group (mixtures of $\mathrm{Ca}_{4} \mathrm{Al}_{5} \mathrm{SinO}_{2}$ and $\mathrm{Na}_{4} \mathrm{Al}_{2} \mathrm{Si}_{5} \mathrm{O}_{31} \mathrm{Cl}$) and in the micas and chlorites. In such instances, where the formulace of the two end-members differ in type, "mass effect" may have some infuence on the isomorphism.

In addition to isomorphous series, there are amongst minerals several instances of double salts, which contaio the same constituents as the members of isomorphous series: e.f. dolomite ($(. v$.) and barytocalcite ($q . v$. .).
The manner in which water enters into the composition of minerals is often dificult to determine. In sozae cases, e.f. ia the zeolites ($q .0$.), it is readily expelled a a low temperature, even at the ordinary temperature over sulphuric acid, and may be reabsorbed from a moist atmosphere or repláced by some other substances: it is then regarded as "water of crystallization." In other cases, when expelled only at a higher temperature, it is to be regarded as "water of constitution," forming either a basic salt (e.g. malachite, $\mathrm{Cu}(\mathrm{OH})_{2} \mathrm{CO}_{3}$) or an acid salt (e.g. dioptase, $\mathrm{H}_{2} \mathrm{CuSiO}_{4}$, and mica, g.o.). When present as hydroxyl it is often isomorphously replaced by fuorine (e.g. topaz, $\left(\mathrm{Al}(\mathrm{F}, \mathrm{OH}) \mathrm{h}_{\mathrm{SiO}}^{4}\right.$). Sometimes the water is parly water of crystallization and partly water of constitution.:
As to the actual chemical constitution of minerals the litte that is at present known is mainly speculative. Dimorphous minerals, which have the same empirical formula may be expected to differ in constitution; and experiments have been made, for example on pyrites and marcasite, wilh the object of discovering a difference, but the conclusions of various investigators are not in agreement. More promising results have been obtained (by F. W. Clarke and others) by the action of various reagents on silicates, particularly on the more readily decomposed zeolites, and several substitution-derivatives have been prepared.

Synthesis of Linerals.-The production of minerals by artificial means is a hranch of chemical mineralogy which bas been pursued with considerable success, especially by French chemists. Most minerals have been obtalned artificially in a crystallized condition, and many related compounds, not as yet found in nature, have also been prepared. Crystals of artificially prepared minerals, though usually quite small in size, possess all the essential characters of natural crystals, differing Irom these only in origin. The following are the principles of some of the
methods which have been used: simple sublimation (es. arsenolite); interaction of gases (e.g. haematite, from stemm and ferric chloride; cassiterite, from steam and stannic cbloride or fluoride); action of gases on liquids and solids; slow cooling of fused masses, either with or without the presence of agens mintratisatews (e.s. minerals in furnace slags); from aqueous solution sometimes at a high temperature and under pressure (e.g., quartz); clectrolysis; or even by subjecting dry amorphous material to enormous pressure. The chemical reactions by which various minerals have been obtained are often of considerable belp in speculating as to their mode of origin in nature, though it must be born in mind that the same mineral may have been formed, both naturally and artificially, by more methods than one. In this direction important results have been obtained experimentally by J. H. van't Hoff and his pupils on the formation of occanic salt deposits, and by J. H. L. Vogt with slags. Many minerals used as gem-stones have been prepared artificially, e.g. diamond and ruby (see Gews: Arrificial).

II-Occurrence and Origin of Minerals

While some minerals are of rare and sporadic occurrence in rock-cavities and mineral-veins. others are widely distributed as important constituents of rocks. The same mineral species may have several distinct modes of occurrence and crigin, and he associated. with different minerals in each case; facts which are well illustrated by quartz (q.v.).

Minerals of Igneous Rocks.-The rock-forming minerals of primary origin in ignoous rocks have crystallized out from the magraa, or fused silicate-mass, which on consolidation gave rise to the rock-mass. Magnas sometimes contain a considerable amount of water and are then in a state of aqueo-igneous fusion, rather than of dry fusion: in such cases very coarsely crystalline rocks (pegmatites) often result, and under these conditions minerals of many linds are formed as well-developed crystals. Those minerals which are present in large amount in igncous rocks are distinguished as essential constituents, since it is on these that the classification of igneous rocks is largely based: the most important are quartz, felspars, pyroxenes, amphiboles, micas and olivines. Felspars of different composition are present in almost all kinds of igncous rocks, while quartz and olivine are characteristic of acid (e.f. granite, rhyolite) and basic (e.g. basalt, peridotite) rocks respectively. When the magma contains alkalies in relatively large amount the "felspathoid" minerals, nepheline and leucite, are formed (e.g. in nephelinesyenite, leucite-basall, \&c.). Other minerals occurring as primary constituents, but only in small amounts, are distinguished as accessory; thus small crystals of magnetite, apatite, zircon, \&c., are of frequent occurrence disseminated in igneous rocks (see Petronocy). Sometimes these accessory constituents are concentrated by magmatic differentiation, important oredeposits sometimes resulting in this manner (e.g. of chromite, or nickel-bearing pyrrhotite). The alteration of igneous rocks by weathering and other processes results in the alteration of some or all of the primary minerals with the production of others, which are spoken of as secondary minerals: thus felspars are often partly or wholly altered to kaolin, olivine to serpentine, pyroxene and mica to epidote, chlorite, 8 zc

Minerals are also formed by the vapours given off by igneous magmas. The gases emitted by volcanoes and solfataras may deposit directly by sublimation, or by their chemical interaction, such minerals as sulphur, sal-ammoniac, haematite, which occur, for instance, as incrustations on Vesuvian lava: the boric acid of the Tuscan lagoons has also originated in this way. The effects produced by the exhalations of deep-seated magmas are more complex in character, since the vapours, being more confined, have more opportunity of acting chernically not only on the surrounding rocks but also on the igneous rock-mass itself before its final consolidation. A good example of the "preumatolytic" action produced by the vapours from a mass of granitic magma is afforded by veins of tin-ore, in which the ore (cassiterite) is associated with minerals containing boron and flworine, such as topaz, tourmaline, lepidolite, fluor-apatite
and fluor-spar. The production of sach mineralk may be accounted fer by assuming the presence of stamic fluoride in the vapours, which by reacting on water vapour would deposit cassiterite with the liberation of hydrofuoric acid, and this would again react on other minerals. The topas and tourmaline crystals often found in the cavities of granites and pegmatites have doubuless been formed in this manoer. In a similar way the exhalations of basic magmas have given rise to chlor-apatite with associated sphene and ilmenite, as, for example, in the extensive apatite veins in connexion with gabbro in southern Norway.

Minerals of Metamorghic Rocks.--By the baking action of a deep-seated igneous mass on the surrounding rocks or an included rock-fragments, various new minerals are developed. By this process of thermal or contact-metamorphism wellcrystallized examples of many minerals have often been formed; e.g. in calcareous rocks (limestones), especially those cantaining some magnesia and silica, vesuvianite, garnet, diopside, tremolite, wollastonite, \&c, are developed; in argillaceous rocks (shtes), chiastoite and stauroite are characteristic products; and in arenaceous rocks (sandstones), cordierite and sillimanite of tea result. The effects of pressure (dynamo-metamorphism) om rocks of various kinds, especially those of igneous origin, also result in the production of new minerals: e.g. pyrozene is transformed to amphibole, orthoclase to muscovite, plagiodase to zoisite, olivine to tremolite, \&c. In gneisses and crystaline schists, quartz, felspar, mica, talc, amphibole, \&ec are important constituents.
Mincrals of Sedimentary Rocks.-By the weathering and disintegration of igneous and metamorphic rocks the various minerals set free and the products of decomposition of others supply the material of sodimentary rocks; thus sandstones consist largely of quartz, shales of kaolin and other clay minerals Those minerals (e.g. gem-stanes and gold) whicb resist the action of weathering processes are found as watcr-worn pebbles and grains in detrital deposits. Other sedimentary rocks consist of mineraks deposited from solution either by chemical or organic agencies, from sea-water, lakes or springs: e.g. the calcite of limestones, deposits of bog-iron-ore (iimonite), gypsum, rocksalt, dc.

Minerals Segregated in Veins and Rock-aavises.-Water pesrcolating through rock-masses takes up mineral matter io solution, and the solutions so formed may further react on the minerals composing the rocks. Such solations will deposit some of their dissolved material in rock-cavicics with the production of various minerals. For instance, the amygdaloidal cavities of basic volcanic rocks (a.g. basalt, melaphyre), capecially when the rocks are somewhat weathered, are frequently parily or completely filled with agate or besutifully crystallised zeolites, calcite, \&c. The crevices and joint-planes of limestone become in this way coated with crystals of calcite, and those of siliceous rocks with quartz, giving rise to the abundantly occurring quartzveins. In sedimentary rocks, pyrites, fiint and other minerals become segregated round a nucleus of organic matter. The beautiful crystal-lined crevices in the crystaline rocks of the Alps have much the same origin, and so have the various types of ore-deposits, including metalliferous veins or lodes. In the lat ter cases, however, the solutions are no doubt sometimes of deep-seated origin and often connected with igneous and metamorphic processes. Metalliterous veins are storebouses of crystalized minerals of almost every kind, some being the ores themselves and others, such as quartz, calcite, barytes, fluorspar, being gangue minerals. By the weathering of the metallic minerals of mineral-veins numerous other finely crysallized mainerals result: for exampie, in the upper oxidized portion of veins of lead-ore (galena), crystals of anglesite, cerussite and pyromorphite are aften met with; in veins of copper-ore the alteratioa of chalcopyrite gives rise to malachite, chessylite and cuprite.

Alleration of Mincrals: Psoudomerphs.-Crystals which have been formed under one set of conditions of temperature and pressure and in the presence of.certaia solutiona, will in many
chses be uastable under ahother set of eonitions: The cirystatis may then be corroded ar oven completely redksolved, or the substance may andergo a chemical or phywical change and give rise to the formation of other mineeds which are stable under the new conditiona. The resultas of such changes and akerations of minorals are very frequently to be observed in nature, and scveral instanots hrued adready been cited in the preceding soction. A good example of the secondary products which may nesult hy the decemperition of a mineral is 4 forded by pyrites (FeS_{2}), of which two' typos of atheration may be dibtingtished. By oxidation in the presence of pure water it gives rise to ferrous suphate (molanterite), fitee sulphur and sulphuric acid; the amelantorite by furthar altaration gives uarious basic fernic sulphates (copiapite, fic.); and the sulphuric recid hy acting on sumounding rocks (limestone, clay, tec.) gives rise to the formation of sypsum, slumintte and other sulphates. By the action of waber containing orygen and caldum carbonate in solatiop, pyrites suffers another kind of alteration: the salphur is carried away in solution as gypsum and the iton' is left behind as a ferric hydroxide (bmonite) whieh preserves the originat form of the crystale. Wo have then a pseudomorplo (from لendion false and mop巾h, form) of limonite after pyrites; i.e. limonite with the eaternal form of a crystal of pyrites.

Preadomorphs are frequertly met with in nature, and they are of considetable importanec in studying the changes which minerds undergo. Several kinds of pseudomorphs aro to be distinguished. When the alteration has involved no change in chemical composition of the materfal, but only in the internal crystalline stracture and physical properties, the altered crystal is called a "parnmorph." For example, erystals of aragonite are often altered to a confused granular agsiegate of crystalline individaals of calcite, the change being acompanied by an increase in specific gravity hut without ohange in externdl form: buch a change may be effected artificiatly by bintply heating a erystal of aragonite. Other asamples of paramorphs are rutile whith the form of anatases and hornblende with the form of augite. An "r cpimorzh " results from the encrustation of one mineral by another; the first may be afterwards partly or wholly dissolved out, icaving the second as a holiow shell (e.g. chalybite after fuor-spar). As instances of pseudomorphs in which there has heen some chemical change the following may be citcd: by the gain of chemical constituents, e.g. malachite after cuprite; by the loss of material, e.g. native copper after cuprite; or by an interchange of constituents, e.g. galena after pyromorphite and limonite after pyrites. In other cases there may be no evidett themical relationship between the two minerals, as, for example, in pseudomorphs of native copper after aragonite or quartz after calcite. Different minerals may also take the form of various organic remains.

Ifl-Domanclature ath Classitication of Minorale.

A minomal epecies, or simple mineral, is complotely defined by tine statectiont of itts ehemical composition and crystalline form. When we are dealing with a definite chemical compoand the finitation of spacies is easy enough; thos corundam; cassferite, geilenh, bteorde, \&c. are quite sharply defined mineral specios. But whit twomorphous mixtares the divisiod into epecies, or into sub-species and varieties, mast be to a certiin oxtent arbltrang, there being no sharp lines of demarcation in many lisomorphous groups of miserita. Thus the she mineral tourmalise the themleal compositioa veries indefinitely between wide simits, but ino corresponcting diferenct dan be insed in the erystalline form or fin the enternal chartocere nave colour and epetific gravity. thothe aathers tave therefore queationed the idvisabitity of teaparding minerals fanto spocies each with ditainctive names, and they have attempted to devise chemical mamee for the vifferemt kinds of mantralo. Owing however, to the frequency of polymorphism and isomorphism amongst mineral substances wich a system presents meny practical tirticulties. Thus the linee modificationt of titaniumi diowide art more simply and

 tourmaline would be quite impracticable. Further, Jater investigations of ten show that such chemical names require revision, and hence confusion may arise.

The practice of giving distinct names to diferent kinds of minerals dates from very early limes (e.g. diamond). The common termination ile (originally itis or ites) was adopted by the Greeks and Romans for the names of stones, the names themselves indicating some character, constituent, or use of the stone, or the locality at which it was lound. For example, hacmatite, because of the blood-red colour; siderite, containing fron; alabaster (originally alabastritis); a stone from whith a vessel called an aldbastron was cut; magnesite, from the locality Magnesia. The custom of naming minerals after persons is of modern origin; e.g. prehnite, biotite, hailyne, zoisite. Unfortunately there is a lack in uniformity in the termination of mineral names, many long-established names being without the termination ile, c.g. beryl, blende, felspar, gatnet, gypsum, quartz, zircon, 8 c . The termination ine is also often uscd, c.g. nepheline, olivine, serpentine, lourmaline, \&ic.; and many others were introduced by R. J. Haly without much reason, e.g. anatase, dioptase, epidote, analcime, sphene, \&ic. (sec A. H. Chester, A Dictionary of the Names of Mincrals, New York, 2896).
The number of known mincral species differs, of course, according to different authors; roughly there may be said to be about a thousand. The total number of mineral names (apart from chemical names), many of them being applied to triviat varieties or given in error, amount to about 5000 .

Minerals may be classified in different ways to suit different purposes; thus they may he classified according to their uses, modes of occurrence, system of crystallization, \&c. The earlier systematic classifications, being based solely on the external characters of minerals, were on natural history principles ard too artificial to be of any valuc. J. J. Berzelius, in 1815, was the first to propose a purely chemical system of classification: has primary divisions depended on the basic (electro-positive) element and the sub-divisions on the acid (electro-negativa) ekment. Such a method of classification, though still in usc for metalic ores, must be quite arbitrary or give rise to much duplication; since, apart from isomorphous replacement, many minerals contain more than one metal. The systematic classifications in use at the present day are modifications in detail of the erystalle-chemical system published by G. Rose in 185% Ifcre there are four main divisions, viz. elements; sulphides, arsenides, \&ec; halogen compounds; and oxygen compounds: the last, and largest, division is subdivided into oxides and atcording to the acid (carbonates, silicates, sulphates and chromates, phosphates and arsenates, \&c.); in each section tomorphous minerals are grouped together. The classifications axlopted by different authors differ much in detail, especially in We large section of the silicates, which presents many difficulties and for which no satisfactory classifiation has jet been devisu.
 following may be given. Except in a few defails it is the classification of Dana's System of Mineraiagy (bth ed., 1892). Only those minerals whick are described under their respective beadings in these volumes are included: the list therefore serves, at the same time, as an enumetation of the more common and important species and varietles of minerals, and as a syistem of classifieation it is necessarily incomplete. Species belonging to the same isomorphous group are bricketed together: tarieties are give in parentheses after the species to which they belong.: The chemical composition of each species is given by the formula; and the crystaldystem by the inftial letters C (cuble), It fetragonal), \mathbf{O} (orthorhombic), M (monoclinic), A (anoththc), H (hexàgonal) and R (rhombehedral): when the crystal cfass is definitely known to be some other than the holosymmetric this is indieated by a number corresponding to those used in the arikle Caystallogiansfy; e.g. C_{2} for the tetrahedral ciass of the cubic syatem.

d. Orthosilicates, $\mathrm{R}^{\mathbf{\prime}} \mathrm{SSiO}_{4}$
Nepheline - -
Sodalite
Lazuritel

Olivine (Chrysolite, Peridot)
$\left\{\begin{array}{l}\text { Phenacite } \\ \text { Willemite } \\ \text { Dioptase }\end{array}\right.$
Scapolite
Vesuvianite
 R_{4}
R_{4}
R_{4}
T_{3}
$\left\{\begin{array}{c}\text { Zircon } \\ \text { Hyacinth, Jacinth, }\end{array}\right.$$\mathrm{Hr}_{2} \mathrm{Cab}_{6}$
ZSSiO_{4}T (Hy

$\left\{\begin{array}{l}\text { Danburite } \\ \text { Topaz } \\ \text { Andalusite } \\ \text { Sillimanite }\end{array}\right.$

ThSiO.
$\left.\mathrm{CaB}_{7}(\mathrm{SiO})_{2}\right)$
[Al(F, OH) ${ }^{2} \mathrm{SiO} \mathrm{O}_{4}$
$\mathrm{Al}^{\mathrm{Al}_{1} \mathrm{SiO}_{4}}$
$\mathrm{Al}_{2} \mathrm{SiO}_{3}$
Cyanite
$\left\{\begin{array}{l}\text { Datolite } \\ \text { Euclase }\end{array}\right.$
Zoisite
Epidote
Axinite
Prehnite
c. Subsilicates.

Humite
Hemimorphite
Tourmaline (Rubellite)
Staurolite

Apophyllite
ates.
$\mathrm{H}_{3} \mathrm{KCa}_{4}\left(\mathrm{SiO}_{3}\right)_{4}+4 \mathrm{SH}_{2} \mathrm{H}$
$\mathrm{H}_{4} \mathrm{CaAl}_{4}\left(\mathrm{SiO}_{3}\right)_{3}+{ }_{3} \mathrm{H}_{5} \mathrm{O}$
$\left(\mathrm{K}_{2}, \mathrm{Ca}\right) \mathrm{Al}_{2}\left(\mathrm{SiO}_{3}\right)_{1}+4 \mathrm{H}_{3} \mathrm{O}$
$\mathrm{H}_{2}\left(\mathrm{~K}_{5}, \mathrm{Ba}\right) \mathrm{Al}_{2}\left(\mathrm{SiO}_{2}\right)_{3}+5 \mathrm{H}_{2} \mathrm{C}$
$\left(\mathrm{CaAl}_{3}\left(\mathrm{SiO}_{2}\right)_{\mathrm{C}}+6 \mathrm{H}_{4} \mathrm{O}\right.$
$\left(\mathrm{Ca}_{1} \mathrm{Na}_{2}\right) \mathrm{Al}_{2}\left(\mathrm{SiO}_{4}\right)_{2}+4 \mathrm{H}_{2} \mathrm{O}, \& \mathrm{\&} . \mathrm{R}$
$\mathrm{NaAl}\left(\mathrm{SiO}_{2}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Na}_{3} \mathrm{Al}_{3} \mathrm{Si}_{3} \mathrm{O}_{10}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{CaAl}_{2} \mathrm{Si}_{3} \mathrm{O}_{14}+3 \mathrm{H}_{3} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{KAl}_{3}\left(\mathrm{SiO}_{4}\right.$),
$\mathrm{KLilAl}\left(\mathrm{OH}, \mathrm{F}_{3}\right)_{3} \mathrm{Al}\left(\mathrm{SiO}_{3}\right)_{5}$
$(\mathrm{H}, \mathrm{K})_{2}\left(\mathrm{Mg}, \mathrm{Fe}_{2}\right)_{8} \mathrm{Al}_{8}\left(\mathrm{SiO}_{4}\right)_{2}$
($\mathrm{H}, \mathrm{K},(\mathrm{MgF})_{2} \mathrm{Mg}_{3} \mathrm{Al}\left(\mathrm{SiO}_{6}\right)_{3} \quad \mathbf{M}$
$\mathrm{H}_{3}\left(\mathrm{Fe}, \mathrm{Mg}_{\mathrm{g}}\right) \mathrm{Al}_{2} \mathrm{SiO}_{7}, \& \mathrm{C}$.
$\mathrm{H}_{4}\left(\mathrm{Mg}, \mathrm{Fe}_{3}{ }_{3} \mathrm{Al}_{2} \mathrm{Si}_{3} \mathrm{O}_{\mathrm{r},}, 8 \mathrm{c}\right.$.
$\mathrm{H}_{4} \mathrm{Mg}_{3} \mathrm{Si}_{2} \mathrm{O}_{2}$
$\mathrm{H}_{3} \mathrm{Mg}_{8}\left(\mathrm{SiO}_{2}\right)_{4}$
$\mathrm{H}_{4} \mathrm{Mg}_{\mathrm{H}} \mathrm{SHi}_{3} \mathrm{O}_{5}$
Amor, ${ }^{\mathbf{M}} \mathbf{M}$
(Bole Clay)
Pyrophylite
Allophane
Chrysocolle
$\mathrm{Al}_{2} \mathrm{SO}_{4}+5 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{CuSiO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
C. Tifanosilicales,

Sphene
Perofskite
3. Niobates, Tantalates.

Columbite
Phosphates, Arsenates, ác.
A. AnhydrousPhosphafes. \&ic.
Monazite
Berllonite
$\left\{\begin{array}{l}\text { Apatite } \\ \text { (Phosphorite) } \\ \text { Pyromorppite } \\ \text { Mimetite } \\ \text { Vanalinite } \\ \text { Amblygonite }\end{array}:\right.$
(Ce,La,Di)PO
$\underset{\left[\mathrm{Ca}(\mathrm{F}, \mathrm{Cl}) \mid \mathrm{Ca}_{4}(\mathrm{PO})_{4}\right.}{ }$
M
$\left[\mathrm{Ca}(\mathrm{F}, \mathrm{Cl}) \mid \mathrm{Ca}_{4}\left(\mathrm{PO}_{4}\right)_{2}\right.$. H_{2}
$(\mathrm{PbCl}) \mathrm{Pb}_{4}\left(\mathrm{PO}_{4}\right) \quad$. . H_{2}
$\left(\mathrm{PbCl}^{2}\right) \mathrm{Pb}_{4}\left(\mathrm{AsO}_{4}\right)$. . H_{2}
(PbCl$) \mathrm{Pb}_{4}\left(\mathrm{VO}_{4}\right)_{3}$
$\mathrm{Li}(\mathrm{AlF}) \mathrm{PO}$,
$\mathrm{Cu}_{2}(\mathrm{OH}) \mathrm{AmO}_{4}$
${ }_{(\mathrm{Cb}, \mathrm{Zn})(\mathrm{OH}) \mathrm{CO}_{4}}$
O
M
M
Cinoclasite
$\mathrm{Cu}_{3}(\mathrm{OH})_{3} \mathrm{AsO}_{6}$
$\mathrm{Fe}_{2}\left(\mathrm{PO}_{4}\right)_{3}+8 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Co}_{2}\left(\mathrm{AsO}_{4}\right)_{2}+8 \mathrm{H}_{4} \mathrm{O}$
$\mathrm{Nis}_{3}\left(\mathrm{AsO}_{4}\right)_{2}+8 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Al}_{1}(\mathrm{OH})_{3}\left(\mathrm{PO}_{4}\right)_{2}+4 \mathrm{~A}_{4} \mathrm{H}_{2} \mathrm{O}$

Childrenite
 Liroconite
 \{Torbernite
 ($\mathrm{Fe}, \mathrm{Mn})_{\mathrm{A}}(\mathrm{OH})_{3} \mathrm{PO}_{4}+\mathrm{H}_{5} \mathrm{O}$ $\mathrm{Cu}_{2} \mathrm{Al}_{4}(\mathrm{OH})_{1}\left(\mathrm{AsO}_{4}\right)_{4}+2 \mathrm{OH}_{3} \mathrm{O}$ $\mathrm{Cu}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2}+12 \mathrm{H}_{4} \mathrm{O}$
 5. BORATES.
 Boracite Colemanite Borax
 6. Nit Rates.
 $\mathrm{Mg}_{1} \mathrm{Cl}_{2} \mathrm{~B}_{\mathrm{n}} \mathrm{O}_{n}$
 $\mathrm{Ca}_{3} \mathrm{~B}_{0} \mathrm{O}_{11}+\mathrm{H}_{4} \mathrm{O}$ $\mathrm{Na} \mathrm{B}_{4} \mathrm{O}_{7}+10 \mathrm{H}_{3} \mathrm{O}$
 KNO_{3}.

7. Sulphates and Chromates
A. Ankydrows Bulohafes, Era

C.

8. Tungstates, Molybiates

VII-HYDROCARBON COMPOUNDS.

1. Simple Hydzocarbons.

Hatchettine, Ozocerite.
2. Oxygenated Hydrocarbons.

Amber, Retinite. Copaline, Bathvillite, Dopplerite.
3. Appendix tô Hydrocarbons.

Petroleum, Asphaltum, Bitumen, Elaterite, Albertite, Coal, Anthracite, Jet, Lignite.
References.-Elementary introductions to the study of minerals are: E. S. Dana, Minerals and how to study them (New York, 1895); A. J. Moses and C. L. Parsons, Elements of Mineralogy, Crystallagraply and Blowpipe Analysis from a Practical Standpoint (4th ed., Now York, (1007): L. Fletcher, An Introduction to tho Sisdy of Minerals (British Museum Guide-book). A larger work on popular lines is: R. Brauns, The Mineral Kingdom, Eng. trans. by L. J. Spencer (Stuttgart, 1go8, \&c.). Textbooks for students are: H. A. Miers, Mineralogy, an Introduction to the Sciemifice Siudy of Hincrals (London, 1902); E. S. Dana, Textbook of Mineralogy (3 rd ed., New York, 1898): and in German: C. F. Naumann. Elemente der Mineralogie (15th ed., by F. Zirkel, Leipzig, 1907): G. Tschermak, Lehrbuch der Mineralogis (6 h edl., Vienna, 1905). The standard works of reference for descriptive minerslogy are: J. D. Dana, System of Mineralogy (6th ed., by E. S. Dana, New York, 1892): C. Hintze, Handbuch der Mineraiogie (Leipzig, 1808, \&c.), the latter gives full details respecting the localitics of minerals; P. Groth, Chemische Krystallograptic (Leipzig, 1906, \&c.).

For special branches of mineralogy reference may be made to the fallowing works: R. Brauns, Chemische Mineralugie (Leiprig, 1896); H. Roseıbusch, Mikroskopische Plysiogrophie der Mineralice und Gcsteine, Band 1, Die petrographisch-wichtigen Mineralien, $4^{\text {th }}$ ed., by H. Rosenbusch and E. A. Wülfing (Stuttgart, 1904-1005); J. P. Iddings, Rock Minerals (New York, 1906); P. Groth, Tabellavische Obersicht der Mineralien (4th ed., Braunschweig, 1898); G. P. Merrill, The Non-metallic Minerals, Lheir Occurrence and Uses (New York, 1gof); G. J. Brush, Manual of Determinative Mineralogy (6 th ed., by S. L. Penfield, New York, 1903); M. Bauer, Edelstein. kunde (2nd ed., Leipzig, 1909), and Eng. trans. Precious Slones, by L. I. Spencer (London, 1904)
whe more important topographical works are: R. P. Greg and W. G. Lettsom, Manual of the Mineralogy of Great Britain and Ireland (London, 1858): J. H. Collins, Mandbook to the Mineralagy of Cornwall and Deson (Trurb, 1871); M. F. Heddle, Mineralogy of Soolland (z vols., Edinburgh, 1901); A. Lacroix, Minéralogie de la France et de ses colonies (3 vols., Paris, 1893, \&c.): O. Luedecke. Die Minerale des Harzes (Eerlin, 1896): A. Frenzel, Mineralogisches Lexicon für das Könipreich Sachsen (Leipaig, 1874); A. Kenngott. Die Minerale der Schweiz (Leipzig, 1866); V. von Zepharovich, Mineralogisches Lexicon fiir das Kaiserthum Osterreich (3 vols., Vicnna, 1859-1893); N. von Koksharov, Materalien zur Mineralogie Rarsslands (11 vols, St Petersburgr, 1853-1882): T. Wada, Minerals of Japan (Tokyo, 1904); A. Liversidge. The Minerals of New South Wales, \&c. (London, 1888); O. B. Böggild, Mineralogia Groentandica (Copenhagen, 1905): A Celalogue of Americas [U.S.A. and Canadal Loralities of Minerals is given in Dana's Syslem of Mineralogy.
The following scientific journals are devoted to mineralogy: Neues Jahrbuch für Mincralogie. \&c. (Stuttgart. since 1807): Tachermaks Mineralogische und pelropraphische Milleilungen (Vienna, since 1872); The Mineralogical Mugazine and Journal of the Mineralogical Sociely (London, since 1876); Zeilschrift fü

Trysiallographic mad Mineralogie, ed. by P. Groth (Leipzig, since 1877) ; Bulletin de la socieds frangaise de mineralogie (Paris, since 1878) : Rivista di mimoralogia e cristallografia (Padova, since 1887).
(1. J. S.)

CIMERAL WATERS. No absolute lipe of demareation can be drawn between ordinary and mineral waters. There is usually in the latter an excess of mineral constituents or of temperature, but some drinking waters contain more mineral constituents than others that are called mineral waters, and many very pure waters, both cold and warm, have been regarded for ages as mineral springs.
As to the origin of mineral waters, there is much in what the elder Pliny said, that waters are such as the soil through which they flow. Thus in limestone and chalk districts an excems of lime is usually present; and the waters of a particular district have much resemblance to each other-as in the Eifel, in Auvergne, and in the Pyrences. But this is only a partial explanation, for waters are by no means necessarily uniform throughout a particular geological formation. We do not know with any certainty the depth from which various mineral waters proceed, nor the various distances from the surface at which they take up their different mineral constituents.
, The source of the temperature of thermal waters remains a subject of much uncertainty. Among the assigned causes are the internal heat of the globe, or the development of heat by chemical or electrical agencies in the strata through which they arise.
Their occasional intermittence is doubtless often dependent on the periodical generation of steam, as in the case of the Geysers. A. few geological facts are certain, which bear on the origin of mineral waters. Such springs are most abundant in volcanic districts, where many salts of soda and much carbonic acid are present. They occur most frequently at meetings of stratified with unstratified rocks, in saddles, and at points where there has been dislocation of strata.

The diffusion of mineral waters is very extended. Pliny was quite correct in observing that they are to be found on alpine heights and arising from the bottom of the occan. They are found at the anow in the Himalayas and they rise from the sea at Baiae and Ischia. They are to be found in all quarters of the globe, but more particularly in valcanic regions, as in the Eifel and Auvergne, in the Bay of Naples, and parts of Greece, in Iceland, New Zealand and Japan. But there are few countries in which they are not to be found, ercept in very flat ones, and in deltas of rivers-for instance, in the north of France, where they are very few, and in Holland, from which they are absent. France, Germany, Italy and Spaiu, as well as Greece, Asia Minor, and the Cavcasus, are all rich in mineral waters. The British Isles have a fair though not very large proportion of them. There are a few in Sweden and-Norway. They are abundant in the United States, less so in Canada. They are found in the Azores and in the West India Islands. Of their occurrence in the interior of Africa or of Australia we know little; and the eame is true of South America. But they are met with in Algiers, in Egypt, and in the Holy Land. The vast Indian peninsula has for its size a comparatively small supply.

Mineral waters, when analysed, are found to contain a great many substances, although some of them occur only in very minute quantities: soda, magoesia, calcium, potash, alumina, iron, boron, iodine, bromine, arsenic, lithium, csesium, rubidium, fuorine, barium, copper, zinc, manganese, strontiom, silica, phosphorus, besides extractive matters, and various organic deposits known under the name of glairin or baregin. Of gases, there have been found carbonic acid, hydrosulphuric acid, nitrogen, hydrogen, oxygen and ammonia. Of all these by far the most important in a therapeutic point of view are sodium, magnesia and iron, carbonic acid, sulpbur, and perhaps hydromalphuric acid. These substances, detected separately by chemists, are in their analyses comhined by them into various calts, if not with absolute certainty, undoubtedly with a close approximation to it. Tbose combinations are very numerous, and some waters contain ten to twenty of them; but there are
always some predominating ooes which mark their character, while many of them, such as caesium, rubidium, or fluorine, occur in mere traces, and cannot be assumed to be of any real importance. Mineral waters therefore resolve themselves into weaker or stronger solations of salts and gases in water of higher or lower temperature. For medical purposes they are used either externally or internally. As the quantity of salts present commonly bears but a very small proportion to that of the fluid containing them, water becomes a very influential agent in mineral-water treatment, about which it is therefore necessary to say something.
For the action of mineral-water baths see Balneotherapeutics. According to the most generally received opinion, the cutaneous surface does not absorb any portion of the salts in a mineral-water bath, although it may absorb a little gas (and alkaline water, for instance, at most acting as a slight detergent on the skin), and that neither salts nor gases have any action on the system, except as stimulants of the skin, with partial action on the respiratory organs.

It seems to be ascertained that drinking considerable amounts of cold water reduces the temperature of the body, diminishes the frequency of the palae, and increases the blood pressure temporarily. Water when introduced into the stomach, especially if it be empty, is quickly absorbed; but, although much of the water passes into the veins, there is no proof that it ever produces in them, as is sometimes supposed, a state of fluidity or wateriness. Therapeutically, the imbibition of large quantities of water leads to a sort of general washing out of the organs. This produces a temporary increase of certain excretions, augmented diuresis, and a quantitative increase of urea, of chloride of sodium, and of phosphoric and salphuric acids in the urine. Both the sensible and the insensible perspirations are augmented. A draught of cold water undouhtedly stimulates the peristaltic action of the intestines. On the whole water slightly warm is best borne by the stomach, and is more easily absorbed by it than cold water; and warm waters are more useful than cold ones when there is much gastric irritability. In addition to the therapeutic action of mineral waters, there are certain very important subsidiary considerations which must not be overlooked. An individual who goes from home to drmk them finds himself in a different climate, with possibly a considerable change in altitude. His diet is necessarily altered, and his usual home drinks are given up. There is change in the hours of going to bed and of rising. He is relieved from the routine of usual duties, and thrown into new and probahly cheerful society. He takes more exercise than when at home, and is more in the open air, and this probably at the best season of tbe ycar. So important has this matter of season and climate been found that it is an established axiom that waters can be used to the greatest advantage during tbe summer months and in fine weather, and during the periods most convenient for relazation from business Summer is therefore the bath season, but of late years provision has beer made in many places, with the aid of specially constructed rooms and passages, for carrying out cures satisfactorily during the winter season, a.g. at Aix-la-Chapelle, Wiesbaden, Baden Baden, Baden in Switzerland, Dax, Vich y and Bath. The ordinary bath season extends from the Isth of May to the 20th or zolh of September. The season for baths situated at cousiderable elevations commences a month later and terminates some ten days earlier. Mineral waters may be employed at home, but patients seldom so use them; and this necessarily limits the time of their use. It is common to declare that the treatment should last for such or such a period. But the length of time for which any remedy is to be used must depend on its effect, and on the nature of the particular case. It is found, however, that the continued use of mineral waters leads to certain disturbances of the system, which have been called crises, such as sleeplessness, colics and diarrhoea, and to skin eruptions known as la pousste. This cause, and also certain peculiarities of the female constitation, have led to the period of tbree weeks to a month being considered the usual period for treatment. A certain after-treatment is often prescribed-such as persistence
in a particular diet，visiting springs or climates of a diferent and usually of a tonic character，or continuing for a certain thoe to drink the waters at home．It may be added that che advantage of having recourse to mineral witess is often felt more after then during treatment．

Since improved methods of bottling have been discovered， and the advantage of an additional supply of carboaic acid has heen appreciated，the export of waters from their sources has increased enormously，asd most of the principal waters can now be advapiageouly used at home．It may be added that many of the artificial imitations of them are ericellent．

The history of the use of mineral waters can oaly just be
a good deal of nitrogen in some of them；the quantity of hydror sulphuric acid，even in strong sulphuric waters，is wondertuly small；but the volume of carbonic acid present is often vary large－foz instance，in the case of Kissingen，Schwalbach and Selters．The immediate effect of the carbonic acid which they contaln ha that of pleasant stimulation to the storach and system． Extremely little appears to be known of its actual operation on the system：a part of what is swallowed is retamed by eructation， and a part passes on to the intestines；whether any epprectible quantity reaches the blood is doubtful．There is no question that carbonic acid hacreanes diuresis．Practicslly it＇fs fourd to aid digestion，helping the functioss of the stomach；and ini

Table I．－Typical Mineral Waters．

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& 1wifleomh Gaskin． \(90^{6}-14\) \& Bathy． Leoik． 1238. \& \begin{tabular}{l}
som． \\
Kissingen
\end{tabular} \& soll. \& \& \begin{tabular}{l}
Jrom． \\
Schwalbach．
\end{tabular} \& Allofine． Vicho． \(3958^{\circ}\) ． \& \& Sotcianh \& \\
\hline \begin{tabular}{l}
Solids． \\
Bicarbonate of soda． －potash
\end{tabular} \& 二 \& 二 \& \& 二 \& \({ }^{0.6449}\) \& \(0 \cdot 0206\) \& 4.883
0.352

0 \& 1.92 \& $1 \cdot 2$ \&

\hline magneaia \& 0.0017 \& 0.073 \& 0.017 \& 5 \& 0.0506 \& $0 \cdot 1$ \& $0 \cdot 303$ \& 0． 28 \& \square \&

\hline Sulphate＂ol soda．calcium ： \& －0．019 \& 0.012
0.050 \& 1－06 \& $2 \cdot 38$ \& 0.157
0.2831 \& 0.2213 \& 0.434
0.292 \& 2．428 \& \square \&

\hline 1\％potash \& 0.0135 \& 0.038 \& － \& － \& $0 \cdot 1527$ \& 0.079
0.0037 \& $0 \cdot 29$ \& 2.37
0.16 \& 二 \& －

\hline $\because \quad$ magnesia \& － \& 0.308 \& 0.588 \& 2.96 \& \& － \& \sim \& － \& 0.46 \& 16.0

\hline Sulohi＇de of catium． \& － \& $1 \cdot 5$ \& ${ }^{0.389}$ \& 0.25 \& 0.01 \& \cdots \& \cdots \& － \& \pm \& $\therefore \sim$

\hline Chloride of sodium \& 0.0428 \& － \& 5.52 \& 25.21 \& 2.616 \& － \& 0.534 \& 1.03 \& $2 \cdot 2$ \& $1 \cdot 3$

\hline －＂\％magresia \& \& \& 0．286
0.303
0.3 \& $\sqrt{3-39}$ \& － \& － \& － \& － \& 二 \&

\hline Carbobate of Iron ． \& \& \& －0．277 \& 3 \& － \& $0 \cdot 0887$ \& \& 0.003 \& Onar \&

\hline Silicic acid \& 000496 \& 0.036 \& \& \square \& － \& 0.0320 \& \bigcirc \& \& \& －

\hline Carbonic acid Hydrosulphuric acid \& 二 \& － \& $3 \cdot 19$ \& － \& trace \& $5 \cdot 35$ \& 2.6 \& 0.76 \& $2 \cdot 24$ \& ${ }^{0.45}$

\hline
\end{tabular}

alluded to．They have been employed from the carliest periods， and traces of Roman work have been found at most of the European baths whicb are now in favour－at almost all the thermal ones．Occasionally new springs are discovered in old countries，but the great majority of them have been long known． Warm waters，and those containing small quantities of mineral constituents，appear to have remained more steadily in favour than．any other class within the appropriate sphere of mineral waters，which is limited to the treatment of chronic disease．
The attempt has been made to range mineral waters according to their therapeutic action，according to their internal or external use，but most generally according to their chemical constituents so far as they have been from time to time understood；and a judicious classification undoubtedly is a help towards their rational employment．But their constituents are so varied，and the gradations bet ween different waters are so finely shaded off； that it has been found impossible to propose any one definte scientific classification that is not open to numberiess objectims． Thus a great many of the sulphur waters are practically eart by or salime ones．Yet because they contain very minute amounts of such a gas as hydrosuiphuric acid，an ingredient so palpable as always to attract attention，it is considered necessary to class them under the head of sulphur．The general rule is to attempt to class a water under the head of its predominant element；but if the amount of that he extremely small，this leads to suct waters as those of Mont Dore being classified as alkaline or arseniated，because they contair a very little soda and arsenie． The classification in the following table，which is that usually adopted in Germany，has the merit of comparative simplicity， and of freedom from theoretical considerations which in this matter influence the French much more than the German writers． The more important constituents only are given．The amount of solid constituents is the rumber of parts to one thousand parts of the wialer；the temperature of thermal springs is added．The waters are classified as indifferent，earthy，salt，sulphuretted， iron，alkaline，alkaline－saline－with suhvarieties of table watcrs and purging waters．
In addition to their solid constituents，gas is present in mavy waters in considerable quantity：There is a little oxygen and
a slight degree the peristaltic action of the intestines．．The＇ incteased flow of utine may be caused by its fovouring the absorption of water by the stomach．In some baths carbonic acid is so abundant that precautions have to be taken to prevent

Table It．－Indiferent Waters．

Locality．	Height ia Ft	$\begin{aligned} & \text { Tempp } \\ & { }^{\circ} \mathrm{Fahs}, \end{aligned}$	For what prescribed．
Evian，Lakeor Geacra	1100	－	$\left\{\begin{array}{l} \text { Nervous cases, dyspep- } \\ \text { sua, urinary affections. } \end{array}\right.$
Badenweiter，Baden	1425	－	$\left\{\begin{array}{l}\text { ereatment；a bealch } \\ \text { reorrt }\end{array}\right.$
Bueton，Engtand	980	83	Gout and rheumatism （nitrogen present）．
Schlaagenhad，Nassau	800	80－87	$\left\{\begin{array}{l} \text { Norvose chata, } \\ \text { disorders, thin. } \end{array}\right.$
Sacedon，Spain ．	1300	85	Rheumatism，graut cu－ taneous affections．
Widhad，Wartem－	1320	90－10	Gout and theumatism， neuralgia，thickeninge．
Proffers，Switzeriend Ragath do．	$\begin{aligned} & 21155 \\ & \$ 570 \end{aligned}$	99	Do．${ }_{\text {Do．}}$ do．do．${ }^{\text {do．}}$ do．
Panticosa，S．Pyrences	5110	85－95	Do．（nitrogen present） ppecial action fn phthicis
Teplity，Bohernla．	648	$101-120 \mid$	Cout theumation，of injurice，jounts or bones．
	3315	95－118	Do．do．：soothes nervous system．

its tendency to sccumulate on accomin of its heavy spectice gravity．Carbonic acid gas，used as a berh，proves ectimulating to the skin and to the general system；but fits emploganent has not answered the expectations formedi of it．
 ordimary drinking winter；but they are usadly of higher temperature Their therapeutic action，which is mainly exercised through baths，

[^29]has been explained on the theory of peculiarities of their electric or thermal condition, about which we know nothing definite, and on the presence in some of them of a large quanticy of nitrogen. It has also been ascribed to the various organic substances in some of them, such as glairin, which when collected is sometimes useful as a cataplasm. These waters are not often much drunk, but any efficiency they may have in dyspepsia and perhaps in neuraigic diarrhoeas must be attributed to the favourable action of hot water on the digestion. The waters of this class, especially the hoter ones in the form of baths, are extremely useful in resolving the effects of inflammation, in thickenings of the joints and in chronic rheurnatism and gout, They also are ofter effecrive, especially the cooler ones, in neuralgia and in sone hysterical afections. They are sometimes prescribed in urinary affections, in which case they probably assist by dilution. The effects of many of these waters are aided by the baths often being situated at considerable clevations and in out-of-the-way spots, whence the Germans called them Wildbader. They are very widely diffused, being found in all quarters of the globe, especially in volranic districts. There are many in New Zealand; in America the hot test are in the west and in California.
Earthy Waters. - These differ chichly from the indifferent waters in containing an appreciable quantity of salts, among which sulphate or carbonate of lime or of magnesia predominates. The great majority of them are of high temperature. They produce the same effects as the indifferent waters, but are perhaps less efficacious in neuralgic affections, while they are more employed in some of the chronic scaly eruptions. There was formerly a tendency to consider these waters useful in urimary affections; but at the present day it is only the colder ones that have come into repute for the expulsion of gravel and biliary calculi and in the creatment of affections of the bladder gencrally. Some of them have also of late years been considered to exercise a lavourable infuence on scrofula, and to be useful in the carly stages of pulmotnary phthisis. This has been attributed to the salts of lime present in them. although it is known that most of its salts pass through the sy'stem unaltered. Many of these baths, such as Leuk and Bormio, enjoy the advantages of great elevation, but Bath, otherwise one of the best of them, lies low.

Table III-Earthy Waters.

Locality	Heicht in rt .	Temp. ${ }^{\circ}$ Falis.	Therapeutic Action.
Contrexéville, Vosges	105		\{Specialactionineal-
Lippspringe, N.			Supposed to be use-
Germany. . $)$) ful in phthisis.
mmirch langy	0		(Special use in urin-
Wildungen, do.			, ary complaints;
			(contains iron.
Weissenlery, Swit	600		\{Resorted zo for pul-
zerland.			(monary affections.
Pougucs, France.	6000	\rightarrow	Dyspepsia, dabetes, ary concretions.
			, Rheumatism, gout.
Baden, Switzerl	1180	117-122	\{ paralysis, ecaly
			(eruptions.
Leuk, do.	4400	93-123	Do., sume female complaints.
Bormio, North Jealy	4400	86-104	Do. do.; old sprains.
3 Lucca, Italy		108-122	Do. do. do.
Bath, England		108-122	Do. do. do
Dax, nouth of France	1400	139	Do. do.
B. de Bigorres, Pyr- enees	1800	$64-123$	Do. ; chlorosis, neuralgia.

Salt Waters are so called from containing a predominant amount of ehloride of sodium. They also generally contain chlorides of magnesia and of lime, asd occasionally small amounts of fithium, bromine and iodinc. They further often contain a litsle iron, which is an important addition. The great majority of the drinking whichs have a large supply of carbonic acid. There are cold and hot site springs. Sometimes they are used for drinking, sometimes for bathing; and the double use of them is often resoried to.
The normal quantity of common satt consumed daily by man is sualiy set down at about 300 grains. The maximum quantity likely to be taken at any well may be 225 grains, but conmonils not more than nalf of that amount is taken. The increase to the ustal duily amount is therefore probably not much more than one-third. Still it may be presumed that the action of a solution of salt on an empty stomach is different from that of the same amnunt of salt taken with food. Salt introduced into the slomach excites the secretion of gastric juice and favours the peristaltic sctions, and when taken in considerable quantity is listinctly aperient. We thus see how it is useful in dyspepsia, in atony of the stomach and intestines, and sometimes in chronic intestinal catarrh. Sale when intestines, and sometimes in chronic gates in the urine, of which it
increases the amount both of fluid and of solid constituents, especially of the urea. It secms, therefore, to be pretty certain that considerable quantities of salt taken into the circulation increase the excretion of nitrogenous products through the urine, and on the whole accelerate the transformatioa of tissuc. Salt is thus useful in scrofula by stimulating the system, and also in anaemia, especially when iron is nlso present. In some German stations, as at Soden, carbonated sale waters are considered to be Uselul in chronic laryngitis or granular pharyngitis.
Baths of salt water, as usually given, rarely contain more than 3 . of chloride of soxium, some of the strongest perthaps from 81010%. Their primary action is as a stimulant to the skin, in which action it is probable that the other chlorides, especially that of calcium, and still more the carbonic acid often present, co-operate. In this way, and when aided by various processes of what may be termed witer poultices and packing, they are often useful in rernowing exudations, in chronic metritis and in some tumours of the uterus, and generally in scrofula and rachitis, and occasionally in some chronic skin affections.
The French accord high praise to some of their thermal salt waters in paralysis, and some German ones are used in a sinilar way in spinal affections. The salt waters are sometimes so strong that they must be diluted for bathing. In other cases concentrated solutions of salt are added to make thent sufficiently strong. These waters are widely diflused, but on the whole Germany is richest in them, especially in such as are highty charged with salt, The Kissingen springs may be considered as typical of the drinking wells, and sea-water of bathing waters. The air of sate-works and palverization of the water are employed in German batho as remedial agents.
Salt springs are found in many quarters of the world, but the chief carbonated groups for drinking purposes occur in Germany, and at Saratoga in Awerica, where very remarkable wells indem are to be found. France and England have no springs of thig class. - The stronger wells, used chielly for bathing, occur where

Tabie IV.-Salt Sprines.

Atmost all the above stations have several springs of virinus strengths: the cold may be said to vary fmm $14105 \cdot 8 \%$ of chloriche of sodium; the warm are generally weaker, perhaps varying from 6.8 to 1.6 .
there are salt-bearing strala, as in Germany, Gralicia, Italy, SuitzerLind, France and England. Very pumerful waters of this class are those of St Catherines in Canada.

The presence of minute pontions of iodine or bromine in sals watcrs is by no meass infrequent, and they appear in considerablequantity in some few. It is, however, extremely doubtful wherther any known spring contains a sufficient quaneity of iodine, stall more of bromine, 10 act specially on the system, even if that action were not necessarily superseded by the presence of the large quamity of
other calts with which they are amociated. Some of the bestknown springs of the kind are: Challes, Wiidegg, Castrocaro, Hall, Adelheid's Quelle, Krankenheil, Kreuznach, Woodhall Spa.
Irom or Chalybeate Waters.-Iron usually exist in waters in the state of protoxide or its carbonate, less frequently as sulphate or crenate, and very rarely, if at all, as chloride. The quantity present is usually extremely small. It may be said to vary from 0.12 to 0.03 in the 1000 parts of water. Some wellis considered distinct chalybeates contain less than 0.03 . Many wells, expecially in Germany, have a rich supply of carbonic acid, which is unfortunately wanting in French and English ones.

It has long been the prevalent idea that want of inon in the bicod is the main cause of chlorosis and of other anaemic conditions, and that these conditions are best relieved by a supply of that netal. Since the detection of it in haemoglobuline this view has bets still more popular. It is pretty certain that the blood contains 37 to 47 grains and the whole system 70 to 74 grains of iron; and it has been calculated that in normal conditions of the system sometwitat more than one grain of iron is taken daily in articles of fond. and that the same amount is passed in the faeces; for althou the stomach takes the iron up it is excreted by the alimentary cinal mainly, it being doubtful whetber any is excreted in the urine. It

Table V.-SStronger Sall Walers.

Locality.		Therapeutic Application
$\left.\begin{array}{l}\text { Rheinfeld, Aargau; Switztr- } \\ \text { land }\end{array}\right\}$	311	$\left\{\begin{array}{l} \text { Scrofula, effects of inflam- } \\ \text { mation, chronic exuda- } \\ \text { tions, } \\ \text { antheme chronic ex } \\ \text { anther, rheumatism, } \\ \text { uterine infiltrations. } \end{array}\right.$
Salzungen, North Germany	256 256	
Hail' Tyrol (1700 (t.).):	256 255	Do. do.
Reichenhall, $(1800 \mathrm{ft}$)	224	Do. do.
Bex, Rhone Valley (1400 ft .) Castrocen Tuscany	156 36	Do. Do. Do. do. do
Drditwich, near Worcester: Sea Water	233.6	Do.
Rehrne, Westphalia ($92^{\circ} \mathrm{F}$.).	3 $24-85$	$\left\{\begin{array}{l}\text { Do.; special uiese in loco- } \\ \text { motor ataxia. }\end{array}\right.$
$\begin{array}{\|l\|} \text { Nauheim, } \\ 103^{\circ} F \text {.). } \end{array}$	29	Do. do.

Table VI.-Iron Waters.

Locality.	Height in Ft .	Carb. of Iron.	Therapeutic Use.
Rippoldaau, Black Forest.	1886	0.12	$\left\{\begin{array}{l} \text { For anaemic condi- } \\ \text { tions; lakative. } \end{array}\right.$
Homburg, near Frankfort. Elster, Saxony	1465	$\begin{gathered} 0.10 \\ 0.080 \end{gathered}$	Do. do. Do. do
Liebenstein, North Ger- many.	911	0.08	
Schwalbach, Nassau	900	0.08	$\left\{\begin{array}{l}\text { Do.j.esmuch of a } \\ \text { ladies bath: }\end{array}\right.$
Bocklet, near Kissingen	600	0.08	Do
Griesbach, Black Forest	1614	0.07	Do
Franzensbad, Bohen	1293	0.07	Do.
Pypmont, Germany :	1000	0.07 0.06	
Petersthal, Black Forsit	${ }_{133}$	0.04	Do.; laxative.
	5464	0.03	$\left\{\begin{array}{l}\text { Doi; sought for its } \\ \text { air. }\end{array}\right.$
Forge-les-Eaux,		0.06	D.
La Malou, Herault, France (temp. 88°)	-	0.08	Da.
Recoaro, North İtaily .	1943	0.04	
Tunbridge Wells, England	-	0.06	$\left\{\begin{array}{l}\text { Do.; deficient } \\ \text { carbonc }\end{array}\right.$ carbonic acid.
Muspratt Spring, Harto- gate (chloride)	600	0.15	

is possible by drinking neveral glasees to take in more than a grain of carbonate of iron in the day, equivalent to half that amount of metallic iron. It has further been ingeniously reckoned from practice that 10 to 15 grains of metallic zron suffioe to supply the deficiency in the rystem in a case of chlorosis, It is thought probable that a portion of the iron taken up in water is in certain pathological elates not excreted, but retained in the system, and goes towarde making up the want of that metal. But whether this or
any other explanation be satisfactory, there is po quention as to tho excellent effects often produced by drinking chalybeate watern (especially when they are carbonated), and by bathing in thome which are rich in carbonic acid after they have been artificially heated. As regards the drinking cure we must not, however, forget that carbonate and cbloride of sodium, and also the mulphate. are often present and must be ascribed a chare in the cure. Thum chloride of sodium is a powerful adjuvant. in the strong Stahil Quelle of Hombury and in the Putnam Well at Saratoga. A wholo catcgory of female complaints is treated succossfully with these waters. Indeed, anaemia from any source, as after lever or through loss of blood, and enlargements of the spleen, are bencfited by them. The stimulating action of the copious supply of carbonic acid in steel baths is a very important adjuvant; no one now believes in direct absorption of iron from the bath. Iron waters are acarcely ever thermal. They are extremely common in all countriesfrequently along with sulphurcted hydrogen in bogs and near coal-measures. But such springs and non-carbonated wells generally are weak, and not now held in much esteem.

It may be added that some of the strongest known iron wells are sulphated or aluminated. They are styptic and astringent, and can only be used diluted. They are sometimes useful as an application to ulcers and sores. Such springs have often been brought into notice, but never retain their popularity. They are known in the Isle of Wight, in Wales, in Scotland, as well as in Elba, \&cc.; and of late years the Bedford Alum and Oak Orchard Springs, U.S. have been brought into notice, the latter containing 10 grains of free sulphuric acid in the pint. Alf such springs have been cossidered useful in scrofula, a naemia and chronic diarrhoeas.
Sulphur Springs.-Waters having the odour of hydrosulphuric acid, however slightly, are usually called sulphur ones. They owe their smell sometimes to the presence of the free acid, sometimes to sulphides of sodium, calcium or magnesia, and sometimes to both. Sulphuretted hydrogen is absorbed more freely by cold than by hot water, and is therefore most abundant in cold springs. The sulphides decompose and give off the gas. Most of these springs occur near coal or shate measures, or strata containing fossils, or in moors and in places generally where organic matter is present in the soil or strata. Many of them contain so little mineral impregnation that they might as well be elassed among the indifferemt or earthy waters. One group contains a considerable amount of chloride of sodium, amother of sulphate of lime, while a third hes little mineral impregnation, but contains sulphides.
Sulphurettod hydrogen is a strong poison, and its action on the system has been pretty well ascertained. It has been assumed that the gas in mineral waters acts similarly, though in a modified degree: but there is next to nothing absolutely known of the action of the small quantities of the gas that are present in mineral waters, and which certainly have no toxic effect. It has been assumed that this gas has mome special action on the portal eystem and so on the liver. On the connexion of metallic poisoning with the liver has been founded the idea that sulphur waters are useful in metallic intoxication. Drinking large quantities α these waters, especially of such as contain sulphates or chlorides of sodium or magnesia, combined with hot baths aad exercige, may help to break up albuminates, but there is no proof of the action of the sulphur.

For similar reasons, and primarily to counteract mercurial poison, sulphur waters have been considered useful in syphilia. But it may be well to remember that at most baths mercury is used along with them. No doubt they are frequently, like other warm' waters, useful in bringing out old eruptions, acting in this way as a test for syphilitic poison, and in indicating the creatment. that may be

Table VII.-Cold Sulphur Springs.

Locality.	Sulphuretted Hydrogen dissolved in Water.	Sulphide of Sodium.
Eilsen, Schaumburg-Lippe	$42 \cdot 3$	-
Mcinberg, Lippe-Detmold . .	23.1	0.008
Gurnigel, Switzerland (3600 ft .) .	15.1	-
Leuk. do. (3593 ft.) .	4.5	- ${ }^{\text {c }}$
Challcs, Savoy (900 ft.) . . .	-	0.478
Enghien. near Paris : . .	-	0.106
Uriage, Iserre, France (500 ft .) . . .	7.34	0.207
Harrogate, England	,	0.207
Strathpeffer, Scouland . .	-	0.026
Lisdoonvarna, Clare, Ircland . .	-	-

required. Sulphur waters. both hot and cold, are used in gout and rheumatism, in dyspepsia, in hepatic and cutaneous affections: and of late years inhalation of them has been popular in phthisis and in laryingeal affections. They have long been popular remedies in cutaneous affections. While so much doubt has been cast on the action of the sulphur of these waters, it may be admitted that the sulphides are probably decomposed in the stomach and sulphuretted hydrogen generated. That gas is probably a slight otimulant
to the Intestint: What sulphuretted hydrogen reaches the blood is eliminated by the lungs. There seems to be no doubt that the gas ts absorbed in small quantities by the skin.
It is in sulphur waters chiefly that glairin and baregin occur. This peculiar organic substance has been found both in American and in European springs Cold sulphur springs are very widely diffused throughout the world. Thermal ones are not so common. Perhaps the largest though not the strongest group of the latter is to be found in the Pyrenees. We may remark again how very lit tle

Table VIII.-Warm Sulphur Springs.

Locality,	Height in Ft .	Temp. - Fahr.	Hydrosulphurie Acid absorbed in Water.	Sulphide of Sodium
Aix-la-Chapelle, Germany	534	131-140	0.3	0.01
Baden, near Vienna		95-115	$2 \cdot 5$	0.052
Schinznach, Switzerland	1060	80-92	37.8	-
Lavey, Rhone Vatley .	1350	92-113	3.5	
Hercules Bad, Banat.	500	110	42.6	
Aix-les-Bains, Savoy. .	765	108.5	27.2	-
Luchon, Pyrenees . ${ }^{\text {Barches, }}$	2000 4100	${ }_{1135}$	-	0.07
	4100	113	-	0.04
Cauterets, do.	3254	- ${ }_{\text {81-134 }}$		$0 \cdot 02$
Eaux Bonnes, do.	2400	90.5	-	0.02
Archena, Murcia, Spain		126	-	

bydrosulphuric acid there is in many of the most favourite sulphur springs, including the very popular White Sulphur ones of Virginin. There seems to be something peculiarly unsatisfactory in the analysis of sulphur waters, and there has been difficulty in constructing the following imperfect tables.
Some of the most powerful cold wells are those of Challes (with its very peculiar water), Leuk and Harrogate. Uriage has a very large amount of chloride of sodium in its springs. Cold sulphur watern are on the whole more used in liver and indigestion than varm ones. The general effects of warm sulphur waters differ so little at the various baths as to make it difficult to mention anything apecial to particular localities. Schinznach has a reputation in ain complaints, Cauterets, Eaux Bonnes and Challes in laryngeal affectiona, the two Aix, Luchon and Archena in syphiliss
Alhafine Walors are such as contain carbonate (chiefly bicarbonate) of soda, along with an excess of carbonic acid. Of the action of those carbonates it is known that when taken into the stomach they are meutralized by the gastric juice, and converted into chloride of sodium. On their introduction into the stomach they produce an increased How of gastric juice. If given during or immediately after meals in any quantity, they impede digestion. They slightly increase peristaltic action, but only feebly, unless assisted by ot her malts. They act slightly as diuretics Of the connexion between the biliary system and alcalies, which undoubtedly exists, not much is known with certainty. The alkalization of the blood by them is asbumed by many, but not proved. It is very doubtful whether they reduce the quantity of fibrine in the blood, and thus induce a lowered state of the system, or whether they have any direct tendency to combine with fat and carry off a portion of superfuous adipose tiseue. Their excess of carbonic acid. through its action on the stomach, favours the operation of alkatine waters. They have been classed as follows: (1) simple alkalines, where carbonate of soda is the main agent; (2) waters containing in addition some chloride of sodium; (3) waters containing sulphates of soda or of magnesia. All these classes may be said to be used in gout. lithiasis, affections of the liver, catarth and obstructions of the gall ducte, in dyspepsia, chronic catarrh of the stomach and diarrhoea, in obesity and in diabetes. Some of the waters of the second clasi are supposed to infuence bronchial catarrhs and incipient phthisis, While the more powerful sulphated waters of the third class are especially useful in catarth of the stomach, and in affections of the biliary organs: of these only one of importance (Carlsbad) is thermal. The rival cold waters of Tarasp contain twice as much carbonate of soda. The cold ones are chiefly used internally, the thermal ones both internaily and extemally. The latter, besides acting as warm water, slightly stimulate the skin when the carbonic acid in abundant, and the carborate of sodn has some slight detergent effect on the cutaneous surface like soap. These waters are unknown in England. They are most abundant in countries of extinet volcanoes

Classes I. and 1I. of alkaline waters may be said to have a subvariety in acidulated springs or carbonated waters, in which the quantity of salts is very small, that of carbonic acid large. These table watere are readily drunk at meals. They have of late years been so widely exported as to be within the reach almost of every one. Their practical importance in aiding digestion is in reality much greater than one could expect from their scanty mineraliza. tion. They are drunk by the country people, and also targely exported and imitated. They are very abundant on the Continent.
and, although some of the best-known ones enumerated below are German and French, they are common in Italy and elsewhere: Heppingen, Roisdori, Landskro, Apollinaris, Selters, Brickenau, Gieshubel, ali German; St Galmier, Pougues, Chateldon, French.
Associated with Class III. is that of the strongty sulphated waters known in Germany as bitter or purging waters, which have of late deservedly come into use as purgative agents. They are almost wanting in France and in America, and there are no very good ones in England. The chief supply is from Bobemia and Hungary. The numerous waters of Olen are the best known, and some of

Table IX.-Alkaline Waters.

Class I.-Simple Alkaline.		
Locality.	Carb. Soda.	Therapeutic Uses.
Vals, South France_: **	$7 \cdot 1$	$\left\{\begin{array}{l} \text { Catarrh of stomach, gout, } \\ \text { renal and biliary calcuti, } \\ \text { liver complaints, diabetea } \end{array}\right.$
Bilin, Bohemia Viehy, France ($\left.\mathrm{IOS}^{\circ} \dot{\mathrm{F}}.\right)$?	4.2 5.1	Do. do. do. Do. do do.
$\left.\begin{array}{l} \text { Neuenahr, Rhineland }\left(92^{\circ}-\right. \\ \left.97^{\circ} \mathrm{F} .\right)^{-}, \end{array}\right\}$	1.0	$\left\{\begin{array}{l}\text { Mucous catarth; diabetes } \\ \text { specially. }\end{array}\right.$
Ls Mabou, France ($97^{*} \mathrm{~F}$.) .	-	$\left\{\begin{array}{l}\text { Do.; sedative effect on } \\ \text { nervous system. }\end{array}\right.$
Vidago, Portugal $2 . \quad$:	-	$\left\{\begin{array}{l} \text { Do; gout urinary affec- } \\ \text { tionsy." The Portuguese } \\ \text { Vichy." } \end{array}\right.$

Class 1I.-With Chloride of Sodïum varying from 4.3 to I in amount.

Locality.	Height in Ft .	- Temp.	Carb. Soda.	Therapeutic Uses.
$\left.\begin{array}{c} \text { Luhatechowitz, } \\ \text { Mnravia } \end{array}\right\}$	1600	-	8.4	$\left\{\begin{array}{l} \text { Springs rich both } \\ \text { in carb. eoda } \\ \text { and chl. sodium } \end{array}\right.$
$\left.\begin{array}{c} \text { Tornniscein, } \\ \text { Rhine Valley } \end{array}\right\}$	\cdots	-	2.5	$\left\{\begin{array}{l}\text { and chl. sodium. } \\ \text { Light a ntacid } \\ \text { tonic } \\ \text { anc. }\end{array}\right.$
Ems, Nassau	-	.85-t15	$2 \cdot 0$	$\left\{\begin{array}{l}\text { Special in female } \\ \text { complaints and } \\ \text { mucous mem- } \\ \text { brane. }\end{array}\right.$
Ischia, Italy	-	up to 170	$2 \cdot 0$	(${ }_{\text {Specially }}$ matism $\begin{array}{ll}\text { theu- } \\ \text { mand } \\ \text { ferale } & \text { and } \\ \text { plaintm } & \text { com- }\end{array}$
Royat, Auvergne '.	1400	80-95	$1 \cdot 3$	$\left\{\begin{array}{l}\text { Do. and some } \\ \text { skin affections. }\end{array}\right.$
Mont Dore, do.	3300	100-114	-	$\left\{\begin{array}{l}\text { Asthma. chronic } \\ \text { laryngitis. }\end{array}\right.$
Bourboule, do.	2800	107-125	-	($\left\{\begin{array}{l}\text { Scrofula, rachitis, } \\ \text { cutaneous affec- } \\ \text { tions. }\end{array}\right.$

Class III.-With Sulphate of Soda varying from 5.2 to 2 解 amount. and Carbonate of Soda varying from 3.55 to 0.51 in amownt.

Locality.	$\left\lvert\, \begin{gathered} \text { Height } \\ \text { in } \mathrm{Ft} . \end{gathered}\right.$	Therapeutic Uses,
Elster, Saxony	1460	$\left\{\begin{array}{c} \text { Action on abdominal organs, } \\ \text { female complaints } \end{array}\right.$
Marienbad, Bohemia. Franzensbad, do.	$\begin{aligned} & 1012 \\ & 1293 \end{aligned}$	Do.; special use in obesity. Do. ; specially a ladies' bath.
Tarasp, Lower Engadine	4000	$\left\{\begin{array}{l} \text { Powerful action on abdomi- } \\ \text { nal viscera. } \end{array}\right.$
$\left.\begin{array}{c} \text { Carlsbad, Bohemia }\left(121^{\circ}\right. \\ \left.-164^{\circ} \mathrm{F},\right)^{\circ} \end{array}\right\}$	1200	Gout, liver affections, biliary and renal calculi, diabetes.

them are stronger than the Hunyadi, of which an analysis has been given in Table I. They are easily imitated. Some of the bestknown are Ofen, Pullna, Saidschütz, Friedrichshall, Birmerstorf, Kissingen.
Two other classes of waters demand a lew words of notice. The French have much faith in the presence of minute quantities of arsenic in some of their springs, and trace arsenical effects in those who drink them, and some French authors have established a class of arsenical waters. Bourboule in Auvergne is the stroagest of them, and is said to contain i,th of a grain of argeniate of soda in 7 oz. of water. Baden-Baden, according to Buasen's latest analysis, has a right to be considered an arsenical water. It is, however, extremely doubtful whether the small amounts of arseniate of soda which have been detected, accompanied as they are by preponderating amounts of other salts, have any actual operation on the system. The following are among the most noted aprings:

Bourboule, Mont Dore, Royat, Salics (Bigorres), Plombieres, Baden-Baden.
Of late years lifhium has been diseovered in the waters of BadenBaden; and various other places boast of the amount of that substance in their springs. Indeed a new bath has been established at Assmannshausen on the Rbine in consequence of the discovery of a weak alkaline spring containing some lithium. Not very much is known of the action of lithium in ordinary medicine, and it undoubtedly does not exist in medicinal doses even in the strongest

springs. Among these springs are those of Baden-Baden, Assmannshausen. Elster, Royat, Ballston Spa, and Saratoga (U.S.).
Amebican Mineral Waters.- The number of springs in the United States and Canada to which public attention has been called on account of their supposed therapeutic virtues is very Large, amounting in all to noore than three hundred. Of this number comparatively few are in Canada, and of these not more than six (St Catharines, Caledonia, Plantagenct, Caxton, Charlottesville and Sandwich) have attained general celebrity. The first three belong to the saline class, the Caxton is alkaline-saline, and the last two are sulphur waters. The St Catharines is remarkable for the very large amounts of sodium, calcium and magresium chlorides which it contains, its total salts (450 grains in the pint) being more than three times the quantity contained in the brine-baths of Kreuznach in Prussia. The Clarlottesville and Sandwich springs likewise surpass the noted sulphur-waters of Europe in their excessive percentages of sulphuretted hydrogen, the former containing more than 3 and the latter 4.72 cub in. of this gas in the pint.
The mineral springs in the United States are very unequally distributed, by far the larger number of those which are in high medical repute occurring along the Appalachian chain of mountains, and more especially on or near this chain where it passes through the States of Virginia, West Virginia and New York. The Devonian and Silurian formations which overlie the Eozoic rocks along the course of the Appalachian chain bave been greatly fissured-the faulting of the strata being in some places of enormous magnitude -by the series of upheavals which gave rise to the many parallel mountain ridges of the Appalachians. In many places the springs oceur directly along the limes of fault. The various classes of mineral waters are likewise very unequally represented, the alkaline springs, and those containing Clauber and Epsom salts, being much inferior to their European representatives. On the other hand, the very numerous and abundant springs of Saratoga compare verv favourably with the Selters and similar saline waters, and among the many American chalybeate springs the subelass represented by the Rockbridge Alum is unequalled in regard to the very large percentages of alumina and sulphuric acid which it contains. Besides its greater amount of mineral constituents (135 grains per pint), the Batlston spring surpasses the similar saline waters of Homburg, Kissingen, Wiesbaden and Selters, in its percentage of carbonic acid (53 cub. in.). It is also remarkable for the very large proportion of cartonate of lithia, amounting 100.701 grains. Thermal springs are specially numerous in the territories west of the Mississippi and in California. Those in the east mostly occur in Virginia along she southern portion of the Appalachian chain; in the middle and New England States Lechanon is the only important thermal spring. Subjoined is a list of thirty American springs, the design being to represent as many of the more noted spas as possible, while at the same time entmerating the best representatives of the classes and subelasses into which mineral waters are divided according to the German method of classification.
Biblingraphy:-(1) German: E. Osann, Darsecllung det Mcilqueller Europas (3 vols, Berlin, 1839-1843); [. Seegen, Handbuch der Heilquellenlchre (Vienna, 1862); B. M. Lersch, Hydrochemie (1870), and many other works; Helfit, Handbuch d. Baincohherapie (8th ed., Berlin, 1874); Valentiner, Haudurch d. Balneotherapie (Berlin, 1876); L. Lehmann, Büder u. Brunuen Lehre (Bonn, 1877): I Braun. System, Lekspuch d. Balneotherapie, 4th ed., by Fromm (Berlin, 1880); O. Leichtenstern, Balncotherapic (L-eipzig, 1880). (2) French: Dictionnaire des eaur minérales, \&ce, by MM. DurandFardel, \&c. (2 vols, Paris, 1860): J. Lelort, Trailē de chemie hydrolodogique (2nd ed., Paris, 1873): C. James, Guide pratique aux eaux mindrales (Paris), many editions: Macé. Guide aux villics d' caux, ofe. (Paris, 1881); Joanne and Le Pileur, Les Bains d'Europe (Paris). (3) Swiss: Meyer Ahrens, Heilquellen der Schrceile (Zirrsch, 1867): Gsell Fels, Die Bader und Kwrorte der Schweits (7urich, I880). (4) Italian: G. Jervis, Guida alke acque mincralt d'Iolia (Turin, 1876, \&c.): E F. Hartess: Die Heilquellen und Kurbader Itoliens (Berlin, 1848). (5) Spanish: Rubio, Trarado de las fuentes miner: ales de Esparin (Madrid, 1853); Don I; de Antelo y Sanchez has recontly published a work on Spanish waters. (6) English: T. Short, Hislory of the Mineral Waters (London, 1734); I. Rutly, Melhodical Synopsis of Mineral Wialers (London, 1\%57); Granville, Spas of England (1841); E. Lec, Sfineral Springs of Enficnd (Londcm, 1841): J. Macpherson, Our Badhs and Wells (1871); id., Malhs and Wills of Europe (1873); and H. Weler's Eng. cd. of Braun (London, 1875). A great portion of the literature is to be found in monogranhs on particular places. (7) American: J: Bell, The Mineral amil Thermat Sprines of the United States and Canoda (1855); J. J. Moorman. The Mincral Waters of the Uniled States and Canada (1867); C. F. Chandler, Lecture on Water (1871); G. E. Walion. The Mineral Springs of the United Stales and Canada (1875); 1. Burncy Yeo, The Therapentics of Mineral Springs ($\mathbf{1 9 0 4}$).
MINERVA, an Italian goddess, subsequently identified with Athena. She presided over all handicrafis, inventions, arts and sciences. Her oldest sanctuary at Rome was in the iemple built by Tarquin on the Capitol, where she was trorshipped with Jupiter and Juno. She had also a temple on the Aventine,

Whith wats the meeting-place for dramatic poets and actors; whose organization into gitds under her patronage dated from the than of Livies Andronicus (q.v.). The dedication day of the femple was the rgth of Mareh, the great festival of Minerva, called quinquatrus, becduse ft fell on the fifth day after the ides. An the schools had holidays at this time, and the pupils on reassembfing brought a fee (wineroal) to the teachers. In every house also the quinquaterus was a troliday, for Minerva (like Athena Ergane) was patron of the women's weaving and spinning and the workmen's craft. At a later time the festival extended over five days, the last four being chiefly occopied with gladiatorial shows-because Minerva was the goddess of war (Ovid, Fasti, iii. 8og-834; Juvenal x. ir 5, with Mayor's note). The crection of a temple to ber by Pompey out of the spoils of hifs eastern conquests shows that she was the bestower of victory, like Athena Nik ε, and the dedication of a vestibule in the senate house by Augustus recalls Athena the goddess of counsel (β_{0} inala). Under Domitian, who claimed ber special protection, the worship of Minerva attained its greatest vogue in Rome. The emperor Hadrian founded an educationai institution, named after her the Athenaeum. The 23rd of March bad almays been the day of the tabilusirium, or purification of the trumpets used in the sacred rites, so that the ceremony came to be on tbe last day of Minerva's festival, but it is very doubtful whether it was really connected with her. There was another temple of Minerva on the Caelian Hill, where she was worshipped under the name of Capta, the "captive," the origin of which is unknown. Here a festival called the lesser quinquarus was celebrated on the 13th-r4th of June, chiefly by the fute-players (Livy ix. 30; Ovid, Fasti, vi. 651). As the Romans learnt the use of the flute from the Etruscans, the fact of Minerva being the patron goddess of flute-players is in favour of her Etruscan origin, although it may merely be a reminiscence of the Greek story which attributed the invention of the flute to Athena. A carved image of the goddess called the Palladium, said to have been brought from Troy to Lavinium, and thence to Rome by the family of the Nautii, was kept in the temple of Vesta and carelully guarded as necessary to the prosperity of the city. The older form of the name Minerva is Menerva ($=$ Menes-va, Gr. μ^{\prime} vos); it probably means "thinker."

MINGHETTI, MARCO (1818-1886), Italian economist and statesman, was born at Bologna on the 18th of November 1818. In 1846 he signed the petition to the Conclave for the election of a Liberal pope, and was appointed member of the state council summoned to prepare the constitution for the papal states. With Antonio Montanari and Rodolfo Audinot he founded at Bologna a paper, Il Felsinco. In the first constitutional cabinet, presided over by Cardinal Antonelli, Minghetti beld the portfolio of public works, but after the allocution by Pius DX. against the Italian war of independence he resigned, and joined the Piedroontese army as captain on ithe general. stafl. Returning to Rome in September 5848, be refused to form a cabinet after the assassination, oi Pellegrino Rossi, and spent the next eight years in study and travel. Summoned to Paris by Cavour in 1856 to prepare the memorandum on the Romagna provinces for the Paris congress, be was in 1859 appointed by Cavoar secretary-gencral of the Piedmontese Foreign Office. In the same year he was elected president of the assembly of the Romagna after the rejection of pontifical ruie by those provinces, and prepared their anncxation to Piedmont. Appointed Piedmontese, minister of the interior, he resigned office shortly after Cavour's death, but was subsequently cbosen to be minister of finance by Earini, whom he succeeded as premier in 1863 . With tbe help of Visconti-Venosta he concluded (Sept. 15; 1864) the "September Convention" with France, whereby Napoleon agreed to cvacuate Rome, and Italy to transfer ber capital from Turin to Florence. The convention excited violent opposition at Turin, in consequence of which Minghetti was obliged to resign office. He took little part in public Dife until 1869, when he accepted the portfolio of agriculture in the Mengbrea Cabinet. Both in and out of office be exercised bis influence against an Italo-French alliance and for an immedlate
advaince apofí Rome, and itu re7o was sent to London and Vichris by the Lamza-Stlla Cabinet to organime a league of neutral powers on the outbreak of the Franco-Prussian War. In 1873 he overthrew the Lama-Sella Cabitret and regained the promiers ship, which, with the portfolio of finance, he held antil the fall of the Right from power on the 18th of March 1876. During his premiership he inaugurated the repprochement between Italy, Austria and Germany, and reformect he naval and mititary administration; and before his fall be was able, as finance mindster; to announce the restoration of equiffriam between expenditure and repenue for the fitst time since $\mathbf{1 8 6 0}$. After the advent of the Left, Minghetti remtined for some years in Opposition, but towards 1884 foined Depretis in creating the "Trasiomismo," which consisted in bringing Conservative support to Liberal cabinets. Minghetti, however, drew from it no personal addartage, and died at Rome on the roth of December 1886 withoet having returned to power.
His writings include: Delld economic pubbrica e delle sue athinense con la murale e col dirito (Bologns, 7859), and Le Chiese e it Stato (Milm, 1878).

MMGETELIA, a former prnacpality of Transcaucasia, which became subject to Russia in 1804, and since 186% has belonged to the government of Kutais. The country corresponds to the ancient Colchis; and Sukhum Kaleh on the Black Sea coast; which was the capital under the Dadian dynasty (1323-1694), is to be identified with the ancient Dioscurias, a colony of Miletus. The Mingrelians, who are closely akin to the Georgians, numbered 241,000 in 1902, and belong to the Orthodox Greek Church (see further Kutars and Caucasta).
MIMATURE. The word "miniature," derived from the Latin minitom, red lead, has been tecthically employed, in the first instance, to describe a picture in an ancient or medicval manuscript; the simple decoration of the earty codices baving been " miniat ed " or deliheated with that pigment. The gencrally small scale of the medieval pictures has led secondly to a pseudo-etymological confasion of the term with " minuteness " and to its application to "paintings in littic "; it is now used mainly in this sense, and is ordinarily applied to a painting on a very small scale, usually a portrait, and by analogy to anything on a very small scale.:-

1. Miniatures in Ancient and Mredieval MSS. - The part played by the miniature in the scheme of the ormamentation of MSS., in the early centuries of the Christian cra and in the middle ages, is dealt with in the article on Illuyinateo MSS: In the present article will be discussed the development and changes which it underwent, in different ages and in different countries, both \ln its technical treatment and in its leading characteristics. The subject divides itself into two distinct portions, the classical and the medicval, between which there Lies the great separating space of tbe early middle ages, which affords but scanty material to connect them. When, bowever, we have advanced into the middle ages, we are no longer at a loss; and we can follow the later development of the miniature through all its changes in the various scbools of western Europe down to its transition into the modern picture.
The importance of the study of the miniature has perhaps hardly received in the past the recognition which it merits. The history of painting cannot be periectly understood without a knowledge of the rise and progress of the art of miniaturepainting in MSS; and examples of the art still survive in an abundance which frescoes and paintings in the large cannot rival. Modern methods of photography have brought withic the reach of the student material which in earlier generations was not accessible; and consequently a juster conception can be formed of the position which the miniature holds in the history of art than was possible before.

The earliest examples that bave descended to us are closely connected in style and treatment with the pictorial art of the later Roman classical period. In fact they are separated from that period by only two or three centuries, and they still follow its traditions. The oldest specimens of all are the series of coloured drawings or miniatures cut from an illastrated MS.
of the Iliad and now in the Ambrosian Library at Milan, which there is good reason for placing as early as the 3rd century. In these pictures there is a considerable variety in the quality of the drawing, but there are many notable instances of fine figure-drawing, quite classical in sentiment, showing that the earlier art still exercised its influence. Such indications, too, of landscape as are to be found are of the classical type, not conventional in the sense of medieval conventionalism, but still attempting to follow nature, even if in an imperfect fashion; just as in the Pompeian and other frescoes of the Roman age.

Of even greater value from an artistic point of view are the miniatures of the Vatican MS. of Virgil, known as the "Scbedae Vaticanac," of the ath century. They are in a more perfect $^{\text {th }}$ condiulon and on a larger scale than the Ambrosian fragments, and they therefore offer better opportunity for examining met bod and technique. The drawing is quite classical in style, and the idea is conveyed that the miniatures are direct copics from an older series. The colours are opaque: indeed, in all the miniatures of early MSS. tbe employment of body colour was universal. The method followed in placing the different scenes on the page is highly instructive of tbe practice followed, as we may presunne, hy the artists of the early centuries. It seems that the background of the scene was first painted in full, covering the whole surface of the page; then, over this background were painted the larger figures and objects; and over tbese again the smaller details in front of them were superimposed. Again, for the purpose of securing something like perspective, an arrangement of horizontal zones was adopted, the upper ones containing figures on a smaller scale than those below.

- It was reserved for the Byzantine school to break away more decidedly from tbe natural presentment of things and to develop convention. Yet in the best early examples of this school the classical sentiment still lingers, as the relics of the miniatures of the Cottonian Genesis, in the British Museum, and the best of the miniatures of the Vienna Dioscorides testify; and in the miniatures of the later Byzantine MSS., which were copied from carlier examples, the reproduction of the models is faithful. But on comparing the miniatures of the Byzantine school generally with their classical predecessors, one has a sense of having passed from the open air into the cloister. Under the restraint of ecclesiastical domination Byzantine art became more and more stereotyped and conventional. The tendency grows to paint the flesh-tints in swarthy bues, to elongate and emaciate the limbs, and to stiffen the gait. Browns, blue-greys and neutral tints are in favour. Here we first find the technical treatment of flesh-painting which afterwards became the special practice of Italian mininturists, namely the laying on of tbe actual flesh-tints over a ground of olive, green or other dark hue. Landscape, such as it was, soon became quite conventional, setting the example for that remarkable absence of the true representation of nature which is such a striking attribute of the miniatures of the middle ages. !
And yet, while the ascetic treatment of the miniaturesobtained 50 strongly in Byzantine art, at the same time the Oriental sense of splendour shows itself in the hrilliancy of much of the colouring and in the lavish employment of gold. In the miniatures of Byzantine MSS. are first seen those backgrounds of bright gold which afterwards appear in such profusion in the productions of every western school of painting.

The influence of Byzantine art on that of medieval Italy is obvious. The early mosaics in the churches of Italy, such as those at Ravenna and Venice, also afford examples of the dominating Byzantine influence. But tbe early middle ages provide but few landmarks to guide the student; and it is only when he emerges into the $12 t h$ century, with its frescoes and miniatures still bearing the impress of the Byzantine tradilon, that be can be satisfied that the connexion has always existed during the intervening centurics.

When we turn to the farther-west of Europe, there also we find under the Carolingian monarchs a school of painting obviously derived from classical models, chiefly of the Byzantine type, but whether derived directly from the East, or, what is
more probable, transmitted through Italian changela, must remain doubtful. The interest of that school for our present purpose is that it was the parent of tbe later miniature-puinting in the countries of the West. For in the native schools of those countries decoration only was the leading motive. In the MSS. of the Merovingian period, in the school which connected Frankland and northern Italy, and which is known as Lombardic or Franco-Lombardic, in the MSS. of Spain, in the productions of the Celtic school of our own islands, figure-drawing was scarcely known, and where it was practised it was of a barbarous character, serving ratber as a feature of decoration than as a representation of the buman form. Hence in those native schools the miniature, in its true sense of a picture, may be regarded as non-existent.

From these native schools we exclude the Anglo-Saxon achool, developed especially at Canterbury and Winchester, which probably derived its characteristic free-hand drawing from classical Roman models, scarcely influenced by the Byzantine element. Tbe bighest qualities of the miniatures of the noth and 11th centuries of this school lie in fine oulline drawing, which had a lasting influence on the English miniature of the later centuries. But the southern Anglo-Saxon school rather stands apart from the general line of development of the western medieval miniature. How far it was affected by Continental influence will be presently noticed.

Turning to the productions of the Carolingian school, which owed its origin to the encouragement of Charlemagne, it is seen that the miniature appears in two forms. First, there is the truly conventional miniature following the Byzantine model, the subjects being generally the portraits of the Evangelists, or portraits of the emperors themselves: the figures stiff and formal; the pages brilliantly and often coarsely coloured and gilded, generally set in architectural surroundings of a fixed type, and devoid of landscape in the real sense of the word. On the other hand, there is also the miniature in which there is an attempt at illustration, as, for example, the depicting of scenes from Bible history. Here there is more freedom; and we trace the debased classical style which copies Roman, as distinguished from Byzantine, modcls. The figure-drawing is sufficiently clumsy, but the type is Roman, or debased Roman, and the costumes are clearly derived from the same source. Here, too, there is a better attempt at landscape, which is not of the absolutely conventional deadness of the CarolingianByzantine type. But this second style of illustrative miniature appears only occasionally. The other was the characteristic miniature of the Carolingian school, and, accompanied as it was with profuse decoration in border and initial, it set the pattern for the later Continental schools of the West.

The influence which the Carolingian school exercised on tbe miniatures of the southern Anglo-Saxon artists shows itself in the extended use of body-colour and in the more elaborate employment of gold in the decoration. Such a MS. as the Benedictional of Acthel wold, bishop of Winchester, 963 to 984, with its series of miniatures drawn in the native style but painted in opaque pigments, exhibits the influence of the foreign art. But the actual drawing remained essentially pational, marked by lts own treatment of the human figure and by the peculiar disposition of the drapery with fluttering folds. Its fault was over-refinement, tending to an affected exaggeration and disproportion of the limbs. With the Norman Conquest this remarkable native school passed away.

The period immediately succeeding the Carolingian school in western Europe was one of extreme decadence in the miniatures of MSS. In the roth and inth centuries they were mere lifeless copies of earlier types. But with the awakening of art in the 12 th century the decoration of MSS. received a powerful impulse. Although the artist of the time excels in the border and the initial, still in the miniature also there is vigorous drawing, with bold sweeping lines and careful study of the draperies. The artist now grows more practised in figuredrawing, and while there is still the tendency to repeat the same subjects in the same conventional manner, individual effort
produced in this century many miniatures of a very noble character. The Norman Conquest had brought England directly within the fold of Conlineatal art; and now began that grouping of the French and the English and the Flemish schools, which, fostered by growing intercourse and moved by common impulses, resulted in the magnificent productions of the illumimators of north-western Europe from the latter part of the 17th century onwards. But of natural landscape there is nothing, unless rocks and trees of a stereotyped character can be so regarded. Hence the background of the miniature of the tath and immediately succeeding centuries became the field for decoration to throw into stronger relief the figures in the scene. And thus arose the practice of filling in the encire space with a sheet of gold, often burnished: a brilliant method of ornament which we have already seen practised in the Byzantine school. We have also to notice the conventional treatment of the sacred figures, which continue benceforward, from a sense of veneration, to be clad in the traditional robes of the early centuries, while the other Gigures of the scene wear the ordianary dress of the period.

It will be convenient, at this point, to follow the development of the miniature in the northern schools of England and France and the Low Countries, accasionally glancing at Germany, during the next three centuries, and to leave aside for the moment consideration of the Italian school and the schools allied therewith.
Entering the 13th century, we reach the period when the miniature may be said to justify the modern false etymology which has connected the title with minuteness. The broad. bold style of the tath century gives place to the precise and minute. Books in general exchanged their form from the large folio to the octavo and smaller sizes. There was a greater demand for books; and vellum was linited in quantity and had to go further. The handwriting grew smaller and lost the roundness of the $12 t \mathrm{~h}$ century. Contractions and abbreviations in the texts largely increased in number. Everywhere there is an effort to save space. And $s 0$ with the miniature. Figures were cmall, with delicate strokes in the features and with neat slim bodies and limbs. The backgrounds blaze with colout and burnished gold; and delicate diaper patterns of alternate gold and colour abound. Frequently, and especially in English MSS., the drawings are merely tinted or washed with transparent colours. In this century, too, the miniature invades the initial. Whereas in the earlier periods bold fowering scrolls are the fasbion, now a little scene is introduced into the blank spaces of the letter. To compare the work of the three schools, the drawing of the English miniature, at its best. is perhaps the most graceful; the French is the neatest and the most accurate; the Flemish, including that of western Germany, is less refined and in harder and stronger lines. As to colours, the English artist affects rather lighter tints than those of the other schools: a partiality is to be observed for light green, for grey-blue, and for lake. The French artist loved deeper shades, especially ultramarine. The Fleming and the German painted, as a rule, in less pure colours and inclined to beaviness. A noticeable feature in French MSS. is the red or copper-hued gold used in their illuminations, in strong contrast to the paler metal of England and the Low Conntriea.

It is remarkable bow the art of the miniature throughout the 13th century maintains its bigh quality both in drawing and colour without any very striking change. Throughout the century the Bible and the Psalter were in favour; and naturally the same subjects and the same scenes ran through the period and were repeated by artist after artist, and the very character of those secred books would tend to restrain innovation. But towards the close of the period such seeular works as the romances. were growing in popularity, and afforded a wider field for the invention of the illustrating artist. Therefore with the opening of the isth century a palpable change of style supervencs. We pass to more fowing lines; not to the bold sweeping strokes and curves of the $12 t \mathrm{~h}$ century, but to a graceful, delicate, yielding style.which produced the beautitul swaying figurea
of the period. In fact the miniature now begins to free itself from the sole of an integral member of the decorative scheme of illumination and to develop into the pucture, depending on its ownartistic mernt for the poation it is to hold in the future This is shown by the more prominent place that the minuature now assumes, and by its growing undependence of the decorative border and initial. But, at the same time, while the miniature of the 14th century thus strives to dissociate itself from the reat of the illuminated details of the MS., within itself it flournshes in decoration Besides the greater elasticity of the figuredrawing, there is a parallel development in the designs of the backgrounds. The diapers become more elaborate and thore brilliant; the beaty of the burnished gold is enhanced by the stippled patterns which are frequently worked upon it; the gothic canopies and other architectural features which it became the practice to introduce naturally followed the development of the architecture of the period. In a word, the great expansion of artistic sentiment in decoration of the best type, which is so prominent in the higher mork of the 14th century, is equally conspicuous in the illuminated miniature.

In the early part of the century, English drawing is very graceful, the fgures hending with a waving movement which, if they were not so simple, would be an affectation. Both in the outline specimens, wasbed with transparent colour, and in the fully painted examples, the best English work of this time is unsurpassed. French art still maintajins its neat precision, the colours more vivid than those of England and the faces delicately indicated without much modelling. The productions of the Low Countries, still keeping to the heavier style of drawing, appear coarse beside the works of the other schools. Nor does German miniature art of this period hold a bigh position, being generally mechanical and of a rustic character. As time advances the French miniature almost monopolizes the field, excelling in brilliancy of colouring, but losing much of its purity of drawing although the general standard still remains high. The English school gradually retrogrades and, owing no doubt to political causes and to the wars with France, appears to have produced no work of much value. It is only towards the end of the centary that there is a revival

This revival, which is referred to in the article on Illuminated MSS., has been attributed, with some reason, to a connexion with the flourishing school of Prague-a school which in the scheme of colouring suggests a southern influence-following on the marriage of Richard II. with Anne of Bohemia in 1382 . The new style of English miniature painling is distinguished by richness of colour, and by the careful modelling of the faces, which compares favourably with the slighter treatment by the contemporary French artists. Similar attention to the features also marks the northern Flemish or Dutch school at this period and in the early 1 sth ceatury; and it may therefore be regarded as an attribute of Germanic art as distinguished from the French style. The promise of the new development in English miniature painting, bowever, was not to be fulfilled. In the first quarter of the isth century, examples of great merit were produced, hut at a standstill in drawing and fettered by medieval convention. The native art practically came to a close about the middle of the century, just when the better appreciation of nature was breaking down the old conventional representation of landscape in European art, and was transforming the miniature into the modern picture. Whatever miniature painting was to be produced in England after that time was to be the work of forsign artists or of artists imitating a foreign style. The condition of the country during the Wars of the Roses suff. ciently accounts for the abandonment of art. Thus the history of the miniature in the isth century must be sought in the manuscripts of the Continental schools.

First have to consider northern France and the Low Countries. As it passes out of the 14 th and enters the rith century, the miniature of both schools begins to exhibit greater freedorn in composition; and there is a further' tendency to aim rather at general effect by the colouring than neatness in drawing. This was encouraged by the wider field opened to

Themipiaforist Books of all kinds trete illudrated, sad atered beoles, Bfbles and Psalters, and liturgionl books, wete to longet Whe chicf, if net the otily, MSS. which were illaringued. And yet thero was one clate of MSS. which came into the greatett promiacoge and which stas al the same time bitugicad. This whe the Honea, or Hours of the Virgin, Ac, derotional books for individural men, which vele multiplied in vast numbers and contaned sone, of the farest mork of the miniaturises. The docoration of these distic wolumes escapid in great mensure from the conventional restraints which their religious character might have inposed. Futhermore, the dernand for illuminated MSS. bad by this time establisised a regular arade; and their production gen not confined, as formerly, to the cloister with lis marrow and limited viems

Ferly in the contury the old oonventional treatment of hadscape still held its owro; mor did the diapered and gilded backtround pass out of use. Indeed, in some of the finest French specinass of the time the diapered patterss ase more briltiant than eye. But gatural scenery ia the secorid quarter of the century asserts itself more decidedly, althours with fautes in peapective. It mas' not until another genteration had arisen thet there was a-true appreciation of the botizon and of atmoepherie effect:

- The miniatuce of the French and Flemish schools min faitly parattel for a time, but afser the middle of the century national characterisaics batome more marked and divergent. The French miniatirt began to deteriorate, though oone very fine examples meere produced by the more gifted artists of the schoot. The figiredrawing was more carcless, and the painting tended to hapdicss without depth, which the artist endeavoured is celieve by an excests of gith shading. The cloee of the evitary brought with it the and of the Prench miniature; for the extravagant produetions of the s6th century carmot be counted s worthy of consideration.
The French miniature went dotn keiore the Elemish echool, which in the latber part. of the 1 gth cenzury attained to its bighost excellence. The Flemish minianure affected extreme softmess and depth of colourt abo an ever increxising carefulness in the treatment of details, of the draperies, of the efpression of the featurta: the Fiemish type of the Virgin's tace, for example, with its full, high forehead, can never be mistaken. In the best. Fhemish miniatures of. the period the artist succeeds in presenting a monderful softness and glow of cotour; nof did the bigh standand coase with the isth oentury, for many excelfent specimens still remain to attest the favour in which ft wes held for a fex deoades longer.
if in the longoing remarks, what has been stid in wetand to the careful treatment of detaits apphies still more'to the miniatufes dxecuted in griscille, in which the absencte of colour invited an enere stronyer accentuation of That treatment. This is perfeyps most observable in the griecilb milniatures of nofthern Etanders, which often saggest, patriforataly th the scrong angalat liae of the drepecies, a connetion with-the art of the woodengaver.
The Flemith ministure did not, bowever, hold the trivour of wettem Burope withoat a fival. That hat had arisen in the south, and had comis to perfection concuirently with the rininfure of the Low Countrics in the $15^{\text {th }}$ confury. Tits was. the Itsian: miniatare; and the history of lits devoloponent pow ddime arief notice We return to the rath oentury, whote ce smpended extminetion of the mork of the school of the - Hilatube painteins of Italy; bett we are not in a pobition, from' late of mitteriti, co fohow so choeety the developritent of the
 through the mante stages as the miniatures of England and France and the Low Counteiea. Interomminaication between the courtrids of-Eurepe was ton wall extablahed for the anse to be atherwiet. It It itian MSS. of the nornad iype the fafluence
 anturies The old! system of paibsing the 角ch slnts upon olive grem or corve simitar pigment, which it left exposed on the line , of the fatures thusiobthinian swarthy compthent;
 the isth centry. As a rule, the pigments used are' mord opeque than itrose employed if the zortitern schools; sind the arfist thasted more to colour alone to ebtath the desured eqect ohan' to the minxture of colour and gold which gave such brilifant results in the diapered patterts of Prance: The vivid scariet? of the Italian miniaturists peculiany thein own. The fgurti; dratwing does not beat ebmparison with tife cohtemporary art'ot Engtish and French MSS., the homan form being ofteh stunted and thick-set. In gentert, the Italian mininture, before'ts great expansion in the 1 4th entury, for beifind the miniatites of the north. But with ehe rghr century, unider the induence of the Renaissance, it advanced into the front rank and tivilled the best work of the Fhemish school. The use of thfeter pig; ments enabled the miniatorist to ohtion the herd arid porished surface so characterfstic of his work: and to maintain bharpness of outline, without losing the depth and richtects of'cotour whicis compare with the samie qualities in the Flemish sehool.

The labina styte whs fotrowed in the MS8. of Provence in the 1 4th and 1 gth centuries. It had tes effect. too, on the setwoot of northem' Frabce, by which it was 'also infinenced' in turn. In the MSS. of southern Germany it' is atso in evidence. But the principles which have been reviewed gutting the development of the miniature in the mere importint schoots appit' equally 80 all. La, the miniature of the Flemish school, ther Italian miniat ure was still worked to some extent with succest, undef speciail paeronige, even in the 16th oehtury; but with the rapid digpiucetient of the tnanuscript by the protuled booter the miniaturist "s eccopation whs brousft 10 a dose.

2. Mimiaturas as separate Small Pintans.-In Eutope the liter' development of the minfat tre, applied dmost exclusively to ${ }^{i}$ portrales, fo to a large exteste English; and the greater numberi of the chief masters in the sthe bave been Englthmen or tave! lived in England. Several great portial paintert ere said tol have worked occasionally ft miniatute, zad thete arepaintings; sinall in size attributed with good reason to Fiolbein, Fintogio: Morm, John Shute, Clotf, Stretes, Thetlinek, Zuceheto, Jothe her T. Betts, and with less probebitity oven to Van Dyct. Tberte'

 tion; examples by Betes Montegu Fotise wind Maxiresfeld Court, and portilits, by Lavina' Teertinch it 'the collectiotss of ' Mr Oeorge Salting and Mr J. Pierpont Morgan.
 is known was Nicholas Iflliard (c. I 547-T6mo), whost wort. pertakes; of the characterisifes of illumitiated matruseripts.
 while the paintingstare on cied. They sto ofteb stgmed, ent: have frequenthy aloe a haitn movio upoa thent. It has recinily:

 they palteed. They tignt thetr best werks in monogpam;

 Several of thee oopics ispe at Whadstr and Montugt House. At about the same date Gervier, Peelemberg, Jannabor, Ponotepe: Cleyn and her hrothers, wete workers im the att. John Ploseint (d. N6. 6) was the mester of Samiud Coppor; the greateet Bnighs minilaturist. The work of Coopet an best be andiedia the collection at Ham Hoose. He way followed by t. eot of the

Morgan colloction- - It represents the duke of Berwick. Sanuel Coapar (1609-1672) was a nephew of Hoskins. He spent much of his time in Paris and Holland, and very little is known of his career. His work has a superb breadth and dignity, and tris been well called "life-size work in little." His portruits of the men of the Puritan epoch are remarkable for their truth to hifo and strength of handling. He painted upon card, chicken shin and vellum, and on two occasions upon thin pieces of mutton bene The use of ivory was not introduced until lang efter bis time. His work is frequently signed with his initils, genarally in gold, and very often with the addition of the dite Hatman (d. 1688); Nexander Cooper (d. 1660), who painted a earies of portraits of the children of the king and queen of Bahemia, now belonging to the German emperor, and several of Whoee bext piniatu cs are in the collections of the queen of Holland and the kige of Sweden; David des Granges ($6615-1675$) Whase, work can be seen at Ham House and Windsor Casile; R. Gibson (ifisiligop); Mrs Rosse, his daughter, who so cleverly minteted the mark of Samuel Cooper, and Charles and Mary Peale, deperve notice at this period. They are followed by such antirs at Layrence Crosse (d. 1724), Gervase Spencer
 btser tomp natabie in connexion with the foundation of the Royal Academy. The workers in black lead (plumhago, as it wal called at that time) must not be overlooked, cspecially David Loggan, Faithorne, White, Forster and Fiber. They drew with exquisite detail and great effect on paper or vellum The 181b centory produced a great number of minialure painters, of whom Richard Cosway (1742-1871) is the most famone. His works are of great beauty, and executed with a dash and hrilliance which no other artist cqualled. His best work was tone about 3.999., His portaits are gencrally on ivory, although occasionally he morked on paper or vellum, and he produced a Freal maxy fulthength pencil drawings on paper, in which le selghtly tinsed the faces and liands, and these he called "ntayad." drawine. Cosway's finest miniatures are signed to the back] there is hut one genuine signed on the face; vecy fou beer nyem his initials on the front George Englcheart ($\mathbf{7}, 50-1829$) painted 4000 miniatures, and his work is stronger and toore impressive than that of Cosway; it is often signed "E", ". G.E." Andrew Piimer (1763-1837) was a pupil of Cosway, and bath be and his brother Nathaniel produced some lovely powtraite The brightness of the cyes, wiriness of the hair, exuberance of colour, combined with forced chiarosc 45_{0}° and often very inacearate drawing, are characteristics of Andrum Bryes's:Woth. Johg Smart ($1741-1811$) was in some respects the greatest of the $\mathbf{8} 8 \mathrm{~h}$-rentury miniaturists. His work excelled ip mefmement power at delicacy; its silky texture and elaborate Gnish andithe minals love for a brown backgror nd, distinguish
 Nixan (184i-3812) Shelley (c. 1750-1808), whose best pictures tee groups: two or more persons, William Wood, a Suffut atriot ($\mathbf{2 7} 68+1808$), Edridge ($1760-1821$). Sullivan, Sherif, Chosse, Bonjer Diye In the igth century J. C. D. Englehcut
 Reavonont, Behnes, Hariow. Heaphy and Mrs Mce naust be rocintionted. Sir Thomas idernence painited a kem miniatures, and Rneburn some in his early days; but the art may be said to bave died aut. with Sit William Roge, the Chalona and Newton, alhhough some werks by Landseer in this form are in existence, same scall paintings of fowers by Georpo Lances and one portrain by Rosectii Towards the end of the 1git century came a revival of miniature paining, but withous producing any masters of the game catibre. : Alyn Williame and-Lloyd amangst Engishmen, J. W. won Rebling-Quiagtand, the maleneed Depish miniature painter, and Best 2 Iorris, th Ausuallan artist, deserve mestion

From about 1650 onwards many fine miniatures were executed is enamel. Retion ($1607-169 x$) whes the greatest worker in this mettarial, and paintod bis finest pertraits in Paria for Louis XIV. His mon sucsended him in the same mofestion, Other artists itreneall wate Boit (d. 1727), Zinclke (d. 1767), Hurter (1734? wpoit Thooton (xT35-1989), Liot, Pripus, \$picar, Dindinger,

Vompuer, Bain and Thienpondf. Meay of these artists were either Frenchmen or Swiss, but ansat of them visiled Englaad and worked there for a while. The greatest English enamel portrait painter was Henry Bone (1755-1839), the finest of whose productions are now at Kingston Lacy, A greal collection of his small enamel reproductions of celebrated paintings is in Buckingham Palace.
The earliest French miniature pannters were Jean Cloued (d. c. 154c), bis son Eramgois, Jean Fouquet, Jean Perreal and others; but of their wonk in portraiture we have litale trace at the present day, although there are many portraits and a vast number of drawinge attributed to them with move or kess reason. The soveli portrits in the matuscript of the Gellid Wor (Bibliotbeque Nationala) aro assigned to the elder Clower; and to thos may be eddedia fine work, to the Pierpont Meorgan' eollettion, ropresenting the Mareachal de Brisase. Foflowing their meh we find the iwo-Stertsors, St. Andret, Cotelle and Masse; the the drioghtamen. Picart, Vauthior and Cheron; and then, Inter onf, we crow of minietuted by Largillide, Boucher;' Battier, Mortpecti, Desfocies, Brousts, Chriditer, Thourphy Perfin and Dubourgy but the greatet hasmes are thgue of Hall the Swede; Datront the Erenchman, and Figer the Aumian. The tiny pictures painted by the von Blareaborghe family art by many person grouped ace miliatures, and some of the hler Frencb artists, as Prudhion; Constasce Majer and Puboisy enectoled ministure portialts, while thers whose names might be mentioned were Werner (1637 -1710), Rosalba (1675-1757); Chatillon, Pasquier, Marsidi, Martot, Stomenti and Festa.' The most poptular artists in Frince, however, were Augustin (d. r8jz) and Isabey (d. 1855). Thetr portraits of Napoleon and his court are exceedingly fino, and perhapo no other Frenchman painted ministurss so mell as did Augustin. The Spanish painter Goya is known to have executed a fev miniatures,

Miniatures are painted in oil, water-coloar and enamel, bat chiefly in waternoddur. Many Datch and German ministures were painted fo off; and as a rule these are on coppes; and there are portralts in the same medium, and often od the same mateflal, utributed to many of the great Italim artists, notably those of the Bologna schoool. Sumued Coopet is said to have execured a fow paintlags in oil on coppor, bue we know little about the astits who prepared the numerous oil portruits fa fertione colloctimen.

The work of the imb century on'ivory is, of course, in watercolour. The ase of lvory came inte general adoption tis the early part of the reign of Waliam III., miniatures previous to that time having been painted on vellum, chicken-skin or cardboard, a few on the backs of playing cards, and many more on very thin vellum closely mounted on to playing cards.

The most important collections of miniatures io England in 1907 werc those in the possession of the king, the duke of Buccleuch, Mr J. Pierpont Morgan, the duke of Rutland, the earls of Excter, Hichester, Dysart, Dartrey (notable for enamel work, some examples of which are of the greatest rarity) and Ancaster (especially notable for works by Cosway), of Earl Beauchamp, the Late Baroness Burdett-Coutts, Sir Gardner Engleheart (remarkable for containing almost exclusively works by the Engleheart family), Lord Weardale. and Messrs Drake, Digby, Williams, Whitehcad, and Usher of Lancoln. There is a remarkable collection, principally of works in enamel, in the University Gallery. Oxford, a few fine miniatures at South Keasington, and in the same muscum in the Jones collection some splendid works by Petitot, and there are also some famous foresn portrait and picture miniatures in the Wallace Collection. Herford House. London. The collection at the Louvre iv of importance, especially as regards the works of Peritot; that belonging to the queen of Holland of very high merit, and includes some choice works by Holbein and Alexander Cooper; and there is also a very fine collection at Amsterdam, including some of the briest works by Samued Cooper and the largest known by Hoskins: mons very fine ores belong to the Crown of Sweden, and there is a : armorb but very mixed collection in Peter the Great's Gallery in St letersburg, unfortunately in great confusion and needing pcarrangement. Many fise miniatures, including some very scarce eamel work by Pricur. are at the Rosenborg Palace in Copenbagen; the German emperor and the Crown of Prussia both own some remarkable examples, and there are important collections at Venna, Florence and Stockholm, and is private hands in Berlin, Moscow and Helsingfors.

For fuller information see also J. L. Propert, History of Miniature Arl (London, 1887) ; G. C. Williamson, History of Portraif Miniatures (2 vols., folio, r904), Portrail Miniatures (London, 1897); Richard Cosway (1,ondon, 1897): George Englehearl (London, 1902); Andrev Plimet. Ecc. (London, 1902); How to Idenify Miniatures (London. 1904): Richard Cosway (Lonidon, 1905) and the privately printed catalggue of the Pierpont Morgan Collection (1906, 1907, 1908); Les Emanx de Petitol du Louvre (Paris, 1862-1864); catalopues of the Buccleuch Gallery, Welbeck Gallery, Ward Usher Collection. Bemrose Collection, Woburn Abbey Collection, all privately printed, the catalogue of the collection exhibited at South Kenaington, and the privately isoued catalogue at the Burlington Fine Arts Club, with illustrations.
(G.C. W.)

MIMIM (adapted from Lat. minimus, the smallest; a superlative formed from the Indo-Germanic root zrin-, small), the smallest possible part of a thing, a particie. In music the name " minim " (nota miṇima) was given by medieval musicians to a sote whose value was half a semibreve. It was, as its name implies, the note of the shortest duration then in use. In modern music several notes of lesser value, as the "crotchet" and "quaver," have been added, and the minim is now about halfwray in the scale of "values." According to Thomas Morley (A Phaine and Easie Inhroduction to Preatical Music, 1597), its introduction into manuscript masic is ascribed to Phillipus de Vitriaco, a, musician of the 14th century.
In medicine a minim is the smallest fluid measure, being equal to one drop. Sixty minims make a fluid drachm.
For the religious Onder known as ". Minims". see Francis of Paola, St.

MINING, the general term for the working of deposits of valuable mineral. The term ${ }^{1}$ is not limited to underground operations, but includes also surface ercavations, as in placer mining and open-air workings of coal and ore deposits by methods similar to quarrying, and boring operations for oil, natural gas or brinc. Mining may be subdivided into the operations of proepecting or search for minerals, exploration and development, work preparatory to active operations, and working. The latter includes not only the actual excavation of the mineral, but also haulage and boisting by which it is brougbt to the surface, timbering and other means of supporting the excavations, and the drainage and ventilation of mines. Finally, under the heads of administration, mine valuation, mining education, accidents, hygiene and mining law, will be discussed matters having important bearing on mining operations. Special methods of mioing are dealt with in the separate articles on Conl, Goid, and other minerals and metals. Quareyng and Ore-dressing, which may be considered as branches of mining, are also discussed in seperate articles.

Prospecling.-In the article on Mineral Deposits (q.v.) the distribution and mode of occurrence of the useful minerals and ores are fully discussed. The work of prospecting is usually left to adventurous men who are willing to undergo privation and hardship in the hope of large reward though the chances of success are small. The prospector is guided in his search by a knowledge of the geological conditions under which useful minerals occur. When the rocks are concealed by detrital material he looks for outcroppings on steep hillsides, on the crests of hills or ridges, in the beds of streams, in landslides, in the roots of overturned trees, and in wells, quarries, roadcuttings and other excavations. When the solid rock is not exposed the soil sometimes fumishes an indication of the character of the underlying rock. Sometimes the vegetation, shrubs, trees, \&c., as characteristic of certain soils, may furnish evidence as to rock or minerals below. Search should be made in the beds of streams and on the hillsides for "float mineral" or "shoad stones," fragments of rocks and minerals known to be associated with and characteristic nf the deposits. Fragments of coal, or soil stained black with coal, will be found near the outcrop of coal beds. Grains of gold or particles of ore may be dotected by washing samples of gravel in a prospector's
"Of doubtful origin. "Mine." both verb and substantive, come from the Fr.، and is usually connected with Las. minart, to drive or lead; but this would normally result in Fr. mener. not miner. Skeat, following Thurneysen, accepts a Celtic origin (cf. Irish memn. ore). but the NGw Eng. Dich doubte this.
pan. By tracing such indications up the stream or up the hiflside the outcrop may sometimes be found, or at least approzimately located. The outcrop of a metalliferous vein frequently manifests itsclf as a line of rocks stained with oxide of iron, of ten honeycombed and porous, the "gossan" or "eisen-but," the sron oxide of which results from the decomposition of the pyrites, usually present as a constituent of such veins. Other metals, such as manganese, copper, nickel, may show their presence by characteristic colours. Finally, the surface topography will of ten throw much light on the underground structure. The shape of the hills and ridges is necessarily infuenced by the inclination of the strata, by the relative hardness of different rock-beds, and by the presence of folds and fissures and other lines of weakness. A quartz vein or bed of hard rock may show itself as a sharp ridge or as a well-defined bench; a stratum of soft rock or the line of a great fissure, or the weakening of the strata by an anticlinal fold, may produce a ravine or a deep valley. The bed of fire-clay under a coal seam, being impervious to water, frequently determines the borizon of numerous springs issuing from the hillsides. As the coal and the associated rocks usually contain pyrites, these springs are often chalybeate. When the location of the deposit has been determined approximately, further search is made by trenches or pits or boringa through the surface soil.

Exploratory Work.-Before opening and working a mine it is necessary to have as full and accurate information as possibla as to the following:-

1. The probable extent and area of the depoest, its average thickness, and the probabie amount and value of the mineral;
2. The distribution of the workable areas of mineral in the deposit;
3. Conditions affecting the cost of opening, developing and working the mine or determining the methods to be adopted.
Work undertaken to secure this information must be distinguished from prospecting, which is the search for mineral deposits and from development, work undertaken to prepare for actual mining operations. Exploratory work is associated intimately both with prospecting and with development, but the purpose is quite distinct from either prospecting, development or working, and it is of importance that this should be ciearly recognized. It must be remembered that the line between a workable deposit and one that cannot be profitably worked is often very narrow and that the majority of mineral deposits are not workable. The money that is spent in prospecting and in development is therefore liable to prove a loss. This is a recognized and legitimate business risk, differing only in degree from the risks attending all business operations. The risk of failure in mining enterprises is offset by the chances of more than ordinary profits. If the property proves valuable the returns may be very great. While the risk of loss of capital is not to be avoided, it is of the utmost importance to fimit the amount of money expended while the extent and value of the deposit are still uncertain and to do the necessary work by the cheapest methods consistent with thoroughness. As the information as to the character and extent of the deposit becomes more definite, and as the prospects of success become more favourable, money may be spent more freeiy. The risk will vary with the character of the deposit. In the case of the chesper and more abundant minerals, such as coal and iron ore, and of large deposits of low-grade ores, the extent and character of the deposit can generally be determined by surface examingtions at comparatively small expense. On the other hand, is the case of less regutar deposits, including most metalliferous veins, and especially those of the precious metals, the uncertainty is often very great, and it is sometimes necessary to work on a small scale for moniths before any considerable expenditure of money is justified.

The quickest and cheapest method is by surface explorations. The work of the prospector frequently furnishes much of the information required. By sinking additional pits or by extending the costeaning trenches and uncovering the outcrop of the deprosit more fully it is sometimes possible to obthin all the

Colltrintire of the Dutike of Fortand, Kis.

Fig. 2. - A young man in deep mourning (1616). By Nicolas Hilliard.

Coltcetion of H.M. the King.
Fig. 5.-Sir Philip Sidney. By IsaacOliver.

Coticcton sithe Marguns if Exeter. Fig. 8.-Charles II. as a boy. By John Hoskins.

Collection if Writeficta Disty, Asg.
Fig. 3.-Lady Lucy Stanley. By Isaac Oliver.

Corlection of the Duke of firthitht. Ni.g.
Fig. 6.-Col. Henry Sidney (1665). By Samuel Cooper.

Coliertion of the Duke of Portiand, K". G.
Fig. g.-"Mr. Sympson, Master of Musick." By Thomas Flatman.

Plate II.

Collection of the Duke of Portiatt, K.G.
Fig. 1.-Bernard Lens. By himself, 1718.

Fig. 4.-Mrs. Parsons. By Richard Cosway, R.A.

Fig. 8.-A Boy. By J. H. Fragonard.

Fig. 2.-Sir Charles Oakeley. By John Smart.

Fig. 5.-Miss Free. By Andrew Plimer.

Mirshail IJatu coulction.
Fig. 9.-Lady. By Horace Hone.

Fig. 3.-Unknown Lady (1781). By John Smart.

Fig. 6.-Miss Mary Berry. By George Engleheart.

Collection of Mr. E. M. Hodgtins.
Fig. 7.-Kitty Fisher. By Ozias Humphry.

C.lictiwn of the Kimg of Sweden.

Fig. ro.-The Countess D'Egmont. By P. A. Hall.
information requited for the most extemsive and important mining operations. Even when the outcrop is oxidized, and sarkoce the mineral character and richness of the deposit is erploce altered thereby, it is possible to determine variations dow. in thickness and the extent and distribution of the rich and barren areas by outcrop mensurements. Information of this sort obtained by surface exploration is oiten as conclusive as similar information obtained from underground workings. If the deposit shows great variations in thickness in its outcrop along the surface it is probable that a drift or a slope would show the same thing in depth. If the workable areas are poor, and appear only at long intervals along the outcrop, the chances of discovering richer areas by a shaft are very small.

In many cases underground exploration is necessary. For example, the deposit does not outcrop as in the case of blind Bortas: veins and fat deposits below the general level of the country; or the outcrop lies beyond the limits of the property or under water or water-bearing formations, or is covered hy quicksand, or is deeply buried. For such buried deposits boring is cheaper than sinking. In the case of coal, salt, iron ore, pyrite and other homogeneous minerals, boring may give all the information required. With a number of holes the average thickness and probable extent of the deposit may be determined, at least approximately. When the deposit is vertical or steeply inclined, horizontal or inclined bore-holes will be necessary. This will increase the cost of boring and will render the holes more likely to swerve from the true direction. In the case of metalliferous deposits of varying thickness or irregular distribution the information from bore-holes is less satisfactory. A large number of holes must be bored to obtain, even approximately, the average thickness and value of the ore and the shape and size of the ore bodies. In extreme cases the results from boring are likely to be untrustworthy and misleading unless the work is done on such a scale that the cost becomes prohibitory.

While the information obtained by surface explorations is always valuable, and sometimes conclusive, as to the value Uuden of the deposit, it is usually necessary to supplement grougd Exe and confirm it by underground work. The outerop atoralos. of a metalliferous vein is generally more or less altered by oxidation, and often a part of the valuable mineral has been converted into a soluble form and leached out. These conditions sometimes extend to a considerable depth. Below the oxidized outcrop the vein is often increased in value by secondary enricbment, sometimes to a depth of several hundred feet. In the case of such altered deposits surface exploration alone is likely to be misleading, and it is important to push the underground exploration far enough to reach the unaltered part of the deposit, or at least deep enough to make it certain that there is a sufficient quantity of altered or enriched ore to form the basis of profitable mining operations. As the sinking of shafts or the driving of narrow entries or drifts is expensive, and as the mineral extracted rarely pays more than a small fraction of the cost, it is usual to plan this exploratory work so that the openings made shall serve some useful purpose later. The mistake is often made of sinking large and expensive shafts, or driving costly tunnels, before it is fully proved that the deposit can be worked on a scale to warrant such developments, and, indeed, too often before it is known that the deposit can be worked at all; and in too many cases large amounts of money are thus unnecessarily lost by over-sanguine mine managers. It is, however, often advisable that the money spent in surface or underground exploration should at the beginning be spent for information alone. The information so gained not only determines the value of the deposit, but also serves to indicate the best methods of development and of working. The money 80 spent, if judiclously used, insures the undertaking against loss by diminishing the mining risk, and is thus analogous to premiums paid to insure against fire or other sources of loss.

Development.-As soon as it appears reasonably certain that the property is workable the mine will be opened hy one or more shafts, drifts or tunnels, and the underground passages
for active mining operations will be started. A drift or entry is a horizontal passageway starting from the outcrop and following the deposit. The former term is used in metal-mines and the latter in coal-mining. A tunnel differs from \& drift in that it is driven across the strata to intersect the deposit. Either may be used for drainage of the mine workings, in wbich case it becomes an adit. A mine should always be opened by drift or entry if practicable, as thereby the expense of hoisting and pumping is avoided. Drifts, entries and tunnels find their chief application in mining regions cut by deep valleys. When, however, the deposit lies below the surface the mine must be opened by a shaft. If the outcrop of the vein or bed is accessible the shaft may be inclined and sunk to follow the deposit. This is in general a cheaper and quicker method of development for inclined deposits than by a vertical shaft, and it has the added advantage that much information as to the character of the deposit is obtained as the shaft is sunk. When the deposit lying below the surface is horizontal, or nearly 80 , or when the outcrop of an inclined deposit is not accessible, a vertical shaft will be necessary. Vertical shafts are better adapted to rapid hoisting, and have therefore somewhat greater capecity, than inclined shafts. They are to be preferred also for very deep shafts, or for sinking in difficult ground. Drifts and inclined shafts following the deposit may prove difficult of maintenance when the workings become large and settle-ment-of the overlying strata begins. Large pillars of mineral should be left for the protection of the main openings, whether these be shafts or adits. In the case of very thick beds and mass deposits the main shaft or tunnel will preferably be located in the foot-wall.

Figs. I and 2 ilfustrate the development of metal-vein by two adits, two inclined shafts in the lode, and by a deep vertical shaft connected with the lode by horizontal cross cuts. The stippled areas represent the ore shoots and the white areas the barren portions of the lode. The levels are supposed to be to fathoms (60 ft .) apart. As the mine is opened the deposit is subdivided into hlocks of convenient size by parallel passages, which form later the main haulage roads; and by transverse openings for ventilation. In metalmines the main passages are known as levels, and these

Fig. 1. are connected at intervals by winzes or small shafts. In coal mines, entries and headings, bords and walis serve similar purposes. The size of the blocks or the distance between the

Fig. 3:
main passages is determined mainly by considerations of convenience and coonomy in excavating and handling the
pineras and by the possibiliky of mupponing the soof lope epough to permit the excavation of the midoral without unnecessary risk or expense. In metal mipiag, when the yorkable portions of the deposit are small and separated by unwertable areas, the levels serve also the pucpase of exploration, and in such cases must not be so far apart as to risk missing valuable mameral. In coal-mines main entries aro ofion 100 yds. apart, while in metal-mines the distance between levels rancly exceeds 50 yds and sometimes is but 50 or 60 ft , In irregular and uncertain deposits this work of developmant should be kept at all times so far in advamee of mining operations as to ensure a regular and uniform outputu In some casent, where the barren areas are large, it may be nececsiary to have two or three years' supply of ore thus blocked out in advance. A mine, however, may be over-developed, which results in loss of interest on the capital unnecessarily locked up for years by excessive development, and involves additional cost for tha maintenance of such openings until they are needed for active mining operations.
Working. - When the development of a mine has advanced sufficiently the operation of working or extracting the mineral begins. The method to be adopted will vary with the thickness and character of the deposit, with its inclination, and to sorae extent with the character of the enclosing rocks, the depth below the surface, and otber conditions. The safety of the men must be one of the first considerations of the mine operatar. In most civilized countries the safety of mine workers is guarded by stringent laws and enforced by the careful supervision of mine inspectors on behalf of the government. The method of mining adopted must secure the extraction of the mineral at a minimum cost. The principal item in mining cost is that of labour, which is expended chiefly in breaking down the mineral, either by the use of hand tools or witb the aid of powder. Labour is also expended in handling the mineral in the workingplaces and in bringing it to the mine-cars in which it is brought to the surface. Narrow and contracted working-places are to be avoided, as in such places the cost of breaking ground is always large. Economy in handling makes it desirable to bring the mine-cars as near as may be to the point where the mineral is broken. This can be done in inclined deposits, it can often be done hy the aid of mechanical appliances, though sometimes at an expense not warranted in the saving in the labour of loading. In stoeply inclined beds the working-place can he so-arranged that the mineral will fall or slide Jrom the place where it is broken down to the main haulage road. The greatcst difficulty is found where the inclination of the deposit is $t 00$ great to permit the mine-cars to be brought into the working-place and yet not great enough to allow the mineral to fall or slide to a point where it can be loaded.
While it is always dessitable to provice large working places, the size of the working-place is limited by the thickness and Stze of strength of the overlying beds forming the root Workiage or hanging wall of the mine. With thick and strong Places. rocks the working-places may sometimes exceed 100 or even 200 ft , in width. Indeed in metal-mfines 100 ft . is the usual distance from one level to the next. With weak and thin beds forming the roof the working-places are often not wider than 20 or 30 ft . as in most coal-mines. While the width of the working-place is thus bimited by the strength of the roof, its length is determined by other considera-tions-namely, the rapidity with which the mining work can he conducted and the length of time it is practicable to keep the working-place open, and also by the increased difficulty of handling the minerals sometimes experienced when the workings reach undue length. In long-wall and in the pork of mining pillars the roof will be supparted on one alide only, the overhanging beds acting as cantilewers. The working-place in such case is considerahly narrower than in rooms or stopes, and there is also greater difficulty in supporting the roof because the projecting beds tend to break rlose to the point of support where the strain is grealest. This tendeacy is,overcome by the Hff of timber supports so disposed as to ensure the breaking
 tares sad provent the interruptime of the mark that paight, of herwise result.

While it is elmays dosimable to work the depasit sowe wo exaract the mineral complectely, it frequemuly happens that' this can ouly be dapo an groenty increased cose. In edyetw,
 grade orp deposits it is, sometimes nocemary to of Mineral sacrifice a comsiderable propartion of the miparal, whish is beft for the support of the oxerlying strath. A similiar inacrifice. in the chape of pillare is ofien necessery to support the surficas eilber to avoid injury to waluable structares or to provenct a flooding of the mine. As already noted large pillerk nuss alopays be laft to protect abaits, adits and the more importent mine passages necotssary for drainages: mentiletion and the. hauinge of mineral. It the emaly histony of mining there was but litho attempt at syesematic developpent and. working, and the mines weve often irregutar and tortuouc.: Fig is in

an old Mexican silver-mine of this type. In such mines the mineral was carried out on the backs of men, and the water was laboriously raised by a long line of suction-pumps, operated by hand, each lifting the water a few fect only. With but, slight modifications permitting the use of pumps and hoisting-' machinery equally simple mecthods of mining may be seen to-day, when the deposit is of snall extent. Fig. 4 is a portion of ${ }^{\prime}$ a mine which consists of a series of irregular chambers with the roof sup. perted on small pillars left at intervals for the purpose. In the sysicmatic mining of larger deposits, the simplest pl n consists in mining large areas by mans of numerous working places under he protection of pillars of mineral left oir the purpose, and later mining thesc pillars systenatically, allowing the 0) rrying rock beds io fall and filf the abandoned workings.' In shallow mines the pillars are small and the saving of' the miscral of minor importance. In deep mines the pillars \mathbf{m} y furnish the bulk of the product, and the control of the fall of the roof, so as to permit the successful extraction of thel mincral, demands a well-schemed plan of operation. In the roubing of pillars, imber is necessary for the support of '
 of the! roof while the piltars ape mined More effective slypport and contsol of the roof may be socured byi the use' of rock-filing alone or: with timber. By the wee of wock fitiong it is cuen possible to dispense with pillars of minerat; or, if
 sequent robbing: operations. Rock-filiming will be wied whenever a large proportion of barren material must be mined with the ore.: If rock-filing must be brought from the sudface its use will generally be confined to mints in which it is difficult to swpport the roof in any other way. Rock-fining yields and betomes -consolidated under heavy pressure, and therelofe does not funnish a rigid support of the overlying strata, quit rather a cushion to control and equalize the subsidence.

With soft material, pillars must be large, even at moderate depths below the surface, and it invalves less habour to leave poome opel long rectangular pillars than to foreo numercus pepher square ones. This leads to the adoption of the mieng. room and pillar systen so common in coat-mining.
Fig. s is 2 mine in a bed of soft iron ore worked by a stries

Fig. 5 -
of 'Inctined mhafte, from which long horizontal roomse bratch off rigkt and left.
-The asuat method of working metal-mines is by overband and andernand stoping, using rock-filling or pillass of mineral sioplos. "to support the roof. Fig. 6 pepresents' a portion : of ohe of the Lake Superior coppet-mines wothod by ouerhand stoping. A stope is that portion of the worting anaignded to a party of mineris, and the block of ground is ustally

Fic. 6,
divided into three or four stopes at varying bleighits above the nhiait ' level,' the lowest 'being known as 'the cutting-out stope', the 'othets as the first and second bait stopes' in'aseending order. In^{1} stetp pitching beds sufficieni excarated materfal is aliowed to remain in the stope for the support of the macthtest and tmen, the excess being drainn out from time to time and loaded trio cars. Thie rest of thie minceidi is aillowed to remaint untif the stope has so far advanced thate its support is no lomger: meeded." This mettiot of mihing requires but Jitie tiarbering;
onstra singletiine of timiber and lagifing over the ievel called the stivl. When the roof is weak, or when it is undesirable to leave so much are in the stopres, fabse ptulls ane! sompotimes: erectiod in the upper part of the stope. The ore helow the fabec atwl's can thed be drawn ont withont, waning fior the oompletion of the top isteper. When then minteral does not stand Tiell in the 'pillar it will be neoestary to erect a' line of timbara with lagging so wis to sheathe the umidet-ride. of the: pillar and prevem

Fig. 7
its falfrig. It is' not destrable to leave large areas standin's tipon pillars in the mine, and as soon as the work on any level is completed the pillar below should be mined out is far as is safe, and the absindoned portion of the mine allowet 20 cave in and lessen the weight on the pilkts elsewhere: The block or groumd between levels is sometimes mined by underhand stoping (fig. 7.): In this case the advanced drift is rum undets neath the pillar, and the ground below is mined in descending steps. Phis plan has the advamtage of requiring little or fin tlmbering when the mineral is strong enough to stand well in the pillars and when the hanging wall is good. The main haulage tracks are laid at the bottom of the stope, which thass forms the level. In this method' of mining the diferent stopes must be kept close together; othetwise there: is much added labout in shoveling the broken ore down to the maith level." This imethod has the advantage of permitting the ore to be sent to the surface as fast as it is mined mstead of being left for some months in the stopes for the men to stand upon: It has the disadvantage that the distance from one level to the next cannot usually be more than fifty feet withourt increasing greatly the chances of injury to the men from faling rock: The method is then practicable and safe onty with exceptionally strong mineral and roof. In mecal-mines producing abundant rock-filling the overhand method of stoping, illustrated in fig. 8, is used. In this the stoping contracts run vertically,

Fia 8.
and each party of contrictors has one or more mills or tlmbered chutes through which the rick ore is conveyed to thie fivel below and loaded in cars. The ore as mined is hand-picked ard the barren malerial allowed to remain in the'stope where it
falls. In this method of mining no pillars need be left under the levels, as the rock-filling gives sufficient support to the roof. This method of mining affords the maximum of safety to the miners.
In the working of thick deposits the block of ground between two levels is divided into horizontal sections or floors which Worting are worked either from above downward or from of Thate the bottom upward; in the first case the separate Dopacke floors are worked by one of the caving systems; in the second, generally with the aid of filling. Fig. 9 illustrates the working of a block of ground by the top-slice caving system. Above, the ground has been completely worked out from the surface, and the space formerly occupied by ore is now filled with the debris of the overlying strata which has caved in above the block of ore now being worked. There is considerahle thickness of old timber left from the working of the upper levels. This mat of timber forms a roof under the protection of which the mining of the ore proceeds downward floor by floor. The working-floors are connected hy winzes with the main haulage roads below. These winzes serve for ventilation, for the passage of the workmen, and for chutes through which the ore is dumped to the level below. The working out of each floor is conducted much as if it were a bed of corresponding thickness. Haulage roads are driven in the ore so as to divide the floor into areas of convenient size. These separate areas are then minẹd in small rooms, each room being timbered as in mining under a weak roof rock. The room is driven in this way from one haulage road to another or to the boundary of the ore body. On completion of any room the timbers are withdrawn and the overlying mass of timber and rock is allowed to fall and a new room is started immediately alongside of the one just completed. In this way the wbole floor is worked out and the mat of timber and overlying rock is gradually lowered and rests upon the top of the ore forming the floor below. Before abandoning a room it is usual to cover the bottom of the working-place with laggingpoles, which facilitate the mining of the floor helow. In this mianner one floor after another is worked until the floor containing the main haulage roads of the level below is reached. In the meantime a new level and a system of haulage roads have been driven a hundred feet below, and winzes have heen driven upward to connect with the old level which is to he ahandoned. The floor containing these old haulage roads now becomes the top slice of the one hundred-foot block of ground below and is mined out as descrihed. Several floors may be mined simultancously,

Fig. 9.
the workings in the upper floor being kept in advance of those below, so as to allow the broken mass above to become consolidated before it is again disturbed hy the working places of the next floor. This system permits tho complete extraction of the ore at moderate cost and without danger to the men.
The subdrift caving system, fig. 10, difiers from the top-slice system mainly in the greater thickness given to the working floors, which may be from 12 to 40 ft in thickness, whereas in the top-slice system the height of the floor is limited hy the length of the timbers used in the working-rooms, rarely over 8 or 10 ft . The subdrift system requires a smaller amount
of narrow work in excavating the necessary haulage roads, asd is therefore better adapted to hand ores in which such narrow work is expensive. The mining of each floor is catried on in sections with small working-places which are frst driven of moderate beight to their full length and width, leaving a back of ore above and pillars of ore between to support the upper portion of the upper layer or floor. These pillars and the

Fig. ${ }^{10}$.
back of ore above are then mined in retreating back towards the haulage road. The subdrift system is somewhat chenper than the top-slice system, the output per man being greater.

The bottom-slice caving system of mining begins at the bottom of a hundred-foot block of ground, a foor being excevated under the whole area, leaving pillars of sufficient size to support the ground above. These pillars are then filled with blast holes which are fired simultaneously, permitting the whole hlock of ground to the level above to drop. A floor is then reopened in this fallen ore, leaving pillars for temporary support which are blasted out as before. This is the cheapest of the three caving systems, but is applicable only when the deposit lies between walls of very solid rock, as otherwise wall rock is liable to cave with and become mixed with ore, which adds greatly to the expense of handling.

When rock filling is available, as when the ore contains much harren material to be left behind in mining, the ore body is divided into blocks of convenient height as above, and these blocks are divided into floors, the bottom floor of each hlock however being attacked. Each Iloor is opened up hy subsidiary haulage roads and worked out in small rooms which are timbered and filled with broken rock when completed. An adjoining room is next excavated and filled, and thus the whole floor is worked out and replaced with rock-filling. Work is then started on the floor above, the upper fioors being connected with the main haulage roads hy winzes which are maintained through the filled ground. Several floors can be mined simultancously, the work in the lower floors being kept well in advance. Instead of mining in horizontal floors the filling method permits the ore to be mined in vertical chambers or slices which extend from one level to the nert above and from one wall of the deposit to the other. When a chamber has been excavsted and completely filled the slice adjoining is mined out, or at times a block of ground may be left untouched between two filled chambers and then mined out. In the latter case the top-slice caving method will usually be employed for the working of such intervening pillars. In order to lessen the cost of handling the rock-filling, the excavation sometimes takes the form of inclined working-places, parallel to the slope haturally taken by the rock when dumped from above into the working
place. This method of mining and filling can be used when the work is done in horizontal floors or in transverse chambers. In the United States the Nevads square set syatem of timbering is used in connexion with rock filling (fig. nI). The use of the beavy timbers and continuous framing which characterize this system facilitates greatly the work of mining and-maintalning the haulage roads on the different floors, and gives more rigid support to the unmined portions of the block of ground above. These advantages compensate for the greater first cost. Where each floor is timbered by itself with light timbers, as is the practice on the continent of Europe, the consolidation of the rock-filling under pressure gives rime to considerable subsidence of the unmined ore, which has frequently settled 20 ft . or more before the upper part of the block is reached. This occasions much added expense in the maintonance and retimbering of the haulage roads on the upper floors. The shrinkage of the rock-filling and the settlement of the workings

Fic. 11.
can be greatly lessened by the use of hard rock with a minimum of fine stuff; but even 20 the advantage lies with the American system of timbering.

The cost of filling has been greatly reducod by the system of fushing culm, sand, gravel and similar material, through

ambing

 plpes leading from the surface into mine workings. Material as coarse as 1 in. in diameter may be carried long distances underground with the use of little more than an equal volume of water. 4 This method originated in the Pennsylvania anthracite minea in 1887, but bes been employed in recent years on a large scale in Silesias, Wertphalia and other European coalfields. In some cuses it has been found advantageous to quary and crush rock for the purpose of using it in this way. Examples of other mining methods will be found under Conl.*Where mineral deposits lie near the zurface anderground mining may be replaced by open excavations, and the reduced Opos Opos cost of mining makes it poosible to remove the 5 Therying soil and rock to comanderable deptha The depth to which open worting can be pushod depends upon the sixe and vilue of the mineral deposit and npon the expense of removing the over-burden. Open excavations neveral hundred feet in depth are not uncommon. Where practicable steam abovels are employed, evea when it is necessary to break up the material beforchand by blasting. Steam shovels are not well edapted to deep excavation unless providion m made for the rapid bandling of the cars when filled. For deep workings the milling method is usually employed, in
which the ore is excavated in funnel-sbaped pits, each of which connects with underground haulage roeds by a shaft. The ore is mined in the ardinary way, by pick and shovel if soft, or by the aid of powder if nocesary, and the funnel-shaped bottom of the pit is maintained at such an angle that little or no shovelling is required to bring the eacavated material to the shaft. Before the bottom of these pits reaches the level of the haulage roads below, a new set of roads will have been driven at a lower level and connected with the excavations above by the shaits. The cost of mining by the milling method does not greatly eiceed the cost of steam-shovel work. For the apecial methods by which placer_deposits are mined 300 Gond.

Undarground Haulage-The excinvated material is brought to the hoisting shaft, or sometimes directly to the sarfiace, in small mine cars, moved by men or by animals, or by locomotives or wire-rope haulage. The size, sbape and design of the cass depend on the aire of the mine passage and of the hoisting compartments of the shafts; on whether the cars are to bo trammed by hand or hauled in trains; whether they are loaded by shovel or by gravity from a chute; and whether they ara to be hoisted to the surface or used only for underground transport. The cost of underground haulage is lessened by the use of cars of lerge capacity. In the United States cars in the coal and iron mines hold from 2 to 4 tons. In Europe the capacity ranges from 1000 to 1500 B , though the tendency is to increase the sire of the cars used. In mines of copper, lead and the precious metales, in which the cars are moved by hand, the usual load is from 1200 to 3000 th . These small cars are constructed so that the laud may be dumped by pivoting. the car bodies on the trucks. Larger cars aro usually dumped by means of rotating or swinging cradkes, the car bodies being rigidly attached to the axies or trucks. When loaded by sbovel the car is made low to economize labour. Wooden rails, protected by iron straps, are sometimes used on underground romeds for temporary traffic; but steel rails, similar to, though lighter than, those employed for railways are the rule. For hand tramming, animal and rope haulage, the raila weigh from 8 to 24 ll per yard, for locomotive haulage 30 to 40 H. Grades are made, whenever possible, in favour of the load, and of such degree that the power required to haul out the loaded cars shall be approximately equal to that for hauling back the empties, viz. about it of 1%. Sharp curves should be avoided, especielly for mechanical haulage. Switchea for turnouts and branches, \&c., are similar to but simpler than those for railways.
In metal mines, where, as a rule, mecharical haulage is inapplicable, the cars are moved by men (trammers). This is expensive, but is made nocessary by the small nereed amount of material to be handied at any given Aalmet point. The average speod is about 200 ft . per neminger, minute, and the distances preferably but a few hundred feet.' Animal haulage is employed chiefly in collieries and large metal mines; sometimes for main haulage lines, but oftener for distributing empty cars and making up trains for mechanical hauigge. In mines operated through shafts the animaln are stabled underground, and when well fed and cared for, thrive notwithstanding their rather abmarmal conditions of life. Mine cars are sometimes run long distances, singly or in trains, over roads which are given sufficient grade to impart considesable speed by gravity, say from 1 to 21%. The grades must not be too great for brako control nor for the pauling back of the empty cars. Cars may thuss be run through long adits or through branch gangways to some central point for making up into tratins. Near the top and bottom of hoisting shaits the trects are usually graded to permit the cars to be run to and from the shaft by gravity.

Locomotive hadage is applicable to large mines, where trains of cars are hauled long distances on flat or undulating roads of moderate gradients. Steam locomotives have been largely supersoded by compresed air or electric locomotives. Compresed air locomotives are provided, with cylindrical.
oded tanks charged from a epectial cotepreser with ait it a pressure of 500 to 700 th per sq. in. The tapacity of the tank depends on the power requifed and the disciocamediratance to be traversed by a slagle charge of air. The sir passes through a. redueling valve frow the chain to an auxiliary tank, in which the pressure is, say, 125 th, and thence to the driving cylinders. By wsing compressed air vitiation of the mine afr is avoided, as well as all danger of fire or explofion of gas. Electric locomotives usually work on the troliey system, thoash a few storage battery locomotives liave been suceessfully employed. Trolley hanlage lacks the Retibinty of steam or compressed air haulage, and is Hmited to main lines because the wires must he strung throughoat the length of the line By adopting modern non-sparking motors there is but little danger of igniting explosive gas.' Electric and compressed afr locomotives are durabic, asilily operated, and can be built to ran under the low roofs of thin velims. Their power is proportioned to requirments of lood and maximum gradient; the speed is rarely more than 6 or 8 m . 'per hour.' Slectric locomotives are in general more, conomical then either steam or compressed air. I
F. For héavy gradients rope haviage has no rival, though for mioderate grades it is often advantageously repiscod by electric and compressed air' haulage. Gravity or self-acting fipengen. : plaries are for lowering loaded cars, one or more at a tirre, from a higher to a fower level. The minimum grade is that which will enabie the ioaded cars in traveling down the plane to pulf up the empty cais., At the head of the plane is mounted a drum or sheave, and around it passes a rope, one end of which is attached to the loaded ears at the top, the other to the empty cars at tho foot. The speed the to the excess of weight on the loaded side is controlled by a btake on the drum. . The rope is carried on rollers between the rails. There may be two complete lines of track or three Firres of rails, one being common to both tracks, and the cars passing on a middle turnovit or "patting"; or a smiglo track with a parting. $\{$ An engine plane is an inclined road, up which loaded cars are haoled by a stationary engine and rope, the ethpty cars running down by gravity; dragging the rope after thern. This is similar to shaft hoisting, except that the grades dre often quite flat. * In the tail-rope system of haulage, best adapted for single track roads, there are two ropes-a main and a "tail" rope-winding on a pair of drums operated by an engine.' The loaded train is coupled to the main rope, and to the rear end is attached the tail-rope, which reaches to the end of the line, passing there around a large grooved sheave and thence back to the engine. By winding in the main rope the loaded cars are hauled towards the engine, dragging behind then the tall-rope, whifh unwinds from its drum. The titp being completed, the empty train in hauled back by reversing the engine. The ropes aro supported between the rails and grided on carves by rollers and sheaved. High speeds are often' attnined. Branches, operated from the main line, atio readily installed. In the endless' ropo system the rope runs from a grip wheel on the driving engine to the end of the line, found a return sheave, and thence back to the engine. Chaine are oecasionally used. , The hine is double trick and the rupe constantly in motion, the cars being ettached at intervils through ifts length by clips or clatekes; the looded cars mowe tii one difrection, the emptici in the other. $\overline{5}$. Thore are two modes of instialing the systemi exther the rope pasoes, above the cars and is carried by them, testing in the clips, of it is catried onder the caits on roliers, the ears boing attuched by clips or a gtipo Eariage. (For details see Hrghes, Tewhbok of Cool Mining, ep. $836-172$; Hifdenbrand, U'ndergrownd Howdage by Wite Rope.) Rope-haviago is widely used in collieries, and oomedmes in otber mines having large lateral extent and heavy traffic. Whed the tell-rope system, cars are fun in loug trains at high peed, coryes and branches are eandy worked, and gradientr thay: be oteep, though undulating gradlents are somewhat disadvantageous. In the ondicse-rops sysuems cars pron dingly

 optrated as with tail:ope. The tafl-rope plant 'is the' miore' expensive, bue for sumilar conditions' the cost of working the two systems is noarly the sme. An advantage of the endiest, systen is that the casy may be delivered at regular intervals:

Hoisting. - When the mine is worked through shafts, holsting' plant must be instahed for raising the ore and haadifigy men. and supplies. On smallor scale hoisting is also tecessary: for sinking shalts and winges and for vatious undergroundservices. As ordinarily constructed, a pair of herizontal cyinnders is coupled to a shaft on which are motnted either ohe ortwo drums (Gg. 19). The diameter of the cylinders is such that each alone is capabie of starting the ioad. As the cranks are set 90° apart; there is no

Whadma
Englac. dead centre, and the engine is able to start under full load from any point of the-strolie. This is inportant in mine hoisthig,'
 Clcucland, Olio, makers.

Whyoh is indernithent in tharecter and wariable us to pewer and speod required. The cylinders ate generally siggledexpan'; sion, though conpound engines are occasionally usied fod heav;: woik. : Tha ongtod is direct-acting; the drams making ome revolution for each double stmake. In zeared hoists the druma are on a 'separite shaftr' diviven from the crank-shaft by tooth or friction gearing; and mabe orpe selolution for, sey; at or' 5 domble strukes: The boisting spesd therefore elower, and as leps, engine poiver, is, requifod for a given boad the cylindect ture surpaller, though meting mote strokes per minute. Large
 of the drom deperid on the hoisting speed desired andtcho depth of shaft or leagth of yope to be wotnd. Drumss ate etriber cyltadeical or comiond Conical drams (ftry 12)'tend ta equollite the: vatying lond an the engine tue to the winding and varainding of the rope. Dn: startiig to hoist; the pople wiids from the mall towfards the large eind of the drath, the

uqpe dacseapes. A shonitar equalizios effect is obtaiped by the yee of flat ropa and reel, the rope winding on itself like in ribbon. Tapering ropes, tail-ropes suspondod from the cages, and other means of aqualization, aro also employed. If, for tho compartment shaft, a pair of drums for a single wide drum) betyeyed to the engine shaft, with the ropes woind in opposite dircctions, the hoisting is "in balance," that is, the cages and cant counterbalance each other, so that the sageine has to raise only the useful load of minera!, plus the rope. This arrangement allows no independence of movement: when the loaded cage is being hoisted the ampty must be lowered. Independent drums, on the contrary, are loose upon their shaft, and are thrown on or off by tooth or friction clutises. The maximum land on the engine is thus greater and more ppwer is required than for fixed drums. Steam consumption is economized, whenever possible, by throwing in the clutches of both drums and hoisting in balance. Fiked drums are best for mines in which the hoisting is done chielly from one level; independent drums when there are a number of diferent levels. Hoisting engines are proyided, with powerful brakes and freguenaly with reversing gear. In deep Shats hoisting speeds of 3000 or 3500 fl . per minute are often attained, occasionally at much as 5000 ft.
Formerly hemp and also fibre ropes were commonly used, Except in a few instances Hotrting these were long ago superseded by sd been replaced by steel because of les greater strength. For hoisting in decp shafts, and to reduce the weight of rope, tmpered-stect wire of very high tensile trength (up to 250,000 or $275,000 \mathrm{lb}$ ultimate strenglit per sq. in.) is advantageously cmbpayed. A 1 -in. orclinary steel rope has a

temperad steal nopes ratios of 150 to 1 or mare are dexirable. To prevent corrosion the rope should be treated at intervals with bot lubricant. With proper care a steel rope should last from two ta three years.

A frame of wood or stee?, erected at the shaft mouth, and breaking strength of about 32 tons, which, - ith a factor of safety of six gives a safe working load of $5 \frac{3}{4}$ tons. A t -in. plow-steel rope has meaking and working strength respectively of hat least 48 -and 8 tons." Standard round rope (hig. 13) has six strands

Fion 13.-Standard Fic. 1.,-Tlat ruand Rope.

Rose. of 10 wires each and a hemp core F Flat rope is in favour in some districts. It is composed of several fourstranded ropes, without hemp centres, laid side by side, and sewed together by wire (fig. 14). It is not as durable as round rope and is heavier for the same working strengtb. As the sewing wires soon begin to break, a flat sope must usually be ripped apart and resewed every six or
eight months. Numerous patent ropes, some having wires and sirands of special shapes, have been introduced with the idea of improving the wearing properties. Such, for oxanipic, are the Lang-lay, locked-coil and flattened strand rope.net Hoisting ropes are weakened by deterioration and meakage of the wires, due to corrosion and repeated bending, and should be kept under careful inspection. To prevent excessive bending stresses the diameter of drum and sheave mest bear a proper ratio to that of the cope. A ratio of 48101 is the minimum allowable; better 60 to 75 to m, and for highly:
 2 ni eslada barilani सntort vgncz anlogob atise violfe osnie) wanevov ภoy sorl! 33.dery oT , zoqus n: aslitla orlı घ9tiv i fur

$$
0+\frac{1}{-\cdots}
$$

scale work or temporary service, such as raising the material blasted in sinking shafts. They hold from a few hundred pounds up to I ton. In hoisting from great depths the weight of the rope, which may exceed that of the cage an 1

Fig. 16.-Steel head-gear, modern German type, constructed by Aug. Klŏnne, Dortmund.
contents, produces excessive variations in the load on the engine difficult to deal with. Morcover, the limit of vertical depth at which rope of even the best quality will support its own weight only, with a proper margin of safcty, is, say, 10,000 to $22,000 \mathrm{ft}$.; and with the load the safe working limit of depth would be reached at 7000 to 8000 ft. A number of

Fig. 17.-Light steel safety - mining cage and car for gold and silver mines. Wellman-Scaver-Morgan Co., Cleveland, Ohio, makers.

Fig. 18.-Ore and water skips for inciined shaft. Allis. Chalmers Co., Milwaukec, Wisconsin, makers.
thafts in South Africa, the United States and elsewhere, are already approximating depths of 5000 ft., a few being even deeper. Ropes of tapering section may be used for great depths, but are not satisfactory in practice ${ }^{2}$ Stage hoisting is applicable to any depth. Instead of raising the load in onc lift from the bottom of the shaft, one or more intermediate F A full discussion of this subject is given in Trans. Ins. Min. and Mal., val xi.
dumping and loading stations are provided." Each stage han its own engine, rope and cage. The variations in engine load are thus reduced, and incidentally hoisting time is saved. a

In shallow mines the men use the ladder-way in going to and from their work. This is sometimes the case also for considerahle depths. It is more economical Rathigeraed to gave the men's strength, however, by raising Aome and lowering them with the boisting engines.

At mines with vertical shafts this is a simple operation. Cages of the size generally used in metal mines will hold from ten to fifteen and occasionally twenty men. The time consummed in lowering the men is shortened by the use of cages having two or more decks. These are common in Europe, and are sometimes employed in the United States and elsewhere in mines where the output is large and the shafts deep and of small cross section. While a shift of men is being lowered the-miners of the preceding shift are usually raised to the surface in the ascending cages, the entire shift being thus changed in the time required for lowering. Nevertheless, in very deep and large mines the time consumed in handling the men may make serious inroads on the time available for boisting ore. At a few mines special man-cages are operated in separate compartments by their own engines for handling part of the men, and for tools, supplies, \&c. For inclined shafts, where the mineral is hoisted in skips, the operation of raising and lowering men may not be so simple. Even a large skip will hold but a few men, the speed is slower, and more time is required for the men to get into and out of the skip than to step on and off a cage. Moreover, skips are rarely provided with safety attachments, so that the danger is greater. When the shafts are deep and the number of miners large man-cars are sometimes employed. These are long frames on forr wheels, with a series of seats like a section of a theatre gallery. Ordinarily 4 or 5 men occupy each seat, the car accommodating from 20 to 36 men. Such cars are in use at a number of deep inclined shafts in the Lake Superior copper district, where the depths range from 3000 to 5000 ft . or more. At a few mines (since safety catches cannot be successfully applied to man-cars) these conveyances are raised and lowered by separate engines and ropes. To replace the ore-skip expeditiously by the man-cat when the shifts are to be changed a crane is oftem erected over the shaft mouth. At the end of a shift the are-skip is lifted from the shaft track-the hoisting rope being uncoupled-and the man-car put in its place and attached to the rope. ; This change may be made in a few minutes.

Formerly, at many deep European mines, and at a few in the United States, men were raised by means of "man-engines." A man-engine consists of two heavy, wooden rods (like the rods of a Cornish pumping plant), placed parallel and close to each other in a special shaft compartment, and suspended at the surface from a pair of massive walking beams (or "bobs"). The rods are caused to oscillate slowly by an engine, one rising while theother is falling. Thus they move simultancously in opposite directions through a fired length of stroke, say from 10 to 12 ft . At intervals on the rods are attached small borizontal platforms, only large enough to accommodate two men at a time. As the rods make their measured strokes one of the miners, starting from the surface, steps on the first platform as it rises to the surface landing and is then lowered on the down stroke. At the end of the stroke, when his platform comes opposite to a corresponding platform on the other rod, he steps over on to the latter during the instant of rest prior to the reversal of the stroke, descends with the second rod on this down stroke, steps again at the proper time to a platform of the first rod and 80 on to the bottom. The men follow each other, one by one, $s 0$ that in a few minutes all the rod plationms in a deep shaft may be simultancously occupied by-men etepping in unison but in opposite directions from platforms of one rod to the other: Meantime, the men quittiag work are ascending in a similar Way, as there fs room on each platform for two men at a time whes pasing auch other. Man-engines - wexe: Jong , used,'
but are now practically abandoned in both Great Britain and the United States, and few remain in any of the mining regions of the world. Their first cost is great and they are dangerous for new men, as they require constant alertness, presence of mind, and a certain knack in using them. See Traws. Inss. Min. and Med. xi. 334, 345, 380, \&c.; also Eng. and Min. Jour. (April 4, 1903), pp. 517 and 518.
Surface Handling, Slorage and Shipment of M therals.-To mine ore or coal at minimum cost it is necessary to work the mine plant at nearly or quite its full capacity and to avoid interruption and delays. When the mineral is transported by rail or water to concentration or metallurgical works for treatment, or to near or distant markets for sale, provision must be made for the economical loading of railway wagons or vessels, and for the temporary storage of the mineral product. For short periods the mineral may remain in the mine cars, or may be loaded into railway wagons held at the mine for this purpose. Cars, however, are too valuable to be used in this way for more than a few hours, and it is usual to erect large storage bins at the mine, at concentration works and metallurgical establishments, in which the mineral may be stored, permitting cars, wagons and vessels to be quickly emptied or loaded. In mining regions where water transportation is interrupted during certain months of the year the mineral must be stored underground, or in great stock-piles on the surfice In coal mining the market demand varies in different seasons, and sarfece storage is sometimes necessary to permit regular work at the mines. For coal, iron ore and other cheap minerals, mechanical handling by many different methods is used in boeding and unloading railway wagons and vessels, and in forming the stock-piles and relosding the mineral therefrom. (See Conviyur and Docrs; also G. F. Zimmer, Mechanical Handling of Matericts, and Engivacring Magasine, xiv. 275, xx. 157 and $\times x$ i. 657 .)

Mine Drainage.-A mine which has been opened by an adit trannel or drift drains itself, so far as the workings above the udit level are concerned. In many mining regions long tunnels have been driven at great expense to secure natural drainage, Under modern mining conditions drainage tunnels have lost much of their former importance. Taking into account the risk attending all mining operations, which make necessary large interest and amortization charges on the cost of a tunnel, it will in most cases be advisable to raise the water to the surfuce by mechanical means. Draingee chamels sre provided, usually along the main haulage roads, by which the water fows to a sump excavated at the pump shaft. In driving mine peasages that are to be used for drainage, care is taken to maintain sufficient gradient. Siphons are sometimes used to carry the water over an undulating grade and thereby save the expense of a deep rock cuating. As the larger part of the witer in a mine comes from the surfince, the cost of draxnage may be reduced by intercepting this surface water, and collecting it at convenient points in the pump shaft from which it may be raised at less cost than if permitted to go to the bottom. Water may be raised from mines by buckets, tanke or purmpe. Wooden or steel backets, bolding from 35 to 200 gallons, are employed only for temporary or auxiliary service or for small quantities of water in shallow shafts. Tanks operated by the main hoisting engines, and of capacities up to 1500 gallons or more, are applicahle under several conditions: (i) When the shaft is deep, the quantity of water insufficient to keep a pump in regular operation, and the boisting engine not constantly employed in raising mineral, the tank is worked at intervals, being attached temporarily to the boisting rope in place of the cage. (a) For raising large volumes of water from deep shafts pairs of tanks are operated in balance in special shaft compartments by their own boisting engine. With an efficient engine the cost per gallon of water is often less than for pumping. (3) For clearing flooded mines. As the water level falls the tanks readity follow it while at work, whereas pumps must be lowered to new positions to keep within suction distunce. Self-acting tanks are occavionally buit undermeath
the platiorms of hoisting cages. Mine pumpt are of two classes: (1) those in which the driving engine is on the surface and operates the pumps hy a long line of rods passing down the shaft, commonly known as the Cornish system; (2) direet-acting pumps, in which the engine and pumping cylinders form a single unit, placed close to the point underground from which the water is to be raised. Cornish pumps are the oldest of the machines for draining mines; in fact, one of the earliest applications of the old Woolf and Newcomen engines in the 18th century was to pumps for deep mines. The engine works a massive counter-balanced walking-beam from which is suspended in the shaft a long wooden (or steel) rod, made in sections and spliced together. Attached to the rod hy offsets are one or more plunger or hucket pumps, set at intervals in the shaft. All work simultaneously, each raising the water to a tank or sump above, whence it is taken by the next pump of the system, and finally discharged at the surface. The individual pumps are placed several hundred leet apart, so that a series is required for 2 deep shaft. The speed is slow-from 4 to ro strokes per minute-but the larger sizes, up to 24 in . or more in diametet by to or 12 ft. stroke, are capable of raising millions of gallons per day. Cornish pumps are economical in running expenscs, provided the driving engine is of proper design and the disadvantages incurred in conveying steam underground are avoided. Their first cost, however, is high and the cumbersome parts occupy much space in the sbaft. Direct-acting pumps, first introduced (1841) by an American, Benry R. Worthington, are made of many different designs. Typically they are steam pumps, the steam and water cylinders being set tandem on the zame bed frame, generally without f fy-wheel or other rotary parts; they may be single cylinder or duplex, simple, compound or triple expansion, and having a higher speed of stroke are smaller in all their parts than Cornish pumps. For high beads the water cylinders, valves and valve chambers are specially constructed to withstand heavy pressures, water being sometimes raised in a single lift to heights of more than 2000 ft . Condensers are always required for underground pumpe. Sinking pumps, designed for use in shafts in process of sinking, are suspended by wire ropes 80 as to be raised before blasting and prompty lowered again to resume pumping. Electrically driven pumps, now widdy used, are convenient and economical. Mine pumps of ordinary forms may be operated by compressed air, and air-lift pumps have been successfully employed. Hydraulic pumping engines, while not differing essentially from steam pumps, must have specially designed valves in the power cylinder on account of the incompressibility of water. They can be used only when a supply of water under sufficient pressure is available for power. Centrifugal pumps, constructed with several stages or sets of vanes, and suitable for high lifts, have been introduced for mine service. When mine water is acid the working parts of the pump must be lined with or made of bronze or other non-corrosive material; or the acid may be neutralized by adding lime in the sump.

Ventiation.-The air of a mine is vitiated by the presence of large numbers of men and animals and of numerous lights, each of which may consume as much air as a number of men. In mining operations explosives are used on a large scale and the powder gases contain large quantities of the very poisonous gus, carbon monoxide, a small percentage of which may cause death, and even a minute percentage of which in the air will seriously affect the healih. In addition to these sources of contamination the air of the mine is frequently charged with gas issuing from the rocks or from the mineral deposit. For example, carbon dioxide occurs in some mines, and hydrogen sulphide, which is a poisonous gas, in others. In coal-mines we have to deal with "fire-damp" or marsh gas, and with inflammable coal dust, which form explosive mixtures with air and frequently kead to disastrous explosions resulting in great loss of life. The gacea produced by such fire-damp or dust explosions contain carbon dioxide and carbon monoxide in large proportion, and the majority of the deaths from such explosions are due to this "after-damp" ruther than to the
uxploation fitsel. The temble efucts of fire-demp have led to the adoption of elaborate systems of ventilation, as the most effective safeguard agairst these explocions is the diution and removal of the fire-damp as promptly and completely as possible. Very large volumes of air are necessary for this purpese, so that in such mines other aources of vitiation are adequately provided aguinst and preed not the considered. In retal mines, however, artificial ventilation is rarely attempted, sadnatural veatitation often falls to fumish a sufficient quartity of atr. The examiantion of the air of metal mines hes shown that in mont cases it is much worse than the air of crowded theatres or other bediy ventilated buildings. This has 2 setious effect on the bealth and efficiency of the workiten entployed; arid in extreme cases may even result in incteased cost of mining aperations. The ventilation of a mine must in general be produced artificially. In any case whethor matural of artificial means be employed, a mine can only be ventilsed properly whea it has at least two distinct openings to the surface, one an intake or "downcast," the other a chimncy serving'as an "tpcast." Two compartments of a ghyft may be palitesd for this puppose, but greater safety is ensurted by two beparate openings, as required by law in most mining countries.
The air underground remains throughout the your at mearly the same cemperature, and is warmer in winter and cooler in Natural sammer then the outside. alr. If the two openings Vonilumbin to the mine are at different lovels; the difference in weight of the imside and outside air due to differ: ence in temperature causes 2 current, and in the winter months large volumes of air will be circulated through the mine from this cause alose. In summer there will ba less movement of fir sand the current will frequently bo reversed. In a mine with shafts operfing at the same level, natural ventimation onoe establistred wil be effective during cold wather, as thedower east will have the temperature of the outside air, white the upcast will be filled with the warm air of the mine. In stamser this' will' accur only on cool difs and at might. When the temperat ure of outside and inside air becomes equat or nearly so: natural ventilation ceases or becomes inslgaificant. In a trine with two shafts efontilating current may resuit from ether coaditiops creating a difference in the temperature of the air in ett her shaft-for example, the couling offect of dropping twater of the heating effect of steam plpes. Natural vencilation is impracticable in flat deposits worked by drifts and without shafts.
Ventilation may be producod by heating the air of the mine, 3 for exnmale, by constructing a ventilating farnace at the bottom of an air shaft. The effieiency of :isuch Yeathaclag ventilatisg fumaces is low, and they cannot safely be used in mimet prodaring fre-damp. They tre bimetimes the cause of underground fires, and they are alvas t soures of danger whenihy any chance the voutilating turrent becopnas teversed, in which case the products of combustion, containing large quantitios of carbon diovide, vill be'drawn butw the mine to the serieus danger of the men. On account of 'their dangereus charadter farnsces ase prohibited by law in wany cotmtrics.

Poaltive blowers and exhansting apparatus of a great variets of forms have bech mand in mines for producing antificial Mechantis ventilation. Abont 1850 , eficiont weotilatom of the Venfictors. centrifugal type wore first introdnced, and are not afmest universalty empioyed where the circulation of large volumes of air is neccesary, as in collierios: The typicad mine fan' consists of a shaft upon which ane mounted a number of vatoeriehciosed in a casing; the air entering a ceatral side inlet is eaught, up by the rovolving vanes and thrown out at. che periphery by the centrifugal force thus generated. "Openruining" fans have na peripheril casing, and dischange frechy throughout their antize circumference; in "closed" fans the revalving part in completely enveloped hy a spiral casing opening at ose point into a discharge chimnoy. Fans eifher force ait ihto or exhaust it from the mine. The inket opening of the plessura،私n is in Irep communication fith the oruside air,
the dibchatge connectugg with the mine air-way in the more generally wad extaust fan the infet is connected with the airway, the fua alischarging thato the atmosphere. Among the exheust fans most widely employed is the Gribat. Many others have been introduced, such as the Capell (品. r9), Rateau,

Schick, Palzer, Hanarte, Sor, Wiater; Klevi and Serocco famer The Waddie may be instanced as an eroumple of the operifans: Slow-apeed fans are sometimets of large dimenstons, wp to 30 and even 45 ft . dianteter, discharging hundrede of thotsands of cubic feet of ais per mincotor Occasiomally, at very gassy and dangeronis calleries, two fans and driving engines' art orected at the samu air shaft, and in cise of accideat to the fan in eperation the other carr be started within a few.miputes:
Opposid to the motive force profucing the-air curtent is the trictional resistance diveloped ix paesing through the' nmine workings. This rekistance is equal to the equate of the velocity of the current in leet per - minute, cirmpetton multiplied by the total rabbfag or friction sarfuce of Aht. of : the sir-wnys in equare leet ind by thie coeficient. of friction. The latber , determined experimeatelly, waies taith difformen kionds of surfaces of mine wozkings, whether: Fough an smooth, timbered orxunlined; it radges from orocococear 8 ad to $0-0000000217$ th per gq - t ., the tatter. being the value uscially: adopted." A certain prospre of air is requived to: mada main circulation against the sustistance, and for a given rohome per miaute the smaller and more irtegular the. mine opehings the greater must be the preserate. I The pressure is pieasured by a: "water-gage " and the velocity of flow by an 4 anemometec." The power tequired to cinculate the ain Itrought a mine increanoes as the cube of the welocity of the siricurtent. To decrease she *elocity, when large volumes of air ave soquired; the air passageas are made leager, and the mine is divided into sections and tho air current subrivided fnto a correspanding: number of indepent dent circuits. This splittingoi the air not ondy lessess the cost st ventilating; bet greaty thorenasi its effivency by permitsing the circilation of much larger volumes, and has the added advaot tage: chat the effect of as explosion or other-andident vitiatins the air currest is often confined to a single ditifion of the mine, and affects bat 2 spali part of the mesking force. The adjuste ment of the air currents in the different splita is affected. by regulators which ate placed in the return ait-ways, and act at throttle valves to detcrmine the volurie of ais in. coch came. The circulation of air in any given division of the mina is further controlled and its course determined by tempotraty of permanent partitions (" bratices"), by the eroction of. stoppings, or by: the ingextion of doaks in the mine passages and by. the usc of special air-ways (seo Cohl). In devising a syatedi of ventilation it is cuistomary to subdivide the morkings so that the resistance to the ventilating curneat in each split sball be mearly equal, of so that the deaired amount of air shall be circudated in each without undue use of regulating applizaces which add to the friction and incresee the cost of remoting the air. In addikip to this it is decirable ta talet advapiage of the nalaral ventiatios, that is, to circulate the air in the direction that it gocs meturally ts othetwige the resistance to the movomegn of the air may the
groekty incromed. So fat at pomate; vititud air Is ied diracty to the shaft instead of patsing through other workings; for example, mine stables when used are placed near the upcast shaft and vantilated by an independent split of the ventilating cortent.
Dees Mining.-There has been much speculation as to the depth to which it. will be practicabie to push the work of mining. The apecial difficulties which attend deep. mining, in addition to the preblerns of hoisting ore and raising water from greant depths, are the sicrease of temperature of the rocks and the pressure of the overlying strata. The decpest mine in the worid is No. 3 shaft of the Tamarack minc in Houghon county, Michigan, which has reached a vertical depth of abourt 5200 fi . Three other shafts of the Tamarack Company, and three of the neighbouring Caluract and Hecla minc, have depths of botween: 4000 and 5000 ft . Nertical. The Quincy mine, alen in Houghton county, has reached a vertical depth of mearly 4000 ft . In England are several collieries over 3000 ft ., and in Belgium two are neariy 4000 ft . deep. In Austria three shatts in tife sifver mines at Pribram have reachod the depth of over rooo metres. At Dendigo in Australli are several shafts between 3000 and 4000 , and one, the Viktoria Quartz mine, 4300 ft deep. In the Transvaal gold region (South Africa), a sumber of shafts have been sunk to. strike the poed at about 4000 ft . In most cases the deposits worked are known to extrand to much greater depths than have been reached. The possitility of. boisting and pumping from great depths has been discussed, and it remseins now to consider the other conditions which will tend to timit mining operations in depth-namely, increass of temperature and inctease of rock pressure. Observations in different parts of the world have shown that the increase of tenperature in depth varies: in most localities the rise being at the rate of one degree for 50 to roo feet of depth; whise in the deep mines of Michigan and the Rand, an increase as low as one degree for cach 200 fl . or more has been obsorved. In the Comstock mines at Virginia City, Nevada, it is possible to continue mining operations at rock temperatures of $i_{3} 0^{\circ} \mathrm{F}$. In these mines a constant supply of pure airr, about 1000 cub. it par minute, was blown into the hot working places through lighs iron pipes. The air inguing from these pipes was dry and warm, and served to keep the temperature of the air helow 120°, at which temperature it was possible for men to work continuoudy for half an bour at a time, and for four hourb in the day: In some places work was conducted with rock temperatures as higti as $158^{\circ} F$., with air $135^{\circ} F$: In these very hot drifts the fatality was large. In the Alpine tunnels, where the air was moist and probably not is purc as in the Comstock mines, great difficulity was experienced in prosecuting the work at temperatutes of $90^{\circ} \mathbf{F}$. and tease The mortality was large, and it was believed by the engineers that temperatiures over 104° would have proved fatal to most of the workmen. Deep mines, however, are generally dry, so that in most cases it with be poosibleto realize the more favourable conditions of the Comstock mines. Astouming an initial mean tempetature of $50^{\circ} F$., and increments of one degree for 100 and for 200 ft ., a rock temperature of 230° will be reached at $8000,10 \times 16,000 \mathrm{k}$. In many deep mines to-day "explosive tock". has been evicountered. This condition masifests ilselif, for example, in mine pillars which are sabjected to a weight beyond the limit of elas-. ticity of the mineral of which they are composed. Under such conditions the pillar begins to yield, and fragments of minerad fly off with explosive violertce, exactly as a specimen of pock will splinter under pressore in a testing rachine. The flying fragments of rock have froquently injured and sometimes killed miners. A similar condition of strafin has been observed in deep minds in different parts. of the world-perhaps due to geological movements. Assumbing a weight af $x 3$ cab. ft. to the ton, then at 6500 ft . the pressure per sq. ft. will be 500 tons, and at $13,000 \mathrm{ft}$. 1000 tons; and as the mineral is mined the waight on she pillars bort will be proportionately greater. At such pressures aill hut the strongest rocks will be strained beyond iheir limit of clasticity. At depths of 1000 (st.
and joss conce. of the saftefi rocko alow' a tenfenery to flow, ss exhifited by the undef-clay in deep conl-mines, which not infrequently swells up and closes the mine passages. In thie Mont Cenis tumad a bed of soft granite was encountered that continued to swell with almost irresistible force for some months. The pressure developed was sufficient to crush an arched lining of toro-foot granite blocks, Similar swelling ground is not infrequendy met with in metal mines, as, for example, in the Pkoenis copper mine in Houghtor county, Michigan, where the force developed was sufficient to crush the strongest timber that could be used. In very deep mines thls flowing of soft rock will doubless add greatly to the difficulty of maintaining openings. What may happen in some casco is illustrated by the curious form of accident locally known as a "bump," which occurs in some of the deep coal-mines of England. In orie instance (described by F. G. Meacham, Trans. Fcd. Inst, M.E v. 381), the fonco devcloped hy the swelling under-hay broke throagh and lifted with the force and suddenness of an explosion a lower bench of coal 8 ft . thick in the bottom of 2 gengway 12 ft , wide for a length of 200 ft ., throwing men and mine curs violently agxinat the roof and producing an air-wave which smashed the mine doors in the vicinity. It is apparent that the combined effect of internal heat and rock pressure with greatly increase the cost of mining at depths of 8000 or 20,000 ft., and will probahly rendes mining impracticable in many instances at depthy not much greater.

Mine Administration.-In organjzing a mining opmpany it muet be reoognized that mining is of necesceity a temporary busines. Whes the deponit is exhausted the company must be wound up or Its aperations transferred to acmac other locality. Mining is alno subject to the risks of ordinary business enterprises, and to addt tional risks and uncertainties peculiar to itself. The wast majority of mineral deposits are unwcrkahlc, and of those that ape dowelopad - large proportion prove unprofitable. In addition mining opete. tions mre subject to iaterruption and added expense from explosions, mine fires, fooding, and the caving in of the warkings. To provide' for the repayment from earnings of the capical inveat ed in a mining property and expended in developmeant, and to provide for the depreciation in value of the plant and equipments an amortization fued must be accumulated during the Hie of the mine:-or if it be desired so cartinue the business of mining cleewhere; a similar fund must be creatod for the purchase, devolopment and equipment of a new property to take the place of the original deposit when that thall be exhausted. If, for example, we assursie the life of a given mine at ten years and the rate of interest at 5% it will be necersiny that the property shell earn nearly 13% annually-viz., 5% intercat end 8% for the ansual payment to the emportization or the neserve fund. To cover tho spocial riska of mining, capital chould carn a higher intercst than in ordinary business, and if we acsume that the siblcing-fund be safely invested, we must compute the masortization on a lower basis than 5% Assuming, far example. the life of the mine at ten years as before, and taking the interest to be earned by the amortization fuod at 3% and that on the investment at 10% we shall find that the annual income should amount to 18.7% per year. These simple business principles do not scem to be generally recognized by the investing public, and mines, whose carning capacity ts accurately known, are frequently quoted on the stock markety at prices which cannot possibly yield enough to the purchaner to repay his investment during the probable He of the mine.

Mine Valualion.-The value of any property is measured by its annual profits. In the case of mining properties these profits are more or less unortain, and cannot be accurately determined until the deposit has been thoroughly explored and fully developed. In many instances, indeed, profits arc more or lass uncertain during the whole life of the minc, and it is exident that the value of the miming property must be more or less speculative. In the case of a developed minc its life may be predicted in many cases with abso Wrevertainty-as when the extent of the mineral deposit and the polume of mineral can be measured. In other casel the life of the mine, like the value of the mineral, is more or lest uncertain. Further, both time and money are refuired for the development of the mising property before any profit can be realiwed. Mathematicaily we hive thus in all cases to compute present value on the basis of a deferred as well as a limited annuity. The valuation of mines the involves the following steps: (1) The sampting of the deposit so far tas developed, and assaying of the samples taken; (2) The me summent of the developed ore; (3) estimates of the probable armotit of ore in the undeveloped part of the property; (4) estimates' of proiabie profits life of the mine, and determination of the value of 3 hiw property. Where the deposit is a regular one and the minetal is of fairly unifurm richness, the taking of lew anaples from widely separated parte of the mine will oftel Curnish sumacieat date to
determine the value of the deposit." On the other hand in the case of uncertain and irregular deposits, the value of which varies bet ween very wide limits, as, Cor example-in most metal mines and especially mines of gold and silver-a very large number of samples must te taken-sometimes not more than two or three feet apart-in order that the average value of the ore may be known within reasonable limita of error. The sampling of a large mine of this character may cost many hundreds of pounds. This applies with even greater force to estimates of undeveloped portions of the property. If the deposit is regular and uniform, the value of undeveloped areas may sometimes be predicted with confidence. In the majority of instances, however, the eatimates of undeveloped ore contain a large element of uncertainty. In order to determine the probable profit and life of the mine a definite scale of operations must be assumed, the money required for development and plant and for working capital must be estimated, the methods of mining and treating the ore determined, and their probable cost estimated. Where the deposit is uncertain and the element of risk is large, we must adopt a high rate of interest on investments of capital in our computations of value-in some cases as high as 10,15 or even 20% Where the deposit is regular and the future can be predicted with some degree of certainty, we may be justified in adopting in some cases possibly as low as 5%. The interest on the annual contribution to the sinking-fund or its equivalent should be reckoned at a low rate of interest, for such funds are assumed so be investel in perfectly safe securities. Allowance must be made for the peric of development during which there are no contributions to the sinking. fund and within which no interest is earned on invested capital.

Mining Educalion.-It is necessary to have the work directed by men thoroughly familiar with the characteristics of mineral deposits, and with wide experience in mining. For the purpose of training such men special schools of mining enginecring (ecoles des mines. Bergakademie) have been established in most mining countries. A student of mining nust receive thorough instruction in geology he must study mining as practised in different countries, and the metallurgical and mechanical treatment of minerals; and he should have an engineering education, especially on mechanical and electrical lines. As he is called upon to construct lines of transport. both underground and on the surface, works for water-supply and drainage, and buildings for the handling, storage and treatment of ore, he must be trained to some extent as a civil engineer. As a foundation his education must be thorough in the natural and physical sciences and mathematics. In addition there have been established in many countries schools for the education of workmen, in order to fit them for minor positions and to enable them to work intelligently with the engineers. These miners' schools (Bergschule, fcoles des mineurs) give elementary instruction in chemistry, physics, mechanics, mineralogy, geology and mathematics and drawing, as well as in such details of the art of mining as will best supplement the practical information already acquired in underground work. The training of a mining engineer merely begins in the schools, and mining graduates should serve an apprenticeship before they accept responsibility lor important mining operations, it is especially necessary that they should gain experience in management of men, and in the conduct of the business details, which cannot well be taught in schools:
Aecidents.-Mining is an extra-hazardous occupation. and the catastrophes, which from time to time have occurred, have caused
agencies to enforce their authority. While in some caves these lawe are unnecessarily stringent and tead to restrict the business of mining yet on the whole they have had the effect of reducing greatly the loss of life and injuries of miners where they have been well enforced. This is evident from fig. 20, which shows the mumber of men killed in the coal and metal mines of Great Britain for a scries of years. As will be seen Irom this diagram the most merious source of death and injury is not found in mine explosions, but in the fall of rocks and mineral in the working places. This danger can be reached only in small degree by laws and inspection; but the safety of the men must depend upon the skill and care of the miners themselves and the officers in charge of the underground work. Great loss of life and injury occur through the ignorance, carelessness and recklessness of the men themselves, who fail to take the necessary precautions for their own salety, even when warned to do soMining laws have proved chiefly serviceable in securing the introduction of efficient ventilation, the use of safety-lamps, and of proper explosives, to lessen the danger from fire-damp and coal-dust in the coal-mines, the inspection of machinery for hoisting and haulage, and prevention of accidents due to imperfection in design or in working the maclinery.
Fire-damp and dust explosions are caused by the presence of marsh-gas in sufficicnt quantity to form an explosive mixture, or by a mixture of amall percentages of marsh-gas Explosiong. and coal-dust, and in some cases by the presenoe of coal-dust alone in the air of the mine. Explosive mixtures of marsh-gas and air may be fired by an unprotected light. But when coal-dust is present, and little or no marsh-gas, an initial explosion -such as is produced by a blown-out shot-is required. To guard asainst explosions from this cause it is mercessary to use explosives in moderate quantities and to see that the blast-boles are properly placed, so that tbe danger of blown-out shots may be lessened. In dry and dusty mines the danger may be greatly lessened by sprinkling the working places and paseages, and the removal of the accumulated dust and fine caal. Where large quantities of fire-darap are present, safety-lamps of approved pattern must be used and carefully inspected daily. The use of matches and naked ligbts of any kind must be prohibited. To lessen the danger from blasting operations the use of special safety exploeiven is reguired in Great Britain and some European countrien. The use of such explosives decreases to some extent the danger from dust explosions; but experiment shows that no efficient explosive is absolutely safe, if used in excessive quantity, or in an impropet manner. Absolute security is impossible, as is proved by the many and serious disasters under the most stringent laws and careful regulations that can be devised.
Mine fires may originate from ordinary causes, but in addition they may result from the explosion of fire-damp or from the accidental lighting of jets of fire-damp issuing from the coal. mhe Pres. In some mining districts the coad is liable to spontaneove
combustion. A fire underground speedily becomes formidable, not only in coal but also in metal mines, on account of the large guantity of timber used to support the excavations. Underground fires may sometimes be extinguished by direct attack with water. The difficulty of extinguishing an underground fire in this way in however, very, great, as on account of the poisonous products of combustion it is impossible to attack it except in the rear. and even there the men are always in great danger from the reversal of the

Fig. 20.-Death-rate from various classes of accidents in and about all mines in the United Kingdom from 1873 to 1900.

Abstract

the enactment of laws to protect the lives of the men engaged in underground work. These laws are enforced by mine inspectors who are empowered to call upon the courts and other government air current, or back-draught from the fire. Further, the barning of the timber produces falls of ground, making necesmery the excavat tion and removal at times of hundreds of tons of heated rock and

berning conk, in ordet to reach the fire. When direct attack it mo longer practicable, it is postible to extinguish the fire by sealing the mine workings, and exhausting the supply of oxygen. It is necessary. however, to keep the mine sealed until the burning timbers, or coal, and the red-hot rocks have become cool, or the fire will again break out. This sonsetimes requires two or three months. Where an effective sealing of the mine is impracticable it is sometimes posisble to extinguish the fire from the outside of the mine by constructing a large reservoir or tank ia the upper part of the mine-shaft and muddenly releasing a large volume of water by opening dischargedoors. The mass of water falling down the shalt is converted into epray, which is carried by the force of the fall long distances into the workings. Where the fire is in or near the shaft this method has proved very effective. Mine fires may tometimes be reached by bore-holes sunk for the purpose from the surface, and the burning workings below filled by fushing with culm and water. As a last resort the mine may be flooded with water. This is an expensive operation as it entalls the cost of pumping the water out again and repairing the resulting damage. If the fire is in working places to the rise the water may not reach the burning portions of the mine. but will effectually seal thern. But sufficient time murt be allowed to elapse before pumping out the water, as otherwise the fire may break out again.

Mines may become flooded by the inrush of surface waters in times of great rainfall or sudden floods, or by the undermining of prooflas of burface waters. The mine workings may also be flooded mines. by large bodies of undorground water. The surface foods must be provided with channels of sufficient size to carry them safely past the mine openings, and intercepting ditches shoutd be excavated for this purpose, and dams and embankments const ructed to divert the Hood wasers. That it is possible to work with safety bencath rivers, lakes and even the ocean has been proved in numerous instances; minea in different parts of the world having been extended long distances under the sea. In such cases preliminary surveys should be made to determine the thickness of rock over the proposed workings. Under favourable conditions miping may be conducted under the protection of a few yands of solid rock only, as in the submarine work for the removal of reels in the harbours of San Francisco and New York. At Silver Isiet, Lake Superior, mining tas successfully carried on for years under the protection of a coffer dam and an arch of rich silver ore less then 20 ft . thick. At Wheal Cock near St Just in Cormwall the protecting roof was so thin that holes bored for blasting mon than once penctrated to the bed of the ocean, and wooden plags were kept on hand to drive into such holes when this occurred. In storms the boulders could be heard striking each other overhead. When large areas are undermined, as in submarine coal mining, it is best to have several hundred feet of protecting rock. In Great Britain she law requires that the workings shall be protected by 120 ft . of solid strata. When the presence of underground bodies of water is known or suspected, edvance bore-holes should radiate Irom the end of the advancing working place 50 as to give warning of the poition of the body of water, these holes being of such length as to ensure a safe thickness of solid rock.

The caving in of mine workings results from the excavation of large areas supported upon pillars of insufficient size. While the mine workings art smah the overlying rocks apport themselves enten of and the full presare does not cone upon the mine Clise pillars As the workings increase in size the pillars Wertiog support an increasing weight until finally they are strained pitlars begin to crack and splinter with a noise tike musketry firing, and the roof of the mine shows signs of subsidence. This may contimue for weeks before the finai crach takes place. At first a fsul of the roof occurs locally, here and there throughout the mine, and these falls may succeed one another until the settlement of portions of the roof has 80 far relieved the strain that the remaining areas are supported by the stronger pillars, and by the fallen rock masses. White abundant wrarning of the caving-in of the workings is thus given in advance it may happen that men are unexpectedly imprisoned by the closing of the main passage ways. The caving-in of the mine, however, is tareig so complete that avenues of escape are not open. In many cames, however, it has been found necesary to reopen the mine through the fallen ground, and evon to extavate openings through the solid mineral. The history of mining is full of dramatic episodes of this character.

Accidents from the misuse and carelest handing of explowives are nalortunately too frequent in mines. The conditiona under Amolenes Fhich explonives may be stored, haodled and used are tuan carefully formulated in the mining laws of most states Expmahese but it is almost impossible to secure obedience to these regulations on the part of the miners. Who are, as a role, both careless and reckiess in their ure of powder. In sorte atated It has beconse nesestary to provide for fincs and even imprisoninent of mea dicobeying the regulations retrarding explosives.

Mine Iygiene.-While mining is not necessarily an unhealthy occupation, miners are subject to certain discases resulting from vitiated air, and from unumml or special conditions under which at times they are forced to work. Recent invertigations have shown an alarming increase in mortality from miners' phehisis in Cornwall,

South Arica and elsewtrere. This teems to be due to the dast abundantly produced in mining operations, and espectilly by machine drills when boring " dry " (rising) blast holes. Drill runners, who are compelled to breathe this dusty air daily. furnish mort of the sufferers from phthisis. The increased mortality seems to be due to the general tendency toward forced speed in development work, which is secured by rapid drilling, and by an increase in the number of machine drills used in a single working-place. The miners, to ave time, often return to their worls after blasting before the powdermoke and dust have been sufficiently removed. It is probable that the carbon monoxide seriously affects the general health and vitality of the men, and renders them more likely to succumb to phthisis More effective ventilation will materially lessen the deathrate. In the metal mines of Cornwall and Devon special rules are now in force requiring the use of water in drilling, and other precautions, to lessen this danger from dust. In some mines dust seeps to have but little effect on the health of the miners: indeed it is even claimed by some that coal dust decreases the mortalisy from phthisis On the other hand, as in mining ores containing lead, arsenic and mercury, the dnst may be poisonous. The climbing of ladders from deep mines not only leacens the efficiency of the men by rewton of fatigue, but often tends to increase the mortality from diseases of the heart. In cold climates men coming from the warm atmosphere of a mine, often in wet clothing, are liable to suffer in healsh unless proper provision is made for the necessary change of clothing. In sach cases the extablishment of dressingrooms, properly heated, and conmected with the mine by covered pasmages will be necesary. These "change-houses" are provided with washing and bathing facilities, and arrangements for drying wet clothing. Ankylostomiasis (q.v.) is a discase which finds a congenial habitat in the warm damp atmosphere of mines, and has becrome a veritable scourge in some mining regions. The diseane yields readily to treatment, but is difficult to eradicate from a mine without atringent sanitary regulations to prevent its spread. The care of the health of the working force should he entrusted to competent mine physicians, shoroughly familiar with the conditions under which the miners works, and with the special diseases to which they are subject. The men should be instructed in the lawe of sanitation, and in the proper care of injured men.

Mine Law.-Mine law is that branch of the law of real property relating to mineral and mining righte as distinct from rights pertaining to the surface of the ground. Under the common law the ownes of the curface posesses all mining rights as well, unles these have been reserved by some previous owner of the property. From very ancient times deposits of gold and silver have in most countries been held as the property of the crown. In public or government land the minerals as well as surface belong to the state, and not infrequently these rights have been separated by $\mathrm{la}_{\mathrm{w}} \mathrm{w}$ and granted or otherwise disposed of to different owners. It is to the public interest that deposits of mincral should not be permitted to remain idle and undeveloped. This has been recognized from the earliest times, and bawe have been framed in all countrigs for the encouragement of mining enterprise. In many cases the tate or the ruler has sought to obtain a share in the profits of mining, or even to work mines for the individuai profit of the rulet or of the state. But in most cases it has been found better poticy for the state to divest itself of all interest in mining property. and to extend all possible en-oumgement is those who undertake the fevelopment of the mincral wealth of the nation. The mining lats of rost civilized atates grant the right of free prospecting ovel itse public lands protect the rights of the discoverer of the mineral posit during the period of exploration, and provide for the acquisits of of minerat property on favourable terms. Striking examples of the far-reaching effect of such laws is shown in the history of the Ruty Mountain recion and western coast of the United States, the coicnization and development of Australia, and the development of Niske.

Bibliograpiy,-See C. Le Neve Foster's Ore and Gume Mining (6th ed.. London, 1905). or G. Köhler's Lehrbuch der Rerghauhusde (6a h ed. Leipzig. 1903). The following works nw; 3iso be consulted: Beoks-Bertolio, Colfivasione delle minere (Mias. 400): Brown, Th: Organizction of Gold Mining Business (Glassuw, 1817); Brough, Mine Surveying (12th ed., London, 1go6); Bulman ant Redmayne, Colliery Vorking and Maragement (London, 1896); Coloner, Ex plotation des mines (Paris, 1899); Curle, The Gald Miness of the World (21d ed., Landon, 1902); Demanct, Traité d'exploilation des mines de houille (2nd ed., Brussels, vols. i and ii. 1898, vol. iii. 1899); Denny, Deep Level Mines of the Rand (London. 1902); Galloway, Lectures on Mining (Cardiñ. 1goo): Habets, Cours dexploitation des mines (2nd ed., Liége, vol. 1., 1906, vol. ii. 1904); Hatcb and Chalmers, The, Gold Mines of the Rand (London, 1895): Haton de la Gcupillière, Comps d'exploitation des mines (and ed., Paris, vol. i. 18. 6, vol. ii. 1897): Hocfer, Taschenbuch für Bergmänner (Leoben, 18,7); Hughes, Coal Mining (4th cd., London, 1go0); M. C. Iblseng. A Hanwal of Mining (4th ed., New York, 1905) : Kirschner, Grundris! der Ervaubercilung (Leipzig and Vienna, vol. i. 1898, vol. ii. 1899) Lawn. Mine Accounts and Mining Bookekeeping (i,ondon, 1897): Lup ton. Mining (3rd ed. Londan, 1809) ; T. A. Rickard, The Sampling and Estimalion of Ore in e Mine (New York, 2go4); Truscote, Th W:tweterspand Goldfields-Banket and Mining Procitice (London. 18. $3 ; C$. F. Williams, The Diamond Mines of Soulh Afriut (New Yoric.

1goz) ; Periodical Publications-Annales des mines de Bigaque (Brus scls quarterly): Australion Mining Siandard (Mbourne. Sydiney and Brisbane, weckly) ; Engineering and Mining Juurnal (New York Weevidy): Gluckauf (Essen. Weekly): Nestes and Quaries; Gencral Repori and Statishics (London, annually); with details from ofticial reports of colonial and loreign mining departments; Mines and Alinerals (manthly, Scranton, Pennsylvania): The Mineral Indu (ty (New York, annually); Tramsuctions of the American Institute of M ing Enginecrs (Now York); The Mining and Scientific Press (:eg ly San Francisco) : Transactions of the Instituke of Minmpand Mrialyy ry (London): Tratsuctions of the Instibution of Mining Engincers (t) -castle-on-Tyne).

Thimon, a favourite, pet or spoiled person. The word is adapted from the Fr. miguon (Ital. mignonc), of which the origin is donbtful. Comexions with the O.H. Ger. minna, Hove, and with a Cetic root mir-, meaning smail ${ }_{1}$ have been suggested. "Minion" is chiefly applied in a derogatory sense to the "creatures" of a royal court, and thus has been used of the favonrites of Edward IL and James I. of England and of Henry III. of France. In the sense protity, delicate, dainty, the French form mignon or mignonne is often used in English. During the 27th century "minion" was the name of a type of cannon with is small bore. In typogcaphy, it is still used for the type which comes between "monpareid" and "brevier."

MINISTER (Lat. minisler, servant), an officind title both civil and occlasiatical. The word ministor as originally. used in the Latin Church was a translation of the Greek סubnonos, deacon; thus Lactantius speaks of presbyteri et ministri, priests and deacons ($D c$ mort. perseculorum, No. 15), and in this sense it is still technically osed; thus canon vi., Sess. xxiii, of the copubcil of Trent speaks of the hierarchy as consisting "ax episcopis, prestyterit et ministris." But the equivocal character of the word soon led to the blurring of any strictly technical sense it once possessed. Bishops signed themselves. minister in the opirit of bumility, priests were "servants of the altar" (ministri cluaris), while sometimes the phrase ministri ectesioe was used to denote the clergy in minor orders (see Lex Bajwar. tit. 8, quoted in Du Cange). A similar equivocal character attaches to the word minister as used in the Anglitan formalaties: "Offentimes it is made to express the person officiating in general, whether priest or deacon; at other times it denoteth the pricst aloner as contradistinguished from the deacon" (Burn's Eacl. Law, ed. Phillimore, iii. 44). Thus the 33nd canoen of 1603 orders that " no bishop shall make any person t deacon and minister both together upon ope day." Gencrally, however, it may be said that in the use of the Church of England " minister" meass. no move than axeculor officii, a sense in which it was used long before the Reformation. As the most colourless of all offichil ecclesiastical titles, it is casy to see how the word mimister bas come to be applied to the clergy of Protestant denominations. The phrase " minister of religion" is wide enough to embrace thy evangelical office, and has aboot it more of the savour of bumility than "pastor."

The civil tille of minister originates in the same exact sense of setvant, ie servants of the royal housebold (mimistri aulce regis). This origin is still dearly traceeble in the tithes of some ministers in Great Britain, e.f. chancellor of the exchequer, first lord of the treasury, and in the official style of " his majesty"s serxants" applied to all. Practically, however, the word minister Thas in modetn states come to be applied to the heads of the great administrative departments who as such are membets of the government. On the continent there are, besides, "ministers withort portfolio," in ministers who, without being in charge of any special department, are members of the government. In general it is distinctive of constitutional states that any public act of the sovercign must bear the countersignature of the minister responsible for the department concerned. (See the aificles Ministry and Cabmer, For the history and meanfings of the word "minister " in diplomacy, see Diplonsacy.)
(W. A. P.)

MWILSTBY, the office of a minister (q.v.), in all its mennings, poitical and religious, of the body of persons bolding auch an affice and performing its dutiss; more particularly the bedy of
persons whoi in theory the exwints at.the had of the aterefaet as the responsibfe exceutive over the whole sphere of government; as in the United Kingdom. On the continent of Eutope, on the otber hand, the word " ministry" is most usually applied to the responsible bead of a particular dopertrent together with his subordinates, including the permanent oticiats or staf. In England, ever sibce the introduction of monarchical institutions the sovereign has always been surrounded by a select body of confidential advirans to assist the crown in the government of the country. At no perlod could a king of England tact, according to law, without advice in the public concetns of the lingdom; the institutions of the crown of England and the institution of the privy council ame coeval. At the Norman Conquest the king's comeci, or as it is now called, the privy coumcil; was composed of certain members of the aristocracy and great officers of state, specially summoned by the crown, with whom the sovereign usually advised in matters of state and goverament. In the earlier stages of Englich conseitutional histery the king's councillors, as confidential servants of the monarch, were present at every meeting of parliament in order to advise upon matters judicial in the House of Lords; but in the reign of Richard II. the privy council distolved its judicial commexion iwith the pects and assumed an mdependent jurisdiction of fts own. It was in the reign of Henry VI. that the king's council first assumed the name of privy council, and it was also during the mipority of this sovereiten that ta select council gradually emerged from tho larger body of the phivy eouncil, which oflimatcly became the modern cabinet. Since the Revolution of 1688, and the develop:ment of parliamentary government, the privy. council has dwindled into comparative insignificasce. The power onco swayed by the privy courril is now exercised by that urrecos nized select committee of the councll known as the cabinet ($q .9$). The practice of consuling a few confidential advisers instead of the whole privy council had been reserted to by Einglisb monarchs from a very early period; but the firt mention of the term cabinct council in contradistinction to privy councif occurs in the reign of Charles L, when the burden of state affairs was entrustod to the committce of stale which Clarendon sayn was enviously ealied the "cablatet comecth". At first government by cabinet was as unpopular as it was irregular. Until'the formation of the first parliamentary ministry hy Winliam III. the ministers of the king occepied no secognized position in the House of Commons; it was indeed a moot point whether they wero entitled to sit at all in the lower chamber, and they were seidont of one mind in the administration of matters of importance, Belore the Revolution of 1688 there were ministern; hut, an ministry in the modern sense of the word; colleague schemed against colicague in the council chamber, and it was no uricome. mon thing to see ministers opposing one another in parinerteot upon moasures that in modere times would be supported by. a united cabinet. As the change from government by prerogative to govermment by pariament, consequent upon the Revolution of 1688, developed, and the House of Commons became more and more the centre and force of the esate, the advaniago of having ministors in the logistature to explain and defend tha measures and polley of the executive govemnent began to be appreciated. The public authority of the crown being only, exercised through the medium of ministers, it became absolutely aecessary that the advisers of the sowercign, who were respossible for every publie act of the Crowh as well as'for the 'general policy they had been called upon to administer, should have seats in both Houses of Parliament. Still ncarly a century had to clapee before political unanimity in the cabinet waserongnized as a political maxim. From the first parliamentary minialry of William III. untll the rise of the second Pitt, divisions in the cabie net were constantly occurring, and a prime minister har more to fear from the intrigues of his own colleagues than frem tha tectios of the opposition. In 1812 ata atfempt was made to fot a ministry consisting of men of opposite political principles, who were invited to accept office, not avowedly as a coalition government, but with an affer to the Whig leaders that their friends sbould be allowed a majonity of obe in the cabiece. This ofter
was declined on the plea that to construct a cabinct on "a systern of counteraction was inconsistent with the prosecution of etry uniform and beneficial course of policy." From that dite fit has been an established principle that all cabinets are to be formed on some basis of political union agreed upon by the rembers when they accept office together. It is now also distinctly understood that the members of a cabinet are jointly and severally responsible for each other's acts, and that any attempt to distinguish between a particular minister and his colleagues in such matters is unconstitutional.
During the 19th cemtury the power of ministers was greatly extended, and their duties became more distinctly markel out. As now interpreted, the leading principles of the British constitution are the personal irresponsibility of the sovereign, the responsibility of ministers, and the inquisitorial and controlling power of parliament. At the head of affairs is the prime minister ($q . v$), whose duties are more general thandepartmental; and the other members of the administration, whose work is exemplified by the titles of their offices (the more important of which are treated separately), are the lord high chancellor, the lord president of the council, the lord privy seal, the first lord of the treasury, the five secretarics of state (home, foreign affairs, colonies, war, India), the chancellor of the exchequer, the seenetary for Scot. land, the chief secretary to the lord lieutenant of Ireland, the postmaster-general, the presidents of the board of trade, the local government board, the board of agriculture and the board of education (all of which were originally committees of the privy council), the chancellor of the duchy of Lancaster and the first lord of the admiralty. These are the more important menbers of the administration, and they are generally in the cabinet. The subordinate members of the administration, some of whom are occasionally invited to join the cabinet, while others are never in it, are the parliamentary and financial secretary to the admitalty, the partiamentary under-sectetaries of the home, forcign, war, colonial and India offices, the board of trade, local government and board of education, the jumior lords of the treasury (assistant "whips "), the financial secretary and patromage secretary to the treasury (the senior "whip "), the first commissioner of works, the paymaster-genetal, and the attorney-general and solicitor-gencral. There are in addition the lord advocate and the solicitor-general for Scolland, the lordlięutenant and lord chancellor of Ircland (who are sometimes mentbers of the cabinct), and the attorney-general and solicitorgeneral for Ircland.

Table of Lord Treasurers or First Lords of the Treasuky
TThe title was at first lord treasurer, except when the treasury was put in commission. Eilsimatcly special rank was given to one of the commissioners as first lord of the breasury. From the time of ahe earl of Essex (1679) the name given is that of the first Iords, with the exception of the three primed in italics. In modern t mes the frst lord of the treasury has usually, but not invariably, Heen the head of the government or prime minister. A list of the trime Ministers is given in the argicle Prime Minister.
1603. Lord Buckhurst, cr. Earl 1649. Interregnum.

1 of Dorset 1604 2660. Sir. E. Hyde and others.
4608. Earl of Salisbury. (Commissioners.)
1612. Earl of Northampton and 1660. Earl of Southampton. others. (Commissioners.) 1667. Duke of Albemarle and
tor4. Eathers. (Commissiancrs.) 1667. Duke of (Comemarte and 618. Archbishop Abbot and 16;2. Lord Clifford. others. (Commissioners.) 1673 . Viscount Dunblanc, cr.
1620. Sir H. Montagu, cr. Viscount Mandevilte 5620.
1621. Lord Cranfield, cr. Earl of Middlesex 1622
1624: Sir J. Ley, rr. Lord Ley 162s, and Fan of Marlborough 1626.
1628. Lord Weston, cr. Earl of Portland 1633
663. Archbishop Lasd and others. (Commissioners.)
636, W. Juxon, Bishop of Lon.
164t. SirE. Lietheton and others.
\$643. Lord Cottington.

16;9. Earl of Essex
1679. Lord Hyde. or. Eart of 1684. Lord Godolphin
687. Lord Bellasyse.
1689. Farl of Monminuth
igyo. Viscount Lonsdale.
16yo. Lord Godolphin.
10937. C. Mintagu. cr. Earl of Halifax $1-00$.
1699. Earl of Tankerville. 1700. Lord Gedolphin. 1701. Earl of. Carlisle
1702 . Lord Godolphin. 1;10. Earl Poutctl.

17II. Rant of Oxford. 1714. Duke of Shreisbury 1714. Earl of Halifax. 1715. Earl of Carlisle. as ponoto 1715. Sir R. Walpole. 1717. Lord Stanhope. ban uvit) 1718. Earl of Sunderland. 1721. Sir R. Walpole.
1742. Earl of Wilmington. 1743. H. Pelham.
1754. Duke of Neweastle.
1756. Duke of Devonshire. 1757. Duke of Newcastle.
1762. Earl of Butc.
1763. G. Grenville.
1765. Marquess of Rockinghdm. 1766. Duke of Grafton.
1770. Lord North.
1782. Marquess of Rockingham.
1782. Earl of Shelburne.
1783. Duke of Portiand: A. 1 :
${ }_{128}^{23}$. W. Pitt. 1801. 11. Addington.
1804. W. Pitt.
1800. Lord Grenville. I/ H tiz 1807. Duke of Portland.
1807. S. Perceval.
1812. Earl of LiverpooL $1 /$ triod 1827. G. Canning
1827. Viscount Goderich.
1828. Duke of Wellington.
1830. Earl Grey
1834. Viscount Melbourne.
1834. Sir R. Pect

Table of Lord Chancellors 1603. Sir T. Egerton, L:K., cr. Lord Elfesmere 1603 , and Viscount Brackley 1616.
1617. Sir F. Bacon, L.K., cr. Lord Verulam 1618 , and Viscount St Albans 1621 :
1621. J. Williams, Bishop of Lincoln, L.K.
1625. Sir T. Coventry, L.K., cr. Lord Coventry 1628.
1670. Sis J. Finch, L.K., cr. Lord Finch i640.
1641. Sir E. Litteton, L.K., cr. Lord Lyttelton \mathbf{I} Gfl. 1645. Sir R. Lane, L.K.
1649. Interregnum.
1660. Sir E. Hyde, C., cr. Lord Hyde 1660 , and Earl of Clarendon - 661
1667. Cir O. Bridgernan, L. K.
1672. Earl of Shaftesbury, C.
1673. Sir H. Finch, L.K., cr. Lord Finch 167.4. C. 1675. er. Earl of Nottingham 1681.
1682. Sir F. North, L.K., cr. 481 Lord Guilford 1683 . 1685. L-ord Jeffreys, C.
1690. Sir J. Maynard and others.
(Commissioners.)
1690. Sir J. Trevor and others.
1693. Sir J. Somers, L.K., C.,

169 cr. Lord Somers 1697.
1;00. Sir N. Wright, LKK.
170s. W, Cowper, L.K., cr. Lord Cowper 1706. C. 1707. 1;10. Sir T. Trevor and others. 1/10. (Commissioners).
1710. Sir S. Harcourt. L.K., cr. Lerd Harcourt 1714, C. 1713.

1,14. Lard Cowper. C. bhe3. 1;18. Sir R. Tracy and others. (Commissioners.)
1;18. Lord Parker. C.. cr. Earl of Macclesficid 1721.
1725. Sir J. Jekyll and others. (Commissioners.)
1725. Lord King, C
1733. Lord Talbot of Hensol, C. 1737. Lorri Hardwicke, C., ct.
1835. Viscount Melbourne.

184 I . Sir R. Peel.
1846. Lard J. Russell, er. Earl
1852. Earl of Derby. 18 anto bas
1852. Earl of Aberdeen. ${ }^{\text {1 }}$, 1 pal 1855. Viscount Palinersion.
1858. Earl of Derhy: 165 1ofs
1859. Viscount Palmerstan.
1865. Earl Russell. it vie zod 2
1866. Earl of Derby E001
1868. B. Disraeli.
1868. W. E. Gladstone.
1874. B. Disracli, cr. Earl of Beaconsfield 1876. + 101 1880. W. E. Gladstone.
1885. Sir Stafford Northrote. cr. Earl of Iddeslcigh 1885
Lno (prime minister, Dfarquess of Salisbury).oo]
1886. W. E. Gladstone.
1886. Marquess of Salisbury:
1887. W. H. Smith (prime minister, Lord Salistury) : ,
1891. A. J. Balfour (prime minis ter, Lond Salisbury)dat
1892. W. E. Gladstone.
1894. Earl of Rosebery.
1895. A J. Balfour (prime minister, Lord Salisbury till
h 1902).
1905. Sir H. Campbell-Banner-

1go8. HI. H. Asquith.
(C.) OR LORD KEEPERS (L.K.)
1756. Sir J. Willes and others. (Commissioners.)
1757. Sir R. Henley, L.K., cr. Lord Henley and C. 1760 , Earlof Northington 1764 . 1766. Lord Camden, C.
1770. Charles Y'orke, C.
1770. Sir S. S. Sniythe and others. (Commissioners,)
1771. Lord Apsley, C., succecded as Earl Bathurst 1725 -
1778. Lord Thurlow. C.
1783. Lord Loughboraugh and others. (Commissioncrs.)
1783. Lord Thurlow, C.
1792. Sir J. Eyre and others. (Commissioners.)
1793. Lord Loughborough, C., cr. Earl of Rosslyn 180i.
1801. Lord Eldon, C.
1806. Lord Erakine C Cur

807 Lord Fidon
1897. Lord Lyndhurst, C
1830. Lord Braugham, C- ITI

1834- Lord Lyndhurst, C.
1835. Sir C. C. Pepys and others.
1836. Lord Cottenham, C.
1841. Lord Lyndhurst, C.
1846. Lord Cottenham, C.
1850. Lord Langdale and others. (Commissioners.)
1850. Lord Truro. C.
1852. Lord Se Leonards, C.
1852. Lord Cranworth, C.
1898. Lord Chelmsford. C.
1859. Lord Campleth. C.
1861. T.ord Westbury. C.
1865. Lord Cranworth, C.
1860. Lord Cheimsford, C.
1868. Lord Cairns, C.
1868. Lord 1fatherles,
1872. I-ord Sclborne, C.
1874. Lord Cairns, C., cr. Earl Cairms 1878. C. Cr. Earl
1880. Lord Scllborne, C., cr. Earl
of Selborne 1882.
1885. Lord Halsbury, C.
1886. Lord Herschdi, C .
1886. Lord Herschedf, C. 19
1886. Lord Halsbury, C.
1892. Lord Herschelli, C
1895. Lord Halsbury, C., Cr, Earl 1905. Lord Lereburn, C.

The uibstitution of two recretaries for one was the consequence of the increase of businesa. There was no distinction of departments, each aecretary taking whatever work the king saw fit to entrust him with During the reigns of the firm two Stuarts, bowever, there was a tendency to entrust one eecretary with the correspondence with Protestant statem and their alifiea, and the other with the correspondence with Catholic states. Probably in the reign of Charles Il., and certainly as early an 1691, two departments, the Northern and the Southern, were instituted. In 1782 the departments were changed to Home and Foreign. A third secretary of state was appointed in 1794, and he was called the Secretary for War and the Colonies from 1801 to 1854, when the work was divided, and the War and Colonia Secretaryshipe were instituted. The Secretary of State for India was appointed in 1858.]
1603. Sir R. Cecil, cr. Lord Cecil
1603. Viscount Cranborne
1604. Earl of Salisbury

1605
1612. Vacant.
1614. Sir R. Winwood.

1615. 1618. Sir R. Näunton. 1619. 1623. Sir E. Conway, cr. Lord Conway 1625.	Sir T. Lake. Sir C. Calvert.
1625.	Sir A. Morton
1625.	Sir J. Coke.
1628. Viscount Dorchester.	
1640.	Sir H. Vane.
1641. Sir E. Nicholas.	
1642.	Viscount Falklead.
1643.	Lord Digby.
1643. Interregnum. 1660. Sir E. Nicholas.	Sir W. Morric
1662. Sir H. Bennet, cr. Ear of Arlington 1665.	Sir W. Marrice
1668.	Sir J. Trevor.
1672.	Henry Coventry
1674. Sir J. Williamson. 1678. Ear of Sunderland	
1680.	Sir L. Jenkina
1681. Lord Conway.	
1683. Earl of Sunderland.	
1684.	S. Godolphin.
1684.	Earl of Middjeton.
1688. ${ }^{\text {c }}$ -	Viscount Preston.
1689. Earl of Shrewsbury.	Earl of Nottingham.
1690. Viscount Sidney.	
1692. Sir J. Trenchard.	
1694.	Earl of Shrewsbury.
1695. Sir W. Trumbull.	
1697. I: Vernon.	
1700. Sir C. Hedges.	Earl of Jersey.
1701. - .	Ear of Manchester.
1700.	Earl of Nottingham.
1704. Eari of Sunderiand.	R. Harley, cr.EarlolOxfordi7i]
1700. Eari of Sunderiand.	
1708.	H. Boyle, cr. Baron Carleton 1714
1710. Lord Dartmouth, cr. Earl of Dartmouth 1711 .	H. St. John, cr. Visoount Bolingbroke 1712.
1713. W. Bromley.	
1714. J. Stanhope, cr. Earl Stan-	Viscount Townshend.

1794	Home Department. Duke of Portland	Foreign Department. Lord Grenville	War and Colonial Department. H. Dundas, cr. Viect. Melviller802.
1801.	Lord Pelham, aft. Earl of Chichester	Lord Hawkesbary	Lord Hobart, alt. Earl of
1803.	C. P. Yorke		Brt Camingamahire.
1884.	Lord Hawkesbury	Lord Mulgrave :	Visoount Casilereagh.
1806.	Earl Spencer :- ${ }^{\circ}$ a ${ }^{\text {a }}$	C. I. Fort -	W. Windham.
1807.	Lord Hawkesbury, aft. Earl of Liverpool	Cari Bathurst - . . . -	Viscount Casilercagh.
1889. 1889.	R. Ryder	Earl Bathurst Marquess Welledey	
1812.	Viscount Sidmouth [H. Addington)	Viscount Castlereagh, aft Marques of	Earl Bathurst.
1822. 1827.	W. P. Stel Bourne	Earl of Dudley	iscount God
1827	Marquess of Lansiowne		W. Huskissorr.
1828.	R. Peel M .	Earl of Aberdeen .	Sir G. Murray. ERipon.
1830.	Viscount Melbourne	Viscount Palmerston	Viscount Goderich, aft. Earl of
1833.	- , • -	- . . .	E. G. S. Stanley, aftiLord Stanky and Eari of Derby,
1834. 1834.	Viscount Duncanaon, aft. Eard of Besborough H. Goulburn	Duke of Wellington	T. Spring-Rice, aft. Lord MontEarl of Aberdeen.
1835.	Lord J. Ruseel! :	Viscount Palmerston	Lord Glenely.
1839.			Marquess of Normanby.
1839.	Marquess of Normanby	Eari of Aberdeen	Lord \$. Russell.
1841.	Sir J. Graham, Bart.	Ear of Aberdeen	Lord Stanley.
1846.	Sir G. Grey	Viscount Palmertion : :	Earl Grey. [Hampton.
1852. 1852.	Spencer H. Walpole	Earl of Malmesbury : : :	Sir J. S. Pakington, aft. Lord Duke of Newcastle.

1855 1855 1855 1858	Sir G. Grey $\dot{\text { S. }}$ H. Waipole	Earl of Earl of		[Taunton lere, aft Lord	War Depout Lord Panmure Jonathan Peel
1858.		Foreign Department. Earl of Malmesbury	Colonial Department. Sir E. G. E. L. Bulwer Lytton, cr. Baron Lytton 1866	War Department.Jonathan Peel.	
1859.	T. H. S. Sotheroa-				
1859	Sir G. Cornewall Lewis	Lord J. Russell, cr. Earl Russell 186I	Duke of Newcastle	S. Herbert, cr, Lord Herbert of Lea 1861 Sir G. C. Lewis. Earl de Grey and Ripon, aft. Marquess of Ripon	Sir C.Woodicr. Viscount Halifax 1866.
$\xrightarrow{1861 .}$	Sir G. Grey				
			E. Cardwell		
1866	S. H	Eari of Clarendon. Lord Stanley, aft. Earl of Derby	Earl of Camarvon Duke of Buclringham		
		-		Sir J. S. Pakington, aft. Baron Hampton	Sir S. H. Northcote, cr. Earl of Iddeskeigh 1885
1868.	H. A. Bruce, cr. Baron Aberdare	Earl of Clarendon .	Earl Granville . .	E. Cardwell, cr. Viscount Cardwell 1874	of Argyll.
		Earl Granville Earl of Derby Marquess of Salisbury	Earl of Kimberley. Earl of Carnarvon Sir M. Hicks Beach, cr. Viscount St Ald,wyn 3906		
18	Sir			G. Hardy ${ }^{\text {F }}$ Stanley :	arquess of Salisbury. Hardy, cr. Viscount Cranbrook 1878.
1880.		Earl Granville .	Earl of Kimberley	Child	
		Marquess of Salisbury.	Earl of Derby . : .	Marquess of Hartington, aft. D. of Devonshire	
1885.	Sir R. A. Cross, cr. Viscount Cross 1886		Sir F. A. Stariley, cr. Baron Stanley of Preston 8886, aft. Eatl of Derby		Lord R. Churchill.
$\begin{aligned} & 188 \\ & 188 \end{aligned}$		Earl of Rosebery: Earl of Iddealeigh	Earl Granville E. Stanhope	Viscount Cranbrook. H. Campbell-Bannerman W. H. Smith.	Earl of Kimberley. Viscount Cross.
1886. 1886.	H. Matthews, cr. Viscount Llandaff				
188	. \cdot -	Marquess of Salisbury.	SirH.T.Holland, cr. Vlscount Knutsford 1895. Marquess of Ripon	E. Stanhope.	
189 189	H. H. Asqu	Earl of Rooebery Earl of Kimberfy		H. Cempbell-Baninerman	Earl of Kimberiey. H. H. Fowler, cr. Viscount Wolverhampton 1908. Lond G. Hamilton.
1895.	$\begin{aligned} & \text { Sir M. } \\ & \text { cr. } \end{aligned}$	Marquess of Salisbury.	J. Chamberlain . .	Marquess of Lansdowne	
1900.	C. T. Ritchie, cr. Baron Ritchie of Dundee 1905	Marquessof Lansdowne	- ; : . . .	Hon. W. St J. Brodrick, aft. Viscount Midleton	
1900.	A. Akers-Dougla	$\dot{S i r} \dot{E}$. Grey	Hon. A. Lyttelton Earl of Elgin	H. O. Arnold-Forster R. B. Haldene	Hon. W. St J. Brodrick. I. Morley, art. Viscount Morley of Blackburn.
1905.	H. I."Gladstone, cr. Viscount Glad. stone rgro				
$\begin{aligned} & 1908 . \\ & 1910 . \end{aligned}$	Winston S. Churchi		Earl of Crewe.		

MINK, a name for certain large species of the zoological genus Putorius (Polecat), distinguished by slight structural modifications and semi-aquatic habits. The two best-known species, so much alike in size, form, colour and hahits that, although they are widely separated geographically, some zoologists qnestion their specific distinction, are P. Iutreola, the N ors or Sumpfother (marsh-otter) of eastern Europe, and P. pison, the mink of North America. The former inhabits Finland, Poland and the greater part of Russia, though not found east of the Ural Mountains. Formerly it extended westward into central Germany, but it is now very rare, if not extinct, in that country. The latter is found in places which suit its habits throughout the whole of North America Another form, P. sibiricus, from eastern Asia, of which much less is known, appears to connect the true minks with the polecats.
: The name may have originated in the Swedish meenk applied to the European animal. Captain John Smith, in his History of Virginia (1626), at p. 27 spenks of "Martins, Powhecats, Weesels and Minkes," showing that the animal must at that time have been distinguished by a vernacular appellation from its
congeners. By later authors, as Lawson (1709) and Pennant (1784), it is often written "Minx." For the following description, chiefly taken from the American form (though almost equally applicable to that of Europe) we are mainly indebted to Dr Elliott Coues's Fur-bearing Animals of North America, 1877.

In size.it much resembles the English polecat-the length of the head and body being usually from I 5 to 18 in., that of the tail to the end of the hair about 9 in . The female is considerably smaller than the male. The tail is bushy, but tapering at the end. The ears are small, low, rounded, and scarcely project beyond the adjacent fur. The pelage consists of a dense, soft, matted under fur, mixed with long, stiff, fustrous hairs on all parts of the body and tail. The gioss is greatest on the upper parts; on the tail the bristly hairs predominate. Northern specimens have the finest and most glistening pelage; in those from southern regions there is less difference between the under and over fur, and the whole pelage is coarser and harsher. In colour different specimens present a considerable range of variation, but the animal is ordi :arily of a rich dark brown, scarcely or not paler below than on the general upper.parts; but the back.
is usually the darkest, and the tail is nearly black. The under jaw, from the chin about as far back as the angle of the mouth, is generally white. In the European misk the upper lip is also white, but, as this occasionally occurs in American specimens, it fails as an absolutely distinguishing character. Besides the white on the chin, there are often other irregular white patches on the under parts of the body. In very rare instances the tail is tipped with white. The fur is important in commerce.
The principal characteristic of the mink in comparison with its congeners is its amphibious mode of life. It is to the water what the other weascls are to the land, or martens to the trees, being as essentially aquatic in its habits as the otter, beaver, or musk-rat, and spending perhaps more of its time in the watce than it does on land. It swins with most of the body submerged, and dives with perfect case, remaining long without coming to the surface to breathe. It makes its nest in burrows in the banks of streams, breeding once a year about the month of Aprit, and producing tive or six young at a birth. Its food consists of frogs, fish, fresh-water molluscs and crustaceans, as well as mice, rats, muskrats, rabbits and small birds. In common with the other animals of the genus, it has a very peculiar and disagrecable eflluvium, which, according to Dr Coues, is more powerful, penetrating and lasting than that of any animal of the country except the skunk.
Minneapolis, the largest city of Minnesota, U.S.A., and the county-seat of Hennepin county, situated on both banks of the Mississippi river at the Falls of St Anthony and immediately above St Paul. Pop. (1870), 13,066; (1880), 46,887; (1890), 164,738; (1900), 202,718; (1010 census) 301,408. Of the total population in 1g00, those of foreign parentage (both parents foreign-born) numbered 118,946 , and there were 61,021 of forcign birth, including 20,035 Swedes, 11,532 Norwegians, 7335 Gcrmans, 5637 Englisth-Canadians, 3213 Irish, 2289 English, 1929 Russians, 1706 French-Canadians and 1133 Austrians. Minncapolis is served by the Chicago, Burlington \& Quincy, the Chicago, Great Western, the Chicago, Milwaukce \& St Paul, the Cbicago \& Northwestern, the Chicago, Rock Island \& Pacific, the Great Northern, the Minneapolis \& St Louis, the Minncapolis, St Paul \& Scult Sainte Marie, and the Northern Pacific railways. It has also three terminal switching lines and the belt line of the Minnesota Transfer Company, serving both Minneapolis and St Paul. With St Paul, which is served by the same system of railways, Minneapolis is the chief railway centre of the Northwest and one of the greatest in the United States, being the principal gateway to the commerce of the Canadian and Pacific northwest. There are a Union passenger station, and separate stations for the Chicago, Milwaukee \& St Paul, the Chicago, Greal Western and the Minneapolis \& St Louis railways.
"The city is situated on a high plateau ($800-850 \mathrm{ft}$. above scatevel) above the river, and covers an area of about $53 \mathrm{sq} . \mathrm{m}$. It has an extensive system of boulevards, parkways and parks (aggregating 2465 acres in 1908). Among the parks are Loring, near the centre of the city, in which is a statue of Ole Bull; Lyndale, in the south-west part of the city; Intertachen, just north-west of Lyndale; Glenwood, in the west of the city; Van Cleve, Logan, Windom and Columbia in the part of the city east of the Mississippi river; Riverside, on the south-west hank of the Misoissippi; and Minnehaha Park, in which are the MinneHaha Falls, a beautiful cascade of the Minnehaha Creek the outlet of Lake Minnetonka), near the Mississippi, with a fall of 50 ft., well known from Longfellow's poem "Hiawatha." The rumerous small lakes in the city (there are about 200 lakes in Heanepin county) have been incorporated in the park system; among them are Lake Harriet (353 acres; in Lake Harrict Park), Lake Calhoun (on which are extensive public baths), Lake Amelia (203 acres), Lake of the Isles (rdo acres), Cedar Lake, Puwder Horn Lake (in the park of that name) and Sandy Lake (in Columbia Park). Adjoining Minnehaha Park are the grounds (51 acres, given to the state by the city) nnd buildings of the Minnesuta state soldiers' home (1687); and 2 m . beyond the Falls, at the junction of the Mifinesuta and Mississippi rivers, is
the Fort Snclling Military Reservation (8ig). Seven mile south-west of the limits of the city is Lake Minnetonka, one of the most famous summer resorts in the Northwest, a beautiful body of water 15 m . long, with a shore line of 150 m , encircled by undulating wooded hills. Among the most fashionable streets are Mount Curve, Clifton and Park avenucs, all in the "West Division" or south-western quarter of thecity. The streete in all parts of the city are of exceptional width and heavily shaded In the residential districts. There are handsome residential suburbs. The court-house and city-hall, constructed of red Minnesota granite and completed in 1002 at a cost of about $\$ 3,500,000$, is one of the finest muricipal buildings in America. Other prominent buildings are the Masonic Temple, the Chamber of Commerce, the Lumber Exchange, the Bank of Commerce, the Auditorium; the buildings of the Metropolitan Life (formerly the Guaranty), the Security Bank, the North. western National Bank, the First National Bank, the Andrus, the New York Life, and the Young Men's Christian Association; Hotel Radisson and West Hotel. Minncapolis is the see of a Protestant Episcopal bishopric. On the cast side of the river are the buildings of the university of / Minnesota ($q, \dot{2}$). In Minneapolis are the Minneapolis College of Physicians and Sur. geons (1883), the medical school of Hamline University; Augs. burg Seminary (Norwegian Lutberan, 1869), the United Church Seminary (1800), the Minnesota College (Swedish, 1905), the Minncapolis Normal School for Kindergartners, the Frocbcllian Kindergarten Normal School, Graham Hall and Stanley Hall, the Minneapolis School of Music. Oratory and Dramatic Art, and the Northwestern Conservatory of Music. Between Minneapolis and St Paul are the main buildings of Hamline University (Mechodist Episcopal, co-educational, 1854). The public library (more than 180,000 volumes in 1908) grew out of a private library, the Athenacum (1860), was reorganized by Herbert Putnam (librarian from 1887 to 1891), and has several branches, the most notable of which is the pillsbury Library (1904) on the east side; in its main building (Henacpin Avenue and roth Street) are the oflices of the Minnesota Academy of Natural Sciences (1873), which, with the Socicty of Fine Arts, assisted in erecting the building in 1884. Among the hospitals and charitable institutions are the Minneapolis city hospital, the state hospital for crippled and deformed children, and Asbury Mcthodist, the Northwestern, the Deaconcss', the Swedish, the St Mary's, the Maternity and the St Barnabas hospitals, Bethany Home, the Catholic orphan asylum, the Washburn orphans' home, the Pillsbury House (1006) where settlement work is carried on by the Plymouth Congregational Church, and several free dispensaries. The first newspaper in the eity was the St Anthony Express, which began publication in 1851 ; it is no longer in existence. In 1906 the city had, in addition to numerous weekly and monthly periodicals (Euglish, NorwegianDanish, Swedish, German, French), four dailics, the Tribune (1867), the Journal (1878), and the News (1903), all in English, and the Tidende (Norwegian-Danish), established as a weekly in 185 r.

- The Mississippi river, which here has an average width of about 1200 ft ., is crossed by 17 bridges (9 highway and 8 railway hridges). The Federal government undertook to decpen the channct by drcdging and by making two dams and two locks between the Chicago, St Paul, Minneapolis \& Omnha railway bridge in St Paul and the Washington Avenue bridge in Minnc-apolis-a distance of 11.4 m -- - rom 2 or 3 ft . 106 ft , and to make the river regularly navigable as far as tho Washington Avence bridge, Minneapolis; the project, first adopted in 1804 and modificd in 1007, was 70% completed in July 1908, and up to that time $\$ 1,06 \mathrm{r}, 397$ had heen spent on the work. The enormous water-power of the Falls of St Anthony, yielding about $40,000 \mathrm{~h} . \mathrm{p}$., has been the prinejpal factor in making Minneapolis a great manufacturing centre. The rapid crosion of the soft limestone bed at one time threatened the destruction of the power, but this has been proventel by an enormous apron and an artifcial concreté foor (completed in 1874). Additional waterpower ($25,000 \mathrm{h.p}$.) is derived from Taylor's Falls on the St Croix
rfier. 'The proximity of the rich wheatfields of the northwest, and the extensive timber forests, have made Minneapolis the greatest lamber and flour centre in the world. The importance of the ffour mamfacturing industry was onginally dut to the excellent water-power available, and dates from the introdaction of improved rolier-mill methods in the early 'seventies, although there were successful mills in operation twenty years earlier. The enormous flour-mills of Minneapolis (22 in 1907) are perhaps the most interesting sights of the city. Their aggregate daily capacity is over 80,000 barrels, the largest of them having a capacity of 15,000 to 16,500 daily. In 1905 the value of the city's flour and grist mill prodacts was $\mathbf{\$ 6 2 , 7 5 4 , 4 4 6 , 5 1 . 6 \%}$ of the total value of the city's factory product, and 8.8% of the value of the flour and grtst mill products of the entire United States. Food preparations were valued in rgos at $\$ 1,361,492$. Minneapolis is also the greatest primary wheat mafket in the world, its 40 or more elevators (of which those of the Washburn-Crosby Company, erected in z907, are the largest) having a net capacity of about $35,000,000$ bushels, and handing more than $90,000,000$ bushels in 1908 . Its commerce in other grains is also extensive; in the amount of bariey received and shipped Minneapolis surpasses any other city in the United States, and ip receipts and shipments of rye is second only to Chicaso.' The Mississippi river above Mfnneapolis is made to serve, by means of a series of extensive log.booms, as the principal source of supply to the great saw-mills, of which there are bere some of the largest in the world, with a combined capacity of $3,500,000 \mathrm{ft}$. a day, and with an average annual cut of $575,000,000 \mathrm{it}$. The total value of the lumber products in 1905 was $\$ 9,960,842$ (lumber and Limber, $\$ 5,8.6,726$; planingmill products, including sash, doors and blinds, $\$ 4,544,116$). Other important manufactures with the product-value of each in 1905 were malt liquors ($\$ 1,185,525$), foundry and machine shop products ($\$ 2,800,697$), structural iron-vork ($\$ 1,991,771$), steam rallway car construction and repairing ($\$ 2,097,248$), patent medicines ($\$ \mathrm{r}, 715,889$), furniture ($\$ \mathrm{i}, 238,324$), cooperage ($\$ 1,415,360$), and hosiery and knit goods ($\$ 957,455$). The total value of the factary product was $\$ 94,407,774$ in 1900 , and $\$ 121,593,120$ in spo5, an increase of $\mathbf{2 9 . 8} \%$; in 1905 the value of the factory product was $39-5 \%$ of that of the entire state,

Minneapolis is soverned under a charter adopted in $\mathbf{5 8 7 2}$ (when St Anthony and Minmeapolis were consolidated) and frequently amended. It provides for the efection of a mayor, treasurer and comptroller for two-years terms; for elected boards of control for library, parks and education, and for a unicameral city conncil; half of which is chosen every two years for a term of four years. The mayor, whose veto may be nullifed by an adverse vote of two-thirds of the council, has very limited appointing powers, the head of the police department being the most important pi his appointees. The city coupcil elects the city clerk, city attomey, city engincer, chief of the fire department and most of the minor officers. Under a provision of the chartet adopted in 1887 saloons are not permitted outside the "patrol limits of the busincss distriet"; so that there are no stioons in the residential districts of the city. The municipality owns the waterworks system, the water supply being obtained from the Mississippi river.

Hislory.-The first recorded visit of a European to the site of Minneapolis was that of Pather Louis Hennepin, the French Jesuit missionary, who discovered and named the Falls of St Anthony in 1680 ; but it is almost certain that he was preceded by some of the adventurous courcurs des bois, few of whom left records of their extensive wanderings, and Radisson and Groseilliers seem to have visited this region two decades before Hennepin. The land on which the city lies, being divided by the Mississippi river, was for many years under different sovereigoties, the east side becoming United States terrizory at the close of the War of Independence, while the west side, after being under Spanish and French ruie, did nor become a part of the United States umill the purchase of Louisiana in 1803 . In 1766 the site was visited by the American traveller, Jonathan Carver;
and in roos by Lieut. Eebelion M. FIre; the military reserve which Pike bought from the Indians included a greater portion of the west side of the present city. After the erection of Fort St Anthony (r8ro; fater called Fort Snelling), a water-powet saw-mill was crected (1822) to saw lumber for the fort on the east bank of the river at the Falls of St Anthony. Later flour was also grotend in this mill, which thus became the foreranner of the greatest of the city's industries. Oradually as the Indiant land titles became extinguished the east bank was settled. The first settlement on the west bank was made by Colonel John H. Stevens in $\mathbf{1 8 5 0}$, but the land was not opened to settlers untit 1855. The village of St Arithony, on the east side of the river, was incorporated in $\mathbf{2 8 5 5}$; Minneapolis, on the west bani, was incorporated in 1856 . St Anthony became a city in 1860, and Minneapolis, which then had only 2564 inhabitants, sooti outstripped its nefghbour after the Civil War, and received a city charter in 1867. In 1870 Minneapolis' alone had $\mathbf{1 3} 3060$ inhabitants ($\mathbf{1 8 , 0 7 9}$ with St Anthony), and in 1872 the two cities were united under the name of Minneapolis. The Republican National Convention met in Minneapolis in 189 a and renominated President Benjamin Harrison.

Avtiorities.-Isanc Atwater Fisiory of the Cily of Minneapolis (2 vols., New York, 1893): G. E. Warner and C. M. Foote, History of Hennepin Cownly and the City of Mivneapoth (Minneapolis, 1881): Hudson's Dictionary of Minneapolis and Vicimity. CMinneapolis, annually): A. Morrison, The Jndnstries of Li inneapolis Minneapolis, 1\&, ${ }^{5}$): S. P. Snyder and H. K. Macfarlane, HisLorical Sketch of Sl Anlliony and Minneapolis (Phitadelphin, 1856); and C. B. Elliott's "Minneapolis-St Paut" in L. P. Powell's Hidtoric Towes of the Western Stales (New York, 1901).

MINNESNTHERS (Ger. Minresinger from Minne, love), the name given to the German tyric poets of the 12 th and $13^{\text {th }}$ centuries. The term Minnesang, strictly applicabie to the poems expressing the homage (Minnediens) rendered by the knight to this mistress, is applied to the whole body of lyric poetry of the period, whether dealing with love, religion or politics. The idea of amour courtois, witb fts excessive worship of woman, its minute etiquette and its artificial sentiment, was introduced into German poetry from Provencal literature; but the German Minnesang was no slavish imitation of the poetry of the troubs. dours. Its tone was, on the whole, far healthier and more sin! cere, reflecting the difference between the simple conditionsol German life and the older and corrupt civilization of Provence. The minnesinger usually belonged to the lower ranks of the nohility, and his verses were addressed to a married weman; often above him in rank; consequently the commonest lyrid themes are the lover's hopeless devotion and complaints of the lady's cruelty, expressed with a soinewhat wearisome iteration: That real passion was sometimes present may be safely assumed; but it was not within the rules of the gaine, which corresponded fairly closely to the later sonneteering conventions. The poet was not permitted to give the lady's mame, or to betray her identity; and a direct expression of passion would also have contravened the rules. 'The poems were from the first sung in open court to a melody (Weise) of the poet's own composing, whth the accompaniment of a fiddle or small harp. That the minnesinger was no improvisatore is evident from the complicated forms of his verse, which were partly borrowed from the Provengal, but possibly owed something to the Latin shymed verse ${ }^{1}$ of the wandering scholars. The otder songs consisted of a single strophe cast in three divisions, two (known as Stollen or doorposts) identical in form, stating and developing the argument, the third (Abgesang) of different form, giving the conclusion. Later on, two or more strophes were used in a single poem, but the principle of their structure was retained. In this form were cast the Tapetied, a dialogue describing the parting of lovers at dawn: and the crusading song. Side by side with these existed the Spruch, written in a single undivided stanza, destined for recitation and often cast in the form of a fable. The lay (Leich) was written in unequal strophes, each formed of two equal divisions. It was applied in tbe first lfistance to sacred lyrics;

[^30] 1904.
and was first used in love poems by the Alsatian minnesinger Ulrich von Gutenberg.
The origin of the native lyric, which flourished especially in Austria and Bavaria, is perhaps to be sought in the songs which accompanied dancing. These were not necessarily love songs, but celebrated the coming of spring, the gloom of winter \&c, the commonplaces of Minnesang throughout the two centuries of its existence. The older lyrics, which date from the middle of the 12th century, are simple in form and written in the ordinary epic metres. The earlicst minnesinger whose name has come down to us is Der von Kirrenberg (f. c. 1160), a scion of an Austrian knightly family whose castle lay on the Danube, west of Linz. These songs, however, contradict the root idea of Minnedienst, since the lady is the wooer, and the poet, at the most, an acquiescent lover. They take the form of laments for an absent lover, complaints of his faithlessness and the like. Among the other Austrian and south German lyrists who show small trace of foreign influence was Dietmar von Aist (d. c. 117x), though some of the songs attributed to him seem to be of later date. While the love-song remained in the hands of noble singers, the Spruch was cultivated by humbler poets. The elder of the two or three poets concealed under the name of Spervogel was a wandering singer who found patronage at the court of the burgraves of Regensburg, one of whom himself figures among the earlier minnesingers.
t The characteristic period of German Minnesang begins at the close of the 12 th century with the establishment of the Provencal tradition in western Germany through the poems of Heinrich von Veldeke and Friedrich vion Hausen. National elements abound in Veldeke's songs, although the amon cownlois dominates the whole; Friedrich von Hausen (d. 1190) followed Provengal models closely. The long crusading song Sie darf mich des Zthen niet, is a good example of his powers. A close disciple of the troubsdours Peire Vidal and Folquet de Marseille was the Swiss Count Rudolf von Fenis. ${ }^{\text {t }}$ The greatest name among the earlier minnesingers is that of Heinrich von Morungen, a Thuringian poet who lived on in popular story in the ballad of "The Noble Moringer." He brought great imaginative power to bear on the common subjects of Minnesang, and his poetry has a very modern note. The formal art and science of Minnesang reached full development in the subtle love-songs of Reinmar, the Alsatian "nightingale of Hagenau." Ubland aplly called him the "scholastic philosopher of unhappy love." As a metrist he developed a greater correctness of rhyme, and a better handling of German metres. He became a member of the court of Duke Leopold V. (d. 1194) of Austria, and there Walther von der Vogelweide (q.v.) was first his disciple, and then perhaps his rival. Walther, the greatest of medieval German lyric poets, had Reinmar's technical art, but in feeling was more nearly allied to Morungen. He raised the Spruck to the digoity of a serious political poem, which proved a potent weapon against the policy of Innocent III. In 1202 at the court of Hermann, landgrave of Thuringia, he met Wolfram von Eschenbach, who is said to have taken part in the tourney of poets known as the Wartburgskrieg, made world-lamous through Wagner's Tannhduser. The Tagelieder of Woliram give him a high place in Minnesang, although his fame, like that of Heinrich von Veldeke and Hartmann von Aue, chiefly rests on his epics. A new style-called by Lachmann hofuche Dorfpoesic-was marked out by Neidhart von Reuental (d. c. 1240), who belonged to the lesser Bavarian nobility. He wrote songs to accompany the dances of the village beauties, and comic and realistic descriptions of village life to please the court. He was acknowledged by the Meistersinger as one of the twelve masters of song. Nevertheless, with him the decadence may be said to have begun.

The Styrian poet Ulrich von Lichtenstein (d. c. 1275) unconsciously caricatured chivalry itself by his Frauendienst, in which he relates the absurd feats which he had undertaken at his lady's command, while Steinmar (f. 1276) deliberately parodied
${ }^{1}$ Rudolf II., count of Neuenburg (d. 1 196), or, according to some, a nephew of his who died in 1257 .
court poetry in his praises of rustic beauty and good living. In the lays, songs and proverbs of Tannhäuser something of both elements, of the court and the village, is to be found. He seems to have lived as a wandering singer until 1268 , and there very soon grew up round his name the Tannhäuser myth which has so little foundation in his life or poetry. The Austrian poet Reinmar von Zweter (d. c. 1260) left some hundreds of Spriche political or social in their import. Among the princes who practised Minnesang were the emperor Henry VI., though the two songs preserved under his name are of doubtful authenticity, Duke Henry IV. of Breslau (f. 1270-1290), King Wenceslaus II. of Bohemia, the margrave Otto IV. of Brandenburg, Wizlaw IV., prince of Rügen and the unhappy Conradin, the last of the house of Hohenstaufen, beheaded by the order of Cbarles of Anjou before he reached his seventcenth ycar.

The didactic motive came more and more to the front in the I3th century. The wandering Swabian poet Marner (d. c. 1270) cultivated especially the Spruch, laughed at the Provencal and courtly tradition, and there is no very great step from his learning and his feuds to the conditions of Meistersang. Heinricb von Meissen (1250-1319), known as "Fraueniob" ("Ladies' praise"), was one of the last minnesingers, and his pedantry and virtuosity entitle him to be called the first meistersinger.

Bibliography. - The chief MSS. containing the work of the 300 or more minnesingers whose work has been partially preserved, are the old Heidelberg MS. (13th century), the Weingarten-Stuttgart MS. (14th century) and the Great Heidelberg MS. (1 th $^{\text {ch century), }}$ formerly known as the Manasse MS. This last is the most comprehensive of all. The collection on which it is based was made by Rüdiger Manasse (d. 1304) and his son Johanaes at Zürich. It is quaintly illustrated with imaginary portraits of the poets (that of Hartmann von Aue in full armour with closed vizor!). and pictures of their coats of arms. It was printed by F. PSaff (Heidelberg. 1899). The completest collection of the minnesingers' verses is $\mathrm{F} . \mathrm{H}$, von der Hagen, Deutsche Liederdichter des zwolften, dreischniten und viersehnten Jahrhurderts (4 vols., Leipzig, 1838), vel. iv, of which contains biographical matter and a discussion of the music; K. Lachmann and M. Haupt, Des Minnesangs Fruhling (3rd ed., edited F. Vogt. Leipzig, 1882) is a collection of the minnesingers earlier than Walther von der Vogelweide; there is a comprchensive selection of 97 minnesingers by Karl Bartsch, Deulsche Liederdichter des zwolfen bis vierzehnten J Jhohunderts (ed, W. Golther, Berlin tgor) with bio-bibliographical account of individual minnesiagers; see also F. Plaff, Der Minnesang der 12 bis 14 Jahphunderts, pt. i. (Stuttgart, 1892). English translations of early German lyrics are F. C. Nicholson, Old Germam Love Songs, translated from the minnesingers of the 12 th to 14 h centuries (London. 1907). Sce also Walther v. d. Vogel Weide.
Of historical and critical work on the minnesingers, see K. Goedeke. Geschichle der deulschen Dühhung, vol. i. (Dresden, 1881); H. Paul, Grundriss der germenischen Philologie, vol. ii. (Strassburg, 2nd ed., 1901), where further references will be found; also A. E. Schonbach, Die Anfinge des deutschen Minnesanges (Graz, 1898); F. Grimme, Gesehichte der Minnesanger, vol. i. (Paderborn, 1892); K. Burdach, Reinmar der Alte und Walher von der Vogetucide (Leipzig, 1880): A. Schultz, Das höfsche Leben sur Zeit der Minnesanger (2nd ed., Leipzig, 1889): J. Falke, Die ritterliche Vesellschaft im Zeitalter des Frauencultas (Berlin, no date).
minnesota, a North Central State of the United States of America. It is bounded on the S. by Iowa, on the W. by South and North Dakota-the Red River (commonly called the Red River of the Nortb) separating it from the latter state-on the N. by the Canadian provinces of Manitoba and Ontario, being separated from the latter by the Lake of the Woods, Rainy River and Rainy Lake, and certain of their tributaries and outlets, and on the E. by Lake Superior and by Wisconsin, from which it is separated for the greater part of the distance by the Mississippl and St Croix rivers. It is the tenth state in size in the Union, with a total area of $84,682 \mathrm{sq}$. m., of which 3824 sq. m . are water surface. ${ }^{2}$ From north to south it is about 400 m . in. length, extending from $43^{\circ} 30^{\prime}$ to $49^{\circ} 23^{\prime} 55^{\circ} \mathrm{N}$. lat., and from. cast to west its width is about 354 m ., lying between long. $89^{\circ} 29^{\circ}$ and $97^{\circ} 15^{\prime} \mathrm{W}$.
The north-east part of the state is included in the Great Lukes Province, and the southern and western parts are in the Prairic Plains Province. Tbe whole area of the state was formerly 3 complexly folded mountainous region of strong relief, which was
In addition the statc contains approximatcly 2514 sq. m. of Lake Superior.
afterwards worn down to a more nearly level surface, except in the extreme north-east corner, where ridges of harder rock resisted erosion. Marine deposits were laid down over the south of the state nfter a submergence of the region; an uplift afterwards made of these deposits a coastal plain. The rather level surface of the "worn down mountains" of the north of the state and the coastal plain beds of the southern and western parts are now dissected by rivers, which make most of the state a solling or hilly country, without strong relief. The average elevation is about 1275 ft . above sea-level or 600 ft . above the surface of Lake Superior. An extensive water-parting in the morth central part of the state, an elevation whose inclination is almost imperceptible, determines the course of three great continental river systems. From this central elevation the land slopes off in all directions, rising again in the extreme north-enst corner, where the rugsed granite uplift in Cook county, known es the Misquah Hills, reaches an altitude of 3230 ft ., the highest point in the state; and in the south-west comer, where an altitude of 1800 ft . is reached in the Coteau des Prairics. Only in the valleys of the Red, Minnesota and Mississippi rivers does the elevation fall below 800 ft . In the southern and central portions of the state open rolling prairies interspersed with groves and belts of oak and other deciduous hard-wood timber predominate. A little north of the centre the state is traversed from northwest to south-aast by the extensive forest koown as the "Big Woods," in which also oak occurs most frequently. In the northern part of the state the great pine belt stretches from the head of Lake Superior westward to the confines of the Red River Valley, while along the north border and in the north-east the forest growth is almost exclusively tamarack and dwarf pine. More than three-fourths of the area of the state is arable, the small percentsge of non-arable land lying principally in the north-eastern regions, which afford compensation in the form of rich mineral deposits. Of the three great continental river systems above mentioned, the Red River and its tributaries drain the western and west central slope northward through Lake Winnipeg into Hudson Bay; the other two being the St Lawrence system, to which the St Louis River and its hranches and several amaller streams flowing into Lake Superior contribute their waters by way of the Great Lakes and the Mississippi, which with its tributaries drains about two-thirds of the state into the Gulf of Merico. A few rivers in the south drain into the Mississippi through Iowa, while a smaller area in the extreme north is drained through the Lake of the Woods and Rainy Lake into Hudson Bay. These river systems serve the threefold purpose of drainage, providing water communications (there being about 3000 m . of navigable waters in the state), and, by falls and rapids caused by glacial displacement of rivers, furnishing a magnificent volume of water-power. The Mississippi niver, which flows for about 800 m . within or along the borders of the state, has its principial sources in and near Lake Itasca. It affords facilities for the transport of logs by means of booms above Minneapolis, and is navigable below St Paul; being half a mile broad where it reaches the border of the state at Hastings. At the Falls of St Anthony, St Clond, Little Falls and other places, it provides ample water-power for madufacturing purposes. Its two principal tributaries are the St Croix and the Minnesota. The first, after having for about 135 m . (about 50 being navigable) formed the boundary between Wisconsin and Minnesota, enters the Missisippi at Hastings; the second, rising in Big Stone Lake on the western border, but 1 m . from Lake Traverse, the eource of the Red River, enters the Missisaippl from the south-west between St Paol and Minneapolis after a course of about 450 m ., about 940 of which are navigable at high water. Both furnish valuable water-power, which is true also of the Cannon and Zumbro rivers flowing into the Miscissippi below Hastings The Red River, which forms the western boundary of the state for more than half its distance, has its source in Lake Traverse. Its most important branch is the Red Lake River, and both are navigable for vessels of light draught at high water. In the south the western fork of the Des Moines River, flowing for 125 m . through the state,
is navigable for 20 m . Glacial action determined the direction and character of the rivers, made numerous swamps, and, by scouring out rock basins, damming rivers and leaving morainal hollows, determined the character and formation of the lakes, of which Minnesota has upwards of 10,000 , a number probably exceeding that of any other state in the Union. The general characteristics of the lakes in the north differ from those of the south, the former being generally deep, with ragged rocky shores formed by glacial scouring which caused rock basins, the latter being mostly shallow. The most interesting feature of the glacial epoch is the extinct Lake Agassix, which the receding ice of the later glacial period left in the Red River Valley of Minnesota, North Dakota and Manitoba. This lake drained southwardinto the Gulf of Mexico via the Minnesota and Mississippi rivers, until the ice sheet which had prevented its natural drainage to the north had melted sufficiently to allow it to be drained of into Hudson Bay by way of the Nelson River. The remarkably level character of the Red River district is due to horizontal deposits in the bottom of this lake, which have been little dissected by iver erosion. The largest of the present lakes, Red Lake, in Beltrami county, has an area of 342 sq . m . Other large lakes are Mille Lacs (198 sq. m.) in Mille Lacs and Aitkin counties; Leech Lake (184 sq. m.) in Cass county; Lake Winnibigashish ($82 \mathrm{sq} . \mathrm{m}$) in Itasca county; and Vermilion Lake ($66 \mathrm{sq} . \mathrm{m}$.) in St Louis county. On the northern boundary are the Lake of the Woods ($612 \mathrm{sq} . \mathrm{m}$.) and Rainy Lake ($148 \mathrm{sq} . \mathrm{m}$.), draining northwards into Hudson Bay. The beautiful "Park Region," centring in Ottertail county, contains several thousand lakes. Several large lakes such as Pepin, Traverse and Big Stone are river expansions. The state supports three parks-Itasca state park (22,000 acres, established in 1891), about the sources of the Mississippi, in Clearwater, Becker and Hubbard counties; the St Croix (established in 1895), in Chicago county, across the St Croix from the Wisconsin state park of the same name, and including the beautiful Dalles of the St Croix; and the Minneopa state park (established in 1905). containing Minneopa Falls, near Mankato:

Flora and Fauna.-The flora and fauma are similar to those of the other states of the same latitude. The rapid wettling of the state drove its native fauma, which comprised buffalo, deer, moose, bear, lynx and wolves, in great numbers into the northern sections, westward into Dakota, or across the Canadian border. Deer, and moose are still found in the state. The preservation of game is now enforced by stringent game laws, administered by an efficient state Game and Fish Commission. The Gisheries, which are of great value, are carefully supervised and systematically replenished from the State Fish Hatchery at St Paul, and the Federal Fish Hatcbery maintained at Duluth, in which particular attention is devoted to the fish or Laloe Superior. Minnesota ranked third among the states of the Union in 1900 in the production of lumber, but in 1905 was fifth, the supply having diminished and the industry having been developed in the states of Washington and Louisina The danger of loes from forest fires, such as that of 1894 , emphasized the necescity of forest preservation, and resulted (1895) in the creation of a special state department with a forest commiseioner and five wardens with power to enforce upon corporations and individuals a strict observanoce of the forestry laws, the good effects of the law being evidenced by the fact that the fire loeses in forest lands for the first twelve years of its operation averaged only $\$ 31,000$ a year. Furthermore, in order to encourage the growth and premervation of the forests, and tocreate systematically forest reserves, the legislature established in 1899 a State Forestry Board. There are two national forest reserves, with 20 aggregate area of 1882 sq. m .
Climale-Minnenota has the chancteristic climate of the North Central group of states, with a bow menn annual temperature, a notably rarefied atroosphere that results in an almost complete aboence of damp foggy weather, and an unusual dryness which during the rather long winters considerably neutralizes the excessive cold. The cold increases not only from south to north, but to some extent from east to west. The mean annual temperature, according to the reports of the U.S. Weather Bureau, varies from $45^{\circ} \mathrm{F}$. at St_{t} Paul and points in the south of the state to 37° F.. at points in the northeast and as far south-west as Moorhead, Clay county. In the south the season is usually without killing frost from earty in May to late in September, but in the porth it is not uncommon late in May or early in September. The amount of rain decreaset from cast to west, the mean annual rainfall being 32.7 in. at Grand Meadow in the south east and 33.3 in . at Mount Yron in the portheast, but leso than 25 in. at several points of obeervation in the western half of the state. In all sections about as
much, or even more, cain falls is summer as in both autumn and winter, and the summer rains, together with the long summer days, are very favourable to a rapid growth and early maturity of crops. Nearly the whole state is usually covered with snow during the greater part of winter, and the mean annual fall of snow varies from about 52 in. at points in the north-cast to less than 25 in . An the south-west. In most localities the prevailing winds are noribwest in winter and southerly in summer, but at Duluth, on the shone of Lake Superior, they are south-west during November, Decenber and Jamuary and north-east during all other months.
Soul and Mincrals. - The surface drifts of the greater part of the state, which are almost wholly of glacial origin, have provided Minnesota with a remarkably fertile soil. it consists largely of a dark brown or black sandy loam, finely comminuted, the richnese of which in organic matter and mineral salts induces rapidity of growth, and the strength and durability of which sender it capaine of a long succession of crops. This soil prevails throughout the southern counties and the Minnesota and Red River valleys, in which sections cereal crops predominate. Toward the east central part of the state there is a somewhat less fertile sandy soiu, which is devoted more largely to potatoes and similar crops. The non-arable north-east portion of the state is covered with a cocrse granite drift. Underncath the surface are beds of sand, gravel and clays, the last affording material for the manufacture of brick, tiles and pottery. The rock formations of the state furnish buiding tones of great value.
Minnesota ranked first among the states in 1902 in the production of iron ore. Although the iron ranges in the north-east had been explored about 1860 and were known to contain a great wealth of ore, it was not until 1884 that mining was actually begun on the Verorilion Range. Since that date the development of iron mining in Minnesota has been remarkablc, and the increase both in velume and value of the output has been practically unipterrupted. Eight years later (1892) the mach richer Mesabi Range, the most produccive iron range in the world, was opened up; it boot surpagsediche Vernilion ia its outpuc, and by, 1902 the product wan- nearly tert times greater. The ore, which in many places is found in an almont pure state, is at ar near the surface and the process of mining is one of great simplicity and ease. The quality of ore in the two ranges differs comewhat, that mined from the Verming Rame being a hand specular or red hoermatite, while that takon from the Mesabi Range, largely red haematite, is much softer and in many localities quite finely comminuted.

Agricullure.-The principal industry of Minnesota is agriculture. Large areas of sfragup lasds in the central mad morth central pares of the state once counted non-arahle have been drained and soclaimed. There were in 1900 . 154,659 farms aggregating $26,248,498$ acres, of which 70.3% whe improved land; the tofal value of farm property was $\$ 788,684,642$, an incrense in value ol $\$ 373,983,016$, or more than 90%, for the decade $1890-1900$. The value of domestic hnimais on farms and ranges was $\$ 86,620,643$. The total value of farm products for the year 1899 (censns of 1900) was $\$ 161,217,304$ Geographically the wheat-raising aren extenda across the entire south of the state- the Minnesots Valley and the Red River Valleythe rich glaciai loam of which renders it one of the most productive wheat regions in the word, Other important crops in the order of their value are cats, hay and forage, Indian com, barley; flaz-seed, potatoes, rye, grass seeds, wifd grass, clover, beans, peas, and mis; cellaneous vegetables and orchard products. Both frutt-raising and dairying interests are centred principally in the sonthern half of the otate.

Mankfoctaves and Commerce-The extraordinaty numbers of athlitable water-powers, the unusual transport facilities afionding ample means of reaching the great markets, and fnaliy the proximity to the raw materials of manufacture, have made Minnesota of great importance is a manufacturing state. The federal census showed for the decades $\mathbf{1} 880-1890$ and $1890-1900$ an inerease ia the number of manufacturing establishments from 3493 in 1880 to 7505 in $\mathbf{1 8 9 0}$. and III, 14 in 1900. During the same period the capital invested inctased from $\$ 31,004,811$ in $18 \% 0$ to $\$ 127,686,618$ in 1890 and \$165,832,246 in 1900 , and the value of the manufactured products increased from $\$ 76,065,198$ in 1880 to $\$ 192,033,478$ in 1890 and $\$ 262,655,881$ in 1900 . The wonderful devifopment of Minnesota as a flotr-producing stite began with the introduction of improved polker processes after $\$ 870$. Minneapolis is the chief four-making centre of the world, and the cities at the "Head of the Lakes ${ }^{n}$ (Dolath, Minnesota, and Superior, Wisconsin, considered industrintly as one place) constitute the second iargest centre. The towns of the Red River Vailey, which are nearer to the great whest belt ${ }_{f}$ give promise of developing into great fouring cities. Next to floirr, lumber athd timber producte rank in importance. Other manufactures of iaportance are burter, cheese and condensed milk, packed meats and other slaughter-house products, steam railway ears, foundry and mactine-shop products, linseed oil, malt fiquers, phaning-mill products, sash, doors and blinds, boots and shoes, and数ricultural impiements. As cortpared with other states of the Unjon Minnesota ranked third in 1900 and fift in 1905 in lumber; dixth In 1900 and 6 fith in 1905 in cheese, butter and condensed milk; eighth in 1900 and in moog is agricaltural implements; aad fourteenth in 1900 and cighth in 1905 in plating-min prodects.
 play a chief part in the commercial life of the country, and variout causes combine to make it important in respect to its interstate and foreign trade. It is the natural terminal of three great northert trantioncinencal rallway limes-the Northern Pacific, theGreat Northern, and the Chictag Mihwautoe \& Pupe Sound (the eveenticie of the Chicago, Midwapkee \& Se Pau systan); and the Chicaga, Burlington Q Quincy and the connecting tines of the Canadian Pacific form tines of communication with the middle Northwest and the facific mowinces of Canada. Seven nuivigable tivert within or on the berders. of the state-the Red River of tht Horth, the Red Lalke River. Rainy River, the Minnesota, the Mississippi, the St Croix and the St Louis ${ }^{2}$ give facilities for transport by water that exert an important competing influence on freight charges; and at the "Head of the Lakes" (Dupath-Superior) matisy himes of steamahipe on the Greet, Lakes, providing dipect or indinget ogmexion with the Enstern: and Southern staves, make that port in respect to tongage the first in the United States. This combination of natural and artificial higtoways of cotimerce derives an additional importance from the character of the regions this provided with trathoport faclifition, which teaders its cities the principal distributing' centres foth for the entire Northwest for coal. ghipped via the Gareat Lakes, and also. for the eastern and middle Western states for the great staples, wheat and lumber, derived either from Mimnesota itself or by mears of its great transcontimental rallway frow the neighbouride North western states and Garman provindes. Iroh shipodemts foom the Mesabi and Vermilion ranges, cereals from the Northwest, fruits and vegetables from the Pacific coast, and Oriental products obtained via the great northeru railways, are also elements of great importance in the state's commeret. There were on the 3 Ist of Decenber 1906 84*8.73 m. of railwty within. the stete. St Paul and:Duluth are ports of entry.

Populthion.-The population of Minnesota at the fint Federnit
 atod by the succeeding Federal enumatations it was: (1870);
 (10,096) ; $(1900), 1,75 \mathrm{r}, 394 ;(1910) 3,075,768$. . Of the totat
 828,904 , or 46.8%, femalest 1,246;076 mere mative-bomg 505.318 , or $28-9 \%$, Tere foreign-born, and 1,3iz,019" were of fencign parchtege (i.c having either one ar bots parents
 negroes and 9r8e Indians, 8457 of whom lived wn misernad cions: The usban population (i.e. inbohitants of cities of 8000 or evert wais 16.8% of the totat paputation, as compared.
 of the priwiped citios was ats foHowe: Minindapolis, e6r.957f St. Paul, I97,0i23; Draluth, 64942; Widont, 20;334; Stivvater; 19,435; and Man'rato, 16,996; by the eatone cergas Sbur othern citios, all 炤 the mining region in tha montheast, had passed tho
 and Eveleth, 5332. The derasity of peprilation increased froft IG 5 per'sq. m. in r8go to $22-1$ in 5900 . The largest religiots denominationin the state in 1906 'was the Roman Catholic; wht 378,288 cothmunicants vat of a total of 854,442 members of an peligigus denominations; there wete p676e22 Lutierans; 47,637 Methodists, 27,569, Presbytierims, 24,309. Baptists, 22,064 Congregationalists, and 28,76z Protertanl Epidcopalians.

Cimernmand- The stato is governiad ander' the con titwotions adoptedi in time ryth of Getoher 1897 and frequentiy aimendody By an mphondment of r8g8 an/apertomenti mily be suggested:by a mangocity of boti housas of the legitatuce arid comatas intá eflect if epprevod lby a majoity of all eloctors voting at the gendrat election at which the mandanentin votel uponif titd or mbra
 wote for or aginst ench tanedment seperately, \therefore 'Foc the tos wision of the congeitution it: is nederian , that I wothinds of the primbers elected td each novec: of the Itegislature yote for the
 roting atrthe nert gemeral election apprave the call fer the con-
 the thouse of represertatives; who shat be chosen in the sante manner, and shal meet within thee menths afier the generel

1 At International Palls on Rainy River and at Dulath on the St Lotip lmperte-water-power is ufilited for manafactarting.
${ }^{2}$ By the thate consur of 1905 the tocat:pgonlotigh wrat 1,979.96 ($1,060,412$ males and 909.275 females-exeluding Indians from the sex classification), of whom 537,041 were foreign-born 10,929 wert

.
 of a govecnor, lioutcmand-governor, sectrtary of stale, 1 reasurer and attornpy gemeral, eloctod biennially in November of the eyen-aumberod yearh and an auditor clected at the same time eyery four years. The veto power of the sovernof (sincs i8jo) ertends to separate sechiose of appropriation billa The judicial departanent conpriess a supreme'court consisting of a chiof inction and (aince r881) four asociate juntions clected for terms of.sta yearts and lower courta consinting of district courto with oniginal jurisdiction in cixil capen in haw, epd equity; and in opiminal casea upon indictmanta by grand jwies; juatioeg' courts, in which the amount in litipation eannot excoed \$noog or the punishment caprot-cxceed three momets! impxisomenent or a fine of $\$ 100$; and of municipal and probate coutrt with tho ngual juciediclions. Tho legislative dapartment concists of a, mengte of sixty-three members elected for four yemers, and a house-of represeatatives of one hundrod and ninotemn membera, elocted for tyon yeand, the remperation beins milenge and $\$ 500$ a yent. The reaypontionment of congremionel, ematotial and refreannion cive districta is made in the frat legimetive semion-fien the state censw, which has been taken' in evecy tenth year since 286 g. The Jegislatrare maets biensially in edd-mumabered yearn, the seasion being timited to ainaty daya by a monstilutional angendmeat of 1888 . A minjotity of ofl the manabers, elected to each house is regulted for the partage of a bilh, and it two-thirds majoriny is nectsmary to pass 2 bill over the governor's yeta. All wilts for suthtig mavente muct otiginate in the. Howse of Representatives, but the seanate may gropose and concur with smendenents as. other bills. Expendithers from the fend known at "Tha Internal Improvemeret Lemed Fund," derived fromithecale of statelands, cany be madeonly after the enactiment for thete puspose has been approved by the voters of the state; in 288x, the liginginture, and in 2884 ' the 'populat vote, pledged the procteds of this fund to the payment of Minemote state mitway adjastment behde. Taxation mantst be anilera only within claseses of propeity preseribed by the legislature. An Autralfun ballot lete wee onacted in r8gis the eqalifications for electors (adepidd in 18 gu) mequire that the votet be at least towenty-one years old, that he chall have beed a full citimen of the Uuiked States for thvee montha prior to Lht clection, and shat have ifved in the tate six months and in the cloctipn district. thicty day. Women (sinco $\mathbf{1 8 9 9}$) maty vote for sehool officers and membrers of tibrary moinds, and sut eligible for ciention to
 A constitutional amondmant in regard to topal fovertadem dutopted in w8ge provides that any city or vilinge; by a fouts seventib vote of jes edectors; may adopt a charter drawn by a overmiasion (appoiztiod by the local district judges) and propoced by suck canmaission within six monthe of is appoinsingat.

An anendment to the coltstitution adopted in Nowembat 1888 dechares. that any: combination or pool to affect the paritets far food prestucte is a "criminal conspirncy, sed shall be panished tin such mamacr astithe legislatmre may provide."

A bomestead which is owned and occupied by a debtor as his dwelling place is exempt from seizure or sale for debts other than taxes, those secured by a mortgage on it, or those lneurred for ite impiowinent or repair, or for serviess performed by labourets ar seivanto. But a homptread so exespled my not be. larger than onedourth of an acre if it is in a incorpomted place having a popuLation of 5000 or more, than half an acre if it is in an incorporated plice having a population of less than 5000 , or than eighty acres if it is outside an ineorporated place. In ease the owner is marriad the tromeotead cannot be sold or moftgeted, exoept for an unpaid portion of the purchase poocy, without the joinder of husband and Wife. and if the owner dies leaving a spouse or minor children, the homestead with its exemptions descends to the surviving member or menbers of the family. If the owner is a hustoand ant he deserts his family, the: mice and micor children maty retmin the homestead, Under the towe of the state the legai exigtence and legal personality of a woman are not affected by marrigge, and the property rights of a busband and wife are nearfy equal. A husband may, howrever, convey his real estate. other than a homestead, by his separate doad, whosest wife's deed for ther real egtate is void withoult the jpinder of her busband. If either huabond or wife dies intestare and there are no descendants the whole of the estate passes to the durlivor: If there are descendants the surviriag spocise fas the use
of the bootented for tha semaindep of hid or her fifin th abrounte title te onethird of the other real entate of the deceased, and to persoinal property himited to $\$ 1000$ besides wearing apparch. The groundo for an absolute divonce in Minnesota are adultery, impotence, cruel and inhuman treatment, sentence to state prison or state neformatory subsequent to the marriage, demertion or habitual drunderneas for one year next preceding the application far a divorce. Before applying for an absolute divorce the plaintiff must have vaided in the state for the year next preceding, umless the cause of eatien in adultery commited while the plaintiff mass resident of the state. A wife may at any time sue for ia limited divarce from her baraband on the groand of cruel and iahmman treatment, of such conduct, at to render life with him unsafe and improper, or of abandonment and refusal or negleet to provide for her, if both parties are iollabitants of the etato or their marriage took place in the state. A law of 1909 protides for a wromen's and childsen's depertment in the 忮的 burpati of labous.

The ale of intoxigationg liquors is for the most part regulated by licences, dat the granting of licences may be prahibited withis any town or incorpornted vilage by ita legni votern, and the gueption must be sabmitted to popalar vote upon the requeat of tere legal votects.

Pencl and Charitable Insitutions. - The charitable and correctional institutions of Minnesota have been since 190 inder the supervision of a State Board of Control consisting of three paid members appointed by the governor and serving for terms of six years; this board atpplasted an unpaid Board of Corrections and Charitics established In 1883 , and the boards of managers of separate institutions (except the schools for the deal and the blind at Faribault, and the state public school at Owatonna) and of groups of institutions Fre abolished. The state institutions consist of state hospitals for the insane at St Peter (1866), at Rochester (1877), eatablished originally as a state inebriate asylum under a law taxing liquor dealers for that purpose, which was subsequently held to be uncontitutional, at Ecrgus Fally (1887), al Anoka (1900) and at Hastings (1900); the state institute for defoctives at Faribault, consisting of the schools for the deaf (1863), blind (1874) and feeble-minded (as79); the state public achool for dependent and neglected children at Owatonna (I886): a sanatorium for consumptives at Walker; a hospital for indigent, crippled ar deformed children (1907) at St Paul; the state traiming school for boys near Red Wing; similar industrial school for girls (estahlished separately in 1907) at Sauk Center; the state reformatory at St Cloud (1887), intermadiate between the training school and the state prison, for first offcnders between the ages of sixtcea and thirty years, in which indeterminate sentences and a parole system are in operation: the ante prison at Stillwater (1851), in which there is a parole system and a graded system of diminution of sentence for good conduct, and in which, up to 1895 , prisoners were leased under contract (e-pecially to the Minnesota. Thresher Company), and since 1895 have ween employed in the manufacture of shoes and of hinding twine, and in providing for the needs of the prison population; and the state soldjers' home occupying fifty-one acres adjoining Minnehaha Park In Minneapolis. By an act of 1907 the Board of Control was empowered to establish a hospital for inebriates.

Education. - The state supports a highly efficient public school sytem, organized through all the grades from the primary district and rural schools to the state university. At the head of the system stands the state superintendent of public instruction, appointed by the governor: there are also county superintendents: and a state hath school board, consisting of the governor, stale superiatendent and the president of the state university, has general supervision of the schools and apportions the slate aid. The schools are supported by a state tax, and by the proceeds of a permanent school fund amounting (in ryos) to 819709,383 ; in the mame year the tocal vabue of all public school property wes $898,297.420$. With an argregste debt of $\$ 6,329,794$ and $\$ 13.463,211$ was spent for public educe. tional purposes. There are state normal schools at Winona (1860), Mankato(1868). St Cloud (1869), Moorhead (1888) and Duluth (190a). The unlversity of Minnewte at Minneapolis was projectred by the Territorial Legislature of 195I. Some ground was purchased for its campos in 1854, but it was actualy founded by an act of 1864; amended in 1866,1868 and 1872 . It is governed by a board of twelve regents. of whom the president of the university, the governor of the state and the atake maperintendent of public ingtruction ate menbers ax officio, and the other' nito holding office for six years, are appointed by the governor with the advice and consent of the senate. The university is supported by a state tax of 0.23 mills per dollar on the taxed property of the seate, ty special appropriations from the otnte (for "deficiency," for School of Mines, and for sabries of teachers in the department of minee and engincering $)^{\text {a }}$ by the interest on state bonde and land contracts purchased with the proceeds of Federal land grants under the Morrill Act of 1862 , by Federal appropriations under the Morrill Act of I890 and the Hateh, Act. and by students' fees, \ⅇ the total of this imcome was extimated in $1906-1907$ at 8628,300 . The Act of 1872 frovided for five or more colleges or departinents: a collere of science, literature and the arts, which offers (for the degree of Bachelor of Arts) a four-jears course, is entircly elective (except that a certain number of " long courses" must be selected) after the first year, and fit which the
only restriction is upon the range of subjecta from which the student'e choice may be made; a college of agriculture (including military tactics), which is now a "department," including a college and a school of agriculture, a short course for farmers, a dairy school, the Crookston school of agriculture, a main experiment station at St Anthony Park, between Minneapolis and St Paul, and sub-statione 1 m . north of Crookston and 2 m . east of Grand Rapids; a college of mechanic arts, now called the college of engineering and the meehanic arts, which offers four-year courses in civil, mechanical. eleetrical and municipal engineering, a four-year course in science and technology, leading to the degree of Bachelor of Science, and graduate work leading to the degree of Master of Science; the college of law, a three-years course, with evening classes and graduate courses: a college of medicine, which is now the college of medicine and surgery (1888), and the college of homoeopathic medicine and surgery (1889), each with four-year courscs, and each (since 1903) with a course of six vests partly in the college of science, literature and the arts, and partly in the medical college and leading to the degrees of Bachelor of Science and Doctor of Medicine. In addition to these departments provided for in the organic act, the university included in 1909 colleges of dentistry (threc-year course), pharmicy (two-year and three-year courses), a school of mines (1891 : four-ytar course, leading to the degree of Engineer of Mines or Metallurgical Engineer), a school of analytical and applied chemistry (four-y yar courses, leading to the degree of Bachelor in Science in Chemistry or in Chemical Engineering), a college of education (1906; three-ycar course, after two years of college work, leading to a Master ${ }^{\text {s }}$ d degree) a graduate school (with courses leading to the degrees of Master of Arts, of Science and of Laws, and of Doctor of Philosophy, of Science and of Civil Law), and a university summer school. The growth and development of the university have been almost entirely under the administration of Cyrus Northrop (b. 1834), who graduated at Yale College in 1857 and at Yale Law School in 1859, and was professor of rhetoric and English literature at Yale from 1863 until 1884, when he became president of the university of Minnesota. The university is one of the largest in the country. In 1907 there were twenty-three buildings valued at more than $\$ 1,475,000$. The university library of 110,000 volumes is supplemented by the libraries of Minneapolis and St Paul. In 1908-1909 the faculty numbered about 325 and the total enrolment of students was 442 I . Other higher educational institutions in Minnesota are Hamline University (Methodist Episcopal), with a college of liberal arts at St Pau, and a college of medicine at Minneapolis; Macalester College (Prestyterian) at St Paul; Augsburg Seminary (Lutheran) at Minneapolis; Carleton College (non-sectarian, founded in 1866) and St Olai College (Lutheran, founded in 1874) at Northfieid; Gustarus Adolphus College (Lutheran) at St Peter; Parker College (Free Baptist, 1888) at Winnebago City; St John's University (Roman Catholic) at Collegeville, Stearns county; and Albert Lea College for women (Presbyterian, founded 1884) at Albert Lea.

Hislory, -The first European visitors to the territory now embraced in the state of Minnesota found it divided between t wo powerful Indian tribes, the Ojibways or Chippewas, whooccupied tbe heavily wooded northern portion and the region along the Mississippi river, and the Sioux or Dakotas, wbo made their homes on the more open rolling country in the soutb and west and in the valley of the Minnesota. The first known white explorers were Radisson and Groseilliers; wha spent the winter of $1658-1659$ among the Siour in the Mille Lacs region. At Sault Sainte Marie in 1671, before representatives of fourteen Indian nations, the Sieur de St Lusson read a proclamation asserting the French claim to all the territory in the region of the Great Lakes. Two years afterwards the upper course of the Mississippi was explored by Joliet and Marquette. In 1679 Danicl Greysolon, Sicur du Lbut (Duluth), as agent for a company of Canadian merchants wbich sought to establish trading posts on the Lakes, explored the country from the head of Lake Superior to Mille Lacs and planted the arms of Louis XIV. in a large Sioux village. In the following year the Franciscan friar Father Louis Hennepin, acting as an agent of the Sieur de la Salle, discovered and named the Falls of St Anthony; and in 1686 Nicholas Perrot, the commandant of tbe west, huilt Fort St Antoine on the east bank of Lake Pepin, in what is now Pepin county, Wisconsin, and in 1688 formally took possession of the region in the name of the French king. A few years later (1694) Le Sueur, who had as early as 1884 engaged in trade along the upper Mississippi, estahlished a trading post on Isle Pelée (Prairie Island) in the Mississippi between Hastings and Red Wing, and in 1700 he built Fort L'Huillicrat the confluence of the Blue Earth and the Le Sueur rivers. In 1762 the Sieur de la Perrière, acting as an agent of the French government, established on the west bank of Lake Pepin a fortified post (Fort

Beauharnois), which was to be a headquarters for missionaries, trading post and a starting-point for expeditions in search of the "western sea." But none of the French posts was permanent, and in 1763 French rule came to an end, the Treaty of November (1762) and the Treaty of Versailles (1763) transferring respectively the western portion of the state to Spein and that part east of the Mississippi river to Great Britain. In 1766 the region was visited by the Connecticut traveller Jonathan Carver ($\mathrm{I} 732-1780$). Great Britain surrendered its title to the eastern portion by the Treaty of Paris (1783), and after the surrender of Virginia's colourable title had been accepted by Congress in 1784, this eastern part was made a part of the Northwest Territory by the ordinance of 1787, although the British held possession and did some trading there until 1796. The western part remained under Spanish control until 1803, when it, too, after being retransferred to France, became a part of the United States with the rest of the Louisiana Purchase. In 1805-r806, at the instance of President Thomas Jefferson, Lieut. Zebulon M. Pike led an exploring expedition as far north as Leech Lake and took formal possession of the Minnesota region for the United States. He obtained from the Sioux for military reservations one tract 9 m . square at the mouth of the St Croix River and another containing about 100,000 acres at the confluence of the Minnesota and Mississippi rivers. On the latter tract a military post was estahlished by Lieut.-Colonel Henry Leavenworth (1783 -1834) in 1819, and in the following year the construction was begun of a fort at first named Fort St Anthony but renamed Fort Snelling in 1824 (two years after its completion) in honour of its builder and commander Colonel Josiah Snelling (1782-1829). In 1819 Michigan Territory was extended westward to the Mississippi river, and in 1820 General Lewis Cass, its governor, conducted an exploring expedition in search of the source of the Mississippi, which he was satisfied was in the body of water named Lake Cass in his honour, Further search for the true source of the Mississippi was made in 1823 by Giacomo Constantio Beltrami (1779-1855), an Italian traveller and political refugee, and in 1832 by Henry Rowe Schoolcraft, who had accompanied Cass's expedition and traced the Mississippi from Lake Cass to Lake Itasca. In 1823 extensive explorations of the Minnesota and Red River valleys were conducted by Major Stephen Harriman Long (1784-1864), and subsequently (1834^{-} 1836) knowledge of the region was extended by the investigations of the artist George Catlin ($1796-1872$), the topographer George William Featherstonhaugh ($1780-1866$), and the geologist Jean Nicholas Nicollett (1786-1843), Meanwhile, the country was slowly being settled. In 1823 the first river steamboat reached St Paul; the Mississippi was soon afterwards opened to continnous if irregular navigation; and in 1826 a party of refugees from Lord Selkirk's colony on the Red Riversettled near Fort Snelling. On the erection of Wisconsin Territory in 1836 the whole of Minnesota, which then extended westward to the Missoari river, was incorporated with it, but on the erection of Iowa Territory in 1838 Minnesota was divided and the part west of the Mississippi became a part of Iowa Territory. In 1837, by two important treaties, the one (July 29) between the Chippewas and Governor Henry Dodge of Wisconsin at St Peters, and the other (Sept. 29) between some Sioux chiefs and Joel R. Poinsett at Washington, the Indian titles to all lands east of the Mississippl were practically extinguished. The first county, St Croix, was established ia 1839, and in the succeeding years thriving settlements were established at St Paul and Stillwater. The admission of Wisconsin as a state in 1848 left that part of the former territory west of the St Croix and north of the Mississippi rivers, which was not included in the new state, practically without a government. On tbe a6th of August a convention met at Stillwater, where measures were taken for the formation of a separate territorial government, and Henry Hastings Sibley (1811-189I) was sent to Congress as a delegate of "Wisconsin Territory." Upon his admission to a seat thecurious situation was presented of representatives of the state and of the territory of Wisconsin sitting in the same body. This situation did not last long, however, for on the 3rd of March 1849 the bill organizing the territory of Minnesotawas passed
and on the 1gth President Zachary Taylor appointed Alexander Ramsey of Pennsylvania the first territorial governor. The territorial boundaries extended to the Missouri river, including a greater part of the present North and South Dakota. Tho first territorial legislature met at St Paul on the 3rd of September following. By the Federal census of 1850 the territory had a population of 6077 , most of whom lived east of the Mississippi, or along the Red river in the extreme north-west. Two treaties negotiated with the Sioux by Luke Lea, commissioner, and Governor Alexander Ramosey in 1851 opened to setliement the greater part of the land within the territory west of the Miessissippi, and such an umparalleled rush to the new lands took place that a census taken in 1857 showed a population of 150,037. In July 1857 a convention chosen to form a state constitution was found on assembling to be so evenly divided between the Republican and Democratic parties that organization was impossible, and the members proceeded to their work in two separate bodies. By means of conference committees, however, identical constitutions were formed, which in the following October were adopted by an almost unanimous popular vote. The state was admitted to the Union with its present boundaries on the 12th of May 1858 , and the federal census of 1860 showed that the population had increased to 172,023 , despite the fact that the financial panic of 1857 had severely checked the state's growth. Minnesota furnished more than 25,000 troops for the Federal armies during the Civil War. But even more pressing than the call of the nation was the need of defending her own bomes against the uprisings of the Indians within her borders. The settlements bordering on the Indian reservations had experienced more or less trouble with the Sioux for several years, the most serious outbreak having occurred in March 1857, when Ink-pa-du-ta led his band to massacre the settlers at Spirit Lake. The absence of a large proportion of the able-bodied young setters in the northern armies was taken advantage of by the Indians, and in the summer of 1862 there was delay in paying them their yearly allowance. Suddenly towards the end of August, as il by previous understanding (although nothing of the zort was ever proved), small bands of Sioux scattered along the frontier for 200 m . and began a systematic massacre of the white sectlers. Beginning with the first outbreak at Acton, Meeker county (Aug. 17), the attacks continued with increasing fury (nearly 1000 whites losing their lives) until the 23rd of Scptember, when hastily-raised volunteer forces under Colonel H. H. Sibley decisively defeated Little Crow, the principal leader of the Kaposia band, at Wood Lake. Three days hater more than 2000 of the Indians were surrounded and captured, Little Crow with a few of his companions alone escaping beyond the Missouri. A military commission tried 425 of the captives for murder and rape, of whom 3^{31} were found guilty and 303 wrere conderaned to death. Of these 38 were hanged at Mankato on the 26th of December 8862 . Litle Crow and his followers kept up desultory raids from the Dakota country, during one of, whicb in July 1863 he lost his life. Expeditions of Sibley in 1863 , and General Alfred Sully ($1821-1879$) in 1864 , cventually drove the hostile Indians beyond the Missouri and terminated the war, which in two years had cost upwards of a thousand lives of setticrs and volunteers. The opening of the Chippewa lands in the northwest and the coming of peace marked the beginning of a new period of rapid growth, the Federal census of 1870 showing a population of 439,706 , or a gain of 75.8% in five years. During the same half-decade railway construction, which had begun with the opening of the railway bet ween St Paul and Minneapolis in 1862, reached a total of more than 1000 m . For a period of five years after the financial panic of 1873 the growth was comparatively slow, hut in the succeeding two years the recuperation was rapid. During the decade, $1880-1890$, more than 2300 m . of railway were completed and put in operation. In Septemher 1894 disastrous forest fires, starting in the neighbourhood of Hinckley in Pine county, destroyed that village and several neighbouring towns, causing the death of 418 people, rendering 2200 others homeless, and devastating about $35039 . \mathrm{m}$. of forest land, entailing a loss of more than $\$ 1,000,000$. The
state furnished four regiments (a total of 5313 officers and men) to the volunteer army during the Spanish-American War (1898), the service of the 13th Regiment for more than a year in the Philippines being particularly notable. In October 1898 there was an uprising of the Pillager band of Chippewa Indians at Leecb Lake, which was quelled by the prompt action of Federal troops. Since the first state election, which was carried by the Democratic party, the state has been generally strongly Republican in politics; but the Republican candidate for governor was defeated in 1898 by a "fusion" of Democrats and Populists, and in 1904, 1906 and 1908 a Democratic governor John Albert Johnson, was elected, very largely because of his personal popularity.

Governors of Minnesota.
Territorial,
Alexander Ramsey
Whig
Democrat Willis Arnold Gorman .Samuel Medary

| \cdot | Whig | $\quad 1849-1853$ |
| :---: | :---: | :---: | :---: |
| $:$ | Democrat | $1853-1857$ |
| \cdot | $"$ | $1857-1858$ |

Henry Hastings Sibley
Alexander Ramsey
State.
Alexander Ramsey
Henry A. Swift
Democrat

Stephen Miller Republican

William Rogerson Marshal
Horace Austin
Cushman Keiloge Davis
John Sargent Pillsbury
1860-1863
1863-186
1864-1860
ucius F Firchild Hubba
1866-1870

Andrev Ryan McGil 1870-1874

Andrew Ryan McGill
Willimm Rush Merriam
Knute Nelson
David Marston Clough
John Lind
Samuel R. Van Sint
John Albert Johnson
Adolph Olson Eberhart
Bibliography.--There is a well-arranged Bibliography of Minnesota by John Fletcher Williams in the Collections of the Minnesota Historical Society, vol. iti. (St Paul, 1880). Consult also Matericls for the Future History of Minncsola, published by the State Historical Socicty (St Paul, 1856), and lsaac S. Bradley's bibliography of Northwestern institutional history in the Proceedings of the Wisconsin State Historical Society (Madison, Wis., 1896). Of the many interesting and valuable narratives and descriptions of Minnesota in the early days, those especially worthy of mention are Beltrami's La Decouverte des sources des Mississippi et de La Riviere Sanglante (New Orleans, 1824) anel the same author's A Pilgrimage in Europe and A merica, leading to the Discosery of the Sources of the Mississippi and Bloody Rivers (2 vols., London, 1828); William H. Keating. Narratire of an Expedition to the Sources of the Si Peter (Minnesota) River, Lake Winnepeek, Lake of the Woods, \&cc...in 1823 (2 vols. London, 1825), an account of the explorations of Major Long; Henry R. Schoolcraft, Narrative of an Expedition through the Upper Missis. sippi io Ilasca Lake. in 1832 (New York, 1834); G. W. Feather stonhaugh, A Caroe Voyage up the Minnay Solor (2 vols., London, 1847); Laurence Oliphant, Minnesola and the Far West (Edinburgh. 1855); and Frederika Bremer, The Homes of the Newo World: Impres. sions of America (2 vols., New York, 1864). For the territorial period consuit also E. S. Scymour, Sketches of Minnesota, the New England of the West (New York; 1850); I. Wesley Bond, Minmesola and its Resources (New York, 185.3); C. A. Andrews, Minnesota and Dacotah (Washington, 1857); and C. E. Flandreau, The Mistory of Minnesota and Tales of the Frontier (St Paul, 1901). The Colledions of the Minnesota State Historical Socicty contain much valuable material on the histary of the state, notably E. D. Neill's "' French Voyageurs to Minnesota during the Seventeenth Century," (i872); E. D. Neill's "Early French Forts" (1882); T. F. Moran's "How Minnesota became a State " (1898) ; H. L. Mos5's "Last Days of Wisconsin Territory and Early Days of Minnesota Territory " (1898): C. E. Flandreau's ${ }^{4 \prime}$ Reminiscences of Minnesota during the Terrilorial Period " (1901): C. D. Giffillan's" Early Political History of Minnesota" (1901): and James H. Baker's Lires of the Goternors of Minnesota (igos). For the Sioux uprising consult lisaac V. D. Heard, History of the Sioux War and the Mossacres of 1862 and 1863 (New York, 1864); Charles S. Bryant and Abel B. Murch, A Hislory of the Great Massacre by the Sioux Indians in Minnesota (Cincinnati, 186.t): and S. R. Foot, "The Sioux Indian War." in Iora Historical L.ard, vols. x. and xi. (1894-1805). Consult also Minnesola in the Civs! and Indige Wars, 1861-1865 (2 vols. St Paul, 1890-1893). The beat general account of the state's history is W. W. Folwell's Minnewave the North Star State (Boston, 1908), in the "American CommonWalth series ${ }^{\circ}$: E. D. Neill's Concise Hislory of Minnesota (Minne, polis, 1887) : and T. H. Kirk's Illustraled History of Minnesota (St Paul, 1867) may also be consulted. For an account of the administration consult Frapk L. McVey, The Governmens of Minnesota
 Minmespta (Chicaga, 1897); and the Lagishion Manwal, publithed biennially by the state at St Paul.

IINHOW (Leuciscus phoxinus), the smellest British fish of the Cyprinod family, readily distingaished by its very minute scales. The ordinary name is derived from the common Indo-Eutopean word for "little" (cf. Lat., miner), and "minnow" is popalarly identified whe any tiny fist; in America it is given to small forms of the Gambesia and Nolropis genera, \&c. The British minnow abounds in bakes, rivers and brooks, swimming in schools, and shifting its groand in search of food, in the shape of every kind of animal and vegetable substance. It ranges from Scandinavia to south Europe, and from Ircland to north-cast Asia, atteining an elevation of nearly 8000 ft . in the Alps. Its size varies from between 2 and 3 in . to as much as 4 or 5 in . The minnow is commonly used by anglers' for bait, and is useful in ponds as food for trout, perch or pike.

MINO DI GIOVANNI ($1 ; 31-1484$), called Da Fiesole, Italian meulptor, was born at Roppi in the Casentino. He had ptoperty at Fiesole. Vasari's accoant of him is very inaccurate. Mino was a friend and fellow-worker with Desiderio da Set Lignano and Matteo Civitale, all three being about the same age. Mino's sculpture is remarkable for its finish and delicacy of detnils, as well as for its spirituality and strong devotional feeling. Of Mino's earlier works; the finest are in the duomo of Fiesole, the altarpiece and tomb of Bishop Salutati, executed before 1466. In the Badia of Florence are an alcarpiere and the tombs of Bernardo Giugni (1466) and the Margrave Huge (1481), all sculptured in white marble, with life-sized recumbent effigies and attendant angels. The pulpit in Prato Cathedral, in which be collaborated with Antonio Rossellino, finished in 7473, is very delicately sculptured with bas-reliefs of great mineteness, bot somewhat weakly designed. Soon after the completion of this work Mino went to Rome, where he executed the tamb of Pope Paud II. (now in the crypt of St Peter's), the tomb of Francesco Tornabuoni in S. Maria sopra Minerva, and a beautiful little marbie tabernacle for the holy oils in S. Maria in Trastevere. There can be litule douht that be was also the eculptor of several monuments in S. Maria del Popolo, especially those of Bistop Gomiel and Archbishop Rocca ($\mathbf{r 4 8 2}$), and the marble reredos given by Pope Alexander VI. Some of Mino's portrait busts and profilo bas-reliefs are preserved in the Bargeilo at Flarence; they axe ful of life and expression, though withoat the extreme realism of Verrocchio and other sculptors of his time.
-See Vameri, Milameni's ed (1878-1883): Perking's Italian Sculptors, Wincleelmantr and D'Asincourt. Storic dedle smilura (8813); Hant Semper, Arehiteklex der Renaissance (Dreadea, 1880): Wilbelra Bode, Die italicnitiche Plastik (Berlin, 1893).
MINOR, HOBERT CRANNELL ($\mathrm{IS}_{39-1904 \text {), American artist, }}$ was born in New York city on the 30 th of April 1839 , and received his ert training in Paris under Diaz, and in Antwerp undet foseph Van Luppen. His paintings are characteristic of the Barbizon school, and he was particulariy happy in his sanset and twilight offects; but it was anly within a few years of bis death that ho began to bave a vogue among collectors. In 1897 he was elected a member of the National Academy of Design, New York. After 1900 he lived at Waterford, Connecticut, where he died on the 4 th of Angust iga4

MIMOR (Lat. for smabler, lesser), a word used both as an adjective and as a substantive for that which is less than or inferior to another, and often correlatively opposed to that to which "major" is applied in the same connotation. Among the numezous epecial uses of the word the following may be mentioned: "Minor Friars," sometimes known as "Minorites," 1,e. the name (fratres minotes, lesser hrothers) given by St Francis to the order he founded (see Franciscans); "minor cmbons" are ciergymen attached to a cathedrad or coblegiate church who read and sing the daily service. In some cathedrals they are known as "vican choral"; they are not nembers of the chapter. (For the distinction between haty end minor orders in Christian hierarchy see Oxpers.) The thme "Minor Prophets" is used eollectively of the twetve
prophetical books of the Oid Testament from Hosca to Mfalachll inciusive. (For the distiaction in music between major and minor intervals, and for other applications of the correlarive term, see Music and fiarmonr.) In the categorical syllogism (q.v.) in logic, the minor term is that term which forms the subject of the conciusion, the mfoor premiss is that winch contains the minor term. In law, a "minor" is a person moder legal age (see Intant).

In mathematics, the " minor of a determinant ${ }^{\omega}$ is the deter: minant formed by erasing an equal namber of the rows and columns of the original determinant. If one column and row be erased there is formed the first minor; if two rows and columns the second minot, and so on. The minor axis of a central conic section is the shorter of the two principal axes; it may also be regarded as the line joining the two fmaginary foci. In astronomy, the term minor planets is given to the members of the solar systeth which have theif orbits between those of Mars and Jupiter (see Planets, Minor).

TIFOHCA(Menorea), the second in size of the group of Spanish islands in the Mediterramean Sca, known as the Balearic Íslands (q.v.), 27 m. E.N.E. of Majorca. Pop. (1900), 371,512; area, $26099 . \mathrm{m}$. The coast is deeply inderted, especially on the north, with numerous creeks and bays-that of Port Mahon (17,144) being one of the finest in the Mediterrnean, if not the best of them all, according to the populin rhyme-

$$
\begin{aligned}
& \text { " Junto, Joho. Agosto y puerto Mahon } \\
& \text { Loo mejoree puerto de Mediterraneo son "山. }
\end{aligned}
$$

" Jume, July, August and Port Mahon are the best harbours of the Mediterranean" (see Port Maron). The ports Addaya, Pomelle, Cíudadela and Nitja may also be mentioned. .The surface of the island is uneven, flat in the south and rising irregularly towards the centre, where the mountain Et Toro-probably: so called from the Arabic tor, a height, though the natives have a legend of a tero or bull-has an altitude of 1207 ft . The climate is not so equable as that of Majorea, and the isfand is exposed in autumh and winter to the violence of the aorth winds. Its soll is of very unequal quality; that of the higher distriets being lighe; fine, and fertile, and producing regular harvests without much labour, while that of the plains is chakk, scanty, and unfit for pasture or the plough. Some of the valleys have a good alluvial soil; and where the hills have been terraced they are cultivated to the sumpdit. The wheat and barley raised in the island are sometimes sufficient for home consumption; there is rarely a surplus. The Fedysarum coronarium, or znlla, as it is called by the Spaniards, is largely cultivated 'for fodder. Wine, oft potatoes, hemp and flax are produced m moderate quantíties; truit of all kinds, including melons, pomegranates, figs and ahmonds, is abundant. The caper plant is common throoghout the island, growing on ruined walls. Horned cattle, sheep and goats are reared, and small game abound. Stone of various kinds is plentiful. In the district of Mercadal and in Mount Santa Agueda are found fine marbles and porphyrics; lime and slate are also abundant. Lead, copper and iron might be worked were it not for the scaroity of fuel. There are manulactures of the wool, hemp and flax of the island; and formerly there was a good deal of boat-building; hut agriculture is the chfer industry. An excellent road, constructed in 1713-1715 by BrigadierGeneral Richard Kane, to whose memory a monument was erected at the first milestone, runs through the island from south-east to north-west, and connects Port Mahon with Ciudadela. Ciudadela (861r), which was the capital of the island till Pont Mabon was raised to that position by the Engitsh, still possesses considerable remains of its former importance.

Minos, a semi-legendary king of Crete, son of Zeus and Europa. By his wife, Pasiphas, he was the father of Ariadine, Deucalion, Phaetra and others. He reigned over Crete and the islands of the Argean three generations before the Trojan Fiar. He lived at Cnossus for periods of nine years, at the end of which he retired into a sacred cave, where he received instruction from Zeus in the Iegislation which he gave to the island. Fe was the author of the Cretan constitution and the founder of its naval
supremacy (Herodotus iii, 23: Thucydiden in.4), In. Altic pradition and on the Atbenian stage Minos is a crual tyrant, the heartless exactor of the trihute of Atbenian youlhs to ficed the Minotaur ($q . v$.). It seems possible that tribute children were actually exacted to take part in the gruesome shoves of the Mingan bull-rings, of which we now have more than one iflistration (see Crete: Archocolpgy), To recancile the contradictory aspects of his character; two laings of the name of Minos were assumed by later poets and mythologiats. Since Phoenician intercourse was in lefer times supposed to have played an important part in the development of Crete, Minos is sometimea callsd a Phoeniciap. There is no doubt that there is a cansiderable historical elenpent in the legend; recent dis coveries in Crete (9,) prove the existence of civilization suph as the legends imply, and, zender it probable that not oply Atheng, mut Mycenae itself, was ance subject to the kings of Cnossus, of whom Minos was greatest. In view of the splendaur and wide inflnence of Minope Creta, the age generelly kpown as " Mycepaean " has befpe given tha name of " Minoan" by Dr Axthar Evins as more properly descriptive (ese Cesets). Ming himpelf, is said to have died at Camicus in Sicily, Whither he had gone in parsuit of. Dacdalus, who had given Aviadne the chuo, by which she euidod Thaseus through the labyripth, He was killed by the daughter of Cocalus, king, of Agrigentum, who poured boiling. Fater over him in the bath (Diod, Sice iv, 29). Subeequently his remains were semp back to the Cretans, who placed thens in a, sancophagus, an which was inscribed: "The tomb of Minos, the son of Zeus." The canlier legend knows Minos as a boccicent rular, lefslator, and supppessor of piracy (Thucydides i. 4). Hils constitution was said to have formed the basis of that of Lycurgus (Pausanias iii. $a_{i}, 4$). In accordance with this miter his death, he dermene juade of the alandet in the under-morid (Odjsany, ix, 568); later he was associated with Aeacus and Rhadampanthus. 1

The allar oxplanation of Minos as the mon-god has been theown into the background by, the recent diecoreries. In any case a divine oxigin would saturaly be cheined for him as a priest-king, and a divine atmosphere hange about. him. The mame of bis wife, pasiphas (" the all-shining'), be ge epinthet of the moon-foddess. The name Minos amems to be philor logicqlly the equivaliant of Minyas, the royal encestor of the Minyans of Orchomenus and his danaghter Ariadme ("' the engroding bety ") is a double of the native mature-goddese. (Sen Crite: A chacolagy.)

On Cretan coins Minos is represented as bearded, wearing a diadem, curly-haired, haughty and dignifed, tike the traditional portraits of kis reputed father, Zeus. On painted vases and sarcophagus basteliefs he frequently occurs with Acacus and Rhadamant thus as jedges of the under-world and in connexion with the Mlinotaur and Thesels.

MINOT, LAEBENCE (f. 1333-1352) Englinh paet, the author of pleven battle-tongs, first published by Joseph Ritcoad in 1705 as Poans on Interesting Evonds on the raige of King Eidward IIL. They had boen discovared by Themas Tyrwhitt in a MS (Cotton Gadby, B. IX., British Museum): which bone on the flyleal the misleading inscription: "Chavcer, Exemplar emendate scriptum." It dates from the beginning of the 1gth oentury. The anthorelip of Lauremoe Minot's eloven songs is fixet hy the opaning of the fifh: "Misot witb mowth had menid to meke." and in VII. so, "Now Lanrence Minot will begin." The.poems were evidantly. written contemperaneously with the eventa thoy dicscribe. The fist celebrates the English triumph at Halidon Hill (2533), and the last the'capture of Guines (1352), The writet is antmated by an ardent personal admiration for Edvard III, and a savage joy in the triamphs of the English, over their encmies. The techaical difficulyy of his metres and the comparatively ewen quality of the work led to the itference that Minot had writecn other'songe; bat mone have come to light. Whothing whatever is known of his life, but the minuteness of his inforniation suggests that be.accopmpanied Ed ward on mome of this campaigns. Though his name proves him to have been of Norman birth, he writes vigorous and idiomatic English of the northern dialect with some admixture of midhand forms His poams are
inotiact with a fierce nationnt foaling, bich has becn ancepterd as an index of the union of intepeats between the Norman and English eloment arising out of common dangert and common succespes.

There are excellent editions of Minot's poens by Wilhelm Scholle (Quellcn wnd Forschungen, vol. Lii., Strasburg, 1884), with notes on etymology and metres, and by Mr). Hall (Clarendon Press, 2nd ed. 1897). Mr Hall is mellined to inchude as his work the "Hymn to Jesus Christ and the Virgin " (Religious Pieces, Early English Text Wociety, No, 26, p. 76), on the grounds of similarity of style and language See also T. Wright, Political Poems and Songs (Rolls serles, 1859).
minotaur (Gr. Maẃtaupos, from Minws, and raûfos, bull), is Greek mythology, a fabulous Cretan monster with the body of a man and the head of a bull. It was supposed to be the ollspring of Pasiphaë, the wife of Minos, and a snow-white buil, sent to Minos by Poscidon for sacrifice. Minos, instcad of sacrificing it, spaned its life, and Poscidon, as a punishment, inspired Pasiphaĕ with an unnatural passion for it. The monster which was born was shut up in the Labyrinth (q.v.). Now it happened that Androgeus, son of Minos, had been killed by the Athenians, who were jealous of the victories he had won at the I'anathenaic festival. To avenge the death of his son, Minos dumanded that seven Λ thenian youths and seven maidens should be sent every ninth year to be devoured by the Minotaur. When the third sacrifice came round Theseus voluntecred to go, and with the help of Ariadne (q.en) slew the Minotaur (Plutarch, Thescus, 15-19; Diod. Sic. i. 16, iv. 61; Apollodorus iii. 1, 15). Some modern mythologists regard the Minotaur as a solar personification and a Greck adaptation of the Baal-Moloch of the Phoenicians. The slaying of the Minotaur by Theseus in that case indicates the abolition of such sacrifice by the advance of Greck civilization.

According to A. B. Cook, Minos and Minotaur are only different forms of the same personage, representing the sun-god Leus of the Cretans, who represented the sun as a bull, He and J. G. Frazer both explain Pasiphaë's monstrous union as a sacred ceremony (heobs yawos), at which the queen of Cnossus was wedded to a bull-formed god, just as the wife of the apxwi Boainds in Athens was wedded to Dionysus. E. Pottier, who does not dispute the historical personality of Minos, in view of the story of Phalaris (q.v.) considers it probable that in Crete (where a bull-cult may have existed by the side of that of the double axe) victims were tort ured by being shut up in the belly of a red-hot brazen bull. The story of Talos, the Cretan man of brass, who heated himself red-bot and clasped strangers in his embrace as soon as they landed on the island, is probably' of similar origin. The contest between Thescus and the Minotaur was frequently represented in Greek art. A Coossian didrachm exhibits on one side the labyrinth, on the other the Minotaur surrounded by a semicircle of small balls, probably intended for stars; it is to be noted that one of the monster's narme Was Astcrius.
Sce A. Conze, Theseus und Minolauras (1878); L. Seephani, Da Kompf sarischen Theseks und Minotawros (e842), with plates and History of the legend: L. Preller. Griechische Mythologie; Helbig in Roscher's Lexicon der My:hologie F. Durrbach in Daremberg and Saglio's Dictionnaire des antiquitt's; A. B. Cook In Classiral Review, xvii. $410:$ I. G. Frazer, Early Mistory of the Kingship (1905): E. Pottier in La Revue de Paris (Feb. 1902); thic itory is cold in Kingsley's Heroes.

MInsI, a governmest of westem Rpspia, boupded bu. the governments of Vilna, Vitebek, Mogilev and Chernigov on the N. and E. and by Kiev, Velhynia and Grodno on the S. and W. It has an aree of 35,883 eq. m. The sarface is andulating and hilly in the north-west, where a narrow plateau and a rage of hills ($800-1000 \mathrm{ft}$.) of tertiary formation exparate the hasin of the Niemen, which fows into the Baltic, from that of the Driaper, which sends its waters suto the Black Sea. The nemainder of the government is fat, 450 to $650 \mathrm{5l}$. above sea-level, and covered with.sends and clayt of the glacial and postrehacial periods. Two breed challow depressions diaiaed by the Berezina and the Pripet, cross the government from north to south and from woft to east; and these, as well as the triangular fneas between them, are cocupliad by immense marslica foften as much as 200 ta 600 sq. m. each), ponds and small lakes, pert-bogs and moving ands, intermingled sith dense forests. This conntry, and especially its south-western part, is uswally krown under the meme of Polyesie ("Tho Woods'J. Altogether, marshes and mpogs
take up 12% and marshy forests no less thin 404% of the entire area of the province. It is only in the north.west that the forests consist of full-grown trees; those which grow on the marshy ground are small, stunted pine, hirch and aspen. The climate of the Polyesie is extremely unhealthy; malarias and an endemic disease of the hair (plica Polonica) are the plagues of these tracts. Communication is very difficult. The railway from Poland to Moscow has taken advantage of the plateau above mentioned; but still it has to cross the broad marshy depression of the Berezina. A successful attempt was made to drain the marshes of the Polyesie hy a system of canals, and more than $4,500,000$ acres have thus been rendered suitable for pasture and agricult ure. Two tributaries of the Dnieper-the Berezina and the Pripetboth navigahle, with numberiess subtributaries, many also navigable, are the natural outlets for the marshes. The Dnieper flows along its squth-eastern border for 160 m . and the Niemen on the north-western for 130 m . The affluents of the Baltic, the Dvina and the Vistula, are connected by canals with tributaries of the Dnieper. The estimated population in 1906 was $2,581,400$. The peasants constitute 65% of the population, who are mostly White Russians (71\%); there are also Poles (12%), Jews (16%), Little Russians and Great Russians. About 70,000 are considered to he Lithuanians; there are also 4500 Tatars and 2000 Germans.
The principal occupation of the inhabitants is agriculture, which is very unproductive in the lowlands; in the Polyesic the peasants rarcly have pure bread to eat. Only $23-5 \%$ of the area is under crops. Cattle-breeding is very imperfectly developed. Hunting and bee-keeping are sources of income in the Polyesie, and fishing gives occupation to about, 20,000 persons. Gardening is carried on in some parts. The chief source of income for the inhabitants of the lowlands is the timber trade. Timber is floated down the rivers, and tar, pitch, various products of bark, potash, charcoal and timber-ware (wooden dishes, \&c.) am manufactured in the villages to a great extent; and ship-building is carried on along the Dnieper, Pripet and Niemen. Shipping is also an important source of income. The industrial arts are almost entirely undeveloped; but there are several distilleries, flour-mills, saw-midls and tanneries, and woollen-stuffs, candles, tobacco, matches and sugar are manufactured. The great highway from Warsaw to Moscow crosses the government in the south, and its passage through the Berezina is protected by the first-class fortress of Bobruisk. The government is divided into nine districts, of which the chief towns and populations in 1897 are: Minsk, capital of the government ($q .0$.), Bobruisk (35,177), lgumeñ (4579). Mozyr (10,769), Novogrudok (7700), Pinsk (27,938), Ryechitsa (10,681) and Slutsk (14,180).

This region was originally inhabited by Slavs. That portion of it which was occupied hy the Krivichi became part of the Polotsk principality, and so of White Russia; the otber portion, occupied hy the Dregovichi and Drevlyans, became part of Black Russia; whilst the south-western portion was occupied by Yatvyags or Lithuaniais. During the 12 th, 13 th and 14th centuries it was divided among several principalities, which were successively incorporated with Lithuania, and later annexed to Poland. Russia took possession of this country in 1793. In 1812 it was Invaded by the army of Napoleon I. Archaeological finds ai great value, dating from the Neolithic and subscquent ages, have lately been made.
(P.A. K.; J.T.BE.)

MISSK, a town of Russia, capital of the government of the same name, on the Svisloch, a tributary of the Berezina, at the intersection of the Moscow-Warsaw and Libau-Kharkov railways, 430 m . by rail W. from Moscow. It had, in 1897, 91,494 inhabitants, of whom one-third were Jews of the poorest class; the others were White Russians, Poles and Tatars. Amongst its pabhic buibtings is a cathedral, huilt in 161 . Minsk is the headquarters of the IVth Army Corps and the see of a bishop of the Orthodor Greek Church, and from 1798 to 1853 it was a see of the Roman Catholic Church. The mamufactures are few and insignificant. Since the introduction of railways the commercial importance of the place, which formerly was slight, has begun to increase.

Minst is mentioned in Russian annals in the rith century under the name of Myen'sk, or Menesk. In 1066 and rog6 it was devastated, first hy lzyazlav and afterwards by Vladimir, prince of Kiev. It changed ralers many times until the 13 th century, when it became a Lithuanian fief. In the isth century it was
part of Poland, but as late as r go5 it was ravaged by Tatars, and in 1508 by Russians. In the 18th century it was taken several times by Swedes and Russians. Russia annexed it in 1793. Napoleon I. took it in 1812.
MINETEX, two towns of Kent, England.

1. Minster-ma-Tinanet, in the Isle of Thanet parliannentary division, lies on the southern slope of the isle, above the Minster marshes, in the low, flat valley of the river Stour, 4 m . west of Ramsgate, on the South-Eastern \& Chatham railway. Pop. (1901), 2338. Its church, dedicated to St Mary, is cruciform, with a western tower, the nave a fine example of Norman work, the transepts and chancel a beautifol Early English addition. The carved choir-stalls are a notable feature. The church belonged to 2 nunnery, founded at the close of the 7 th century. The abbey, a residence close to the church, incorporates portions of the ancient baildings. Fruitgrowing is largely carried on in the neighbourhood.
2. Minstra-nN-Sifeppey, in the nerth-eastern perlimentary division, lies \ln the Isle of Shoppey, near the north coast. Pop. (1901), 1306. It is served hy the Sheppey light railway from Sheerness, 2 m . west. The village has in modern times become a seaside resort. It has a fine church, dedicated to St Mary and St Sexburga, originally attacbed to a convent of the 7 th century, founded hy Sexburga, widow of Erconberht, king of Kent. The building as it stands is only a portion of the conventual church founded in the early part of the rath century. hy Willimm de Corbeuil, archhishop of Canterbury; it retains also traces of pre-Noman work. It contains some interesting early monuments. The abbey gatebouse remains, and other fragments may be traced. There are oyster beds in the meighbouring shallow sea.

MiNSTRR (from Lat. momasterivm; cf. German Minster), the church of a monastery, or one to which a monastery has been attached. In the roth century the name was applied to the churches of outlying parishes, and is now given to some of the English cathedrals, such as York, Lincoln, Ripon and Southwell, and to large churches or abbeys, like those of Sherborne, Wimborne or Westminster.

MINSTREL. The word " minstrel," which is a derivative from the Latin minister, a servant, through the diminutives ministellus, minislrallus (Fr. menestrel), only acquired its special sense of household entertainer late in the 13 th century. It was the equivalent of the Low Latin joculator ${ }^{1}$ (Prov. joglar, Fr. jouglewr, Mid. Eng. jagclour), and had an equally wide significance.

The minstrel of medieval England had his foreranners in the Teutonic scop (O.H.G. scopf or scof, a shaper or maker), and to a limited extent in the mimous of the later Roman empire. The earliest record of the Teutonic scop is found in the Anglo-Saron poem of Widsith, which in an earlier form probably dates back before the English conquest. Widsith, the far-traveller, belonged to a tribe which was neighbour to the Angles, and was sent on a mission to the Ostrogoth Eormanric (Hermanric or Ermanaric, d. 375), from whom he received a collar of beaten gold. He wandered from place to place singing or telling stories in the meadhall, and saw many nations, from the Picts and Scots in the west to the Medes and Persians in the east. Finally he received a gift of land in his native country. The Complaint of Deer and Beovulf give further proof that the Teutonic scop held an honourable position, which was shaken by the advent of Christianity. The seop and the gleeman (the terms appear to have been practically synonymous) shared in the general condemnation passed by the Church on the dancers, jugglers, bear-leaders and trmblers Saxo Grammaticus (Historic danica, bk. v.) condemns the Irish king Hugleik because be spent all his bounty on mimes and jugglers. That the loftier tradition of the scopas was preserved in spite of these influences is shown by the tales of Alfred and Anlal disguised as minstrels. With the Normans came the joculator or jogleser, who wore gaudy-coloured conts and the flat

[^31]shoes of the Latin mimes, and lad a shaven face and close-cut hair. Jogleurs were admitted everywhere, and enjoyed the froedon of speech accorded to the professional jester. Their imponity, however, was not always maintained, for Henry I. is said to have put oft the eyes of Luc de la Barre for lampooning him. A fairly defined class distinction soon arose. Those minstrels who were attached to royal or noble households had a status very different from that of the motiey entertainers, who soon came under the restrictions imposed on vagabonds generally. A jocutator regis, Berdic by name, is mentioned in Domesday Book. The king's minstrels formed part of tbe rayal housebold, and were placed under a rex, a fairiy common term of botour in the craft (cf. Adenes li rois). Edward III. had nineteen minstrets in his pay, including three who bore the title of weits. The large towns had in tbeir pay bodies of waits, generally designated in the civic accounts as histriones. A wait under Edward III. had to "pipe the watch" four times nightly between Michmelmas and Shere Tuesday, and three times nightly daring the remainder of the year. In spite of the repeated prohibitions of the Church, the matter was compromised in practice. Even religious houses had their minstrels, and so pious a prelate as Robert Grosseteste had his private barper, whose chamber adjoined the bishop's. St Thomas Aquinas (Summe thoologia) said that there was no sin in the minstrel's art if it were kept within the bounds of decency. Thomas de Cabham, bishop of Salisbury (d. 1313), in a Penitential distinguished three kinds of minstrels (histriones)-bufloons or tamblers; the wandering scurrac, by whom be probably meant the goliardi (see Gormand) : and the singers and players of instruments. In the third class be discriminated between the singers of lewd songs and those joculatores who took their songs from the deeds of princes and the lives of saints. The performances of these foculdtores were permissible, and they themselves were not to be. excluded from the consolations of the Church. The Parisian mirstrels were formed into a gild in 132x, and in Engiand a charter of Edward IV. (1469) formed the royal minstrels into 1 gild, which minstrels throughout the country were compelled to join if they wished to exercise their trade. A new charter was conferred in 1604, when its jurisdiction was limited to the city of London and 3 m . round it. This corporation still exists, under the style of the Corporation of the Master, Wardens and Commonalty of the Art or Science of the Musiciaus of London.

During the best time of minstrelsy-the ioth, 11th and 12th centuries-the minstrel, especially when he composed his own songs, was held in high honour. He was probahly of nohle or good bourgeois birth, and was treated by his hosts more or less as an equal. The distinction between the troubadour and the foglear which was established in Provence probably soon spread to France and England. In any case it is probable that the poverty which forms the staple topic of the poetns of Rutebeuf (q, v.) was the commonest lot of the minstrel.

Entries of payments to minstrels occur in the accounts of corporations and religious houses throughout the 16th century; but the art of minstrelsy, already in it's decline, was destroyed in Enghand by the introduction of printing, and the minstrel of the entertainments given to Elizabeth at Kenilworth was litte more than a survival.

The best account of the subject is to be found in E. K. Chambers's Modienal Stage (1903), i. $23-86$ and ii 230-266. See also L. Gautier in E Popecs framaises (vol. ii., 2nd ed., 1892); A. Schulta, Das höfische Leban zur Zeis der Minnesinger (and ed., 1889); T. Percy, Reliques of English Poetry (ed. H. B. Wheatley, 1876); J. Ritson. Ancient English Metrical Romances (i8oz); J. S. Jusserand, English Wayfaring Life in the Middle Ages (4th ed., 1892).

Tinfl, botanically Mentho, a genus of labiate plants, comprising about twenty species of perennial berbs, widely distributed throughout the temperate and sub-tropical portions of the glohe, but chiefly in the temperate regions of the Old World. The species have square stems, opposite, aromatic leaves, and a stoloniferous creeping rootstock. The flowers are arranged in axillary clusters (cymes), which either form separate whorls or are crowded together into a terminal spike. The corolla is usually small and of a pale purple or pinkish colour; it has four
nearly equal lobes, and eicloses two long and two short stamens. Nearly three hundred intermediate forms have been named and described. Many of these varieties are permanent, in consequence of being propagated by stolons.

In Britain ten species are indigenous or naturalized. Mentha viridis, or spearmint, grows in marshy meadows, and is the species commonly used for culinary purposes; it is distinguished by its smooth, sessile leaves and lax tapering flower-spikes. It is probably a cultivated race of the nert species, Mentha sylvestris, or horsemint, which chiefly differs from the above in its coarser habit and hairy leaves, which are silky beneath, and in its denser flower-spikes. This plant is supposed to be the mint of Scripture, as it is extensively cultivated in the East; it was one of the bitter berbs with which the paschal lamb was eaten. M. roiwndifolia resembles the last in size and hahit, but is distinguished by its rounded wrinkled leaves, which are shaggy beneath, and by its lanceolate bracts. The last two species usually grow on damp waste ground. M. aquatica grows in ditches, and is easily recognized by its roanded flower-spikes and stalked hairy leaves. M. piperita, or peppermint (q.v.), has stalked smooth leaves and an ohlong ohtuse terminal spike of flowers; it is cultivated for its volatile oil. M. protensis belongs to a group which have the flowers arranged in arillary whorts and never in terminal spikes; it otherwise bears some resemhlance to M. viridis. M. salige grows hy damp roadsides, and \boldsymbol{M}. areensis in cornfelds; they are distinguished from M. pralensis by their hairy stalked leaves, which in M: arvensis are all equally large, but in M. sativa are much smaller towards the apex of the stem. M. Pateginen, commonly known as pennyroyal, more rarely as fleamint, has small oval ohtuse leaves and flowers in arillary whorls, and is remarkahle for its creeping habit and peculiar odour. It differs from all the mints above described in the throat of the calyx being ctosed witb hairs. It is met with in damp places on grassy commons, and was formerly popular for medicinal purposes.

All the genus Mentha abound in a volatile oil, contained in resinous dots in the leaves and stems. The odour of the oil is similar in several species, hut is not distinctive, the same odour occurring in varieties of distinct species. Thus the peppermint flavour is found in M. piperita, in M. incara, and in Chinese and Japanese varieties of M. arrensis. Other forms of the lastnamed species growing in Ceylon and Java have the flavour of the common garden mint, M. viridis, and the odour is found in M. syivestris, M. rolundifolia and M. canodensis. A bergamot scent is met with in a variety of M. aqualica and in forms of other species. Most mints hlossom in August.

The name mint is also applied to plants of other genera, Monarda punctata being called horsemint, Pyenanifemw, linifolium mountain mint, and Nepela cataria catmint.

INTI (Lat. monela; Mid. Eng. mynt), a place where coins are manufactured with the authority of the state. Coins are pieces of metal, of weight and composition fixed by law, with a design upon them, also fixed hy law, by which they are identified, their value made known and their genuineness certified. The origin of the word "mint" is ascribed to the manufacture of silver coin at Rome in 269 p.c. at the temple of Juno Moneta. ${ }^{1}$ This goddess became the personification of money, and her name was applied both to money and to its place of manufacture. Metals were used for money at an early stage of civilization, and are well suited to the purpose, owing to their great intrinsic value and their durability, indestructibility, divisihility and rarity. The best metals for coinage are gold, silver, platinum, copper, tin, nickel, aluminium, zinc, iron, and their alloys; certain alloys of gold, silver, copper and nickel have the best combination of the required qualities.

Hisfory of Minting. -The earliest metallic anoney did not consist of coins, hut of unminted metal in the form of rings and other ornaments or of weapons, which were used for thousands of years hy the Egyptian, Chaldean and Assyrian Empires (see Numrsuatres). According to Herodotus, the first mint was probahly that estahlished hy Gyges in Lydia towards the end of the 8th century s.c. for the coining of gold, silver and electrum, an
${ }^{1}$ Lenormant, La Monnaie dans rantiquite, i. 82.
alloy of gold and silver found in a natural state: Silver was coined in the island of Aegina soon afterwards. The art of coining was introduced by the Greeks into Italy and other countries bordering on the Mediterranean and into Persia and India. Subsequently the Romans laid the foundations of modern minting Coining originated independently in China at a later date than in the western world, and spread from China to Japan and Korea. Coins may be made by casting in moulds or by striking between engraved dies. The Romans cast their larger copper coins, in clay moulds carrying distinctive markings, not because they knew nothing of striking, but because it was not suitable for such lange masses of metal. Casting is now used only by counterfeiters. The most ancient coins were cast in bulletshaped or conical moulds and marbed on one, side by means of a die which was struck with a hammer. The "blank " or unmarked piecc of metal was placed on a small anvil (ambos), and the die was held in position with tongs. The reverse or lower side of the coin received a rectangular mark mate by the sharp edges of the little anvil. Subsequently the anvil was marked in various ways, and decorated with letters and figures of beasts, and later still the ambos was replaced by a reverse die. The spherical blanks soon gave place to lenticular-shapedones. The blank was made red hot and struck between cold dies. One blow was usually insufficient, and the method was similar to that still used in striking medals in high relief, except that the blank is now allowed to cool before being struck. With the substitution of iron for bronze as the material for dies, about A.D. 300 , the practice of striking the blanks while they were hot was gradually discarded. ${ }^{2}$ In the middle ages bars of metal were cast and hammered out on an anvil. Portions of the flattened sheets were then cut out with shears, struck between dies and again trimmed with shears. Λ similar method had been used in Egypt under tbe Ptolemies (c. 300 b.c.) but had been forgotten. Square pieces of metal were also cut from cast bars, converted into round disks by hammering and then struck between dies. In striking, the lower die was fixed into a block of wood, and the blank piece of metal laid upon it by hand. The upper die was then placed on the blank, and kept in position by means of a holoer round which was placed a roll of lead to protect the hand of the operator while heavy blows were struck with a hammer. An carly improvement was the introduction of a tool resembling a pair of tongs, the two dies being placed one at the extremity of each leg. This avoided the necessity of readjusting the dies between blows, and ensured greater accuracy in the impression. Minting by means of a falling weight (nonkey press) intervened between the hand hammers and the screw press in many places. In Birmingham in particular this system became highly developed and was long in use. A. Olivier introduced screw presses for striking coins, together with rolls for reducing the cast bars and machines for punching-out round disks from flattened sheets of metal, in Paris in 1553 . Alter being discarded in 1585, except, for making medals, they were reintroduced by J. Varin in 1040 and the practice of hammering was forbidden in 1645.' In England the new machinery was tried in London in 1561, but abandoned soon afterwards; it was finally adopted in 1062 , although the old pieces continued in circulation until 1606 . At first the rolls were driven by workmen by means of cranks, but later they were worked by horses, mules or water-power. Steam-power was applied to them by Matthew Boulton and Watt in Birmingham in 1788, and was adopted by the Royal Mint, London, in 1810 . Recently the practice of driving rolls by electricity has been growing, the advantage being that cach pair of rolls can be driven independently without the intervention of rumbrous shafting. Boulton and Watt's screw press, invented in 1788 and used at the Royal Mint until 1884 , was worked by atmospheric pressure applied to a piston. The piston was in communication with a vacuum vessel from which the air had been pumped by steam po

History of British Minks.-In Britain there are evidences of 1 Op. cil. il 136 . Herodotus i. 94.
:E. Dumas. LEEmission des monacies décimales de bronse, p. 14 -
${ }^{3}$ Ibid. p. 19 .
the existence of mints hefors the arrival of the Romarts. The Komans at first imported their coins, and no Romas mipts wan established until about the end of the and century, when coind were being struck at London and Colchester. 4 . In Anglomsayea times Athelstan apreaps to bave been the frat monanch who enacted regulations for the mints.s Hic promulgated lawn about the year 928 , appoipting a farge number of "moneyem" of "mynteres," London beipg assigned cight, Canterbury seven, ot her important towng vaious numbers and all smaller. bopoudh one monejer each. The necespity for so many mints lay in the imperfect means of cammunication. At as early period probably about A. 0 . 1000, the dies wert made ia Lamdan and issued to the other mints, The moneyers, who were clected by the burgesses, were remponsible for the manuiacture of the coin and according to Madox. were liable at the aime of Henry II. to be sunmoned to Westminster to rake part in the triats of the pyx. ${ }^{6}$ If there was ady deficiency in the meight of the finemes of the coin the moneyers were purished as, traitors.. These moncyers appear to have boen abolished abowi. isde,' when officers were appointed co supervisa the coinage on betall of the king, and the name " noneyer "was applied to ceatractora wha manufactured the coin under superimendence and were noil responsible to the king for jus weight and fineness. The moneyens continued to manuitchure the coin of the realm notil the yeat 1850, when the work was entrusted 10^{\prime} civil servants In the reign of Henry 111. the principal officers of the Mipt were abe master, who manufactured the coin under a conciact, the warden or paymaster who acted on behalf of the Crowa, the msity mastet (also a king's officer) who was respensible for the fineness of the coin, the cuncator or superintendeat of the engauers of the dien and the moneyer, One of the most important duties of the warden was the colleqtion from the conuractor of the seigniarage which was claimed by the goveraign by virtue of his. prerogalixg as a source of rcvenue to the Crown. In i. 218 . Sir. Isasc. Nepron was made master of the Mint, and in shat capacity as contrector for the coinage he anmassed a considerable fortupe. As the work of the Mint became more extensive and more complicated other officers were added and their duties were varied from time 19 time. The present adminiatration of the; Eagligh Mint is based on arrangements made in 8870 , when the establishment was pen organized. The office of master of the Mint is held by the chion cellor of the exchequer for the lime being, vithoul salary, but ibs actual administrative. work of the department is entrusted to the deputy master asd compluoller. The receipt of bullion and the delivery of coin from the Mint is under the charge of the chid clerk, the manufacture of coin ia in the hands of the superinter: dent of the operative departrent, and the valuation of the bullion by assay, and matters relating to the fineness of the coin are ent rusted to the chemist and essayer. The date of the establishment of the Mint in the Tower pf London is unknown, There is a reference to it dated 1229 and a clear reference dated 1329.* According to Ruding, there ware over fifty mins in the reign of EJward the Confestor." Atter the Norman Conquest the mints increased to about seventy, a greater number than now exists in the world, but they were gradually redaced and in the reign of Edward I. there were only twive, Ruding enumerates 128 mints operated at various times in the United Kingdom, including some establishod by usurpation, as in the reign of Steplien by certain barons, and also mintsestabIlshed by grants to ctclesiastics to be worked for their ownproft. The provincia! mint were all closed just before the reign of Mary, who coined in Condon only. Charles I. set up small mints in various towns, atid for the great re-coinage in the reign of William III. mints ume establishẹd at York, Chester, Fpaper, Bristol and Norwich, but were soon abandoned. Wood's copper money for Ireland and America was coined at Wolverhamplon (1700-1722), and thetradesmen's tokens were struck al various towns. Copper coins reerc struck by Boulton at Soho, Birmingham,

[^32]in $\mathbf{5 7 8 8}$, and a colonial bronze coinage was cxecuted at this establishment as recently as the year 1875 . There is another mint in Birmingham worked by a private company ("The Mint, Birmingham, Limited "', where coinages for foreign governments are, executed and in addition silver and bronze colonial coins are occasinnally manufactured under the supervision of the London Mint. The existing London Nint was erected on Tower Hill in s8ro. Minting in Scotland began in the reign of David 1. ($5124-1553$) and ceased in 1709 , two years after the Act of Union, in which it bad been expressly stipulated that a mint should be continued in Scotland. ${ }^{1}$ Coinage in Dublin began in AngioSaxon times and came to an end in the reign of Willian ILI. ${ }^{2}$ The other Irish mints were of litle importance.
British Dominions.-Turning to mints in British Dominions beyond the Seas, Ruding enumerates twenty-six mints in France and Flanders used by British monarchs between 1186 and asr 3 , and Anglo-Hanoverian coins were struck at Clausthal, Zelleffld and Hanover in the period 1774-1837. In India ${ }^{3}$ the earliest English mint was that at Madras which was bought by the East India Company in $\mathbf{x} 620$, reorganizect more than once and finally closed in 1869 . The Calcutta mint was established by the East India Company in 1757, but other mints in Bengal continued to be used till about 8835, when the Calcutta mint was rebuilt. The Bombay mint was set up about the year 167 r , hut the coins were made by hammer and anvil until isoo. The Calcutta and Bombay mints are still in operation. A mint was opened in Hong-Kong in 1866 but was closed in 1868 and the machinery sold to Japan. In Austratia there are three mints, Sydney, opened in 1855, A1elbourne, opened in 1872, and Perth, opence in 8899. Up to 1909 ooly sovercigns and half-50vereigns were struck at these establishments, but in 1910 arrangements were made for a Commonwealth silver coinage. A nint at Ottawa was opened in 1908 for the manufacturc of all Canadian coins as well as English sovercigns.
Other Countrics.-In the United States the Philadelphia mint was opened in 1792, but only nanual or horse power was used until $: 836$, when steam was introduced. Other mints are now in operation at New Orleans, San Ftancisco and Denver. In most European countries a single mint situated at the capital is found to be sufficient, but there are six mintsin the German Empire and two in Austria-Hungary. In Chine 26 mints were at work in 1906. There are also mints at Osaka, Bangkok and Teheran, and the Seoul mint was at work in 1po4. In Mexico 11 mints formerly existed, but one only; in the city of Mexico, remained open in 1907 . In South America there are mints at Lima, Santiago, Buenos Ayres and Tegucigalpa. No mints are in operation in Africa. In all there are nearly 70 mints in the world.
The Supply of Bullion to Mints.-In England, in the middle ages, the king was accustomed to send in to the mint the produce of his own silver mines, and clained the exclusive privilege of purchasing the precious metals.. The right of levying seigniorage, however, was sometimes waived by the king to encourage his subjects to bring gold and sitver to the mint, and several instances are recorded in which the sid of alchemists was called in to effect the transmulation of baser metals into gold. Seigniorage was abolished for both gold and silver in 1666 , when it was provided that no charge should be made at the Mint for coining and assay. ing. Finally in 8816 the free coinage of silver was brought to an end. At present all gold bullion brought to the Mint is weighed and portions are cut off for assay. The amount of gold in standard ounces (016.6 finc) corresponding to the "imported" bullion is thus ascertained, and on the application of the importer the gold is coined and delivered to him in the form of sovereigns and half-sovereigns at the rate of $\left\{_{3}, 17 \mathrm{~s}\right.$, rold. per standard ounce troy, no deduction being made for wastage, seigniotage, the purchase of alloy metal, or the expense of manufacture. As a considerable time elapses between the receipt of bullion by the Mint and the delivery of the eoin, it is generally
${ }^{1}$ Grueber op cit. p. liv. ${ }^{2}$ Ruding. op. cil ii. 245. 3W. J. Hocking. Catalogue of Coins in the Royal Minl, i. 272, 275 and 272 . Hockin
more profitable for the holder of gold bullion to sell it to the Bank of England or dispose of it in some other way. The result is that the gold presented for coinage is almost alwnys sent from the Bank of Eingland, which suffers no loss of interest during the coinage of the bullion, because bank-notes have alrcady been issued against it. Silver bullion, and the copper, tin andzinc required to make up bronze, are bought by the Mint and manufactured into coin, which is kept in stock and issued as it may be requited. One ounce of standard silver, which contains 925 parts of silver and 75 of copper per roco, is converted into 5 s - 6 d . in silver coin, whatever may be the market price of silver bultion. This seldom exceceded 30 d. per ounce in the years 180.3 -1907. Coinage bronze consists of copper 95 parts, tin 4 parts and zinc r part, and a ton yields $£_{44} 8$ in pence or $£^{2} 73,65.8 \mathrm{~d}$. in haffpence or farthings.. The difference betwecn the nominal value of silver and bronze coin and its intrinsic value is retained by the state to cover the expenses of manufacture and as a source of profit. It corresponds to the seigniorage levied by the king on all coinages down to the reign of Charles II. In return, the Mint receives at its nominal value for recoinage the worn gokd and silver coin which is withdrawn from circulation by the Bank of England and some ather banks. In spite of the cost of this recoinage, however, the profit on the issue of new silver and bronze usually exceeds in each ycar the total expenditure of the Mint. Gold and silver are delivered in a refined state suitable for immediate conversion into coin. In general, only old coin, ingots resulting from the melting of coin, and "fine "ingots are received. Fine gold ingots (the "bar gold" of commerce) are usually about 400 oz. troy in weight, and contain from 990 to $999-5$ parts of gold per 1000 , the remainder being chiefly silver. Fine silver ingots usually weigh from 1000 to 1200 oz. troy and contain from 995 to 1999 parts of silver per 1000 . The ingots are valued by weighing and assaying, and a calculation is made as to the amount of copper required- for melting with thent to produce the standard alloy. The two standard alloys consist respectively of gold $916 \cdot 6$, copper 83.3 and of silver 925 , copper 75. All gold coins received at the Bank are weighed on automatic balanees (sec below) and those below the lowest legal current weight are separated. The lowest curtent weight is 522.5 grains for sovereigns and 61.125 grains for half-sovereigns corresponding to losses by wear of about 0.6% and 0.8% respectively. The average age on withdrawal is about 24 years for sovercigns and 15 years for half-sovereigns. Silver coins are not weighed but are selected for withdrawal when they present a worn appcarance. The average deficiency in wcight of worn silver coin received at the M int is from 8 to 10%, and the mean age somewhat less than so years. In Europcan mints generally little difficulty is experienced in procuring refined gold and silver for coinage. In Australia, the United Slates, Japan and some other countries, the Mints receive unrefined gold from the mines and refine it before it is coined. A charge for refining is made in all cases. A refinery was attached to the London Mint from 1816 to 18 gr , but was then let on lease and left to private enterprise. The operations employed in the manufacture of gold and silver coin are as follow:-
(1) Metting the metal and casting it into bars. (2) Rolling the bars into strips or "fillets." (3) Cutting out disks or blanks from the fillets. (f) Adjusting the weight of the blanks (this is omitted in some pints). (5) "Marking" or edge-rolling the blinks to produce a raised rim or to impress a design on the edge. (6) Annealing the blanks and (in some mints) cleaning them in acid. (7) Striking the blanks between dies surrounded by a collar. (8) Weighing each coin. Among the incidental operations are (a) the valuation of the bullion by weighing and assaying it; (b) "rating" the bullion, or calculating the amount of copper to be added to make up the standard alloy; ($($) recovering the value: from ground-up crucibles, ashes and floor sweepings (the Mint "sweep"); (d) assaying the melted bars; (c) "pyxing" the finished coin or selecting specimens to he weighed and assayed; (f) "telling" or counting the coin.

Melling. - Formerly bullion was melted in crucibles made of refrac, tory clay, but they are lisule to crack and require careful handing

These were succeeded by iron crucibles especially for melting silver, and these have now been generally replaced by graphite (plumbago) crucibles made of mixture of clay and graphite. Cood graphite crucibles can be used many times in succession if they are heated gradually each time, but they are usually discarded after about fifteen or twenty meltings. At the Royal Mint gold is melted \ln crucibles about 10 in . in helght and $8 \frac{1}{2}$ in. in diameter at the widest part. The cbarge is from 1200 to 130002 ($37 \cdot 3$ to $40-5$ kilograms) of metal. The furnace is 12 in square and 2 ft . deep from the ire-bars to the cover. An old crucible is cut off about 2 in . from the bottom and the bottom piece is inverted and placed on the fire-bars as a support for the crucible. The "muffe," a graphite cylinder 6 in. in height, is placed on the crucible to allow room for long bars to be melted in the crucible and to prevent the surrounding
and C is the flue. common to two furnaces and leading to the atack;The handle D, acting through the gear wheels E, F, G and H, turns the cogwheel K. which moves the curved rack of the cradie and tipe the crucible M. The molten metad is poured into the moulds $\mathrm{N}_{\text {, }}$ which are carried on wheels running on rails Q. The parts of the range of moulds are brought tightly together and held in position by the bars 0 and the screw P, and when one mould is filled the carrier is moved forwand on its rails by wheels worked by a handie also shown in the figure. In some other mints still laryer crucibles are used, containing various amounts up to about 1000 bifograma or over $30,000 \mathrm{oz}$. In foreign mints the molten metal is generally transferred from the crucihle to the moulds by dipping crucibles or iron ladles covered with clay. Gas is used aa fuel for the melting furnaces at Philadelphia. It is cleaner chan coke and is and to

Fig. 1.-Furnace Apparatus.
coke from falling into it. The flue, of about 5 in. square, communicates with a stack 60 ft . high. In many mints the flues pass into condenxing chambers where volatilized gold and silver are recovered. The crucible is at a red heat when the gold is charged in, the copper being added last, and a gra phite lid put on the crucible to check loss by volatilization. The charge is completely melted in about half an hour, and it is then thoroughly mixed by stirring with a graphite rod. The crucible is then lifted out by circular tongs suspended in such a way that two men can take part in the operation. The contents are poured by hand into moulds which are contained side by side in an iron carriage running on wheels, fig. 1 , OP. The molten gold, which is of a pale green colour, solidifes at once in the iron moulds, and tbe bars can be taken out immediately. Bars from which sovercigns are to be coined are 22 in. long, 1 in. wide and f in. thick, and about seven such bars are cast from one pot. The rough edges of the bars are removed by a circular revolving file: and the hollow ends are cut off. Pieces are cut out for assay. and the bars are then ready for rolling. The amount of gold melied in an ordinary day's work is two tons to two and a half tons, of the value of $\{250,000$ to $£ 300,000$. For silver larger crucibles are used. containing about 5000 oz troy (155 kilograms). They are heated in circular furnaces 21 in. in diameter and lifted out with circular tonga suspended from a travelling crane which is worked by electricity. The crucible ia placed in the pouring cradle, which bas been in use since 1816, and is shown in fig. \boldsymbol{y}. Here A is the iron cover surrounding the furneces, \mathbf{B} is the revolving lid of a furnice,
cave time and to reduce the loss of the precious metals At Denver and Ottawa the fuel used is "first distillate" oil, which is found to be cheaper than either naphtha or gas. The oil is pomped from buried tanks and warmed to about $90^{\circ} \mathrm{F}$. before it reaches the burners at the furnaces. At the Denver mint the crucibles are used for from twelve to fifteen meltings with oil fuel, whereas they were soon destroyed when gas was employed. A charge of 6000 ox of gold is melted in about an hour. The melting fosses amount to abour 0.2 per 1000 of gold and 0.6 per 1000 of silver in the Royal Mint. The losses are caused by volatilization, by the absorption of metal by the erucible, stirring rod, \&e., and by occasional projection of particles from the pot into the furnace. The ash-pit is fined with iron plates to facilitate the recovery of metal aecidentally spile. All crucibles and other materials which might contain precious metal are ground up and washed io a pan, and the pannings together with a selection from the floor sweepings are remelted. The residues (the Mint "sweep") are sold to refiners or ore-smeltesti.
Rolling. -The cast bars are reduced to the thicl neme of the coia by repeated passages between rolls. These are cylinders of cast iron or steel from 6 in. to 15 in . in dia meter sef parallel to one another with a small interval between, and revolved by electric or steam power. They are divided into breaking-down and finishing rolla the latter being of smaller diameter than the former. The power is usually transmitted through toothed wheels, each roll being driven independently in mome cases, while sometimes power is applied to the lower roll onty, the upper roll being conpled to it. Tbe
power requined for breaking dom mint bare amonnts to from 23 to $35 \mathrm{~h} . \mathrm{p}$. The bars are fed to the rollis by hand. Heary pinches are appled at first, the space between the rolls beine dimininhed by a hand-screw after each pasange of the bars through them. When the bars are nearly to gauge, fight pinches are given, the power required by finishing rolls being about $5 \mathrm{~h} . \mathrm{p}$. only. The reduction in thickness of the bars is accompanied by a sight increase in their width and a very great increase in their length, so that it is generally necessary to cut partly rolled bars into two parts to keep them of convenient dimensions. By repeated pasages through the rolle the bare are hardened, and to facilitate further reduction they are usually softened by anmealing before being pased to the finishing rolls. In some mints the fillets are annealed frequeply, the fillets for one-mark pieces at the Berlin mint, for example, being annealed four times in the course of rolling. In this case the bars are reduced from $5 \frac{1}{2} m$. in thickness to 12 mm. by being pasted thirteen times through the rolls. At the Vienna munt the practice has been to anneal silver bars after each paseage through the rolls. On the'other hand, in the United States miats, the use of very carefully refined metal has made it possible to discontinue the annealing of partly rolled bars. In the Royal Mint silver bars are annealed once during rolling by passing through a Bates \& Peard gas furnace. The filiets are placed on an endless chain which moves alowly through the furnace, returning underneath. At each end of the furnace is a trough of water which covers the furnace mouth, so that air is prevented from entcring the furnacc. The chain dips below the water, then rises into the furnace and passes down into the other trough on its way out. The result is that so long as the fillets are hot they are kept from contact with the air and blackening of the metal is prevented. In some mints the drag-bench or draw-bencli is used after the rolls to equalize the thickness of the fillets. Tle fillet is drawn between two little steel cylinders which do not re:olve and are held rigidly in position. The principle resembles thit used in wire drawing. It was introduced by Sir John Barton at the Royal Mint in 1816 and was abandoned there in 1905 . The thickrese of the

fillets is measured by the gruge-plate shown in fg. a. When they have been reduced to the correct thickneas they are examined by the tryer," who cuts out one or two blanks from each fillet with a hand machine and weighs them on a delicate balance. If the weight of the blank is alightly below the atandard weight, a somewhat larger cutter is used, so that the blanlos may be of correct weight. If the blank is too heavy the fillet may of course be pasoed through the rolls again.
Remedy,-The degree of accuracy required is indicated by the "remedy" allowance for weight, which is different for each coin, and is the maximum difference from the standard weight which is allowed by law. la the sovereign it is 0.2 grain or about $\mathbf{1} 62$ per 1000. As the mean thickness of a eovereign is 0.0 .466 in., the remedy for weight corresponds to a difference of less than in 10 ose in. in the thickness of the fillet. The remedy for English silver coins varies from 2 grains or 4.58 per 1000 in the case of the crown, to 0.087 grain or $11-97$ per 1000 in the case of the silver penny. The reme dies for weight on foreign coins are in general greater than those allowed in the British Empire, averaging 2 per 1000 for gold coins. Reference may here be made to the similar working margin allowed in respect of the fipeness of gold and silver. In England the remedy for fineness is 2 per 1000 on gold coins and 4 per 1000 on silver coins above and below the legal standard. Thus gold coins would be within the limits if they coatained between 914.6 and 918.6 parts of gold per 1000 . Remedies are intended to cover accidental variations from the exact standard and are now gencrally used only in this way. In former times, however, advantage was sometimes taken of the remedy ns a means of profit. In the reign of Queen Elizabeth, the master of the Mint, finding the allowance under his contract to be insufficient, availed himselif of the remedy on the silver coinsge, which amounted to $6 \frac{1}{d}$. on the pound troy, or about $8 \cdot 7$ per toon.

Cwlting Blanks.-The cutting machine used in the Mint is shown in fig. 3. The revolution of an eccentric A causes two short steel cylinders or cuttere mounted on a block of iron B, suitably guided. to enter two holes in a plate fixed to the bed of the machine. When the fillet FF is brought above the holes, the cutters descend and force disks of metal through the holes. After each descent of the cutters, the fillet is advanced by small gripping rolls $\mathrm{C}^{\prime} \mathrm{C}^{\prime} \mathrm{C}^{\prime}$ worked by a ratchet wheel E driven from the shaft which bears the eccentric A. The disks fall down the tube G to a receptacle on the floor. The cutters are so placed as to remove blankin in the manner shown in fig. 4, this amangement leaving lems "acissel" or residual metal than any other. In the case of very large diver coins only one blank is cut in the width of the fillet, but bronse filleta are made wider th that throve peany blants are

Mat out at each etroise of the machine. The cutting machines at the Mint work at 160 revolutions per minute, $s 0$ that each of the eleven machines would be capable of cutting 19,200 blanks in an hour if it could be fed continuously. The scissel, which amounts to about 30% of the metal operated on, is returned in bundles to the melting house. Marking. -The blanks are then passed to an edge rolling machine, by which they are thickened at the edge so as to form a rim to protect the finished coin from wear. This operation is called marking, because originally the edges

Fig. 4
were not only thickened but were also marked with an inscription. This is still done in the case of many foreign coins. The letters are sometimes sunk and sometimes raised. Like the graining or "milling" oa the edge of many coins, the inscriptions were intended to put a stop to the practice of clipping and filing coins, which was prevalent in the rith and 17 th centuries. They also render the manufacture of counterfeit coin more difficult At the

Fig. 3.-Cutting Machine. Royal Mint the blanks are passed between the parallel faces of a revolving steel plate and fixed block. The plate has a circular groove in ies face and the block bas a corresponding curved groove. The blank passes between these grooves.

The distance between the block and the plate is adjusted so as to be slightly les than the diameter of the blank, and the result is that the edge of the blank is thickened and its diameter reduced before it escapes from the machinc About 720 blanks are passed
 through this machine per minute. In marking machines in some foreign mints the groove is in the periphery of the revolving wheel, and the grooved block is curved (fig. 5).

Annealing and Blanching the Blanks.-The blanks are next softened by annealing, and are then thoroughly cleaned before being passed to the coining presses. In England gold and copper blanks are protected from oxidation, and after their passage through the furnace are mercly washed in colanders with water and dried with sawdust in a rotating drum. Silver blanks, however, are passed through rotary gas furnaces in which no attempt is made to exclude the air. The blanks are charged into a hopper at one end of the fumace and conveyed towards the other end by a revolving Archimedean screw. The blanks fall through an aperture after having been heated for a few minutes. They are at a dull red heat aad are allowed to cool gradually in the air and become blackened by the formation on the surface of a film of oxide of copper. This is removed by solution in hot dilute sulphuric acid and a layer of pere frosted silver is left on the surface, which appears dead white in colour, and has lost its metallic lustre. The operation is called "blanching." A similar method was formerly used for gold coins in England and is still employed in some mints. The removal of part of the copper from the blank raises the percentage of silver contained in them and this is allowed for by adding an equivalent amount of copper to the metal when it is melted. The amount of copper removed from silver blanks containing 900 to 925 parts of silver per 1000 is from 0.6 to 1.0 per 1000 . The process will probably be abandoped as soon as the tamishing of the metal during rolling and annealing can be avoided.

Coining Press.-The blanks are converted into coin by receiving an impretion from engraved dies. Each blank is placed on the lower of two dies end the upper die is brought down forcibly upon it. The pressure causes the soft metal to fiow like a viscous solid, but its lateral escape is prevented by a collar which surrounde the blank white it is being struck. The collar may be plaing or crenated (" milled "), or engraved with some device. In the last case the collar must be made in two or more pieces, as otherwise the coin cowid mot be removed without injury, The collar for gtriking English crown pieces is made in three sections now that raised lettering is put on the edge of the coin. Sunk letters, auch as occur on the edgen
of many toceign coins, wre pat on by the marking machine, and a plain collar is used in triking.

The coining presses now used are all modifications of the lever prese invented by Uhlhorn of Grevenbroich mear Cologes in 4839. The
at the Mint stribe from 90 to 125 coins per minute, mont of thean working at the rate of 110 coins per minute. There are 19 prowee and it tis posible with these to perike between 700,000 and $800,00{ }^{\circ}$ pieces in ea ordinary worlaing day.

Fic. 6.
press in use at the Royal Mint since 1882 is shown in figs. 6 and 7. The lever M worked from the front of the machine causes the flywheel to be connected with the driving-wheel and the machine starts. The blanks are placed in the slide I and the lowest one is carried fortward to the die in two successive movements of the "layer-on " K, a rod working backwards and forwards on n horizontal plate and sictuating the finger L, fig. 8. The lower die is firmly fired

Fig. 8.
to the bed of the machine, nind the blank ls placed exactly ppon it. The collar A^{\prime} is then raised by the lever G so as to encircle the blank. and the upper die which is held at A is brought down. This is done by the hittle crank B on the axle of the fiy-wheel, acting through the rod C, and the bent lever D, which forms a toggle-joint at E witb the vertiral piece of metal below it. The straightening of the toggitejoint when C is pushed forward lorees A down to stribe the coin. The reverse movement of D lifts up the upper die and the collar drops gimultaneotsly so that its upper aurface is level with the lace of the lower die on which the finished coin lies. Another blank moved on by the finger L pushes off the finished coin which falls down the tabe N. The diagram, fig. 9 , shows the relative position of the dies and ievern more clearly. The dies nind collar are chaded. The premes

Weighing the Coins.-Gold and silver coins are examined and tested by ringing, and each coin is then weighed separately by being paseed over delicate automatic balances. The first automatic balance for weighing single coins was introduced at the Bank of England in 1843. and was designed by William Cotton, the deputy governor of the Bank. In 185I these balances, improved by Richard Pilcher were introduced at the Royal Mint, and modifications of them are now used at most foreign mints. For mint use it is necessary, that they slall distinguish between " light," "heavy and "good" coins which do not differ from standard by more than the small weight known as the "remedy " (see above). The balances used in the Royal Mint were further improved by J. T. Butler in the year 1889. The balance consists essentially of a beam with two scale pans, one for the coin and the other for the counterpoise. The beam is released and in the course of a second or so takes up a certain position dependent on the

Fic. 9. relative weights of the coin and counterpoise. Its position in then fued by an automatic grip, and the coin falling down a shoot enters one of three compartments of a box, according to the position of the beam when it is arrested. The chief working parts are sinown in fig. 10. The beam A is of steel made in one piect.

Fic. 10
about II in. long. Its centre and end knife edges are shown in fig. II. The scale pan for the coin is shown in fig. I2. B is tbe pan on which the com rests, at a point above the beam. The coins are placed in a rouleau in the hopper C and the lowest one is pushed on to the pan B by n slide not shown in the figure. While the coin is being moved the hanger D is held firmly by the lorcepe E to prevent the pan from being pushed sideways. The forceps are then opened and the beam released, but at this moment the levelling bar F is allowed to drop momentarily by a bent lever G acting on the pin G^{\prime}. until the ends of \mathbf{F} press down on a stirrup in tach hanger at \mathbf{H}, \mathbf{H}. This bringe the beam to a horisontal position. The lever G at once

Ifta the ber F again by acting on the pla G ' so that the bar F dodes not touch the stirrups at H and the beam and hangers are free to move. The coin is balanced by the brass counterpoise I on the lefthand hanger and by little wrights made of wire actactied to the right-hand hanger at K. If the coin is heavier than the loweak legal weight (that is, the standard weight less the remedy) the righthand side of the beam begins to fall and the left-hand one is raised. This movement proceeds until the stirrup \mathbf{L} below the left-hand hanger is raised far enough to toueh the rod M, which is equal in weight to twice the remedy. The movement is then topped provided that the weight of the coin is not greater than the standard meight plus the remedy. If it is heavier thac this, it raises the

Fig. 12.

Trial of the Pyx.-Periodical examinations of the coips issued by the Mint have been made from very early times in England by persons appointed by the Crown. Specimens are selected from the finished coin and are put into a box or "pyx." At intervals these coim are weighed and assyed by a jury of skilled permons and the results reported to the Crown. A trial of the pyx is mentioned in the Lansdowne MSS. as having taken place in the reign of Heary II. but the practlce had probably originated much earlier. The trial is now held annually by a jury consisting of freemen of the Company of Goldenithe Coins from the London and Australino mints are examined. The Company has been entrusted with the duty since the time of James 1. Coins of foreign mints are generally subcitted to examination by a committee of eminent chemists and metallurgists whose report is published in the official journals.

A full account of the work of the Mint, with valuable tables giving the amoust of the coinage of gold and silver and brogze in the United Kingdom and the colonies in detail, and a resume of the coinages of foreign countries, will be found in the Annual Reports of the Depuly Master and Comptroller of the Mish, which have been published since 1870.
(T. K. R.) .

Mifti, EARLS OF. The Scottish border family of Elliot which has held the earldom of Minto since 1813 has had many distinguished members. Sir Gilbert Elliot, bart. (1651-1718), and his son and successor, another Sir Gilbert Elliot (1693-1766), were both celebrated Scottish judges and both took the official title of Lord Minto. The elder Sir Gilbert was sentenced to death for bis share in the rising of the earl of Argyll in 1685, hut was afterwards pardoned; the younger Sir Gilbert was a scholar and an agriculturist. Among the children of the latter were John Elliot (d. 1808), a naval officer, who served as governor of Newfoundland and was made an admiral; Andrew Elliot, the last English governor of New York; and the poetess Jean, or Jane, Elliot (c. 1727-1805), who wrote the popular ballad "Flowers of the Forest." The eldest son, Sir Gilbert Elliot (1722-1777), who became the third baronet in April 1766, was a member of parliament from 1753 to 1777, and a friend and follower of the earl of Bute. He filled several public offices, and Horace Walpole said he was " one of the ablest members of the House of Commons." His second son was the diplomatist, Hugh Eliot (1752-1830), who represented his country at Munich, at Berlin, at Copenhagen and at Naples. He was governor of Madras from 1814 to 1820, and he died on the roth of December 1830 .

See the Memoirs of the Right Hon. Hugh Elliol, by the conntess of Minto (Edinburgh, 1668).
The third baronet's eldest son was Gilbert Elliot, ist earl of Minto (1751-1814). About 1763 Gilbert and his brother Hugh were sent to Paris, where their studies were supervised by David Hume and where they bccame intimate with Mirabeau. Having passed the winters of 1766 and 1767 at Edinburgh University, Gilhert entered Christ Church, Oxford, and on quitting the university he was called to the bar. In 1776 he entered parliament as an independent Whig. He became very friendly with Burke, whom he helped in the attack on Warren Hastings and Sir Elijah Impey, and on two occasions was an unsuccessful candidate for the office of speaker. In 1794 Elliot was appointed to govern Corsica, and in 1797 he assumed the additional names of Murray-Kynynmond and was created Baron Minto. From 1799 to 1801 he was envoy-extraordinary to Vienna, and having been for a few months president of the board of control he was appointed governorgeneral of India at the end of 1806 . He governed with great success until 1813. He was then created Viscount Melgund and earl of Minto. He died at Stevenage on the $215 t$ of June 1814 and was buried in West minster Abbey.
The earl's second son was Admiral Sir George Elliot (1784 1863). who as a youth was present at the battles of Cape St Vincent and the Nile, and who was secretary to the admiratiy from 1830 to c\&34 A nephew of the earl was Sir Charles Elliot (1801-1875) also an admiral, who took a prominent part in the war with China in 18.0. Afterwards he was governor of Bermuda, of Trinidad and of St Helena.

Gilberi Ellot-Mtrray-Kynynyond, and earl of Minto ($1782-1859$), eldest son of the $18 t$ earl, was ambassador to Berlin from 1832 to 1834 , first lord of the admiralty from 1835 to 1841 and lord privy seal from 1846 to 1852 . His influence in the Whig party was partly due to the fact that bis daughter, Frances, was the wife of Lord John Russell.

His son Wialiam Hugh, the 3rd earl ($\mathbf{2 8 1 4 - 1 8 9 1 \text {), was the }}$ tather of the 4th earl, Gilbert Join Eliot-Murbax-Kynynmond (1845-), who joined the Scots Guards in $\mathbf{1 8 6 7}$. In 1874, in the capacity of a newspaper correspondent, he witnessed the operations of the Cartists in Spein; be took service with the Turkish army in the war with Russia in 1877 and served under Lord Roberts in the second Aighan War (1878 -79), having narrowly escaped accompanying Sir Louis Cavagnani Kabul. He acted as private secretary to Lord Roberts during his mission to the Cape in 1881; as military secretary to Lord Lansdowne during his governor-generalship of Canada from 1883 to 1885; and as chief of the staff to General Middleton in the Riel Rebellion in Canada (1885). Having succeeded to the earldom in 1891 he was appointed governor-general of Canada in 1898. His term of office ($\mathbf{~} 898-1904$) was distinguished hy a visit of the prince and princess of Wales to the colonies. In 1905, on the resignation of Lord Curzon, Lord Minto was appointed viceroy and governor-general of India, retiring in 1910.
1 The 4 th earl's brother, the Hon. Arthur Ralpb Douglas Elliot (b. 1846), editor of the Edinburgh Review, was a member of parliament from 1880 to 1892 and again from 1898 to 1906, and from 1903 to 1006 he was financial secretary to the treasury. Sir Francis Edmund Hugh Elliot (b. 8851), a grandson of the 2nd earl, became British minister at Athens in 1903.
See Hon. G. F. S. Eliot, The Border Elliots and the Fanily of Minto (Edinburgh, 1897): the article INDIA: Hislory; also the Life and Letters of the first Earl of Minto, 175 5-1806 (1874) and Lord Minfo in India, 1807 -1814 (1880), both edited by the countess of Minto; and Sir J. F. Stephen, The Slory of Nuncomar and the Impeachment of Sir E Impey (1885).

MIATI, WILLAM ($1845-1893$), Scottish man of letters, was horn at Auchintoul, Aberdeenshire, on the roth of October 1845. He was educated at Aberdeen University, and spent a year at Merton College, Oxford, He was assistant professor under Alexander Bain at Aberdeen for some years; from 1874 to 1878 he edited the Examiner, and in 1880 he was made full professor of logic and English at Aberdeen. In 1872 he published a Manual of English Prose Literature, which was distinguished hy sound judgment and sympathetic appreciation; and his Characteristics of English Poets from Chawcer to Shirley (1874) showed the same high qualities. His other works include: The Literalure of the Georgian Era (1894) edited with a biographical introduction hy W. Knight a monograph on Defoe in the English Men of Lellers series (1879); three novels of small importance, and numerous articles on literary subjects in the gth edition of the Encyclopaedia Britannsica. He died on the rst of March 1893.
MINTURNAE an ancient city of the Aurunci, in Italy, situated on the N.W. bank of the Liris with a suburb on the opposite bank 11 m . from its mouth, at the point where the Via Appia crossed it by the Pons Tirctius. It was one of the three towns of the Aurunci which made war against Rome in 314 b.c., the other two being Ausons (see Sessa Aurunca) and Vescia; and the Via Appia was made two years later. It became a colony in 295 b.C. In 88 b.c. Marius in his flight from Sulla bid himself in the marshes of Minturnae. The ruins consist of an amphitheatre (now almost entirely demolished, hut better preserved in the 18 th century), a theatre, and a very fine aqueduct in opus reiculatum, the quoins of which are of various colours arranged in patterns to produce a decorative effect. Close to the mouth of the river was the sacred grove of the Italic goddess Marica. It is still mentioned in the 6th century, but was probahly destroyed by the Saracens, and its low site, which had become unhealthy, was abandoned in favour of that of the modern town of Minturno (known as Traetto until the rgth century), 459 ft . above sea-level. A tower at the mouth of the river, erected between 961 and 981 , commemorates a victory gained by Pope John X. and his allies over the Saracens in 915 . It is briilt of Roman materials from Minturnae, including several inscriptions and sculptures.

R. Laurent-Vibert and A. Pidanol, ibid. (1907). p. 495 ; G. Q. Giglioto Notisic degh Scasi (1908) p. 396.
(T. As.)

InNOCIUS, FRAIE MARCDS, one of the carliest if not the earliest, of the Latin apologists for Christianity. Of his personal history nothing is known, and even the date at which he wrote can be only approximately ascertained. Jerome (D_{c} vir. ill 58) speaks of him as "Romac insignis causidicus," hut in this he is probahly only improving on the expression of Lactantios (Inst. dip. v. 1) who apeaks of him as "non ignobilis inter causidicos loci." He is now exclusively known by his Octarnss, a dialogue on Christianity between the pagan Caecilius Natalis ${ }^{2}$ and the Christian Octavius Januarius, a provincial lawyer, the friend and fellow-student of the author. The scene is pleasantly and graphically laid on the beach at Ostia on a holiday afternoon, and the discussion is represented as arising out of the homage paid hy Caecilius, in passing, to the image of Serapis. His arguments for paganism (possibly modelled on those of Celsus) are taken up seriatim by Octavius, with the result that the assailant is convinced. Minucius himself plays the part of umpire. The form of the dialogue is modelled on the De natura deorsm and De divinatione of Cicero and its style is both vigorous and elegant if at times not exempt from something of the affectation of the age. Its latinity is not of the specifically Christian type. If the doctrines of the Divine unity, the resurrection, and future rewards and punishments be left out of account, the work has less the character of an exposition of Cbristianity than of a philosophical and ethical polemic against the absurdities of polytheism. While it thus has much in common with the Greek Apologies it is full of the strong common sense that marks the Latin mind. Its ultimate appeal is to the fraits of faith.
The Octavius is admittedly earlier than Cyprian's Quod idola dib non sint, which borrows from it ; how much earlier can be determined only by settling the relation in which it stands to Tertullian': A pologeticum. Since A. Ebert's exhaustive argument in 1868 , repeated in 1889, the priority of Minucius has been generally admitted; the objections are stated in the Dict. Chr. Biog. article by G. Salmon. Editions: F. Sabaeus-Brixianus, as Bk viii. of Arnobius (Rome, 154): F. Baiduinus, first separate edition (Heidelberg, 1560): Migne, Patrol. Lat. iii. 239: Halm in Corp. Scr. Ead Laf. Vienna, 1867); H. A. Holden. Transsations: R. E. Wallis, in Ante-Nic. Fathers, vol. iv.; A. A. Brodribb's Pagan and Pyrilan. Literature: In addition to that already cited see H. Boenig's art in Hauck-Hersog's Realencyk. vol. 13, and the various histories of early Christian Literature by A. Harnack, G. Kriger, A. Ehrhard and O. Bardenhewer.

MINUET (adapted, under the influence of the Italian minuette, from Fr. menued, small, pretty, delicate, a diminutive of menx, from Lat. misufus; the word refers probahly to the short steps, pas menus, taken in the dance), a dance for two persons, in $\frac{t}{4}$ time. At the period when it was most fashionable it was tow, ceremonious, and graceful (see Dasce). The name is also given to a musical composition written in the same time and rhythm, but when not accompanying an actual dance the pace was quicker. An example of the true form of the minuet is to be found in Don Giovanni. The minuet is frequently found as one of the movements in the Suites of Handel and Bach. Haydn introduced it into the symphony, with little trace of the slow grace and ceremony of the dance. In the hands of Beethoven it becomes the scherzo.

MINUSINSK, a town of Russia, in East Siberia, and the government of Yeniseisk, 180 m . S.S.W. of Krasnoyarsk railway station, and 5 m . from the right hank of the Yenisei, in a fertile prairie region. Pop. (1897), 10,255. - It is a centre for trade with the native populations of the Sayan Mountains and northwestern Mongolia. It has an excellent natural history, ethno graphical and archaeological museum (1872), with a library and a meteorotogical station. Coal and iron abound in the vicinity.
${ }^{1}$ This name occurn in dx inscriptions of the years $211-217$ found at Constantine (Cirta), Nortb Arica ($C I L$ vol. viii.). Lithe the other North African fathers Tertullian, Cyprian, Arnobius and Lactantius, be was a lavyer. Some ose may have been made of thetorical expremions of M. Cornelius Fronto of Cirta (d. c A.D. 170).

M11HOLI (Lat. minulws, sman; minwere, to make less), an adjective meanigg of very small size, petty or trifling; also extremely precise. In this sense the word is pronounced mi-mite. As a substantive and pronounced minnii the word (usually in the plural) is applied to a written summary of the transactions of a meeting of a public or otber body, or to a memorandum of instructions, 8 cc . A Treasury minute in the United Kingdom is an official memorandum authoriaing certain procedure. "To minute" is to draw up such a summary or memorandum. More particularly, " minute" is used of the sistieth part of any unit); in time, of an hour; and in astronomy, geometry, geography, \&c., of a degree in the measurement of a circle. The seragesimal system of division was originally used by the ancient Babylonian astronomers, was adopied by Ptolemy; and the sixtieth part of a degree, and its farther subdivision into sixty parts, was called in Latin pars minulac primad, and pars mimulae secwordac respectively, bence the English " minute" and " second."
MDNUTB MEN: in the American War of Independence, militiamen who had undertaken to turn out for service at a minute's notice. In Massachusetts the minute men were enrolled by an act of the provincial congress of the 23rd of November 1774, and in Boston alone they numbered 16,000 prior to the outbreak of the war. The Americans who fought in the opening action of Lexington were " minute men."
MIOCENE, in geology, the system of strata which cocurs hetween the Ofigocene and the Pliocene. The term, derived from the Greek μ Cion, less, and seusors, recent, was introduced by Sir Charles Lyell, as indicating palacontologically a less percentage of recent species than is found in the Pliocene. Variable lacustrine, estuarine and marine deposits, especially characterized by soft calcareous sandstones and conglomerates (" molasse") and sandy shell-beds ("faluns "), make up the Miocene system of the Ncogene or newer Tertiary in Europe and western Asia, where it attains its fullest development.
A. de Lapparent's classification is here adopted:-
V. Pontion or Pasmonian.-Brackish- and fresh-water marls. limestones and gravels: occurring at Vienna, in the Caspian and eastern Mediterranean basins, and in southern France; mammalian deposits of Pikermi and the Siwalik Hills, with Hipparion gracile, Mostodon losgirostris, Rhinocrros schberermachi, numerous ruminants, Congeria subglobose. Marine beds of Belgium (Black Crag) and north Germany.
IV. Surmation.-More or less salt-water sands and maris of the ame basins with Mastodon angustidens, Auchitherium aurelionense, Cerikium piclum, C. rubiginasams, Oslrea gingensis, Macira podolica, Tapes gragarius. Stages IV. and V. represented in aorth-western France by marine sands (Cardite strictissima), and in Algeria and Morocoo by marine marls and limestones.
III. Vindobonian.-Sub-stages:-
(b) Tortonian: Marine marls with Ancillara glandiformis, Conus antiquus, Ranella marginata, Trochus polulus, Volula rarispina. Laminated fresh-water limestones of Oeningen with fish, countless insecte, and plants chowing seasonal changes of the year in their ruccessive tayers (Acer tribobatum, Populws mudabilis, Juglans ccuminata, Camphora, Podogonium); and the lacustrine deposits of contral Spain.
(a) Hanctian: Marine shelly sandstones and conglomeratca (" molasse" of Switzerland) with Ostrea gingensis. Cardita jouanneti, Panopoece menardi, Conres ventricosus; the "laluns" of Touraine and Aquitaine; and the marine beds of Black Sea banin. At the bass of the marine Helvetian in the Vienna basin clays ("Schlier ') with rock-salt and gypsum, and the lacustrine beds of Gascony (Caketire de Simorra with Mastodom topiroides, M. simorrensis, Dinotheriving gipontewm) cocur.
II. Burdigalicnt or Langhians.-Marine "Ealuns" of Bordeaux (Oition basterofi, Turritella terebralis): marls of Langbe in Liguria Pecies burdigaleasis); marine deposits of Viemaa basin, Caspian region, Tunis and Algeria; fresh-water sands and marls of Orleans with Mostodon angustidens, M. Lopiroides, Dinotherinm cuoveri, Anthratotherium onoidexm; Lillorimella clays of Mainz basin with Acerotherixm incisiomm, Lillorimella acuta, Dreyssemic brardi; freahwater grey " molaces" of Switzerland, with acacias, laurels, palms and requoias.

1. Aguilomian.-Limestones, gands and marls of lakes and lagoons. with Anthracotherium, Anchitherium, Acerotherixm incisivmm. Palasochorrus !ypus. Helix ramomdi, Lèmnasa pachypastar, Plamorbis соrnu, Potamides Lamarcki: Quercus, Acacia, ficws, Camphore. Cinnamomum, Taxodium, Clyplostrobns, Sequoia, Sabal. Phoenxx. occur in central France (Catcaire de la Beauce); the plant-beds of

lipnite, sypaum, red marls and conglonserates; " brown-coal series " of north Germany with lignite Intercalated marine sandstosea occur in Aquitaine and near Marseilles; other marine developments occur in the "faluns" of Gascony (Lepidocyeling manvelh, MioFopsima burdicalemsis). the upper Aquitanan of Bavaria and AustriaHungary (Osirrac crassiassima, Pectuonculiss prlosws), and in mouthera Spaia, ftaly and Malta (Lepidocyidena and Lihothamnium), Basic tuffs and lavas occur in Auvergne.
Some authors assign Stage 1. to the Otigocene, Stage V. to the Pliocerc; Stages I. and II. correspond to the first, and III. to the second Mediterranean Stage of E. Suesa
In Europe a gencral emergence of hand in late Oligocene time resulted at the beginning of the Miocene (Aquitanian) in widespread lacustrine conditions throughout the western part of that continent, upon which the ser encroached at few points, though it bad gainod accese to the Vienma basin and extended westward into Bavaria. Otherwise, marine Aquitanian deposits are confined to the Mediterrancan basin and the south-west corner of France. Most of northern Europe, including the British Isles, remained dry land throughout Miocene time. During the Burdigalian period. with increasing elevation of the mountain regions and depreasion of the Mediterranean and Caspian basins, a marine invasion began. which passed its maximum in the Vindobonian. The Mediterrancan reached eastward to Persia, and, st ill open to the Atlantic, submerged north Africa, most of Italy and the neighbouring islands. It asconded the Rhone valley, penetrated to the Mainz besia. and skirting the north flank of the Alpine region passed into the Vienva basin and thence around the Carpathian tract intn the Pontic and Caspian depression. The waters of the Allantic further invaded the regions of the Garonne and the Lofre. isolated Brittany and encroached upon north Eucope between Belgium and Denmark.
The elevation of th'e Alps, and probably of the whole Alpine system of mountain folds from Morocco to Indo-China, though initiated by earlicr Miocene and late Oligocene movements, took place mainly during the latter part of the Vindobonian period, and was completed in the Sarmatian. The whers of the ocean were then excluded from the Caspian and caveen Mediterranean besins, and replaced by vast fresh-water lukes: while brackishwater lagoons occupied much of the western Miediterranean. This great reireat of the sea culminated in the Pontian atage, and land-connexion was established between North and South America. Outside the Eurasinn region, Aquitanian deposita occur in Formosa, Java, Bornco and Madlagascar ; while Burdigalian deposita are found in Mongolia. The Vindobonian ranges from Greenland, Iceland and Spitabergen, where it contains lignite and plants denoting a temperste climate, by Japan, Java and ladia, to Victoria It recurs in the Azores and the Antilles, and at intervals along the Annerican continent from Patagonia to Alaska, where all threo lower stages are represented, as also in the Wist lodies. Along the Atlantic slope of the United States and sircund the Gulf of Mexico the complete Miocene series is present, tie Sarmatian and Puntian also occur in California.

The Miocene was a period of change, of mountain-building. climatic differentiation hitherto unprecedented, and of maderation in organic life, especially on land. The rich European gora indicatea an equable and moist sub-tropical climate, slowly cooling, as witnessed by the gradual increase of trees with deciduous foliage amongst those characteristic of more tropical conditions, Oaks, maples, poplars, planes, willows, Cinnamomum, Camphora, Myrica, Sequoia. Taxodium, Glyplostrobus and palms, flourished together. Thic marine calcareous alga Lithothammium became an important recf-building organism. Nummulites gave place to Lepidocydina: lamellibranchs and particularty gasteropods abounted in the shallow seas, of which the shark Carchurodon and the marine mammats Squalodon and Hahiherium were amongst the largest denizena. The mammalian land-fauna of Europe made striking advances, and assumed a decidedly African aspect. Marsupials had diseppeated from it before the Burdigalian period, during which primitive gencra like Palacochocrus, Hyopolamus, and the hornleas ruminants Anthracotheriumt and Brachyoprus, became extinct, while proboecidcans (Mastodon, Dinotherium), rhinoceros and apos (Orcopithecus, Pliopithecrs) camc in, followed by antelopes, beavers and probably Machacrodus in the Vindubonian. The spread of turfforming grasses was succeeded in the Pontian by an enormous increase of herbivorous mammals, including Hippariom and horned ruminants (Halladotherimm, Antilope, Corvus. Camelopardalis, Palacotragns), whose migrations were lacilitated by the desiocation of the Mediterrancan basin.
(C. B. W.")

MIOT DE M自UTO, ANDRE FRAMCOIS, COYTE (1762-1841), French statesman and scholar, was born at Versailles (Seine-et-Oise) on the oth of February 1762. He was a high official in the war office before the Revolution, and under the Republic he eventually became secretary-general for foreign affairs. That he was not denounced under the Terror was due to the fact that be was indispensable in his department. In 1795 be was sent as French envoy to Florence; then to Rome, and on
his return to Florence received orders to proceed to Corsica, which, after its evacuation by the British, was in a state of anarchy. In Corsica he allied himself with Joseph Bonaparte, and after pacifying the island returned to Italy. Recalled by their Dectory in 1798 because of his refusal to foment insurrection in Italy, he spent some time in retirement, but he was in the diplomatic service in Holland at the revolution of 18. Brumaire (Nov. 9, 1799). Under the consulate he was secretary-generad at the ministry of war, and a member of the council of state, and was sent on a second mission (1801-1802) for the pacification of Corsica. In 1806 he joined Joseph Bonaparte in Naples as minister of the interior, afterwards following him to Spain as comptroller of the household, but he returned to France in the retreat of 1813. Next year he was created comte de Mélito, and during the Hundred Days be served as commissary extraordinary with the XII. Army division. He took no part in politics after Waterioo, where his son-ip-law, General J. B. Jamin, was killed, and his own son mortally wounded. He visited Joseph Bonaparte in America in 1825, and then spent some years in Germany with hisdaughter, whose second husband, General von Fleischmann, represented the king of Würtemburg in Paris in s831. He was admitted in 8835 to the French Academy on the merits of his translations of Herodotus (Paris, 1822) and Diodorus (Paris, 1835-1838). He died in Paris on the sth of January 1841.
Miot de Melito had kept a diary which, arranged for publication by his son-in-law, General yon Fleischmann, covers the years from 1788 to 1815, and is of interest for the history of the Bonaparte family and of Joseph's dominion in Spain. Published in France In 1858, it was translated into English by Mrs C. Hoey and J. Lillie (2 vols., 1881); and also into German (Stuttgart, 1866-1867). See Albert Gaudin, Les Arretes Miot (Ajaccio, 1896).

MIQUEI, JOHANN VON (1820-1901), German statesman, was born at Neuenhaus, Hanover, on the roth of February 1829, being descended from a French family which had emigrated during the Revolution. He learnt law at the universitics of Heidelberg and Göttingen. Studying the writings of Karl Marx he became a convert to an extreme revolutionary, socialistic and axheistic creed; hut though he entered into correspondence with Marr, with the object of starting a revolutionary movement, he does not appear to have taken any overt part in the events of 1848-1849. Further study of political economy soon enabled him to pass out of this phase, and in 1850 be settled down to practise as an advocate at Cöttingen. He acquired repute as an able lawyer and a rising politician, and especially for his knowledge of financial questions. He was one of the founders of the German Nalioralverein, and in 1864 be was elected a member of the Hanoverian parliament as a Liberal and an opponent of the government. He accepted the annexation of Hanover by Prussia without regret, and was one of the Hanoverians whose parliamentary abilities at once won a cornmanding position in the Prussian parliament, which he entered in 1867. For some reason-perhaps because Bismarck did not entirely trust bim-he did not at this time attaia quite so influential a position as might have been anticipated; nevertheless he was chairman of the parliamentary committee which in 1876 drafted the new rules of legal procedure, and he found scope for his great administrative abilitics in the post of burgomaster of Osnabrick. He held this position from 1865 to 1870, and again from 1876 to 1879 , being in the meantime ($1870-1873$) a director of the Discontogesellschaft. In 1879 he was elected burgomaster of Frankfort-on-Main, where he gained a great reputation for the energy with whicb he dealt with social questions, especially that of the housing of the poor. Probably owing to his early study of soclalism, he was very ready to support the new state socialism of Bismarck. He was the chief agent lin the reorganization of the National Liberal party in 1887 , in which year he entered the imperial Reichstag. After Bismarck's fall in 1890 be was chosen Prussian minister of finance, and beld this post for ten years. He distinguished himself by his reform of the Prussian system of taxation, the one really successful measure of the new peign in internal affairs. An attempt, however, to reform the eytetem of imporial financein $\mathbf{1 8 9 5 - 1 8 9 4}$ failed, and much injured
his reputation. Miquel had entirely given up his Inberallim, and aimed at practical measures for improviag the condition of the people irrespective of the party programmes; yet some of his measures-auch as that for taxing "Warreah"user" (stores)-were of a very injudicious nature. He professed to aim at a union of parties on the basis of the satisfaction of material interests, a policy to which the name of Sammulung was given; but his enemics accused him of constantly intriguing ageinst the three chanceliors under whom he served, and of himself attempting to secure the first place in the state. Thesympathy which be expressed for the Agrarians increased his unpopularity among Liberals and industrials; but he pointed out that the state, which for half a century had done everything to belp manufico tures, might now attempt to support the failing industry of agriculture. In June 1901 the rejection of the canal ball led to a crisis, and he was obliged ta send in his reaignation. His health was already failing, and he died on the 8th of September of the same year at his house in Frankfort.
hiquelhers (Miqueletes or Meueletes) were irregelar local troops in Catalonia who derived their name, it is said, from Miguel or Miquelot de Prats, a Catalan mercenary captain in the service of Cesare Borgis. They enjoyed a certain prominence in the minor wars of Spain during the. ipth and 88 th centuries and in peace seem to have piundered travellers. In the War of the Spanish Succession (g.v.) the Miquelets continued tho struggle against the French claimant until loag after the peace. During the Peninsular War they were exceedingly successful in harassing the French invaders in the mountains of Catalonia. Sometimes they even attempted operations in large bodies, as in the operations round Gerona in 1808 and 1800 . They were maintained by the several parishes, not by the central or the provincial governments, and as they had to turn out for duty on sound of the village alarm-bell (somaten) they are frequently called somatenes.

MIRABEAd, ANDRÉ BONIFACE LOUIS RIqUETI, Vicontis DE (1754-1792), brother of the orator Mirabeau, was one of the reactionary leaders at the opening of the French Revolution. Sent to the army in Malta in 1776 he spent part of his two years there in prison for insulting a religious procession. During the War of American Independence he was in several sea-fights with the English, and was at the taking of Yorktown in 1781. In the following year he had two narrow escapes from drowning. In 1789, with his debts paid up by his father, he was elected by the noblesse of Limoges a deputy to the States Gemeral He was a violent Conservative and opposed everything that threatened the old regime. His drunkenness produced a corpulency which brought him the nickname Mirabeau Tonneau (" Barrel Mirabequ "); but he was not lacking in some of that insight which marked his brother. He shared fully in the eccentric family pride; and boasted of his brother's genius even when bitterly opposing him. He emigrated about 1790 and raised a legion which was to bear his name; but his insolesce alienated the German princes, and his command was tatea from him. He died in August 1792 of apoplexy or from a duel-in Freiburg im Breisgau. He wrote some verse as well as various pamphlets.
See Joseph Sarrazin, Minabeau Tonneaz, cin Condoltiere aws der Revoluthonszeit (Leipzig, 1893); and La Revolubion fransaise vols. xxi. and xxiv.; Eugène Berger, Le Vicomie de Mirabeau(Mirebean Tonneau). 1754-1702 (1904); and for a list of contemporary pamphlets, \&e., M. Tourneur, Bibliograpkic de la silla de Paris... vol. iv. (1906).

MIRABEAD, HONORE GABRIEL RIqUETI, COMTE DE (1749° 1791), French statesman, was born at Bignon, near Nemours, on the gth of March 1749 . The family of Riquet, or Ripueti, originally of the tittle town of Digne, won wealth as merchants at Marscilles, and in 1570 Jean Riqueti bought the chalteau and seigniory of Mirabeau, which had belonged to the great Provencal family of Barras. In 1685 Honore Riqueti obtained the title of marquis de Mirabean. His son Jean Antoine served with distinction through all the later campaigns of the reign of Louis XIV., and especially distinguished himself in 1705 at the battle of Cassano, where be was so severcly wounded in
the neek that he had ever after to wear a silver stock; yet he never rose above the rank of colonel, owing to an eccentric habit of speaking unpleasant truths to his superiors. On retiring from the service he married Françoise de Castellane, and left at his death, 红 1737, three sons-Victor marquis de Mirabeau, Jean Antoine, baill de Mirabeau, and Comte Louis Alexandre de Mirabeau. The great Mirabeau was the eldest surviving son of the marquess. When hut three years old he had a virulent attack of small-pox which left his face disfigured, and contributed to his father's dislike of him. Being destined for the army, he was entered at a pension militaire at Paris. Of this school, which had Lagrange far its professor of mathematics, we have an amusing account in the life of Gilbert Elliot, ist earl of Minto, who with his hrother Hugh, afterwards British minister at Berlin, there made the acquaintance of Mirabeau. On leaving this school in 1767 he received a commission in a cavalry regiment which his grandfather had commanded years before. He at once began love-making, and in spite of his ugliness succeeded in winning the heart of the lady to whom his colonel was attached; this led to such scandal that his father ohtained a lettre de cachet, and the young scapegrace was imprisoned in the isle of RE. The love affairs of Mirabeau form a well-known history, owing to the celehrity of the letters to Sophic. Yet it may be asserted that until the more durahle and more reputable connexion with Mme de Nehra these love episodes were the most disgraceful blemishes in a life otherwise of a far higher moral character than has been commonily supposed. As to the marquess, his use of lettres do caches is perfectly defensible on the theory of letters de cachet, and Mirabeau, if any son, surely deserved such correction. Further, they had the effect of sobering the culprit, and the more creditable part of his life did not begln till he left Vincennes. Mirabesu did not develop his great qualities of mind and character until hin youthful excesses were over, and it was not till 1781 that these began to appear. On being released, the young count obtained leave to accompany as a volunteer the French expedition to Corsics. After his return, be tried to keep on good terms with his father, and in 1772 he married a rich heiress, Marie Emilie, daughter of the marquess de Marignane, an alliance procured for him by his father. His wild extravagance, however, forced bis father to forestall his creditors by securing bis detention in stimi-exile in the country, where be wrote his earliest extant work, the Essai sur le despotisme. His viotent disposition now led him to quarrel with a country gentleman who had insulted his sister, and his semi-exite was changed by lettra de cachet into imprisonment in the Chatean diIf. In 1775 be was removed to the castle of Joux, to which, however, he was not very closely confined, having full leave to visit in the town of Pontarlier. Here he met Marie Thernese de Monnier, his Sophie as he called her. Of his behaviour nothing too strong can be said: be was introduced into the house as a friend, and betrayed his trust by inducing Mme de Monnier to fall in love with him. The affarr ended by his escaping to Switzerland, where Sophie joined him; they then went to Holland, where he lived by hackwork for the booksellers; meanwhile Mirabeau had been condemned to death at Pontarlier for rapt a ool, and in May 1777 he was seized by the French police, and imprisoned hy a lelles de cachet in the castle of Vincennes.
During his imprisonment he seems to have learnt to control his passions from their very exhaustion, for the early part of his confinement is marted by the indecent letters to Sophie (first pabished in 1793), and the obscene Erotica biblion and Me conversion, while to the later months belongs his political wort of any value, the Leftres de cochet, published after his liberation (1782). It exhibits an accurate knowledge of French constitutional history skilfully applied in an attempt to show that en existing actual grievance was not only philosophically unfuet hut constitutiorally iliegal. It shows, though in rather a diffuse and declamatory form, that npplication of wide historical knowledge, keen philosophical perreption, and genuine eloquence to a practical purpose which was the great characteristic of Mirabeau, both as a political thinker and as a statesman.

Whh his release from Vincennes (August 1780) begins the
second period of Mirabeau's life. He formd that his Sophie was an idealized verion of a rather common and itheducated woman, and she consoled herself with the affection of a ycung officer, after whome death she committed suicide Mirabeas first set to work to get the sentence of death still hanging over him reversed, and hy his eloquence not only succeeded in this but got M. de Monnier condemned in the costs of the whole la F proceedings. From Pontarlier be went to Aix, where he claimed the court's order that his wife shoudd return to him. She naturally objected, but his eloquence would have won his case, eves against Jean Etienne Marie Portalis, the leader of the Air Bar, had he not in his excitement actused his wife of infidelity, on which the court pronounced a decree of separation. He then intervened in the suit pending between his father and mother before the parlement of Paris, and attacked the ruling powers so violently that he had to leave France and again go to Hollnd, and try to live hy literary work. About this time began hia connetion with Mme de Nehra, the daughter of Zwier van Haren, a Dutch statesman and political writer, and a woman of a far higher type than Sophie, more educated, more refined, and more capable of appreciating Mirabeau's good points. His Hife was strengthened by the love of his petite horde, Mmo de Nehra, his adopted son, Luces de Montigny, and his little dog Clrico. After a period of work in Holland he betook himself to England, where his treatise on lettres de cached had heen much admired, being translated into English in 1787, and where he was soon admitted into the best Whig literary and political society of London, threugh his old schoolfellow Gilbert Elliot, who had now inherited his father's haronetcy and estates, and become a leading Whig member of parliement. Of all his English friends none seem to have been so intimate with him as the ist marquess of Lansdowne, better known as Lord Sbelburne, and Mr, afterwards Sir Samuel, Romilly. The latter became particularly attached to him, and really understood his character; and it is strange that his remarks upon Mirabeau in the fragment of autohiography which he left, and Mizabeau's letters to him, should have been neglected hy French writers. Romilly was iatroduced to Mirabeau hy Sir Francis D'Ivernois (1757-1842), and readily undertook to translate into English the Considerations swe lordre de Cincinnotws, which Mirabeau had written in 1785. Romilly writes thus of him in his autobiography:-
"The count was difficult enough to please; he was sufficiently impressed with the beauties of the original. He wemt over every part of the tranalation with me, observed on every passage in which justice was not done te the thought or the force of tho expreseion lost. and made many useful criticisms. During this occupation we had occasion to see one another often, and became very initmate ; and. as he had read much, had seen a great deal of the world, was acquainted with all the most distinguished pervons who at that time adorned either the royal court or the republic of letters ia France: had a great knowledge of French and Italian literature, and possessed very good taste, his conversation was extremely interesting and not a litile instructive. I had such frequent opportunitice of seeing him at thla time, and afterwards at a much more important period of his life, that I think his character was well known to me. doubt whether it has been so well known to the world, and 1 am convinced that great injustice has been done bim. This, indeed, is not surprising, when one considers that, from the first moment of his entering upos the careet of an author, he had been altogether indifferent how numerous or how powerful might be the enemies he should provoke. His vanity was certainly excessive: but I have no doubt that, in his public conduct as well as in his writings, he was desirous of doing good, that his ambition was of the nobiest kind, and that he proposed to himself the noblert eads. He was, however. like many of his countrymen, who were active in the calamitous Revolution which afterwards took place, not sufficiently scrupulous about the means by which those ends were to be aecomplished. He indeed to some degree professed this: and more than once 1 have heard him sy that there were occasions upon which 'ta petite morale était emmemie de la grande.' It is not surprising that wih sucb maxims as these in his mouth, unguarded in his expressions and caselcss of hịs repuration, he should have afforded room for the circulation of many stories to his disadvantage."
This luminous judgment, it must be noted, was written by a man of acknowledged purity of life, who admired Mirabeau in eariy life nol when be was a statesman, but when be was only a struggling literary man. The Considiations sur l'erdre
de Cimainviates which Romilly translated was the ooly important work Mirabeau wrote in the year 178 s , and it is a good specimen of his method. He had read a pamphiet published in America attacking the proposed order, which was to form a bond of association between the officers who had fought in the American War of Irdependence against England; the arguments struck him as true and valuable, so be re-arranged them in his own fashion, and rewrote them in his own oratorical style. He soon found sach wark not sufficiently remunerative to keep his pelife horde in comfort, and then turned his thoughts to employment from the French foreign office, either in writing or in diplomacy. He first sent Mme de Nehra to Paris to make peace with the authorities, and then returned himself, hoping to get employment through an ald literary collaboratew of his, Durival, who was at this time director of the finances of the department of foreign affairs. One of the functions of this official was to subsidize political pamphleteers, and Mirabeau had hoped to be so employed, but he ruined his chances by a series of writings on financial questions. On his return to Paris he had become acquainted with Etienne Clavière, the Genevese exile, and a banker named Panchaud. From them he heard plenty of abuse ρf stock-jobhing, and seizing tbeir ideas he began to regard stock-jobbing, or agiotage, as the source of all evil, and to attack in his usual vehement style the Banque de St Charles and the Compagnie des Eaux. This last pamphlet brought him into a controversy with Caron de Beaumarchais, who certainly did not get the best of it, but it lost him any chance of literary employment from the government. However, his ability was too great to be neglected by a great minister such as Charles Gravier, Comte de Vergennes undoubtedly was, and after a preliminary tour to Berlin at the beginning of 1786 he was despatched in July 1786 on a secret mission to the court of Prussia, from which he returned in January 1787, and of which he gave a full account in his Histoire secrite de la cour de Berlin (1789). The months he spent at Berlin were important in the history of Prussia, for while he was there Frederick the Great died. The letters just mentioned show clearly what Mirabeau did and what be saw, and equally clearly how unfit he was to be a diplomatist. He certainly failed to conciliate the new king Frederick William; and thus ended Mirabeau's one attempt at diplomacy. During his journey he had made the acquaintance of Jakob Mauvilion ($\mathrm{I}_{243-1794 \text {), whom be found possessed of a }}$ great number of facts and statistics with regard to Prussia; these he made use of in a great work on Prussia published in 1788. But, though his De la monarchie prussienne sous Frederic le Grand (London, 1788) gave him a general reputation for historical learning, he had in the same year lost a chance of political employment. He had offered himself as a candidate for the office of secretary to the Assembly of Notables which the king had just convened, and to bring his name before the publie published another financial work, the Denonciation de lagiotage, whicb abounded in such vioient diatribes that he not only lost his election, but was ohliged to retire to Tongres; and he further injured his prospects by publishing the reports he had sent in during his secret mission at Berlin. But 1789 was at hand; the states-general was summoned; Mirabeau's period of probation was over.

On hearing of the king's determination to summon the statesgeneral, Mirabeau started for Provence, and offered to assist at the preliminary conference of the noblesse of his district. They rejected him; he appealed to the tiers ctat, and was returned both for Aix and for Marseilles. He elected to sit for the former city, and was present at the opening of the states-general on the 4th of May 1789 . From this time the record of Mirabeau's life forms the best history of the first two years of the Constituent Assembly, for at every important crisis his voice is to be heard, though his advice was not always followed. He possessed at the same time great logical acuteness and the most passionate enthusiasm. From the beginning he recognized that government exists In order that the bulk of the population may pursue their daily work in peace and quiet, and that for a government to be successful it must be strong. At the same time be thoroughly
comprehended that for a govemment to be strong it must be in harmony with the wishes of the majority of the people. He had carefully studied the English constitution in England, and be hoped to establish in France a system similar in principle but without any slavish imitation of the details of the English constitution. In the first stage of the history of the statesgeneral Mirabeau's part was very great He was soon recognized as a leader, to the chagrin of Jean Joseph Mounier, because he always knew his own mind, and was prompt in emergencies. To him is to be attributed the successful consolidation of the National Assembly. When the taking of the Bastille had assured the success of the Revolution, he warned the Assembly of the futility of passing fine-sounding decrees and urged the necessity for acting. He declared that the famous night of the $4^{\text {th }}$ of August was hut an orgy, giving the people an immense theoretical liberty while not assisting them to practical freedom, and overthrowing the old regime before a new one could he constituted. His failure to control the theorizers showed Mirabeau, after the removal of the king and the Assembly to Paris, that his eloquence would not enable him to guide the Assembly by himself, and that he must therefore try to get some support. He wished to establish a strong ministry, which shouid he responsible like an English ministry, but to an assembly chosen to represent the people of France better than the English House of Commons at that time represented England. He first thought of becoming a minister at a very early date, if we may believe a story contained in the MEmoires of the duchesse d'Abrantes, to the effect that in May 1789 the queen tried to bribe him, but that he refused this and expressed his wish to be a minister. The indignation with which the queen repelled the idea may have made him think of the duke of Orleans as a possible constitutional king, because bis title would of necessity be parliamentary. But the weakness of Orleans was too palpable, and in a famous remark Mirabeau expressed his utter contempt for him. He also attempted to form an alliance with Lafayette, hut the general was as vain and as obstinate as Mirabeau himself, and had his own theories about a new French constitution. Mirabeau tried for a time, too, to act with Necker, and obtained the sanction of the Assembly to Necker's financial scheme, not hecause it was good, but because, as he said, "no other plan was before them, and something must be done."

Hitherto weight has been laid on the practical side of Mirabeau's political genius; his ideas with regard to the Revolution after the 5th and 6th of October must now be examined, and this can he done at length, thanks to the publication of Mirabeau's correspondence with the Comte de la Marck, a study of which is indispensable for any correct knowledge of the history of the Revolution between 1789 and 1791. Auguste Marie Raymond, prince d'Arenberg, known as the Comtc de la Marck, Tras a Flemish nobleman who had been proprietary colonel of a German regiment in the service of France; he was a close friend of the queen, and bad been clected a member of the states-general. His acquaintance with Mirabeau, begun in 1788, ripened during the following year into a friendship, which La Marck hoped to turn to the advantage of the court. After the events of the 5 th and 6th of October he consulted Mirabeau as to what measures the king cught to take, and Mirabeau, delighted at the opportunity, drew up an admirable state paper, which was presented to the king by Monsicur, afterwards Louis XVIII. The whale of this Mimoire should be read to get an adequate idea of Mirabeau's genius for politics; here it must be summarized.
The main position is that the king is not free in Paris; be mast therefore leave Paris and appeal to France." "Paris n'en veut que l'argent; les provinces demandent des lois." But where must the king go? "Se retirer a Metz ou sur toute autre frontiére serait déclarer la guerre a la nation et aboiquer le tronte. Un roi qui est la seule sauvegarde de son peuple ne luit point devant son pemple; it le prend pour juge de sa conduite et de ses principes." He must then go towards the interior of France to a provincial capital, best of all to Roucri, and there he must appeal to the people and sommon a great convention. It would be ruin to appeal to the mobleme, as the queen advised: "un corps de noblesse nieat point une armse. qui puisen combattre." When thig grest convention met the

Hes mont show hirself ready to recogntre that great chaoges have taken place, that feudalism and absolutism have for ever disappeared. and that a new relation between king and people has arisen, which must be loyally observed on toth ades for the future. " If est certain, d'alleurs, qu'il faut une grande révolution pour sauver le soynume, que la nation a det droits, qu'elle ext en chemin de les necouvrer tous, et qu'il faut non seulement les rettablir, pais les consolider." To establish this new constitutional position between Fing and people would not be difficult, because " l'indivisibilité du monarque et du peuple est dans le ceeur de tous les Français; il faut qu'elle existe dasas 'isction et le pouvoir.'

Such was Mirabeau's programme, from which he never diverged, but which was far too statesmanlike to be understood by the poor king, and far too positive regarding the altered condition of the monarchy to be palatable to the queen. Mirabeau followed up his Memoire by a scheme of a great ministry to contain all men of mark-Necker as prime minister, " to reader him as powerless as he is incapahle, and yet preserve his popularity for the king," the duc de Liancourt, the duc de la Rochefoucauld, La Marck, Talleyrand, bishop of Autun, at the finances, Mirabeau without portfolio, G. J. B. Target, mayor of Paris, Lafayette generalissimo to reform the army, Louis Philippe, comte de Ségur (foreign affairs), Mounier and I. R. G. le Chapeller. This scheme got noised ahroad, and was ruined by a decree of the Assembly of the $7^{\text {th }}$ of November 1789 , that no member of the Assembly could become a minister; this decree destroyed any chance of that necessary harmony between the ministry and the majority of the representatives of the nation which existed in England, and so at once overthrew Mirabeau's hopes. The queen utterly refused to take Mirabeau's counsel, and La Marck left Paris. However, in April 1790 he was suddeniy recalled by the comte de Mercy-Argenteau, the Austrian ambassador at Paris, and the queen's most trusted political adviser, and from this time to Mirabeau's death he became the medium of almost daily communications between the latter and the queen. Mirabeau at first attempted again to make an alliance with Lafayette, but it was useless, for Lafayette was not a strong man himself and did not appreciate "la force" in others. From the month of May 1790 to his death in April 1791 Mirabcau remained in ciose and suspected, but not actually proved, connexion with the court, and drew up many admirable state papers for it. In return the court paid his debts; but it ought nevet to be said that he was bribed, for the gold of the court never made him swerve from his political principlesnever, for instance, made him a royalist. He regarded bimself as 2 minister, though an unavowed one, and believed himself worthy of his hire.

Before Mirabeau's influence on foreign policy is discussed, his behaviour on several important points must be noticed. On the great question of the veto he took a practical view, and secing that the royal power was already sufficiently weakened, declared for the king's absolate veto and against the compromise of the suspensive veto. He knew from his English experiences that such a veto would be hardly ever used unlcss the king felt the people were on his side, and that if it were used unjustifiably the power of the purse possessed by the representatives of the people would, as in England in 1688. bring about a bloodiess revolution. He saw also that much of the inefficiency of the Assembly arose from the inexperience of the members and their incurable verbosity; so, to establish some system of rules, be got his friend Romilly to draw up a detailed account of the ruks and cutoms of the English House of Commons, which he translated into French, but which the Assembly, puffed up by a belief in its own merits, refused to use. On the great subject of peace and war he supported the king's authority, and with some success. Again Mirabeau almost alone of the Assembly held that the soldier ceased to be a citizen when he became a soldier; he must submit to be deprived of his liberty to think and act, and must recognize that a soldier's firat duty is obedience. With such sentiments, it is no wonder that he approved of the vigorous conduct of François Claude Amour, marquls de Bouille, at Nancy, which was the more to his credit as Bouille was the one hope of the court influences opposed to him. Lastly,
in matters of finance he showed his wisdom: he attacked Neck'r's "caisse d'escompte," which was to have the whole control of the taxes, as absorbing the Assembly's power of the purse; and he heartily approved of the system of assignats, but with the reservation that they should not be issued to the extent of more than one-hall the value of the lands to be sold.

Of Mirabeau's attitude with regard to foreign affairs it is necessary to speak in more detail. He held it to be just that the French people should conduct their Revalution as they would, and that no foreign nation had any right to interfere with them while they kept themselves strictly to their own affairs. But he knew also that neighbouring nations looked with unquiet eyes on the progress of affairs in France, that they feared the influence of the Revolution on their own peoples, and that foreign monarchs were being prayed by the French emigres to interfere on behalf of the French monarchy. To prevent this interference, or rather to give no pretext for it, was his guiding thought as to foreign policy. He had been elected a member of the comile diplomatique of the Assembly in July 1790, and became its reporter at once, and in this capacity he was able to prevent the Assembiy from doing much harm in regard to foreign affairs. He had long known Armand Marc, comte de Montmorin, the foreign secretary, and, as matters became more strained from the complications with the princes and counts of the empire, he entered into daily communication with the minister, advised him on every point, and, while dictating his policy, defended it in the Assembly. Miraheau's exertigns in this respect are not his smallest tille to the name of statesman; and how great a work he did is best proved hy the confusion which ensued in this department after his death. For indeed in the beginning of 1791 his death was very near; and he knew it to be so. The wild excesses of his youth and their terrible punishment had weakened his strong constitution, and his parliamentary labours completed the work. So surely did he feel its approach that some time before the end he sent all his papers over to Sir Gilbert Elliot, who kept them under seal until claimed by Mirabeau's executors. In March his illness was evidently gaining on him, to his great grief, because he knew that be alone could yet save France from the distrust of her monarch and the present reforms, and from the foreiga interference, which would assuredly bring about catastrophes unparalleied in the history of the world. Every care that science could afford was given by his friend and physician, Cabanis, to whose brochure on his last illness and death the reader may refer. The people kept the street in which he lay quiet; but medical care, the loving solicitude of friends, and the respect of all the people could not save his life. When he couid speak no more he wrote with a fecble hand the one word "dormir," and on the 2nd of April 1791 he died.

No man ever so thoroughly used other men's work, and yet. made it all seem his own. Je prends mon bien od je ke trouve' is as true of him as of Moliere. His first literary work, except the bombastic but eloquent Essai swr ke despolisme (Neulchatel, 1775). was a translation of Robert Walson's Philip 11 ., done in Holland with the help of Durival; his Considćrations sur Cordre de Cincinnalus (London, 1788) was based on a pamphlet by Aedanus Burke (1743-1802), of South Carolina, who opposed the aristocratic tendencies of the Society of the Cincinnati, and the notes to it were by Target: his financial writings were suggested by the Genevese exite, Claviere. During the Revolution he received yet more help: men were proud to labour for him, and did not murmur berause he absorbed all the credit and fame. Eticnne Dumont. Clavière. Antoine Adrien Lamourette and Etienne Salomon Reybaz were but a few of the most disxinguished of his collaborators. Dumont was a Genevese exile, and an old friend of Romilly's. who willingly prepared for him thowe famous addresses which Mirrabeau used to mike the Aseembly pass by sudden burstsof cloquent declamation: Clavierc helped him in france, and not only worked out his Gigures, but even wrote his financial discourses: Lamourette wrote the speeches on the civil constiturion of the clergy. Reybaz not only wrote for him his famous speeches on the ascignats, the organizalion of the national guard. and others, which Miraleau read word for word at the tribunc, but even the posthumous speech on succession to the estates of intestates, which Talleyrand rend in the Assembly as the last work of his dead friend. Yet neither the gold of the court nor another man's conviction would make Mirabeau say what he did not himself believe, or do what he did not himsell think right. He took
other men's labour as his due, and impressed their words, which he had suggested the underlying ideas, with the stamp, his own individuality; his collaboraters themselves difl not com. plain-they were but too glad to be of help in the great work of controlling and forwarding the French Revolution through its greatest thinker and orator. As an orator his cloquence hat been likened to that of both Bossuet and Vergniaud, but it hat neither the polish of the old 17th century bishop nor the flashes genius of the young Girondin. It was sather parliamentary orator in which he excelled. and bis true compeers are racher Burke and Fox than any French speakers. Personally he had that which is the truest mark of nobility of mind, a power of attracting lov and winning faithful friends.
Authorifies. -The best edition of Mirabeau's works is that published by Blanchard in 8819-182: in ten volumes. of whith the first two contain his CEsores orolares: from this collection, however, many of his less important wirks and the De Jo moncrchis: prussienne are omitted. For details of his life consult Peuchet, Mirebeau: Memoires sur sa via lilliciare ef privec (1824), and this Mémoires biographiques. littercires el poluiques de Mirabeaus.érits par lui-mime, par son pire, som oncle ed son fils adoptif. which wat passued by his adopted son, Lucas d Montigny (8 vols.. Paris, 1834-1835). See also Etienne Dumont. Sourenirs sur Mirabec: (I832), a work which has been translated into English by Lad, E. R. Seymour as The Greal frenckman and the Lithe Genevess (1904), Louise Colet. La Jeunesse de Mirabeau (1841), and Affrul Begis, Mırabeau, son anterdiction juditave (1895). The public: tion of the Correspondance entre Mira au at le comele de la Marck. by A. de Bacourt ($\mathbf{2}$ vols., 1851) marks an epoch in our exact knowledge of Mirabeau and his carcer; some additional letters appeared in the German edition (3 vols.; Leipzig. 1851-1852). Other published correspondence is Lellpes de Mirabeau d Chamfort (1796); Lettres du comte de Mirabeav d Jacques Mouvillon (Brun:wick, 1792). Lettres originales de Mirabeau. érates du donjon d: Wincennes, 1777^{-1780}, published by L. P. Manuel (4 vols ${ }^{1792 \text {). }}$ and. on the same subject, Paul Cottin, Saphue de Monnier el Mirabecia dapres leur correspondunce tneduce (1903): Letires a Julre, edited by
 by J. F. Vitry. The Historre secrete forms the basis of H. Welschinger's La Mission secrice de Mirabean à Berlin (Paris, 1900). The most useful modern books are Louis and Charies de Loménic Les Mirabeeu (5 vols., 1878 and 1889): Alfred Stern, Das Lel. Mirabeaus (1889). See also E. Roussc. Mirabeau (1891) in the Grands Ecrivains Francais series; P. Plan, Un Collaborateur de Mircbeau (Paris, 2874), treating of Reybaz and hhrowing infinue light 1 a Mirabeau's mode of work: and H. Re nald. Mirabenu et la constht: ante (1873). On his eloquence and the: share his collaborators had in his speeches see F. A. Aulard, Oratcurs de l'assembtie consuluanie (1882). For his death see the curions brochure of his physician, Cabanis, Journal de la maladie et de la mort de Mırabeun (Parito 1791, ed. H. Duchenne, Paris, 8890). There is a guod sketch sumimarizing modern opinion by E. Charavay in La Grande Encyclopide: English works include P. F. Willert, Merabrau (1898) in the" Foreis, Stalesman " series: C. F. Warwick, Mirabcau and the Frenct Revolution (1905); W. R. H. Trowbridge, Mirabeau, the dema-Rut (1907): H E. von'Holst, The French Rivolution Tested by Mirabeak's Career (Chicago, 1894); and F. Flins. Mirabeau and the Freme Revolution (London and New York, 16is) Oiher works are Victir Hugo. Elude sur Mirabean (1834); Jıles Barni, Mirabeau (1882): Albert Sorel. "Mirabeau " in Essais dhassoire et de eritique (1883). G. Leloir, Mirabeau a Pontarlier (1886); Ferdinand Schwart; Mirabeau, und Marie Antoinelle (Basel, 1891); and Alfred Méziêre: Via de Mrubces (1892).

MIRABEAU, VICTOR RiQUETt, Marquis de (1715^{-1780}); French author and political econumist, Jather of the great Mirabeau, was born at Pertuis, near the old chat cau de Mirabcat on the $4^{\text {th }}$ of October 1725. He was brought up very sternly by his father, and in $\mathbf{1 7 2 8}$ joined the army. He took keeniy to campaigning, but never rose above the rank of captain, owing to his being unable to get leave at court to buy a regimen:In 1737 he came into the family property on his father's deat? and spent some pleasant years till 1713 in literary companionship with due Clapiers, marquis de Vauvenargues and the poet Lefrant de Pompignan, which might have cuntinued had he not detcmined to marry-not for money, but for landed estates. The lady whose property he fancied was Blarie Gencviève, daughter if a M. de Vassan, a brigadier in the army, and widow of the marqus de Saulveboel, whom he married without previously sceit ber on the atst of April 1743 . While in garrison at Bordeaut Mirabeau had made the acqualntame of Monesquicu, and after retiring from the army he wrote his first work, his Testame Politique (1747), which demanded the the prosperity of Franit a return of the French noblesce to th ir old position in the midde ages. This work was followed in r_{i}; j by a book on the Ulilit:
des Elats provenciamx, which was altributed to Montesquiew himself. In 1756 Mirabeau made his first appearance as a political economist by the publication of his Ami des hommes cu trailf de la population. This work has been often attributed to the influence, and in part even to the pen, of Quesnay, the founder of the economical school of the physiocrats, but was really written before the marquis had made the acquaintance of the physician of Madame de Pompadour. In 1760 he published his Theoric de limpar, in which be attacked with all the vehemence of his son the farmers-general of the taxes, who got him imprisoned for eight days at Vincennes, and then exiled to his country estate at Bignon. At Bignon the school of the physiocrats was really established, and the marquis in 1765 bought the Jourtal de l'agricullure, du commerce, a des fnamees, which became the organ of the school. He was recognized as a leader of political thinkers by Prince Leopold of Tuscany, afterwards emperor, and by Gustavus III. of Sweden, who in 1772 sent him the grand cross of the order of Vesa. But his marriage had not been happy; he had separated from his wife in 1762, and had, he believed, secured her safely in the provinces by a lettre de cachet, when in 1772 she suddenly appeared in Paris, and commenced proceedings for a separation. One of his own daughters had encouraged his wife to take this step. He was determined to keep the case quit, if possible, for the sake of Mme de Pailly, a Swiss lady whom he had loved since 1756. But his wife would not let him rest; her plea was rejected in 1777, but she renewed her suit, and, though the great Mirabeau had pleaded his father's case, was successiul in 1781 This trial quite broke the health of the marquis, as well as his fortune, he sold his estate at Bignon, and hired a house at Argenteuil, where he lived quietly till his death on the 11th of July 1789.
The marquis's younger brother, Jean Antoine Riqueti, "the baill" (d. 1794), served with distinction in the navy, but his brusque manners made success at court impossible. In ${ }^{1763}$ he became general of the galleys of Malta. In 1767 he returned to France and took charge of the chasteau de Mrrabeau, helping the marquis in his disastrous lawsuits.
See Louis de Lomênie's Les Mirabean (2 vols., 1879). Also Henri Ripert, Le Marqurs de Mirabeau, ses theories politiques a economeques, [thise pour le doclaraf Paris (1901); Oneken, Der allere Hirabean und die pekonom sche Giesellschaft sm Berm (Berme. 1886), De Lavergne, Les Bcomanastes frangaus du i89a seicle.

IIRACLE (Lat miraculam, from mirari, to wonder), anything wonderful, beyond buman power, and deviating from the common action of the laws of nature, a supernatural event. The term is particularly associated with the supernatural factors in Christianity. To the Lat. mivaculum correspond Gr. tipas in the New Testament, and Heb. We (Exod. xv. 11; Dan ani. 6) in the Old Testament Other terms used in the New Testament are δ ivapus "with reference to the power residing in the misacle worker" (cf. mas Deut. iii 24 and imva Num. xvi. 30), and onu(ioy "whit reference to the character or claıms of which it was the witness and guarantee" (cf mea Exod. iv. 8); that the power is assumed to be from God is shown by the phrases ryeiunar 0 oen (Math sii.

While Augustine describes miracles ns "contra naturam quase nobis est nota," Aquinas without qualification. defines them as "praeter naturam." ", supra et conira naturam." Loscher affirms in regard to miracles that "solus Deus potest tum supra naturae vires tum conira nacurae leges agete ": and Buddaeus argues that in them a "suspensio legum naturae" is followed by a restiluatio. Against the common view that miracles can attest the truth of a divine revelation Gerhard maintained that "per miracula non possunt probari oracula ": and Hopfner relurns to the qualified position of Augustine when he describes thera as "praeter et supra naturae ordinem." The two conceptions, once common in the Christian church, that on the one hand miracles involved an interference with the Iorces and a suspension of the laws of nature, and that. on the of her hand, as this could be effected only by divine power. they served as credentials of a divise revelation, are now generally abandoned As regards the first ponnt, it is now generally held that miracles are exceptions to the order of nature as koown in our common experience: and as regards the second. that miracles are constituent elements in the divine revelation, deeds which display

Cfe diviae character and purpome; but they are sfews and not merely seals of truth. Some of the theories regarding miracles which have been formulated may be mentoned. Bonnet. Euler, Haller, Schmid and others" suppose miracles to be already implanted in nature. The miracuburs germs always exist alongside other germs in a sort of sheath. like hidden springs in a machinc, and emerge into the light when their time comes." Similar is the view of Paracelsus and lerome Cardar, who "suppose a t wofold world existing one in the other; beside or behind the visibte is an inner ideal world, which breaks through in particular spots" (Dorner's System of Chisitian Doctrinc. in. 155, 156). The 8ih dule of Argyll (Retgn of Law) maintains that "miracies may be wrought by the oclection and use of laws of which man knows and can know nothing, and which, if he did know, he could not employ. These theories endeavour to discover the means by which the exceptional occurrence is brought about: but the explanation is merely hypotheticai, and we are not helped in conceiving the mode of the divine activity in the working of miracks. The importan consideration from the religious standpoint is that God's activity ahould be fully recognized.

An attempt has been made to discover a natural law which will explain some at least of the miracles of Jesus. "In one respect alone," says Matthew Arnold, "have the miracles reconded by the evangelists a more real ground than the mass of mirackes of which we have the relation Medical science has never gauged, perhaps never enough set ifsell to gauge the intimate conncxion between morai fault and dixease. To what extent or in how many case3 What is calted iflness is rlue to moral springs having been used amiss, whether by being over-used, or by not being used sufficiently. we hardly at all know, and we too little inquire. Certainty it is due to this very much more than we commonly think, and the more it is due to this the more do moral therapeutics rise in possibility and importance " (Lilerature and Dogma. pp 143-144). The moral therapeutics consists in the influence of a powerful will over others. Harnack accepts this view. "We see that a firm will and a convinced faith act even on the bodily life and cause appearances which appeal to us as miracles. Who has hitherto here with certainty measured the realm of the possible and the real? Nobody Who can say how lar the frhuences of one sout on another soul and of the soul on the body reach? Nobody. Who can gill affirm that all whirh in this realm armeamens striking resta only on deception and ertor? Certanly no miracles occur. lut there is enough of the winderful and the inexplicable " (Dos Wesen des Christeniums, p 18) As regards the theory, it may be nointed out. (1) that the rature or cosmical miracles-fieeding of the five thousand, stilling of the storm, withering of the fig-tree--tre as well. attested as the miracles of healing: (2) that many of the diseases, the cure of which is reported, are of a kind with which moral therapeutics could not effect anything: ${ }^{3}$ (3) that Christ's swn insight regarding the power by which He wrought His works is directly challenged by this explanation, for He never failed to ascribe His power to the Father dwelling in 1 lim.

The divine agency is recognized as combining and controlling. but not as producing, in the teleological notion of miracles. "In miracle no new powers, insitutul of itimblatid by Cuds creative action, are at work. but merely the general order of nature "; but "the manifold physical and spiritual powers in actual existence so bend together as to produce a startling result " (Dorner's System of Chrishan Dociriue. ii. 157). While we cannot deny, we have no ground for affrming the truth of this theory. Whether God's action is creative, or only selective and directive in miracles. is beyond our knowledge: we at least do not know the powers exercised, whether new or old.
An atteropt is made to get rid of the diatinctive nature of miracle when the exceptionalnest of the events so regurded is reduced to a new subjective mode of regarding natural phenomena. H. E is. Paulus dismisses the miracles as "exaggerations or misippre hensions of quite ordinary events." A. Ritshl has been unjuilily changed with ihis treatment of miracles. But what he emphasiass is on the one hand the close connexion betwear the conception of miracles and the belief in divine providence, and on the other the compatibility between miracles and the order of nature. He declines to regard miracles as divine action contrary to the law of nature. So for Schteiermacher "miracle is neither explicable from nature alone, nor entincly alien to it." What both Ritschl ard Schleicrmacher insist on is that the belief in miracles is inseparatle from the beliet in God, and in Cod as immanemt in nature, not onfy cirecting and controlling its existent lores but also at initiating new atagen consistent with the old in its progresive development. We may accopi Dorner's definition as adequate and matisfactory. * Miracles are sensuously cognizable events, not comprehensible on the ground of the causality of nature as such, but essentially on the ground of God's free action alone. Sach facts find their possibinty in the conctitusion of nature and God's living relation to it, their neceseity in the aim of revelation, which they subserve" (p. 161). By the firt clause, inward moral and religious changes due to the operation of the Spirit of God in man are excluded. ant
'See also R. J. Ryle. " The Neurotic Theory of the Miracles of Healing," Hibbert Journal, v. 5\%6.
rightly so (aee Imsprtatmon). The negative ampect os preaented in the sccond clause. This is prominent in $\int \mathrm{S}$. Mill's definition a mirackes. " to constitute a mirack, a phenomenon must tabe place without having been preceded by any antecedent phenomenal conditions sufficient again to reproduce it

The test of miracle is, were there present in the case such external conditions, such sccond causes we may call them, that wherever these conditions or causes reappear the event will be reproduced. If there were. it is not a mirack: if there were not. in is " (Essays. p 224) The positive aspect is presented in the thind clause. When the cxistence of Cood is denied (atheism). or His nature is declared unknowabte (agnosticism), or He is identified with nature iself (pantheism), or He is so distinguished from the world thal His frea action is excluded from the course of nature (dersm). miracte ns nectasarily dented. Thus Spinoza, identifying God and nature, declarem nothing happens in nature which is in contradiction with fta universal laws. The deist s, compelled by their view of the relation of God to nature to regard miracles as interventions, dispoaed of the miracies of the Bible either as " mistaken allegory " or even as conscious fraud on the part of the narrators. It is only the theistic view of God as personal power-ihat is as free-will ever prescmi and ever active in the world, which leaves room for miracles.

The possibihity of ntiractes is ofien confidently dented. "We are of the unalterable conviction," says Hamack, "that what happens in time and space is subject to the universa! laws of mover ment: that accordingly there cannot be any miracles in this sense, i.e. as interruptions of the continuily of nature" (Das Wesen des Christenlums. p. 17). Huxley expresses himself much more cautiously, as he recognizes that we do not know the continuity of nature so thoroughly as to be able to declare that this or that event is necessarily an interruption of it. "If a dead man did come to life, the fact would be evidence, not that any law of nature hed been violated, but that these laws, even when they express the results of a viry long and uniform experience, are necessarily based on incomplete knowledge, and are to be held only on grounds of more or less justifuble expectation " (Hume. p. 335).

Lotce has shown how the possibility of ntiracle can be conccived.
The whole course of nature becomes intelligible only by supposing the co-working of God, who alone carries forward the reciprocal action of the different parts of the world. But that view which admits a life of God that is not benumbed in an unchangeable sameness will be able to understand his eternal co-working as a variable quantily, the transforming infuence of which comes forth at particular moments and attests that the course of nature is not shut up within itself. And this being the case, the complete condisioning causes of the miracle will be found in God and nature together. and in that eternal action and reaction between them which perhaps, althuugh not ordered simply according to general laws, is not void of regulative principles. This vital, as opposed to a mechanical. constitution of nature, together with the conceptions of nature as not complete in itself-as if it were dissevered Irom the divine encrgy-shows how a miracle may take place without any disturbance elscwhere of the constancy of nature, alt whose forces are affected sympathelically. with the consequence that its orderly movement goes on unhindered " (Mikrokosmos, iii. 364).

The mode of the divine working in nature is in another passage more clearly defined.
"The closed and hard circle of mechanical necessity is not immediately accessible to the miracle-working hat, nor does it need to be: but the inner nature of that which obeys its laws is not determined by it but by the meaning of the world. This is the open place on which a power that commands in the name of this meaning can exert its influence: and if under this comnand the inner condition of the elements, the magnitudes of their relationt and their opposition to each other. become altered, the necessity of the mechanical cause of the world must unlold this new state into a miraculous appearance, nol through suspension but through strict mainterance of its gencral laws" (op. cii. ii. Si).

If we conceive God as, personal, and His will as related to the course of nature analogously to the relation of the human will to the human body. then the laws of nature may be regarded as habits of the divine activity, and miracles as unusual acts which. while consistent with the divine character, mark a new stage in the Iulfilment of the purpose of Cod.

The doctrine of Evolution. instend of Increasing the difficulty of concelving the possibitity of miracle. decreases it; for it presents to us the universe as an uncompleted process, and one in which there is no absolute continuity on the phenomenal side; for life and mind wre inexplicable by their physical antecedents, and there 1 not only room for, but need of, the divine initiative, a creative as well as conservative co-operation of God with nalure. Such an absolute continuity is sometimes assumed without warram: but Descartes already recognized that the world was no continuous proceser ' Tria mirabilia fecit Dominus; res ex nihilo. liberum arbitrium et hominem Deum." That life cannot be explained by force is recognized by Sir Oliver Loxlge. ": Life may be something mot only ultra-terrestrial, but even immaterial, something outside our present categorice of matter and energy: at real as they are, but
different, and utilizing them for its own purpose " (Life and Matler: p. 198) The theory of prychophysical parallelasm recognizes that while there is a correspondence between mental and materal phenomena, changes in the mind and changes in the brain, the former cannot be explained by the latter, as the transition from the one to the other is unthinkable. William James distinguishes the Wramsmissive function of the brain from the producise in relation to thought, and admits only the former, and not the latter (Hzoman /mmortality, P 32). Thus as life is transcendent and yet immanent in body, and mind in brain, and both utilize their organs, so Cod, transcendent and immanent, uses the course of nature for His own ends; and the emergence both of life and mind in that course of nature evidences such a divine initiative as is assumed in the recognition of the possibility of miracles. For such an inituative there must be adequate reason, it must be prepared for in the previous process, and it must be necessary to further progress.

The proof of the posesibility of miracle leads us inevitahly to the inquiry regarding the mecessuy of miracle. The necessuty of miracles is displayed in their connexion with the divine revelation: but this connexion may be conccived in two ways. The miracles may be regarded as the credentials of the agents of divine revelation.
is an acknowledged histoncal fact." says Butler, "that Christianity offered itself to the world, and demanded to be received, upon the allegation-ie. as unbelievers would speak-upon the pretence of miracles, publicly wrought to attest the truth of it, in such an age. and that it was actually received by great numbers in that very. age, and upon the profeseed belief of the reality of miracles (Amalogy, part ii. ch. vii.) This vicw is now generally abandoned for it is recognized that acts of superhuman power, even if established by adequate historical evidence, do not neccessarily certify their divine origin. Their moral quality must correspond with the character of Cod; and they must be connected with tcaching which to reason and conscience approves itsell uivine. "Miracula sine doctrina nihid valent ${ }^{\text {t }}$ is the principle now generally recog. nized. The miracle and the doctrine mutually illuminate one another. "Les miracles discernent la ductrne. et la doctrine discerne les miracles " (Pascal's Pensbes des miracles). Accordingly the credentols must also be constituents of the revelation. Of the miracles of Jesus, Bushnell says. "The character of fesus is ever shining with and through them, in clear self-evidence leaving them never to stand as raw wonders only of might, but covering them with glory as tokens of a heavenly love, and acts that only suit the proportions of His personal greatness and majesty" (Nature and the Supermalural, p. 364). If it be asked why the character may not be displayed in ordinary acts instead of miracles, the nnswer may be given. "Miracte is the certificate of identity beeween the Lord of Nature and the Lord of Conscience-the proof that He is really a moral being who subordinates physical to moral interests" (Lidden's Elements of Religion, p. 73). As God is the Saviour, and the chiel end of the revelation is redemption, it is fiting that the miracles should be acts of divine deliverance from physical evil. This congruity of the miracle with divine truth and grace is the answer to Matiow Arnold's caunt about turning a pen into a pen-wiper or Hualey's about a centaur trotting down Regent Street. The miracles of jesus-the relief of need, the removal of suffering, the recovery of health and strength-reveal in outward events the essential leatures of His divine mission. The divine wisdom and goodness are revealed in the course of nature, but also obscured by it. The existence of physical evil, and stili more of moral evil, forbios the assumption without qualification that the real is the rational. God in nature as well as history is fulfilling a redemptive as well as perfective purpose. of which these miracles are idupropriate signs. It is an unwarranted idealism and optimism which finds the course of nature so wise and so good that any change in it must be regarded as incredible. On the problem of evil and sin it is impossible here to enter; but this must be insisted on, that the miracles of Jesus at least exprese dine benevolence just under those conditions in which the course of nature obscures it. and are therefore, proper elements in a revelation If grace, of which nature cannot give any evidence.

Having discussed the possibility and necessity of miracles Ior the divine revelation, we must now consider whetber there is sufficient historical evidence for their occurrence. Hume maintains that no evidence, such as is available, can make a miracle credible. Mill states the position with due care. "The quescion can be stated fairly is depending on a balance of evidence, a certain amount of positive evidence in favour of miracles, and a negative presumption from the gentral course of human experience against them " (Essays on Religion, p. 221). The existence of "a certain amount of positive evidence in favour of miracles " forbids the Tweeping statement that miracles are "contrary to experience." The phrase itself is, as Paley has pointed out, ambiguous. If it means all experience it assumes the point to be proved; if it means only common experience then it simply asserts that the miracle is unusual-a truism. The probability of miracles depends on the conception we have of the free relation of God to nature, and of nature as the adequate orgen for the fulfilment of God's purposes. If we believe in a divine revelation and redemption, transoending the course of nature, the miracles as signs of chat divine purpose will not seem improbabie.

For the Cbristian Church the miracles of Jemis are of primesy importance, and the evidence-external and intemal-in their favour may be said to be sufficient to justify belief. The Gospels assumed their present form between A.D. 60 and 90 . Their representation of the moral character, the relizious consciousness the teaching of Jesus, inspizes confidence. The narratives of smiracles are woven into the very texture of this representation. la these acts Jesus reveals Himself as Saviour. "The Jesus Christ pre sented to us in the New Teskament would become a very different person if the miracles were recooved " (Temple's Redotions betracen Redigiom and Scrence) In His sinlest perfection and filial relation to Cod He is unique, and His works are congruous with His Person. Of the supreme miracle of His resurrection there is earlier evidence than of any of the others (I Cor. xv 3-7, before A.D. 58). His conquest of death is most lrequently uppealed to in the apoctolic teaching The Christian Church would never have conpe into existence without faith in the Risen Lord. The proof of the supernaturalness of His Person sets the seal to the credibility of Hiz supernatural works. In Christ, however, was the fulfilment of law and prophecy. This close connexion invests the antecedent revelation in some degree with the supernaturalness of His Person. at least, we are prepared to entertain without prejudice any evidence that may be presented in the Old Testament That this evidence is not as good as that for the miracles of Jesus must be conceded as much of it is of much tater date than the events recorded. The miracles connected with the beginnings of the national history the period of the Exodus-appear on closer inspection to have been ordinarily natural phemomena, to which a supernatural character was given by their connexion with the prophctic word of Moses. The miracles recorded of Elijah and Elisha lie womewhat apart from the main currents of the history, the narratives themeetver are distinct from the historical works in which they have been in corporated, and the character of some of the actions raises serious doubts and difficulties. In some cases suspense of judgmen secms neersany tven from the standpoint of Christian faith. The supernatural element that is prominent in the Old Testament in God's providential guidance and guardianship of His people, and His teaching and training of them by His prophets. The Apostalic miracles, to which the New Testament bears evidence, were wrought in the power of Christ, and were evidences to His church and to the world of His continued presence. When the Church had extabl:shed itself in the world, and possessed in its moral and religious fruits evidence of its claims, these outward signs appear gradually to have ceased, although attempts were made to perpetuate them. It is true that in Roman Catholicism, in medieval as in modera times the working of miracles has been ascribed to its saints: but the character of most of these miracles is such as to lack the a priori probabithy which has been claimed for the Scripture mitacles on account of their connexion and congruity with the divine revela tion. The a posteriori evidence as regards both its moral and religious quality and its date is altogether inferior to the evidence of the Gospels. Further, these records are imitative. As Christ and the apostles worked miracles, it is assumed that those who in the Church were distinguished for their sanctity would also work miracles: and there can be little doubt that the wish was often father to the thought. There may be cases which cannot be explained in this way: but " whatever may be thought about them, it is plain that even if these and their like are really to be traced to the intervention of the divine mercy which loves to reward a simple faith (and it docs not seem to us that the evidence is sufficient to establish such a conclusion). yet they do not serve as vehicles of revelation as the miracles of the Gospel did " (H. J. Brrnard in Hastings's Beble Dzctonary, iii. 395).
(A. E. G. ${ }^{\circ}$)
 dramatist, was born at Guadix (Granada) about 1578 . He is said, but doubifully, to have been tbe illegitimate son of one Juana Perez; he took orders, obtained a canonry at Guadix, and settled at Madirid early in the 17 th century. He is mentioned 25 a prominent dramatist in Rojas Villandrando's Loa (1603). which was written several years before it was published. In 16io, being then arch-dean ol Guadix, be accompanied the count de Lemos to Naples, and on his return to Spain was appointed (16 tg) chaplain to the cardinal Infante Ferdinand of Austria; he is referred to as still alive in Montalban's Para lodos (1632). and be collaborated witb Montalbin and Calderon in Polifemo y Circe, printed in 1634. The date of his death is not known. Mira de Amescua's plays are dispersed in various printed collections, and the absence of a satisfactory edition has prevented his due recognition. He has an evenness of execution which indicates an artistic conscience uncommon in Spanish playwrights; he resisted the temptation to write too much, and he unites a virile dignity of expression to impressive conception of character.

Two of his plays-La Adversa fortuma de Don Bernado de Cabrere
and $E I$ ajemplo mayor de la desticho-are reapectively the soarces of Rotrou's Don Bernardo de la Cabrere and Belisaire: Moreto's Caer para levantar is simply a recast of Mira's El Esclavo del demomio, a cetebrated drama which clearly influenced Calderon when composing La Dowoción de ha crus; and there is manifestly a clope nelation between Mira's La Rueda de ha forlume on the one hand and Comeille's Héraclixs and Calderón's Lin axha sida lodo es werdad y todo es mentirc. A few of Mira de Amescua's plays are reprinted fin the Biblioleca de aulores esponoles, vol. xiv.

MIRAGE (a French word, from mires, to look at, se wiser, to be reflected), an oplical illusion due to variations in the refractive inder of the atmosphere. It emhraces the phenomena of the visionary appearance of lakes in arid deserts, the images of ships and icebergs, frequently seen as if inverted and suspended in the atmosphere in the Polar Regions, the Fate Morgasa, and " looming " as witnessed in mists or fogs ":
In the article Repraction it is shown that a ray of light traversing a homogeneous medium is deviated from its rectilinear path when it enters a medium of different refractive index; it is therefore readily seen that the path of a ray through continuously varying media is necescarily curvilinear, being compounded of an infinite number of infinitesimally small rectilinear deviations. Our atmosphere is a medium of continuously varying refractive inder. Meteorological optical phenomena, due to varintions in the refractive index of the atmosphere, may be divided into groups: (1) those due to the permanent or normal variation experienced as one ascends in the atmosphere, and (a) those due to sporadic variations occasioned by irregular heating. The first variation must be taken into account in correcting geodetic observations of heights and astronomical observations of the beavenly bodies; it also has a considerable bearing on the phenomena of the twilight and the afterglow (see Repraction: $\%$ Astromomical; and Twiligers). The second (or temperature) variation gives rise to phenomena which we proceed to discuss.
A common type of mirage is the appearatice of an isolated lake frequently seen in hot sandy deserts, as in the Sahara, Turkestan, sec. The explanation is as follows: The sand, being abnormally beated by the solar rays, causes the neighbouring air to expand, consequently its density, and therefore its refractive inder, is diminished, and attains a minimum value in the lowest layers. It increases as we ascend and reaches a maximum at a certain height, and then decreases according to the normal variation. Any object viewed across such an area is seen by two sets of rays: one set passing near the earth and assuming a curved path convex to the horizon, the second aet more remote from the earth and concave to the horizon. The object thus appears double, an image being seen mirrored in the sand. The sky appears as a shining lake; mountains or pains may be similarly reflected, hut it is to be noted that the images are inverted (see fig.). Similar atmospheric conditions sometimes prevail in the air over large bodies of water on cotd autumn mornings. These phenomena have been experimentally realized by R. W. Wood (Phil. Mag., $\mathbf{1 8 0 9}$, vol. slvii.), who viewed ohjects over a series of heated slate slabs.
Another type of mirage, frequently observed at sea in the northern latitudes, is presented in the appearance of ships and icebergs as if inverted and suspended in the clouds. This is due to a stratum of hot air at some distance above the sea level, the rays of light near the horizon being practically horisontal, while those at greater elevations are fairly concave. It may happen that the change in density is so great that only the upper rays reach the eye; we are then met with the curious illusion of seeing inverted ships in the clouds, although nothing is visible on the ocean.

The Fola Morgana, frequently seen in the Straits of Mession, consists of an apparent vertical elongation of an object situated on the opposite shore. The distribution of density is similar to that attending a desert mirage, but the transition is not so almopt. The object is really viewed through a horizontally
stratified medium consisting of a central sheet of maximum refractive index, over-and under-laid by sheets of decreasing refractive power. The oystem consequently acts as a continuous lens, magnifying the object in a vertical direction.

If, in addition to this horizontal atratification, the at mosphere varies similarly in vertical planes, then the object would be magnified both horizontally and vertically. These conditions sometimes prevail in misty or loggy weather, more particularly at ses, and thes give rise to the phenomena known as "looming." A famous example is the Brockengespenst or "spectre of the Brocken." The chromatic halos which frequently encircle these images are due to diffraction. (See Corona.)

It is interesting to note that lenses formed on non-homogeneous material, having the maximum refructive index along the central axis, have been prepared, and reptoduce the effects caused by abnormal distribution of the density of the atmosphere.

The mathematical investigation of this subject was worked out by Gaspard Monge. For this aspect and further details, both descriptive and experimental, see J. Pernter, Medeorologische Oplih (1906); E Mascatt, Traild d'oplique (1899-1903); R. W. Wood, Physical Optics (1905); R. S. Heath, Ceometrical Optics.

IIRAJ, a native state of India, in the Deccan division of Bombay, forming part of the southern Mahratta Jagirs. Since 1820 it has been subdivided between a senior and a junior branch. The territory of both is widely scattered among other native states and British districts. Area of the senior branch, 339 sq. m.; pop. (1901), 81,467 ; revenue $£^{23}, 000$; tribute $£ 800$. Area of the junior branch, 211 sq. m.; pop. (1901), 35,806 ; revenue $f_{27,00}$, tribute f_{400}. The chiefs are Brahmans of the Patwardhan family. The town of Miras, at which the chief of the senior hranch resides, is situated near the river Kistna; it is a junction of the Southern Mahratta railway for the hranch to Kolhapur. Pop. (1901), 18,425. Thes chief of the junior hranch has his residence at Bhudgaon (pop. 3591).
miramont miguex (1832 -1867), Merican soldier of French extraction, was bom in the city of Mexico, on the 2'th of September 1832, and shot with the Emperor Maximilian at Queretaro on the 19th of June 1867. While still a student he kelped to defend the military academy at Chapultepec against the forces of the United States; and, entering the army in 1852, he rapidiy came to the front during the civil wars. It was hargely due to Miramon's support of the ecclesiastical party against Alvarez and Comonfort that Zuloaga was raised to the presidency; and in 1859 he was called to succeed him in that office. Decisively beaten by the Liberals in 1860, he spent some time in Europe advocating foreign iatervention in Mexican affairs; and returned as a partisan of Maximilian. His ability as a soldier was shown by his double defence of Puebla in 1856.

MIRANDA, FRANCESCO (c. 1754-1816), Spanish-American soldier and adventurer, was born at Caracas, Venezuela, about 1754. He entered the army, and served with the French in the American War of Independence. The success of that war inspired him with a belief that the independence of Spanish America would iacrease its prosperity. He began to scheme a revolution, but was discovered and had only just time to escape to the United States. Thence be went to England, where be was introduced to Pitt, but chiefly lived with the leading members of the opposition-Fox, Sheridan and Romilly. Finding no help, he travelled through Austria and Turkey to Russia, where be was warmly received, but was dismissed with rich presents, at the demand of the Spanish ambassador, backed up by France. The news of the dispute between England and Spain about Nootka Sound in 1790 recalled him to England, where he saw a good deal of Pitt, but the peacefal arrangement of the dispute again destroyed his hopes. In April 1792 he went to Paris, with introductions to Petion and the leading Girondists, hoping for aid in South America. France had too much to do to belp others; but Miranda's friends sent him to the front as general of hrigade. He distinguished himself under Dumouriez, was entrusted in February 1793 with the siege of Maestricht, and commanded the left wing of the French army at the disastrous
bat tle of Neerwinden. Although he had given potice of Dumouriez's treachery, he was put on his trial on the 13th of May, unanimously acquitted, but again imprisoned, and not released till after the gth Thermidor. He wras sentenced to be deported after the strugte of Vendemiaire, yet he continued in Paris till the coup d'efat of Fructidor caused him to take refuge in England. He now found Pitt and Dundas ready to listen, but, as neilber of them would or could give him substantial heip, he wept to the United States, where President Adarns only gave him fair words. Addington might have done something for him but for the peace of Amiens in 1802 . Though in no way amnestied, be returned to Paris, but was expelled by the First Consul, who was eager to be on good terms with Spein. Disappointed in England and the United States, he decided to make an attempt at his own expense. Aided by two American citizens, Colonel W. S. Smith and Mr S. G. Ogden, he equipped the "Leander," in 1806, and with the help of the English admiral Sir A. Cochra ne made a landing near Carácas, and proclaimed the Colomhian republic. He had some success, but a false report of peace between France and England caused the English admiral to withdraw his support. At last, in 88 ro, the events in Spain which hrought about the Peninsular War bad divided the authorities in Spanish America, some of whom declared for Joseph Bonaparte, others for Ferdinand VII., others for Charles IV., and Miranda again landed, and got a large party together who declared a republic both in Venezucla and New Granada or Colombia. But Miranda's desirt-that all the South American colonies should form a federal republicawoke the selfishness of provincial administrations, and the cause was believed to be hateful to heaven owing to a great earthquake on the a6th of March 1812 . The count of Monte Verde, the Bourbon governor, had little difficulty in defeating Miranda, and on the 26th of July the general capitulated on condition that be should be deported to the United States. Tbe condition was not observed; Miranda was moved from dungeon to dungeon, and died on the $14 t h$ of July 1816 at Cadiz.

There are allusions to Miranda's early life in nearly all memoirs of the eime, but they are not generally very accurate. For his erial see Buchez et Roux, Hisloire parlementaire. xxvii. 26-70. For his later life see J. Biggs, history of Miranda's Allempl in South America (London, 1809); and Veggasi, Revolucion de la Colomia. Prof. William S Robertson has recently devoted considerable rescarch in the Spanish archives and clsewhcre to Miranda, his monograph on F. de M. and the revolutionizing of Spanish America being awarded a prize of the American Historical Assocution in 1908. Sec also Marqués de Rojas. El General Mirande (Paris, 1884). and his Miranda doms la révolution frangaise (Carácas, 1889); and R. Becerra, Ensayo hislorico documentado de la ouda de Dos F. de M. (Carácas 1896).

MIRANDE, a town of south-western France, capital of an arrondissement in the department of Gers, on the left bank of the Grande Baise, 17 m . S.S.W. of Auch by the Southern railway. Pop. (1906), 2368. Mirande is laid out on the uniform plan typical of the bastide. Its church, built at the beginning of the $15^{\text {th }}$ century, is chiefly remarkahle for its porch which bestrides the Rue de l'Eveché and is surmounled by two flying buttresses supporting 2 belfry of Flemish appearance. The remains of ramparts are still to be seen and the principal street is bordered by ancient arcades. The town has a sub-prefecture and a tribunal of first instance. The trade is in live-stock nnd egricultural products Tanning and wood-turning are carried on.

Mirande was founded in 1286 by the monks of Berdones and the seneschal of Toulouse acting on behalf of Philip IV. During the 14th century it was the capital of the counts of Astarac.

Mirandoin, a town of Emilia, Italy, in the province of Modena, 191 m . N. by E. of it by rail, 59 ft . ebove sea-level. Pop. (Igoi), 15,162 The Palarzo del Commune is a 15 th. century edifice of Gothic style. The castle of the Pico family, who held the town from the 14th century to 1710, when the last mamber was deprived of his dominions by Joseph I. of Austria, is alroost entirely destroyed. The height of the fortanes of this family was from about 1450 to 1550 , Giovanni (b. 1463, d. 2494) heing its ablest and most leamed member (see Pico). The cathedral, dating from the end of the 26th century, has been restored S. Francesco is a fine Gotbic church.

Miranzal Valley, or Hamge, a mountain valley on the Kohat border of the North-West Frontier Province of India. Miranzai comprises two valleys draining S.W. into the Kunam and N.E. into the Kohat Toi. It is thus divided into upper and lower Miranzal, and extends from Thal to Raisan, and from the Zaimukht and Orakzai hills to those of the Khattaks. Its length is about 40 m ., and its breadth varies from 3 to 7 m . Area, $546 \mathrm{sq} . \mathrm{m}$., pop. (1901), 43.901 . The portion of Miranzai cast of Hangu village consists of numerous small and well-cultivated valleys, in which orchard trees flourish abundantly. To the west of Hangu, including the whole of Upper Miranzai, the country is a broad, open, breczy valley. The plain is bare of trees, hut the hils are generally covered with ecrub. The country is full of ravines towards Thal. The wealth of the inhabitants consists principally in cattle, goats and sheep; of these the cows are of a lean and dwarf breed, and give but little milk. Miranzai forms the meeting place of many different tribes; but its chief inhabitants are the Bangash and Orakzais. Disturbances have necessilated British expeditions in 1851, 1855, and twice in 189r.

HIRBEAU. OCTAVE HENRI MARIR (I850-), French dramatist and journalist, was born al Trevières (Calvados) on the 16 th of February 1850. He was educated in a Jesuit school at Vannes, and studied law in Paris. He began his journalistic career as dramatic critic of the Bonapartist paper, L'Ordre For a short time before 1877 he was sous-prifet and then prtfet of Saint-Girons, hut from that time he devoted himself to literature. He was one of the earliest defenders of the Impressionist painters. His witty articles in the antirepublican papera, and his attacks on established reputations, involved him in more than one duel. He gradually developed extreme individualist views. In 1890 he began to write for the Retolle, but his anarchist sympathies were definitely checked by the murder of President Carnot in 1894. He was one of the early and consistent defenders of Captain Alfred Dreyfus. He married in 1887 the actress Alice Regoault. His first novel, Jean Marcellin (1885), attracted little attention, bat be made his mark as a contcur with a series of tales of the Norman peasantry, Leltres de ma chaumitre (1886). Le Cohacire (1887), a chapler of which on the defeat of 1870 aroused much discussion, was followed by L'Abbe Jules (1888), the story of a mad priest; by Sebastien Roch (1800), a bitter picture of the Jesuit school in which his own early years were spent; Le Jardint des swphlices (1899), a Chinese stoty; Les MI m oires d'une femme de chambre (1901); and Les Vingl-el-un jours d'un newrasthénique (1902). In 1897 his five-act piece, Les Maupais Bergers, was played at the Renaissanke by Sarah Bernhardt, and he followed this up with Les Affaires sont les affaires (Théatre Francais, 1903), which was adapled by Sydney Crundy for Sir H. Beerbohm Tree in 1905. Sonte of his short pieces are collected at Farces ef moralites (s,94).
MIRFIELD, an urban district in the Morley parifiamentary division of the West Riding of Yorkshire, England, 3 m . S.W. of Dewsbury, on the Lancashire \& Yorkshire and London \& North-Western railways. Pop. (1901), 11,341. The church of St Mary was completed in 1874, from designs of Sir Gilhert Scott. The tower of the ancient church remains. The large industrial population is employed in woollen, cotton, carpet and hlanket manufactures, and in the numerous collieries in the vicinity.
MRKHOND ($1433-1498$). Boharamed bin Khaswandsheh bin Mahmid, commonly called Mirkhwand or Mirthewand, more familiar to Europeans-under the name of Mirkhond, was born in 1433, the san of a very pious and learned man whe, although belooging to an old Bokhara family of Sayyids, or direct descendants of the Prophet, lived and died in Balkh. From his early youth he applied himself to historical studies and literature in general. In Herat, where he speal the greater pert of his life, he gained the favour of that famous patron of letters, Mir 'Alishir (1440-1 50:), who served his old schoolfellow, the reigning sultan Husain (who as the last of the Timorides in Persis ascended the throne of Herat in 1468), first as keeper of the seal, afterwards as eovernor of Jurjin. At the request of

Mir Alishtr, himsell a distinguished statesman and writer, Mirkhond began about 1474, in the quiet convent of Khilasiyah, which his patron had founded in Herit as a house of retreat for literary men of merit, his great work on universal history, Rauqal-ussafa fi sirab-ulanbie volmulük walkhulafd or Garden. of Purity on the Biography of Prophets, Kings and Caliphs. He made no attempt at a critical examination of historical traditions, and wrote in a flowery and often bombastic style, but in spiteof this drawback, Mirkhond's Raupet remains one of the most marvellous achievements in literature. It comprises seven large volumes and a geographical appendix; but the seventh volume, the history of the sultan Husain ($1438-1505$), together with a short account of some later events down to 1523, cannot have been written by Mirkhond himself, who died in 1498. He may have compiled the preface, but the maia portion of this volume is probably the work of his grandson, the historian Khwândamir (1475-1534), to whom also a part of the appendix must be ascribed.
For accounts of Mirkhond"s life see De Sacy's "Notice sur Mirkhond" in his Mémoires suf diverses antiguitis de la Perse (Paris, 1793): Jourdain's "Notice de l'histoire universelle de Mirkhond In the Notices ef extraits, vol. ix. (Paris, 1812); Elliot, History of India, iv. 127 seq-; Morley, Descriptite Catalague (London. 1854), p. 30 seq-: Rieu Cal of Persian MSS. of the Brit. Mus. (vol. i. London, 1879), p. 87 seq. Besides the lithographed editions of the whole work in folio (Bombay, 1853, and Teheran, 18521856) and a Turkish version (Constantinople, 1842), the following portions of Mirkhond's history have been published by European Orientalists: Early Kings of Persia, by D. Shea (London, 1832) (Orimital Translation Fund); L'Hisboire de la dywastie des Sassamides, by S. de Sacy (in the above-mentioned Memoires); Hisboire des Sassanides (Lexte Persan), by Jaubert (Paris, 1843); Hisbaric priorum regum Persarum, Persian and Latin, by Jenish (Vienna, 1782); Mirchondi hisloric Taheriderum, Persian and Latin, by Mitscherlik (Göttingen, 1814, 2nd ed.\& Berlin, 1819): Hisloria Samanidarum, Persian and Latin, by Wilken (Göttingen, 1808); Histoive des Samanides, translated by Defrémery (Paris, 1845): Hisloric Ghaznexidarum, Persian and Latin, by Wilken (Berlin, 1832); Geschichte der Sultone ous dem Geschlechte Bujeh. Persian and Cerman, by Wilken (Berlin, 1835); followed by Erdmann's Erläwterung und Ergänzung (Kazan, ${ }^{1836}$) ; Historia Seldschuckidarum, ed. Vullers (Giessen, 1837); and a German trans by the same; Histoive des Sultans du Kharesm, in Persian, by Defrémery (Paris, 1842); Hisbry of the Akabeks of Syria and Persia, in Persian, by W. Morley (London. 1848): Historic Ghurudarum, Persian and Latin, by Mitscherlik (Frankfort, 1818); Histoire des Sultans Ghwrides, trans, into French by Defrémery (Paris, 1844) : Vie de Djenghis-Khan, in Persian, by Jaubert (Paris, 1841) (see also extracts from the same 5th vol. in French trans. by Langless in vol. vi. of Notices et extraits, Paris, 1799, p. 192 seq.), and by Hammer in Sur les origines russes, St Petersburg, ${ }^{1825}, \mathbf{p} .52 \mathrm{seq}$.): "Timür's Expedition against Tuktamish Khãn," Persian and French, by Charmoy, in Mamoires de l'aced. imptr. de SA Pctersbourg (1836), pp. 270-321 and 441-471.
(H. E.)

MTRROR (through O. Fr. mirour, mod. miroir, from a supposed Late Lat. miralorium, from mirari, to admire), an optical instrument which produces images of objects by reflection. In its usual forms it is simply a highly polished sheet of metal or of glass (which may or may not be covered, either behind or before, with a metalic film); a metallic mirror is usually termed a speculum. The laws relating to the optical properties of mirrors are treated in the article Riflection of Liout.

Ancient Mirrors. -The mirror (kdroxrpov, zoontpoy, evpatpoy, speculum) of the Etruscans, Greeks and Romans consisted of a thin disk of metal (usually bronze) slightly convex and polished on one side, the other being left plain or having a design incised upon it. A manufactory of mirrors of glass at Sidon is mentioned by Pliny (Nal. Hist. xxxvi. 66, 193), but they appear to have been little used (one has heen found at Sen Remo). Glass mirrors were coated, but with tin; some silver mirrors have also been found. They are said to have been in use as early as the time of Pompey, and were common under the empire. Homer knows nothing of mirrors, but they are frequently mentioned in the tragedians and onwards. The usual size was that of an ordinary hand-mirror, but in imperial times some appear to have been large enough to take in the whoic figure (Seneca, Nat. quaest., i. 17,8), being either fixed to the wall or working up and down like a window sash. The first specimen of a Greek mirror was not discovered till 1867 , at Corinth, and the number
extant is comparatively small. They are usually provided witb a handle, which sometimes took the form of a statuette (especially of Aphrodite) supported on a pedestal, or consist of two metallic circular disks (the "box " mirrors) fitting in to each other, and sometimes fastened together hy a hinge. The upper disk or cover was ornamented on the outside with a design in low relief; inside it was polished to reflect the face. The lower disk was decorated inside with engraved figures. The best specimens of both kinds of mirrors date from a little before 400 B.c. and last for some time after that. Of the reliefs, one of the best examples is "Ganymede carried away by the eagle"; amongst the incised mirrors may be mentioned one representing leucas and Corinthus, inscribed with their names (both the above in Collignon, L'Archeologie grecque, 1907, figs. 212, 213); the Genius of the Cock-fights (Revue archdologique, new ser. miil., 1868, Pl. 13). A bronze mirror-case, found at Corinth, has attached on the outside a relief representing an Eros with two girls; on the inside is incised a design of a nymph seated on a bench and playing with Pan at a game resemhling the Italian mora (Classical Review, Feh. 1889, p. 86). On the back of another mirror in the British Museum (Gazelfe archeologique, ii. Pl. 27) is a figure of Eros which has been silvered over. With this was found the hronze case used to contain it, on the back of which is a group of Aphrodite and Eros in repousse. It was found in Crete; but most of the Greek mirrors and mirror-cases having designs are from Corinth.

The principal feature of the Etruscan mirrors, the extant examples of which far outoumber the Greek, is the design incised on the back. Betonging chiefly to the 4 th and 3rd centuries, they mostly resemble the Greek disk-mirrors in form, box-mirrors being rare. As a rule the subjects incised are taken from Greek mythology and legend (Trojan War, birth of Athena, Aphrodite and Adonis), the names of the persons represented being frequently added in Etruscan letters and orthography (Apul = Apollo, Achle $=$ Achilles, Achmemrum $=$ Agamemnon). Scenes from daily life, the toilet, the bath, the palaestra, also occur. In most cases the styie of drawing, the types of the figures, and the manner of composing the groups are true to the characteristics of Greek art. Some may have been imported from Greece, but the greater number appears to have been more or less faithfully imitated from such designs as occurred on the Greek vases which the Etruscans obtained from Greece. Even where distinctly Etruscan figures are introduced, such as the heroes Aetius and Caelius Vibenna on a mirror in the British Museum, Greek models are followed. Although the work is frequently rough and careless, certain very fine and beautiful specimens have been found: the famous Semele-mirror, and the healing of Telephus, in whicb Achilles is shown scraping the healing rust from the lance with a crescent-shaped knife (Baumeister, Denkmdler, figs. 557, 1774). Roman mirrors are usually disk-mirrors, the back of the disk, if engraved, being generally ornamented with decorative patterns, not with any subject design.

Plain mirrors are found wherever Greek and Roman civilization spread, and a specimen found in Cornwall (now in the British Museum) shows tbat the Celtic population of England had adopted the form and substance of the mirror from their conquerors. This specimen is enriched with a Celtic pattern incised. The shape of the handle exhibits native originality. Mirrors were sometimes used in Greece for purposes of divination (Pausanias vii. 21, 5). The mirror was let down into a well by means of a string until it grazed the surface of the water with the rim; after a little wbile it was pulled up, and when looked Into showed the face of the sick person, alive or dead, on whose behalf the ceremony had been performed. This took place at Patrac.

See J. I. de Witte, "Les miroirs chez les anciens," in Exirait des
 rdrortpa (Athens, 1876): M. Collignon, L'Arch'sologie grecgue (new ed., 1907: Eng. tr. by J. H. Wright, 1886): E. Gerhard, Efruskische Spiege (i840-1867), continued by K. Klugmann and G. Kortt (1884-1897); article in Smith's Dictionary of Greek and Roman Antiquities (3rd ed., 1891).
U. H. F.I

Medicoal and Modern Minors.-Small metallic mirrors with a highly polished surface were largely used during the middle ages: pocket mirrors or small hand mirrors carried at the girdle being indispensable adjuncts to ladies' toilets. The pocket mirrors consisted of small circular piaques of polished metal, usually steel or silver, fired in a shallow circular box covered with a lid. Mirror-cases were chiefly made of ivory, carved with relief representations of love or domestic scenes, hunting and games, and sometimes illustrations of popular poetry or nomance. Gold and silver, enamels, ebony and other costly materials were likewise used for mirror cases, on which were lavished the highest decorative efforts of art workmanship and costly jewelling. The mirrors worn at the girdle had no cover, but were furnished with a short handle. In 625 Pope Boniface IV. sent Queen Ethelberga of Northumbria 2 present of a silver mirror; and in early Anglo-Saxon times mirrors were well known in England. It is a remarkable fact that on many of the sculptured stones of Scolland, belonging probably to the 7th, 8th or gth century, representations of mirrors, mirror-cases and combs occur.

The method of backing glass with thin sheets of metal for mirrors was well known in the middle ages, at a time when sted and silver mirrors were almost exclusively employed. Vincent of Beauvais, writing about 1250 , says that the mirror of glass and lead is the best of all, "quia vitrum propter transparentiam melius recipit radios "; and a perre d mirer is mentioned in the Inventories of the dukes of Burgundy, dating from the 15 th century. A gild of glass-mirror makers existed at Nuremberg in 1373 , and small convex mirrors were commonly made in southern Germany before the beginning of the I6th century; and these continued to be in demand, under the name oi bull'seyes (Ocksen-Augen), till comparatively modern times. They were made by blowing small globes of glass into which while still hot was passed through the pipe a mixture of tin, antimony and resin or tar. When the globe was entirely coated with the metallic compound and cooled it was cut into conver lenses, which formed small but well-defined images. As early as 1317 a "Magistor de Alemania," who knew how to work glass for mirrors, broke an agreement he had made to instruct three Venetians, leaving in their hands a large quantity of mixed alum and soot for which they could find no use. It was, however, in Venice that the making of glass mirrors on a commercial scale was first developed; and the republic enjoyed a muchprized monopoly of the manufacture for about a century and a balf. In 1507 two inhabitants of Murano, representing that they possessed the secret of making perifect mirrors of glass, a Enowledge hitherto confined toone German glass-bouse, obtained an exclusive privilege of manufacturing mirrors for a period of twenty years. In 1564 the mirror-makers of Venice, who enjoyed peculiar privileges, formed themselves into a corporation. The products of the Murano glass-houses quickly supplanted the mirrors of polished metal, and a large and lucrative crade in Venetian glass mirrors sprang up. They were made from blown cylinders of glass, which were slit, flattened on a stone, carefully polished, the edges frequently bevelied, and the backs "silvered" by an amalgam. The glass was remarkably pure and uniform, the " silvering" bright, and the sheets sometimes of considerable dimensions. In the inventory of his effects, made on the death of the French minister Colbert, a Venetian mirror, 46 by 26 in. , in a silver frame, is valued at 8016 livres, while a picture by Raphael is put down at 3000 liveres.

The manufacture of glams mirrors, with the aid of Italian workmen, was practised in Ergland by Sir Robert Mansel early in the 17 th century, and about 1670 the duke of Buckingham was concerned in glass-works at Jambeth where filint glass was made for 100 king -glasses. These old English mirrors, with bevelled edges in the Venetian fashion, are still well known. The Venetians guarded with the ut most jealousy the secrets of their manufactures, and gave exceptional privileges to those engaged in such industries. By their statutes any glass-maker carrying bis art into a foreigo state was ordered to return on the pain of Imprisonment of his nearest relatives, and should he disobey
the command eminasries were delegated to shay him. -In fice of such a statute Colbert attempted in 1664 to get Venetian artists transported to France to develop the two great Industries of mirror-making and point-dace working. The ambassador, the biahop of Bexiers, pointed out that this was to court the risk of being thrown into the Adriatic, and, further, that Venice was relling to France mirrors to the value of 100,000 crowns and lace to three or foor times that value. Nevertheless, twenty Venetian glass-milror makers wore sent to France in 1665 , and the manufacture was begun in the Faubourg St Antoine, Paris. But previous to this the art of blowing glass lor mirrors had been practised at Tour-la-Ville, near Cherbourg, hy Richard Lucas, Sieur de Nebou, in 1653 ; and hy the subsequent combination of skill of both establishments French mirrors soon excelled in quality those of Venice. The art received a new impulse in France on the introduction of the making of plate glass in $\mathbf{x} 6 \mathrm{~g}$. The St Gobain Glass Company attribute the discovery to Louis Lucas of Nehou, and over the door of the chapel of St Gobain they bave placed an inscription in memory of "Louis Lucas qui inventa en 169: le methode de couler les glaces et installa la manufacture en 1695 dans le chateau de Saiot Gobain."

Manufacture. - The term "cilvering," as applied to the formation of a metallic coating on glass for giving it the properties of a mirror, was till quite recently a misnomer, secing that till about 18 \&o no silver, but atin amalgam, was used in the process. Now, however, a large proportion of mirrors are made by depositing on the glass a coating of pure tilver, and the old amalgamation process is comparatively little used.

The process of amalgamation consists in applying a thin amalgam of tin and mercury to the surface of glass, A sheer of thin tin-lon, somewhat larger than the glass to be operated on, is spread out on a Gat table, and after all folds and creases have been completely removed a small quantity of mercury is rubbed lightly and quickly over the whole surface, and the scum of dust, impure tin and mercury is caken off. Mercury is then poured upon the "quickened "foll until there is a body of it sufficient to flaat the glass to be silvered (alrout $\frac{1}{4} \mathrm{in}$. deep), and the glass (scrupulously cleaned simultaneounly with the above operations) is slid over the surface of the mercury. Weights are placed over the surface until the greater part of the analgamated mercury is pressed out, and the table is then tilted so that all superfuous mercury finds its way to the gutter. The giass is left twenty-four hours under weights; it is then curned over, sil vered side up and removed to a drainer. where it dries and hardens. This process, when elaborated, yields excellent results, producing a brilliant silver-white metallic lustre, which is only subject to alteratic.n by exposure to high temperatures or by contact with damp surfaces; but the mercurial vapours to which the workmen are exposed give rise to the most distressing and fatal affections

The "silver on glass" mirror may be regarded as a discovery of J. von Licbig, who in 1835 observed that by leeating aldehyde with an ammoniacal solution of silver nitrate in a glass vessel a brilliant deposit of metallic silver was formed on the surface of the glass. In practice the process was introduced about 1840; and it is now carried on, with several modifications, in two distince ways, called the hot and the cold process respectively. In the former nethod there is employed a horizontal double-bortomed metallic table, which is heated with steam to from 35° to $40^{\circ} \mathrm{C}$., and the reduction of the ammoniacal silver solution is effected with tartaric acid.

In silvering by the cold process advantage is taken of the power of sugar to reduce the silver nitrate. This method has been generally adopted for the silvering of mirrors for astronomical telescopes. G. W. Ritchey ("A The Modern Reflecting Telescope," Smithsomian Contributions to Krowledge, xxxiv, 40) used the process devised by Brashear in 1884. The glass disk is mounted on a rocking-table, and most carefully cleaned with nitric acid, potash, and finally with distilled water. The reducing solution (which improves on keeping) is made up from 200 parts of water, 20 of loal sugar, 20 of alcohol and 1 of nitric acid (commercial pure). The silver solution is prepared es follows: 2 parts of silver nitrate are dissolved in 20 parts of water, and strong ammonia added until the brown solution becomes cicar. A solution of $1 \frac{1}{1}$ parts of porash (pure by alcoliol) in 20 of water is now added, and then ammonia until the solution is agzin clear. A solution of t part of sibicr risratic in 16 of pater is added until the fiquid is etraw-coloured; it is then filtered. Quanticies of the solutions, such that the sugar equats one half the nitrate, are taken, then diluted, mixed, and poured on to the plate, which is gently rocked. The liquid goes muddy-brown, and in 3 to 4 minutes it begins to clear, a thick deponit being formed in abont 5 minutes. The solution is poured off, and water run on, the streaks of precipitate beins removed hy lightly held cotton wool. The washing is repeated, and then water is allowed to remain on the flim for one hour. The water at then run off, and the plate is washed several times with alcohol, and then dried by an air fan. The fim is now burnished with chamois leather pad, and finally with the finest jeweliers rouge. the silver surface being the reflecting surface of the mirror.

The deponit of ailver on glass is not so adhereat and unalterable under the influence of sunlight and sulphumus fumes as the tinmercury amalgam, and, moreover, real silvered glass has in many cases a alightly yellowish tinge. These defects have been overcone by a process incroduced by Lenoir, which connists of brusting over the silvered surface with a dilute solution of cyanide of mercury. which, instantaneously forming a kind of amalgam, renders the deposit at once much whiter and more firmly adberent than before. To protect the thin metailic film from mechanical injury and the chemical action of gases and vapours it is coatod with abellac or copal varnish, over which, when dry, are applied two coetings of red-lead paint or an efectrolytically-deposited film of copper. This precaution only applies whea the siver forms the bect of the mirror.
Platimum Mirrors.-A cheap process of preparing mirror glass was to some extent prosecuted in France, whereby a thin but very adherent deposit of platinum is formed on the glass. A solution of chloride of platinum with a proportion of litharge and borate of lead dissolved in essential oil of spike is applied with a brush to wellcleaned plass, which is then placed on edge in a muffle furnace, and the platinum is thus burned in. forming an exceedingly thin but brilliant metallic backing having a somewhat grey lustre. It was used only for the lids of cheap boxes, toys, ornamental letters, \$c.
Mogic Mirrors.- Hand misrors of metal are still in common use in Oriental countries, and in Japan bronze mirrors possess a religious significance. They have been known and used from the most remote period, mention of them being found in Chinese literature of the 9th century. The (reputed) first made Japanese mirror, preserved at Isé, is an object of the highest vencration in Japan, and an ancient mirror, connected with which is a tradition to the effect that it was given by the sun-goddess at the foundation of the empire, is a principal article of the Japanese regalia. The mirrors of Japan in general consist of thin disks, from 3 to 12 in. in diameter, of speculum metal with handles, cast in one piece. The polished face of the mirror is slightly convex io form, so that a reflected image is seen proportionately reduced in size: the back of the disk is occupied with ornamentation and inscriptions in bold relief, and its r m is also raised to the back. Much attention has been attracted to these mirrors by a singular physical peculiarity which in a few cases they are found to possess. These are known as magic mirrors front the fact that when a strong beam of light is rehected from their smooth and polished surface, and thrown on a white screen, an image of the raised ornaments and characters on the back of the mirror is formed with more or less distinctness in the disk of light on the screes. This peculiarity has at no time been specially observed hy the Japanese, but in China it attracted attention as early as the nth century, and mirtors possessed of this property sell among the Chincse at ten or even twenty times the price sought for the ordinary nonensitive examples. The true explanation of the magic mirror was first suggested by the Freach physicist Charies Clicophas Person in 1847, who oboerved that the refiecting surface of the mirropes was not unilormly convex, the portions opposite relief surfaces being plape. Therefore, as he says ${ }^{6}$ the rays reflected from the convex portion diverge and give but a feebly illuminated image, while, on the coatrary. the rays reflected from the plane portions of the mirror preserve their parallelism, and appear on the screen as an image by reason of their contrast with the lecbler illumination of the rest of the disk." Such differences of plane in the mirror surface are accidental, being doe to the manner in which it is prepared, a process explined by W. E. Ayrtoa and I. Perry (Proc. Roy. Soc., 1878 , vol. urviti.), by whom ample details of the hatory, process of manufacture and composition of Oriental mirrors have been published. A preliminary operation in polishing the surface consists of scoring the cast disk in every direction with a sharp tool. The thicker portions with relief omament ofier more resistance to the proseste of the tool thas the thin flat portions, which tend to yield and form at first a concave surface, but this by the reaction of its elasticity rises afterwards and forms a slightly convex surface, while the more rigid thick portions are comparatively little affocted. This irregularity of surface is incoospicuous in ordinary light, and does not visibly distort images; but when the mirror reflectis a bright light on a screen the unequal radiation renders the minute diferences of surface obvious.

MIRZAPUR, a city and district of British India, in the Benares division of the United Provinces. The city is on the right bank of the Ganges; a station on the Eest Indian railway, about haffway between Allahabad and Benares, 509 m . N.W. from Calcutta. Pop. (1901), 79,862. The river front, lined with stone ghats or fights-of stairs, mosques, Hindu temples and dwelling-houses of the wealthier merchants, is handsome; but the interior of the town is mainly composed of mud huts. Formerly it was the emporium of trade between central India and Bengal, which has now been diverted to the railways. It has European and bative lace factories, and manufactures brass vessels and woollen carpets. The London Mission manages a high school and an erphanage. The municipal limits include the town of Bind-
hachal, an important centre of pilarimage, with the thution of Vindhyeshwari.

The Distaict or Mizzapor extends into the Sone valley. Area, $5238 \mathrm{sq} . \mathrm{m}$. It is cronsed from east to west by the Vindhya and Kaimor ranges. A central jungly plateau connecta these and separates the valley of the Ganges from that of the Sone. The part north of the Vindhyas is highly cultivated and thickly peopled, but the rest of the district consists largely of ravines and forests with a sparse population. The population in 1901 was $8,082,430$, showing a decrease of 6.8% in the decade. The district comprises a large part of the hereditary domains of the raja of Benares, which are revenue-free. It is traversed, near the Ganges, by the main line of the Eant Indinn railway. The Great Southern road used to start from the city.

MISCARRIAGE, in its widest seme 2 going astray, a failure. Is law, the word is wed in several phrases; thus, a miscarriage of justice is a failure of the law to attain its ends. In the Statute of Frauds (29 Car. II., C 3) in the expretion "debt, default or miscarriage of apother," the word has sometimes been interpreted as equivaleat in meaning to defandt, but it is more usually considered to mean a species of wrongful act for the consequence of which the law makes a party civilly responsible. The term is also used (see Abosinon) for the premeture expulsion of the contents of the womb before the period of gestation is complete.
MBECEOEMATIOM (from Let. miscere, to mix, and gewus, race), a minture or blending of two reces, particularly of a white with a black or negro mace.

MISCELTANY, a term applied to a single book containing articles, treatises or other writings dealing with a veriety of different subjects. It is a common titie in the literature of the 17 th and s8th centuries. The word is an adaptation of Lat. miscellomed (from miscellemexs, mised, misewre, to mix), used in this sense by Tertullian, Lisadlamen Pholamoci (Tert. alo. Vah sa); the ordnary use of the word in Latin was for a dish of broken meate, applied hy Juvenal ($\mathbf{x i} .20$) to the coarse lood of gladiators.

The Lat miscellanews has affected the form of a word which is now usually spelled " masling" applied to a mixture of various linds of grain, especially rye and whent. This, however, is really from the 8. Fr. mesteillon; Late Lat mistilio, formed from micisus, past participle of miscere, to mix, mingle

MIECHIEF, a term meaning originally calamity, trouble; now used particularly of annoying injuries or damage done in play or through petty spite. The word is derived through O. Fr. meschef, mod. meckef, from meschener, to do wrong, mes-, amiss, and chever, bring to a head (chef, Lat. caput).

MISDETERANOUA (from O. Fr. mes- and demener, to conduct oneself ill), the generic term used in English law to inctude at those offences against the criminal law which are not by common law or statute made treason or felony. In Ruesell on Crimes it is defined as a crime for which the law has not provided a particular name (6th ed., i. 193). The term misprision, at one time applied to the more heinous offences of this class, is now almost obsolete. The term misdemeanour includes not only all indictable offences below the degree of felony, some of them grave crimes, such as sedition, riot and perjury, but also the petty misdemeanours, which may be dealt with summarily by justices of the peace, and the most trifing breaches of local by-laws.
As a matter of legal bistory, many misdemeanours now repirsent what were originally described as trespasses against the peace, a phrase which is equivalent to a "tort " or delict, accompanied by circumstances calling for prosecution in the interest of the Crown and the public as well as for civil proceedings by the injured parties. Such acts as riot, public nuisance, sedition and the different forms of libel natarally came to be regarded as wrongs against the King's peace. Many of the early statutes anent justices aro particulariy concerned with tbe punishment of rioters; and some offences now treated as misdemeanours belonged to the spiritual and not to the temporal courts, a.g. perjury.

While it is true that almont all crimes which in the middle age were considered beinous fall into the categories of treation or felony, many stetatory misiemeanours differ so littie, if at all,
from felony in character or in the mode of punishment that, in the absence of a code, no logical line of division can now be drawn, inasouch as fer felonies are now capital and none involve the forfeitures of land or goods, which at one time afforded an appreciable dintinction betweea the two categories of crime. The result is that it is impossible to distinguish without enumerating the specific crimes falling under each bead.

Among the chief misdemeanowrs are: (t) Assault on the sovereign; (a) unlawful assembly; (3) riot and sedition; (4) forcible entries; (5) perjury, which until 1563 was mainly, if not colely, cognizable by the spiritual courts; (6) hlasphemy; (7) exmortion; (8) bribery; (9) obtaining property hy false pretences (which is nearly cognate to the felony of larceny); (ro) assault; (11) public nuisance; (12) bibel; (13) conspiracy to defraud, icc.; (14) attempts to commit other crimes.

Numerous acts or omissions are punishable as " misdencanours by interpretation." In other words, disobedience to the command or prohibition of a statute as to a matter of public concern is indictable as a misdemeanour, even if the statute does not 50 deacribe it, unless the terms of the statute indicate that come other remedy alone is to be pursued. For some misdemeancurs penal servitude may be imposed by stalute. But as a tule the appropriate punishment is by fue or imprisonment without hard labour or both, at the discretion of the court unleas limited by a particular statute. The offender may also be put under recognizance to keep the peace and be of good behaviour. Theoretically, whipping may be imposed; but this is not now done except undar specific statutory authority: and the like authority is necestary to authorive the addition of hard labour to a sentence of imprisonment.

At the preaent time the practical difference in Eaglish law bet ween misdemeanour and felony lies in matters of procedure, is which a trial for misdemeanour closely resembles an ordinary civil trial.

1. An arrest for misdemeanour may not be made without jucicial authority except under specific statutory authority.
2. A person charged with misdemeanour is entitled to bail (see ARREST), i.e. to release on the obtaining of sureties, or even on his own recognizance without sureties to appear and take his trial. Bail is obligatory in all misdemennours, with the exception of misdemeanours where the costs of the proeecution are payable out of the county or borough rate or fund.
3. X misderneanour may be tried on an information filed by the attorney peneral or by leave of the high court without the indictment emential in cuses of treseon and felony.
4. The same indictment or information may include a number of charges of misdemeanour committed at different times and even against different persons. See INDICTMENT.
5. A trial for misdemeanour may proceed in the absence of the
 felony.
6. On a charge of misdemeanour a trial by special jury may be ordered.
7. There is no right to challenge peremptortly any of the jurors mmmoned to try the case; any chalienge made must be for cause. The jury is aworn collectively (four men to a book), and not poll by poll as in felony, and their oath is to try the issues joined between the king and the defendant. They may separate during adjournments of the trial. like a jury in a civil case.
8. The conts of prosecutiag certain mindemeanours are recoverable out of public funde under specific statutory provisions; but in very few cases can the court make the misdemeanant himself pay ther. 9. There are no accessories after the fact to misdemeanour. (See Accrasort.)

Under French law and systems based thereon or having a common origin a distinction is drawn between crime (perbechen), ddit (sergeten) and contrasention. The English term misdemeanour roughly corresponds to the two classes of delit and contravention but includes some offences which would be qualiGied as "crime." In the criminal code of Queensiand the term "misdemeanour" is retained, while that of "felony" is abolished; and offences are classified as crimes, misdemeanours and simple offences, the two former punishable on indictment, the latter on summary conviction only; the more serious offences described in English haw as misdemeenours are in that code described as crimes (e.g. perjury). In the United States the English common law as to misdemeanour is generaily followed,
but in New York and other states a statutory distinction has been made between misdemeanour and felony by defining tha latter as a crime punishable by death or by imprisonment in a state prisor.
(W. F. C.)

M18E, an Anglo-French term (from Fr. mettre, to place) signifying a setulement of accounts, disputes, \&ec., by agreement of arbitration. As an Engtish legal term it was applied to the issue in a writ of right; and in history to the payment, in return for certain privileges, made by the county palatine of Chester to each new earl, and by the Welsh to each new bord of the Marches, or to a prince or king on his entry into the country. In its more general sense of asreement the term is familiar in English history in the " Mise of Amiens," in January, and that of Lewes; in May of 1264, made between Henry IIL and the barons.

MISRAUM, an ancient harbour town of Campania, Italy, about 3 m . S. of Baiae (q.v.) at the western extremity of the Gulf of Pateoli (Pozzuoli). Until the end of the Republic it was dependent on Cumae, and was a tavourite villa recort. Agrippa made the fine nat ural harbour into the main naval station of the Mediterranean ficet, and founded a colony there probahly in 31 b.c. The emperor Tiberius died in his villa here- Its importance lasted until the decline of the fleet in the 4 th century a.d. It was at first an independent-episcopal see: Gregory tbe Great united it with that of Cumae. In 890 it was destroyed by the Saracens. The name was derived from one of the companions of Ulysses, or from Aeneas' trumpeter, an account of whose burial is given in Virgil, Acmeid, vi. 232.

The harbour consisted of the outer basin, or Porto di Miseno, protected by moles, of which remains still exist, and the present Mare Morto, separated from it by a comparatively modern embankment. The town lay on the south side of the orter harbour, near the village of Miseno, where remains of a theatre and baths and the inscriptions relating to the town have been found. Remains of villas can also be traced, and to the largest of these, which occupied the summit of the promontory, and belonged first to Marius, then to Lucullus, and then to the imperial house, probably belongs the subterranean Grotta Dragonara. Roads ran north to Baiae and north-west past the modern Torre Gaveta to Cumae: along the line of hoth are numerous columbaria.

See J. Beloch, Campan ien, ed. il. (Breslau, 1890), r90 sq9. (T. As)
MISER, a term originally meaning (as in Latin) miserable or wretched, but now used for an avaricious person who hoards up money and who spends the smallest possible sum on necessities.

MISERERE (the fmperative of Lat. misereri, to have mercy of pity), the name of one of the penitential psalms (li.), from it opening words, Miserere noi, Deus. The word is frequently used in English as equivalent to "Misericord" (Lat. miscricordia, pity, compassion) for various forms in which the rules of a monastic order or general discipline of the clengy might be relaxed; thus it is applied to a special chamber in a monastery for those members who were allowed special food, drink, tic., and to a small bracket on the under side of the seat in a stall of a church made to turn up and afford support to a person in a position between sitting and standing. "Misericord" and "miserere" are also used of a small dagger, the "dagget of mercy," capable of passing between the joints of armour, with which the coup de grace might be given to at wounded man.

MISHATARA, a cily of St Joceph copnty, Indiant, U.S.A, on the St Joseph river of Michigen, about 80 m . E. by S. of Chicago. Pop. (1900), $\$ 560$ (821 foreign-born); (I9I0) 11,886 . It is served by the Grand Trunk and the Lake Shore \& Michigan Southern railways, and by inter-urhan electric lines. It has an extensive trade in grain and other agricultural products. Two miles up the river is the Hen Island dam, which, with the Mishawaka hydraulic dam nearer the city, is the source of much of the power used by the city's manufartories. St Joseph Iron Works was laid out on the south side of the river, in 1833 , and in 1835 was organized as a village and two additions were platted. In 1836 Indiana City was luid out on the narth side of the xives:
and in 8839 St Joseplt Iron Whaks, with hits two seddritons, and Indiana Ciny were incorporated as one town natued Mishowaka -the name of an Indian village formerty occupying a part of the present site. Mishawaka was chartored as a dity ma_{m} s899.
 Aesam. The Mishmis occupy the hill from the Dibong to the Brahmakumd, in the north-casters corner of the Brahmaputra vallay. In 1854 M. Krick and M. Bourry, two French mistionaries, were murdered in the Bishmi country, but their death was avenged by a small expedition which took the murderer prisoner. In 1899 enother Britich expodition was sent agtanst the Mishmis, owing to the marder of some British-surbjects.
usiowes, a territory of northern Argentinin, bounded N. by Paraguay and Brazi, E. and S. by Brazil and W. by Paragoay and the Argentine province of Corrientes. Its boundary lines ere formed by the upper Parané and Iguassí rivers on the N., the San Antonio and Pequiry-guassu streains on the E. and the Uruguay River on the S. Area, 11,282 eq. m.; pop. (x904, estimate), 38,755 , chiefly Indians and mestivas. The territory is a segion of roaghly-broken surfices, divided longitudinally by low mountains, called' the Sierre Iman and Sierra Grande de Misiones, which form the waterparting for many small streams fowing northward to the Parana and southward to the Uruguay. The greater part of the country is oovered with forest and tropical fengle. The climate is sob-tropical, the temperature ranging from 40° to $25^{\circ} \mathrm{F}$. The soil is described as highly fertile, but its products are chiefly confined to yerbe mate or Paraguay tea (llex paraguayensis), tobacco and oranges and other fruits. Commanication with the capital is meintained by two lines of teamboatis rematag to Corrientes and Buenos Aires, but a rait way acroos Paragray from Asuncion is plenned to Encarnacion, oppooste Poasdas. Some of the Jesuit missions of the 17 th and 188t ceatdries were establistiad to this térritory, and are to-day represented by the lifeless vilages of Candelaria, Santa Ann, San Ignacio and Corpus along the Parank River, and Apbstoles, Concepcion, and Sean Javier along the Uruguay. Posadas (eatimated pop. in 1905, 8000), the capital, on the Parank, officially ditess from 1805. It was also a Jesuit settement called Itapuia, tholagh the large mission of that name was on cte Paragoayan side of the river. It is at the extreme west of the teritory, and is the terminal port for the steamers from Corrientes.
MiskOLCZ, capital of the county of Borsod, Hungary, ri3 m. N.E. of Budapest by rail. Pop. (1900), 40,833. It is situated in a valley watered by the Szinva in the cast of the Bulk mountains, and opens towards the south to the phain of the Sajo, an aflluent of the Hernad. Miskolcz is a thriving town, and among its buildianss are a Roman Catholic church of the isth century in Late Gothic style, a Minorite convent, and Greek Catholic, Lutheran and Caluinist churches. It manufactures snuff, porcelain, boots and shoes, and prepared leather, and has both steam and water mills. It trades in grain, flour, wine, fruit, cuttele, mides, horiey, wax and agricultural products, while four wellattended lairs are held armually: About $\$ \mathrm{~m}$. west of the town in the Szinva valley is Difsgyor (pop. xr,5\%0), which possesses important iron-works, and the ruined castle of Diossybir, formerly a shooling residence of the kings of Hungary. About 4 m . to the south-west of Miskolcz are the baths of Tapoleza, containfing warm springs. To the south-west of the town lies Onod (pop. 2087), to the south of which, on the banks of the Sajo, is the healh of Mohi or Muhi, famous as the scene of the great defeat of the Hungarians by the Mongols in 1245. About 85,000 Hungarians fell, and the whole country was devastated for the next two years by the Mongolian hardes. During the r6th aad 17th centuries Miskolcz suffered much from the Oteomans, and from the troops of George Rakoczy and Emeric Tokslyi. In 1781, 1843 and 1847 it was devastated by fire, and on the 3 oth of August 1878 a great portion of the town was mined by a tarrifc storm.
IISPICKEL, a mineral consisting of irom sulpharsenide, FeAsS; it contains 40% of arsenic, and is of importance as an
ore of this element: It is known also as arsenopyrite or assenical pyrites (Ger. Arsenitkies): mispickel is an old name of German erigin, and in the form Mistpuckel wes used by G. Agricola in 1546. The crystals are orthorhombic, with engles gimilar to those of marcasite; they aro often prismatic in habit, and the prism If is usually terminated by the deeply striated faces of an obtuse dome 9 . Twinning is not uncommon, the twin-
 planes M (1IO) and g (ror) being the same as in marcasite. The colour of the mineral is silver-white or ster-grey, with a metallic Instre, but it is often tarnished yellow; the streak is greyish-black. The hardiness is $5 \frac{1}{2}-6$; and the specific gravity 5.9-6.2.

Mispickel occurs in metalliferous veins with ores of tif, copper, silver, te. It is oceasionally found as embedded crystals, for example, in serpentine at Reichenstein, Silesia. In Cornwall and Devon it is associated with cassiterite in the tinlodes, but is also found in the copper-lodes: well crystalized specimens have been obtained from the neighbourhood of Tavis. tock, Redrath and St Agnes. Mispickel is the principal source of arsenious oxide or the " white arsenic" of commerce (see Arsenic). The chief supplies are from Cornwall and Devon, and Freiberg in Sazony, and from Canada and the Enited States.
Danaite is a cobakiferous variety of mispickel, containing up to 9% of cobalt replacing iron; it was first noticed by J. F. Dana in 1824 at Franconia in New Hampshire. This variety forms a passage to the species glaucodote, (Co, Fe)AsS, which is found as well-developed orthorbornhic crystals in copper ore at Häkansboda in Ramberg parish, Vestmaniand, Sweden. Other species belonging to this isomorphous group of orthorhombie minerals are marcasite (FeS_{2}), lollingite (FeAsz), safflorite (CoAsy) and rammelsbergite (NiAs).
(L. J. S.)
risprision (from O. Pr. mespremdire, mod. mipremdre, to misunderstand), a term in English law, almost obsolete, used to describe certain kinds of offence. Writers on criminal law usually divide misprision into two kinds (a) negative, (b) positive.
(a) Negative misprision is the concealment of treason or felony. By the common law of England it was the duty of every liege subject to inform the king's justices and other officers of the law of all treasons and felonies of which the informant had knowledge, and to bring the offender to justice by arrest (see Sheriffs Act 1887, s. 8). The duty fell and still falls primarily on the grand jurors of each county berough or frapchise, and is performed by indictment or presentment, hut it also falls in theory on all other inhabitants (see Pollock and Maitland, Hist. Eng. Law, ii. 505). Failure by the latter to discharge this public duty constitutes what is known as misprision of treason or felony (see 3 Co. Inst., 139).

Misprision of Treason, in the words of Blackstone, "consists in the bare knowledge and concealment of treason, without any degree of assent thereto, for any assent makes the party a principal traitor." Aoconding to Bracton, de Coroméseq. in8, failure to reveal the treason of another was in itself high treason, but statutes of 1551-1552 and 1554-1555 made concealment of treason misprision only. Most of the statutes regulating procedure on trials for treason also apply to misprision of treason. The puaishment is loss of the proft of the lande of the offender during life, forfeiture of all his goods and imprisonment for life. These punishuents are not affected by the Forfeiture Act 1870

Misprision of Felony is the concealment of a felony committed by another person, but without such previous concert with, or subsequeat assistance of the offender, as would make the concealer an accespory before or after the fact. The offence is a misdemeanour punisbable on indictment by fine and imprisonment.
(b) Positive misprision is the doing of something which ought not to be done; or the commission of a serious offence falling short of treason or felony, in other words of a misdemeanour of a public character (e.g. maladministration of high officials, contempt of the sovereign or magistrates, \&c.). To endeavour to dissuade a witness from giving evidence, to disclose an examination before the privy council, or to advise a prisoner to atand mute, used to be described as misprisions (Hawk. P. C. bt.I. C. 30).

The old writers say that a misprision is contained in every felony and that the Crown may elect to prosecute for the misprision instead of the felony. This proponition merely affirms the right of the Crown to choose a more merciful remedy in certain cases, and has no present value in the law. Positive misprisions are now only of antiquarian intereat, being treated as misdemeanours.

In the United States, mispricion of treason is defined to be the crime committed by a person owist allegiance to the United States, and having knowledge of the commission of any crime against them, who conceals and does not, as soon as may be, disclose and make known the same to the president or to some judge of the United States, or to the governor, or to some judge or justice of a particular state. The punishment is imprisonment for not more than seven years and a fine of not more than one thousand dallart.

MISRULS, LORD OF, in medieval times tbe master of the Christmas revals. Probably J. G. Frazer (Golden Bough III.) is right in suggesting that the lord or abbot of misrule is tbe succemor of the king of the ancient Roman Saturnalis, who pergonated Saturn and suffered martyrdom at the end of the sevels. Compare, too, the burlesque figure at the carnival, which is finally destroyed. Stow (Survey) writes: "In the feast of Christmas there was in the King's House, wheresoever he lodged, a Lord of Misrule or Master of merry disports, and the like had ye in the house of every nobleman of honour or good worship, were he spiritual or temporal." The mayor and sherifls of London also had Lords of Mirrule. These mock-monarchs began their reign on Allhallows Eve, and misruled till Candlemass. In Scatland they wero known as "Abbots of Unreason," and in 1555 a special act suppressing them was paseod. In Tudor times their reign was marked by much display and expense In Henry VIII.'s reign an order for a fool's cont is signed by six of the Privy Council. By an Act of Common Council (1555) the city expenses of the Lords of Misrule mere severely curtailed. Machyn speaks of a Lord of Misrule who in 156I rode through London followed by a hundred gentlemen on borseback hung with gold chains (see also Revels, Master oz).

Migsal, the book containing tbe liturgy, or office of the mass (missa), of the Roman Catholic Cburch. This name (ef. Missale gothicum, francorum, gallicanum vetus) began to supersede the older word Sacramentary (sacramentarium, liber sacramentorum) from about the middle of the 8th century. ${ }^{1}$ At that period the book 20 designated contained merely the fixed cenon of the mass or consecration prayer (actionem, precem canonicam, canonem actionis), and the variable collects, secrelae or orationes super oblata, prefaces, and post-commumions for each fast, vigil, festival or feria of the ecclesiastical year; for a due celebration of the Eucharist they required accordingly to be supplemented by other books, such as the Andiphonarium, afterwards called the Graduale, containing tbe proper antiphons (introits), responsories (graduals), tracts, sequences, offertories, communions and other portions of the communion service designed to be sung by the schola or choir, and the Lectionarina (or cpistolarium and coangelistarium) with the proper lessons.:
${ }^{1}$ It first occurs in Ecgbert of York's De remedits peccatorum, where it refers to the sacramentary of Gregory the Great.

One of the most celebrated of carly missals is the Stowe missal of the 6th century in the British Museum. It contains the Fitany of the sainte, the gloria with the collects, the pert of the Epistle to the Corinthians relating to the Eucharist, the credo and the consocradio and memento corresponding exactly to the Roman canon. Aiter the daily mass follow the missa apostolorum, missa sanctorwme, missa pro poenitentions vivis and the missa pro mortuis. To the 7th century belons the Missole franconvm and the Missole gothicwm, priginally in the abbey of Fleury. In the 8th century we find in Ecepert of York's De remedios peccatorum. i., that those who devote their lives to sacred orders are supponed to furnish themselves with a pralter, lectionary, amiphonary, mimal, baprismal office and marsyrology. The adoption of the Roman liturgy by Charlemagne explains the great quantity of misals within this period; e.g. the missal of Worms in the library of the Arsenal at Paris. From the roth century' we have the mivel of St Vousay, alohough badty macilated, and everal others. From the sath cencury mimels became common, and more 20 with the isvention of printing.

Afterwards misols contained more or leas fully the antiphone and lessons as well as the prayers proper to the various days, and these were called missalia planaria. All modern mingula are of this last description. The Missale romasmen er decreto ss. concilii sridentini restitutum, now in almost exclusive mate throughout the Latln obedienct, owes its present forn to the council of Trent, which undertook the preparation of a correct and uniform liturgy, and entructed the work to a committee of its members. This committee had not completed its laboum when the coumcil rome, but the pope was instructed to rective its report when ready and to act upon it. The "reformed missal " was promulgated by Pius V. on the 14th of July r579, and its universal use enjoined, the only exceptions being churchee having local liturgies, which had been an unbroken use for at least two centuries. ${ }^{3}$ It has subsequently undergone slight revisions under Clement VIII (1604), Urban VIII. (1634) and Leo XIIL (1884), and various new matses, both obligatory and permissive, universal and local, have been added. Athough the Roman is very muck larger than any other liturgy, the communion office is not in itself inordinately long. The greater part of it is contained in the " ordinery " and "camon " of the masc, usually pliced about the middle of the missal, and occupies, though in large type, only a few pages. The work owes its bulk and complexity to two circomstances. On the one hand, in the celebration of the sacrifice of the man practically mothing is left to the discretion of the officiatiog priest; everything-what he is to say, the tone and gestures with which he is to say it, the cut and colour of the robe be is to wear-is carcully prescribed in the rubrics 4 On the other hand, the Roman, like all the Western liturgies, is distioguished from those of the Eastern Church by its flexibility. A distinctive character has been eiven to the office for each ecclesinstical senson, for each fast or festival of the year, almost for each day of the week; and proviaion has also been made of a suitable communion service for many of the special occasions both of public and of private life.

The different parts of the Roman commurion office are sot all of the same antiquity. Its exsential features are moret easily caught, and best understood, by reference to the earliest Sacre+ mentaries (particularly the Gregorian, which was avowedty the basis of the labours of the Tridentine committec), to the Gregarian Antiphonary, and to the aldest redaction of the Oril romemas.' The account of the mass (qualiter Mises Romana celebratur) as given by the sacramenlarism gregoriamin to to the effect that there is in the first place " the Indrot accorting to the time, whether for a iestival or for a common day; thereafter Kyris elaison. (In addition to this Clarie in excadsis Dn is said if a bishop be [the celebrant], though only on Sandays and festivals; hut a prient is by no means to say it, except only at Eastertide. When there is a litany (quando letapin agitur) neither Gloria in excelsis nor Allolvia is sung.) Aftervands the Oratio is said, whereupon follows the A pastolus, also the Grodual and Allessia. Afterwands the Gasped is read. Then comes the Offerterima," and the Oralio super oblala is said." Then follow the Surswon cauda, the Proface, Camon, Lord's Prayer and " ombolism " $(4 \mu b i$ copue or insertion, Libera sas, Dominc), qiven at full length precisely as they still occur in the Romen minalh

* The English misme consequently continued to be used by Engtish Roman Catholics watil towards the end of the 17th century, when it vai superpoded by the Romen through Jesuit influeroce. The Gallican liturgy beld jts ground until much more recently, but han succumbed under the Ultramontanism of the bishops.
-In all the ofder liturgies the comparative absence of rubrics is comapicuous and sometimes perplesing. It is very noticeable in that Romin Secromentarins, but the want is to some extent supplied by the very detailed directions for a high pontifical mass in the various texts of the Ordo Romanus meotioned below. That there was no absolutety fixed set of rubrics in use in France during thei Bch century is shown by the fact that each priest was required to withe out an sccoum of his own prectice ("libellum ordinis ") and present it fot approbation to the bishop in Lent (see Baluze. Cap, Reg. Framc. i 824 guoted in Smith's Dich. of Chr, Amtig, ii. I521).
For the penealogical relationships of the Rornan with other liturgies, see Lrruzgy. For the doctrines involved in the "sacrifiot of the mang" see Eucraniet.
-Some editions do not mention the Ofiertory bere.

In every iturgy of all the five groups a passage sintilar to this occurs, beginning with Surswm corda, followed by a Preface and the recitation of the Sanctus or Angelic Hymn. The "canon" or consecration prayer, which in all of them comes immediately after, invariably contains our Lord's words of institution, and (except in the Nestorian liturgy) concludes with the Lord's Prayer and "embolism." But there are certain differences of arrangement, by which the groups of liturgies can be classifed. Thus it is distinctive of the liturgy of Jerusalem that the "great intercession "for the quick and the dead follows the words of
 petition for the deacent of the Holy Spirit upon the gifts; in the Alexandrian the "great intercession" has its place in the Preface; in the East Syrian it comes between tbe words of restitution and the Epiklessis; in the Ephesine it comes before the Preface; while in the Roman it is divided into two, the commemoration of the living being before, and that of the dead after, the words of institution. Other distinctive features of the Roman liturgy are (s) the position of the "Pax" after the consecration, and not as in all the otber liturgies at a very earty stage of the service, before the Preface even; and (2) the absence of the Epiklesis common to all the others." The words of its "canonical prayer" are of unknown antiquity; they are found in the extant manuscripts of the Sacramenlarium gelasionum, and were already old and of forgotten authorship in the time of Gregory the Great, who, in 2 letter to John, bishop of Syracuse (Registr. Epist. vii. ${ }^{4} 4$), speaks of it as "tbe prayer composed by a "scholastic", (precem quam scholasticus composuerat). The same letter is interesting as containing Gregory's defence, on the ground of ancient use, of certain parts of the Roman ritual to which the bishop of Syracuse had taken exception as merely borrowed from Constantinople. Thus we Jearn that, while at Constantinople the Kyrie cleison was said by all simultaneously, it was the Roman custom for the clergy to repeat the words first and for the people to respond, Christe eleison being also repeated an equal number of times. Again, the Lord's Prayer was said immediately after the consecration aloud by all the people among the Greeks, but at Rome by the priest alone.

The meagre liturgical details furnished by the Sacramentarium gregorianum are sapplemented by the texts of the Ordo romanus, the first of which dates from about the year 730 . The ritual they enjoin is that for a pontifical high mass in Rome itself; but the differences to be obsetved hy a priest " quando in statione facit missas "are corppe ratively slight. Subjoined is a precis of Ordo Romanus 1.

It in first of all explained that Rome has seven ecclesiastical regions, each with its proper deacons, subdeacons and acolytes. Each region has its own day of the week for high ecclesiastical functions, which are celebrated by each in rotation. [This accounts for the Statio ad S. Mariam Majorem, ad S. Crucem in Jerusalem, ad S. Petrum, \&c., prefixed to most of the masses in the Gregorian Sacramentary, and still retained in the "Proprium de Tempore" of the Roman missal.] The regulations for the assembling and marshalling of the procession by which the pontiff is met and then escorted to the appointed station are minutcly given, as welf as for the adjustment of his vestments " ut bene sedeant," when the sacristy has been reached. He does not leave the sacristy until the Introit has been begun by the choir in the church. Belore the Gloria he takes his stand at the altar, and alter the Kyrie Eleisom has been sung (the number of times is left to his discretion) he begins the Gloria in excelsis, which is taken up by the choir. During the singing he faces eastrard; at its close he turns round for a moment to say "Pax vohis," and forthwith proceeds to the Oratio." This finished, all seat thernseives in order while the subdeacon ascends the ambo and reads [the apistle]. Alter he has done, the cantor with his book (cantatorio) ascends and gives out the response (Responsum) with the Alleluia and Tractus in addition if the season calls for either. The deacon then silently kisses the feet of the pontiff and receives his blessing in the words "Dominus sit in corde tuo et in lahils tuis." Proceded by acolytes with lighted candles and subdeacons burning incense, be ascends the ambo, where he reads the Gospel. At the close, with the words "Pax tihi" and

[^33]"Dominus vobiscum," the pontiff, after enother Oratio, descende to the "senatorium" accompanied by certain of the inferior clerty, and receives in order the oblations of the rulers (oblationes principum). the archdeacon who follows taking their " amulas " of wine and pouring them into a larger vessel; similar offerings are received from the other ranks and chasees present, including the women This concluded, the pontiff and archdeacon wash their hands, the offerings being mean while arranged by the subdeacons on the altar, and water, supplied by the leader of the choir (archiparaphonista), being mingled with the wine. During this ceremony the schola have been engaged in singing the Offertoriuss; when all is ready the pontiff signs to them to stop, and enters upon the Preface, the subdeacons giving the responses.- At the Angelic Hymn (Sanctus) all kneel and continue kneeling, except the pontiff, who rises alone and begins the Canon. At the words "per quem haec omnia" the archdeacon lifts the cup with the oblates, and at " Pax Domini sit semper vobiscum " he gives the peace to the clergy in their onder. and to the laity. The pontiff then breaks of a particle from the consecrated hread and lays it upon the altar; the rest he places on the paten held by the deacon. It is then distributed while Afnus Dei is sung. The pontif in cornmunicating puts the particle Into the cup, saying "Ftat commixtio et consecratio corporis et ganguinit Domini nostri Jesu Christi accipientibus nobis in vitam acternam." Those present communicate in their order under this species also. As the pontiff descends into the senatorium to give the communion, the schola begins the communion Antiphom, and continues singing the Psaln until, all the people having communicated, they receive the sign to begin the Gloria, after which, the verse having been again repeated, they stop. The celebrant, then, facing eastward, ofers the Oratio ad complendum, which being finished the archdeacon says to the peopic, "Ite, misea est," they responding with "Deo gratias."

To complete our idea of the Roman communion office as it was prior to the end of the 8th century we must now turn to the Gregorian Anliphonarius sive gradualis liber ordinalus per circulum anni, which as its name implies contains those variable portions of the mass which were intended to be sung by the schola or choir. It gives for each day for which a proper mass is provided: (1) the Andiphona (Antiphona ad Introitum) and Psalmus; (2) the Responsorizm and Versws, with its Alleluia and Versus; (3) the Offertorium and Versus; (4) the Communio and Psalmus. Some explanation of each of these terms is necessary. (1) The word Antiphon (dyrl\$woov, O. Eng. Anlefn, Eng. Anthem) in its ecciesiastical use has reference to the very ancient practice of relieving the voices of the singers by dividing the work between alternate choirs. In one of its most usual meanings it has the special signification of a sentence (usually scriptural) constantly sung by one choir between the verses of a psaim or hymn sung by another. According to the Roman liturgiologists it was Pope Celestine who enjoined that the Psalms of David should be sung (in rotation, one presumes) antiphonally before mass; in process of time the antiphon came to be sung at the beginning and end only, and the psalm itself was reduced to a single verse. In the days of Gregory the Great the introit appears to have been sung precisely as at presentthat is to say, after the antiphon proper, the Psalmus with its Gloria, then the antiphon again. (2) The Responsorium, introduced between the epistle and gospel, was probably at first an entire psalm or canticle, originally given out by the cantor from the steps from which the epistle had been read (hence the later name Graduale), the response being taken up by the whole choir. (3) The Offertorium and Communio correspond to the " hymn from the book of Psalms" mentioned by early authorities (see, for erample, Augustine, Retr. ii. 11; Ap. Const. viii. 13) as sung before the oblation and also while that which had been offered was being distributed to the people. A very intimate connexton between these four parts of the choral service can generally be observed; thus, taking the first Sunday in the ecclesiastical year, we find both in the Antiphonary and in the modern Miscol that the antiphon is Ps. rxv. r-3, the psalmus Ps. 2xv. 4, the responsorium (graduale) and versus Ps. xiv. 3 and xiv. 40 the offertorium and versus Ps. $\mathbf{I x v}, \mathrm{I}-3$ and $x x v .5$. The communio is Ps. luxiv. 12, one of the verses of the responsorium being Ps. lexiv. 7. In the selection of the introits there are abso traces of a certain rotation of the psalms in the Psalter having been observed.

The first pages of the modern Roman missal art occupied with the Calendar and a variety of explanations relating to the
"After singing "Credo in unum Deum," Ord. Rom, II.
year and its parts, and the manner of determining the movable feasts. The general rubries (Rubricce senerales missalis) follow, explaining what are the various kinds of mass which may be celebrated, prescrihing the hours of celebration, the kind and colour of vestments to be used, and the ritual to be followed (ritus celebrandi missam), and giving directions as to what is to be done in case of various defects or imperfections which may arise. The Proeparalio ad missem, which comes next, is a short manual of devotion containing psalms, hymns and prayers to be used as opportunity may occur before and after celebration. Next comes the proper of the season (Proprium missarum de lempore), occupying more than half of the entire volume. It contains the proper introit, collect (one or more), epistle, gradual (tract or sequence), gospel, offertory, secreta (one or more), communion and post-communion for every Sunday of the year, and also for the festivals and ferias connected with the ecclesiastical seasons, as well as the offices peculiar to the ember days, Holy Week, Easter and Whitsuntide. Between the office for Holy Saturday and that for Easter Sunday the ordinary of the mass (Ordo missac), with the solemn and proper prefaces for the year, and the canon of the mass are inserted. The proper of the season is followed by the proper of the salnts (Proprium sonclorum), containing what is special to each saint's day in the order of the calendar, and by the Commure sonctorum, containing such offices as the common of one martyr and bishop: the common of one martyr not a bishop, the common of many martyrs in paschal time, the common of many martyrs out of paschal time, and the like. A variety of masses to be used at the feast of the dedication of a church, of masses for the dead, and of votive masses (as for the sick, for persons journeying, for bridegroom and bride) follow, and also certain benedictions. Most missals have an appeadix also containing certain local masses of sainte to be celebrated " ex indulto apostolico."

Masses fall into two great subdivisions: (1) ardinary or regular (secundum ordinem officii), celebrated according to the regular rotation of fast and feast, vigil and feria, in the calendar; (2) extraordinary or occasional (extra ordinem officii), being either "votive " of " for the dead," and from the nature of the case having no definite time prescribed for them. Festival masses are either double, half-double or simple, an ordinary Sunday mass being a half-double. The difference depends on the numberof collects and secretae; ori a double only one of each is offered, on a hall-douhle there are two or three, and on a simple there may be as many as five, or even seven, of each. Any mass may be either bigh (missa solennis) or low (missa privata). The distinction depends upon the number of officiating clergy, certain differences of practice as to what is pronounced aloud and what inaudibly, the use or abseace of incense, certain gestures and the like. Solitary masses are forbidden; there must be at least an acolyte to give the responses. The vestments prescribed for the priest are the amice, alb, cingulum or girdle, maniple, stole and chasuble (plareta). There are certain distinctions of course for a bishop or abbot. The colour of the vestments and of the drapery of the altar varies according to the day, being either white, red, green, violet or black This last custom does not go much further back than Innocent UI., who explains the symbolism intended (see Vesticents).

Subjoined is an account of the manner of celebrating high mass uccording to the rite at present in force.
8. The priest tho is to celebrate, having previously conleased (ff necessary) and having finished matins and lauds, is to seek lcisure for private prayer (lasting) and to use as he has opportunity the "prayers before mass" already referred to. How the robing in the apacristy is next to be gone about is minutely premcribed, and prayers are given to be used as each article in put on. The secramental elements having previously been placed on the altar or on a crodence table, the celebrant enters the church and takes his stand before the lowest step of the altar, having the dezcon on his right and the subdeacon on his left. After invoking the Triaity IIn namine Patrio, foc.) he repeats alternately. with thoee who are with him the psalm" Judica me, Deus. "which is preceded in the usual way by an Entiphon (n ntroibo ad altare Dei). and Collowed also by the Cloria and Antiphon." The versicle AAljutorium nostrum," with its
response " Qui fecit," is followed by the "Confiteer," " said alternately by the pricst and by the attendants, who in tura respond with the prayer lor divine forgiveness, "Miscreatur." The priest then gives the absolution (" Indulgentiam "), and after the versicles and responses beginning "Deus, tu conversus" he audibly says, "Oremus," and ascending to the altar silenty offers two short prayert, one asking for lorgiveness and liberty of access through Cbrist, and another indulgence for himself, " through the ments of the saints whose relics are here." Keceiving the thurible from the deacon he censes the altar, and is thereafter himsell censed by the deacon. He then reads the Introit, which is also sung by tbe choir: the Kyrie elerson is then sidid, after which the words Glorid in cxcels is ${ }^{3}$ are sung by the celebrant and the rest of the hyma completed by the choir.
2. Kissing the altar, and turning to the people with the formula "Dominus vobiscum," the celebrant proceeds with the collect on collects proper to the season or diy, which are read secretly. The epistle for the day is then read by the subdeacon, and is followed by the gradual, tract, alleluia or sequence, according to the time. This finished, the deacon places the book of the gospels on the aldar, and the celebrant blesses the inconce. The deacon kneels before the altar and offers the prayer "Munda cor meum," afterwarda takes the book Irom the altar, and kneeling belore the celebrant asks his blessing, which he receives with the words " Dominus sit in corde tua." Having kissed the hand of the priest, be goes acconspanied by acolytes with incense and lighed candles to the pulpit, and with a "Dominus vobiscum" and olinutcly prescribed crossinga and censings gives out and reads the gospel for the day, at the close of which "Laus tibi. Christe" is sid, a nd the book is broughe to the celebrant and kissed with the words "Per evangelica dicta delea $\mathbf{x t} 1$ ti nostra delicta." The celebrant then standing at the middle of the altar sings the words "Credo int uam Deum," and the rest of the Nicene creed is sung by the choir,"
3. With "Dominus vobiscum" and "Oremute" the celebrant proceeds to read the offertory, which is alwo sung by the choip. This finished he receives the paten with the hoar from the deacon, and after offering the host with the prayer beginning "Suscipe, Sancte Pater" places it upon the corporal. The deacon then ministers wine and the subdeacon water, and before the celebrant mixes the water with the wine he btesses it in che prayer "Deus qui humanae." He then takes the chatice, and having offered it ("Oferimus tibi, Domine ") places it upon the corporal and covers it with the pall. Slightly bowing over the altar, he then offers the prayer " In spiritu humilitatis," and, lifting up his eyes and stretching out his hands, proceeds with "Veni eanctificator." Afler blessing the incense (" Per interccesionern beati Michaclis archangeli") he takes the thurible from the deacon and censes the Tread and wine and altar, and is afterwards himsell censed as well as the others in their order. Next going to the epist le side of the altar he washes his fingers as he recites the verses of the atat Palm beginaing "Lzvabo," Recurning and bowing belore 1 be middle of the altar, with joined hands he says, "Suscipe, sancta Trinitas," then turning himself towards the people he raises his voice a littie and says, "Orate, fratres" ("that nyy sacrifice and yours mey be acceptable to God the Father Alnughty "), the response to thich is "Suscipiat Dominus sacrificiuno de manibus tuis," Ic. He then recites the secret prayer or prayers, and at the end says, with an audjble voice, "Per omnia sace ula aseculorum ", (R. "Amen "), 4. Again saluting with a "Dominus vobicume" he lifts tp his hands and gocs on to the Sursim orda and the reat of the Profoct. A different intonation is given for each of the prefaces. As the Sanctus the handbell is rung. If there is a choir the Sandme is sung while the celebrant goes on with the carnon.' After the words of consecration of the wafer, which are and "emecretly, dis lincily and attentively," the cullorant kneels and adores the host, rising elevates it, and replaciug it on the corporal again adores
Introitum further on. This usc of the f3rd Psalm goes as far back at least as the end of the 1 th century being mentioned by Micrologus (1080). It is ornitted in masscs for the dead and during lioly Veek.

3 A form very similar to the precent is given by Micrologus, and it is foreshadowed even in liturgical hiterature of the 8 th century.

During Lent and Advent, and in masses for the dcad, this is omitced. In low masses it is of course said, not sung (if it is to be t id). It may be added that thi carly position of the Gloria is txcdsis is one of the fatures distiuguishing Roman from Ephesine

- The tract is peculiar to certain cecasions, especiatly of a mournfut n:mure, and is sung by a single voie. By a sequence is understood i more or less metrical compositiou not in the wnods of Scripture I wing a special bearing on the fest val of the day. See. for exareple, the sequence, "Lauda Sion Salvatorem." on Corpus Christi day.
${ }^{2}$ On certain days the Credo is ortutted.
- Now cleven; they were at pnc time much more numeroras.
- The approved usage appears to be in that case that it in tung en Lar as " Hosanna in excelsis" befort the elevation, and "Benedictus goi venit is reserved sill afterwar In France it was a very common custom, made general lor a tine at the request of Louis XII., to bing "O salutaris hostia" at they ievation.

敖 (the bell meanwhile being rung). The same rite is obeerved when the chalice is consecrated. Immediately before the Lord's Prayer. at the words " per ipsum et cum ipso et in ipso." the sign of the cross is made three times over the chalice with the host, and towards the cloee of the "embolism" the fraction of the host takes piace. After the words "Pax Domini sit semper vobiscum" the emission of the particle into the cup takes place with the words "Haec commixtio et consecratio," \&ec. The celebrant then says the Agnus Dei three times.
5. While the choir sings the Agwos Dai and the Communion, the celebrant proceeds, stiil ${ }^{\text {R }}$ eecrete, with the remainder of the office, which though printed as part of the canon is more conveniently called the communion and post-communion. After the prayer for the peace and unity of the Church (" Domine Jesu Christe, qui dixisti ") he salutes the deacon with the kiss of peace, saying, "Pax tecum ": the subdeacon is saluted in like manner, and then conveys the "pax" to the rest of the clergy who may be assisting. The celebrant then communicates under both species with suitable prayers and actions, and afterwards administers the sacrament to the other communicants if there be any. Then while the wine is poured into the cup for the first ablution he says, " Quod ore sumpsimus "; having taken it he says, "Corpus tuum, Domine" After the second ablution he goes to the book and reads the Communion. Then turning to the peopie with "Dominus vobiscum " he reads the postcommunion (one or more); turning once more to the congregation be uses the oid dianaissai formula "Dominus vobiscum " (R. "Et cum spiritu two "), and "Ite, missa est" or "Benedicamus Domino," in those masses from which Gloric in excelsis has been omitted (R. "DeoGratias '). Bowing down before the altar he offers the prayer "Placeat tibi, sancta Trinitas," then turning round he makes the sign of the cross over the congregation with the words of the benediction (" Benedicat "). ${ }^{2}$ He then reads the passage from the gospel of John beginning with "In principio erat Verburn," or else the proper gospel of the day. ${ }^{2}$
(J. S. BL.)

MISSI DOMINICI, the name given to the officials commissioned by the Frankish kings and emperors to supervise the administration of their dominions. Their institution dates from Charles Martel and Pippin the Short, who sent out officials to see their orders executed. When Pippin became king in 754 he sent out missi in a desultory fashion; but Charlemagne made them a regular part of his administration, and a capitulary issued about 802 gives a detailed account of their duties. They were to execute justice, to enforce respect for the royal rights, to control. the administration of the counts, to receive the oath of allegiance, and to supervise the conduct and work of the clergy. They were to call together the officials of the district and explain to them their duties, and to remind the people of their civil and religious obligations. In short they were the direct representatives of the king or emperor. The inhabjtants of the district they administered had to provide for their subsistence, and at times they led the host to battic. In addition special inslructions were given to various missi, and many of these have been preserved. The districts placed under the missi, which it was their duty to visit four times a year, were called missatici or legationes. They were not permanent officials, but were generally selected from among persons at the court, and during the reign of Charlemagne personages of high standing undertook this work. They were sent out in twos, an ecclesiastic and a layman, and were generally complete strangers to the district which they administered. In addition there were extraordinary missi who represented the emperor on special occasions, and at times beyond the limits of bis dominions. Even under the strong rule of Charlemagne it was difficult to find men to discharge these duties impartially, and after his death in 814 it became almost impossible. Under the emperor Louis I. the nobles interfered in the appointment of the missi, who, selected from the district in which their duties lay, were soon found watching their own interests rather than those of the central power. Their duties became merged in the ordinary work of the bishops and counts, and under the emperor Charles the Bald they took control of associations
${ }^{1}$ The history of the practice of elevating the host seems to have arisen out of the custom of holding up the oblations. as mentioned in the Ordo Romanus (see above). The elevation of the host, as at present practised, was first eajoined by Pope Homorius III. The use of the handbell at the elevation is atill tater, and was first made general by Gregory $\mathbf{X} \mathbf{I}$.
${ }^{2}$ The benediction is ornitted in mpasses for the dead.
3 The reading of the pascage from John on days which had not a proper gospel was first enjoined by Pius V.
for the preservation of the peace. About the end of the gth century they disappeared from France and Germany, and during the Ioth century from Italy. It is possible that the itinerant justices of the Eaglish kings Henry I. and Henry II., the itinerant baillis of Philip Augustus king of France, or the royal enquetears of St Louis originated from this source.
Sce G. Waitz, Deulsche Terfissungsgeschichte (Kiei, 1844); E Bourgcois, Le Capitulaire de Kiers-s ur-Oise (Paris, 1885); V. Krause, Geschichte des Instumtes der mis duminici in the Miuheilungen des Irstituts fú Dsterveichische Geschiint forschung, Band XI. (Innsbruck, 1880). E. Dobbert, Uber das Wesen und den Geschafiskreis der miss dominici (Heidelberg, 1861); N. D. Fustei de Coulanges, Histoire des instilutions polilaques de l'anciesthe Frante (Paris, 1889-1890): L. Beauchet. Histoire de l'organisation judiciaire en France, épogue frorque (Paris, 1865).

HISSIONS (Lat. missio, a sending) the term used specially for the propagandist operations of the Christian Church among the heathen, the executants of this work being missionaries. Both " mission " and " missionary" have hence come to be used of similar works in other spheres. The bistory of Christian missions may, for practical purposes, be divided into three chief periods: (1) the primitive, (2) the medieval and (3) the modern.

The Proitive Period

There can be little doubt that the Christian Church derived its missionary fropulse from the teaching of its founder. Even though we may feel some hesitancy, in the light of modern criticism, about accepting as authentic the specific injunctions ascribed to Jesus by Matthew (ch. xxviii. 19) and Luke (ich. Ixiv. 47; Acts i. 8), it must be admitted that the teaching of Jesus, in the emphasis which it laid on the Fatherbood of God and the brotherhood of man, was bound sooner or later to break away from the trammels of Judaism, and assert itself in the form of Christian missions. The triumph of this "universalistic" element in the teaching of Christ is vividly portrayed in the Acts of the apostles. At the beginning of the Acts the Christian Church is a little Jewish sect; long hefore the end is reached it has become a world-conquering spiritual force. The transformation was due in its initial stages to broad-minded men like Stephen, Philip and Barnabas who were the first pioneers of missionary work. Their efforts, however, were soon completely eclipsed by the magnificent achievements of the apostle Paul, who evengelized a large part of Asia Minor and the most important cities of Greece. The success which attended the work of the great apostle to the Gentiles stamped Christianity as a missionary religion for ever. From this point onwards Christianity pushed its way into all the great centres of population. We know very little about the missionaries of the first three centuries. We suddenly find province after province christianized though there is nothing to show how and by whom the work was done. The case of Bithynia is an excellent illustration of this. When Pliny wrote his famous letter to Trajan (a.d. inz), Christianity had taken such a firm bold of tbe province that its influence had penetrated into remote country districts, pagan festivals were almost entirely neglected, and animals for sacrifice could scarcely find purchasers. Yet the history of the conversion of Bithynia is absolutely buried in oblivion. By the time of Constantine, Christianity had praclically covered the whole empire. Harnack has tabulated the results which our scanty data allow us to reach in his Expansion of Chrislianily. He divides the countries which had been evangelized by the close of the 3 rd century into four groups: (1) Those countries in which Christianity numbered nearly one-half of the population and represented the standard religion of the people, viz. most of what we now call Asia Minor, that portion of Thrace which lay over against Bithynia. Armenia, the city of Edessa. (2) Those districts in which Christianity formed a very material portion of the population, influencing the leading classes and being able to hold its own with other religions, viz. Antioch and Coele-Syria, Cyprus, Alexandria together with Egypt and the Thebais, Rome and the lower parts of Italy, together with certain parts of middle Italy, Proconsular Africa and Numidia، Spain, the maritime parte of Greece, the eouthern coasts of Gaul.
(3) Those districts in which Christianity was sparsely scattered, viz. Paletetine, Pboenicia, Arabia, certain parts of Mesopotamia, the interior districts of Greece, the provinces on the north of Greece, the northern districts of middle Italy, the provinces of Manretania and Tripolis. (4) Those districts in which Christianity was extremely weak or where it was hardly found at all: the districts to the north and north-west of the Black Sea, tbe western section of upper Italy, middle and upper Gaul, Beigica, Germany, Rhaetia, the towns of ancient Philistia. It is not possible to obtain even an approximate estimate of the numbers of the Christians at the time of Constantine. Friedlinder, for instance, does not think that they erceeded by much Gibbon's estimate for the reign of Decius, viz. one-twentieth of the population. La Bastie and Burckhardt put the ratio at ono-twelfth, Matter at a fifth and Stuudlin even at a hall (see Harmack ii. 453).
After the end of the 3rd century missionary enterprise was mainly concentrated on the outlying borders of the empire. In the $4^{\text {th }}$ and $5^{\text {th }}$ centuries may be mentioned Gregory the Illuminator, the "apostle of Armenia" (about 300), Ulifias, the "apostie of the Goths," about 325; Frumentius,' a bishop of Abyssinia, about 327; Nino, the Armenian girl who was the means of converting the kingdom of Iberia (now Georgia), about 330; ${ }^{2}$ Chrysostom, who founded at Constantinople in A.D. 404 an institution in which Goths might be trained to preach the Gospel to their own people; ${ }^{\text {s }}$ Martin of Tours, who evangelized the central districts of Gaul; Valentinus, the "apostle of Noricurn," about 440; Honoratus, who from his monastic home in the islet of Lerins, about 410, sent missionaries among the masses of heathendom in the neighbourhood of Arles, Lyons, Troyes, Metz and Nice; and St Patrick, who converted Ireland into " the isle of saints " (died either in 463 or 495).

The Medegval Pegiod

With the gth century the Church was confronted witb numberless hordes, which were now precipitated over the entire face of Europe. Having for some time learnt to be aggressive, she girded herself for the difficult work of teaching tbe nations a bigher faith than a sevage form of nature-worship, and of fitting them to become members of an enlightened Cbristendom.
(a) The Cellic Missionaries.-The first pioneers who went forth to engage in this difficult enterprise came from the sectuded Celtic Cburches of Ireland and the Scottish Highlands. Of many wbo deserve mentlon in connexion witb this period, the most prominent were: Columba, tbe founder of the famious monastery of lona in 563 and the evangelizer of tbe Albanian Scots and northern Picts; Aidan, the apostle of Norihumbria; Columbanus, the apostle of the Burgundians of the Vosges (590); Callich or Gallus (d. 646), the evangelizer of northeastern Switzerland and Alemannia; Kilian, the apostle of Thuringia; and Trudpert, the martyr of the Black Forest. The zeal of these men seemed to take the world by storm. Travelling generally in companies, and carrying a simple outfit, these Celtic pioneers fung themseives on the continent of Europe, and, not content with reproducing at Annegray or Luxeuil the willow or brushwood huts, the chapel and the round tower, which they had left behind in Derry or in the island of Hy (lona), they braved the dangers of the nortbern seas, and penetrated as far as the Faroes and even far distant Iceland.4 "Their zeal and success," to quote the words of Kurtz, "are witnessed to by the fact that at the beginning of the 8th century, throughout all the district of the Rhinc, as well as Hesse, Thuringia, Bavaria and Alemannia, we find a network of flourishing churches bearing the inppress of Celue institutions."
(b) The English \boldsymbol{X} issionaries.-Thus they laid the foundations, aweing the beathen tribes by their indomltable spirit of selfsacrifice and the sternness of their rule of bife. But, marvellous as it was, their work lacked the element of permanence; and it

[^34]became clear that a more practical system must be devised and carried out. The men for this work were now ready, and the sons of the newly evangelized English Churches were ready to go forth. The energy which warriors were accustomed to put forth in their efforts to conquer was now "exhibited in the enterprise of conversion and teacbing " by Wilfrid on tbe coast of Friesland,' by Willibrord ($658-715$) in the neighbourhood of Utrecht. ${ }^{7}$ by the martyr-brothers Ewald or Hewald amongst the "old" or continental Saxons, ${ }^{\text {a }}$ by Swidbert the apostle of the tribes between the Ems and the Yssel, by Adelbert, a prince of the royal house of Northumbria, in the regions porth of Holland, by Wursing, a necive of Friesland, and one of the disciples of Willibrord, in the same region, and last, not least, by the famous Winfrid or Boniface, the " apostle of Germany " (680-755), who went forth first to assist Willibrord at Utrecht, then to labour in Thuringia and Upper Hessia, then with the aid of his kinsmen Wunibaid and Willibald, their sister Walpurga, and her thirty companions, to consolidate the work of earlier missionaries, and finally to die a martyr on the shore of the Zuider Zee.
(c) Scandinatian Missions.-Devoted, bowever, as were the labours of Boniface and his disciples, all that he and they and the emperor Chariemagie after them achieved for the fierce untutored world of the 8th century seemed to have been done in vain wben, in the gth "on the north and nortb-west the pegan Scandinavians were hanging about every coast, and pouring in at every inlet; when on the east the pagan Hungarians were swarming like locusts and devastating Europe from the Baluic to the Alps; when on the south and south-east the Saracens were pressing on and on with their victorious hosts. It seemed then as if every pore of life were choked, and Christendom must be stifled and smothered in the fatal embrace."' But the devoted Anskar (801-865) went fortb and sought out the Scandinavian viking, and banded on the torch of self-denying real to others, who saw, after the lapse of many years, the close of the monotonous tale of burning churcbes and pillaged monasteries, and taught the fierce Northman to learn respect for civilized institutions. ${ }^{\text {w }}$ The gospel was first introduced into Norway in the roth century by an Englishman named Hacon, though the real conversion of the country was due to Olaf Tryggvason. About the same time, and largely owing to the exertions of Olaf, Iceland, Greenland and the Orkney and Shetland islands were also evangelized.
(d) Slavonic Missions.-Thus the "gospel of the kingdom" was successively proclaimed to the Roman, tbe Celtic, the Teutonic and the Scandinavian world. A contest still more stubborn remained with the Slavonic tribes, with tbeir triple and many-headed divinities, their powers of good and powers of evil, who could be propitiated only with human sacrifices. Mission work commenced in Bulgaria during the latter part of the 9th century; thence it extended to Moravia, wbere in 863 two Greek missionaries-Cyni and Methodius-provided for the people a Slavonic Bible and a Slavonic Liturgy; thence to Bohemia and Poland, and so onwards to the Russian kingdom of Ruric the Northman, where about the close of the soth century the Eastern Church "silently and almost unconsciously bore into the world ber mightiest offspring." ${ }^{11}$ But, though the bapt ism of Vadimir (c. 956-1015) was a hcavy blow to Slavonic idolatry, mission work was carried on with but partial success; and it taxed all the energies of Adalbert, bishop of Bremen, of Vicilin, bishop of Oldenburg, of Bishop Otto of Bamberg the apostle of the Pomeranians, of Adalbert the martyr-apostle of Prussia, to spread the word in that country, in Litbuania, and in the territory of the Wends. It was not till 1168 tbat the gigantic four-headed image of Swantevit was destroyed at Arcoma, the capital of the island of Rugen, and this Mona of Slavooic superstition was included in the advancing circle of Christian

[^35]civilimetion. As late as 2230 human secrifics were still being cefered up in Prusia and Lithuanis, and, in spite of all the efforts of the Teutenic Knights, idolatrous practices still lingered amongst the people, while amorigst the Lapps, though successful missions bad been inaugurated as eariy as 1335, Christianity cannot be said to have become the dominant religion till at least two centuries later.
(c) Maslem Miarions.-The mention of the onder of the Teutonic Enights reminds us how the crusading spinit had affected Chrigtendom. Still even then Raimon Lull protested against propegandiam by tbe sword, urged the necessity of missions amongst the Moslems, and sealed his testimony with his blood outside the gates of Bugiah in northern Africa (June 30, 1315). Out of the crusades, bowever, srose other efforts to develop the work which Nestorian missionaries from Bagdad, Edessa and Nisibis had already inaugurtued along the Malabar coast, in tbe ithand of Ceylon, and in the neighbourhood of the Caspian Sea In 1245 the Roman pontifi sent two embanaies-one, 2 party of four Dominicans, sought the commander-in-chief of the Mongol forces in Persia; the second, consisting of Franciscans, made their way Into Tartary, and sought to convert the successor of Oktai-Khan. Their esertions were seconded in 1253 by the Labours of another Franciscan whom Louis IX. of France sent forth from Cyprus, , wile in 1274 the celebrated traveller Marco Polo, accompanied by two learned Dominicans, visited the court of Kublai-Xhan, and at the commencement of the 14th century two Franciscans penetrated as far as Peking, even translating the New Testament and the Psalter into the Tatar language, and training youths for a native ministry.*
(f) Masioms to India and the New World.-These tentative missions were now to be supplemented by others on a larger scale. In 1488 the Cape of Good Hope was rounded by Diaz, and in 1508 the foundations of tbe Portuguese Indian empire were laid by Albuquerque. Columbus also in 1492 had landed on San Salvador, and the voyages of the Venetian Cabot along the coast of North America opened up a new world to missionary enterprise. Thus a grand opportunfty was given to the churches of Portugal and Spain. But the zeal of the Portuguese took too often a one-sided direction, repressing the Syrian Christians on the Malabar coast, and interfering with the Ahyssinian Church, ${ }^{3}$ while the fanatic temper of the Spaniard consigned, in Mexico and Peru, multitudes who would not renounce their beathen errors to indiscriminate massacre or ahject slavery." Las Casas has drawn a terrible picture of the oppression he strove in vain to prevent.' Some steps indced were taken for disseminating Christian principles, and the pope had induced a band of missionaries, chiefly of the mendicant orders, to go forth to this new mission field." But only five bishoprics had been established by $\mathbf{1 5 2 0}$, and the number of genuine converts was small. However, every vestlge of the Aztec worship was hanished from the Spanish settlements.?
(g) The Jeruit Missions.-It was during this period that the Jesuits came into existence. One of the first of Loyola's asso. ciates, Francis Xavier, encouraged by the joint co-operation of the pope and of John III. of Portugal, disembarked at Goa on the 6th of May 1542, and before his death on the Isle of St John (Hians-Shang), on tbe and of Decemberi 5s2, roused the European Christians of Goa to a new life, laboured with singular success mongst the Paravars, a fisher caste near Cape Comorin, gat hered many converts in the kingdom of Travancore, visited Malacca, and founded a mission in Japan.

The successor of Xavier, Antonio Criminalis, was regarded by the Jesuits as the first martyr of their society (1562). Matteo Ricel, an Itallan hy hirth, was also an indefatigable missionary in China for twenty-seven years, while the unholy compromise
${ }^{3}$ Neander vil. 69; Hakluyt 171; Huc i. 207.

- Neander vii. 79; Giescler Iv. 259, 260; Hardwick, Middle Ages, p. 337
- Goddes, History of ane Church of Malabar, p. 4; Neale, Eastere Church, ii. 343
${ }^{4}$ Prescott, Conquest of Mexico, i. 318 . iii. 218.
- Redation de la destructión de kas Indias.
- Prescott, Merice, if. 218 n . 1 Prescott ill. arg.
with Brahminism in India followed by Robert de' Nobili was fatal to the vitality of his own and other missions. Oihers of the seme order evangelized Paraguay in 1582, while the Hoguenots sent forth under a French knight of Malta a body of devoted men to attempe the formation of a Christian colony at Rio Janeiro. By the close of the 16 th century a committee of cardinals was appointed under the name of the "Congregatio de propaganda ide," to give unity and solidity to the work of missions. The scheme originated with Gregory XIII., but was not fully organized till forty years afterwards, when Gregory XV. gave it plenary authority by a bull dated the and of June 1622. Gregory's succeswor, Urban VIII., supplemented the establishment of the congregation by founding a great missionary college, where Europeans might be trained for foreign labours, and natives might be educated to undertake mission work. At this college is the missionary printing-press of the Roman Church, and its library contains an unrivalled collection of literary treasures bearing on the work.

Modirn Missions

Mistionary Socielies.-Modern missionary activity is distinguished in a special degree by the exertions of societies for the development of mission work.
As contrasted with the colossal display of power on the part of the Church of Rome, it must be allowed that the churches which in the 16th century broke off from their allegiance to the Latin centre at first showed no great anxiety for the extension of the gospel and the salvation of the heathen. The causes of this are not far to seek. The isolation of the Teutonic churches from the vast system with which they had been bound up, the conflicts and troubles among themselves, the necessity of fixing their own principles and defining their own rights, concentrated their attention upon themselves and their own home work, to the negleet of work abroad. ${ }^{2}$

Still the development of the maritime power of England, which the Portuguese and Spanish monarchies noted with fear and jealousy, was distinguished by a singular anriety for the spread of the Christian faith. Edward VI. in his instructions to the navigators in Sir Hugh Willoughhy's fieet, Sehastian Cabot in those for the direction of the intended voyage to Cathay, and Richard Hakluyt, who promoted many voyages of discovery in addition to writing their history, agree with Sir Humphrey Gilbert's chronicler that "the sowing of Christianity must be the chief intent of such as shall make any attempt at foreign discovery, or else whatever is huilded upon other foundation shall never ohtain happy success or continuance." When on the last diy of the year 1600 Queen Elizabeth granted a charter to George, earl of Cumberland ${ }^{4}$ and other "adventurers," to be a body-corporate by the name of "The Governor and Company of Merchants of London trading with the East Indies," the expressed recognition of higher duties than those of commerce may by some be deemed a mere matter of form, and, to use the words of Bacon, "what was first in God's providence was but second in man's appelite and intention." Yet a keen sense of missionary duty marks many of the chronicles of English mariners. Notahly was this the case with the establishment of the first English colony in America, that of Virginis, by Sir Walter Raleigh. The philosopher Thomas Harriot ($1560-1621$), one of his colleagues, laboured for the conversion of the natives, amongst whom the first baptism is recorded to have taken place on the 13th of August 1587. Raleigh himself presented as a parting gift to the Virginian Company the sum of $£ 100$ "for the propagation of the Christian religion " in that settlement." When James I. granted letters patent for the occupation of Virginia it was directed that the "word and service of God be preached,

- We must not, however. overlook the remarkahle appeal made by Erasmus in the first book of his treatise on the art of preaching (Ecclesiastes sibe concionatm corangelicus). The salient paseages are quoted in G. Smith, Short hislory of Chistian Missions, pp. 116-118; Gusta vus Vasa in ${ }^{5} 59$ mede an efort to educate and evargelize the Lapps.

FHakiuyt, Voyages, ini. 345.

- Oldy, Life of Raleigh, p.ila
planted and used as mell in the said colonies as also as tunch as might be among the savages bordering among them"; and the honoured names of Nicolas Ferrar, John Ferrar, John Donne and Sir John Sandys, a pupil of Hooker, are all found on the council by which the home management of the colony was conducted.
In the year 1618 was published The True Honow of Napigation and Napigators, by John Wood, D.D., dedicated to Sir Thomas Smith, governor to the East India Company, and about the same time appeared the well-known treatise of Hugo Grotius, De maritale religionis christicnae, written for the express use of settlers in distant lands. Grotius also persuaded seven law students of Lilbeck to go to the East as missionaries; the best known of them was Peter Heiling, who worked for 20 years in Abyssinia. A good deal of work was done by Dutch evangelists in Java, the Moluccas, Formosa and Ceylon, but it was not permanent.

The wants, moreover, of the Nurth American colonies did not escape the attention of Archbishop Laud during his official connexion with them as bishop of London, and be was developing a plan for promoting a local episcopate there when his troubles began and hisscheme was interrupted. During the Protectorate, in 1649 , an ordinance was passed for " the promoting and propegating of the gospel of Jesus Christ in New England " by the erection of a corporation, to be called by the name of the President and Society for the Propagation of the Gospel in Newi England, to receive and dispose of moneys for the purpose, and a general collection was ordered to be made in all the parishes of England and Wales; and Cromwell bimself devised a scheme for setting up a council for the Protestant religion, which should rival the Roman Propaganda, and consist of seven councillors and four secretaries for different provinces. ${ }^{1}$ On the restoration of the monarchy, through the influence of Richard Baxter with Lord Cnancellor Hyde, the charter already granted by Cromwell was renewed, and its powers were enlarged. For now the corporation was styled "The Propagation of the Gospel in New England and the parts adjacent in America," and its object was defined to be " not only to seek the outward welfare and prosperity of those colonies, but more especially to endeavour the good and salvation of their immortal souls, and the publishing the most glorious gospel of Christ among them." On the list of the corporation the first name is the earl of Clarendon, while the Hon. Robert Boyle was appointed president. Amongst the most eminent of its missionaries was the celebrated John Eliol, the Puritan minister of Roxbury, Massachusetts, who, encouraged and financially assisted by Boyle, brought out the Bible in the Indian language in $1661-1664$. Boyle displayed in other ways his zeal for the cause of missions. He contributed to the expense of printing and publishing at Oxford the four Gospels and the Acts of the Aposiles in the Malay language, and at his death left $f 54 \infty$ for the propagation of the gospel in heathen lands.
The needs of the colonial church soon excited the attention of others. George Fox, the Quaker, wrote to "All Friends everywhere that have Indians or blacks, to preach the Gospel to therr and their servants." Great efforts were made by William Beveridge (${ }^{6} 37-1708$), bishop of St Asaph, William Wake (1657-1737), archbishop of Canterbury, Jobn Sharp (1645-1714), archhishop of York, Edmund Gibson (1669-1748), bishop of London, and afterwards by the philosophic Bishop Berkeley, and Bishop Butler, the famous author of the Analogy, to develop the colonial church and provide for the wants of the Indian tribes. In ${ }^{2} 606 \mathrm{Dr}$ Thomas Bray, at the request of the governor and assembly of Maryland, was selected by the bishop of London as ecclesiastical commissary; and, having sold his effects, and raised money on credit, he sailed for Maryland in 1699, where he promoted, in various ways, the interests of the Church. Returning to England in $1700-1701$, and supported by all the weight of Archblshop Tenison and Henry Compton, bistiop of London, the was graciously received by William III., and received letters
${ }^{1}$ Neale, History of New England, i. 260: Burnct, Firsopy of his own Times, i. 1.32 ("Everyman's Library "ed., p. 27).
patent under the great seal of England for creating a corporation by the name of the "Society for the Propagation of the Goopel in Foreign Parts " on the 16 th of June 170 s .

Mcanwhile, in 1664, Von Welx, an Austrian beron, bsued a stirring appeal to the Cburch at large for a special association devoted to extending the evangelical religion and convertins the beathen. He was told that each Christian country shoald be responsible for its non-Christian neighbours, e.g. the Greeks for the Turks, and that as for the heathen it was no good casting pearls before swine. Finding no better response, be went bimself as a missionary to Dutch Guiana. The opening of the csth century saw other movements set on foot. Thus in 1705 Frederick IV. of Denmark founded a mission on the Coromandel coast, and inaugurated the labours of Bartholomew Ziegenbalg, Henry Plutschaus and C. F. Schwarts, whose devotion and success told with such remarkable refiex influence on the Church at home. Again in 1731 the Moravians (g.v.) illustrated in 2 signal degree the growing consciousness of obligation cowards the heathen. Driven by persecution from Moravia, hunted into mountain-caves and forests, they had scarcely secured a place of refuge in Saxony before, "though a mere handful in aumbers, yet with the spirit of men bapded for daring and righteous deeds, they formed the heraic design, and vowed the execution of it before God, of bearing the gospel to the savage and perishing tribes of Greenland and the West Indies, of whose condition report had brought a mournful rumour to their ears." And sa, literally with " neither bread nor scrip," they went farth on their pilgrimage, and, incredible as it sounds, within ten years they had established missions in the islands of the West Indies, in South America, Surinam, Greenland, among the North American tribes, in Lapland, Tartary, Algiers, Guinen, the Cape of Good Hope and Ceylon. ${ }^{2}$ Up till this time all missionary enterprises had been more or less connected with the state. The era of modern missions, based on associate organizations, begins with William Carey (q.v.), and is closely connected with the great evangelical revival of the latter part of the 18th century. That revival bad intensified the iden of the worth of the individual soul, whether Christian or heathen, and "to snatch even one brand from the burning " became a dominant impulse. In 1799, Carey, a Baptist, who was not only a cobbler, but a linguist of the highest order, a botanist and zoologist, published his Exquiry into the Obligations of Christians to use Micons for the Conversion of the Heathows, and the book marks a distinct point of departure in the history of Christianity. Under its influence twelie ministers at Kettering in October 1792 organized the Baptist Society for Propagating the Gospel among the Heathen, and subscribed E13, 2s. 6d. In June 1793 Carey was on his way to India. Letters from him quickened interest outside his own communion, and in the autumn of 1794 a meeting of Evangelical ministers of all denominations resolved to appcal to their churches, especially with a view to work being started in the Soutb Sea Islands. The chief movers in the enterprise were the Congregationalist, David Bogue of Gosport, and \&be Episcopalian, Thomas Haweis, rector of Aldwinkle, Northamplonshire. With them were associsted Wesleyan a nd Presbyterian divines, and in September t 795 the London Missionary Society, emphasizing no one form of church government, was formed. $£ 10,000$ was subscribed by June 1796, and in August 29 missionaries sailed for Tahiti. Societies formed in Glasgow and Edinburgh in the spring of the same year gave their attention to the continent of Alrica.

The need of this continent was also the means of creating the distinctively Anglican organization known as the Church Missionary Society. The evangelical movement had produced philanthropists like Wilberforce and Granville Sharp, and the Eclectic Society, a group of clergy and laymen who fell to discussing the new missionary movements. In April 1799 , under the guidance of Jobn Vean and Thomas Scott, was established the Church Missionary Society, originally known as the "Society for Missions to Africa and the East." Its promoters declared their intention of maintaining cordial relations with Nonconformist
${ }^{2}$ J. B. Holmes, Hist. Sketchas of the Mirsions of the United Brethren, p. 3; A. Graat, Bampton Laturcs (1843), p. 190.
missionary societies, and this has largely been done, the older Society for the Propagation of the Gospel, manned by "High " Churchmen, standing more aloof In 1814 the Wesleyan Missionary Society was formed, Methodist effort of this kind having previously been left to the individual enterprise of Dr Thomas Coke. Thus sharn of two chief bodies of supporters, and Presbytcrians in England being then comparatively few, the Londen Missionary Society became in effect a Congregationalist organization, though it has never departed from the broad spirit of its founders. In Scotland Robert Haldane sold his estate and devoted $£ 25,000$ to tbe cause; with others he would have gone to India himself but for the prohibltion of the East India Company, one of whose directors said be would rather see a band of devils in India than a band of missionaries. What Carey did for England was largely done for Sootland by Alexander Duff, whosettled in Calcutta in 1830, and was a pioneer of higher education in India. On the Continent the Basel Mission (1815) grew qut of a societ y fourded in 1780 to discuss the general condition of Christianity; "Father" Jnicke, Bobemian preacher in Berlid, founded a training school which supplied many men to the Church Missionary Society and the Londpn Missionary Society; and Van der Kemp, who pioneered the London Missionary Society work in Sputh Africa, organized in 1797 the Netherland Missionary Society, which turned its attention chiefly to Dutch Colonial possessions
In America as in England the sense of individual responsibility had been developed. In 1796 and 1797 respectively the New York and the Northern societies were formed for work among Indians by Presbyterians, Baptists and Reformed Dutch, acting in concert. News of the London Society stimulated intercst in New England, and in 1806 Andover Seminary was founded as a missionary training college. In the same year Samuel J. Mills, Gordon Hall and James Richards, three students at Williams College, Massachusetts, formed themselves into a mission band which ultimately became the American Board of Commissioners for Foreign Missions (June 1810), an organization which, like the London Missjon, originaily undenominational and still catholic, has become practically Congregational. The first offshoot from it was the American Baptist Missionary Union if 1814.

The following chronological lists illustrate the growth of miscioaary societies in Britain and the United States:-

Greal Britain and Iteland.

1691. Christian Faith Society for the Weat Indies,

1698 Society for Promoting Christian Knowledge.
17ot Society for the Propagation of the Gospel in Foreign Parts.
1732. Moravian Missions.
1792. Baptist Missionary Society.
1795. London Missionary Society.
1796. Scottish Missionary Society.
1799. Church Missionary Society.
7790. Religious Tract Society.
1804. British and Forcign Bible Society.
1808. London Society for Promoting Christianity amoog the Jews.

18t3. Wesleyar Missionary Socicty.
1817. General Baptist Missionary Society
1823. Colonial and Continental Church Society.
1825. Church of Scotland Mission Boards.

National Bible Sociery of Scotland.
1831. Trinitariar Bible Society
1832. Wesleyan Ladies Auxiliary for Fumale Education in Foreign Countries.
1835. United Seocssion (afterwards United Presbyterian) Foreign Missions.
1836. Colonial Missionary Society.
1840. Irish Presbyterian Missionary Socicty.
1840. Welsh Calvinistic Mcthodist Missionary Society.
1841. Colonial Bishoprics Fund.
1841. Edinburgh Modical Missionary Society
1843. British Society for the Propagation of the Gospel among the Jews.
1843. Free Church of Scotland Missions.
1843. Primitive Methodist African and Colonial Missions. Methodist New Connexion in England Foreign Missions.
1844. South American Missionary Society.
1847. Presbyterian Church in England Foreign Missions.
1858. Christian Vernacular Education Soclety for India.
1860. Central African Mission of the English Universities.
1862. China Inland Mimion.
1865. Friends' Foreirn Mission 'Association
1866. Delhi Female Medical Miscion.
1867. Friends' Mission in Syria and Palestine.
1876. Cambridge Mission to Delhi.
1880. Cburch of England Zenana Minsionary Society.
1884. Presbyterian Miesion to Korea.
1892. Student Volunteer Missionary Union.

United States of America.
1733. Corporation for the Propagation of the Cospel in New England.
1737. Society for Propagating the Gospel among the Indians at Boston.
1795. Friends" Missionary Society.
1800. New York Missionary Socicty

Connecticut Missionary Society for Indians.
r803. United States Mission to the Cherokees.
18o6. Western Missionary Society for Indians.
1810. Board of Commissioners for Foreiga Missions.

1814 - Baptist Missionary Union.
1819. Methodist Episcopal Chureh Missionary Society
1833. Free-will Baptist Foreign Missionary Society in India.
1835. Forcizn Missions of the Protestant Episcopal Church.
1837. Board of Forciga Missions of the Presbyterian Church (North).
1837. Evangelical Lutheran Foreign Missionary Society.
1842. Seventh Day Baptist Missionary Society.

Strict Baptist Missionary Society.
1843. Baptist Free Missionary Society.
1845. Mcthodist Episcopal Church (South).
${ }^{18}{ }_{15}$. Southern Baptist Convention.
1846. American Missionary Association.
1857. Board of Foreign Missions of (Dutch) Reformed Church.
1859. Board of Foreign Missions of United Presbyterian Church.
1862. Board of Foreign Missions of the Presbyterian Church (South).
1878. Evangelica! Association Missionary Society.
1836. Student Volunteer Missionary Union.

It is not possible to follow in detail the history of the hundred or more organized societies of some size that have thus come into being since the end of the 18th century, still less that of the three or four hu ndred smaller agencies. ${ }^{1}$ It may be noted, however, that the enterprise has followed certain more or less clearly defined lines. These are described as follows by Dr E. M. Blise, editor of the Encydopsedia of Misstions.

1. The Denominational. -The course of denominational work may be seen in the way in which the London Society and the American Board were gradually left to the Congregationalists, it being recog. nized that while fraternity was maintained, the widest results could only be obtained as appeal was made directly to the members of cach separate denomination. To some extent a similar development is traccable in other lands. In Germany the Rhenish Society (1825) became independent of the Basel Mission, but like it and the Berlin Society founded by Neander and Tholuck has preserved a broad basis and includes both Lutheran and Reformed constituents. The North German or Bremen Society split into a strict Lutheran or Leipzig agency and the Hermannsburg Mission, which aimed at a more primitive and apostolic method. In Denmark, tbe Danish Missionary Society, founded by Pastor Bone Falck Ronne in 1821, worked through the Moravians and Bascl societics until 1862, when it began independent work and concentrated on the Tamil population of South India. In Norway and Sweden missionary activity kept pace with the development of the national life; in the former country the Free Church, ia the latter the State Church has been the most succemaful agency.

In Hodland a religious revival in 1846 led to the foundation of several organizations which supplemented the work of the original Netherland Missionary Society. In France protestant missionary effort began after the overthrow of the empire, and in 1832 scveral isclated committees united to form the Sociéte des Missions Evangeligues, better known as the Pariṣ Evangelical Society. In Tahiti, Madagascar and other fields this society has largely taken over work begun by the London Society, whose operations were viewed with suspicion by the French government.
2. Collataral Aid.- Side hy side with the founding of the great missionary societies, Bible and Tract societics sprang up. The dates ane significant: Society for Promoting Christian Knowledge (1698), Religious Tract and Book Society of Scotland (1793), Religious Tract Society in London (r799). British and Foreign Bible Society (1s04), American Bible Society (1816), American Tract Socioty (1823). (See further Bible Societies.) Medical Missions have not been so much collateral organizations as departments of the work of the genoral socictics, and the same is generally true of pomen's missions. Both of these will be discussed in more detail.
3. Independent and Specia! A gercies. - The individual clement that whe so marked a feature in Carey's generation has never yanished, in spite of the tendency to central control. I. Hullson Taylor in 1853 went to China as the agent of a number of folk in England who feared that missionary work was becorning too mechanical. His aim was to push inland and to work through native evanglists. Out of his endeavours sprang a new organization, the China Inland
${ }^{1}$ For enmplete directory see Shatistical Allas of Furcign Missions (1910).

Mission; and similar undeiominational societiees, e.e. the Regions Beyond Missionary Union in England, and the Chriatian and Missionary Alliance in America, have since been founded. Other Individual enterprises have been launched by persons or single churches, but such have not usually fourished for any length of time, their workers gradually attaching themedves to the larger associationa.
Protestans Missions.-It is generally agreed that the period since 1885 has witnessed a very marked increase of missionary real and interest in Great Britain, both in the Church of England and among the Nonconformists. The 1. Bration improvement, indeed, dates back somewhat carlier. So far as the Church of England is concerned it may fairly be said to have started afresh in the year following the first observance of the Day of Intercession for Missions, on the 2oth of December 1872. Both the Society for the Propagation of the Gospel and the Church Missionary Society were at that time suffering from a general coldness which, in the case of the latter society, had led in that very year to the committee reporting "a failing treasury and a scanty supply of men." The observance of that first Day of Intercession was followed by an immediate change, and unquestionably there has been progress ever sipce. Then, less than five months afterwards, David Livingstone died at Ilala; and no event of the whole century did so much to wake up Protestant Christendom. Most of the missions in Central Africa owe their origia to the spirit it aroused. But the year 1884 was also an epoch to be marked. In that year Bishop Hannington went to Africa; and his murder in 1885 (irst reported in England on New Year's Day, 1886) deeply touched the Christian conscience. The speedy publication of E. C. Dawson's hiography of him worked a revolution in the circulation of missionary literature. Another event of 1884-1885 was the going forth to China of "The Cambridge Seven," in connexion with the China Inland Mission. All were men of good family; some of them went at their own charges; and among them were the stroke-oar of the University Eight (Mr Stanley Smith) and the captain of the University Eleven (Mr C. T. Studd). Probably no event of recent years has exercised a wider influence in the cause of missions. In particular, university graduates have since then gone out as missionaries in much larger numbers than before. There are now five missions definitely linked with the universities. The Central African Mission (1858), indeed, is not for the most part manned hy graduates, though it is led by them; but the Cambridge Mission at Delhi (1878), the Oxford Mission at Calcutta (I 880), and the Dublin Missions in Chota Nagpur (Society for the Propagation of the Gospel, 1891) and the Fub-Kien Province of China (Church Missionary Society, 1887) consist of university men. Moreover, the older and larger societies have much increased the proportion of graduates on their staffs.
The cause of missions in the universities bas been fostered greatly by the Student Volunteer Missionary Movement, initiated in America in 1886, and organized in England in 1892. The Union has over 3000 members (of whom 1400 have gone to the field), and has adopted as its watchword, "The Evangelization of the World in this Generation "; and this motto has been approved by several bishops and other Christian leaders. Another influence upon university men and others who have taken hoty orders is that of the Younger Clergy Union of the Cburch Missionary Society (1885) and the Junior Clergy Association of the Society for the Propagation of the Gospel (1891). At the same time there has been a great accession of men to the missionary ranks from among other classes of society. The Anglican societies and the regular and older Nonconformist societics (Methodist, Baptist, Presbyterian and the London Missionary Society, which is virtually Congregationalist) have shared in these humbler recruits; but a large proportion of them have joined several younger "non-denominational" or "interdenominational "missions. Of these the China Inland Mission is the largest and most influential; and while it has sent forth many of this class, it has also enrolled not a few men and women of considerable wealth, education and social status. The South Africa General Mission, the North Africa Mission, and the Congo Balolo Mission come next in importance; but there are several
smaller bodies working in dfferent countries. The Salvation Army abo has missions in India, Ceylon and Japan; but these cannot be called " not-denominational." because the Army has gradually become a very strict denomination itself. There is one Anglican society working, like some of those just mentioned, in one particular field, viz. the South American Missionary Society, founded in 1844. Many foreign dioceses also have associations in England for their help and support. Medieal men have come forward in increasing numbers for missionary service, and medical missions are now regarded as a very important branch of the work of evangetization. They are especially valaable in Mahommedan countries, where opet preaching is difficult and sometimes impossible, and also in works of mercy among barbarous tribes; while in China, which comes under neither of these two categories, they have been largely developed. There are 980 doctors (most of them fully qualifed) labouring in British and American missions; and in 1910 it was calculated that the in-patients in mission hospitals exceeded 160,000 , while the visits of out-patients in a year were about $5,000,000$. In several of the great London hospitals there are missionary associations, the members of which are medical students; but a chief source of supply in the past has been the Edinburgh Medical Mission, founded in 184I, which, while working among the poor in that city, has trained many young doctors for missionary service.
The most remarkable development of missionary enterprise has been the employment of women. 'From an early date many of the wives of missionaries have done good service; but the going forth of single women in any appreciable number bas only been encouraged by the societies in the last quarter of the righ century. The Society for Promoting Female Education in the East (now absorbed by others, chiefly by the Church Missionary Society) was founded in 1834; the Scottish Ladies' Association for the Advancement of Female Education in India (which subsequently became two associations, for more general work, in connerion with the Established and Free Churches of Scotland respectively) in 1837; the Indian Female Normai School Sociely (now the Zenana Bible and Medical Mission) in 186t (taking over an association dating from 1852); (he Wesleyan Ladies' Auxiliary in 1859; the Women's Association of the Society for the Propagation of the Gospel, and the Baptist Zenana Mission. in 1867; The London Society's Female Branch, in 1875; the Church of England Zenana Society (an offshoot from tbe Indian Female Society) in i880. But the earlier of these organizations only contemplated employing women for educational work on a very small scale. Out of it grew the visitation of Indian zenanas. The employment of women in general evangelistic work, such as village itineration, house-to-house visiting in towns, classes for female inquirers, training of native female workers, \&c., although recent, has rapidly extended. The Church Missionary Society, besides relying on the above-named Zenana Bible and Medical Mission and Church of England Zenana Missionary Society for women's work at several of its stations in India and China, sent out 500 single women in the fifteen years ending 1900; and the non-denominational missions above referred to have (including wives) more women than men engaged in their work-especially the China Inland Mission. which has sent out several hundreds to China. Women's wort and medical work are combined in the persons of nearly 300 fully-qualified iady doctors in various missions. Although nearly half the male missionaries (Protestant) are unmarried, these are exceeded in number by the unmarried women; and consequently, the husbands and wives being equal, the aggregate of women in the Missions is greater than the aggregate of men.
The home organization of missions is a subject that has been much considered. The bulk of the work has been done by voluntary societies, membership in which depends upon a pectuniary subecription, and the administration of which is entrusted to elected committees. These committees comprise not only real experts, such as retired veteran missionaries, and retired civil and military officers who bave been active friends of missions while on foreign service, but also leading clergymen and laymem
who, though not personally wequainted with the mineion felds, become almost equal experts by continuous attendance and careful stiedy. In the case of the two leading Church of England societies, the bishops (being members) are ex officio on all execulive commitiees; but their labours in other directions prevent their ordinarily attending. The nemerous non-denominational missions previously referted to are differently worked. There is no membership by subscription, nor any elected committee. The "mission" consists of the mussionaries themselves, and they irre governed by a "director," with poesibly small advisory councis in the field and at bome, the latter undertaking the duty of engaging missionaries and raising funds.
On the other hand, there is a growing sense that missions should be the work of the Chureh in its corporate capacity, and nost of voluntary associations. This is the system of the Presbyterian Churches, the missions of which are entirely controlled by the General Assemblies in Edinburgh, Belfast and London respectively. The Wesleyan Socrety also is under the authority of the Conference. In tbe Church of England the question was broeched in Convocation, shortly after the revival of that body, in 1859; and during the next few years many suggestions were put forth for the establishment of a Board of Missions which should absorb the societies, or at least direct their work. It soon appeared, however, that neither the Society for the Propagation of the Gospel nor the Church Missionary Society was willing to he absorbed; and it was urged hy some that in a great compretensive national Church, comprising persons of widely different views, more zeal was iikely to be thrown into voluntary than iato official enterprises. Eventually, in 1887, the Canterbury Convocation and Archbishop Benson formed a Board of Messions; and York followed shortly afterwards. These boards, however, were not to supersede the societies, hut to supplement their wotk, by collecting information, fostering interest, registering results and acting as referees when required. They have already done some useful work, and will probably do more. Their most uctive members are men who are also leaders in their respective societies, and have thus gained experience in missionary adminsstration. But the Churcb of Eaghand has not yet put missions in the prominent place they occupy in the Nonconformist denominations.
The closing years of the roth century were remarkable for the centenary commemorations of the older miasionary societies. The Baptist Society celebrated its centenary in 1892, the London Missionary Society (Congregational) did the same in 1895; the Society for Promoting Christian Knowledge kept its hrsentenary in 1898; the Church Missionary Society its centenary in 1899; the Society for the Propagation of the Gospel its bicentenary in 1900-1901; and the British and Foreign Bible Society its centenary in 1904. Considerable special funds have been raised in connexion with these commemorations. A good deal of interest has also been awakened and manntained by missionary exhibitions, and by a more intelligent type of missionary literature.
Colonial missions next claim attention. By "colonial" is meant, not missions to the British coloaial population, but a colonks. missions from the colonial population to the heathen. The former have been very largely the work of the Society for the Propagation of the Crospel, and, in a smaller degree, of the Colonial Churcb Society (Church of England) and the Colonial Missionary Society(Congregational). Those missions, however, are more properly an outlying branch of home missions, being to the professing Christian settlers or their descendants. But these Christian settlers have their own missions to the healhen-both to the heathen at their doors and to the great theathen lands beyond.
In Canada and Australia, the Anglican, Presbyterian, Methodist, Baptist and other communities have regular organizations for foreign missions. The non-episcopal missions thus formed and supported are worked quite independently of the home socreties of the denominations respectively. The Augtralian Presbyterians have important agencies in the South Seas and in Rorea, the Anstralian Baptists in Bengal, the Canadians of
various denominations in the Far North-Wert of the Dominion, and in India and China. The Anglican Clurch in Canada has its Domestic and Forengn Mushonary Society, working in the North-West and in Japan, and in Australia it hat a Board of Missions, working amongat the Australian aborianes and in New Guiden. The Melancsuan Mission, associated whth the names of Selwyn and Patteson, is offoctally connected with the Church of New Zeaiand, but is adso hargely apported in Australia. In New Soush Wales, Victorna, New Zealind and Canada there are also Church misedonary associatlons which supply mistronaries, and suppert them, for the mission fille of the Church Missonary Society.
The German societics are numerous and important, and have incrensed in number and is vigorous work. The Moravian Church, whose misaions are the oldest (1732), is itself a missionary organuzation in a sense in which no other Christian community rivals it. Its total membership is under 100,000 , and it has some 350 mistionanes, labouring in the most unptomising fields-Greenland, Lebrador, Alaska, Central Americt, Tibet, and among the Hottentots. The Based Sociely, with its famous seminary at Basel, which formerly supplied many able Gcrman missionaries to the Church Missionary Society, has extensive work in India, West Afnca and South China. The Berlin Sociely and the Rhensish Saciety labour in South Arrica and China, the Hermannsbirs Mrasion (Hanover) in South Africa and India; Gessner's Mission (Berlin) and the Leipaig Lucherans in Indis. At least two of tbese societies, and other new associations formed for the purpose, and the Moravians, have taken up work in German East Africa. The principal organizations in Holland are the NetberLands Missionary Society and the Utrecht Missionary Society, working mainly in the Dutch colonies. A Damish society has a mission in South India. The old Swedish and Norregiam missionary societies work in South Africa, Madegascar end Indin; hut large numbers of Scandinavians have been stirred up in missionary zeal, and have gone out to Chins in connexion with the China Inland Mission, several were massacred in the Boxer outbreaks. The French Protestants support the Socided des Mussions Evangeliques, founded in 1822. Its chief miscion has been in Basutoland, since extended to the Zambesi; but it has also followed French colonial extension, establishing missions in Senegambia, the French Congo, Madagascar and Tahiti.
The newer American organizations are, as in England, nondenominational and "Iree-lance," especially the Chriatian and Missionary Alliance (1897), developed from the International Missionary Alliance ($\mathbf{1 8 8 7}$), whicb has Amortase sent many missionaries to India and China. The older societies attribute to these new agencies more zeal than discretion, while the newer credit the older with a discretion that crippies zeal. The Student Volunteer Movement, already referred to, has hed large influence in the United States, where it arose; and its leaders have proved themselves men of rare intellectual and practical capacity. In a journey round the world in $1895-1897$, J. R. Mott succeeded in forming students' associations in universities and colleges in several European countries, as well as in Turkey in Asia, Syria, India, Ceylon, China, Japan and Australia; and all these associations, over 150 in number, are now linked together in a great International Student Federation. The older American societies, especially the American Board (Congregational), the Presbyterian Boards, the Methodist Episcopal Church Society, the Baptist Missionary Union, and the Missionary Society of the Protestant Episcopal Church, have much extended their work. The "Ecumenical Missionary Conference," held at New York ia April 1900, was an astonishing revelation to the American public of the greatness of missions geperally and of the missioas of their own churches in particular. The Laymen's Missionary movement is a significant outcome of the interest then awakened.

Missions to the Jews are worked by distinct organizations. There are several societies in England, Scotland, Germany and America. No special development has to be reported, except the great extension of John Wilkinson's Mildmay Mission to
the Jews, and its energy in the free distribution of Hebrew New Testaments. Converted Jews are commonly supposed to be very few, and in numbers they do not compare with 5. Mheroast converted heathen; but they are more numerous than is usually imagined, espectally if the second and third generations of Christuans of Hebrew race are meluded. A number of them find in Unutarianism a ferm of Chnsuanity that appeals to them. It is estimated that 250 Angican clergymen are converted Jews of the soas of converted Jews. The London Society for Promotung Chnstianity among the Jews includes among its missionaries about 80 who are converts. Professor Delitzsch estumated that 100,000 Jews had embraced Christianity in the first three quarters of the ioth century. and Dr Dalman of Leipzig says that " if all those who have entered the Church and their descendants had remained rogether, instead of losing themselves among the other peoples, there would now be a believing Lsrael to be counted by millions, and no one would have ventured to speak of the uselessness of preaching the Gospel to the Jews."

Interesting as is the story of Protestant mission work lo Austrin. Spain, Italy and Rusaia, it does not fall, within the scope of this article. Nor do the proselytizing enterprises of Seventh Day Adventists, Christian Scientists, Mormons and other American bodics rightly find a place bere.

Roman Catholic Missions.-At the beginning of the roth century the Roman Communion seems to have shared to some extent in the torpor and stagnation as regards missions that characterized the Protestant churches. There was litte of the zeal which had carried the Franciscans all over Asia in the 13th century, and the Jesuits to South America, India and Japan in the 16th. But the igth century witnessed a great change, and Roman Catholic missions have heen extended pari passu with Protestant. The revival was not a little due to the foundation in $\mathbf{5 8 2 2}$, by a few earnest but (as they called themselves) " humble and obscure "Catholics at Lyons, of a new voluntary society, called the Institution for the Propagation of the Faith. It collected in its first year about $£ 2000$ from the shopkeepers and artisans of Lyons. Thirty years later its income was $£ 200,000 \mathrm{a}$ year; and now it is $\{300,000$. It has sent out no missionaries of its own. It merely makes grants to the various missionary parties sent forth, and it has done muchin this direction. Roman missions are carried on both by missionary aocieties and by religious orders, all under the supreme direction of the pope, and also more or less under the general supervision of the Sacra Congregatio de Propaganda Fide at Rome since its foundation by Gregory XV. in 1622. This important congregation has been described as corresponding pretty much in the Catholic Church to the colonial office in the British empire, and its head, the "Prefect of Propaganda," to the secretary of state for the colonies. It holds supreme control over all the foreign missions in heathen countries, and also over large and important parts of the church in Christion countries whose governments are not Catholic-including the British empire, the United States, Holland, the Norse kingdoms, Greece, and some parts of Germany and Switzerland. A special section (erected by Pius IX.) has charge of the aftairs of all the Oriental rites in union with the Roman sec. Confining our attention at present to the missions strictly understood under "foreign," i.e. to heathen or nonChristian countries, we shall find the whole of these parts of the globe carefully mapped and parcelled out by propaganda to a variety of missionary agencies or religious orders. The government of the various mission fields is generally carried on by "Vicars-Apostolic" (i.e. titular bishops acting as vicars or delegates of the Apostolic see) or "Prefects-Apostolic" (i.e. priests with similar powers, but without episcopal rank). In some few cases (notably India and Japan) a regular territorial hierarchy has been esteblished, just as in the United Kingdom and the Netherlands. Of the religious societies engaged in the evangelization of these many fields of labour, some have been established exclusively for foreign missionary work among the heathen-notably the famous Sociéte des Missions Etrangetres of Paris, the oldest andgreatest of all (dating from 1658 , and consisting of 34 bishops,

1200 European missionaries and poonative priests); the German "Society of the Divine Word," whose headquarters are at Steyl in Holland, the Belgian Sociely of Scheat , the celebrated French Society of the "White Fathers," founded by the tave Cardianal. Lavigerie for African missions, the Enghish Society of St Joseph, founded at Mill Hill by Cardinal Vaughan, and some onhers. The other mussions are entrusted to the care of vanous religious orders and coogregations, which take up loreign missionary work in addition to theur labours in Chnstian countries. Such are the Franciscans, Domincans, Jesuits, Lazarists, Augustintans, Mansus, \&c Besides the above orders of preests, an mmense number of religious societies of women are engaged in. works of education and chanity throughout the whole of the forengn mission field. These thave been reckoned at about 42,000 European and 10,000 natuve ststers. Again, lhere are some 20 congregations of "Brothers" (not press3) engaged in teaching, and numbering some 4500 members.

By far the greater part of the-Roman missionary work is done by France. The majority of the misalonanes are Freach (over 7000), the bulk of the money-so lar as it is voluntary contribution (but the propaganda at Rome has large eadow-ments)-is raised in France. The Freach government, anticlerical as it is at home, is the watchful and strenuous protector of the missions abroad; and it is evident that not a litte politucal influence in foretgn countries is gained thereby. L'Amite de l 'Eglise, in reporting on the missions in all parts of the world, dwells continually on this with satisfacuon. Protestant missionaries are opposed, not merely because they are heretical, but hecause they are English or (if American) English-speaking; and the Greek Church missionaries in Persıa and Japan, not only because they are schismatic, bui because they are Russian-the Eranco-Russian alliance notwithstanding. This is a feature in French Catholic missions which cannot be overlooked in the briefest account of them.

The following list shows the principal foreign Roman Cathofle missionary societies and their fields of wort:-

1. Socite des Messtons Etrangires (Paris, 1658)-Missions: Manchuria, Korea, Tibet, Japan Chisa (Sze-Chuen, Kui. Chow, Kwang: ong. Yunnan), Indo-China (W., S. and Upper Tongking. E., W. and N. Cochin-China; Cambodia, Siam). Malay Peninsula, Burme (S. and N.), S. India (dioceses of Pondicherry, Kombukonarn, Mysore. Coimbatore).
2. Socsely of" White Falhers" (founded by Cardinal Lavigerie, 1868).-Misstons: Algeria, Sahara, Nyasa, Victoria Nyanza, Tanganyika, Unyanyembe, Upper Congo.
3. Lyous Seminarg for Forerg Missioms (i856).-Missions: Nile Dehta, Benin, Ivory Coast, Gold Coast, Dabomey, Upper Niger.
IV. Congregation of the Holy Ghost (1703 and 1848). -Missions: Senegambia, Gambia, Sierra Leone, Lower Niger, Gaboon. French Congo, Lower Congo, Mayotte, Nosuibe and Comoro Islands.
V. Milan Seminary for Foreign Missions (1850)-Missions: China (Hong Kone, No and S. Ho-nan), East Burma, India (dioceses of Kishnagar and Haidarabad).
VI. Sleyl Society of Foreygn Missions (German. 1875).-Missions: S. Shan-tung, China; Togo, W. Africa.
VII. Scheat Sociely of Forcign Missions (Belgian, 1863).Misszors: Mongolia, Kang-Su (China). Belgian Congo.
VIII. Picputian Sociely (Paris 1817)--Missions: Hawai, Tahiti, Marquesas Lslands.
IX. Mill Hill Soczety (English, 1866) -Missions: N. Barneo and Labuan: N. Punjab, Kashmir and Ladic; Telugu missions of Madras; Maori missions of N. New Zealand; N. Uganda.
X. Congregalion of the Sacred Heart (Issoudun, France, 1855).Missions: New Guinea, New Pomerania, Gilbert Islapde
XI. Socrety of the Divne Scurour (Rome, 1881).-Missson : Assam

XII: Veronc Soctely for A fricon Missions.-Massion: The Sudan, Upper Esypt.
The following societies are engaged in home as well as locrign xitus in
XIII. Marists (French, 1816)-Missions Fiji. Navigator's Island, New Caledonia, Central Oceania, Solomon Islands. parts of New Zesland (dioceser of Wellington and Christchareb).

I Father Damien belonged to this society, which takes its popular name from the Rue de Picpus, Paris.
XIV. Lamarists (founded by St Vincent de Paul, 17th century).Kfissions: Abyssinia, Persia, China (Peking or N. Chih-li, S.W. Chih-li, Kiang-si. Che-Kiang).S. Madagascar.
XV. avaises of Mary 1 mmaculate (1840)-Misstons. Ceyion (nearly all), S. Africa (Basutoland, Natal, Transyanl, Orange River Colony), the "Great North-West" of Canada (Athabasca-Mackenzie, Saskatchewan, St Bonsface. New Westminster).
XVI. Salestoms (founded by Don Bosco).-Missions: Patagonia and Tierre del Fuego, Falkland istands, Indians of S. Armerica (Ecuador, Brazil, Argentine); zome missions in Palestine.
XVII. Palloltines.-Missiows: Cameroon, W. Africa; Australia (Beagle Bay, native sett lement).
XVIII. Jusuits.-Missions: India (dioceses of Bombay, Poona, Calcuita, Madura, Mangafore, Trichinopoly), Ceyfon (dioceses of Galle and Trincomalee), China (Kiang-nan, S.-E. Chih-li), Madagascar, Koango (W. A(rica), Zambezia, Jamaica, British Gumana, British Honduras, Alaska.
XIX. Dominicoms.-Mizsions: Asiatic Turkey (Mosul), Tongking (N.inidad and Central), China (Amoy, Fokien), Curacao, Trinidad.
XX. Framiscons.-Missions: Egypt, Tripoli, Morocco, China (N. and S. Shannsi, N. and E. Shan-tung, N. Shen-s. E. N.-W. and S.W. Hu-pe). Capochms: Aden and Arabia, India (dioceses of Agra, Allahabad. Lahore), Seychelles, Eritrea (Red Sca). Qallas, Cephalonia, Trebizond, Mardin, Crete, Caroline Islands, Araucania, Brazil, Bulgaria. Convemiuals: Jassy (Rumania).
XXI. Bencdictines.-Missszons: Ceylon (diocese of Kandy), New Zealand (diocese of Auckland), N. American Indins (Indian Territory and Oklahoma), Australian ruatives (Now Nursia).
XXII. Trappists.-Missions: Settlements in Natal (Marianhill); West Africa (Congo), China, Japan.
XXIIL. Augustinians-Missions: Philippines, China (N. Hu-nan), Balkan Peninsula, Asia Minor (' Assumptionists '").
XXIV. Carmelites.-Missions: Bagdad, India (dioceses of Verapoly and Quilon).
XXV. Rudumpiurais- Hitsions: Dutch Guianz.
XXVI. Passionists-Misstens: Bulgaria (diocese of Nicopolis).

These missions are largely supported by the Society of the Propagation of the Faith (est. in Lyons, 1822). Society of the Holy Childhood (est. 1843 as auxiliary to the former; "children for children ") and Society of the Schools of the East (ext. 1855).
On figures given In H. A. Krose's Katholische Missionsstatislik (1go8), the following totals of Roman Catholic Missions amongst non-Cbristians have been compiled: European priests, 7933; native priests, 5837; ley brothers, $\mathbf{5 2 7 0}$; sisters, 21,320, catechists, 24,524 ; native membership, 7,441,215, catechumens, 1,517,909. The annual baptlsms of aduh heathen are 190,000; those of heathen children at the point of death, 450,000. Over 840,000 children are in lower schools, 66,000 in middle schools, and 90,000 in orphanages. The total number of schools is 24,000, of churches and chapels 28,000, and of mission stations 43,000.
Note-Where figures for 1910 are quoted in this article they are really those of two or three years earlier, collected for the World Conference of 1910.

Orthodox Eastern Church. - When the tsar Ivan the Terrible ($1533^{-1} 584$) began the great advance of Russia into Northern Asia, a large number of missionaries accompanied the troops, and during the 17th century many thousands of Tatars were baptized, though from lack of fostering influences they lapsed into heathenism. Very little was done until 1824, when John Veniaminov (d. 1879), a priest of Irkutsk, afterwards Archbishop Innocent, began a career of evangelistic activity which has few parallels. He founded missions in Alaska and the Aleutian Islands, Kamtchatka and throughout Eastern Siberia, and established the Orthodox Missionary Society at Moscow. In Altai (Central Siberia) the Archimandrite Macarius, and among the Tatars in south-east Russia with beadquarters at Kazan the great linguist Imminski, did similar work. In addition to the nine distinct missions (300 workers) in Siberia and the six (with 50 workers) in European Russia, the Orthodox Church (Russian) has three foreign missions: (1) in China, founded at Pekin 1714, in the face of Jesuit opposition; (2) in Japan, established about 1863 by Bishop Nicolai, a chaplain at Nagasaki; (3) in Alaska and the Aleutian Islands, the bishop residing
${ }^{\prime}$ See E. Smirnof, Russian Orthodox Missions; an article in The Eask and the Wash (Aprif, 1904); and the Slativical Allos (1910), P. 99.
at San Francisco and having jurisdiction also over members of the church settled in the United States of America Alogether the Russian Church spends over $£ 30,000$ annually on these missions, and works with the British and Foreign Bible Society in translating and distributing the Scriptures. In Japan the mission has become a practically independent branch of the Church.

History of Mission Fieids

The continuity of missionary enthusiasm malntained through the primitive, the medieval, and the modern periods of the Church's history, operating at every critical epoch, and surviving after periods of stagnation and depression, is a very significant fact. It is true that other religions have been called missionary religions, and that one of them long held first place in the religious census of mankind. The missionary activity of Buddhism is a thing of the past, and no characteristic rite distinguishing it has lound its way into a second continent. Mahommedanism indeed is active, and is the chicf opponent of Christianity to-day, but the character of its teaching is too exact a reflection of the race, time, place and climate in which it arose to admit of its becoming universal. It is difficult to trace the slightest probability of its harmonizing with the intellectual, social and moral progress of the modern world. With all its deficiencies, the Christian church has gained the "nations of the future," and whereas in the 3rd century the proportion of Christlans to the whole human race was only that of one in a hundred and fifty, this has now been exchanged for one in three, and it is Indisputable that the progress of the human race at this moment is identified with the spread of the influence of the nations of Christendom.

Side hy side with this continuity of missionary zeal, a noticeable feature is the immense influence of individual energy and the subduing force of personal character. Around individuals penetrated with Christian zeal and self-denial has centred not merely the life, but the very existence of primitive, medieval and modern missions. What Ulifias was to the Gothic tribes, what Columba and his disciples were to the eariy Celtic missions, what Augustine or Aidan was to the British Isles, what Boniface was to the churches of Germany and Anskar to those of Denmark and Sweden, that, on the discovery of a new world of missionary enterprise, was Xavier to India, Hans Egede to Greenland, Eliot to the Red Indians, Martyn to the church of Cawnpore, Marsden to the Maoris, Carey, Heber, Wilson, Dufi and Edwin Lewis to India, Morrison, Gilmour, Legge, Hill, Griffith John to China, Gray, Livingstone, Mackenzie, Moffat, Hannington, Mackay to Africa, Broughton to Australia, Patteson to Melanesia, Crowther to the Niger Territory, Chalmers to New Guinea, Brown to Fiji.' At the most critical epochs such men have ever been raised up, and the reflex influence of their lives and self-denial bas told upon the Church at home, while apart from their influence the entire history of important portions of the world's surface would have been altered.

If from the agents themseives we turn to the work that has been accomplished, It will not be disputed that the success of missions has been marked amongst rude and aboriginal tribes. What was true in the early missions has been found true in these latter times. The rude and barbarous northern peoples seemed to fall like "full ripe fruit before the first breath of the gospel." The Goths and the Vandals who poured down upon the Roman Empire were evangelized so silently and rapidly that only a fact here and there relating to their conversion has been preserved. This is exactly analogous to modern experience in the South Seas, Asia and Africa, to a survey of which we now turn.
The South Seas.-Missionary work in the Pacific began with Magellifn (1521), when in a fortnight he converted all the inhabitants of Cebí and the adjacent Philippine Islands! The Jesuits, Recollets and Augustinians also worked in Mariana, Pelews and Caroline Islands, though the two latter were soon abandoned. The beginning of modern effort was made by the London Missionary Society in 1797.
${ }^{3}$ E. Stock's Short Handbook of Missions has a chapter on "Some Notable Missionaries" and another on "Some Prominent Native Chriatian',

Amofralle ond Now Zoolond. -The earllest attempt to evangeUse the aborigines of Australia by a separate miscion was that of the Church Misalonary Society in 1825. This work centred at Wellington Valley and Moreton Bay, but was given up in 1842 . A new beginning was made in $\mathbf{2 8} 5 \mathrm{o}$ by the Anglican Board of Missions for Australin and Tasmania, and now each diocese is responsible for its own area. At Bellenden Rer, near Cairns, in North Queensland (diocese of Carpentaria), many natives have setted upon a reserve granted hy government to the Anglican Church, and at another reserve, Fraser Island, the diocese of Brisbane has alco undertaken successful work. Nomadic aborigines have hardly been touched Apart from Queensland most of the black population is in West Australia; here the Roman Catholic Church is the main evangelizing agency. In the north and central districts the German missions have been active. Both in Australia (especially in Sydney and Melbourne) and at Thursday Island there is work among the Chinese.

In Tasmania the aborigines are extinct, the last pure-blooded native dying in 1876. The half-castes settled in the Bass Straits are ministered to by the bishop of Tasmania. The Maoris of New Zealand first came under Christian infuence through the efforts of Samuel Marsden, a colonial chaplain in New South Wales about $\mathbf{1 8 0 8 \text { . In }} \mathbf{8 8 2 2}$ Wesleyan missionaries reached the island. The first baptism was in 1825 hut during the next five years there was a great mass movement. In 840 the country became a British colony, and soon afterwards George Selwyn was consecrated bishop. He was so impressed with the work of native evangelists that be founded a college in Auckland where such teachers could be trained. In this he was helped by J. C. Patteson, and out of it grew the Melanesian Mission. The Maori rebellion, fomented by French Catholics, was an outhreak against everything foreign, and the strange religion Hau-hauism, 2 blend of Old Testament history, Roman Catholic dogmas, pagan rites and ventriloquism, found many adherents. Yei the normal missionary organization suffered very litle. Later came Mormon missionaries, and these have to some extent further depleted the Christian ranks.

New Gwinec.-In this large island some Cossner missionaries (1854) were the pioneers. They could not do much, but their successors, the Utrecht Missionary Union, who began work when the Dutch took possession of the north-west of the island, are making themselves felt through their six stations. In German New Guinea the Neuendethelsau (1886) and Rhenish (1887) Societies have fourteen stations. In British New Guinea, the south-east portion of the island, the London Mission (1871), the Australian Wesleyans ($\mathbf{1 8 9 2 \text {) and the Anglican Church of Aus- }}$ tralis (1892), have arranged a friendly division of the field and met with gratifying success. Work was begun in $1871-1872$ when under the oversight of S . Macfarlane and A. W. Murray a number of native teachers from the Loyalty Islands Rarotonga and Mare settied on the island. The first converts were baptized in 1882 and the establishment of a British Protectorate (1884-1888) gave the work a new impetus. The name of W. G. Lawes and James Chalmers (who with O. Tompkins was killed by cannibals, 1901) of the London Missionary Society, and that of Maclaren, the pioneer of the Church Missionary Society's work, are immortally associated with Papua. The history of mission work here is one of exploration and peril amongst savage peoples, multitudinous languages and an adverse climate, but it has been marked by wise methods as well as enthusiastic devotion, industrial work being one of the basal principles. Besides the Protestant agencies already named, the Roman Catholic Order of the Sacred Heart has been working in the island since 1886 ; its centre is at Yule Island, and it works up the St Joseph's river.
Oiker Islands.-The London Mission ship " Duff " in 1797 landed eighteen missionaries (mainly artisans) at Tahiti, ten more in the Tonga or Friendly Islands, and one on the Marquesas. Those in Tahiti had a varying experience, and their numbers were much reduced, but in July 1812 King Pomare II. gave up his idols and sought baptism. By 1815 idolatry was abolished in the larger islands of the group and there easued the task of buiding up a Christian community. Foremost in this work
were William Ellis (q-o.) and John Willams (q.v.), who formed a native agency to carry the goepel to their fellow islanders, and so inaugurated what bas since been a characteristic feature of South Sea Missions. In $\mathbf{8 1 8} \mathbf{8}$ two Tahiti teachers settled in the Tonga islands, which the "Duff "pioneers had abandoned after half of them had been killed for a cannibal feast. When the Wesleyans came in $\mathbf{8 8 1 1}$ the way had been prepared, and soon after, led by their king, George, the people turned to the new faith. About the same time Rurutu in the Austral Islands and Aitutaki in the Cook Islands were evangelized, also by natives, and Christianity spread from island to island. John Williams himself removed in 1827 to Rarotonga and from there inluenced Samoa, the Society Islands and Fiji. To Fiji in 1834 came James Calvert and other Wesleyan missionaries beginning a work which under thern and their successors had extraordinary success. Williams met his death at Erromanga in 2839, but be had established a training school on Racotonga, and bought a ship, the "Catnden," which was of the greatest service for the work. In 1841 work was begun in New Caledonia, in 1842 in the Loyalty Isles and in the New Hebrides, associated from 1857 with the memorable name of John G. Paton. In 1846 a teacher was placed on Niué, Savage Island, and in ten years it was evangelized. Meanwhile the original work in Tahiti had been taken over by missioneries of the Pans Society, though the last London Missionary Society agent did not leave that group till 2890 . In 186: Patteson was consecrated bishop of Melanesia, and the Auckland training school was removed to Norfolk Island. By arrangement with the Presbyterians the area of the mission includes the Northern New Hebrides, Banks, Torres, Santa Cruz and Solomon Islands. Patleson was murdered in 1871, a victim of the mistrust engendered in the natives by kidnapping traders. In 1817 John Selwyn was consecrated hishop. Wesleyan native evnafetises from Fiji and Tonga carried Christianity in 1875 to the Bismarck Archipelago.

The solitary worker (W. P. Crook) on the Marquesas did not remain long, and after he went nothing was done till 1833-1834, when first some American and then some English missionaries arrived, but met with scant success and gave it up in 1841. Since 1854 teachers from the Hawaiian Islands have worked in the Marquesas, but results here have been less fruifful than anywhere else in the South Seas. In Hawaii itself much was accomplished by American missionaries, the first of whom were H. Bingham and A. Thurston (1820), and the most saccessful, Titus Coan, under whose leadership over 20,000 people were received into the churches between 1836 and 1839 . Under the reign of Kalakaua (1874-1891) there was a strong reaction lowards beathenism, hut since the anneration of the islands by the United States of America the various churches of that land have taken up the task of evangelization and consolidation.
In the Micronesian Islands, while animism and taba were strong, there was not the cannibalism of the southern islands. Work was begun in the Caroline Isles in 1852 and in time spread to the Gilbert and Marshall groups. In the Carolines and Marshalls it has now largely passed to German missionaries, the Americans having enough to do in the Philippines, where there are already over 27,000 Protestants.
The outstanding features of missionary work in the Suuth Seas are (1) its remarkable success: cannibalism, human sacrifice and infanticide have been suppressed, civilization and trade have marvellously advanced; (2) the evangelical devotion of the natives themselves; (3) the need of continued European supervision, the natives being still in many ways litlie better than grown-up children.
Africa, -In Africa, as in the South Seas, mission work hes gone hand in hand with geographical discovery. It is in every sense a modern field, or rather a collection of fields, varying in physical, racial, social and linguistic character. The nnaccustomed conditions of life and the fatal influence of the climate have claimed as many victims here as did savagery in the Pacific

[^36]Ishads. The partition of the continent among the various European nations has been on the whole favourable to mission work. The nature of the task and of the results may be best approached hy considering the diferent divisions-North, South, East, West and Central Africa.
North Africa, along the Mediterranean from Morocco to Egypt, is distinctly Mahomnredan. To these regions came St Louis and Raimon Lull, and one may in passing remember the strength of Christianity in Proconsular Africa in the days of Tertullian and Cyprian, and in Egypt under Clement of Alexandria, Origen and Athanasius. To-day Islam is supreme, though the North Africa Mission, working largely on medical lines, has penetrated into many cities. In Egypt the United Presbyterians of America have met with considerable success among the Copts, and their fine educational work has proved a valuable asset both to themselves and the country. The Church Missionary Society is doing steady work in Cairo and in Upper Egypt. In the Eastern Sudan a promising beginning has been made, but the regions south of Kordofan have hardly been touched. In Nigeria the Hausa tribes are coming to be better known, and to respond to the Christian teaching. In the Sahara and at Suakin there are Roman Catholic missions. There is a Roman mission to the Gallas in Ahyssinia. That country has its own crude form of Christianity, and is much the same today as when Peter Heiling in the 17 th century endeavoured to propagate a purer faith. A mission undertaken hy the Church Missionary Society in 1830 was closed by French Jesuit intrigue in 1838.

South Africa.-The Moravians, represented by George Schmidt, who arrived at Cape Town in July 1737, were the first to undertake mission work in South Africa. Schmidt won the confidehce of the Hottentots, but the Dutch authorities stopped his work. In 1798 John T. Vanderkemp, an agent of the London Missionary Society, founded a mission to the Kaffirs east of Cape Town, and Robert Moffat (18i8) went to the Bechuanas. David Livingstone was as determined to open the interior as the Boers were to keep it shut, and he suceceded, pushing north, discovering Lake Ngami, and consecrating a remarkable life to the evangelization of Central Africa. The London Mission bas also largely evangelized the Matabele. In 18is the Wesleyans began work among the Namaquas and Hottentots, and afterwards went into Kaffraria, Bechuanaland and Natal. They were followed hy the Glasgow Missionary Society (1821), the Paris Evangelical Society (1829), the Moravian, Rhenish and Berlin Societies, and the American Board. The Society for the Propagation of the Gospel came in 1819, mainly for colonists, the Church Missionary Society in ${ }^{1837}$. The province of South Africa has ten dioceses, the bishop of Cape Town being metropolitan. The Glasgow Society's work was ultimately taken over by the Frec Church of Scotland, whose great achievement is the Lovedale Institute, comhining industrial and mission work. The Germans and Scandinavians have also been ardent workers in South Africa, and the Dutch Reformed Church has not entirely neglected the natives. One Dutch society gives its attention to the northern part of the Transvaal. The chief difficulties in the way of evangelization have been (I) the hostility of natives races aroused by European annexations, (2) the introduction of European vices, (3) the movement known as Ethiopianism. The British Wesleyans refused to confer full rights on negro pastors, who then appealed to the African Methodist Episcopal Church, a product of American evangelization. One of them, J. M. Dwane, was made Vicar-Bishop, and a large and powerful independent negro church organized. Dwane afterwards approached the Anglicans, and in 1900 that church formed the "Ethiopian Order," ordaining Dwane a deacon and making him Provincial of the Order. Each bishop now deals with the Ethiopians in his own diocese. The South Alrican governments foresaw dangerous developments in the Ethiopian movement, and steps were taken to restrain its growth. Ethiopianism, if ecclesiastical in its origin, gained strength from racial base. The task of averting the racial bitterness so dominant in the United States of America is a most formidable one. There
are in South Africa several vicariates and prefectures of the Roman Church, the principal missions being French, those of the Congregation of the Holy Ghost and the Ohlates of Mary.

West Africe was first visited by the Society for the Propagation of the Gospel in 1752 . Its agent, T. Thompson, trained Philip Quaque, said to be " the first convert who ever received ordination since the Reformation in the Reformed Church." The Church Missionary Society came in 1804 and has worked heroically and successfully, though the largest mission now is that of the Wesleyans, who came in 18 nit , settling first at Sierra Leone. The American Baptists in Liberia (1821) and the Basel Mission in the Gold Coast (1827), the Congregationalists of the United States of America and Canada in Angola, and the English and American Baptists on the Congo (since 1875) have also extensive and prospering agencies. West Africa has taken heavy toll not only in money hut in life, but the lesson has now been learned, and a system of irequent furloughs combined with a better understanding of the climatic requirements have appreciably lessened the peril. This region is linked with the name of the Anglican negro Bishop, Samuel Crowther, and with one phase of the ceaseless strength of Islam, which has so far failed to reach the west coast, finding itself confronted by the Christian influences which are at work among the great Hzusa tribes and other peoples within the area of the Niger missior. The Portuguese in Angola and the agents of King Leopold in the Congo State have not been conspicuous friends of missionary enterprise, and the light-hearted childishness of the native character, so well portrayed in Miss Kingsley's writings, shows how difficult it is to build up a strong and stahle Christian church. Bishop Taylor's effort at creating a self-supporting mission proved fruitless. The American Lutherans are attempt. ing the same task on rather different lines, and with more promise. The Roman Catholic missions are chiefly French, and organized hy the Congregation of the Holy Ghost and the Lyons African Mission.

Central Africa. -The upper Congo region opened up hy Livingstone and Stanley has been a favourite sphere for what are known as "faith societies," e.g. the Plymouth Brethren, the Christian and Missionary Alliance, the Regions Beyond Missionary Union. The American Baptists continue the work started by the Livingstone Inland Mission in 1878, and the Southern Presbyterian Board (American) have done notable work. The Paris Society, represented especially by Francois Coillard, has been successful along the Zamberi, and Scottish, German, Moravian and Jesuit agencies are also well represented. Northward, Central and East African organizations, following the Cape to Cairo route, are in touch with North African agencies working up the Nile.

East Africa.-When the Abyssinia mission was closed in 1838 one of the missionaries, Krapf, went among the Gallas and then on to Mombasa, working in company with Rebmann. Since H. M. Stanley's appeal (1875) most satisfactory work, extensive and intensive, has been accomplished in Uganda, by the Church Missionary Society. The names of Mackay, Hannington and Pilkington, who lived and died here, are amongst the greatest in the roll of missionary heroes. The Roman Mission too has been very successful; for some years a French agency, the White Fathers of Algeria, carried it on, but they were afterwards joined hy English helpers from St Joseph's Society at Mill Hill. The White Fathers also work in the Great Lakes region, and on the Zanzihar coast are the French Congre: gation of the Holy Ghost and German Benedictines. Zanzihar is also one of the centres of the Universities Mission, another being Likoma on Lake Nyasa. Near this lake the Scottish churches are also doing noble work. Besides Uganda the Church Missionary Society is responsible for Momhasa. The London Mission is meeting with success at the south end of Lake Tanganyika in North-east Rhodesia. The English United Methodists and some Swedish societies have begun work among the Gallas. German Missionary agencies have also come in with German colonization. In East Africa, as in the West, Christian missionaries fear most the aggressive Moslem propaganda.

Kadagascar ${ }^{1}$ is ane of the most interesting mission fields. Work was begun by the London Mission in 1819, and the work of civilization and evangelization went steadily forward till 1835 , when a period of repression and severe persecution set in, which lasted till $\mathbf{1 8 6 t}$. When the work was recommenced it was found that the native Christians had multiplied and developed during the harsh treatment of the 25 ycars. In 1869 the idols were publicly destroyed and the island declared Christian by royal proclamation. The Society for the Propagation of the Gospel (1864), the Norwegian Missionary Society (1866), and the Friends' Foreign Missionary Association joined in the work, the prosperity of which received a severe check by the French annexation in 1896. The French authorities were hostile to the English missionaries, and even the handing over of part of the field to the Paris Evangelical Society did not do much to ease the situation. Laws were first enacted against private schools, then against elementary schools, and in 1906-1907 measures were passed which practically closed all mission schools. Family prayers were forbidden if any outside the immediate family were present, and religious services at the graveside were prohibited Missionary work in the island has thus passed thruugh a peculiarly trying experience, but happier conditions are now likely to prevail. In Mauritius and the Seychelles the Church Missionary Society and the Society for the Propagation of the Gospel are at work, especially among the coolies on the sugar plantations.
The outstanding problem of African missions at least north of the Equator (south there is the Ethiopian question) is not the degradation of the black races, nor the demoralizing infuences of heathen Christians, nor even the slave foler, though all these obstacles are present and poweriul. The all-decisive conflict is that betwen Christianity and Islarn, and the Christian agencies must show much more co-operation if they are to be successful. The lines of missionary work have been, generally speaking, simple gospel preaching followed by education and industrial work. So rare were the ordinary comforts, and even necessitics of life, that the latter had to take a prominent place fras the beginning: the missionary had to be farmer, carpenter, biknaker, tailos, printer, house and church builder, not only for himself but for his converts. The work of Bible translation has been particularly long and difficult; for the innumerable peoples who did not speak some form of Arabic the languages had first to be reduced to writing, and many Christian terms had to be coined.
Indla. ${ }^{2}$-The earliest missionaries to India, with the possible exception of Pantaenus of Alexandria (c. A.D. 180), were the Nestorians from Persia. The record of their work is told elsewhere (see Nestorius and Nestorians). The Jesuits came in the 16 th century, but were more successful quantitatively than qualitatively; in the 18th century the Danish coast mission on the coast of Tranquehar made the first Protestant advance, Bartholomalus, Ziegenbalg (1683 -1719), Plutschau and Christian Friedrich Schwartz (1726-1798) being its great names. Up to this time the chief results were that (1) Christianity had gained a footing, (2) it had continued the monothcistic modification of Indian thought hegun by Mahommedanism, and (3) the futility of sporadic and fanatieal proselytism had been shown. A new era began with the arrival of William Carey and the founding of the Serampur Mission (15 m . north of Calcutta), though the hostility of the East India Company made the early years of the 19th century very unproductive. When Carey died in 1834 he and his colleagues Marshman and Ward had translated the Bible into seven languages, and the New Testament into 23 more, besides rendering services of the highest kind to literature, science and general progress. They founded agricultural societies and savings' hanks, and helped to abolish suttee, infanticide and other cruelties. At Travancore in the south, Ringeltaube, an agent of the London Missionary Society, had begun a work, especially among the Shanars or toddy drawers, which by I 840 had 15,000 Christians; and the Church Missionary Society, led by Rhenius, had equal success in Tinnevelly. The Baptists, drawn hy the fame of the temple of Jagannath at Puri on the
${ }_{1}$ Sce T. T. Matthews, Thiry Years in Madogascar.
${ }^{1}$ See E. P. Rice in A Primer of Modern Missions, ed. R. Lovett (London, 1896): J. Richter, A History of Missions in India (1908): The Church Missionary Reviavo (July 1908); Contemporary Review (May 1908 and June 1910).
east coast, established a mission in Orissa in 1821 which soon bore fruit; the Wesleyans were in Ceylon, Mysore and the Kaveri valley, the London Missionary Society at the great military centres Madras, Bangalore and Bellary, agents of the American Board at Ahmednagar and other parts of the Mahratla country around Bombay. The headquarters of Hinduism, the Ganges valley, was occupied by the Baptists, the Church Missionary Society and the London Missionary Society, these entering Benares in 1816, 1818 and 1820 respectively. Alezander Duff, a Scottisb Presbyterian, had begun his great educational work in Calcutta, and Bible tract and book societies were springing up everywhere. Chaplains and bishops of the Anglican Church like James Hough in Tinnevelly, Henry Martyn in the north, Daniel Corrie is Agra, T. F. Middleton in Calcutta, and Reginald Heber all over India, were eagerly using their opportunities. In 1830 ten socicties with 106 stations and 147 agents were at work; 1834 saw the founding of the Basel Mission on the west coast, the American Mission in Madura, the American Presbyterian Mission in Ludhiana. It would be impossible to trace in detail the work done by the different societies since Carey's time. The task as it presented itseif may be analysed as follows: (t) to replace the caste system and especially the oppressive supremacy of the Brahmins hy a spirit of universal brotherbood and the establishment of social and religious liberty; (2) to correct and raise the standard of conduct; (3) to attack polytheistic idolatry with its attendant immoralities; (4) to replace the pantheistic by 2 theistic standpoint; (s) to elevate woman and the pariah. Besides these matters which concerned Hinduism there was the problem of converting sixty million Mahommedans. The chief methods adopted have been the following: (1) vernacular preaching in the large towns and on itinerarics through the rural districts, a work in which native evangelists. guided by Europeans and Americans played a large part. (2) Medical missions, which have done much to break down barriers of prejudice, especially in Kashmir under Dr Elmslie of the Church Missionary Society. and in Rajputana at Jaipur under Dr Valentine of the United Presbyterians. (3) Orphanages, in which the Roman Catholics led the way and have maintained their lead. (4) Vernacular schools, a good example of which is seen in the American Board's Madura Mission. (s) English education, in which the missionary societies have amply supplemented the efforts of the government, outstanding examples being the Madras Christian College (Free Church of Scotland), so long connected with the name of Dr William Miller, the General Assembly of Scotland's Institution at Calcutta, founded by Duf, Wilson College, Bombay (Free Cburch of Scolland), and St Joseph's College (Roman Catholic) at Trichinopoly. Work of this kind is followed up in some centres by lectures and conversations with educated Hindus. The Haskell Lectureship, which grew out of the Parliament of Religions in Chicago, belongs here. (6) Female education and zenana work. (7) Uplifting work among the Panchamas or low-castes, which has been strikingly successful among the Malas (American Baptists) and the Madigas (London Missionary Society) of the Telugu-speaking country, who come in mass movements to the Christian faith. (8) Missions among aboriginal tribes, e.g. the Kols and Santals of Chota Nagpur (Berlin Cossner Mission and the Society for the Propagation of the Gospel), and the tribes of the Khassia Mountains east of Bengal (Welsh Calvinistic Methodists). (9) Christian literature, in which connexion the name of Dr John Murdoch will always be honourably remembered. (ro) Pastoral work and the care of the churches.
The great changes that have been mrought in India, politically, commercially, intellectually and religiously, by the combined action of the British government and the Christian missions, are evidenced among other tokens by the growth of such societies as the Arya Samaj and the Brahmo Samaj. Orthodox Hindus, especially those whose social status and very livelihood are imperilled' by the revolution, have shown their alarm either by open opposition, subjecting converts to every sort of caste coercion, or by methods of defence, e.g. Hindu uact societies and young men's associations, which are modelled on

Cbristian organizations. A counter reformation can also be traced which attempts to revive Hinduism by purging it of its grossnese and allegorizing its fables and legends. A new lslam is also a factor of the eituation. Comparatively few converts have been made from Mahommedanign to Christianity, and these have been chiefly among the learned. But there is a wide prevalence of free-thinking, eapecially among the younger apd educated clasant of the community.

The special difficulties of mimion work in India may be thus summarised. (1) Racial antipathy. (2) The speculative rather than experimental and practical nature of the Hindu consciousnceshistorical proofs make no appeal to him. (3) The lack of initiative: in a land where the joint family system is cyerywhere and all powerful, individualism and will-power are at a discoumt. (4) The ignorance and conservatism of the women. (5) An inadequate guse of sin. (6) The introduction of European forms of materialism and anti-Chrietian philosophy. Perhaps, too, the mechods adopted by missionaries have not always been the wisest. and they have sometimes failed to remember the method of their Master, who came " not to desaroy, but to fulsi." In spite, bowever, of all the difficulties, permanent and increasipg results have been achieved aiong ail the fines indicated above. The establishment of a strong native church it far from being the only fruit of the enterprise, but it is a fruit that can be gauged by statistics, and these are sufficiently striking. In a necesearily inedequate sketch it is impossible to give more than the barest mention to one or two other leatures of modern missionary achievement in India, e.g. the development of industrial schools, the establishment of a South India United Church. in which the Congregationalist agencies (London Missionary Society and American Board) and the Preabyterians have joined forces, and the endeavour to train an efficient and educated native ministry, which is being promoted especially at Serampur, where an old Danish degree granting charter has been revived in what should become a Christian university, and at Bangatore, where Presbyterians, Congregationalints and Weskyans collaborate to staff and maintain a united theolegical college? The government sensus for india and Burma (1901) gives a Christian population of 2.923 .241 (native Christians 2,664.313) out of a total population of $294.361,056$, or about 3%. The inclusion of Portuguese and French posscssions would add about 350,000 to the Christian total. Though the number does not stem relatively high, it is siguificant when compared with that of former censusesin 1872, 1.517.997; in 1881, 1,862.525 (increase 22.7%): in 1891, $2,284,380$ (increase 22.6%); in $1901,2,923.241$ (increase of 28%) The increase of 28% between 1891 and 1901 has often been compared with the fact that the total population of India only registered an increase of $2 \frac{1}{2} \%$ in that decade. In the worde of The Pioneer, "shis is a hard lact which cannot be explained away" and "the most remarkable feature of the returns." The increase was shared by every province and state in India. In 1910 there were 4614 missionaries (including wives), representing 122 societies, 1272 Indian ministers, and 34,095 other native workers, including teachers and Bible-wamen.

The growth of the Protestant Native Christian community between 1851 and 1910 is shown in the following table:-
shall connect Christianity with India's religious past, and present it as the true Vedanta or completion of the Veda and thus make it capable of appealing to the Hindu religious nature.
It only remains to be said that the work of the miscionaries individually and collsetively has over and over again received the warmest recognition and praise from the highest officials of the Iadian goveroment.

Chiman - The earliest Christian missionaries to Chima, as to India, were the Nestorians ($q .0$). Their work and that of the Roman Church, begun as the result of Marco Polo's travels about 1290 , faded away under the persecution of the Ming dynasty which came to power about 1350 . The next attempt was that of the French Jesuits, following on the visit and death of Xaviet. They estahlished themselves at Canton in 1582, and on the accession of the Manchu dynasty (1644) advanced rapidly. In r685 there were three dioceses, Peking, Nanking and Macmo, with a hundred churches. The Orthodoz Eastern Church gained a footing in Peking in the same year, and established a college of Greek priests. Friction between Jesuits and Dominicans led to the proscription of Christianity by the emperor in 1724, missionaries and converts being banished. The story of modern missions in China begins with Robert Morrison (q.s.) of the London Missienary Society, who reached Canton in 1807, and not being allowed to reside in China entered the service of tbe East India Company. In 1813 he was joined by a colleague, Williams Milne, and in 1814 baptized his first convert. In 1829 came representatives of the American Board, in 1836 Peter Parter began his medica! mission, and on the opening of the Treaty Ports the old edicts were withdrawn, and other societies crowded in to a field more than ample. After the war of $\mathbf{1 8 5 6}$ a measure of official toleration was ohtained, and the task of evangelising the country was fairly begun. Though the missionaries were chiefly concentrated in the treaty ports they gradually pushed inland, and here the names of W. C. Burns, a Scottish evangelist, J. Hudson Taylor, the founder of the China Inland Mission, and James Gilmour, the apostle of Mongolia, are preeminent. But for more than half a century China seemed the most hopeless of mission fields. The upper classes were especially anti-foreign, and the whole nation vaunted its superiority to the rest of man. kind. In 1857 there were only about 400 baptized Protestant Christians in the whole of China. Even after the removal of the ediets the old prejudices remained, and the missionaries were regarded as political emissarics, the foterunners of mifitary aggression. Native Christians were stigmatized as traitors, "Iollowers of the foreign devils." In 1870 there was a great outbreak concentrating in the massacres at Hankow and Tientsin; in

Native Christian Community.			Communicants.			Native Agents.	
	Number.	Rate of Increase.	Number.	Rate of Increase.	Proportion of the Community.	Ordained.	Unordained Preachers.
1851	91,092	$\stackrel{\%}{\%}$	14,061	\%	$\%$ 16.0	21	
1861	138,731	52.3	24,976	$70 \cdot 3$	18.0	97	1266
1871	224,258	81.6	52.816 113.325	111.4	23.5	225	1985
1881 1890	417.372 599.661	86.1 34.0	113.325 182.722	114.5 61.2	27.1 326	461	2488
1900	\$89,661	34.0 32.8	182,722 301.699	61.2 65.1	$32 \cdot 6$ $35 \cdot 3$	797	3491
1910	1,472,448	72.2	522.743	$73 \cdot 3$		1.272	-

The Protestant community in India in 19 to was over a million strong, well distributed a mong the chiof provinces, a fine spiritual force, easily first io female education, and rapidly growing in wealth, position and influence. A recent repurt of the Directur of Public Instruction for the Madras Presidency says: "I have frequently calied attention to the educational progress of the native Caristian community. There can be no quastion, if the community pursues with stcadiness the present policy of its teachers. that in the course of a generation it will have secured a preponderating position in all the great prolessions:"
What india wants (as Nobiti 300 years ago saw, and attempted, though by tatal methods of decett, to supply) is a Christianity not foreign but native, nol dissociated from the retigious life of the land but its fulfilment. Though there are many Christians in India to-day, the Hindu still looks askance at Christianity; not because it is a religion but because it is foreign. "India is waiting for her own divinely appointed apostle, who, whether Brahmin or non-Brahmin,
every breach of tradition to inflame popular passion, altacking especially the medical work as a pretext for mutilation, the schoois as hotbeds of vice, and the orphanages as furnishing material for witchcrait. Out of the agony, however, a new China was born. The growing power of Japan, secp in her wars with China and Russia, and the impotence of the Boxers against the European allies, made all classes in China realize their comparative impotence, and the central government began a series of reforms, reorganizing the miiitary, educational, fiscal and political systems on Western lines. Educational reforms became eapecially insistênt, and modern met hods and studies suppianted ${ }^{1}$ See A. H. Smith, Chinese Characteristics; Village Life in Chine; and] C. Gibeon, Mission Problems and Misston Meihods in Sowit China.
the immonorial Confucian type. Students went in great numbers to Japan, Europe and America, and the old contempt and boatility toward things Western gave place to reapect and friendiness. Early in the 19th century the missionaries had not been able to do much by way of education, but the new openings were seized with such power as was possible, and while in 1876 there were 289 mission schools with 4909 pupils, in 1910 there were 3129 schools with 79,823 scholars. More significant still is the way in which the foremost Chinese officials have turned to missionaries like Timothy Richard and Griffith John for assistance in guiding the new impulse. The universities of Orford and Cambridge, under the inspiration of Lord William Cecil, were interesting themselves in 1910 in a scheme for establishing a Christian university in China.

One of Morrison's contemporaries hoped that after a century of mission work there might possibly be 2000 . Christians in Ching. That number was reached in $\mathbf{1 8 6 5}$, and in 1980 there was a Protestant community of 214,546 church members and baptized Christians. These numbers are more than double what they were in 1900. In addition there are more than as many adherents. ${ }^{1}$ The eacellence of the converts, upon the whole, is testified to by travellers who really know the case; particularly by Mrs Bishop, Who speaks of the "raw material " out of which they are made as "the best stuff in Asia." The total number of Protestant missionaries (including wives) in China in 1910 was 4175, one to about 1100 sq. m ., or to more than 100,000 Chinese. There are over 12,000 Chinese evangelists, Bible-women, teachers, \&c. The Roman Catholic returns give 902,478 members and 390,617 catechumems. The work is carried on by eleven societies or religious orders with over 40 bishops and 1000 European priests, mostly French. A large feature of the wort is the baptism of rhildren. An important concession was obtained in 1899 by the French minister at Peking, with a view to the more effective protection of the-Roman missions. The bishops were declared "equal in rank to the viceroys and governors," and the priests "to the prelects of the first and second class "; and their influence and authority were to correspond. The Anglican bishops agreed to decline these secular powers, as also did the heads of other Protestant misaions. It is alleged by some that the exercise of the powers gained by the Roman hierarchy fras one cause of the Boser outbreaks. Certainly their native adherents had their full share of persecution and massacre.

The Anglican Church is not $s 0$ strong in Chine as in some other fields; the American Episcopalians were first in the Geld in 1835, followed by the Church Missionary Society (in 1844), which has had tirring success in Fu-Kien, and the Society for the Propagation of the Goopel in 1874. There are five dioceses, and in 1897 an episcopal conference was held in Shanghai. Since the Japanese War the Soottich aad Irish Presbyterians have made wonderful progress in Manchuria; native evangelists do an increasing share of the work, and manchuria; native evange ists illage without Christians. The London Mission has alway been conspicuous for the contribution made by ita tgents to linguistic and literary knowledge, the name of James Legse being an outatanding example; it is now, inco-operation with other societies, earbestly taking up the new educational and medical openings. One of the most interesting leatures of missionary work in China is the comity that prevaile among the workers of different societies and agenciea. Thus in 1907 at the Centenary Conference in Shanghai, when many topics were diacussed centring in the question of the native Chinese Church, a general declaration of faith and purpose was adopted, which, after setting out the things held in common, proceeded, "We frankly recognize that we differ as to methods of administration and of. Church goverarpent; that come among us differ from others as to the administration of beptism; and that there are some differences as to the statement of the doctrine of predestination, or the election of grace But we unite in holding that these exceptions do not invalidate the assertion of our real unity in our common witness to the Goupel of the Grace of God." The conference geported, "We have quite as much reason to be encouraged by the net result of the progress of Christianity in China during the 19th century as the earty Christians had with the progrese of the Gospel is the Roman Empire during the first century.

Japan and Eorea-The Christian faith was brought to Japan by Portugucse traders in 1542, followed by Xavier in 1549.
${ }^{1}$ See Contomporary Review (Feb. 1908), "Report on Christian Missions in China,"_by Mr F. W. Fox, Profesmor Mecalister and Sir Alex. Simpeor.

This great missionary was well received by the daimios (feadal lords), and though be remained only $\quad 1$ years, with the help of a Japanese whom he had converted at Malioca he organized many congregations. In 1581 there were 200 charches and 150,000 Christians; ten years later the converts numbered 600,000 , in 1594 a million and a half. Then came a time of repression and persecution under Iyeyasu, whose second edict in 1614 condemned every foreigner to death, forbade the entry of foreigners and the return of Japanese who had left the islands, and extinguished Christianity by fire and sword. The reopening of the country came in $\mathbf{1 8 5 9}$, largely through American pressure, and in May of that year two agents of the Protestant Episcopal Church began work at Nagasaki. They were followed by others from the Presbyterian and Reformed Churcbes, and by their great intellectual ability, patience and tact these pioneers (S. R. Brown, J. C. Hepburn and G. F. Verbeck), as the Marquis Ito said, contributed very largely to the progress and development of Japan in the days when she was frst studying the outer world. They did an immense amount of preparatory work along evangelistic, medical and educational lines, and skilfully gathered the youtbs of the country around them. The accession of a new mikado in 1868 finally ended the old seclusion; financiers, engineers, artisans poured in from Western Europe, and from America came bands of teachers, largely under missionary influence. In 8869 the American Board (Congregational) sent its first band; in 1870 Verbeck was called on to organize a scheme for national education. In 1872 the first Japanese church was formed; in $\mathbf{1 8 7 5}$ Joseph Neesima, who had been converted by a Russian missionary and then educated in America, founded a Christian Japanese College, the Doshisha, in the sacred city of Kyoto. Meanwhile the Christian calendar had been adopted and the old anti-Christian edicts removed. By $\mathbf{1 8 8 9}$ there were 30,000 Protestant communicants. It was at this time that the nation, conscious of its new life, began to be restive under the supercilious atitude of foreign nations, and the feeling of irritation was shared by the native Christian communities. It showed itself in a desire to throw of the governance α the missionaries, in a criticism of Protestant creeda as not adapted to Japanese needs, and in a slackened growth numerically and intensively. After a period of stress and uncertainty, due very largely to the variety of denominational creed and polity, matters assumed an easier condition, the missionaries recognizing the national characteristics and aiming at guidance rather than control. The war with China in 1894 marted a new chapter and initiated a time of intense national activity; education and work for women went forward rapidly. Missionaries went through the island as never before, and their evangelistic work was huilt upon by Japanese ministers. In the war with Russia Japanese Christianity found a new opportunity; on the battlefield, in the camp, at home, Christian men were pre-eminent. In 1902 there were 50,000 church members; in 1910, 67,043; the total Prolestant community in 1920 was about 100,000 , and had an influence out of all proportion to its numbers; the Roman Church was estimated at 79,000, and the Orthodox Eastern Church (Russian) at 30,000.

No sketch, however brief, can omit a reference to the Angtican bishop of South TOkyd, Edward Bickersteth (1850-1897), who from his appointment in 1886 guided the joint movespent of English and American Episcopalians which issued in the Nippon Sei Kokwai or Holy Catholic Church of Japan, a national church with its own lawa and its own missions in Formosa. In April 1907 the Conference of the Worid's Student Christian Federation (700 students from 25 different countries) met in Toky8, and received a notable welcome from the national leaders in adminiotration, education and religion.
In Kores, the "Hermit Nation," or as the Koreans prefer to say, "The Land of the Morning Calm," Christianity was introduced at the ead of the 18th century by some members of the Korean legation at Pelin who had met Roman Catholic missionaries. It took root and spread in spite of opposition until 1864 , when an anti-foreign outbreak exterminated it. The door wac re-opaned by the treaties of 1882-1886. and even before thit
copies of the gospels had been circolated from the Manchuria side. The Methodist Episcopal Church and the Presbyterian Board, both of America, entered the country in 1885, and were soon joined by similar agencies from Canada and Australia. The Anglican Church began work in 18go, the work wes thoroughly planned, the characteristics of the people were carefully considered, and the successes and failures of other missionfields were studied as a guide to method. The medical work won the favour of the government, and so wisely did the missionaries act, that during ail the turbulent changes since 1884 they escapod eatanglement in the political disturbances and yet beld the copfidence of the people. The persistence and growth of Christianity among the Koreans is largely due to the fact that Christianity had not been superimposed on them as a foreign organization. They had built their own churches and achools, adopted their own forms of worship and phrased their own beliefs. Korea vies with Uganda as a triumph of modern missionary enterprise. In 1866 there were not more than 100 Christians; official returns in 1910 show 178,686 Protestants, including 72,000 church members and probationers; and 72,290 Roman Catholics. Theological colleges, normal training collegea and higher and lower grade schools bear witness to an activity and a success which are truly remarkahle.

Sonth-Rant Asta and tho Eest Indiss.-The wort of Christian missions in this area has had the double advantage of freedom from political and social unrest, and of comparatively little overlapping, each country as a rule being taken over by a single society. In Burma the American Baptists, whose work began with Adoniram Judson in 1813, are conspicuous, and have had riarked success ampng the Karens or peasant chass, where the pioneer was George Dana Boardman (1827). The Karen Christian communities are strong numerically and have a good name for self-support. The Baptists have also stations in Arakan and Assam where they link up with the Welsh Calvinistic Methodists (1845). The Society for the Propagation of the Gospel and the Methodist Episcopal Church work in and around Rangoon. In Siam again the Americans, especially the Presbyterians, have been most prominent. Medical work made an impression on the people and won the favour of the government, which has always been cordial and has employed missionaries as court-tutors. Buddhism is at its best at Siam, and this and the enervating climate are responsible for the comparatively small direct success of Christian propaganda in Siam proper. In the Laos country to the north, however, much more has been done, and a healthy type of Christian community established. Native workers have done something to carry the Gospel into the French colonies of Tongking and Annam. Here the Roman missions are very extensive, and have over a million adherents, despite violent persecution before the French occupation.

The peninsula and archipelago known as Malaysia presents a remarkable mingling of races, languages and beliels. Tatar, Mahommedan and Hindu invasions all preceded the Portugucse who brought Roman Catholicism, and the Dutch who brought Protestantism. This last resulted in a great number of nominal conversions, as baptism was the passport to government favour, and church membership was based on the learning of the Decalogue and the Lord's Prayer, and on the saying of grace at mealtimes. In the Straits Settlement the foundations of modern missionary effort were laid by the London Missionary Society pioneers who were waiting to get into China; they were succeeded by the Society for the Propagation of the Gospel ($\mathbf{1 8 5 6 \text {), English }}$ Presbyterians (1875), Methodist Episcopalians (1884), who have a fine Anglo-Chinese College at Singapore, and the Church of England Zenana Society (1900).

In the Archipelago most of the work has naturally been in the hands of the Netherlands Missionary Society (1812) and other Dutch agencies, who at first were not encouraged by the colonial government, but have since done well, especially in the Minahassa district of Celebes (150,000 members) and among the Bataks of Sumatra (Rhenish Mission). In Celebes and the Moluccas the work is now under the Colonial State Church. In Java the government has favoured Mahommedans (there is
active intercourse between the island and Mecca), bat there are some 25,000 Christians and a training school and seminary at Depok near Batavia. In Dutch Borneo the Rhenish Society is slowiy making headway among the Dyaks; in British Borneo the Society for the Propagation of the Gospel (1848) and the Methodist Episcopalians occupy the field. The total number of Christians in British Malaysia and the Dutch East Indies is about 600,000 (including 57,000 Roman Catholics).
Western Asia and the Turkish Kmplre. LThe American Presbyterians and Congregationalists have the largest Protestant missions in these lands, working, however, mainly for the enlightenment and education of the Oriental Christians. With the same object, though on different lines, the archbishop of Canterbury's Assyrian Mission seeks to influence the Nestorians. The Roman Catholics have extensive missions in these countries, directed at winning adherents to the unity of the Holy See from the Oriental Churches, which are regarded as schismatic and beretical. In this enterprise there has been great advance in Egypt among the Copts, and in 1899 the Pope signalized "the resurrection of the Church of Alexandris" by appointing a Patriarch for Egypt, Libya and Nubia. Farther east, on the borders of Turkey and Persia, the Roman and Russo-Greek Churches compete for the adhesion of the Nestorians, Chaldeans and Armenians. The Franciscans, Dominicans, Laxarists and Jesuits are engeged in all these works. Direct work among Mahommedans is done, though with small result, by the North Africa Mission (non-denominational) and the Church Missionary Society. The Egypt, Palestine and Persia missions of the latter society have been largely reinforced and extended since 1884, medical work and women's work being especially prominent. Foor cities in southern Persia are now occupied. Three missions just touch the border of Arabia, viz. the United Free Church of Scolland at Aden, founded by Ion Keith-Falconer (1856-1887) son of the pth earl of Kintore and Arabic professor at Cambridge; an American Presbyterian Mission on the Persian Gulf; and the Church Missionary Society's Mission at Bagdad. The American Robert College at Constantinople and the work of the Friends' Missionary Association in Syria are honourable and successful enterprises. The chief difficulties have been (1) the antagonism of the officials of the Oriental churches, (2) the suspicion and bostility of Islam, (3) the jealousies, religious and political, connected with the Eastern Question.
Misswons in Christian Lands.-Australia has been referred to already (see South Seas, above), In the Western Hemisphere we may distinguish the following: (i) Early Roman Missions began with the discovery of the continent and practically ceased in the middle of the 18 th century. Conspicuous among their achicvements was the conversion of Mexieo, 200,000 converts being enrolled within six years after the capture of the capital (1521), and a million baptized by the Franciscans alone within thirty ycars. In South Arnerica the passive character of the population made them submiso sive alike to the Spanish government and the Roman daith. Their natural devotion and ther susceptibility to pomp and ritual was a factor skilfuily used by the pricsts, but hardly anything was done to strengthen their moral power. The influx of base European strasa helped to reduce the whole conlinent south of Mexico in about a century to a level as low as that preceding the first mission. About 1600 the Franeiscans and French Jesuits began their work in North America and among the Indians did a successful work marked by mueh heroism. They also enabled the Roman Church to keep ite hoid on the French colonists of Quebec and Montreal, and were pioncers in California. (2) Modern Missions in North America. Missions among the Red Indian tribes in the North-West Territories of both the United States and Canada have long been carried on by severai societics. The first workers were Thomas Mayhew, junior and John Eliot at Martha's Vineyard (1643) and Roxbury (1646). Bishop Whipple of Minnesota was justly called the Apostle of the Indians, wo lar as the work of the American Episcopal Church was concerned. In the Canadian North-West the Church Missionary Society": Missions have reached many tribes up to the shores of the Polar sea, and made some thousands of converts. Even the wandering Eskimos, thanks to the Moravians, are mainly Christians. The Anglican Church has nine dioceses in the province of Rupert's La ul. The Roman Catholic missionaries also are scattered over these immense territories, and have a large number of Indian ad onts. Besides the Oblates many are Jesuits from French Cand:.1. The Russo-Greck Church has a mission in Alaska, dating

Ex. J. Richter, A Histary of Protestant Missions in the Near East
(1910).
from the time when it was Russian territory, and various Amerizn eocieties are also represented. The total number of Indiana in Brikish North America is 99,000 , of whom about 27,000 are still pagan, and the rest are about equally divided between the Protestaat end Roman Catholic Missions (3) Cewtral and Soulk America.Protestant miscions to Indians here have been very limited. Von Welez did something in Dutch Guiana (6.1670), and the Moravians among the Artawak Indians of Surinam (1738-1808). Since 1847 they have worked on the Mosquito coast of Central America. American Missions are at work in Mexico and adjacent countries. In the West India Islands the negro population has been reached by most of the larger British socicties. The South American Missionary Society founded by the ill-fated Captain Allen Gardiner, has much extended its work among the Indians of the interior of what has been Mall called "the Neglected Continent "; it has been specially succes: u among the Araucanians of Chile and the Paraguayan Chaco. Thuir work among the Fuegians drew a warm tribute Irom Charles Darwin. Scveral American missions are also at work. The Society for the Propagation of the Gospel has an important mission in British Guiana. But there are numerous heathen tribes never yet reached. The Roman Church, which is dominant throughout the continent, has been engaged in serious struggles with theanti-religious tendencics of the Republican governments, and L'A anee de l'Eglise makes no mention of missions among the Indians. In fact the Pope in 1897 was obliged to send a severe rebuke to the clergy for their lack of consistency and zeal. Protestant societies have done much to bring the Bible to the knowledge of the nominally Roman Catholic population.

Results of Missioas

The Christian Church bases its missionary enterprise upon the spirit, the example, and the commandment of its Founder, and regards the duty as just the same whether the results be
results. If, however, we are to take statistical returns for what they are worth, it is estimated that the Christians in heathen lands gathered by Protestant missions probably amount to five millions, and a similar total may be ascribed to Roman Cathalic missions, making ten millions in all. This, however, includes adherents still under instruction for baptism, and their children. The inner circle of communicant members is hardly more than one-third of the total.

Missions are however a far greater thing after all than simple proselytism. It would requive many a volame to tell of what they bave done for civilization, freedom, the exploration of unknown regions, the bringing to light of ancient literatures, the founding of the science of comparative religion, the broadening of the horizon of Christian thought in the homelands, and the bringing of distant peoples into the brotherhood of nations. These are results that capnot be put into figures. While it is true that very diverse opinions are held concerning missions, it is indisputable that the most favourable testimonies come from those who have really taken the most pains to examine and understand their work. The one discouraging feature, from the Christian point of view, is the backwardness of Christendom in its great enterprise. If the Churches did their foreign work with the same energy which they throw into their home work, the results would he very different.

The figures given below are taken from a table compiled by Dr D. L. Leonard, and reler only to Protestant missions to non-

I.-STATISTICS OF THE GREAT RELIGIONS OF THE WORLD. (From The Blen doat al Wissions, 19e9)

	Christinss.			Jens.	Mohams: medana.	Buddhists.	Hlioduas.	Confucianblts and Tachats	Shintoiats.	Anjmists Fetishists, 4.	Unclased.	Totals
	Protetama.	Roman Catholics	Eastern Churches.									
			$\begin{gathered} 3,799,000 \\ 1,000,000 \\ 18,14,000 \\ 1,000 \\ 98,28,000 \\ - \end{gathered}$	$\begin{array}{r} 381,000 \\ 1,069,000 \\ 1,000 \\ 41,000 \\ 17,000 \\ 9,247,000 \\ 3,000 \\ 4,000 \\ \hline \end{array}$	$\begin{array}{r} \hline 30810,000 \\ 15,000 \\ 10,000 \\ 148,456,000 \\ 3,000 \\ 3.576,000 \\ 0.76,000 \\ \hline \end{array}$	11,000 5.000 $137,000,000$ 4,000 15,000		38,000 8,00 4,000 $291,030,1000$ 31,000 570,000 65,000	$\begin{gathered} = \\ = \\ 24.900,000 \\ = \\ = \end{gathered}$	$\begin{array}{r} 97,179.500 \\ 20,000 \\ 11,439,000 \\ 41,43000 \\ 40,000 \\ 16,445,000 \\ 507,000 \end{array}$		457.723,000 115,65 1,000 $838,956,000$ $876,130,000$ $389.0311,000$ 45.379 .000 981000
Angregeta	1660064,500	2,3,636,500\|	820,157,000	11,231,000	216,639p00	137,935000	209659000	293,816000	240009000	157009800	25.351500	1,603,494000
		558,863,000										

large or small. It appeals to common sense, saying in effect, "If it be a fact that a Divine Person came into the world to bless mankind, all men ought to know it, and have a right to know it. However much or (ii you will) little a Buddhist or a

Christlan and mon-Protestant peoples. The figures are for 1907, and should be compared with those in the Slatistical Allas. This list gives a total of 69 Foreign Missionary Societics, of which 34 are American, in British, 10 German, and 6 other societics. The statistica for thesc 69 societies may be grouped as follows:- II.-SUMMARY OF PROTESTANT MISSIONARY WORK.

	Amgricas.	Britise.	Getman.	Other Societies, viz. Paris Society, Swiss Romande, Netheriands Societien, Scandinavian Societies, \&c.	Totals for Christepdom.	Totaly for 1895 (showing growth between 1895 and
Ordained Missionaries	1,911	1.980 1.738	932 168		5.735	4,028
Unmarried women : :	535 1.527	1,738 $\mathbf{2 , 3 3 2}$	168 150	361 378	2,802 4,387	1,477 2.578
Ordained natives.	2,312	2,141	197	${ }_{63}$	5.273	4,295
Communicants (full members)	545.180	565.179	240,883	466,208	1.817 .450	995.793
Numbers added in $1906 ;$	$35,916$	38,614	25,983	12,336	$140,849$	
Adherents - - i \%	1,286,259	1,398,306	$540,073$	1,136,500	$4.301,1,38$	$2,770,801$
Sehools Scholars	$\begin{array}{r} 8,855 \\ 344,213 \end{array}$	$\begin{array}{r} 11.789 \\ 619.399 \\ \hline \end{array}$	$\begin{array}{r} 2,878 \\ 139.891 \\ \hline \end{array}$	$\begin{array}{r} 5.346 \\ 199,402 \\ \hline \end{array}$	$\begin{array}{r} 28,868 \\ 1.302,905 \end{array}$	$\begin{array}{r} 19.384 \\ 786,002 \\ \hline \end{array}$

Moslem may need to know of Christ, he certainly has a cloinn to be told of Him. The responsibility, if there be any, of believing, rests with the individual told; the responsibility of telling him rests with the Christian Church.' ${ }^{11}$ On thin view of the matter ${ }_{1}$ results, however desirable, are no certain test of a mission doing its work. A mission in Persia, with its handful of converts, has, on this view, as much right to support and appreciation as a mission in southorn India with its tens of thousands. Again, on the hypothesis that Christianity is true, the statistics at a particular period are no test of success at all. For in them the dead are not counted; and the converts who are already dead are-at least in respect of individual sqlvation-the surest of

ILI.-PROTESTANT MISSIONARY INCOME.

A world miagiomary conference was beld at Edinburgh in June 1910, which aimed at making, on a scale lar more comprebensive than had been previously attempted, a thorough and scientific st udy of the problems involved in the relation of Christianity to the nonChristian world. For two years proceding the conference eight representative commiasions investigated the following questions:
1 The Statistical Alas (1910) puts it at $\mathbf{5 . 0 7 1 , 2 2 5}$, of which British and American societies each find about $\mathbf{~} 2,000,000$, and German societics 6127,455 .
(1). Carrying the Gospel to all the non-Cbristian world; (2) the Church in the mistion field; (3) education in relation to the Christianization of national life; (4) the missionary message in relation to non-Christian religions; (5) the preparation of mistionaries; (6) the home base of missions; (7) missions and governments; (8) co-operation and the promotion of unity. The reports on these subjects in eight volumes, together with a ninth volume giving the proccedings of the conference itself, and a statistical athan, will for some time be the vado mecum of information on Christian missions, and precludes the need of any attempt at a bibliography here, an attempt which would indeed be doomed to failure It may not, however, be out of place to call attention, in addition to literature already cited, to a lew recent books, chiefly manuals, in several of which full lists of missionary books are given.
E. M. Bliss. The Missionary Enierprise (1908); E. Stock, A Short Handbook of Missions (1904); H. H. Montgomery, Foreign Missions (Igo4); T. Moscrop, The Kingdom Withouit Frontiers (1910): W. T. Whitley, Missionary Achievement (1908); S. L. Gulick, The Growith of the Kingdom of God (1897); B. Lucas, The Empire of Christ, a study of the missionary enterprise in the light of madern religious thought (1go7): R. H. Malden, Foreign Missions, a study of some principles and methods (1910); G. Smith, Shart History of Christian Missions (1897); G. Warneck, Oulline of a Mislory of Protestant Missions (1901; new German ed., 1910). See also J. S. Dennis, Centewnial Sur. wey of Forcign Missions (1902), Christian Missions and Social Progress (3 vols, 1897): G. Warneck, Modern Missions and Cullure (1882); E. Stock. History of the Church Missionary Society (3 vols, ${ }^{1899}$); J. B. Mlyers, Conicmary Volume of the Baptist LAissionary Sociely (i892): R. Lovett, IIistory of the Londom Missionary Saciely (2 vols, 1899): J. Lowe, Medical Missions, Their Place and Power. A somewhat overlooked side of missions, viz. the "attempt to estimate the contribution of great races to the fulness of the Church of God, is presented in Lankied and lke Church, edited by Bishop H. H. Montgomery (1907). The Encydopaedia of Missions (2nd ed., 1904) edited by Bliss, Dwight and Tupper: The Bixe Book of Missions by H. O. Dwight (1907); and the already mentioned Siatistical Aulas of Missions (1910) by H. P. Beach, are all of the highest value. For Roman Catholic Missions see Missiones Cathalicae cura S. Congregationis de Propaganda Fide descriplae (Romae, ex Typographia polyplotta S. C. de Prop. Fid. [official biennial puhlication]); Louver, Les Missions Catholiques (au) xixer. Siacho (Lyon, Bureau des Missions Catholiques, 14 Rue de la Charite, 1900): Piolet, Les Missions Catholiques Francaises $\{a u$) zixم. Siecle (6 vols., Paris, A. Colin, 5 Rue des Mexiéres); H. A. Krose, Kalhalische Missionsstatistik (1908); K. Streit, Keholischen Missionsallas (1908)
(E.ST; H. T. A.; A. J. G.)

MISSISSIPPI, a South Central state of the United States, situated between $35^{\circ} \mathrm{N}$. lat. and $31^{\circ} \mathrm{N}$. lat., with its S.E. part extending to the Gulf of Mexico, the extreme southern point being in $30^{\circ} 13^{\prime}$ N. lat. near the mouth of the Pearl River. On the \mathbf{E}. the line is mostly regular, its extreme \mathbf{E}. point being at $88^{\circ} 7^{\prime}$ W. long. in the N.E. corner of the state; the W. boundary has its extreme W. point at $91^{\circ} 4 I^{\prime}$ W. long. in the S.W. corner of the state. Mississippi is bounded N. by Tennessee, E. by Alabama, S. by the Gulf of Mexico and Louisiana, W. by Louisiana, from which it is separated by the Pearl River and by the Mississippi, and by Arkansas, from which also it is separated by the Mississippi. The total area is $46,865 \mathrm{sq} . \mathrm{m}$., of which $503 \mathrm{sq} . \mathrm{mm}$. are water surface.

Physical Fealures.-Mississippi lies for the most part in the Mi cissippi embayment of the Gulf Coastal Phain. A feature of its suriace is a strip of bottom land between the Mississippi and Yazoo rivirs, known as the Yazoo Delta; it extends from north to south aliat 175 m ., and has an average width of more than 60 m. , and coers an area of about $7000 \mathrm{sq} . \mathrm{m}$. With the exception of a few flat riv ges running from north to south, it is so low that it requires, to protect it from overflows, an unbroken line of tevees averaging $15 \mathrm{f}_{1}$. in height; these were buit and are maintained by the state in art from a special tax on the land and in part from the sale of sw: mp lands of the U nited States (under an act of 1850). Along the eastrn border of this delta, and southward of it, along the Mississippi it if, extends a belt of hillis or bluffs (sometimes calied "cane-hill"), which is cut by deep ravines and, though very narrow in the north, has in the south an average width of abuat 10 m . Last of the Lelt are ievel or gently rolifing prairies, and along the Gull Coast is a low. marshy tract. The highest cievations, from 800 to 1000 ft. above the sea, are on the Pontotoc ridge in Tippah and Union counties; and from this ridge there is an almost imperceptible slope south and west from the Appalachian Mountain system. Along the margins of vailcys there are hills rising from 30 to 120 ft ., but farther back from the water courses the differcnces of elevation are much less. The coast-line, about 85 m . long. is bordered by a beach of white sand. and broken by several small and shallow indentations, among which are St Louis, Biloxi. Pascagoula and Point aux Chenes bays: *eparated from it by the shallow and practicaily unnavigable Mississippi Sound is a chain of low, long and narrow sand istiands,
the largest of which are Pedit Bois, Hoen, Ship and Cat. The principal rivery are: the Miscissippi on the western border, and it tributaries; the Yazoo and the Big Black; the Pearl and Pascagoula, which drain much of the southern portion of the state and flow into the Gulf; and the Tombigbee, which drains most of the north-eastern Portion. The Pontotoc ridge separates the drainage system of the Mississippi from that of the Tombigbee; extending from the northcastern part of the state southward, this ridge divides in Choctaw county, the eastern branch separating the drainage basin in the Pascagoula from that of the Pearl, and the western branch separating the drainage basin of the Pearl from that of the Big Black and the Mississippi. The Delta is drained chiefly by the Yazoo. A umall area in the north-eastern corner of the state is drained northward by the Tennessee and the. Hatchie Each of the larger rivery is fed by smaller streams; their fall is usually gentle and quite uniform. The valleys vary in width from a few hundred yards to several miles. In the east of the state much of the valley of each of the larger streams is several feet above the stream's present highwater mark and forms the " hommock " or " cecond bottom " lands. Most of the rivers flowing into the Gulf are obstructed hy sand-bare and navigable only during high-water from January to April. Oxbow lakes and bayous are common only in the Delta.

Geology. - The older formations are nearly all overlaid by deposits of the Quaternary period, which will be described last. In the extreme north-east are found the oldest rocks in the state-lower Devonian (the New Scotland beds of New York) and, not so old, an extension of the Lower Carbonitcrous which underlies the Warrior coalficlds of Alabama, and which consists of cherts, limestones, sandstones and shales, with a depth of 800 to 900 ft . The strata here show some traces of the upheaval which formed the Appalachian Mountain chain. When this chain formed the Atlantic mountain border of the continent excepting this north-castern corner, Mississippi had not emerged from the waters of the ancient Gulf of Mexico. As the shore line of the Gulf slowly receded southward and westward, the sediment at its bottom gradually carme to the surface, and constituted the Cretaceous and Iertiary formations. Wherever stratification is observed in these formations in Mississippi, it shows a dip west and south of 20 of 30 ft . to the mile.

The Cretaceous region includes, with the exception of the Lower Carboniferous, all that part of the state istward of a line cutting the Tennessee boundary in $88^{\circ} \mathrm{s} 0^{\prime} \mathrm{W}$. Iong.and and drawn southward and eastward near Ripley, Pontotoc, ad Starkville, crossing into Alabama in latitude $32^{\circ} 45^{\prime}$. There art isur formations of Creta. ceous strata in Mississippi, defined by lizes having the same general direction as the one just described. The oiclest, bordering the Lower Carboniferous, is the Tuscaloosa fornation of clays and sands arranged as follows: dark clays, thin lig ite scams, lignitic clays, sands and chert, and light ciays; this formation is $5^{-15} \mathrm{~m}$. wide and reaches from about $33^{\circ} 30^{\prime}$ on the Aiabama boundary north to the Tennessee boundary. It is about 270 f. thick. Tuscaloosa clays are used in the manufacture of pottery. Overlying the Tuscaloosa are the Eutaw sands, characterized by sandy laminated clays, and yellow, orange, red and blue sands, containing lignite and fossil resin. The Eutaw formation is a strip about 5 to 12 m . wide with a maximum depth of 300 ft . Westward to Houston and southward to about $32^{\circ} 48^{\prime}$ on the Alabama boundary and occupying a much larger area than the other Cretaceous formations, is the Selma chalk. called "Rotten Limestone" by Hilgard; it is made up of a material of great uniformity,-a soft chalky rock, white or pale blue, composed chiefly of tenacious clay, and white carbonate of lime in minute crystals. Borings show that the thickness of this group varies from 350 ft. in the north to about 1000 ft. at Starkville. Fossils are abundant, and forty specics are recorded. The latest Cretaceous ia the Ripley formation, which lies west of the northern part of the last-named, and, about Scooba, in a small strip, the most southerly of the Cretaceous-it is composed of coasse sandstoncs, hard erystal line white limestones, clays, sands, phosphatic greensands, and dark. coloured micaceous, glauconitic marls; its greatest thickness is about 280 ft. Its.marine fossils are admirably preserved, and one hundred and eight species have been described.

Deposits of the Tertiary period form the basis of more than half the state, extending from the border of the Cretaceous westward nearly to the Yazoo Delta and the Mississippi Bottom, and south ward to within a few miles of the Gulf coast. Seven formations (or groups) of the Tertiary strata have been distinguished in Mississippi. The oldest is the Midway limestone and clays in a narrow strip whose western limit is nearly parallel to the western boundary of the Selma chalk; it includes; the Clayton formation, characterized by the hard blue Turritella fimestone (so named from the frequent fossil (Turritella mortoni); and Porters Creek (previously called Fhatwoods) clay, which is grey, weathering white, and is occasionally overlain by grey fossiliferous sandstone. The Wilcox formation (called Lignitic by Hilgard, and named by Saford the Lagrange group) lics to the west of the last, and its western limit is from about $32^{\circ} 12^{\prime \prime}$ on the Alabama boundary about due north-west; in its north-westernmost part it is on the western edge of the Tertiary in this state. Its minimum depth is 850 ft. It is marked by grey clays and sands, lignitic fossiififerous clays, beds of lignite or brown coal, sometimes 8 ft . in thickness, and brownish clays. The siliceous Claiborne
(or Tallahatta Bubratone) formation Eiea eonth-mestward from the last-named in a strip $10-30 \mathrm{~m}$. wide, whose south-castern extremlity is the intersection of the 32 nd meridian with the Alabarna boundary, is characterized by beds of aluminous grey and white sandstone, aluminous and siliceous clay-sione, quartzitic sandstone, and green sand and marls. The calcareous Claiborne or ClaiborneLisbon formation-group lies south of the last, in a wedge-like strip with the apex on the Alabama boundary; it is a serics of clays and sands, richly fossiliferous. The Jackson formation south-west of the Lisbon beds, is made up chicfly of grey calcareous clay marls, bluish lignitic clays, green-sand and grey silliceous sands. Basilosarrus (or Zeuglodon) bones are found only in the Jackson marls and other marine fossils are abundant. The minimum thickness of the formation is 240 it. The Vicksburg formation lies next in onder south-west, in a narrow strip of fairly regular width which alone of the Tertiary formations runs as far west as the Mississippi River: it is probably nowhere more than 1 to ft. deep. It is characterized by semi-crystalline limestones and blue and white sandy marls. Marine fossils are very abundant in the marl. The Grand Gulf group. of formations of different ages, consisting of sands, sandstoncs and clays, and showing a few lossil plants, but no marine fossils, extends southward from the last to within a lew miles of the coast and is $750-800 \mathrm{ft}$. deep.

The older Commation of the Quaternary period is the Lafayette (also called "Orange-sand" or "geratified drift"), which inmediately overlies all the Cretaccous groups except the prairies of the Selma chalk, and all the Tertiary except the Porters Creek and Vicksburg formations and parts of the Jackson. Its depth varics from a few feet to over 200 ft . (in the southern part of the state), and it forms the body of most of the hills in the state. Its materiaif are pebbles, clays and sands of various colours irom white 20 deep red tinged with peroxide of iron, which sometimes cements the pebbles and sands into compact rocks. The slapes of these ferrugin. ous sandstones ate very fantastic-tubes, hollow spheres, plates, \&cat being common. The name stratifed drift has been used to indicate its connexion with the northern drift. The fossils are few, and in some cases probably derived from the underlying formations. Well-worn pebbles of amorplious quartz (agatc, chalecdony, jaspere \&e.) are found in the stratified drift along the western side of the Tertiary rugion of the state, and from Columbus northward. The second Quaternary formation is the Port Hudson, occurring within 20 m. of the Gulf coast, and, with alluvium, in the Yazoo Delta. Heavy clays, gravel and sands, containing cypress stumps, drifi. wood and mastodon bones, are characteristic. The loess or bluf formation lics along the bluffs bordering the Bottom, nearly tinuously through the state. Its fine-grained, unstratified sit contains the remains of many terrestrial animals, including fiftea marnmals.

Founa.-Among the mone common species of game are squirrels, opossums, musk-rats, rabbits, racoons, wild turkeys, "partridges " (quail, or Bob White), geese, and ducks; deer, black bears, grey (or timber) wolves, black wolves and "wild cats" (lynx), once common. have become rare. Alligators inhabit the southern river-bottom, and there are some rattlesnakes on the uplands. Among a gr-t variety of song-birds the mocking-bird is prominent; the parainit is found in the southern part of the state. Buffalo-fish, paddle-fish, cat-fish, drum, crappie, black bass, rock bass, German carp, sturgeon, pike, perch. ecels, suckers and shrimp inhabit the waters of the Mississippi and its tributaries, and oysters, shrimp, trout, Spanisi mackerel, channel bass, black bass, sheepshead, mullet, croakers, pompano, pin-fish, blue-fish, flounders, crabs and terrapin are ohtained from the Mississippi Sound and the rivers fowing into it.

Flora.-Originally Mississippi was almost entirely covered with a growth of forest trees of jarge size, mostly deciduous; and in ag a about seven-tenths of its area was still classed as timber-hind. 'The north central part of the state, known as the "flat woods," level and heavily forested. There are more than 120 species of trees in the state, 15 of oak alone. The most valuable specics for lumber are the long-leal pine which is predominant in the low southern third of the state, sometimes called the "cow-country": the short-leal pine, found farther north: the white oak quite widely distributed: cotton-wood and red gum, lound chielly on the rich alluvial lands; and the cypress, found chicfly in the marshes of the Delta. The beautiful live aaks and magnolias grow only in the south of the state; the holly in the lowlands; and the finut species of pecan in the Delta. The sassalras, persimmon. cherry and Chickasaw plum are found in all parts of the stite. The grape, Ogeechee lime (Nyssa copilata) and pawpaw are, native fruits. Among indigenous shrubs and vines are the bla berry, dewberry, strawberry, yellow jasmine, mistletoe and poisononk; and among medicinal herbs are horehound, ginger and pepper mint. Here, too, grows Spanish moss, used by upholsterers

Climate.-The southern latitude, the low elevation and the pr imity to the Gulf of Mexico produce in southern Mississippi a mild and equable climate, but to the northward the extremes inc The normal annual temperature for the state $1 \mathrm{~s} 64^{\circ} \mathrm{F}$.: on the it is $67^{\circ} \mathrm{F}$, and on the northern horder it is $61^{\circ} \mathrm{F}$. During a if twemy yeare, from January 188\% to December 1906 , extren ternperature at Biloxi, on the coast, ranged from ${ }^{6} \mathrm{~F}$. to 100 : ${ }^{\circ} \mathrm{F}$;
during nearly the same period at Pontotoc, in the north-caturi:
of the state, they ranged from -11° F. to 105° F. The greatuest extremes recorded were -15° F. at Aberdeen. Mource county, an the '3th of February 1899, and IO7 ${ }^{\circ}$ F. at several places in Juily and August of different years. January is the coldest month, and July is the warmest. During the winter the normal temperature decreases quite steadily from south to porth; thus the mean temperature in January at Biloxi is 51^{*} F., at Meridian, in the east central part, it is 46° F., and at Pontotoc it is 43° F. But during the summer, temperatures are affected as much by altitude as by latitude, and the coast is cooled at night by breeses from the Gulf. The July mean is 82° F. at eeveral places in the wouthern part of the state, and at Yazoo city, in the west central part, it is $83^{\circ} \mathrm{F}$. The normal annual precipitation for Mississiopi is about 51 in ; for the southern hall, 54 in., and for the northern half, 49 in. An average of 4 in. of snow falls in the northern half, but south of Natchex snow is seldom scen. Neary one-third of the rain falls in January; February and March; July, also, is one of the wet months. The driest teason is in September and October. The prevailing winds are from the south-east; but the rain-bearing winds are chiefly fron the wouthwect, and the high winds from the weat and north-west.

Soils.-The most fertile soil is the ailuvium of the Deltn, deposited during the overflows of the Missivippi. Others that are exceedingly productive are the black calcareous loam of the prairies, the calcareous silt of the bluff belt along the eastern border of the Delta, and the brown loam of the tableland in the central part of the state. Of inferior quality are the yellow loam of the hills in the north-east and the sandy loam in the pine belt of the south. Throughout the southern portion sand is a large ingredient, and to the northward there is more or leas lime.

Agriculfure.-Mississippi is devoted largely to the cultivation of cotton. Of the total land area of the state, $18,240,736$ acres ($61 \cdot 3 \%$) were, in 1900 , included in farms, and the lmproved farm land increased from 4,209,146 acres in 1870 to $7,594,428$ acres ($41-6 \%$ of ail farm land) in 1900. Alter the abolition of slavery, farms greatly decreased in size and Increased in number: the number grew from 68,023 in 1870 to 220,803 in 1900 ; the average size fell from 369.7 acres in 1860 to 82.6 acres in 1900. Of the total number of farma in 1900, 81, 412 were worked by owners or pert owners (60,585 by whites and 20,827 by negroes); 70,699 were worloed by canh tenante ($\mathbf{1 3 , 5 0 5}$ by whites and 57,194 by negroes); and 67,153 were worked by share tenants (16,748 by whites and 50,405 by negroes).

The acreage of cotton increased from $2,106,215$ acres in 1879 to $3,220,000$ in 1907 ; the yield increased Irom 936,1 it bales in 1879 to $1,468,177$ balea in 1907 . Cotton is grown in every county of the state, but the large yields are in the Delta (Bolivar, Cooohma, Washington, Yazoo and Leflore counties), the greatest cotton-producing region of the world, and in Monroe, Lowndes and Noxubee counties on the Alabama border. The acreage of Indian corn in 190% was 2,500,000 acres and the crop $42,500,000$ bushels. The production of other cereals decreased during the latter half of the igth century: oats, from 1,959,620 bushels in 1879 to $1,611,000$ bushels in 1907: Wheat, from 587,925 busheis in 1859 to 22,000 in 1907; rye, from 39,474 bushels in 1859 to 963 bushels in 1899 , after which year the crop has been negligible; a nd rice, from 2,719,856 It in 1849 to about I, $080,000 \mathrm{Ib}$ in 1907. The largest Indian-com producing districts are nearty the same as those which produce the most cotton; oata and wheat are grown chicfly in the north-eatern quarter of the state, and rice in the south-weatern quarter.

Between 1850 and 1907 dairy cow increased from 214,231 to 330,000 ; other neat cattle from 519.739 to 589,000 ; sheep decreased from 304,929 to 181,000; swine decreased from 1,592,734 to 1,316,000; horses increased from 115,460 to 260,000, and mitale from 545,54 to 279.000.

Sugar-canc is grown principally in the southern part of the state, but sorghum-cane is grown to some extent in scarly every county. Sweet potatoes, white potatoes and onions also are important crops. The greatest relative advance between 1889 and 1899 in any hranch of agriculture was made in the growth of market-garden produce and small fruits; for old pise lands, formerly considered useless, had been tound valuable for the purpose. The number of orchand trees increased nearty 100% within the sance decade. At Crystal Springs tomatoes were first successfully grown for the market (1874-1876). Orchard trees and grape-vines are widely distributed throughout the state, but with the exception of peaches their yield is greater in the ncrthern portion.

Lumber.-Mississippi ranks high among the southern states in the production of lumber. Its timber-land in 1900 was estimated at $32,300 \mathrm{sq} . \mathrm{m}$. From the extreme south most of the merchantable timber bad been cut, but immediately north of this there were still vast quantities of valuable long-leal pine; in the marshes of the Delta was much cypress, the cotton-wood was nearly exhausted and the gum was being used as a substitute for it: and on the rich upland soil were oak and red gum, also cotton-wood, hickory and maple. The lumber and timber product increased in value from $\$ 1,920,335$ in 1880 to $\$ 24.035,539$ in 1905. Pinc stumpe and waste fimbs are utilized, notably at Hatticaburg, for the manufacture of charcoal, tar, creosote, turpentine, \& c .

Fisheries,-Fishing is a minor industry, confined for the most part to the Mississippi Sound and neighbouring waters and to the Mississippi and Yazoo rivers. The most valuable branch is the oystct

Ghery on the reels in the Sound, much devetoped since 1880. The shrimp fishery, too grew during the same period. About 40% of the total catch of the state is made by the inhabitants of Harrison county on the Guil of Mexica.

Mimerals.-The mineral wealth of the state is limited. Clays and mineral waters are, however, widely distributed. Large quantities of minyril water, sulphur, chalybeate and lithin, bottled at Meridian, Raymond and elsewhere, are sold annually. The state containa deposits of iron, gypsum, mant, phoephate, lignite, ochre, ghase-sand, tripoli, fuller's earth, limestones and sandstones; and there are emali get flows in the Yarco Delta.

Manmfactures.-The lack of mineral resources, especially of conal and iron of a good harbour (until the improvement of Culfport). and of an adequate supply of labour has discouraged most find: of manufacturing. The value of the total factory product was 857.45 F .445 in 1905 . When a little more than three-fourthe was represented by lumber and timber products, cotton-seed oil and cake, and cotton goods. The leading manulacturing centres are Meridian, Vicksburg, Jackson, Natchez and Biloxi.

Tromsport.-Along the entire westers border of the state the Misissippi River is navigable for river steamboats. On the wouthern border, the Mississippi Sound affords safe navifation for small coasting vessels, and from Gulfport (13 m . W.S.W. of Biloxi) to Ship Island, which has one of the best harbours on the entire Gulf Cosst, the Guif \& Ship Island Railroad Company, with the co-operasion of the United States Government, in Igor began to dredge a channel 300 ft. wide and 19 ft . at mean low water, and to coastruct an anchorage basin (completed in 1906) at Gulfport, $\frac{\mathrm{I}}{\mathrm{m}}$. long and 1 m . wide, and is ft. deep. In June rgos the maximum low-water draft of the channel and the basin was 19 ft . The Gulfport project reduced freight rates between Gulfport and the Aclaptic seaboard cikies and promoted the trade of Gulfport, which is the port of entry for the Pearl River customs district. Its imports for 1909 were valued at $\$ 82,028$ and its exports at $\$ 8,58 \mathrm{I}, 47 \mathrm{I}$. The Yazoo, Tallahatchic, Yalobusha, Sunflower, Big Black, Pascagonla and Pearl rivers are aloo navigible to a lingited extent. The firt railway in Misisuppi vas completed from Vicksburg to Clinton in 1840 , but the state had suffered severely from the panic of 1837. and in i850 it had only 75 m . of railway. This was increased to 862 m . by $\mathbf{8 6 0}$. The Civil War then interfered, and in 8880 the mileage was only 1127 m . During the next decade it was a little more than doubled, and at the clope of 1908 it was $3916-85 \mathrm{~m}$. The principal lines are the Ilinois Central. the Yazoo \& Mississippi Valley, the Southern, the Mobile \& Obio, the New Orleans \& North-eastern, the Kansas City, Memphis \& Birmingham, the Mobile, Jackson \& Kansas City, the Alabama \& Viclsiburg, and the Gulf \& Ship Liland.

Population.-The population increased from 1,13 I,597 in I880 ${ }^{1}$ to $t, 289,600$ in 1890 , of $t 4 \%$ within tbe decade, and hy 1900 ft had grown to $1,551,270(90.48 \%$ native-born), and by 19s0 to 1,797, ir4. The density of population in 8900 was 33.5 per sq. m.; 64I,200, or $41 \cdot 3 \%$, were whites; 907,630 , or 58.5% were negroes; 2203 were Indians, and 237 were Chinese; in eight counties of the Delta the ratio of negroes to whites was almost 7 to 1 . The Indians are descendants of the Choctaw tribe; they are all subject to taxation, and most of them live in the east central part of the state. The principal religious denominations are the Baptist (371,518 in 1906) and the Methodist (212,105 in 1906). The cities and towns having a population in 1900 of 4000 or more were: Vicksburg, Meridian, Natchez, Jackson, Greenville, Columbus, Biloxi, Yazoo City, McComb and Hattiesburg.

Government.-The chief special object of the present constitution, adopted on the ist of November t890, was to preserve in a legal manner the supremacy of the whites over the ignorant negro majority. In addition to tbe ordinary suffrage qualifications of age, sex, and residence, the voter must have paid all tazes due from him for the two years immediately preceding the election, and he must be able to read any section of the constitution or "be able to understand the same when read to him, or give a reasonable interpretation thereof." The former provision, strengthened by a poll-tax for school purposes asessed on adult males, affects both white and blacks; the latter, owing to the discretion vested in the election officers, affects (in practice) mainly the blacks. The chief executive officials are the governor, lieutenant-governor, secretary of state, treasurer, suditor, attorney-general, and superintendent of education. All are chosen for terms of four years, and the governor, treasurer, and auditor are ineligible for immediate re-election.
the population at each of the preceding censuses was: 8850 in 5800; 40,352 in 1850; 75,448 $\ln 1820 ; 136,621$ in 1830; 375,651 in 1840; 606,526 in 1850; 791,30S in 1860; and 827,922 in 1870

The method of election is peculier, being based in pert upon the national presidential model. Each county or legislative district casts as many electoral votes as it has members in the state house of representatives, and n majority of both the electoral and the populat vote is required. If no one has such a majority, the bouse of representatives chooses one of the two who have received the highest number of popular votesi but this is really a provision never executed, as the Democratic nominees are always elected without any serious opposition. The governor is empowered to call extraordinary sessions of the legislature, to grant pardons and reprieves, and to exercise a power of veto which eztends to items in appropriation bills; a two-thirds majority of the legistature is necemary to pass a bill over his veto. His appointing power is not very extensive, as nearly all officials, except judges, are elected by popular vote.

The legislature consists of senate and a house of representatives, chosen every four years. It meets in regular session quadrennially, in special sessions in the middle of the interval to pass the appropriation and revenue bills, and in extraordinary sestion whenever the governor sees fit to call it. Revenue measures may originate in either house, but a three-fifths vote in each is necessary to their enactment. The constitution goes into minute detail in prohibiting local, private and special legislation.

The judiciary consists of a supreme court of three judges, thirteen (1908) circuit courts, seven (1908) chancery courts, county courts and justice of the peace courts. Under the constitution of 8890 the governor, with the consent of the senate, appoints supreme court judgcs for a term of nine years, and circuit and chancery judges for four years. The local judicial authorities are the county board of supervisors of five membera and the justices of the peace.

The other county officials nre the sheriff, coroner, treasurer, seseseor, surveyor and superintendent of education. The superintendent is chosen by the state board of education except in those counties (now all or nearly all) in which the legisiature has made the office elective. The courts have interpreted this to mean that the manaer of selection need not be uniform (W yne v. State, 67 Miss. 312), a rule which would possibly apply to other local offices. The intention seemed to be to permit the appointment of officials in counties and districts where there was any likelihood of negio supremacy.

Mississippi has taken a leading part in the movement to bring about the removal of the common law disabilities of married women, the first statute for that purpoes having been paseed in 1839. Under the present constitution they are" fully emancipated from all disability on account of coverture," and are placed on an equality with their husbands in acquiring and disposing of property and in maling contracts relative thereto. A divorce may be granked only to one who has lived for at least one year in the state; among the recognized causes for divorce are deartion for two years, crueliy, insanity or physical incapacity at time of marriage, hahitual drunkennes or excessive use of opium or other druges and the conviction of either party of feloay. The homestead of a houscholder (with a family) whe accupies it may be held exempt from sale for the collection of debts ot her than those for purchase-money, taxes, on iomprovements, or for the satiafaction of a judgtent upon a forfeited recognizance or bail-bond, but a homestead 30 exempted is limited to $\$ 3000$ in value and to 160 acres of land. A considerable amount of personal property, including farmiture, a amal library. provisions, tools, agricultural implements, livestock and the proceeds of a life insurance policy, is aho exempt from weizure fot the satisfaction of debts. Since tgog the sale of intoxicating liquors has been prohibited by statute.
Penal and Charilable Inditutions,-The penitentiary at Jackson wat established under an Act of 1836, was erected in 1838-1839, wat opened in 1840 , wats burned by the Federals in 1863. and whe reburit in $1866-1867$. The board of control is composed of the povernor, attorney-general and the three mitroad commissiowers. The convict lease system was abolished by the constitution of 1890 (the provision to talse effect on the 31st of December 1894), and state larms vere purchased in Rankin. Hinds and Holmes counties. As these mere ilmafficient to give employment to all the prisoners, some were port to wort on Yamo Delta plantations on partnership contracts. Under an act of 1900, howiver, 13,889 acres of land were purchased in Sunfigwer connty; and there and at Tchula, Holmes county, and at Oallyy, Hinds county. the negro convicts-the white convicts are on the Rankin county farm-are kept on several large plantations, with saw-milis, cotton gins, \&c. Under a law of 1906 these farm penitentiaries are controljed by a boand of three trustees, dacted by the prople; they are managed by a auperintendent.
ppointed once every four years by the governor, The charitable institutions of the state are supervised by separate boards of trustes appointed by the governor. The state insane hoepital, opened at Jackson in 1856 (act of 1848), in time became overcrowted and the East Mississippi insane hospical was opened, 2 m . west of Meridian in 1885 (act of 1882). The state institution for the education of the deal and dumb (2854) and the state institusion for the blind (1848) are at Jackson. State aid is given to the hospitals at Vickesburs and Natchez.

Education. - Educational interests were almost entirely neglerted during the colonial and territorial periods. The first school established in the state was Jefferson College, now Jefferson Militury College, near Natchez, Adams county, incorporated in 102. Charters were granted to schools in Claiborne, Wilkinson and Andte counties in $1809-1885$, and to Port Cibson Academy and Mississippi College, at Clinton, in 1826. The public school system, establisied in 18.96 , never was universal, because of special legistation for vari us counties; public education was retarded during the Civil War and the Reconstruction period (when immense sums appropriaterl for schools were grossly mismanaged), but conditions gradually impre red alter 1875, especially through the concentration of schools. The sessions are still too short, teachers are poorly paid and attendince is voluntary. The long lack of normal training for white tea ers (lrom 187n to 1904 there was a normal school for negroes at It Ny Springs) lasted until 1890, when a teacher's training course vas introduced into the curriculurn of the state university. Tlare are separate schools for whites and blacks, and the equipment and service are approximatcly equal, although the whites pay aluut nine-tenths of the school taxes. The schools are subject to the supervision of a state superintendent of public education and if a board of education, composed of the superintendent, the secrey iry of state, and the attorncy-general, and within each county ta county superintendent. The schools are supported by a poll-: $\mathbf{L x}$. by general appropriations, by local levies, and by the Chicknaw school fund. An act of Congress of the 3rd of March 803 reseried from sale section sixteen of the public lands in each township for educational purposes. When the Chickasaws ceded their lands to the national government, in 1830 and in 1832 , thestatemadea chim to the sixteenth sections, and Gnally in 1856 received 174.550 at res -one thirty-sixth of the total cession of $6,283,804$ acres. revenuc derived from the sales and leases of this land constitetes an endowment fund upon which the state as trustce pays $1, \%$ interest. It is used for the support of the schools in the old Chickasaw territory in the northern part of the state.

Among the insuitutions for higher education are the univer ity of Mississippi (chartered 1844; opened 1848), at Oxford, which was opened to women in 1882 ; the Agriculeural and Mechanical Cullige (opened 1880), at Agricultural College, near Starkville, Oktibl ha county; the Industrial Institute and College Ior Cirls (opened tis 5), at Columbus; and the Alcorn Agricultural and Mechanical Collse Yor negroes (187t; reorganized in 1878), at Westside. In 1,19 Congress granted thirty-six sections of public land for the establithment of a university. This land was sold in 1833 for $\$ 277,332.52$, but the entire sum was lost in the failure of the Planters Bank in 1840. In 1880 the state assumed liability for the full amount plus interest, and this balance, $8544,061.23$, now constitutes an endowment fund, upon which the state pays 6% interest. Congress granted another township (thirty-six sections) for the universicy in 1893, and its income is supplemented by leyislative approprintinns lor current expenses and special needs. The two agricultural and mechanical colleges were lounded by the sale of public lands given by Congress under the Morrill Ace of 1862 . An askricul: ural experiment station established in 1887 under the llatch inct, is at Agricultural College; and there are branch experiment atations at McNeill, Pearl River county (igo6), near Holly Springs, and at Stoneville, near Greenville.

Pimance-The chief sources of revenue are tases on realty, personalty and corporations, a poll-tax, and licences. The more important expendilures are for public schools, state departments, educational and charitable institutions and pensions for Confederate veterans. The early financial history of the state is not very creditable. The Bank of Mississippi, at Natchez, incorporated by the Territorial legislature in 1809 , was rechartered by the state in 18t8, and was quaranteed a monopoty of the banling businest until 1840. In viotation of this piedge, and in the hope that a new bank, woald be more tractable than the Bank of Misaisippi, the Planters' Bank was established at Natchez, in 1890 , with a capital of $83,000,000$, two-thirds of which was subscribed by the state. During the wild era of speculation which followed (especially in 1832 -upon the opening of the Chickasaw Cession to settlement) a large number of banks and railroad corporations with banking privileges were chartered. The climax was reached in 1838 with the incorporation of the Union Bank. This, the most pretencions of all the state banks of the period, was capitalized at $\$ 15, \$ 00,000$. The totate gubscribed $\$ 5,000.000$, which was raised on bonds sold to Nicholas Biddle, president of the United Srates Bank of Pennsyivania. As the Union Bank was founded in the midst of a fimancial panic and tea mismanaged, its failure was a foregone conciowion. Agtamion for repudiation was begun by Governor A. G. McNutt (1801-1848), and that question
became the chiof issuo in the gubermionis) exmpign of 1841,

Tighman M. Tucier ($1800-1859$), the Democratic candidate, representing the repudiators and David O. Shattuck, Whig. reprementing the anci-repudiators. The Demacrate were successinf, and the bonde were formally repudiated in 1842 . In 1853 the High Court of Appeals and Errors of the state in the case of Mississippi y. Henion Johngos (35 Miss. Reporis, 625) decided unanimoualy that mothing could abwolve the state from its obligation. The decition was diaregarded, however, and in the same year the Planters' Bank bonds were also repudiated by popular vote. These acts of repudiation were anctioned by the constitution of 1890 The $\$ 7,000,000$ saved in this manner has doubtless been more than offet by the additional intercst charges on subsequent loane, due to the lose of public confidence. Mississippi suffered less than most of the other Southern statcs during the Reconstruction period; but expenditures mose from $\$ 463,219.71$ in 1869 to $\$ 1,729,046.34$ in 1871 . At the close of the Republican regime in 1876 its total indebiedness was $82,631,70424$, of which $\$ 814,74 \%$ belonged to the Chickasaw fund (see above) and $\mathbf{8 7 8 , 9 4 6 . 2 2}$ to the general school lund. As the principal of these funds is never to be paid, the real debt was stighty over \$1,000,000. On the 1st of October 1907 the payable debt was \$t,253,00207, the non-payable $\$ 2,336,197.58$, a total of $\mathbf{\$ 3}, \mathbf{5 8 9}, 226.65$. Since the Civil War the banking laws have become more stringent and the national banks have exercised a wholesome infuence. There were, in 1906, 24 national banles and 269 state banks, but no trust companics, private banks or savings banke.

History:-At the beginning of the $\mathbf{2}$ th century the territory included in the present state of Mississippi was inhabited by three powerful native tribes: the Natchez in the south-west, the Choctaws in the south-east and oentre, and the Chickasaws in the north. In addition, there wrere the Yazoos in the Yazoo valley, the Pascagoulas, the Biloxis, and a few weaker tribes on the borders of the Mississippi Sound The history of Mississippi may be divided into the period of exploration ($1540-$ 1699), the period of French rule (1699-1763), the period of English rule (1763-1781), the period of Spanish rule (178i1798), the territorial period (1798-1817), and the period of statchood (1817 seq.).
Hermando de Soto (q.o.) and a body of Spanish adventurers crossed the Tombighee river, in December I540, near the present city of Columbus, marched through the north part of the state, and reached the Mississippi river mear Memphis in 154x. In 1673 a French expedition organized in Canada under Jacques Marquette and Louis Joliet sailed down the Mississippi to the mouth of the Arkansas, and nine years later (i682) Rene Robert CaveLier, sieur de la Salle, reached the mouth of the river, took formal possession of the country which it drains, and named it Louisiana in honour of Louis XIV. The first European settlement in Mississippi was Kounded in 1699 by Pierre Lemoyne, better known as Iberville, at Fort Maurepas (Old Biloxi) on the north side of Biloxi Bay, in what is now Harrison county. The site proving unfavourable, the colony was transferred to Twentyseven Mile Bluff, on the Mobile River, in 1702, and Later to Mobile (1710). The oldest permanent settlements in the state are (New) Biloxi (c. 1712), situated across the bay from Old Biloxi and nearer to the Gulf, and Natchez or Fort Rosalie (1716). During the next few years Fort St Peter and a small adjoining colony were estahlished on the Yazoo River in Warren county, and some attempts at settlement were made on Bay St Louis and Pascagoula Bay. The eforts (1712-1721) to foster colonization and commerce through trading corporations established by Antoine Crozat and John Law failed, and the colony soon came again under the direct control of the king. It grew very slowly, partly because of the hostility of the Indians and partly because of the incapacity of the French as colonizers. In 1729-1730 the Natchez tribe destroyed Fort St Peter, and some of the small outposts, and almost destroyed the Fort Rosalie (Natchez) settlement

At the close of the Seven Years' War (1763) France ceded to Great Britain all her territory east of the Mississippi except New Orleans, and Spain ceded Florida to Great Britain. By a royal proclamation (Oct. 7, 1763) these new possessions were divided into East Florida and West Florida, the latter lying S. of the 3 ist parallel and W. of the Chat tahoochee and Apalachicola rivers. Crown orders of 1764 and 1767 extended the limits N. to
${ }^{1}$ The increase is due mainly to the asumption of the noiverrity obligations in 8890
a line due E. from the mouth of the Yavoo at about $32^{\circ} 28^{\prime} \mathrm{N}$. lat. Under English rule there was an extensive immigration into this region from England, Ireland, Georgiz and South Carolina. A settlement was made aa the Big Black, 17 m . from its mouth, in 1774 by Phineas Lyman (1716-1774) of Connecticut and other "military adventurers," veterans of the Havana campaign of 1762 ; this setulement was loyal during the War of Independence. Spain took military possession in 1781, and in the Treaty of Paris (1783) both of the Floridas were ceded back to her. But Great Britain recognized the claims of the United States to the territory as far south as the 3rst parallel, the line of 1763. Spain adhered to the line of 1764-1767, and retained possession of the territory in dispate. Finally, in the treaty of San Lorenzo el Real (ratified $\mathbf{1 7 9 6}$) she accepted the 1763 (31°) boundary, and withdrew her troops in 1798. Mississippi Territory was then organized, with Winthrop Sargent as governor. The territorial limits were extended on the north to the state of Tennessee in 1804 by the acquisition of the west cessions of South Carolina and Georgia, and on the south to the Gulf of Mexico hy the seizure of West Florida in 1810-1813, but were restricted on the east by the formation of the Territory of Alabama in 1817. Just after the uprising of 1729-1730 the French, with the help of the Choctaws, had destroyed the Natchez nation, and the shattered remmants were absorbed by the neighbouring tribes. The Chickasaws ceded their lands to the United States in 1816 and the Choctaws theirs in 1830-1832; and they removed to the Indian Territory. The smaller tribes have been exterminated, absorbed or driven farther west.
An Enabling Act was passed on the ist of March 1817, and the state was formally admitted into the Uhion on the roth of December. The first state constitution (1817) provided a high property qualification for governor, senator and representative, and empowered the legislature to elect the Judges and the more important state officials. In 1822 the capital was removed to Jackson from Columhia, Marion county. ${ }^{2}$ The constitution of 1832 abolished the property qualification for bolding office and provided for the popular election of judges and state officials. Mississippi thus became one of the first states in the Union to establish an elective judiciary. ${ }^{3}$ The same constitution prohibited the importation of negro slaves from other states; but this prohibition was never observed, and the United States Supreme Court held that it was ineffective without an act of the legislature. On the death of John C. Calhoun in 1850 the state, under the leadership of Jefferson Davis, began to rival South Carolina as leader of the extreme pro-slavery States' Rights faction. There was a brief reaction: Henry Stuart Foote ($1800-1880$), Unionist, was elected governor in 1851 over Davis; the States' Rights candidste, and in the same year a Constitutional Convention had declared almost unanimously that "the asserted right of secession " . . . "is utterly unsanctioned by the Federal Constitution." But the particularistic sentiment continued to grow. An ordinance of secession was passed on the gth of January 1861, and the constitution was soon amended to conform to the new constitution of the Confederate States. During the Civil War battles were fought at Corinth (1862), Port Gibson (1863), Jackson (1863) and Vicksburg (1863). In 1865 President Johnson appointed as provisional governor William Lewis Sharkey ($1797-1873$), who had been chief justice of the state in $1832-1850$, and a convention which assembled on the $14^{t h}$ of August recognized the "destruction " of slavery and declared the ordinance of secession mull and void. The first reconstruction legislature met on the 16th of October 1865, and at once proceeded to enact stringent vagrancy laws and other measures against the freedmen; these laws the North

[^37]interpreted as an effort to restore alavery. Under the Reconstruction Act of the 2nd of March $\mathbf{1 8 6 7}$ Mississippi with Arkansas formed the fourth military district, commanded successively by Generals En O. C. Ord (1867), Alvan C. Gillem (1868) and Irvin McDowell (June-July 1868), and by Gillem (1868-1869) and Adelbert Ames (1869-1870). The notorious "Black and Tan Convention" of 1868 adopted a constitution which conferred suffrage upon the negroes and by the imposition of test oaths disfranchised the leading whites. It was at first rejected at the polls, but was finally ratified in November 1869 without the disfranchising clauses. The fourteenth and fifteenth amendments to the Federal Constitution were ratified in 1870, and the state was formally readmitted into the Union on the 23 rd of February of that year.

From 1870 to 1875 the government was under the control of "carpet-baggers," negroes and the most disreputable element arnong the native whites. Taxes were increased-expenditure increased neariy threefold bet ween 1869 and 1871 -and there was some official corruption; but the state escaped the heavy burden of debt imposed upon its neighbours, partly because of the higher character of its reconstruction govermors, and partly because its credit was already impaired by the repudiation of obligations contracted before the war. The Democrats carried the legislature in 1875 , and preferred impeachment charges against Governor Adelbert Ames (b. 1835), a native of Maine, a graduate of the United States Military Academy (r86r), a soldier in the Union army, and military governor of Mississippi in 1868-1870. The lieutenant-governor, A.K. Davis, a negro, was impeached and was removed from office; T. W. Cardoza, another negro, superintendent of education under Ames, was impeached on twelve charges of malfeasance, but was pernitted to resign. Governor Ames, when the impeachment charges against him were dismissed on the 29th of March 1876, immediately resigned. The whites maintained their supremacy by very dubious methods until the adoption of the constitution of $\mathbf{r} 890$ made it no longer necessary. The state has always been Democratic in national pofitics, except in the presidential elections of 1840 (Whig) and 1872 (Republican). The electoral vote was not counted in 1864 and 1868 .

Covernors
 Territorial Period (1798-1817).

[^38]Charles Clark"
William Lewis Sharkey

Benjamin Grubb Humphreys ${ }^{\text {E }}$ Adelbert Ames
James Lusk Alcorn ${ }^{3}$
Kidgley Ceylon Powers (ad inc.) Adclbert Ames
John Marshall Stone (ad int. $18-6,-54)^{*}$ Democrat Kobert Lowry
3. M. Stone

Anselm Josepla McLaurin
Andrew Houst on Lomgino
Fumes Kimble Voritaman

Democrat
Provisional Republican Republican Rilitary Governor) Republican " *

See T. A. Omen, "A Biography of Mississippi," in the Annual Report of the American Historical Association, 1890 . i. 633-828 (Washington, 1900); "Report of the Mississippi Historical Commission " in the Publications of the Mississippi Mistorical Society, v. S2. 310 (Oxford, Miss., Igoz). J.F. H. Claiborne's Mississippi as a Prosince, Terrilory and State (Jackson, 1880), gives the best account of the period before the Civil War. R. Lowry and W. H. McCardle, History of Mississippi (New York, 1893), is useful for tocal history. Of most value for the history are the writirge of P. J. Hamilton, J. W. Garner and F. L. Riley. Hamilton's Colonial Mobile (Boston and New York, 1898), and the Colonization of the Soulh (Philadelphia, 1904) are standard authorities for the French and English periods (1609 -1781). Garner's Reconstrwction in Mississippi (New York, 1902 is judicial, scholarly and readable. Most of Riley's work is in the Publications of the Mississippi Historical Society (Oxford, 1898 seq.). which he edited; see his Spanish Policy in Mississippiafler the Treaty of San Lorenzo, i. 50-66; Localion of the Bosmdaries of Mississippi, iii. 167-184; and Trassition from Spenish to American Rute in dississippi, iit. 261-3il. There is much material in the Encyclopaedic of Mississippi Hislory (2 vols.: Madison. Wisconsin. 1907), edited by Dunbar Rowiand. There is a state Department of. Archives and History.

MISSISSIPPI ' RIVER, the central artery of the river system which drains the greater part of the United States of America lying between the Appalachian Mountains on the east and the Rocky Mountains on the west. It rises in the basin of Itasca Lake, in northern Minnesota, and flows mostly in a southerly direction to the Gulf of Mexico. In the region of its headwaters are numerous lakes which were formed by glacial action, but the river itself was old before the glacial period, as is shown by the crumbling rocks on the edges of the broad and driftless valley through which it flows along the S.E. border of Minnesota and the S.W. border of Wisconsin, in contrast with the precipitous bluffs of hard rock on the edges of a valley that is narrow and steep-sided farther down where the river was turned from its ancient course by the glacier. So long as the outlet of the Great Lakes through the St Lawrence Valley was blocked by the icy mass, they were much larger than now and discharged through the Wabash, Illinois and other rivers into the Mississippi, Below the glaciated region, that is from sout hern Illinois to the Gulf, the river had carved before the close of the giacial period a flood-plain varying in width from 5 to 80 m ., but this has been filled to a depth of 100 ft . or more with alluvium, and in the postglacial period an inner valley has been formed within the outer one. The total length of the river proper from the source near Lake Itasca to its mouth in the Gulf of Mexico is 2553 m .; hut the true source of the river is at the fountain-head of the Missouri, in the Rocky Mountains, on the S.W. border of Montania, 8000 ft . above the sea, and from this source there is a continuous stream to the Gulf which is 4221 m . long-the longest in the world. The Mississippi and its tributaries have more than $15,000 \mathrm{~m}$. of navigable waterways and drain an area of approximately 1,250000 sq. m . The systern extends through the heart of the continent and affords a direct line of communication between temperate and tropical regions. Certain physical and hydrographic features, however, make the regulation and
' Removed from office by Federal troops, 22 nd of May 8865 ; W. L. Sharkey was appointed provisional governor by President Johnson.

* Removed from office by U.S. troops t5th of June 1868.
${ }^{3}$ Resigned joth of November 1871 .
4 Resigned 29th of March 1876; succeeded by the presiden't of the senate.
"The name is from the Algonkin misci-sepr, literally" father of waters:"

1863-1865
1865
1865-1868 1868-1870 1870-1871 1871-1874 1874-1876 1876-1882 1882-1890 1890-1896 $1896-1900$ 1900-1904 1904-1908 1904-1908
control of the Mississippi below the influy of the Missonarl an exceedingly difficult problem.

The Upper Mississippi, that is tne Mistasippl from its tource to the mouth of the Mitsouri, drains 173,000 sq. m., ovet which the annual rainfall averaget $34 \cdot 7$ in., and its discharge per cecond into the Lower Mississippi varies from 25,000 cub. ft. to 550,000 cub. It The Missouri drains $\$ 28.000$ sq. m., over which the annual rainfall averages 19.6 in., and its discharge per second into the Missistippi varies from 25,000 cub. ft. to 600,000 cub. It. The Ohio drains 214,000 sq. m., over which the annual rainfall averages 43 in., and its discharge per second varies from 35,000 cub. It. to $1,200,000 \mathrm{cub}$. ft. The Arkansas drains $161,000 \mathrm{sq}$. m., over which the annual rainfall averages $2 \mathrm{~B} \cdot 3$ in., and its discharge per second varies from 4000 cub. ft . to 250,000 cub. ft. The Red drains $97,000 \mathrm{mg}$. m. over which the annual rainfall averages 38.3 in., and its disuharge per second varies from 3500 cub. ft. to $180,000 \mathrm{cub}$. It. These and a few smaller tributaries produce a river which winds its way from Cape Girardeau. Missouri, to the passes through a flood plain averaging about 40 m . in width and having a general southern slope of 8 in . to the mile. The general lateral stope towards the foothills is about 6 in . in 5000 ft., but the normal fall in the first mile is about 7 ft . Thus the river sweeps onward with great velocity, croding its banks in the bends and rebuilding them on the points, now forming islands by its deposits, and now removing them. Chief among the changes is the formation of cut-offs. Two eroding bends gradually approach each other until the water forces a passage across the narrow neck. As the channd distance between these bends may be many miles, a cascade perhaps 5 or 6 ft . in height is formed, and the torrent rushes through with a roar audible for miles. The checking of the current at the upper and lower mouths of the abandoned channel soon obstructs them by deposit, and forms in a few years one of the crescent lakes which are so marked a feature on the maps. At the mouth of the Red river, 316 m . above the passes, the water surface at the lowest stage is only $5 k$ It. above the level of the Gulf, where the mean tidal oscillation is abott if ft. The river chanmel in this section is therefore a fresh-water lake. At the flood stage the surface rises 50 ft . at the mouth of Red river, but of course retains its level at the Gulf, thus giving the head necessary to force forward the increased volume of discharge. Above the roouth of the Red river the case is essentially different. The width increases and the depth decreases. Hence the general slope in long distances is here nearly the same at all stages. The effect of these different physical conditions appears in the comparative volumes which pase through the channel. At New Orleans the maximum discharge hardly reachea $\mathbf{i}, 200,000$ cub. ft. per second, and a rising river at high etges carriea only about 100,000 cub. ft. mer second more than when falling at the same absolute level; Lut just buluw the mouth of the Ohio the maximum flood volume reaches $\$, 400,000$ cub. ft. per second, and at some stages a rising river may carry onethind more water than when falling at the same absolute level. The river is usually lowest in October. It rises rapidly until checked by the freezing of the northern tributaries. It begins to rise again in February, as a consequence of the storms from the Gull which traverse the basin of the Ohio, and attains it 5 highest point about the 1st of ApriL. It then lalls a lew feet, but the rains in the Upper Missimcippi basin cause it to rise again and high water is maintaned until some time in June by the late spring and early sumner rains in the Missouri basin. As a rule the river is above mid-stage from fanuary to August inclusive, and below that level for the remainder of the year.

Engineering Works.-Below Cape Girardeau there are at least $29,790 \mathrm{sq} . \mathrm{m}$. of rich bottom lands which require protection from floods, and this has been accomplished to a great extent by the erection of levees. The first levee was begun in 1717, when the engineer, Le Blond de La Tour (d. about 1725) erected one a mile long to protect the infant city of New Orleans fromoverflow. Progress at first was slow. In 1770 the setulements extended only 30 m . above and 20 m . below New Orleans; but in 1828 the levees, although quite insufficient in dimensions, had become continuous nearly to the mouth of the Red river. In 1850 a great impulse was given to systematic embankment hy the United States government, which turned over to the several states all unsold swa mps and overflowed lands within their limits, to provide a fund for reclaiming the districts liable $t 0$ inundation. The action resulting from this caused alarm in Louisiana. The aid of the government was invoked, and Congress immediately ordered the nocessary investigations and surveys. This wort was placed in charge of Caplain (later General) Andrew A. Humphreys (18:0-1883), and an elaborate report covering the results of ten years of investigation was published, just after the outbreak of the Civil War in 1861. In this report it was demonstrated that the great bottom lands above the Red river before the construction of their levees did
not, as had been supposed, in Louisiana, serve as reservoirs to diminish the maximum wave in great flood seasons. Furthermore, the report argued that no diversion of tributaries was possible; that no reservoirs artificially constructed could keep back the spring fresbets which caused the floods. that the making of cut-offs, which had sometimes been advocared as a measure of relief, was in the bighest degree injurious, that outlets were impracticable from the lack of suitable sites; and, finally, that levees properly constructed and judiciously placed would afford protection to the entire alluvial region.
During the Civil War ($1861-69$) the artificial embankments were neglected, but after its close large sums were expended by the states directly interested in repairing them. The work was done without concert upon defective plans, and a great flood early in 1874 inundated the country, causing terrible suffering and loss. Congress, then in session, passed an act creating a commission of five engineers to determine and report on the best system for the permanent reclamation of the entire alluvial region. Their report, rendered in 1875, endorsed the conclusions of that of 1861, and advocated a general levee system on each bank. This system comprised: (1) a main embankment raised to specified heights sufficient to restrain the floods; and (2) where reasonable security against caving required considerable areas near the river to be thrown out, exterior levees of such a height as to exclude ordinary high waters, but to allow free passage to great floods, which as a rule occur only at intervals of five or six years. An engineering organization was proposed for constructing and maintaining these levees, and a detailed topographical survey was recommended to determine their precise location. Congress promptly approved and ordered the survey; hut strong opposition on constitutional grounds was raised to the construction of the levees by the government.

In the meantime complaints began to be heard respecting the low-water navigation of the river below the mouth of the Ohio. A board of Give army engineers, appointed in 1878 to consider a plan of relief, reported that a depth of 10 ft. could probably be zecured by narrowing the wide places to about 3500 ft . with hurdle work, hrush ropes or brush dykes designed to cause a deposit of sediment, and by protecting caving banks by light and cheap mattresses. Experiments in these methods were soon begun and they proved to be effective.

The bars at the eflux of the passes at the mouth of the Mississippi were also serious impediments to commerce. The slver naturally discharges through three principal branches, the zouth-west pass, the south pass and the north-east pass, the latter through two channels, the more northern of which is called Pass à l'Outre. In the natural condition the greatest depth did not exceed 12 or 13 ft . After appropriatioas by Congress in 1837 , 8852 and 1856 , a depth of 18 ft . was finally secured by dredging and scraping. The report of 1861 discussed the subject of bar formation at length, and the stirring up of the bottom by scrapers during the flood stages of the river (six months annually) was recommended by it. After the war this recommendation was carried into effect for several years, but experience showed that not much more than 18 ft. could be steadily maintained. This depth soon became insufficient, and in 1873 the subject was discussed by a board of army engineers, the majority approving a ship canal. In 1874 Congress constituted a special board which, after visting Europe and examining similar works of improvement there, reported in favour of constructing jetties at the south pass, substantially upon the plan used by Pieter Caland (b. 1826) at the mouth of the Meuse; and in 1875 Captain James B. Eads ($\mathbf{2 8 2 0 - 1 8 8 7 \text {) and his associates }}$ were authorized by Congress to open by contract a deep channel through the south pass upon the general plan proposed by this board: As modified in 1878 and 1879 the contract called for the maintenance for twenty years of a channel through the pass and over the bar not less than 26 ft . in depth throughout, a width of not less than 200 ft . and with a maiddle depth of 30 ft . The work was begun on the and of June 1875. The required depth was obtained in $\mathbf{1 8 7 9}$, and with few interruptions has been
maintained. In 1902 Congress autborbed preparations for the construction of a deeper (35 ft) and a wider chaanel through the south-west pass; the work was begun in 1903 and virtually completed in 8909.

In the year in which Captain Eads opened the south pass of deepwater navigation Congress created a commission of seven mernhers to mature plans for correcting and deepening the channel of the river, for protecting its banks and for preventing floods, and since then large expenditures for improvement between the head of the passes and the mouth of the Ohio have been under the control of ahis commisswon. In protecting the banks, mattresees of brush or small trees, woven like basket-work, were sunk on the portion of the bank at the time under water, by throwing rubble stone upon them, an excess of stone being used. A common size of mattress was 800 ft . long, counted along the bank, by 250 [t . wide. Sometimes a width of 300 ft . was used, and lengths have reached 2000 ft . The depth of water was often from 60 to 100 ft . At first these mats were light structures, but the loses of large quantities of bank protection by the caving of the bank behind them, or by scour at their channel edges, forced the commission steadily to increase the thickness and strength of the matress, so that the cost of the linear foot of bank protection, measured along the bank, rose from $\mathbf{8 8}$ or $\mathbf{\$ 1 0}$ to $\$ 30$ in the later work. The contraction works adopted were systems of spurs or pile dykes, running our from the shore nearly to the line of the proposed channel. Each dyke consisted of from one to four paraliel rows of piles, the interval between rows being about 20 ft . and between piles in a row 8 or to It. The piles and rows were strongly braced and tied together, and in many cases brush was woven into the upper row, forming a hurdle, in order further to diminish the velocity of the water below the spur. By 1893 it was evident that the cost, which had been estimated at $\$ 33,000,000$ in 1881, would really be several times that amount, and that the works would require heavy expense for their maintenance and many years for their execution. Navigation interests demanded more speedy relief. The commission then began experimenting with hydraulic dredges, and in 1896 it adopted a project for maintaining a channel from the mouth of the Ohic to the pasmes that should be at least 9 ft . deep and 250 ft . wide throughout the year. Centrifugal pumps are used, the suction pipes being at the bow and the discharge at the stern through a line of pipes about 1000 ft . long, supported on pontoons Water jets or cutters stir up the material to be dredged before it enters the suction pipes. The later dredges have a capacity of about t000 cub. yds. of sand per hour, the velocity in the 32 - to $34^{-\mathrm{in}}$. discharge pipes being from 10 to 15 ft . per second. They cost from \$86,000 to $\$ 120,000$, and their working during a low-water season costs about $\$ 20,000$. These dredges begin work on a bar where trouble is feared before the river reaches its lowest stage, and make a cut through it. A common cut is 2000 ft. long by 250 ft. wide. and 3 or 4 ft. deep. Since 1903 a channel of the proposed depth or more has been maintained.

In 1882 occurred one of the greatest floods known on the Missir sippi, and extensive measurements of it were made. A maximum flood of $1,900,000$ cub. ft. per secoad crossed the latitude of Cairo. Much of it escaped into the bottora lands, which are below the leved of the great floods, and flowed through them to rejoin the river below. The flow in the river proper at Lake Providence, 542 m . below Cairo, was thus reduced to about $1,000,000 \mathrm{cub}$. (t. per second, while if the river had been confined by levees the flow between ther would have been double, or about $2,000,000$ cub. ft. per second. The volume of the levees in 1882 was about $33,000,000$ cub. yds. and by the 3oth of June 1908 had been increased to 219,621,594 cub. yds., of which the United States bad built about one-haff, anc has expended on thern $\mathbf{8 2 2 , 5 6 2 , 5 4 4}$. The length of the levees is about 1486 m . and they are continuous save where interrupted by tributaries or by high lands, from New Madrid, or 80 m . below Cairo, to Fort Jackson, 1039 m . below Cairo. The width of the interval between levees on the opposite banks of the river varies greatly; in many places the levees are built much nearer the normal margin of the river than is consistent with keeping the food heights as low as possible. This has arisen from two causes: firstly, to give protection to lands already cultivated, which lie usually near the bank of the river; secondly, to a avoid the lower ground, which, owing to the peculiar formation, is found as one goes back from the river. Another bad result of this nearness of the levees to the bank of the river is the loss of levees hy caving, which was nearly $5,000,000$ cub. yds in 1904-1905, and can only be prevented by bank protection, costing 8150,000 per mile, to protect a levee perhaps 16 ft . high costing about $\$ 30,000$ per mile. The levees bave top widths of 8 lt., side slopes of one-third, and banquettes when their heights exceed about 10 ft . The grades of the levees are usually 3 ft . above the highest water, and have to be raised from year to year as greater confinement of water gives greater flood beights. When this oystem is completed there will probably be hundreds of miles of levee with heights exceeding 14 ft . In 8899 , after about $\$ 28,000,000$ had been spent on levees by the United States and by the local authorities, the commission submitted an estimate for additional work on leveen. amounting to $124,000,000 \mathrm{cub}$. yds. and cooting \$22,000,000. The effect of the levees has been to lucrease flood heighte. Though the

Mississippi River Commission was Lorbidden by Congress to build levces to protect lands from overfion, a majority of its members believed them useful for the purpose of navigation improvement. They have, however, effected no sensible improvement in the navigation of the river at low stages, and at other stages no improvement was needed for the purposes of navigation. Neither did they prevent destructive flood in 1897 and again in 1903 . By the 30 h of Junc 1908, $\$ 57,510,216.81$ had been appropriated for the commission's work below the mouth of the Ohio.

From the mouth of the Ohio to the mouth of the Missouri, a distance of about 210 m ., the river is affected by back water from the Ohio which increases the deposit of sediment, and although the banksincrease in height above Cape Girardeau the channcl was in its matural state frequently a mile or more in width, divided by islands and obstructed by hars on which the low-water depth was only 3 l to $4 \mathrm{f}^{\circ}$. The improvement was begun in 1872 , and in 1881 a project was adopted for narrowing the channel to approkimately 2500 ft In 1896 dredging was begun and in $1 g 05$ the further execution of the original project of 188 r was discontinued, because of a new plan for a channel 44 it. deep from the Great Lakes to the Gulf.

The Upper Mississippi carties only a small amount of sediment and was navigable in its natural state to St Paul, although at lnw water the larger river boats could ascend no farther than La Crosse, Wisconsin. In 1879 Congress adopted a project for obtaining a channel with a minimum depth at Inw water of $4 \frac{1}{3}$ f., chicfly by means of contraction works. In igo7 Congress authorized further contrac tion. dredging, the construction of a lateral canal at Rock Island Rapids, and the enlargement of that at Des Moines Rapids with a view to obtaining a channel nowhere less than 6 ft . in depth at low water. By means of two locks and dams, which were begun in 189 and were about three-fourths complete in 1908 , a navigable channe of the same depth will be extended from St Paul to Minncapolis The United States government has constructed dams at the outlets of lakes Winnibigashish, Cass, Leech, Pine, Sandy and Pokegama and thereby created reservoirs having a total storage capacity about $95,000,000,000 \mathrm{cub}$. ft . This reservoir system, which mav be much enlarged, is slso beneficial in that it mitigates flookls and regulates the flow for manufacturing purposes and for logging-

Although the United States government has expended more than $870,000,000$ on the Mississippi river between the mauth of the Missouri and the head of the passes, the improvement of navigation thereon has not been great enough to make it possible for river freighters to force down railway rates by competition. But it is no longer merely a question of competilion. The productivity of this region has become so enormous that railways alone cannot meet the requirements of its commerce, and a persistent demand hat arisen for a channel 14 ft . deep from the Great Lakes to the Gulf. The first great impetus to this dernand was given in 1900 , when a canal 24 ft in depth, and known as the Chicago Drainage Cannal, was opened from the Chicago river to Lockport, Illinois, on the Des Plaines river, 34 m . from Lake Michigan. Two years later Congre:s appropriated \$200,000 for the Mississippi River Commission to makt a survey and prepare plans, wilh estimates of cost, for a navigabis waterway 14 ft in depth from Lockport to St Louis. The commis. sion reported favourably in 1905 , and in 1907 Congress provided for mother commission, which in June 1909 reported against the 14 ft . channel, estimating that it would cost $\$ 128,000,000$ for constructiont and $\$ 6,000,000$ annually for maintenance, and considered a $9 \cdot f t$. channel (8 ft . between Ohio and St Louis) sufficient for commercial purposes.

The Ohio is commercially the most important tributary, and in flood time most of the commerce on the Lower Mississippi consists of coal and other heavy freight received from the mouth of this river. Its navigation at low water has also beers improved by dredging. rock excavation and contraction works. In its upper reaches i channel 9 It. in depth had been obtained before 1909 by the construction of a number of locks with collapsible dams which are thrown down by a flood. It is the plan of the government to extend this system to the mouth of the river, and it has been estimated that it channel 12 to 14 ft . in depth may ulimately be obtained by a system of mountain reservoirs. Furthermore, the government has given is a corporation a franchise for the connexion of the Ohio at Pittsbur with Lake Erie ncar Ashtabula, Ohio, by means of a canal 12 ft . in depth. The Misspuri is navigable from its mouth to Fort Beuton. a distance of $2285 \mathrm{~m}_{\mathrm{n}}$ and it had become a very important highway of commerce when the first railway, the Hannibal \& St Joseph. reached it in 1859. Its commerce then rapidly disappeared, bat regular navigation between Kansas City and St Louis was re-estab: lished in 1907 and a demand has arisen for a $12 \cdot \mathbf{t t}$. channelfrom the mouth of the river to Sioux Ciky, lowa. The Red, Arkansas, Whitcy Tennessee, and Cumberland rivers, which are parts of the Mississipy by stem, buve cach a mavigable milcage exceeding 600 m.
History.-Although the Mississippi river was discovered in it lower course by Hernando de Soto in 1541, and possibly by Alonso Alvarez de Pineda in 1539, Europeans were not yat prepared to use the discovery, and two Frenchmen, Louis Joliet and Father jacques Marquette, first made it generally known to the civilized world by a voyage down the river fronis
the mouth of the Wisconsin to the mouth of the Arkansas in 1673.' In 1680 Louis Hennepin, sent by La Sette, who planeed to acquire for France the entire basio drained by the great tiver and its tributaries, explored the river from the mouth of the llinois to the Falls of St Anthony, where the city of Minneapolia now stands, and two years later La Salle himself descended from the mouth of the Illinois to the Gulf, pamed the basin Louisiana," and took formal possession of it in the name of his king, Louis XIV. By the war which terminated (1763) in the Treaty of Paris, Great Britain wrested from France all that part of the basin lying east of the middle of the river (except the island of New Orieans at its mouth), toget her with equal rights of navigation; and the remainder of the basin France had secretly ceded to Spain in $\mathbf{1 7 6 2}$. During the War of Independence the right to navigate the siver hecame a troublesome question. In 1779 the Continental Congress sent John Jay to Spain to negotiate a treaty of commeroc, and to insist on the free navigation of the Mississippi, but the Spanish government refused to entertain such a proposition, and new instructions that he might forego that right south of $31^{\circ} \mathrm{N}$. hatude reached him too late. White the commissioners from Great Britain and the United States were negotiating a treaty of peace at Paris, Spain, apparently supported by France, sought to prevent the extension of the western boundary of the United States to the Mississippi, but was unsuccossful, and the United Sutes acquired title in 1783 to all that portion of the basis east of the middle of the river and north of $31^{\circ} \mathrm{N}$. lat. In 1785 Congres appointed John Jay to negotiate a commercial treaty with Doa Diego de Gardoqui, the Spanish minister to the United Statces but the negotiations resuled in nothing. For the next ten yeare the Spaxiards imposed heavy hurdess on the American commerce down the Mississippi, but in 1794 James Mionroc, the United States minister to France, procured the aid of the French government in further negocintions, for which Thomas Pinckney had been appointed envoy extraondinary, and in 1795 Piackncy negoliated a treaty which granted to the United States the froe navigation of the river from its source to the Gulf and the privilege of depositing American merchandise at the port of New Orieans or at some other convenient place on the banks. Spain retroceded Louisiana to France in 1800 , but the Louisians Purchase in 1803 left very litte of the Mississippi basin outside of the United States.

As the head waters of the river were not definitely known, the United States government sent Zebulon M. Pike in 1805 to explore the region, and on reaching Leech Lake, in February 1806, be pronouncod that the main source. In 2820 Lewis Cass, governor of Michigan territory, which then had the Mississippl for its western boundary, conducted an expedition into the same region as far as Cass Lake, where the Indians told him that the true source was about 50 m , to the W.N.W., but as the water was too low to proceed by canoe he returned, and it remained for Henry Schoolcraft, twelve years later, to discover Lake Itasca, which occupies a low depression near the centre of the basin in which the river takes its rise. Jean N. Nicollet, while in the service of the United States government, visited Lake Itasca in 1836, and traced its principal affluent, since known at Nicollet's Infant Mississippi river, a few miles S.S.W. from the lake's western arm. Jacob Vradenberg Brower (1844-1905), who was commissioned by the Minnesota Historical Sociely in 1889 to make a more detailed survey, traced the source from Nicallet's Infant Mississippi to the greater ultimate reservoir, which contains several lakelets, and lies beyond Lake Itasca, 2553 m . by water from the Gulf of Mexico, and 1558 ft . ahove the sea. Soon after this survey the state of Minnesota created Itasca State Park, which contains both Itasca Lake and its affluents from the south.
${ }^{1} \mathrm{ft}$ seems probable that Joliet and Marquette were preceded by two other Frenchmen, Pierre Esprit Radiscon and Menard Chouart des Groseilliers., who apparently reached the Upper Mississippi in or about 1665; but their claim to priority has been the subject of conaiderable controversy, and, at all events, there was no generat knowledge of the river until alter the woyage of loliet and Marquette.

From the close of the 17 th century until the building of the first railways in the Mississippi basin, in the middle of the 19th century, the waterways of the Mississippi system afforded practically the only means of communication in this region. During the early years of the French occupancy trade with the Indians was the only important industry, and this was carried on almost wholly with birch canoes and a few pirogues; but by 1720 immigrants were coming in considerable numbers both hy way of the Great Lakes and the mouth of the Mississippi, and to meet the demands of a rapidly expanding commerce harges and keelboats were introduced. The development of the Mississippi Valley must have.been slow until the railways came had it not been for the timely application of the power of steam to overcome the strong current of the Lower Mississippi. Even without the steamboat, however, the Mississippi was indispensable to the early settlers, and the delay of the United States in securing for them its free navigation resulted in threats of separation from the Union. The most formidable movement of this kind was tbat of $1787-1788$, in which James Wilkinson, who had been an officer in the War of Independence, plotted for a union with Spain. Steamboat navigation on this river system was begun in 18it, when the "New Qrieans," which had been huilt by Nicholas Roosevelt ($1767-1854$), made the trip from Pittshurg to New Orleans, but it was six ycars later before the steamboat was sufficiently improved to ascend to St Louis. In 1817 the commerce from New Orlcans to the Falls of the Ohio, at Louisvilic, was carried in barges and keel-boats having a capacity of 60 to 80 tons each. and 3 to 4 months were required to make a trip. In 1820 steamboats were making the same trip in 15 to 20 days, by 1838 in 6 days or less; and in 1834 there were 230 steamboats, having an aggregate tonnage of 39,000 tons, engaged in trade on the Mississippi. Large numbers of flat boats, especially from the Ohio and its trihutaries, continued to carry produce down stream; an extensive canal system in the state of Ohio, completed in 1842, connected the Mississippi with the Great Lakes; these were connected with the Hudson river and the Allantic Ocean by the Erie Canal, which had been open since 1825 . Before the steamboat was successfully employed on the Mississippi the population of the valley did not reach $2,000,000$, but the population increased from approximately $2.500,000$ in 1820 to more than $6,000,000$ in 1840 , and to $14,000,000$ or more in 1860 . The well-equipped passenger boats of the period immediately preceding the Civil War were also a notable feature on the Ohio and the Lower Mississippi.
In the Civil War the Lower Mississippi, the Ohio, and its two largest tributaries-the Cumberiand and the Tennessee-being still the most important lines of communication west of the Appalachian Mountains, determined largely the movements of armies. The adherence of Kentucky to the Union excluded the Confederacy from the Ohio, hut especially disastrous was the fall of Vickshurg and Port Hudson, wherehy the Confederacy was cut in two and the entire Mississippi became a Federal highway. Under Federal control it was closed to commerce, and when the war was over the prosperity of the South was temporarily gone and hundreds of steamboats had been destroyed. Moreover, much of the commeree of the West had been turned from New Orieans, via the Mississippi, to the Allantic seaboard, via the Great Lakes and by new lines of raitways, the number of which rapidly increased. There was, of course, some revival of the Mississippi commerce immediately after the war, but tbis was checked by the bar at the mouth of the south-west pass. Relief was obtained through the Eads jetties at the mouth of the south pass in 1879 , but the facilities for the transfer of freight were far inferior to those employed by the railways, and the steamboat companies did not prosper. But at the beginning of the ath century the prospects of communication with the western coast of North America and South America, and with the Orient by way of an isthmian canal, the inadequate means of transportation afforded by the railways, the efficiency of competing waterways in regulating freight rates, and the consideration of the magnificent system of inland waterways which the Mississippi and its tributaries would afford when
fully developed, have created the strong demand for river improvement.

Bibliography.-A. P. C. Griffin, The Disconery of the Mississippi: a Bibliographical Account (New York, 1883): J. G. Shea, The Discovery of the Mississippi, in Report and Collections of the State Historical Society of Wisconsin, vol. vii. (Madison, 1876) ; J.V. Brower, The Mississippi River and its Sources: a Narrative and Critical History of the Discovery of the River and its Headivaters (Minneapolis, 1893): F. A. Ogg. The Opcring of the Mississippi: a Struggle for Supremacy in the A merican Interior (New York, 1904); E. W. Gould. Fifty Years on the Mississippi; or, Could's History of River Navigation
(St Louis, 1889): J. W. Monette, The Procress of Nuvigation and (:ommerce onthe Waters of the Mississippi River and Ihe Great Lakes, in the Publications of the Mississippi Historical Society, vol. vii. (Oxford, Miss., t903); R. B. Haughton, The Influence of the Mississippi River upon the Early Setllement of Its Valley, in the Publications of the Mississippi Historical Society, vol. iv.; Mark Twain, Life on the Missis. ${ }^{58 p p s}$ (13oston, 1883); A. A. Humphreys and H. L. Abbot, Report on the Physics and Hydraulics of the Mississippi River (Philadelphia, 1861): Annual Reports of the Mississippi River Commission (Washington, 1880 sq9.): E. L. Corthell, A History of the Jellies at the Motith of the Mississippi River (New York, 1881); J. A. Ockerson, The Mississippi Ricer: Some of its Physical Characteristics and Measures amployed for the Regulation and Control of the Sircam (Paris, 1900); f. L. Mathews, Remaking the Mississippi (Boston, 1909); R. M. Brown, "The Mississippi River from Cape Girardeau to the Head of the Passes," in Bulletims of the Americar Cieographical Society, yols. xxxiv, and xxxv. (New York, s90z and 1903); J. L. Greenleaf, "The Hydrolozy of the Mississippi." in the American Journal of Science, vol, ii. (New Haven, 1896); L. M. Haupt, " The Mississippi River Problem," in Proceedings of the A mericgn Philosophical Society, vol. xliii. (Philadelphia, 1904).
MISSOLONGHI, or Mesolongir (Meqohórywon), the chief town of the monarchy of Acarnania and Aetolia, Greece. It is on the N. side of the Gulf of Patras, about 7 m . from the coast; rop., about 8300 . The place is notable for the siege which Mavrocordato and Botzaris sustained in 1822 and 1823 against a Turkish army 11,000 strong, and for the more famous defence of 1825-26. Byron died here in 1824, and is commemorated by a cenotaph and a statue.
MISSOULA, a city and the county-seat of Missoula county, Montana, U.S.A., on the Clark Fork of the Columbia (here called the Missoula river), about 125 m. W.N.W. of Helena. Pop. (1,000), 4366 (rozo foreign-born) $)_{i}($ roro $)$, 12,869. It is served by the Chicago, Milwaukec \& Puget Sound railway, and by the Northern Pacific railway, which has shops here and of which Missoula is a division headquatters. There is an electric railway from Missoula to Hamilton, about 48 m , south. The Northern I'acific railway maintains a large hospital here, and St Patrick's hospital is maintained by sisters of charity. Missoula is about 3200 ft . above sea-level, with Mount Jumbo immediately north, and University Mountain immediately south of the Clark Fork ${ }^{*}$ and the Bitter Root range to the west. The city is situated on the bed of a prehistoric lake. Missoula is the seat of the Sacred Heart academy (for girls), of a Christian Brothers' school (for boys), of the Garden City commercial college, and of the state university (founded in 1893, and opened in r 805), which occupics a campus of 40 acres. On the Bitter Root river, 4 m . distant, is the United States army post, Fort Missoula. Missoula has considerable trade with the surrounding country in farming, fruitgrowing, lumbering and mining. The Clark Fork furnishes water power, and at Bonner, 6 m . east, is the Clark dam (28 (t.), which furnishes electric power. Missoula was founded in 1864, and charlered as a city in 1887.
MISSOURI, a north-central state of the United States of America, and one of the greatest and richest, and economically one of the most nearly independent, in the Union, lying almost midway between the two oceans, the Gull of Mexico and Canada. It is bounded N. by lowa; E. by lllinois, Kentucky and Tennessee; S. by Arkansas; and W. by Oklahoma, Kansas and Nebraska. Its N. and S. limits are mainly coincident with the parallels of $40^{\circ} 35^{\prime}$ and $36^{\circ} 30^{\prime} \mathrm{N}$. lat.-the southernmost boundary, in the S.E. corner, is the meridian of $36^{\circ} \mathrm{N}$. lat.and much of the western border is the meridian of $04^{\circ} 43^{\prime} \mathrm{W}$. long. respectively; but natural boundaries are affarted on the extreme N.E by the Des Moines river, on the E. by Lie Mississippi, on thie S.E. by the St Fraseis and.on the N.W. by the

Missouri. Altogetber, about 850 m ., or considerably more than balf of the entire boundary, is water-front: about 560 m . along the Missisaippi, about 208 m . along the Missouri, and about 100 m . along the St Francis and Des Moines. The length of the state from north to south, disregarding the St Francis projection southward, is $282 \mathrm{~mm} .{ }^{3}$ the width from west to east varies from 20820308 m ., and the total area is $69,420 \mathrm{sq} . \mathrm{m}$., of which $693 \mathrm{sq} . \mathrm{m}$. are water surface.

Physical Peatures.-Missouri bas three distinct physiographic divisions: a north-western upland plain, or prairie region; a lowland, in the extreme south-east; and, between these, the Missouri portion of the Ozark uplift. The boundary between the prairie and Ozark regions follows the Missouri river from its mouth to Glasgow, running thence south-westward, with irregular limits, but with a direct trend, to Jasper county at the south-east corner of Kansas; and the boundary between the Ozark and embayment regions runs due soulh-west from Cape Girardeau.

1. The prairie region embraces, accordingly, somewhat more than "northern" Miseouri-is. the portion of the state north of the Missouri river-and somewhat more than a third of the state. It is a beautiful, rolling country, with a great ahundance of streams: more hilly and broken in its western than ia its eastern half. The elevation in the extreme north-west is about 1200 ft and in the extreme north-east about 500 It., while the rim of the region to the south-enst, along the border of the Ozark region, has an elevation of about 900 ft . The larger streams have valleys 250 to 300 ft . deep and sometimes 8 to 10 m . broad, the country bordering them being the most broken of the region. The smatler streams have so eroded the whole face of the country that little of the original surface plain is to be seen. The Mississippi river is skirted throughout the length of the state by contours of 400 to 600 ft . elevation.
2. The Ozark region is substantially a low dome, with local faulting and minor undulations, dominated by a ridge-or, more exactly, a relatively even belt of highland-that runs from near the Missisnippi about Ste Genevieve county to Barry county on the Arkansas border; the contour levels falling with decided regularity in all directions below this crest. High rocky bluffs that rise precipitously on the Mississippi, sometimes to a height of 150 ft . or mo above the water, from the mouth of the Meramec to Ste Genevieve, mark where that river cuts the Ozark ridge, which, acrows the river, is continued by the Shawnee Hills in Illinois. The elevations of the crest in Missouri (the highest portion of the uplift is in Arkansas) vary from 1100 to 1600 ft. This second physiographic resion comprehends somewhat less than two-shirds of the area of the state. The Burlington escarpment, which in places is as much as 250 to 300 ft in height, runs along the western edge of the Cembro-Ordovician formations and divides the region into an eastern and a western area, known respectively to physiographers as the Salem Upland and the Springfield Upland. ${ }^{2}$ Superficially, each is a simple rolling plateau, much broten by erosion (though considerable undissected areas drained by underground channels remain), especially in the east, and dotted with hills. come of these are residual outliers of the croded Mississippian limestones to the west, and others are the summits of an archacan topography above which sedimentary formations that now constitute the valley-floor about chem were deposited and then eroded. There is no arrangement in chains, but only scattered rounded peaks and short ridges, with winding valleys about them. The highest points in the state are Tom Sauk Mountain (more than 1800 ft .), in Iron county and Cedar Gap Plateau (1683 (t.), in Wright county. Fcw localities have an elevation exceeding 1400 It. Rather broad, smooth valleys, well degraded hills wiih rounded summits, anddespite the escarpments- generally smooth contours and sky-lines, characterize the whole of this Ozark region.
3. The thind region, the lowlands of the south-east, has an area of some 3000 sq. m. It is an undulating country, for the most part well drained, but swampy in its lowest portions. The Mississippı is skirted with lagoons, lakes and morasses from Ste Genevieve to the Arkansas border, and in places is confined by levees.
The dranage of the state is wholly into the Mississippi. directly or indirectly, and almost wholly into either that river or the Miscouri within the borders of the state. The latter strearn, crossing the state and cutting the eastern and western borders at or near Sc Louis and Kanmas City respectively, has a length between these of 430 mm . The areas drained into the Mississippi outside the scate through the St Francis, White and other minor streams are relatively small. The larger streams of the Ozark dome are of decided interest to the phytiographer. Those of the White system have opentrough vallegs bordered by hills in their upper courses and canyons in their lower courses; others, notably the Gasconade, exhibit re-

[^39]markable differences in the dramage areas of their two sides with interesting illustratione of shifting water-partings; and the White, Gasconade, Ozage and other rivers are remarkable for upland meandern, lying, not on flood-plains, but around the appurs of a bighland country. ${ }^{\text {: }}$
Caves, chiefly of limestone formation, occur in great numbers in and near the Ozark Mountain region in the wouth-western part of Missouri. More than a hundred have been discovered in Stone county alone, and there are many in Christian, Greene and McDonald counties. The most remarkable is Marble Cave, a ahort distance south-east of the centre of Stone county. The entrance is through a large sink-hole at the top of Roark Mountain, from which there is a passage-way to an open chamber. This extraordinary hall-fike room is about 350 ft . long and about 125 ft . wide, has bluish-grey limestone walis, and an almost periectly vaulted roof, rising from 100 to 195 ft Its acoustic properties are said to be almost perfect, and it has been named "the Auditorium." At one end is a remarkable stalagmitic formation of white and gold onyx, about 65 It, in height and about 200 ft in girth, called the White Throne." Jacob's Cavern (q.e.), near Pincville, McDonald county, disclosed on exploration skeletons of men and animals, rude implements, \&eCrystal Cave, ncar Joplin, Jasper county, has its entire surface lined with calcite crystals and scalenofiedron formations, from 1 ft , to 2 ft . in length. Knox Cave, in Greene county. and several caverns near Ozark, in Christian county, are also of interest. Other caves include Fried's Cave, about 6 m . north-east of Rolla, Phelps county, Hannibal Cave (in Ralls county, about 1 m . Bouth of Hannibal), which has a deep pool containing many eycless fish; and various caverns in Miller, Ozark, Greene and Parry counties.
Geology.-The geological bistory of the state covers the period Irom Algonkian to late Carbonilerous time, after which there is a gap in the record until Tertiary time, except that there was apparently a temporary depression of the north-western and southwestern comers in the Cretaceous age. Northern Missouri is covered with a mantle of glacial deposits, generally thick, although in the stream valleys of the north-east the bed-rocks are widely exposed. The southern limit of these glacial deposits is practicaly the bluffs bordering the Missouri river, except Ior a narrow strip along the Mississippi below St Louis. These Pleistocene deposits include bouldery drift, loess, terrace deposits and alluvium. The till is generally lcess than 5 ft and rarely more than 40 ft . deep, but in some localitics it reaches a thickness of 200 ft., or even more Modified drift and erratics were also widely deposited. The loess, however-reddish-brown, buff or grey in colour, according to the varying proportions of iron oxide-is almost everywhere epresd above the drift. It is exposed in very decp cuts along the bluffs of the Missouri. Southern Missouri is covered, generally speaking with residuary rocks. The embayment region is of Teriary origin, containing deposits of both neocene and eocene periods. Regarding now the outcrops of bed-rock, there are exposures of Algonkian (doubtful, and at most a mere patch on Pilot Knob), Archean, Cambrian, Ordovician, Silurian, Devonian, sub-Carboniferous and Carboniferous. The St Frangois Mountains and the neighbouring portion of the Ozark region are capped with Archean rocks. Ail the rest of the Ozark region except the extreme south-western corncr of the state is Cambro-Ordovician. Along the margin of this great deposit, on the Mississippi river below St Louis and along the northern shore of the Missouri near its mouth, is an outcrop of Silurian. Parallel to this in the latter locality, and lying also along the Mississippi near by to the north, as well as in the intervening country between the two rivers, are strips of Devonian. Both this and the Silurian are mere fringes on the great arca of CambroOrdovician. Next. covering the north-eastern and south-western corners of the state, and connecting them with a nerrow beht, are the lower Carbonifcrous measures (which also appear in a very narrow band along the Mississippi for some distance below St Louis). The western edge of these follows an irregular line from Schuyler county, on the northern border, to Barton county, on the western bordcr, of the state, but with a great castward projection north of the Missouri river, to Montgomery county. This line define the eastern limit of the Coal Measures proper, which cover a belt 20 to 80 m . in width. Finally, to the west of these, and covering the north-western comer of the state, are the upper coal measures Thus the state is to be conceived, in geological history, as gradually built up around an Archean island in successive scas, the whole of the state becoming dry land after the post-Carboniferous uptift. Until the post-Mesozoic uplift of the Rocky Mountain region the north-western portion of the state drained west ward.
Fawna.-Excepting the embayment region, Missouri liet wholly within the Carolinian arez of the Upper Austral life-zone: the
? There has been some controversy as to whet her this condition is due to the elevation and corrosion of original flood-plain meander alter their development in a past bace-level condition-which theory is probably correct-or to the matural, simultancous latera and vertical cut of an originally slightly sinuous stream, under such special conditions of stream declivity and borizontal bedstrata (conditions supposed by some to be peculiarty fulfilled it this region) as would be favourable to the requisite balance of bank cutting and chanmel incision.

mabayment lies in the Aumbortparian arce of the same rone. Amons widd animath, deer and bear are not unocommon. Oposusums, caccoona, woodchucks, foxes, grey squirche and foxequirrels are common. The game birde include quail ("Bob White") and partridgme Priifie chickens (pinnated gromee), pheasanta and wild turtisys, in very cominoo as hate as 1880, are no longer to be found tave in remote and thinly -ettled districts. A state fish commission has laboured to increse the common vrieties of river fich. So tar as these are an article of general commerce, they come, like frozs, terrapin and turtues, mainly from the counties of the embeyment region. Muneel samheries, an indusery coafinod to the Miniselppi river counties from Lincoln to Lewis, are economically itoportant. as the chello are used in the manufacture of pearl buttona. There are state fish. batcherices at St Louiss and St Joseph.
Flora.-The most valuable forests are in the southern half of the ctateg which, except where cheared for farma, in almout continuously mooded. An almost entire absence of underbrush in cheracteristic of Missouri forests. The finest woods are on the castern uphand and on the Misstissippi lowlande. The entire woodland arree of the ctate wae estimated at $41,000 \mathrm{mq}$. me. by the national cempus of 1900 . Aoh, oake, black and sweet gumes, chestrutur, hickoories, bard maple. beech, walnut and abort-leal pine are noteworthy among the trees of the Carolinian area: the tupelo and beld cypress of the embeyment region, and long-teaf and lobbolly pines, peccens and live oaks of the uplands, among those characteristie of the Austro-riparian. But the habitats overlap, and persimmons and mangoolian of different speciee are common and notable in both areas. The heavy timber in the south-astern counties (cypreass asc.), and even scattered stands of such valuable woods as walnut, white oak and red-gum, have already been considerably exploited.
Cimate.-Misoouri has a continental climate, with wide range of moisture and temperature. The Ozark uplift tempern very agreeably the summers in the south. but does not affect the climate of the etate as a whole. The normal mean annual temperature for the entire state is about $54^{\circ} \mathrm{F}$.: the normal monthly means through the year are approximately $29 \cdot 6,30 \cdot 3,42,55 \cdot 4,64 \cdot 6,73 \cdot 2,77 \cdot 1$. 75.7. 68.2, $57,42 \cdot 8$ and $33 \cdot 1^{\circ} \mathbf{F}$. The south-eatern corner is croped by an annual isotherm of 60°, the north-westera by ope of 50°; and although in the former region eometimes not a day in the year may abow an average temperature below freezing-point, at Jefferson City there are cocasionally two months of freezing wather. end at Rockport three. Neverthelese, the yearty ameans of the five districts into which the state is divided by the national weather service exhibit very slight differences: approximately $52 \cdot 1,52 \cdot \%$ $54 \cdot 4,56 \cdot 1$ and $55 \cdot 7^{\circ} \mathrm{F}$. respectively for the north-west, north east, central. south east and south-west. On the other hand, the range in any month of local absolute temperatures over the state is habity. ally great (normally about 50° in the hottest and 100° or more in the coldest months). and likewise the annual range for individual bocalities $\left(90^{\circ}{ }^{\circ} \text { to } 140^{\circ}\right)^{\circ}$. Temperatures as high as 100° to 105° and as low as -30° or -30° are recorded locally almont every year. and the maximum range of extremes shown by the records is from 116° at Marble Hili. Bollinger county, in July 1901 , to -40° at Warsaw, Benton county, in February 1905 . The average call of snow. which is mostly within the months from November to March inclusive, ranges from about 8 in . in the south-east counties to 30 in . in the north-west counties. The Mismouri river is often closed by ice, and the Mississippi at St Louis, partly because it ie obstructed by bridges, sometimpes freezee over so that for weela together borves and wagons can croes on the ice.
The average yearly rainfall for the state as a whole is about 39 in. ranging from 53.7 in . in 1898 to 25.3 in. in 1901 . The prevaik ing wids are coutherly, although west winds are common in winter. Winds from the north and west are generally dry, cool. clear and invigorating: winds from the wouth and east warm, moist and depressing. Rainfall comes from the Gulf of Mexico. The south-east winds blow from the arid lands and carry rising temperatures acrose the state; and the winter anti-cyclones from the north-west carry low temperatures even to the wouthern border. Misouri lies very rrequently in the dangerous quadrant of the great cyclonic storms passing over the Missiesippi valky-indeed. northern Missouri lies in the area of maximum frequency of torradocs.
Agricullure.-Few states have so preat a variety of soile. This variety is due to the presence of different forms of glacial drift and to the variety of zurface rocks. The northern hal of the state is weii watered and extremely fertile. The south eastera embay. ment is rich to an exceptional degree Speaking generally. the Ozark region hincharacterised by reddlah clays, mixed with gravel and atones, and cultivable in inverse proportion to the amount of these elements; northern Miseouri by a generally black clay loam over a clay subsoil, with practically no admixture of stones: the zouthern prairies, above referred to, zhare the characteristics of those north of the Mispouri. The Miseinippi. embaymeat is in perts predominently mandy, in others clayey; it is mainly under timber. The atate as a whole is devoted predominantly to agriculture. Within its borders or close about them are the centre of total and of improved farm acreage, of total farm values, of groes tarm income, of the growth of Indian corn, of wheat, and of oate. In 1900 agricuiture absorbed the labour of 41.3% of the total working population of the state. Of the area of the state 77.3% was
inctucod in that year hu ferm land (33,997.873 acres); and of this. 67.4% was improved. The average itixe of a farm was 119.3 acres: 39.9% of all farm tamilies owned a home clear of ali incumbrance: and the percentuges of larms operated by owners, cash tenantio and share cenants were respectively 69.5 . 11.0 and 19.5 . Negroes wortod 1.7% of the cotel screate. The total value of lartaproperty wat $\$ 1,033,121,897$. The aggregate values of farm product in 1899 was $\$ 219,296,979$, and this total consisted of \$117,012,895 in crope (arre in crope, 14,827,620 2crese). 897,841.944 in animel products, and $\$ 4,442,131$ of forest by-products of fartu operations. Indian corm is the most prominent single crop: in 2899 it was valued at $\$ 61,246,305$. Of other cereala none except wheat is produced in any quantity as compared with other states. Tobacco is grown over hall the area of the state, but especially in the central and porth-central counties, and cotton along the Arian nep bordor counties, but expecially in the enbeyment lowlands Orchand fruitor small fruits and grapea are produced in large quantities and a fruit experiment station, the only institution of its kind in the country in 1900, is maintrined by the state at Mountain Grove, in Wright couaty. To a slight extent it is posesible to grow fruit of diatinctively zouthern habitat, but even pears (a promionent and valuable crop) are uncertain in returns. Apples are grown to best advaatage ia the north-west quarter: peaches on the Arkansse border: pears along the Mivissippi; melons in the sandy regions of the embayment; emall fruits in the south-west. Grapes are mainly grown in the Ozark region, and wine is produced in Gasconade and other central and north-central counties in amounts sufficient to place Missouri, Californis aside, in the front rank of wine statet in the Union. Indian com and abundant gramess give to Miseouri. as to the other central praine states, a sound batis for her live atock interestr. In 1900 the value of her live stock was $\$ 160,540.004$ Two of the four remount parchasing stations of the United States Army are at St Louis and Kansas City. As a nule market Missourí has no rival. Sheep are berded in the southern Ozarke.
Minemads.-Coal, lead, zinc, clays, building stones and iron are the moat troportant minerala Cobalt and nickel are asociated with lead in the St Francois field; hut tbough the American ouput is almost exclusively derived from Mispouri the production is small in comparison with the amount derived from abroad. Practically the whole comen from' Mine La Morte, in Madison county. Missouri in also the largett producer in the Union of tripoli and of barytea. Copper occurs in various localities, but is of economic importance only in the Ozark uplift; it was first mined in smal quantities in 1837. The value of the copper mined in 1906 (based on smelter returns) was $\$ 34,347$. Mineral watery-muriatic. alkadiine chalybeate and sulphytic-occur widely. Various mineral paint basea (apart (rom lead, zinc, baryta and leaolin) are produced in amall quantities. Iron, once an extremely irmportant product, has ceased since about 1880 to be rignificant in the general production of the country. But it is of great importance to the state. nevertbelese and its production has possibilities much beyond present reaiization. The ore occurs in two forms, haematites and limonites: the specular bermatites often being grouped. for practical purposes. into two clasese those occurring in porphyry and those occurring in mandatone. The haematites are found not oniy in the archean porphyrics but in Cambrian limestone and sandstone, and ia the sub-Carboniferous formations; white the limonites are confined almost extelusively to the Cambrian. The bedded haematites and limonites have been lititte exploited. Mining was begua in Iron and Cravford counties in the second decade of the 19th century; at Iron Mountrain in 1846, and at Pilot Knob in the next year. Since 1880 the output of the state has been falling. and the total production up to 1902 did not exceed $9,000,000$ tons of ore: in 1906 the output was 80,910 tons. Iron pyrites, which occuri widely and abundantiy, has become of value as material for the preparation of sulphurc acid.
The limits of the coal belt have already been defined. The area of the Coal Meapures is about $23,000 \mathrm{sq}$. m , and that of those classed by the National Geoiogical Survey as probabiy productive is about $14.000 \mathrm{sq} . \mathrm{m}$. or nearly the entire area of the lower measurea The coal in almost wholly bituminous, with very littie canneitite. The seams are generally from one to five feet in thickness. Macon. Lafayette and hdair are the leading counties in output: Lexington and Bevier are the leading mining centres The total output from 1840 to 1902 was about $78,500,000$ short tons; the annual output first passed $1.000,000$ tons in 1876, and 2.000,000 tons in 1882: and from 1901 to 1905 the yearly output, steadily increasing, averaged 4.196.688 tons, of a value at the mines of 86,266,154; the output in 1908 was 3.317 .315 tons, with a spot value of $35,444,907$. Superficial wideoces of natural gas and petroleum are abundant in western and north-western Missouri, but these have not beea lound in commercially proficable quantities. The total value of natural gas from wells in Missouri in 1908 was $\$ 32,592$. A few masul oil wells are open near the Kansas line. Both crude oil and natural gas are drawn from Kansas for the supply of Kanses City and other parts of western Missouri.
Lead occurs im three arean in nouthern Misourr. In the first. of which St Francois county is the centre, it occurs penerally alope disseminated in Carmbrian limestone; in the second, of which the counties immediately south-weat of Jefferion City are the centre;
it occurs with sine in reticulated deposits and fissure veins in chays and clastic timestones; and in the third, of which Jasper county is much the most important county, the two metals occur in pockets and joints in the Burlington-Keokuk beds of the sab-Carboniferous. The first is the great lead area. the third the great zinc area; the second is no longer of relative importance.

The lead ores are galena and carbonate: the zinc ores, calamine, smithsonite and blende. The mines in the St Francois field were worked by the French from early in the 18th century. The oldest, Mine La Motte (Madison county), discovered in 1715 by De la Motte Cadillac, is still a heavy producer. Se Frangois county alone produces about nine-tenths the yield of the Geld; Madison, Washington, Jefferson and Franklin counties furnish most of the remainder. Large quantitics of lead are also obtained from the zinc field of the south-west. Both the St Francois and Jasper ores yield from 70 to 75% of metal in final product, and assay even higher. It has been estimated that down to $1893 \mathbf{1 , 1 0 0 , 0 0 0}$ tons of ore, yielding metal worth $\$ 74,000,000$, had been taken from the state, fully half of this having been mined in the proceding twenty years The total output for the state in 1908 was 114,459 tons, valued at $\$ 12,134,556$; of this 116,531 tons came from the central and southeast held, and of the remainder $1,5,240$ tons from the Webb CityProsperity camp. Zinc was originally a hindering by-product of lead mining in the south-west, and was thrown away: but it long ago became the chief product in value in this Geld. The so-called "Joplin district" of south-western Missouri and south-eastern Kansas-three-fourths of it being in Missouri-produces ninetenths of all the zinc mined in the United States Mining in southwestern Missouri began about I851, but xine was of no importance in the output until 1872 . In the next thirty-one years the aggregate product was about $3,000,000$ tons of ore, worth eome $\$ 100,000,000$. The output from 1894 to 1905 averaged 219,874 tons of ore yearly; in 1908 it was 107.404 tons. The hastory of the St Francois, Granby and Joplin districts has been sensational. The fortunes ol the last have largely revolutionized the conditions and prospects of the south-western counties. Silver is found in connexion with lead and zinc mining: in 1908 the total output was 49.13I oz., valued at $\$ 26,039$. Clays occur in amounts and varieties surpassed by the deposits in very few if any states of the Union. They are in every form from the rare to the common-glass pot clay, boll clays, kaolins, fint fireclays, plastic fireclays, stoneware clays, paving-brick shales, building-brick and qumbo clays. Plastic fireclays, paving and brick clays are available in seemingly limitless quantities. The loess, the re-sorted residual clays, and the glacial clays are all used for the production of brick Clays occur, in short, all over the state; and their uee is almost as general. In Igos and 1907 the rank of Missouri was sixth in the Onion in the yalue of clay products-namely, $\$ 6,203,411$ in 1905 and $\$ 6,898,871$ in 1907 . There has been no more than the slightest beginning made in the utilization of these resources. Stone resources are also large. Limestones are by far the most important; red and gray. granites, sandstones and marble (Ste Genevieve county) being of little more than local importance. In 1908 the total value of stone quarried was $\$ 2,306,058$. Tripoli is quarried particularly in Newton county, where it has been produced since 1872, and though not produced in great quantitics has value from its general scarcity. This Missouri tripoli is a finely decomposed light rock, about 98% silica, and is used for filter stones and as an abrasive. "Chat" -finely crushed flint and bmestone yielded as tailings in the lead and zinc minesfinds many uses. Limestone is quarried all over the state (except in the embayment region). There are unlimited supplies of clay, shale and limestone, the three essential constituents of Portland cement, and the manufacture of this, begun in 1902, at once assumed important proportions. Quicklime manufacture is also an important industry. In I908 the product of quicklime was $\mathbf{1 6 7 , 0 6 0}$ tons.

Mattufachures.-Manufacturing and merhanical pursuits absorbed in 1900 the labours of 19.5% of all jursons engaged in gainfu] occupations, less than half as many as were eligaged in agriculture. Though an agricultural state, Missouri had in igoo three cities with populations of above 100,000 , whose wealth is based on manulactures and trade. Missouri is the leading manufacturing state west of the Mississippi. Between 1880 and 1 goo the value of the product increased from $\$ 165,386,205$ to $\$ 385,492,784$, of which $\$ 316,304,095$ was the value of products of the "factory system "; In 1905 the lactory product was valued at $\$ 439,548,957$. Of the total output in 1900, three-fourths were made up by the output of St Louts ($\$ 233,629,733$; of which $\$ 193,732,788$ was from establishments under the factory system "), Kansas City ($836,527,392$; $\$ 23,588,653$ being " factory product "), St Joseph ($\$ 31,690,736$, including the product of some estahlishments outside the city limits; \$1I, 36t,9.39 being "factory product" within the city limits), and Springfield ($\$ 4,126, \$ 71 ; \$ 3,433,800$ being " factary product "); for the same (our cities in 1905 the proportion of the state's total product ($\$ 439.548 .957$) manufactured under the "factory system " is smaller, and lese than three-fourths was made up by the following seven cities: St Louis ($\$ 267,307,038$), Kanus Cisy ($\$ 351573,049$), St Joseph ($\$ 11,573,720$), Springheld ($\$ 5.293 .35$ 5), Hannibal $(4,442,099)$, Jeffersan City $(\$ 3.926,632)$, and Joplín ($83, n 06,203$). In 1905 the eleven municipalities wixh a population of at least 8000 each (including the seven above, and Carthage,

Moberly, Sedalia and Webb City) produced, under the " factory gystern. goods valued at $\$ 335-43 \mathrm{~L}, 97^{8}$. Eighteen industries in Igo5 employed nearly three-fiths of the wage-earners in factories and were represented by nearly two-thirds $(\$ 293,882,705)$ of the total product. The most prominent items in this were slaughtering and meat-packing products (value $\$ 60,031,133$ in 1905): tobaco0 (in 1905. $\$ 30,884,182$), flour and grist-mill products (in $\mathbf{1 9 0 5}$. $\$ 38,026,142$), ${ }^{1}$ malt liquors (in $1905, \$ 24,154,264$), boots and shoes (in 1905. $\{23.493,552$), lumber and timber products (in 1905. $\$ 10,903.783$), mens factory-made clothing (in $1905, \$ 8,872,831$). and cars and general shop construction and repairs by steam railways (1905, 8,720,433). The increase in the slaughtering industry between 1890 and 1900 (134.9%) was chicfly due to remarkable growth in St Joseph-or, to be more precise, just outside the city limits of St Joseph; between 1900 and 1905 the increase was 39.5% Although Miscouri is not a great tobacco state, Se Louis is one of the greatest centres of the country in the output of tobacco products. It is also, for the state, the great centre of all the leading interests with the exception of slaughtering. The boot and shoe industry is new west of the Mississippi, but Missouri holds in it a high and rising rank. In the Joplin mining region a considerable mount of ores is smelted, but the bulk of the ores is sent into Kansas for amelting. The finer clays, also, are mainly shipped from the state in natural form, but in the manufacture of sewer-pipe and fire-brick; Missouri is a very prominent state. St Louis and Kansas City are the centres of the clay industries.

Commurscations.-In 1900 rather under a fifth of the working population were engaged in trade and transportation. In commerce as well as in manufactures St Louis is first among the cities of the state, but Kansas City also is one of the greatest railway centres of the country. and the trade with the south-west, which St Louis once held almost undisputed, has been greatly cut into by Kansas City, as well as by Gaiveston and other ports on the Gull. There is still considerable commerce on the Mississippi from St Louis to New Orleans, and a few passenger steamers are still in service. In 1906-1907 there was a notable agitation for improvement. following trial voyages that proved the navigability of the Missouri up to Kassas City. For this part of the river the maximum draft at mean low water was 4 ft. in 1908 . In 1907 the amount of freight carried from the mouth of the Miscouri to Sioux City, lowa, was 843,863 tons, and river rates were about 60% of railway rates. In 1907 estimates were made for 6 ft and 12 ft . channcls from Sioux City to Kansas City, and from Kansas City to the mouth of the river. The improvement of the Missouriwhich is far more difficult to navigate than the Mississippi-was begun by Congress in 1832, and (in addition to large joint appropriations for the Missouri, Mississippi, Arkansas and Ohio rivers from I832 to 1882) cost \$I 1,130.560 between 1876 and 1900 . Also $\$ 65,000$ was expended from $\mathbf{2 8 5 2}$ to 1876 . In nothing except the freighting of bulky and imperishable products, like cotton, coal and cereals, was the river ever able to contest the monopoly of the railways. The mileage of these within the state rose from 3960 in 1880 to 6142 in 1890, and to 8023.94 in 1908; the Missouri Pacific being far the greatest system of the atate. St Louis, Kansas City and St Joseph are ports of entry for foreign commerce.

Population.-The total population of Missouri in 1900 was 3,106,665 and in 1910, 3,293,335. The population in 1810 was 20,845; in 1820, 66,586; in 1830, 140,455 ; in 1840, 383,702 ; in 1850, 682,044; in 1860, $1,182,012$; in 1870, $1,721,295$; in $1880,2,168,380$; and in $1890,2,679,184$. Thus, even in the years of the Civil War, there was no apparent set-back. Of the aggregate of $1900,63.7 \%$ lived in "rural districts" (i.e. those outside all places of a population of 2500 or upwards), and $27 \cdot x$ \% in the three great cities of the state, St Louis (pop. 575,238), Kansas City (163,752) and St Joseph (102,979); $5^{-2} \%$ were negroes-their increase from 1890 to 1900 being less than half as rapid as that of the whites; and $7 \cdot 0 \%$ only were foreign-born. Slightly more than hall of all foreigners are Germans; Irish, English and Scotch, French and English Canadians, Swiss and Scandinavians following. The German element is, and has been since about 1850 , of great importance-an importance not indicated at all by its apparently small strength in the population to-day. The German immigration began about 1845 , and long ago passed its maximum, so that in 1900 more than half of all the foreign-born (not only the Germans, but also the later-coming nationalities) had lived within Missouri for more than twenty years, and more than three-fourths of all had been residents of the state for ten
1 Omitting here printing and publishing, and foundry and machineshop products, which (like carpentering, bakery products, \&e., in cities) have little distinctive in them to set Missouri of from other states. But it is to be noted that St_{t} Louis is one of the leading nroducers of street-railway cars.
years or more. Thas the foreign element is an old one, and other statistics show that it is being effectively absorbed into the native mass by intermarriage. ${ }^{1}$ The German influence has been felt in education and in the anti-slavery cause. The early settlers of the state were practically all from Kentucky, Tennessee, Virginia and the old slave-states of the south-cast, and their influence was easily dominant in the state until well after the Civil War (about 1875), when northerners first began to enter the state in large numbers. The south-western Ozarks were settled originally by mountaineers from Kentucky and Tennessee, and retained a character of social primitiveness and industrial backwardness until after the Civil War. This region has been Industrially regenerated hy the mine development. In addition to St Louis, ${ }^{2}$ Kansas City and St Joseph, the leading cities in 1900 were Joplin, Springfield, Sedalia, Hannibal, Jefferson City, Carthage, Webb City and Moberly.

As Missouri was originally a French colony the Roman Catholic is its oldest church; and it is still the strongest with 382,642 communicants in 1906 out of a total of $1,199,239$ for all derominations. In the same year there were 218,353 Baplists, 214,004 Methodists, 166,137 Disciples of Christ, 71,599 Presbyterians, 45,0r8 Lutherans, and 32,7i 5 members of the German Evangelical Synod of North America.

Administration.-Three constitutions, framed by conventions in 1820, 1865 and 1875 , bave been adopted by the people of the state, and a fourth (1845) was rejected, principally because it provided for popular election of the state judiciary, which was then appointed. In addition to these four constitutional conventions, mention should be made of the special body chosen in 1861 to decide the question of secession, which retalned supreme though irregular control of the state during the Civil War, and some of whose acts bad all the force of promulgated constitutional amendments. Universal manhood suffrage was established by the first constitution. The constitution of 1865 was a partisan and intolerant document, a part of the evil aftermnth of war; it was adopted by an insignificant majority and never had any strength in public sentiment. ${ }^{2}$ The present constitution (that of r875) was a notable piece of work when framed. The term of the governor and other chief executive officers, which had been four years until the adoption of the constitution of 1865, under which it was two years, was restored to the long term (unusual in American practice). The legislature (or, as it is called in Missouri, General Assemhly) had been permitted to hold edjoumed sessions under the constitution of 1865 . This expensive practice was abolished; various checks were placed upon legislative extravagance, and upon financial, special and local legislation generally; and among reform provisions, common enough to-day, but uncommon in 1875 , were those forbidding the General Assemhly to make irrevocable grants of special privileges and immunities; requiring finance officials of the state to clear their accounts precedent to further eligibility to public office; preventing private gain to state officials through the deposit of public moneys in banks, or otherwise; and permitting the governor to veto specific items in general appropriation bills. The grand jury was reduced to twelve members, and nine concurring may indict. The township system may be adopted by county option, but has not been widely established, though purely administrative (not corporate) "townships" are an essential part of state administration. St Louis and Kansas City have adppted their own charters under constitutional provision. Up to 190937 constitutional amendments were stubmitted to the people for adoption or rejection, and 22 were adopted. Three of these (1900) restrict the calling of the grand fury, permit two-thirds of a petit jury to render verdicts in courts not of record, and three-fourths to give verdict in civil

IIn 1900 only one person in six had both parents of foreign birth.
${ }^{2}$ St Louis was the capital in $\mathbf{1 8 1 5 - 1 8 2 0 \text { , St Chirlesin 1820-s856, }}$ and Jefferson City since 1826.
: After the proscriptive icatures of this constitution were abolished by amendments in 1870, hnwever, there was no great discontent, and the vote for holding a constitutional convention in 1875 was very close: 111.299 to 111.016 .
cases in courts of record. Cities have been allowed (1892), upon authorization by the General Assembly, to organize pension systems for disabled firemen, but not allowed (Lgo4) to organize the same for police forces. An amendment which was adopted (177,615 for; 147,290 against) in November 1g08, and came in effect on the 4 th of December 1908, provides for initiative and referendum applying to statutory. law and to constitutional amendments, but emergency measures, and appropriations for the state government, for state institutions, and for public schools are exempt from referendum Initiative petitions, signed by at least 8% of the legal voters in each of two-thirds (at. least) of the congressional districts of the state, must be filed not inter than four months before the election at which the measure is to be voted upon. The referendum may be ordered by the legislature or hy a petition signed by at least 5% of the legal voters in each of two-thirds (at least) of the congressional districts of the state; such petition must be filed not more than 90 days after the final adjournment of the legislat ure; referred measures become law upon receiving a favourable majority of the popular vote. Among defeated amendments that are indicative of socio-political tendencies was one (1896) to authorize cities of a population of 30,000 or more to purchase, erect or maintain waterworks or lighting plants.

There is nothing extraordinary in the general judicial system. The civil law seems to have had only a tacit, and as soon as American immigratinn began a limited, application. The common law was introduced with the American settler, and after 1804 was the explicitly declared basis of judicature. Practically no trace of French and Spanish administration was loft except in the land registers. The metropolitan primacy of St Louis end Kansas Ciry is reflected in the general organization of the courts. The Bureau of Labor Statistics maintains free employment-bureaus in St Louis, Kamat Ciry and St Joseph. There is also a State Board of Media: tion and Arbitration to setile labour disputes. A Board of Rail road and Warehouse Commissioners, elected by the people, was established in 1875 , under a provision of the constitution requiring the General Assembly to establish maximum rates and provide against discriminazions ${ }^{4}$

The homestead of a housckecper or head of a family, together with the rents and products nf the same, is exempt from levy and attachment except to satisfy its liabilities at the time he acquired it. A homestead so exempted is, however, limited to 18 sq . rods of ground and to 83000 in value if it is in a city baving a population of 40,000 or more, to 30 sq , rods and $\$ 1500$ in value if it is in a city having a population of 10,000 and less than 40,000 , to 5 acres and $\$ 1500$ in vahe if it is in an incorporated place having a population of less than 10.000. and to 160 acres and $\$ 1500$ in value if it is in the country. A husband owning a homestead is debarred from selling or mortgaging it without the joinder of his wife, and if the husband dies leaving a widow or minor children the bomestead passes to cither or, to both jointly, and may be so held until the youngest child is twenty-one years of age or until the marriage or death of the widow. The principal grounds for divorce are impotence, bigamy, adultery, conviction of felony or other infamous crime subsequent to the maniage or before the marriage if unknown to the other party. desertion or habitual drunkennesa for one year, such cruel or barberous treatment as to endanger, the ifie of the other, such conduct as to render the condition of the other intolerable, and vagrancy of the husband; but before applying for a divonoe the plaintiff must peside in the state for one ypar immediately precoding, unless the cause of action was given within the otate or while the plaintiff was a resident of the state. A married woman may hold and manage property as if she were single. She is entitled to the wayes for ber separate haboar and that of her children, and in not liahle for her husband's debts. A widow has a dower right to one-third of her husband's real estate and to the share of a child in his personal estate. If a husband dies without leaving children or other descendants, the widow is entitled to all the real and personal eatate which came to him by marringe, to what remains of the personal property which came into his posseseion by the written consent of his wile, and to one half his other real and personal propery at the time of his death. If a husband dies leaving descendants only by a former marriage, the midom may take in lien of dower the personai property that came to him by means of marringe, or if there be children by both marriages she may take in lieu of her dower right to his real estate an absolute right therein equivalemt to the share of a child. Her dower is not lost by a divorce resulting from the fault or mis. conduct of the husband. A widower is entitied to a share in his wife's personal estate equal to the share of a child, and if there are

[^40]po descendants he has an foolute misht to onemalf of ber property, both real and persomal.

Finance-Revenue is drawr mainly from a gencral property tax. In 5904 the gross valuation of all taxable wealth was put $81,155,402,647$, and taxation for state purposes aggregated \$o. 17 per 81000. ${ }^{1}$ In the years 1851-1857 a debt of $823,701,000$ was incurred in aiding, railways, and all the roads made defalt during the Civil War. The state could not meet its guarantee obligations (hence the strict bonding provisions of the constltution of 1875), and in 1865 had a bonded debs of above $\$ 36,000,000$. This was reduced to $\$ 21,675,000$ by 1869 , and in 1903 , was wholly extinguished, every obligation having been fully discharged. A small debt (at the close of $1906, \$ 4,398,839$) is carried in the form of non-negotiable state certificates of indebtedness issued in axchange for money taken from the educational funds of the state, and is intended as a permanent ohfigation to those funds. An amendment to the constitution adopted in 1908 permitted counties io make an extra levy of 25 cents on each 100 dollars valuation for the construction and repair of roads and bridges.

Charifable and Penal Institutions:-The charitable and penal institutions of the state include the penitentiary at lefferson City, opened in 1836 , which is sell supporting; a training school for boys at Boonville (opened 1889), an industral home for girls at Chillicothe (established 1887), hospitals for the insare at Fulton (4847), St Joseph (opened 1874), Nevada (1887), and Farmington (1899); a school for the blind at St Louis (opened 185I); a school for the deal at Fulton (opencd 1851): a colony for the feeble-minded and epileptic at Marshall (established 1899) : a state sanitorium, for consumptives, at Mount Vernon (established 1905. opened 1907): a Federal soldiers home at St James, and a Confcuerte goldiers' home at Higginsville (both established i897).

Education. The expenditure upon publie schools is much greater In Missouri than in any other of the old slave states, Most of the total expenditure (in $1908, \$ 12.769,690$) is made possible by local tavation. The percentage of the enumerated school-population (children 6 to 20 years of age) attending school in 1908 was 48 , and the percentage of the toial enumeration enrollcd wias about 7 ; the general showing beirg excellent, and that for megroes remark: ably so. Blacks and whites are segregated in alt achools Vanons high-schoois scattered over the strite sre given over to the negroes; and in Igat the number of pupils attending these was exceeded only by the corresponding numbers in Texas and Misgissippistates with five- and sixfald the nego population of Missouri. Illiterate persons above 10 years of age constituted in 19006.4% of the total population- 28.1% of the negroes, 7.1% of the natives, 6.9% of the foreign-born. The idea of providing a university and free local schools as parts of a public school system occurs in the constitution of 1820 (and in the Acts of Congress that prepared the way for statehood), and the occurrence is noteworthy; but the real beginnings of the system scarcely so back further than 1850. Nor was very much progreas made until a lav was passed in 1853 requiring a quarter of the genert yearly revenuc of the state to be distributed among the counties for schools. This pppropriation was made regularly after $\mathbf{8 5 5 5}$ (save in 1861-1867), and since 1875 has rested on a constitutional provision. The maintenance of a free public school system was placed on a firm and broad foundation by the constitution adopted in that year. In the years after 3887 one-third of the total revenue was appropriated to the public common schools; and in 1908 the total appropriation for public schools, normal schools and the state university was about threefifths of the entire state revenue. Local taxation is another source of the school funds. In 1908 the total school fund, including state. county, township and special district funds, was about $\$ 14,000,000$, of which the state fund was nearly one-third. The schools of St Louis have a very high reputation.

Among tnstitutions of higher learning the university of Missouri at Columbia is the chief one maintained by the state. It was opened to students in 1841, received aid for the first time from the state in 1867: women were first adonitted to the mormal department in 1869, to the academic department in 1870, and soon alterwards to all departments. In addition to the academic department or college proper, the university embraces special schools of pedargogics (1868), agriculture and mechanic arts (1870), mines and metallurgy (1870, at Rolla), law (1872), medicine (1873), fine arts (1878), engincering (1877), military science, commerce, a graduate school of arts and sciences (1896), and a department of journalism (1908). An experiment station supported by the national govemment was established in 1888, and is part of the school of agriculture. The state Board of Agricult ure organizes edveational farmers' institutes; and agriculture is taught, moreover, in the normal schools of the

[^41]state. Of theoe five are maintained as follows: at Kirkoville (187°) at Warrensburg (established 2870), at Cape Girardeau (established 1873). at Springbield (established 1905), at Maryville (established 1905), and there is a normal department in connexion with the Lincoln lastitute, for negroes, at Jefferson City. Lincoln Institute (opened in 2866) is for negro men and wormen. The basis of ita endowment was a fund of $\$ 6379$ contributed in 1866 by the 62nd and 65th regiments UU.S. Colored Infantry upon their discharge from the service; it has agricultural, industrial, sub-normal, normal and collegiate depertments. Among privately endowed schools the greatest is Washington University in St Louis; it is non-sectariaa and was opened in 1857. Noteworthy, too, is the St Louis University, opened in 1829 , the oldest institution for higher learning west of the Mississippi; it. is a Jesuit college and the parent school of six other Jesuit inetirutions in the states of the middle west. There are many minor colleges and schools most of them coeducational, and special colleges or academies for women are maintained by different religious sects. Finally, there are various professional schools, most of them in St Louis and Kanses City.
History.-The early French explorers of the Mississippi valley left the first trace of European connexion in the history of Missouri. Ste Genevieve was settled in 1735; Fort Orieans, two-thirds of the way across the state up the Missouri river, had been temporarily established in 1720; the famous Mine La Motte, in Madison county, was opened about the same time; and before the settlement of St Louis, the Missouri river was known to trappers and hunters for hundreds of miles above its mouth. It was in 1764 that St Louis (g.v.) was founded. Two years before, the portion of Louisiana west of the Mississippi bad secretly passed to Spain, and in 1763 the portion east passed to England. When the English took possession a large part of the people in the old French settlements removed west of the tiver. Not until 2770, after O'Reilly had established Spanish rule by, force at New Orleans, did a Spanish officer at St Louis take actual possession of the upper country; anotber on the ground, in 1768-1769, had forborne to assert his powers in the face of the unfriendly attitude of the inhabitants. Spanish administration began in 1771. French remained the official language, and adininistration was so little altered that the people quickly grew reconciled to their changed allegiance. Settlement was confined to a fringe of villages along the Mississippi. French-Canadian hunters and trappers, and soon the river boatmen, added an element of adventure and colour in the primitive life of the colony. Lead and-salt and peltries were sent to Montreal, New Orleans, and up the Obio river to the Atlantic cities.
The Americans were hospitably received; the immigrants, even Protestant clergymen, enjoyed by official goodwill complete religious toleration; and after about 1796 lavish land grants to Americans were made by the authorities, who wished to strengthen the colony against anticipated attacks by the British, from Canada. Kentucky, Tennessee and Virginia furnished most of the new-comers. The French had lived in villages and main-1 tained considerable communal life; the Americans scattered on' homesteads. With them came land speculation, litigiousness, the development of mines and mining-camp law, and the passion of politics, of which duels were one feature of early days. In I804 there were some 10,000 inhabitants in Upper Louisiams (mainly in Missouri), and of these three-fifths were Americans and their negroes. Racial antipathies were unimportant, and all parties were at least passively acquiescent when Louisiana became a part of the United States. On the 9th of March 1804, at St Louis, Upper Louisiana was formally transferred. In 1818 , after passing meanwhile through four stages of limited selfgovernment, ${ }^{3}$ that portion of the Purchase now included in the state of Missouri made application for admission to the Union as a state. ${ }^{4}$ In $1812-1813$ a remarkable earthquake devastated the region about New Madrid. A large region was sunken, enormous fissures were opened in the earth, the surface soil was displaced
${ }^{3}$ In 1804, the District of Lonisiana, in the administra tive system of the Territory of Indiana: in 1805 , an ind ppendent government. renamed the Territory of Louisiana; in 1812, the Territory of Missouri; in 1816 , another grade of territorial government.
${ }^{4}$ Until 1836 the state boundary in the north-west was the meridian of the mouth of the Kansas river drawn due north to the Iowa line. The addition of the triangle west of that line-the so-called Platte Purchase-violated the Missouri Compronisc.
and altered, and great lakes were formed along the Mississippi. One of these, Reelfoot Lake, east of the river, is 20 m . long and 7 wide, and so deep that boats sail over the submerged tops of tall trees. Indian troubles again disturbed the peace during the second war with Great Britain. By 8808 the Indian titie whes extinguished to two-thirds of the state, though actual settement did not extend more than a few miles westward from the Mississippi; in $\mathbf{1 8 2 5}$, by a treaty with the Shawnee made at St Louis on the 7th of November, the tille to the rest of the state was cleared, and a general removal of the Indians followed. Meanwhlle, after the peace of 1815 a great immigration had set in, many settiers coming from the free states north of the Obio. The application for statehood precipitated one of the most famous and significant episodes of national history-the Missouri Compromise (q.v.). In August 1821, after three years of bitter controversy, Missouri was formally admitted to statehood.

In the four decades before the Civil War, two matters stand ont as most distinctive in the history of the state: the trouble with the Mormons, and the growth of river and prairic trade. In 1831-1832 Joseph Smith, the Mormon leader, selected a tract at the mouth of the Kansas river as the site of the New JerusaIem, to which his followers came from Ohio in 1832. They were not welcome. Their "revelations" in their papers predicted dire things for the Gentiles; they were thrifty and well-to-do, and were rapidly widening their lands: they were accused of disregard for Gentile property titles, and they obstructed the processes of Gentile law within their lands. In 1833 the Missourans, in mass meeting, resolved to drive them from the country. The five years thereafter were marked by phinder and abuse of the sect. The militia and the courts gave them no protection. They were driven oat, and went to Illinois, hut continued to hold part of their abandoned lands. First St Louis, and then other towns on the Missouri river in succession westward, as chey were settled and became available as depots, served as the outfit points for the Indian trade up the Missouri and the trade with Mexico through Santa Fé. The trail followed hy the latter had its beginning about 1812, and (beginning in 1825) was surveyed by the national government. In early days Mexican and American military detachments escorted the caravans on either side of the international line. Independence, Missouri (after about 1891) and Kansas City (after 1844) were the great centres of this trade, which by 1860 was of national importance. ${ }^{1}$ After the Civil War the railways gradually destroyed it, the Atchison Topeka \& Santa Fe railroad running along the old wagon trail. No steamer traversed the Mississippi above the Ohio until 1817, nor was a voyage made between New Orleans and St Louis, nor the lower Missouri entered, until 1819. In 1832 a steamer ran to the mouth of the Yellowstone, and in 1890 the last commercial trip was made to old Fort Benton (Great Falls), Montana. The interval of yeara witnessed the growth of a river trade and its gradual decline as point after point on the river-Kansas City, St Joseph, Council Biuffs (Iowa), Sioux Falls (South Dakota) and Helena (Montana)-was reached and commanded by the railways. In 1906-1907 an active campaign was begun at Kansas Clty for improving the channel of the Missouri and stimulating river freighting below that point.

Among events leading up to the Civil War, first the annexation of' Texas and then the war with Mexico ieft special impress on Masouri history. Since 1828, when national political parties were first thoroughly organized in the state, the Democrats had been supreme, and carried Missouri on the pro-slavery side of every issue of free and slave territory. But there was always n strong body of anti-slavery sentiment, ${ }^{2}$ nevertheless; and this
${ }^{1}$ In 1855 its value was estimated at $\$ 5000,000$. In 1860 it was much greater. In the latter year the trade employed 3000 wagong, 63,000 oxen and mules, and 7000 men.
RUnder the constitution of 1820 the General Assembly had power to emancipate the slaves with the consent of their masters In 1828 Senator T. H. Benton and others prepared a plan for educating the alaves and gradually emancipating them under tate law; and undoubredly a considerable party would have uupported such a project, for the Whigs and Democrats were not chen divided along party lines on the savery imus; but noching
took organized form in 1849, when Senator Beaton repudiated certain ultra pro-slavery instructions, breathing a secession spirit, passed by the Geaeral Assembiy for the guidance of the representatives of the state in Congress. From that time until his death he organized and led the anti-disunion party of the stale, Francis Preston Blair, jun., succeeding him as leader. The struggle over Kansas ($q . ⿻$.) aroused tremendous passion in Missouri. Her border counties furnished the bogus citizens who invaded Kansas to carry the first territorial elections, and soon guerrilla forays back and forth gave over the border to a carnival of crime and plunder. Political conditions were chaotic. In the presidential election of $\mathbf{1 8 6 0}$, Douglas received the electoral vate of the state, the ooly one he carried in the Union. The Repoblicans had little strength outside St Louis, where the German element was strong. A party led by Claiborne F. Jackson, the governor-elect, was resoived to carry the state out of the Union. Such secession, it was supposed, would carry the other border states out also. With equal blindness the Secessionists favoured, and the Republicans opposed, the calling of a special state convention to decide the issue of secession. The election showed that popular sentiment was overwhelmingly hostile to secession; and the convention, by a vote of 80 to 1, resolved (March 4, 1861) that Missouri had " no adequate cause " therefor. Governor Jackson thereupon sought to attain his ends by intrigue, and the national arsenal at St Louis became the objective of both parties. It was won by the unconditionalunion men, but a smaller arsenal at Liberty was seized by tha Secessionists. Governor Jackson refused point-blank to contribute the quota of troops from Missouri called for by President Lincoin. Aggressive conflict really opened at St Louis on the roth of May, and armed hostilities began in June. On the roth of August 1861 at Wilson's Creek, near Springficld, General Nathaniel Lyon was defeated by a superior Confederate force in one of the bloodiest battles of the war. After this the Confederates held much of southern Missouri until the next spring, when they were driven into Arkansas, never afterward regaining foothold in the state. In the autumn of 1864 Sterling Price led a brilliant but rather bootless Confederate raid across the state, along the Missouri River, and was only forced to retreat southward by defeat at Westport (Kansas City). The westera border was rendered desolate and deserted by guerrilla forays throughout the war. Probably 25,000 or 30,000 soldiers served in the Confederate armies, and 109,11I were furnished to the Union arms.' This was a remarkable showing. There was more or less internecine confict throughout the war, and local disaffection under Union rule; and Confederate recruiting was carried on even north of the Missouri.

Altogether, the state offered a difficult civil and military problem throughout the Civil War. An emancipation proclamation issued by General J. C. Fremont at St Louis in August 286t, though promptly disivowed hy President Lincoln, precipitated the issue. The state convention, after voting against secession, had adjourned, and after various sessions was dissolved in October 1863. Assuming revolutionary powers, it deposed Governor Jackson and other state officers, appointed their successors, declared vecant the seals of members of the Assemhly, and abrogated the disloyal acts of that body. In October 1861 a rump of the deposed Assembly passed an act of secession, which the Confederate States saw fit to regard as legitimate, and under which they admitted Missouri to tbeir union by declaration of the 28th of November. In 1862 ihe convention rejected the President's suggestion of gradual emancipation, disfranchised Secessionists, and prepared a strong oath of allegiance. In the summer of 1863 the convention decreed emancipation with compensation to owners. This did not satisfy the Radical Republicans, and on the issue of
came of the plan, and the manner of its defeat proves that it could not possibly have been pushed to success The trouble over Lovejoy's printing office at St Lovis (1835-1836) put an effectual end to the movensent for emancipation.
${ }^{2}$ Compare the vote of 1861. The Union death-roll of Mamar 'tueetts (troope furmished, 159,165) was 13.942, that of Missouri 13.8%.
inmediate asd unconditional emancipation they swept the state in November r864. By the constitution of 186s slavery was abolished outright. ${ }^{\text {. }}$ The convention of r86r, by maintaining continuous government, had saved the state from anarchy and from reconstruction by the national power; but an ironclad test onth (it required denial of forty-five distinct offences) was provided, to be taken by all voters, state, county and municipal offcers, lawyers, jurors, teachers and clergymen. Its allempted enforcement was a grave error of judgment, and was attended by great abuses, and it was finally held unconstitutional by the United States Supreme Court. The legislature, however, maintained its ends by registration laws that reduced to impotence the Democratic electorate. The Radical Repubbcans held control until 1870, when they were defeated by a combination of Liberal Republicans and Democrats, ${ }^{2}$ and the testoath and the rest of the intolerant legislation of the war period were swept away. In 1872 the Democrats gained substantial control, and after 1876 their puwer was established beyond challenge. The constitution of 1875 closed the war period with blanket amnesties. Though in politics habitually Democratic, Missouri has generally had a strong opposition party-Wbig in antebellum days, and since the war, Republican-which in recent years has made political conditions increasingly unstable. This instability is shown in congressional and local rather than in general state elections. In 1908 a Republican governor was elected, the first for more than thirty years.
The Governors of Missouri since 1804 have been as follow:Terrilorial Period.

Party Affiliation. Service
fames Wilkinson
Joseph Brown (acting governor)
Frederick Batcs
Appointed
Meriwether Lewis
Frederick Bates (acting governor)
Benjanin Howard
Frederick Bates (acting governor)
Appointed
Appointed
Appointed

Slate Period.

	Democrat	$1820-18244^{2}$ $1824-1825$
Frederick Bates (died in office). . ${ }^{\text {a }}$ (824-1825		
Abraham J. Williams (acting governor) John Miller (special election to fill out		
term)	Democra	1825-1828
John Miller		1828-1832
Daniel Dunklin (resigned office)		1832-1836
Lilburn W. Bogrs (acting governor)		
Thomas Reynolds (died in office) M. M. Marmaduke (acting governor)		
John C. Edwards Democrat 1844 -1848		
Austin A. King		
Sterling Price		
Trusten Polk (elected to United States Senate)		
Hancock Jackson (acring governor)		
out (erm) 1857-1861		
Claiborne F, Jackson (deposed		
by state convention)		1861

[^42]Hamilton R. Gamble (appointed by state convention; died in office), provisional governor
Willard P. Hall (Lieut. governor by mame power, acting provisional governor)
Thomas C. Fletcher .
joseph W. McClurg
B. Gratz Brown

Silas Woodeon
Charics H. Hardin
John S. Phelps
Thomas \mathbf{T} Crittenden
John S. Marmaduke (died in office)
Albert P. Morehouse (acting governor)
David R. Francis
William J. Stone
Lon V. Stephens
Alexander M. Dockerey
Joseph W. Folk
Herbert S. Hadley

Party Aftiation. . Service

Bialograpily.-For Physiography: See Surface Feabures of Missouri (in Missouri Geological Survey Reports, vol. x., Jefferson City, 8896) ; publications of the State Bureau of Geology and Mines including bulletins and reports of the Missouri Gcological Survey (ex53 seg.; new acries, is vols, 189r-1904): publications of United Stares Geological Survey, particularly Bulkeims 132, 213. 267, the 22nd Annual Report, part ii. pp. 23-227, \&c.; and reports of state departments. On administration: the annual Officiel Monuol of the Scate of Missouri (really private, Jefferson Ctiy); also F. N. Judson. Lave and Practice of Taxation in Missarrs (Columbla, 1900): M. S. Snow, Higher Education in Missouri (U.S. Burces of Education. Washington, 1898)., On History: Lucian Carr, Mfssowni ("American Commonwealths" Series, Boston, 1892); L. Houck St:nish Rigime in Missouri (3 vols., Chicaso, 1910); T. L. Snead Th. Fight for Missouri (New York, 1886), Wiley Britson, The Crvid War on the Border (2 vols., New York, 1891-1899; 3rd ed. of vol. B, revised, 1899) ; H. M. Chittenden, History of Early Steamboab Navigation on the Missouri River (2 vols., New York, 1903), W. B. Davis and D. S. Durrie, An Iherstrated Mistory of Missouri (St Louis, 1876): Encyclopodic of the History of Missouried. by H. L. Cunrad (6 vols.. New York, Se Louis, 1901).

MISSOURI COMPROMISE, an agreement (1820) betweed the pro-slavery and anti-slavery factions in the United Statea, involving primarily the regulation of slavery in the public territories. A bill to enable the people of Missouri to form a state government preliminary to admission into the Union came before the House of Representatives in Committee of the Whole, on the $13^{t h}$ of February 1819 . An amendment offered by James Tallmadge (${ }^{7} 77^{8-1853}$) of New York, whicb provided that the further introduction of slaves into Missouri should be forbidden, and that all children of slave pareats born in the state after its admission should be free at the age of twenty-Give, was adopted by the committee and incorporated in the Bill as finally passed (Feb. 17) by the house. The Senate refuscd to concur in the amendment and the whole measure was loct During the following session (1819-1820), the house passed a similar bill with an amendment introduced on the 26th of January 1820 by John W. Taylor (1784-1854) of New York making the admission of the state conditional upon its adoption of a constitution prohibiting slavery. In the meantime the question had been complicated by the admission in December of Alahama, a slave state (the number of slave and free states now becoming oqual), and by the passage through the house (Jan. 3. 1820) of a bill to admit Maine, a free state. The Senate decided to connect the two measures, and passed a hill for the admission of Maine with an amendment enabling the people of Mistouri to form a state constitution. Before the bill was returned to the house a second amendment was adopted on the motion of J. B. Thomas (1777-1850) of Illinois, excluding slavery from the "Louisiana Purchase " north of $36^{\circ} 30^{\prime}$ (the southern boundary of Missouri), except within the limits of the proposed state of Missouri. The House of Representatives refuscd to accept this and a conference committee was appointed. There was now a controversy between the two houses not only
on the stavery issue, but also on the pardiamentary question of the taclusion of Maibe and Missouri within the same bill. The committee recommended the enactment of two laws, one for the admiscion of Maine, the other an enabling act for Missouri without any restrictions on slavery but including the Thomas ameodment. This was agreed to by both houses, and the measures were passed, and were signed by President Monroe respectively on the zrd and on the 6eh of March 1890 . When the question of the final admission of Mispouri came op dering the gession of 28zo-182r the struggle was revived over a clause in the new constitution ($\mathbf{1 8} 80$) requiring the exclusion of free negrops and molattoes from the state. Through the influence of Henry Clay an act of admission was finally pessed, to come hato operation as soon as the state legislature would pledge itself not to pass any legislation to enforce this clause. This is sometimes known as the second Missouri Compromise.
These disputes, involving as they did the question of the selative powers of Congress and the states, tended to turn the Democratic-Repuhlicans, who were becoming nationalized, beck again toward their old state sovereignty principles-to prepare the way for the Jacksonian-Democratic Party. On the other hand, the old Federalist nationalisic element was soon to emerge first as National Repablicans, then as Whigs, and finally as Republicans. On the constitutional side the Compromise of 1820 wes important as the first precedent for the congressional exclusion of slavery from public territory aequired siace the adoption of the Constitution, and also as a clear recognition that Congress has no right to impose upon a state asking for edminsion into the Union conditions which do not apply to those states already in the Union. The compromise was specifically repealed by the Kansas-Nebraska Bill of 1854 .

See J. A. Woodburn. " The Historical Significance of the Missouri Compronise"' in the Annual Report of the Anerican Historical Association for 1893 (Washiogton, D.C); Dixon, Hislory of the Missouri Compromase (Cincianati, 1899): Schouler's and McMaster's Histories of the United States.
(W. R.S*.)

MISEOURI RIVER, the principal western tributary of the Mississippi river, U.S.A. It is formed at Gallatin City, in the Racky Mountain region of south-western Montana, by the confluence of the Jefferson, Madison and Gallatin forks; thence it flows N. into the plains, which it traverses in a course at finst N.E., then E. Entering North Dakota, the river turns grachuatly to the S.E., then S., and again S.E., traversing both North and South Dakota. It forms the eastern boundary of Nobraska and in part of Kansas, and crosses Missouri in en oasterly course to its junction with the Mississippi 20 m . above St Louis, and 2547 m . below the confluence of the three forks The stream which is known as the Jefferson Fork in its lower course, Beaver Head River in its middle course, and Red Rock Creek in its upper course, is really the upper section of the Missouri; it rises on the border between Montana and Idaho, 20 m . west of the western boundary of the Yellowatone National Park, near the crest of the Rocky Mountains, 8000 ft . above the sea, and 398 m . beyond Gallatin City; and with this and the Lower Mississippi the Missouri formas a river channel 4221 m . in length, the longest in the world. The Madison and Gallatin forks rise within the Yellowstone Park, where the former is fed by geysers and hot springs and the latter by both hot springs and melting snow. The Yellowstone river, which is the principal tributary of the Missouri, traverses the park. The Missouri drains a basin having an area of about $580,000 \mathrm{sq} . \mathrm{m}$.; this includes the eastern stope of the Rocky Mountains from the northern barder of the United States to the middle of Colorado, and its larger tributaries take their rise in those mountains. Besides the Yellowstone and the three forks there are the Platte, which rises in two large branches in Colorado, and the Mill, which rises in north-western Montana. The Kansas in Kansas, the James and Big Sioux in the Dakeras, and the Niobrara in Nebraska, are the principal tributaries wholly of the plains. In the mountain region the Missouri flows through deep canyons and over several cascades. Below Great Falls the slower current is unable to carry all the silt brought down from the mountains
and plains, and consequently a winding and unstable channel has been formed on deposits of silt 50 to 100 ft . or more in depth. Bends in the river continue to develop by crosion until the neck between two of them is cut off, and in the process numerous islands, sand-bars, and crescent-shaped lakes are formed. Cottonwood, willow, cedar and walnut trees grow upon the banks that are for a time left undisturbed, but years later the eroding current returns to undermine these banks, the trees fall in and are carried down stream as snags (or "sawyers "), which are especially dangerous to navigation. The variation of level is great and it varies greatly in different parts of the river's course: it is about 19 ft . at Kansas City, about 25 ft . at St Charles, Missouri, and about 8 ft . at Fort Benton, Montana. It is estimated that the Missouri's average discharge per second amounts to about 94,000 cub. ft., and that each year it carries into the Mississippi 550,000 tons of silt. The waters oi the Missouri begin to rise in March, and a high-water stage is reached in April as a result of the spring rains and the melting snow on the plains; a second high stage is produced in June by the melting of snow on the mountains, and the river is navigable from early spring to midsummer as far as Fort Benton, within 40 m . of the Great Falls and 2285 m . above the mouth. Above Great Falls the siver is navigable to Three Forks.
The mouth of the Missouri was discovered in 1673 by Marquette and Joliet, while they were coming down the Mississippi. Early in the 18th century French fur-traders began to ascend the river, and in 1764 St Louis was established as a dépost; hut the first exploration of the river from its mouth to its headwaters was made in $1804-1805$ by Meriwether Lewis and William Clark. Until many years later the commerce on the river was restricted to the fur trade and was carried on with such primitive craft as the canoe (made from the \log of a cotionwood tree); the pirogue (usually two canoes side by side and with a flow over them on which to place the cargo); the bullboat (made by covering a framework of willow poles with the hides of bison bulls); the mackinaw boat (made oi boards and baving a flat bottom); and the keelboat (a vessel of some pretensions, with a keel from bow to stern, 60 to 70 ft . in length, witb a breadth of beam from 15 to 18 ft ., and drawing 10 to 30 in . of water). A canoe, pirogue, bullboat, or mackinaw boat was propelled by two or more men with paddles, poles, or oars; hut to propel 2 keelboat up the river required 20 to 40 men who walked along the shore and pulled a corvelle, a line about 1000 ft . long and fastened to the mast. An average of about 15 m . a day was made witb a keelboat going up the river. The first attempt to navigate the Missouri with steamboats was made in the spring of 1819, when the "Independence" made a trip from St Louis to the mouth of the Chariton river and back. The American Fur Company began to use steamers in 1830, and from then until the advent of railways the steamboat on the Missouri was one of the most important factors in the development of the Northwest. The trafic was at its beight in 1858 , when no fewer than 60 regular packets were engaged in it, but its decline hegan in the following year with the completion oi the Hannibal \& St Joseph railway to St Joseph, Missouri, and 20 years later it had nearly disappeared. In an attempt to regulate railway rates, however, four boats were run bet ween Kansas City and St Louis between 1890 and 1894 by the Kansas City \& Miseouri Transportation Company, and in 1906 the Missouri River Valley Improvement Association was formed at Kansas City. Congress began to make appropriation for the removal of snags about 1838, and forty years later appropriations were begun for a general improvement which in 1884 was placed under the charge of the Missouri River Commission. In 1890 its work was restricted to that part of the river below Sioux City and in 1902 the Commission was abolished. Up to the 3 oth of June 1908 the Federal government had expended $\$ 11,398,881$ for the improvement of the siver.
See H. M. Chittenden, History of Early Napipation on the Mfissourt Riper (New York, 1903); P. E. Chappel, A llistary of the Missourt River (Kanses City, 1gos); J. V. Brower, The Missouri River and
its Ubmost Source (Se Paul, 1896); J. M. Hanson, The Congmast of the Missouri (New York, 1909); L. M. Jones, "The Improvement of the Missouri River and its Usefulness as a Traffic Route," in Annals of the Amertan Academy of Politioal and Sacial Science (Jan. rgo8), and the Anrwal Reports of the Chief of Engineers, O.S. Army.

MISTAKE (L.e. take amiss), a misconception or error in thought or action. In law, the word is often used in the sense of ignorance or error, as when it is said that mistake of law uffords no excuse for crime. In the law of contract, mistake is of special importance, and may occur either in a matter of law or in a matter of fact. In general, a mistake of law cannot he alleged in avoidance of the consequences of contracts or acts, althodgh there are exceptions in which relief may be given. Mistake of fact, however, may be ground for avoidance, provided the mistake was not due to negligence. (See further Contract.)

MistLeror ${ }^{1}$ (Viscum albwm), a species of Viscum, of the botanical family Loranthaceac. The whole genus is parasitical, and contains about twenty species, widely distributed in the warmer parts of the old world; but only the mistletoe proper is a native of Europe. It forms an evergreen bush, about 4 ft . in length, thickly crowded with forking branches and opposite leaves, which are about 2 in . long, obovate-lanceolate in shape and yellowish-green; the dioccious flowers, which are small and nearly of the same colour but yellower, appear in February and March; the white berry when ripe is filled with a viscous semitransparent pulp (whence bird-lime is derived). The mistletoe is parasitic both on deciduous and evergreen trees and shrubs. In England it is most ahundant on the apple-tree, but rarely found on the oak. Poplars, willows, lime, mountain-ash, maples, are favourite habitats, and it is also found on many other trees, including cedar of Lebanon and larch. The fruit is eaten by most frugivorous birds, and through their agency, particularly that of the species which is accordingly known as missel-thrush or mistle-thrush, the plant is propagated. The Latin proverb has it that "Turdus malum sibi cacat"; but the sowing is really effected by the bird wiping its beak, to which the seeds adhere, against the bark of the tree on which it has alighted. The viscid pulp soon hardens, affording a protection to the seed; in germination the sucker-root penetrates the bark, and a connexion is estahlished with the vascular tissue of the first plant. The growth of the plant is slow, and its durability proportionately great, its death being determined generally by that of the tree on which it has established itself. The mistletoe so extensively used in England at Christmas is largely derived from the apple orchards of Normandy; a quantity is also sent from the apple orchards of Herefordshire.

Pliny (H. N., xvi. 92-95; xxiv. 6) has a good deal to tell about the viscum, a deadly parasite, though slower in its action than ivy. He distinguishes three "genera." "On the fir and larch grows what is called stelis in Euboea and l:yphear in Arcadia." Viscum, called dryos hyphear, is most plentiful on the esculent oak, hut occurs also on the robur, Prunus sytuestris and tercbinth. Hyphear is useful for fatening cattle if they are hardy enough to withstand the purgative effect it produces at first; viscum is medicinally of value as an emollient, and in cases of tumour, ulecrs and the lifee. Pliny is also our authority for the reverence in which the miste oe when found growing on the robur was held by the Druids. Prepared as a draught, it was used as a cure for sterility and a remedy ior poisons. The mistletoe figures also in Scandinavian legend as having furnished the material of the arrow with which Batler (the sun-god) was slain by the blind god Hoder. Most probably this story had its origin in a particular theory as to the meaning of the word mistletoe.

MISTRAL, FREDERIC ($1830-\quad$), Provencal poet, was born at Maillane (Bouches-du-Rhone) on the 8th of September 1830. In the autobiographical sketch prefixed to the Isclo dor (1876) he tells us, with great simplicity and charm, all that is worth knowing of his early life. His father was a prosperous farmer,
${ }^{1} \mathrm{Gr}$. Lla or t $\ddagger 6$, hence Lat. viscum, Ital. vischio or visco, and Fr. gui. The Engish word is the O.E. mistedean. Icelandic mistedteinm, in which tan or teinn means a twis, and misted may be aspociated either with mist in the mense of log, gloom, because of the prominence of mistletoe in the dark season of the year, or with the same root in the sense of dung (frmm the character of the berries or the supposed mode of propagation).
and his mother a simple and religions woman of the people, who first taught him to love all the songas and hagends of the country. In these early days on the farm he received thoee first impressions which were destined to constitute one of the chief bearties of Mintio. In his ninth year Mistral was ant to a small school at Avignon, where be was very wretched at first, regreting the free outdoor life of the country. Gradually, however, bis studies attracted him, above all the poetry of Homer and Virgil; and be translated the latter's first eclogue, showing his efforts to a young schoolfellow, A. Mathieu, who was destined to play a part in the foundation of the Felibrige. When Roumanilie (see Provençar Literatuez) became an usher at Mistral's schood, the two, fired by the same love of poetry and of their native Provence, soon became close friends. "Voiki l'aube que mon tme attendait pour s'Éveiller à la lumiere," be exclaimed, on reading Roumanille's first dialect poems; and be goes on to say: "Embrases tous les deux du désir de relever le parler de nos mères, nous étudiámes ensemhle les vieux livres Provencaur, et nous nous proposames de restaurer la langue selon ses traditions et caractères nationaur." On leaving school (1847) he returned to Maillane, where he sketched a pastoral poem in four cantos (Li MCissoun). With all his love for the country, he soon realized that life on a farm did not satisfy his ambition. So he went to study law at Air, where he contributed his first published poems to Roumanille's Li Prouncongalo (1852). He had become licancit en droit the year before, but now decided on a literary career. The Félibrige was founded in 1854, and five years later appeared Mircio, the masterpiece not only of Mistral, but so far of the entire school. The tale itself was nothing-the old story of a rich girl and her poor lover, kept apart by the girl's parents. Mireille, in despair, wanders along a wide tract of country to the church of the TroisMaries, in the hope that these may aid her. But the effort was too great: she sinks erhausted, and dies in the presence of her stricken parents and her frenzied lover. Into this simple web Mistral has woven descriptions of Provencal life, scenery, character, customs and legends that raise the poem to the dignity of a rustic epic, unique in literature. Nothing is forced: every detail is filled into the framewark of the whole with a cunning which the poet was never again to attain. There is no deep psychology in the characters, but then the people depicted are simple rustic folk, who wear their hearts on their sleeve. Calendau (1867), the story of a princess held in bondage by a ruthless brigand, and eventually reacued by a youthiul hero, is a comparative failure. The description of scenery is again masteriy; but the old lore, which had charmed all readers in Mirdio, here becomes forced, not inevitable. The charactens are mere symbol-indeed the whole poern is obviousily an allegory, the princess standing for Provence, the brigand for France, and the young lover for the Felibrige Mistral lavished enormous labour on this work, which probably accounts for its lack of spontaneity, as also for the love he bears it. In ${ }^{1876}$ (the same year in which he married Mlle Marie Riviere, of Dijon) was published the volume $L i s I$ sclo $d^{\prime} \mathrm{O}_{\mathrm{r}} \longrightarrow$ collection of the shorter poems Mistral had composed from the year 1848 onwards. Here he is again at his very best. Old legends, sirventes (mostly, as in medieval times, poems with a tendency), and lyrics-all are admirable. Even the piaces d'accasion may be reckoned with the best of their kind. Two pieces, the Compe and the Princesse, aroused violent controversy on their first appearance. They reproduce, in effect, the theme of Calendom, and Mistral was accused of trying to sow discond between the north and south of France. Needless to say he was altogether innocent of such a design. Nerto (1884) is a charming tale of Avignon in the olden days, in which a girl's purtty triumphs over her lover's base designs and leads him to nobler thoughts. There is Bitie individuality in the characters, which should rather be regarded as types; and we feel no terror or pity at the tragic close. But we are carried along by Mistral's art and by the brilliancy of his espisodes; and he achieved the object he had in view: a pretty tale imbued with the proper touch of local colour and with the true spirit of romance. The play La Raise Jawo (z 8 go) is a complete faiture, if judged from the dramatic
standpoint: it is rather a brilliant panorama, a serics of stage pictures, and the characters neither live nor arouse our sympalby. In the great epic on the Rhone (Lon Poummo dise Rowes, r897) the poet depicts the former barge-life of that river, and intertwines his marrative with the legends clustering round its banke, and with a graceful love episode. For the first time he employa blank verse, and uses it with great mastery, but again the ancient bore is overdone. A splendid piece of work is Low Treser dom Falibrige (r886). In there two volumes Mistral has deposited with loving care every word and phrase, every proverb, every scrap of legend, that be had gathered during his many years' journeyings in the south of France. In 1904 he was awarded one of the Nobel prizes for literature.
An excellent literary appreciation of the poet is that by Gaston Paris, "Frédéric Mistral " (originally in the Revue de Paris (Oct. and Nov. 1894); then in Penseurs el Potes (Paris, 1896). More elaborate accounts are Welter, Fréderic Mistral (Marburs 1899): and Downer, Proleric Mistral (New York, 1901), with a full bibtiography.

MISTRAS, a local wind similar to the bore (q, v.), met with on the French Mediterranean coast. The warm Gulf of the Lion (Colfe du Lion) has to the north the cold central plaseau of France, which during winter is commonly a ceatre of high berometric preasure, and the resulting pressure gradient causes persistent currents of cold dry air from the north-west in the intermediate zone. The mistral occurs along the coast from the mouth of the Ebro to the Gulf of Genoa, but attains greatest strength and frequency in Provence and Languedoc, ice the district of the Rhone delta, where it blows on an average one day out of two; the record at Marseilles is 175 days in the year. It is usually associated with cloudless skies and brilliant sumshine, intense drymess and piercing cold. With the passage of a cyclone over the gulf, or a rapid rise of pressure following a fall of snow on the central plateau, the mistral develops into a stormy wind of great violence.

HISTRESS (adapted from O. Fr. maistresse, mod mathasse, the feminine of maistre, matlre, master), a woman who has authority, particularly over a household. As a form of address or term of courtesy the word is used in the same sense as " madam." It was formerly used indifferemely of married or unmarried tromen, but now, written in the abbreviated form "Mrs" (pronounced "missis"), it is practically confined to married wromen and prefixed to the surname; it is frequently retained, however, in the case of spinster cooks or housckeepers, as a title of dignity; as the female equivalent of "master" the word is used in other senses by analogy, a.g. of Rome as "the mistress of the world," Venice "che mistress of the Adriatic," scc. From the common use of "master" as a tescher, " mistress " is similariy used. The.old usage of the word for a ladylove or sweetheart has degenerated into that of paramour. "Miss" a shortened form of " mistress," is the term of address for a girl or unmarried woman; it is prefixed to the surname in the case of the eldeat or only daughter of a family, and to the Christian names in the case of the younger daughters.

MTTAU (Ruasian, Milava; Lettish, Yelgava), a town of Russia, capital of the government of Courland, 29 m . by rail S.W. of Riga, on the right bank of the river Aa, in a fertile plain which rises only 12 ft . above sea level, and has probably given its name to the town (Mite in der Awe). Pop. ($\mathbf{1 8 9 7}$), 35, or r inhabitants, mainly Germans, but including also Jews (6500), Letts (5000) and Ruscians At high water the plain and sometimes also the town are inrundated. Mitan is surrounded by a canal occupying the place of former fortifications. It has regular, broad streets, bordered with the mansions of tbe German nobllity, who reside at the capital of Courland. Mitau is well provided with educational institutions, and is also the seat of the Lettish Literary Society. The old castle (1266) of the dukes of Courland, sitmated on an island in the river, was destroyed by Duke Btren, who erected in its place ($1738-1772$) a spacious palace, now cocupied by the governor and the courts. Manafactures are Few, those of wax-cloth, linen, soap, ink and beer being the most important.

Mitau is supposed to have been founded in 1266 by Conrad

Mandera, graod-master of the order of the Brethren of the Sword. In 1345, when it was plundered by the Lithuanians, it was already an important town. In 156 I it became the residence of the dukes of Courland. During the 17th century it was thrice taken by the Swedos. Russia annexed it with Courland ir 1795. It was the residence (1798-1801 and 1804-1807) of the connt of Provence (afterwards Louis XVLIL.). In 1812 it was taken by Napoleon L.

MITCELAM, a suburb of London, in the Wimbledon parliamentary division of Surrey, England, 10 m . S. of London Bridge by the London, Brighton \& South Coast railway. Pop. (1901), 14,903. Mitcham Common covers an area of 480 acres, and affords one of the best golf courses near London. The neighbourhood abounds in market gardens and plantations of aromatic herbs for the manufacture of scents and essences.

MITCHEL, DRMSBY MACKNIGHT (1809-1862), American astronomer, was born at Morganfield, Kentucky, on the 28th of July, 1809 . He began life as a clerk, hut, obtaining an appointment to a cadetship at West Point in $\mathbf{1 8 2 5}$, he gradunted there in 1829, and acted as assistant professor of mathematics 1829-1832. He was then called to the bar, hut in 1836 became professor of mathematics and natural philosophy at Cincinnati College. In 1845 be was made director of an observatory established there through his initiative, and also in 1859 superintendent of the Dudley observatory at Albany. In 1861 he took part in the war as brigadier-general of volunteers, and for his skill in seizing certain important strategic points was on the inth of April 1862 made major-general. He died of yellow fever at Beaufort, South Carolina, on the 30th of October 1862. He founded the Sidereal Messenger in 1846, was one of the first to adopt (in 1848) the electrical method of recording observations, and published besides other works, The Orbs of Heasen (1848, \&c.), and Popular Astronomy ($\mathbf{1 8 6 0}$), both reissued at London in 1892.
See Ormsby MacKnight Mitchod; a Biographicat Narrative, by his son, F. A. Mitchel (1887); P. C. Headley, The Patrut Boy (i86s); A mer. Journal of Science, xxiv. 451 (1862); Month. Notices Ros. Astr. Society. wxilii. I33. xacrvi. 121 (C. Abbe); Astr. Nach., No. 1401 (G. W. Hough).

MITGHELL, DONALD GRANT (1822-1908) American author, was born in Norwich, Connecticut, on the 12 th of April 1822. He graduated at Yale College id 1841; studied law, but soon took up literature. Throughout his life be showed a particular interest in agriculture and landscape-gardening, which be followed at first in pursuit of health. He produced books of travel, volumes of essays on rural themes, of which My Farm of Edgewood (1863) is the best; sketchy studies of English monarchs and of English and American literature; and a character-novel entitled Doctor Johns (1866) \&c.; but is best known as the author (under the pseudonym of " It Marvel"), of the sentimental essays contained in the volumes Reveries of a Bachelor, or a Book of the Heart (1850), and Dream Life, a Fable of the Scosoms (1851).
MITCARLL, MARLA (1818 -1889), American astronomer, was born of Quaker ancestry on the island of Nantucket on the ist of August 1818. Her father, William Mitchell (1791-1869), was a school teacher and self-taught astronomer, who rated chronometers for Nantucket whalers, was an overseer of Harvard University (1857-1865), and for a time was employed by the United States Coast Survey. As carly as 183I (during the annular eclipse of the sun) she had been her father's assistant in his observations. On the ist of October 1847 she discovered a telescopic comet (seen by De Vico Oct. 3, by W. R. Dawes Oct. 7, by Madame Rumker Oct. 11), and for this discovery she received a gold medal from the King of Denmark, and was elected (1848) to the American Academy of Arts and Sciences, and (1850) to the American Association for the Advancement of Science. In I86I she removed from Nantucket to Lynn, Where she used a large equatorial telescope presented to her by the women of America; and there she lived until 1865, when she became professor of astronemy and director of the observatory at Vassar College; in 1888 she became professor emeritus In 1874 she began making photographs of the sun, and for years the made a special study of Jupiter and Saturn. She died at

MITCHELL, S. W.-MITE

Lynn on the 28th of June 1889. In 1908 an obervatory was established in ber honour at Nantucket.
See Phebe Mitchell Kendall. Maria Michell: Life, Leters and Journals (Boston, 1896): In MA Momiam (Poughkeeptic, 1889). by her pupil and successor at Vassar. Mary W. Whitney: aod a sketch by her brother, Henry Mitchell (1830-1902), himseff a well-known hydrographer, in the Proceedings of the American Acaderny of Arts and Sciences, vol. xxy. (1889-1890), pp. 331-343.

MITCHELL, SILAS WEIR ($1830-$), American physician and author, son of a Philadelphia doctor, John Kearsley Mitchell (1798-1858), was born in Philadelphia on the 1 sth of February 1830 . He studied at the university of Pennsylvania in that city, and received the degree of M.D. at Jefferson Medical College in 1850 . During the Civil War he had charge of nervous injuries and maladies at Turner's Lane Hospital, Philadelphia, and at the close of the war became a specialist in nervous diseases. In this field Weir Mitchell's name became prominenuly associated with his introduction of the "rest cure." subsequently taken up by the medical world, for nervous diseases, particularly hysteria; the treatment consisting primarily in isolation, confinement to bed, dieting and massage. In 1863 he wrote a clever short story, combining physiological and psychological problems, entitled "The Case of George Dedlow," in the Allantic Monthly. Thenceforward Dr Weir Mitchell, as a writer, divided his attention between professional and literary pursuits. In the former field he produced monographs on rattlesnake poison, on intellectual hygiene, on injuries to the nerves, on neurasthenia, on nervous diseases of women, on the effects of gunshot wounds upon the nervous system, and on the relations between nurse, physician, and patient; while in the latter he wrote juvenile stories, several volumes of respectable verse, and prose fiction of varying merit, which, however, gave him a leading place among the American authors of the close of the 19th century. His historical novels, Hugh Wynne, Free Quaker (1897), The Adventures of François (1898) and The Red City (1909), take high rank in this hranch of fiction.

HITCHELL, SIR THOMAS LIVINGSTONE ($1792-1855$), Australian explorer, was born at Craigend, Stirlingshire, Scotland, on the 16th of June 1792. From 1808 to the end of the Peninsular War he served in Wellington's army, and was raised to the rank of major. He was appointed to survey the battlefields of the Peninsula, and his map of the Lower Pyrenees is still admired. In 1827 he was appointed deputy surveyor-general, and afterwards surveyor-general of New South Wales. He made four exploring expeditions between 1831 and 1846, and discovered the Peel, the Namoi, the Gwyder and other rivers, traced the course of the Darling and Glenelg, and was the first to penetrate into that portion of the country which he named Australia Felix His last expedition was mainly devoted to the discovery of a route between Sydney and the Gulf of Cappentaria, and during the journey he explored the Fitzroy Downs, and discovered the Balonne, Victoria, Warrego and other strenms. In 1838, while in England, Mitchell published his Three Expeditions into the Interior of East Australia. In 1839 he was hnighted and made a D.C.L. of Oxford. During this visit he took with him some of the first specimens of gold and the first diamond found in Australia. In 1848 the narrative of his second expedition was published in London, Journal of an Expedition into the Interior of Tropical Australic. In 1851 he was sent to report on the Bathurst goldfields, and in 1853 he again visited England and patented his boomerang propeller for steamers. He died at Darling Point, Sydney, on the sth of October 1855.

Besides the above works, Mitchell wrote a book on Georrophical and Hititary Surveying (1827), an Axulralian Geography, and a transIntion of the Lusiad of Camoens. During his tenure of office as eurveynr-general be published an admirable tap (atill in use) of the settled districte of New South Wales.

MITCEKKLI, a city and the county-seat of Davison county, South Dakota, U.S.A., about 70 m . W.N.W. of Sioux Falle. Pop. (1005), 5719 ; (1910), 6515. Mitchell is served hy the Chicago, Milwaukee \& St Paul and the Chicago، St Paub, Minneapolis \& Omaha railways. Among its buildings and institutions are the city hall, the Federal building a Carnegie library, a
houpital, and a samhorium. Mitchell is the seat of the Dekota Wesleyan University (1885 ; Methodist Episcopal). At Mitchell is a "corn palace," which is decorated each autumn with split ears of Indian corn, and is the centre of an annoal festival, held in September and October. The city is an important shipping point for grain and livestock, and has a large wholesale trade. There are railway repair shops of the Chieago, Milwaukee 2 St Paul railway, machine shops, and manufactories of bricks and dressed Inmber. Mitchell was settled in 1879 and chartered as a city in 1883.

MrTcHatsiown, a matket town of Co. Cork, Ireland, situated between the Rilworth and Galty Momatains, on a branch of the Great Southern \& Western rallway. Pop. (1901), 2146. Here is the Protestant Kingston College, a home for poor gentlefolk, founded by James, Lord Kingston, in 1760 The seat of the earls of Kingston was built in 1823. It is a massive castellated structure, among the finest of its hind in Ireland. The Mitchelstown limestone caves, exhibiting beautiful stalactite formations, are 6 m . distabt in Co. Tipperary (4.s.). On the 9th of September 1887 Mitchelstown was the scene of a riot in connexion with the Irish Nationalist "plan of campaign." The police were compelled to fire on the rioters, and two men were killed, after which the coroper's jury brought in a verdict of wilful murder ageinst the police. This verdict was igaored by the government, and subsequently quashed by the Queen's Bench in Dublin, but additional feeling was roused in respect of the incident owing to 2 message later sent by Mr Gladstone ending with the words "Remember Mitchelstown."

MITR a name applied to an order of small Arschnida, with which this articke deals, and to a coin of very slight value. The origin of both would appear to be ultimately the same, viz. 2 root mei, implying something exoeedingly small. It has been suggested that the name for the animal comes from a secondary root of the root mei-, to cut, whence come such words as Gorh. maitan, to cut, and Ger. messer, knife. In this case mite woold menn "the biter" or "cutter." The coin was originally a Flemish copper coin (Dutch wijt) worth one-third or, according to some authoritick a smaller fraction of the Flemish punaing, penny. It has become a comonon expression in English for a coin of the smallest value, from its use to transtate Gr. 入envtr, two of which make a mospturys, tramalated "farthing" (Mark rii. 43).

In 200logy, " mite" is the common name for misute members of the class Arachnida (q.s.), which, with the ticks, cometitute the order Acari. The word " mite," bowever, is merdy a popular and convenient term for certain groups of Acari, and does not connote a natural assemblage as contrasted with the ticks (q.a.). Mites are either frec-living or parasitic througbout their Hives or parasitic at certain periods and free-living at others. They are almost universally distribsted, and are found wherever terrestrial vegetation, even of the lowliest kind, occurs. They are spread from the arctic to the antarctic hemiophere, and inhabit alike the land, fresh-water streams and ponds, brackiah marshes and the sea. The largest species, which occar in the tropics, reach barely half an inch in length; while the amallest, the mogt diminutive of the Arthropoda, are invisible to the naked eye.
Mites are divided into a considerable number of familics. The Bdellidae (Bdella) are free-living forms with long antenniforma palpi. The large tropical forms above mentioned belong to the genus Trombidium of the family Trombidiidae. The members of this genus are covered with velvety plush-like hairm, often of an exquisite crimson coloar. The legs are adapted for crawling or running and the palpi are raptorial. They are non-parasitic in the adult stage; but immature individuals of a British species (T. holosericencm) are parasitic upan various animals (see Hanvest BUG). The Tetranychidae are nearly related to the last. A well-known example, Tcrasychas telarius, spins webs on the backs of leaves, and is sometimes called the money spider. The fresh-water mites or Hytrachnidae are generally beautifully coloured red or green, and are commonly globular in shape. Their legs are fumished what
lang hairs for swimming. The marine mittes of the family Helacasidae, on the contrary, are not active swimmers but maerely creep on the stens of seaweeds and zoophytes The Gempasidae are mostly freeliving formas with a thick ezookeieton, and are allied to the Irodidace or ticke (g3.). A common specien is Gamasus coleoptratormm, the temades and young of which may be found upon the caramon dung-beetle. The Oribatidese or beatio-paites, so called from their resemblance to minute beetlos, ase non-parasitic, and often go through remarkshie metamorphones during development. The Sarcoptidue, as stated below, are mostly parasitic forms. Some membens of this family, however, live in decaying animal substances, the best known perhaps being the cheese-mite (Tyroglyphus siro) which infestes cheese, especially Stiton, in thousands. An allied species (T. entomophagus) often causes great damage to collectiopss of ineocts by destroying the dried specimens. They may be eesily exterminated by application of benvine, which does not harpo the contents of the cabiset.

From the economic standpoint the most important mites are thove which are parasitic upon mamonals and birds. They beloag to the four fismilies, Gamasidnc, Trombidiidac, Surcoptidae and Demodicidac. Most of the Gamasidae are free-living mites. The inemily, however, contains so aberrant genus, Devmanyssws, of which several species have been described, altbough they are all perhaps merely verioties of one and the same species commonly known as D. gallinae or D. avium. This species is found in fowlhouses, dovecotes and bird-cages. During the day they lurk in cracks in the floor, walls or perches, and emerge at night to attuck the roosting birds. They are a great pest, and frequently do mach damage to birds both by sucking their blood and by depriving them of rest at night. They are sometimes transferred from birds to mammaks The Trombididase also are mostly freeliving predacoous mites. A few, bowever, are parasitic upon mammals and bircts, the bett-known beting Trombidium holosuricoum, the larva of which attacks human beings, as well as chickens and other birds, sometimes producing considerable moortality amongst them (see Hisvest Buc). Another genus, Cheyleticllo, affects rabbits as well as birds. Birds are also attacked by many species of Sarcoptidae, which according to the organs infected are termed plumiolae (Analgosinae), epidermicolae (Epidernoptinse), and cysticolae (Cytoditinse). The Analgesinae (Pterolichuss, Aralges) live almost wholly upon and between the barbules of the feathers. They are found in nearly overy species of bird without apparently affecting tbe health in any way. The Epidermoptinae (Efidermoptes) occur on diseased fosese and live, as their name indicates, upon the skin at the base of the feathers, where theh presence gives rise to an arcomulation of yellowish scalea. The Cytoditinae (Cytodites), on tbe other hand, live in the subcutaneous or intermuscular conpective thssue round the respiratory organs, or in the air sacs, espectally of gallinaceous species. They also penetrate to certain internal organs, and may become encysted and give rise to tubercle-like nodules. Sometimes they exist in surh quantities in the air pamages as to cause coughing and asphyxia.
The catabeous miltes, mentioned above, and others akin to them, produce no very marked disturbance in the skin of the species they infest. They merely suck the blood or feed upon the featbers, scurf and desquamating epidernis. Hence they are termed "non-psoric" mites. A cerrain number of species, bowever, called in contradistinction "psoric" mites, give rise by their bites, by the rapidity of their multiplication, and by the excavation of galleries in the skin, to a highly contegious diease know as scables or mange, which if not treated in time produces the gravest results. These mites belong exclusively to the Sarcoptidse and Demodicidae. A variety of species are responsibie for Sarcoptic mange, Sarcoples mutans producing it in the feet of gallinateous and passerine birds by marrowing beneath the scales and giving rise to a crusted exudathen which pushes up beneath and between the scales. Feather scables or deptuming scabies of poultry is caused by another appectes S. Lamis. Three genera of Sarcoptidne, namely Sarcoptes Cherompas and-Poeroples cause mange or scabies in mammals,
the manga paoduced by Sorcopas being the most serious form of the disease, because the females of the species which produces it, Sarcowes acobici, burnow beneath the stin and are more difficult to reach with acaricides. A considerable number of varieties of this species have been named after the bosts upoo which they most commonly and typicaliy occur, such as S. scabiai homsinis, equi, bowis, caprac, oois, comedi, lupi, mulpis, scc-; but they are not restricted to the mammals from which their names bave been derived and structural differences between them are often difficult to define and sometimes non-existant. Under favourable conditions the multiplication of this species is very rapid. It has been computed indeed that a single pair may give rise to one million and a half individuals in about three months. Psoroples lives in the epidernie incrustations to which it gives rise, without, however, excavating subcutaneous burrows. One species, P. commonis, is known to affect various domestic animals. Of the genus Chorioples two species have been described on domestic animals, viz. Ch. symbiotes, which has the same mode of life as Psoroples communis and Ch. cynotis, which has been detected only in the ears of certain carnivora such as dogs, cats and ferrets. Mange, if taken in time, can be cured by applications of sulphur ointment or of sulphur mixed with an animal or vegetable ail. Mites of the family Demodicidae give rise to a stin disesse called "Demodecic or follicular mange," which is often serious and always difficult to cure on account of the deep situation taken up by the perasites. These infest the hair follicles and sebaceous glands, and are therefore termed Demoder folliculorum. These mites differ greatly from those previously noticed-in the reduction of their legs to short threejointed tubercles, and in the great elongation of the abdomen to form an annulated fiexibie postanal area to the body. They live not uncommonly in small numbers in the skin of the human face and their presence may never be detected. They also occur on dogs, pigs and other domesticated animals, as well as on mice and bats, and numerous varieties named after their hosts, hominis, basis, camis, cati, \&c., have been described, hut they apparently differ from each other, principally in size.

The mites of the family Eriophyidae or Phytoptidae produce in various plants pathological results analogous to those produced in animals by parasitical Sarcoptidae and by Demodicidae. As in the Demodicidae the abdomen is elongate and annulate, hut the Eriophyidae difier from all other mites in having permanently lost the last two pairs of legs. The excrescences and patches they produce on leaves are called "galls," the best known of which are perhaps the nail-galls of the lime caused by Eriophyes tilise. A very large number of species have been described and named after the plants upon which they live. They often inflict very considerable loss upon fruit-growers by destroying the growing buds of the trees.
(R.1.P.)

MITFORD, MART RUSSELL (1787-1855), English novelist and dramatist, only daughter of Dr George Mitford, or Midford, was born at Alresford, Hampshire, on the 16 th of December 1787 . She retains an honourable place in English literature as the authoress of $O_{u r}$ Village, a series of sketches of village scenes and characters unsurpassed in their kind, and as fresh as if they had been written yesterday. Her father was a curious character. He first spent his wife's fortune in a few years; then be spent the greater part of $\{20,000$, which in 1797 his daughter, then at the age of ten, drew as a prize in a lottery; then he lived on a small remnant of his fortune and the proceeds of his daughter's literary industry. The father kept fresh in his daughter the keen delight in incongruities, the lively sympathy with seff-willed vigorous individuality, and the womanly tolerance of its excess, which inspire so many of her sketches of character. Miss Mitford lived in close attendance on him, refused all holiday invitations because he could not live vithout her, and worked incessantly for him except when she broke off her work to read him the sporting newspapers. Her writing has all the charm of perfectly unaffected spontaneous humour, combined with quick wit and exquisite literary skill. Miss Mitford met Elizabeth Barrett (Mrs Browning) in 183°, and the acquaintance ripened into t warm friendship. The strain of poverty becan to tell on her
work, for although her books sold at high prices, her income did not keep pace with her father's extravagances. In 1837, however, she received a civil list pension, and five years later her father died. A subscription was raised to pay his debts, and the surplus increased the daughter's income. Miss Mitiord eventually removed to a cottage at Swallowield, near Reading, where she died on the roth of January 1855-

Miss Mitford's youthful ambition had been to be " the greatest English poetess," and her first publications were poerss in the manner of Coleridge and Scott (Miscellaneous Verses, 18io, reviewed by Scott in the Quartaly; Christime, a metrical tale, 1811; Blanche, 1813). Her play Julion was produced at Covent Garden, with Macready in the title-role, in 1823; The Foscari was periormed at Covent Garden, with Charles Kemble as the hero, in 1826; Riensi, 1828 , the best of her plays, bad a run of thirty-four nights, and Miss Mitford's friend, Talfourd, imagined that its vogue militated against the success of his own play Ion. Charies the First was refused a licence by the Lord Chamberlain, but was played at the Surrey Theatre in 1834. But the prose, to which she was driven by domestic necessities, has rarer qualitut than her verse. The first series of Owr Village sketches appeared in 1824, a second in 1826, a third in 1828, a fourth in 1830, a fifth in 1832. Our Village was several times reprinted; Belford Regis, a novel in which the neighbourhood and society of Reading were idealized, was published in 1835.

Her Recollections of a Literary Life (1852) is a series of canseries about her favourite books. Her talk,was said by her friends, Mrs Browning and Hengist Horne, to have been even more amusing than her books, and five volumes of her Life and Lellers, published in 1870 and 1872, show her to have been a delightuul letter-writer.

EITFORD, WILLIAM (1744-1827), English historian, was the elder of the two sons of John Mitford, a barrister, who lived near Beaulieu, at the edge of the New Forest. Here, at Exbury House, his father's property, Mitiord was born on the soth of February 1744. He was educated at Cheam School, under the picturesque writer William Gilpin, but at the age of fifteen a severe illness led to his being removed, and after two years of idleness Mitford was sent, in July 1761 , as a gentleman commoner to Queen's College, Oxford. In this year his father died, and left him the Exbury property and a considerable fortune. Mitford, therefore, being " very much his own master, was easily led to preier amusement to study." He leit Oxford (where the only sign of assiduity he had shown was to attend the lectures of Blackstone) -without a degree, in 1763 , and proceeded to the Middle Temple. But when be married Miss Fanny Molloy in 1766, and retired to Exbury for the rest of his life, he made the study of the Greek language and literature his hobby and occupation. After ten years his wife died, and in October 1776 Mitford went abroad. He was encouraged by French scbolars whom he met in Paris, Avignon and Nice to give himself systematically to the study of Greek history. But it was Gibbon, with whom he was closely associated when they both were officers in the South Hampshire Militia, who suggested to Mitford the form which his work should take. In 1784 the first of the volumes of his History of Grecce appeared, and the fifth and last of these quartos was published in 1810, after which the state of Mitford's eyesight and other physical infirmities, including a loss of memory, forbade his continuation of the enterprise, although he painfully revised successive new editions. While his book was progressing, Mifford was a member of the House of Commons, with intervals, from 1785 to 1818 , and he was for many years verderer of the New Forest and a county magistrate; but it does not appear that be ever visited Greece. After a long illness, be died at Exbury on the roth of February 1827. In addition to his History of Greece, be puhlished a few smaller works, the most important of which was an Essay on the Harmozy of Language, 1774. The style of Mitford is natural and lucid, but without the rich colour of Gibbon. He affected some oddities botb of language and of orthography, for which he was censured and whicb he endeavoured to revise. But his political opinions were still more severely treated, since Mitford was an impassioned anti-Jacohin, and his partiality for a monarchy led bim to be
unjast to the Athenians. Hence his Bistory of Greece, after having had no peer in European literaturefor hali a century, feded in interest on the appearance of the wort of Grote. Clinton, too, in his Fasti hollenici, charged Mitford with " a general nestigence of detes," though admitting that in his philosophical range "t he is far soperior to any former writer " on Greek history. Byron, who dilated on Mitford's shortcomings, nevertheless deciared that be was "perhaps the best of all modena historians altogether." This Mitford certainly is not, but his pre-eminence in the little school of English historians who succeeded Hume and Gibboe it would be easier to maintain.

William Mitford's cousin, the Rev. John Mitford (1781-1859), Was editor of the Contloman's Magazine and of various editions of the English poets. For the Freeman-Mitiords, who were also relativen, see Redesdale, Earl of.

Mritilu, an ancient hingdom of India, corresponding to that pertion of Behar lying N. of the Ganses, with an extencion into Nepal, where was the capital of Janakpur. Its early history is obscure, but it has always been noted for its peculiar conservatism and the learning of its Brahmans. They form to this day one of the five clasges of northern Brahmans, and their head is the Maharaja of Darbhange. The language, known as Maithili, is a dialect of Bihari, with an archaic system of grammar and a literature of its own.
MITRRADATES, less correctly Mmirmarrs, a Persian name derived from Mithras (q.v.), the sun-god, and the IndoEuropean root da, "to give," i.e. "given by Mithras" The oame occurs also in the forms Mitradates (Herod. i. i10) and Meherdates (Tac. Amm. 工ii. 10). It was borne by a large number of Oriental kings, soldiers and statesmen. The earieet are Mithradates, the eumuch who helped Artabanus to asassinate Xerres I. (Diod. xi. 69), and the Mithraciates who fought first with Cyrus the Younger and after his death with Artarerres against the Greeks (Xen. Anab. ii. 5, 35; iii. 3, 1-10; iii. 4, 1-5), and is the ancestor of the kings of Pontus. The most important are three kings of Parthia of the Arsacid dynasty, and six (or four) kings of Pontus. There were also two kings of Commagene, two of the Bosporus and one of Armenia (a.D. 35-SI).

Mithradates I. (Assacts VI.), saccessor of his brother, Phraates L, came to the Parthian throse about 175 B.C. The first event of his reign was a war with Eucratides of Bactria, who tried to create a great Greek empire chaza of in the Esst. At last, when Eucratides had been murdered by his son about $\mathbf{5 0}$, Mithredates mas able to cocupy some districts on the border of Bactria and to conquer Arechosia (Kandahar); be is even said to have crossed the Indus (Justin 41, 6; Strabo xi. 515, 517 ; cf. Orokius v. 4, 16; Diod. 33, 18). Meanwhile the Seleucid kingdom was torn by internal dissensions, fostered by Roman intrigues Phraates I. had already conquered eastern Media, about Rhagae (Rai), and subjected the Mardi on the border of the Caspian (Justin 4r, 5; Isidor. Charac. 7). Mithradates I. conquered the rest of Media and advanced towards the Zagros chains and the Babylonian plain. In a war against the Elymacans (in Susiana) he took the Greek town Seleucia on the Hedyphon, and forced their king to become a vassal of the Parthians (Justin 41, 6; Strabo xv. 744). About 141 he must have become master of Babylonia. By Diodors 33, 18 he is praised as a mild ruier; and the fact that from 140 he takes on his coins tbe epithet Philhellen (W. Wroth, Catalogue of the Coins of Parthia, p. 14 seq.; till then he only calls himself "the great king Arsakes ') shows that he tried to conciliate his Greet subjects. The Greeks, however, induced Demetrius II. Nicator to come to their deliverance, although he was much premed in Syria by the pretender Diodotus Tryphon. At first he wat victorious, but in 138 he was defeated. Mithradates setuled bin with a royal household in Hyrcania and gave him his daughter Rhodogune in marriage (Justin 36, 1, 38, 9; Jos. Anb. 13. 5, 11; Euseb. Chron. I. 257; Appian Syr. 67). Shortly afterwards Mithradates I. died, and was succeeded by his sol Pbraates II. He was the real founder of the Arsecid Empire.

Mithradates II. the Greal, king of Parthin (c. 120-88 B.C.), as vad the kingdom from the Mongolian Sacae (Tochari),
who bad cocupled Bactrin and envern Iran, and is said to have extended the limits of the empire (Justin 42, 2, where be is afterwards confused with Mithradates III). He defeated King Artavides of Armenia and conquered seventy valleys; and the prince Tigranes cagne as hostage to the Parthians (Justin 42, 2; Strabo; xi. 532). In an inscription frorn Delos (Dittenberger, Or. gri inscr. 430) he is called "the great King of Kings Arsakes." He aboo interfered in the wars of the dynnsts of Syria (Jos. Ant. xiii. 14, 3). He was the first Parthian king who entered into negotiazions with Rome, then represented by Sulla, practor of Cilicia (92 B.c.).

Miriphoatrs III. murdered his father Phraates III. about 57 B.c., with the assistance of his brother Orodes. He was made king of Media, and waged war against his hrother. but was 8000 deposed on account of his cruelty He took refuge with Gabinius, the Roman proconsul of Syria. He advanced finto Mesopotamia, but was beaten at Seleucia by Surenas, fled into Bebylon, and after a long siege was taken prisoner and killed in 54 by. Orodes I. (Dio Cass. 39, 56; Justin 42, 4i Jos. Bell. i. 8, 7, Anf. 14, 6, 4).
A Parthian king Mithradates, who must have occupied the throne for a ahort time during the reign of Phratea IV., is mentioned by Joo. AmL xvi. 8, 4, in 10 в.c.; another pretender Meherdates was brought from Rome in A.D. 49 by the opponents of Gotarzes, but defeated (Tac. $A n n . x$ xi. $10 . \times$ xii 10 sgq .). The name of another pretender Mithradatea (often called Mithradates IV.) occurs on a coin of the first half of the and century, writen in Aramaic. accoms. panied by the Arsacid titles in Greek (Wroth, Colal. of the Coins of Parthic, p. 219); he appears to be identical with Meherdotes, one of the rival kings of Parthia who fought against Trajan in 116; he died in an attack on Commagene and appointed his son Sanatruces successor, who fell in a battle against the Romans (Arrian ap. Malalas, Chrom. pp. 270. 274).
(Ed. M.)
The kings of Pontus were descended from one of the seven Persian conspirators who put the false Smerdis to death (see Merese of
Posturb Dirtus 1.). According to Diodorus Siculus, three members of his family-Mithradates, Ariobarzanes, Mithradates-were successively rulers of Cius on the Propontis and Carine in Mysia. The last of these was put to death in 302 B.c. by Antigonus, who suspected him of having joined the coalition against him. He was succeeded by his son Mithradates I. or III.(if the two dynasts of Cius be included') the founder (kilocns) of the Pontic kingdom, although this distinction is by some attributed to the father. Warned by his friend Demetrius, the son of Antigonus, that he was threatened with the same fate as hisfather, he fled to Paphlagonia, where he seized Cimiata, a fort at the foot of the Oigassys range. Being joined by the Macedonian garrison and the neighbouring populations, he conquered the Cappadocian and Paphlagonian territories on both sides of the Halys and assumed the title of king. Before his death he further enlarged Pontic Cappadocia. He was succeeded by Ariobarzanes, who left the throne to Mitribadates II. (c. 256-190, according to Meyet, Milhradates II. and III.), a mere child. Early in bis reign the Gauls of Galatia invaded his territory. Mithradates was at the battle of Ancyra (c. 241), in which he assisted Antiochus Fierax against his brother Seleucus Callinicus, in spite of the fact that he had married the daughter of the latter with Greater Phrygia as her dowry. His two daughters, both named Laodice, were married, one to Antiochus the Great, the other oo his cousin Achaeus, a dynast of Asia Minor. He unsuccessfully attacked Sinope, which was taken by his successor Pharnaces, the brother (not the son) of Mitripndates III. (169-121), surnamed Philopedor, Philadelphus, and Eucrgetes. According to Meyer, however, there were two kings (Mithradates IV. Pkilopator and V. Eucrgetes). He was the first kjing of Pontus to recognize the suzerainty of the Romans, of whom he was a loyal ally. He assisted Attalus II. of Pergamum to resist Prusias II. of Bithynia; furnished a contingent during the Third Punic War; and aided the Romans in ohtaining possession of Pergamum, bequeathed to thern by Attalus III., hut claimed hy Aristonicus, a natural son of

[^43]Eumenes II. Both Mithradates and Nicomedes of Bithynfa demanded Greater Phrygia in return for their services. It was awarded to Mithradates, but the senate refused to ratify the bargain on the ground of bribery. For several years the kings of Pontus and Bithynia bid against each other, till in 116 Phrygia was declared independent, although in reality it was treated as part of the province of Asia. Mithradates appears to have taken it without waiting for the decision of the senate. He invaded Cappadocia, and married his daughter to the young king, Ariarathes Epiphanes; bought the succession from the last king of Paphlagonia, and obtained a kind of protectorate over Galatia. He was a great admirer of the Greeks, who called him Euergetes; he removed his capital from Amasia to Sinope, and bestowed liberal gifts upon the temples of Delos and Athens. At the beight of his power he was assassinated by his courtiers during a banquet in his palace at Sinope.
Mithleadates VI. Eupalor, called the Great, a boy of eleven, now succeeded his father. Alarmed at the attempts made upon his life by his mother, he fled to the mountains and was for many years a hunter. In ini he returned to Sinope, threw his mother into prison, and put his younger brother to death. Having thus established himself on the throne, he turned his attention to conquest. In return for his assistance against the Scythians, the Greeks of the Cimmerian Bosporus and the Tauric Chersonese recognized his suzerainty. He occupied Colchis, Paphlagonis and part of Galatia; set his son Ariarathes on the throne of Cappadocia and drove out Nicomedes III., the young king of Bithynia. The Romans restored the legitimate kings, and, while apparently acquiescing, Mithradates made preparations for war. He had long hated the Romans, who had taken Phrygia during his minority, and he aimed at driviag them from Asia Minor. The cause of rupture was the attack on Pontic territory hy Nicomedes at the instigation of the Romans. Mithradates, unable to obtain satisfaction, declared war (88 b.c.). He rapidly overran Galatia, Phrygia and Asia, defeated the Roman armies, and ordered a general massacre of the Romans in Asia. He sent large armies into European Greece, and his generals occupied Athens. But Sulla in Greeceand Fimbria in Asia defeated his armies in several battles; the Greek cities were disgusted by his severity, and in 84 he conchuded peace, abandoning all his conquests, surrendering his fleet and paying a fine of 2000 talents. During what is called the Second Mithradatic War, Murena invaded Pontus without any good reason in 83, but was defeated in 82. Hostilities were suspended, but disputes constantly occurred, and in 74 a general war broke out. Mithradates defeated Cotta, the Roman consul, at Chalcedon; but Lucullus worsted him, and drove him in 72 to take refuge in Armenia with his son-in-law Tigranes. After two great victories at Tigranocerta (69) and Artaxata (68), Lucullus was disconcerted by mutiny and the defeat of his lieutenant Fahius (see Lucullos). In 66 he was superseded by Pompey, who completely defeated both Mithradates and Tigranes. The former established himself in 64 at Panticapacum, and was planning new campaigns against the Romans when his own troops revolted, and, after vainly trying to poison himself, he ordered a Gallic mercenary to kill him. So perished the greatest enemy that the Romans had to encounter in Asia Minor. His body was sent to Pompey, who buried it in the royal sepulchre at Sinope.

Ancient authorities have invested Mithradates with a halo of romance. His courage, his bodily strength and size, his skill in the use of weapons, in riding, and in the chase, his speed of foot, his capacity for eating and drinking, his penetrating intellect and his mastery of 22 languages are celebrated to a dcgree which is almost incredible. With a surface gloss of Greek education, he united the subtlety, the superstition, and the obstinate endurance of an Oriental. He collected curiosities and works of art; he assemhled Greek men of letters round him; he gave prizes to the greatest poets and the best eaters. He spent much of his time in practising magic, and it was believed that he had so saturated his body with poisoas that none could injure him. He trusted no one; be murdered
his mothor, his sons, the sister whom he had married; to prevent his harem from falling to his enemies be murdered all his concubines, and his most faithful followers were never safe. For cighteen years he showed himself no unworthy adversary of Sulla, Lucullus and Pompey.
See T. Reidach, Milhridete Expotor (1890; Ger. trans by A. Goetz, ${ }^{8895}$, with the author's corrections and additions); also E. Meycr, Gesthichle des Königreichs Ponlos (1879).
mitiras, a Persian god of light, whose worship, the latest one of importance to he brought from the Orient to Romc, spread throughout the empire and becume the greatest antagonist of Christianity.
I. Hislory and Distribution.-The cult goes back to a period before the separation of the Persians from the Hindus, as is shown by references in the literatures of both stocks, the Avesta and the Vedas. Though but faintly pictured in the Vedic bymns, he is there invoked with Ormazd, or Ahuramazda, the god of the sky, and is clearly a divinity of light, the protector of truth and the enemy of error and falsehood. In the Avesta, after the separation of the Iranian stock from the Hindu and the rise of Zoronstrianism, which elevated Ormazd to the summit of the Persian theological system, his role was mone distinct, though less important; between Ormazd, who reigned in eternal brightness, and Ahriman, whose realm was eternal darkness, he occupied an intermediate position as the greatest of the yauatas, beings created by Ormazd to aid in the destruction of evil and the admunistration of the world. He was thus a deity of the realms of air and light, and, by transfer to the moral realm, the god of truth and loyalty. Because light is accompanied by heat, he was the god of vegetation and increase; be sent prosperity to the good, and annihilated the bad; he was the god of armies and the champion of heroes; as the eneroy of darkness and of all evil spirits, he protected souls, accompanying them on the way to paradise, and was thus a redeemer. Animals and birds were sacrificed and lihations poured to him, and prayers were addressed to him by devotees who had purified themselves by ablution and repeated flagellation. As a god who gave victory, he was prominent in the official cult of Persia, the seventh month and the sixteenth day of other months being sacred to him. His worship spread with the empire of the Persians throughout Asia Minor, and Babylon was an important centre. Its popularity remained unimpaired after the fall of Persia, and it was during the ferment following the conquests of Alexander that the characteristics which mark it during the Roman period were firmly fixed. Mithraism was at full maturity on its arrival at Rome, the only modifications it ever suffered having been experienced during its younger days in Asia.

Modified though never essentially changed, (I) hy contact with the star-worship of the Chaldacans, who identifed Mithras with Shamash, god of the sun,(2) by the indigenous Armenian religion and other local Asiatic faiths and (3) by the Greeks of Asia Minor, who identifed Mithras with Helios, and contributed to the success of his cult by equipping it for the first time with artistic representations (the famous Mithras relief originated in the Pergamene school towards the and century b.c.), Mithraizm was first transmitted to the Roman world during the sst century s.c. by the Cilician pirates captured by Pompey. It altained no importance, bowever, for nearly two centuries. The lateness of its arrival in the West was due to the fact that its centres of influence were not in immediate contact with Greek and Roman civilization. It never became popular in Greck lands, and was regarded by Hellenized nations as a barbarous worship. It was at rivalry with the Egyptian religion. As late as the time of Augustus it was but little known in Roman territory, and gained a firm foothold in Italy only gradually, as a result of the intercourse between Rome and Asia consequent upon the erection of the Easters provinces and the submission and colonization of Mesopotamia. It seems at first to have had relations with the cult of the Great Mother of the Gods at Rome, whose influence served to protect it and facilitate its growth. The cult of Maithras began to attract attention at Rome about the end
of the 180 century A.D. Statius ($c . a$ A.D. 80) mentions the typical Mithraic relief in his Tkebaid (i. 719,720); from Plutarch's (A.D. 46-125) Vite Pompei (24) it is apparent that the worship was well known; and the first Roman reliefs show the characteristics of about the same time.
Towards the close of the and century the cult had begun to spread rapidly through the army, the mercantile class, slaves and actual propagandists, all of which classes were largely composed of Asiatics. It throve especially among military posts, and in the track of trade, where its monuments have been discovered in greatest abundance. The German frontiers afford most evidence of its prosperity. Rome itself was a favourite seat of the religion. From the end of the 2nd century the emperors encouraged Mithraism, because of the support which it aforded to the divine right of monarchs. The Persian belief that the legitimate sovereign xeigned by the grace of Ormazd, whose favour was made manifest by the sending of the Huarens, a kind of celestial aureole of fire, resulted in the doctrine that the sun was the giver of the Hearend. Mithras, identified with Sol Invictus at Rome, thus becare the giver of autbority and victory to the imperial house. From the time of Commodus, who participated in its mysteries, its supporters were to be found in all classes. Its importance at Rome may be judged from the ahundance of monumental remains-more than 75 pieces of sculpture, 100 inscriptions, and ruins of temples and chapels in all parts of the city and suburbs.
Finally, philosophy as well as politics contributed to the success of Mithraism, for the outcome of the attempt to recognize in the Graeco-Roman gods only forces of nature was to make the Sun the most important of deities; and it was the Sun wilh whom Mithras was identified.
The beginning of the downfall of Mithraism dates from a.d. 275, when Dacia was lost to the empire, and the invasions of the northern peoples resulted in the destruction of temples along a great stretch of frontier, the natural stronghold of the cult. The aggression of Christianity also was now more effective. The emperors, however, favoured the cult, which was the army's favourite until Constantine destroyed its hopes. The reign of Julian and the usurpation of Eugenius renewed the hopes of its devotees, but the victory of Theodosius (394) may be considered the end of its existence. It still survived in certain cantons of the Alps in the sth century, and clung to life with more tenacity in its Eastern home. Its legitimate successor was Manichaeism, which afforded a refuge to those mystics who had been shaken in faith, but not converted, by the polemics of the Church against their religion.
II. Sources, Remains, Ritual.-The sources of present knowledge regarding Mithraism consist of the Vedas, the Avesta, the Pahlevi writings, Greek and Latin literature and inscriptions, and the cult monuments. The monuments comprise the remains of nearly a score of temples and about 400 statues and bas reliefs. The Mithraic temples of Roman times were artificial grottoes (spelaea) wholly or partially underground, in imitation of the original sclcuded mountain caverns of Asia. The Mithraeum bewn in the tufa quarries of the Capitoline Hill at Rome, still in existence during the Renaissance, is an example. The main room of the ordinary temple was rectangular, with an elevated apsidal arrangement, like a choir, containing the sacred relief on its wall, at the end opposite the entrance, and with continuous benches (podia) of masonry, about 5 ft . wide and inclining slighty towards the floor, built against the wall on its long sides. The ceiling was made to symbolize the firmament. There were arrangements for the brilliant illumination of the choir and its relief, which was sometimes sculptured on both sides and reversible, while the podia were intentionally more obscure. The choir and the long space between the podia were for ministrants, the podia themselves for kneeling worshippers. Two altars, to the Sun and the Moon, stood before the former, and cult statues along the latter. The approach to the grotto lay through a portico on the level with and fronting the street, and a prondos, in communication with which was a tind of sactisty. Steps led to the lower level of the sanctuary. The
simplieity and smalness of the Mithraic temples are to be accomented for by structural and financial reasons; an under. ground temple was difficult to construct on a large scale, and the worshippers of Mithras were usually from the humbler classes. The average grotto beld from fifty to a hundred pernons. The size of the sanctuaries, however, was compensated for by their mamber; in Ostia alone there were five.

The trpical bas relief, which is found in great abundance in the maseuras of Europe, invariably represents Mithras, under the form of a youth with conical cap and flying drapery, slaying the sacred bull, the scorpion attacking the genitals of the animal, the serpent drinking its blood, the dog springing towards the wound in its side, and frequently, in addition, the San-god, his messenger the raven, a fig-tree, a lion, a ewer, and torch-bearers. The relief is in some instances enclosed in a frame of figures and scenes in relief. The best example is the monument of Osterburken (Cumont, Textes ef monmments figwis, No. 146). With this monument as a basis, Franz Cumont has arranged the small Mithraic reliefs into two groups, one illustrating the legend of the origin of the gods, and the other the legend of Mithras. In the first group are found Infinite Time, or Cronus; Telles and Atlas supporting the giobe, reprosenting the union of Earth aid Heaven; Oceanus; the Fates; Infinite Time giving into the hand of his successor Ormard the thunderboit, the symbol of authority; 9rmazd struggling with a giant of evil-the Mithraic gigantomachy. The second group represeats, first, the birth of Mithras; then the god nude, cutting fruit and leaves from a fig-tree in which is the bust of a deity, and before which one of the winds is blowing upon Mithras; the god discharging an arrow against a rock from which springs a fountain whose water a figure is kneeling to receive in his palms; the bull in 2 small boat, near which agein occurs the figure of the animal under a roof about to be set on fire by two Gigures; the ball in fight, with Mithras in pursuit; Mithras bearing the bull on his shoulders; Helios kneeling before Mithras; Helios and Mithras clasping hands over an altar; Mithras with dram bow on a running horse; Mithras and Helios banqueting; Mithras and Helios mounting the chariot of tbe latter and rising in full course over the ocean. Few of the Mithraic reliefs are of even mediocre art. Among the best is the relief from the Capitoline grotto, now in the Lourre.

Cumont's interpretation of the main relief and its smaller companions involves the reconstruction of a Mithraic tbeology, a Mithraic legend, and a Mithraic symbolism. Paucity of evidence makes the first diffcult. The head of the divine hierarchy of Mithras was Infinite Time--Cronus, Saturn; Heaven and Earth were bis offspring, and begat Ocean, who formed with them a trinity corresponding to Jupiter, Juno, and Neptune. From Heaven and Earth sprang the remaining members of a circle enelogous to the Olympic gods. Ahriman, also the son of Time, was the Persian Pluto. Owing to Semitic influence every Persian god had in Roman times come to possess a twofold significance-astrological and natural, Semitic and Iranianthe earher and deeper Iranian significance being imparted by the clergy to the few intelligent elect, the more attractive and soparicial Chaldaean symbolism being presented to the multitude. Mithras was the most important member of the circle. He was regardod as the mediator between suffering bumanity and the unknowable and inaccessible god of all being, who reigned in the ether.

The Mithras legend has been lost, and can be reconstructed only from the scenes on the above described relief. Mithras was born of a rock, the marvel being seen only by certain shepherds, who brought gifts and adored him. Chilled by the wind, the newhorm god weat to a fig-tree, partook of its fruit, and clothed himself in its leaves. Ho then undertook to vanquish the beingz already in the world, and rendered subject to him first the Sun, with whom he concluded a treaty of friendship. The most wonderful of his adventures, bowever, was that with the sacred bull which had been created by Ormazd. The hero seized it by the horns and was borne headlong in the flight of the animal, which he finally subdued and dragged into a cavern.

The bull escaped, but was overtaken, and by order of the Sun, who sent his messenger the raven, was reluctantly sacrificed by Mithras. From the dying animal sprang the life of the earth, although Ahriman sent bis emissaries to prevent it. The soul of the bull rose to the celestial spheres and became the guardian of herds and flocks under the name of Silvanus. Mithras was through his deed the creator of life. Meanwhile Ahriman sent a terrible drought upon the land. Mithras defeated his purpose by discharging an arrow against a rock and miraculously drawing the water from it. Next Ahriman sent a deluge, from which one man escaped in 2 boat with his cattle. Finally a fire desolated the earth, and only the creatures of Ormazd escaped. Mithras, his work accomplished, banqueted with the Sun for the last time, and was taken by him in his chariot to the habitation of the immortals, whence he continued to protect the faithful.

The symbolism employed by Mithraism finds its best illustration in the large central relief, which represents Mithras in the act of slaying the bull as a sacrifice to bring about terrestrial life, and thus portrays the concluding scenes in the legend of the sacred animal. The scorpion, attacking the genitals of the hull, is sent by Ahriman from the lower world to defeat the purpose of the sacrifice; the dog, springing towards the wound in the bull's side, was venerated by the Persians as the companion of Mithras; the serpent is the symbol of the earth being mado fertile by drinking the blood of the sacrificial bull; the raven, towards which Mithras turns his face as if for direction, is the berald of the Sun-god, whose bust is near by, and who has ordered the sacrifice; various plants near the bull, and heads of wheat springing from bis tail, symbolize the result of the sacrifice; the cypress is perhaps the tree of immortality. There was also an astrological symbolism, but it was superficial, and of secondary importance. The torch-bearers sometimes seen on the relief represent one being in three aspects-the morning, noon and evening sun, or the vernal, summer and autumn sun.

Owing to the almost absolute disappearance of documentary evidence, it is impossible to know otherwise than very imperfectly the inner life of Mithraism. Jerome (Episf. cvii.) and inscriptions preserve the knowledge that the mystic, sacratus, passed through seven degrees, which probably corresponded to the seven planetary spheres traversed by the soul in its progress to wisdom, perfect purity, and the abode of the blest: Corax, Raven, so named because the raven in Mithraic mythology was the servant of the Sun; Cryphius, Occult, a degree in the taking of which the mystic was perhaps hidden from others in the sanctuary by a veil, the removal of which was a solemn ceremonial; Miles, Soldier, signifying the holy warfare against evil in the service of the god; Leo, Lion, symbolic of the element of fire; Perses, Persian, clad in Asiatic costume, a reminiscence of the ancient origin of the religion; Hdiodromus, Courier of the Sun, with whom Mithras was identified; Pater, Father, a degree bringing the mystic among those who had the general direction of the cult for the rest of their lives. One relief (Cumont, vol. i. p. 175, fig. 10) shows figures masked and costumed to represent Corax, Perses, Miles and Leo, indicating the practice on occasion of rites involving the use of sacred disguise, a custom probably reminiscent of tbe primitive time when men represented their deities under the form of animals, and believed themselves in closer communion with them when disguised to impersonate them. Of the seven degrees, those mystics not yet beyond the third, Miles, were not in full communion, and were called imperouves (servants); while the fourth degree, Len, admitted them into the class of the fally initiate, the perixovres (participants). No women were in any way connected with the cult, though the male sex could be admitted even in childhood. The time requisite for the several degrees is unknown, and may have been determined by the Potres, who conferred them in a solemn ceremony called Sacramentum, in which the initial step was an oath never to divulge what should be revealed, and for which the mystic had been specially prepared by lustral purification, prolonged abstinence, and severe deprivations. Special ceremonies accompanted
the diverse degrees: Tertullian speaks of "marking the forehead of a Mites," which may have been the branding of a Mithraic sign; honey was applied to the tongue and hands of the Leo and the Perses. A sacred communion of bread, water and possibly wine, compared by the Cbristian apologists to the Eucharist, was administered to the mystic who was entering upon one of the advanced degrees, perhaps Leo. The ceremony was probably commemorative of the banquet of Mithras and Helios before the former's ascension, and its effect strength of body, wisdom, prosperity, power to resist evil, and participation in the immortality enjoyed by the god himself. Other features reminiscent of the original barbarous rites in the primitive caverns of the East, no doubt also occupied a place in the cult; bandaging of eyes, binding of hands with the intestines of a fowl, leaping over a ditch filled with water, witnessing a simulated murder, are mentioned by the Pseudo-Augustine; and the manipulation of lights in the crypt, the administration of oaths, and the repetition of the sacred formulae, all contributed toward inducing a state of ecstatic eraltation. What in the opinion of Albrecht Dieterich (Eine Milhrastitwrgie, Leipzig, 1903) is a Mithras liturgy is preserved in a Greek MS. of Egyptian origin of about A.D. 300 . It is the ritual of a magician, imbedded in which, and alternating with magic formulare and other occult matter, are a number of invocatioas and prayers which Dieterich reconstructs as a liturgy in use by the clergy of Mithras between A.D. 100 and 300 , and adapted to this new use about the latter date.

The Mithraic priest, sacarios or antistes, was sometimes also of the degree of pater. Tertullian (De praescr. heeres. 40) calls the chief priest summens pontifex, probably the pater potrum who had general supervision of all the initiates in one city, and states that he could marry but once. According to the same author, there were Mithraic, as well as Christian, virgines at condinentes. Besides the administration of sacraments and the celebration of offices on special occasjons, the priest kept slight the eternal fire on the altar, addressed prayers to the Sun at dawn, midday and twilight, turning towards east, south and west respectively. Clad in Eastern paraphernalia, he officiated at the numerous sacrifices indicated by the remains of iron and bronze knives, hatchets, chains, ashes and bones of oren, sheep, goats, swinc, fowl, \&c. There was pouring of libations, chanting and music, and bells and candles were employed in the service. Each day of the week was marked by the adoration of a special planet, the sun being the most sacred of all, and certain dates, perhaps the sixteenth of each month and the equinores, in conformity with the character of Mithras as mediator, wereset aside forspecial festivals.

The Mithraic community of worshippers, besides being a spiritual fraternity, was a legal corporation enjoying the right of holding property, with temporal officials at its head, like any other sodalitos: there were the decuriones and decem primi, governing councils resembling assembly and senate in cities; magistri, annually elected presidents; curatores, financial agents; defensores, advocates; and pabroni, protectors among the influential. It may be that a single temple was the resort of several small associations of worshippers which were subdivisions of the whole community. The cult was supported mainly by voluntary contribution. An abundance of epigraphic evidence testifies to the devotion of rich and poor alike.
III. Moral Infincnce.-The rapid advance of Mithraism was due to its human qualities. Its communities were hound together by a sense of close fraternal relation. Its democracy ohliterated the distinctions between rich and poor; slave and senator became subject to the same rule, eligible for the same honours, partook of the same communion, and were interred in the same type of sepulchre, to await the same resurrection. The reward of title and degree and the consequent rise in the esteem of his fellows and himself was also a strong incentive; but the Mithraic faith itself was the greatest factor. The impressivemess and the stimulating power of the mystic ceremonies, the consciousness of being the privileged possessor of the secret Wisdom of the ancients, the sense of purification from sin,
and the expectation of a better life whore there was to be compensation for the sufferings of this world-were all strong appeals to human nature. The necessity of mornd rectitude was itself an incentive. Courage, watehfulness, striving for purity, were all necessary in the incessant combat with the forces of evil. Resiatance to sensuality was one aspect of the struggle, and asceticism was not unknown. Mithras was ever on the side of the faithful, who were certain to triumph both in this world and the next. The worthy soul ascended to its former home in the skies by seven gates or degrees, while the unworthy soul descended to the realms of Ahriman. The doctrine of the immortality of the soul was accompanied by that of the resurrection of the flesh; the struggle between good and evil was one day to ceasc, and the divine bull was to appear on earth, Mithras was to descend to call all men from their tombs and to separate the good from the bad. The bull was to be sacrificed to Mithras, who was to mingle its fat with consecrated wine and give to drink of it to the just, rendering them immortal, while the unjust, together with Ahriman and his spirits, were to be destroyed by a fire sent from Heaven by Ormazd. The universe, renewed, was to enjoy eternal happiness.
IV. Relation 10 Christianily.-The most interesting aspect of Mithraism is its antagonism to Christianity. Both religions were of Oriental origin; they were propagated about the same time, and spread with equal rapidity on account of the same causes, vir. the unity of the political world and the debasement of its moral life. At the end of the and century each had advanced to the farthest limits of the empire, though the one possessed greatest strength on the frontiers of the Teutonic countries, along the Danube and the Rhine, while the other throve especially in Asia and Africa. The points of collision were especially at Rome, in Africa, and in the Rhone Valley, and the struggle was the more obstinate because of the resemblances between the two religions, which were so numerous and so close as to be the subject of remart as early as the and century, and the cause of mutual recrimination. The fraternal and democratic spirit of the first communities, and their humble origin; the identification of the object of adoration with light and the Sun; the legends of the shepherds with their gifts and adoration, the flood, and the ark; the representation in art of the fiery chariot, the drawing of water from the rock; the use of bell and candle, holy water and the communion; the sanctification of Sunday and of the 25 th of December; the insistence on moral conduct, the emphasis placed upon abstinence and self-control; the doctripe of heaven and hell, of primitive revelation, of the mediation of the Logos emanating from the divine, the atoning sacrifice, the constant warfare between good and evil and the final triumph of the former, the immortality of the soul, the last judgment, the resurrection of the flesh and the fiery destruction of the universe-are some of the resemblances which, whether real or only apparent, enabled Mithraism to prolong its resistance to Christianity. At their root lay a common Eastern origin rather than zny borrowing.

On the other hand, there were important contrasts between the two. Mithraism courted the favour of Roman paganism and combined monotheism with polytheism, while Christianity was uncompromising. The former as a consequence won large numbers of supporters who were drawr by the possibility it afforded of adopting an attractive faith which did not involve a rupture with the religion of Roman society, and consequently with the state. In the middte of the 3rd centary Mithraism seemed on the verge of becoming the universal religion. Its-eminence, however, was so largely based upon dalliance with Roman society, its weakness so great in having only a mythical character, instead of a personality, as an object of adoration, and in excluding women from its privileges, that it fell rapidly before the assaults of Christianity. Manichacism, which combined the adoration of Zoroaster and Christ, ber ame the refuge of those supportera of Mithralsm who were incliped to compromise, while many found the transition to orthodor Christianity easy becuuse of its very resemblance to their old faith.

From a pholograph by Pather Joseph Braun, S. J., by kind permissicn.
Fig. 5.-German Mitre, of red velvet embroidered with pearls and silver gilt plaques. 15th century. In the cathedral at Halberstadt.

Plate II.

MITRE

Fig. 7.- Flemish Mitre, embroidered in gold thread, and the panels in colours, with figures of the Virgin and St Augustine. The
other side is similar, with figures of St Leonard and St Mary Magdalene. It is dated 1592 , repaired in 1766.

In the Victoria and Albert Museum.

See Fracz Cumont, Textes al momments fienchs relatifs avr mystires de Mithre (Brussels, 1896, 1899), which has superseded all publications on the subject; Albrecht Dieterich, Eine Mithrasliturgie (Leiptig. 1903). See also the tranalation of Cumont's Concusious (the recond part of vol. i of the above wort, published separately 1902 , under the title Les Mystires de Mihhra), by T. J. McCormack (Chicago and London, 1903). Extended bibliography in Roscher's Lexicon der Mythologic.
(G. SN.)

MITRA, RAJENDRA LALA (1824-1891), Indian Orientalist, was born in a suburb of Calcutta on the 15th of February 1824, of a respectable family of the Kayasth or writer caste of Bengal. To a large extent he was self-educated, studying Sanskrit and Persian in the library of his father. In 1846 he was appointed librarian of the Asiatic Society, and to that society the remainder of his life was devoted-as philological secretary, as vicepresident, and as the first native president in 1885. Apart from very numerous contributions to the society's journal, and to the series of Sanskrit texts entitled "Bihliotheca indica," he published three separate works: (I) The Antiguities of Orissa (2 vols., 1875 and 1880), illustrated with photographic plates, in which he traced hack the image of Jagannath (Juggernaut) and also the car-festival to a Buddhistic origin; (2) a similarly illustrated work on Bodh Gaya (1878), the bermitage of Sakya Muni, and (3) Indo-Aryans (2 vols., 1881), a collection of essays dealing with the manners and customs of the people of India from Vedic times. He received the honorary degree of LL.D. from the university of Calcutta in 1825 , the companionship of the Indian Empire when that order was founded in 1878, and the title of raja in 1888 . He died at Calcutta on the 26th of July 1891.

IITRE (Lat. mitra, from Gr. μ irpa, a band, head-band, head-dress), a liturgical head-dress of the Catholic Church, generally proper to bishops.

1. Latim Ritc.-In the Western Church its actual form is that of a sort of folding cap consisting of two halves which, when not worn, lie flat upon cach other. These sides are stiffened, and when the mitre is worn, they rise in front and behind like two horns pointed at the lips (cornua mitrac). From the lower rim of the mitre at the back hang two banda (infulac), terminating In fringes. In the Roman Catholic Church mitres are divided into three classes: (1) Milra preliosa, decorated with jewels, gold plates, \&c.; (2) Mitra auriphrygiata, of white silk; sometimes embroidered with gold and sidver thread or small pearls, or of cloth of gold plain; (3) Mitra simplex, of white silk damask, silk or linen, with the two falling bands behind terminating in red fringes. Mitres are the distinctive headdress of hishops; but the right to wear them, as in the case of the other episcopal insignia, is granted by the popes to other dignitaries-such as abbots or the heads and sometimes all the members of the chapters of cathedral or collegiate churches. In the case of these latter, however, the mitre is worn only in the church to which the privilege is attached and on certain hugh festivals. Bishops alone, including of course the pope and his cardinals, are entitled to wear the prediosa and auriphrygiato; the others wear the mitra simplex.

The proper symbol of episcopacy is not so much the mitre as the ring and pastoral staff. It is only after the service of consecration and the mass are finished that the consecrating prelate asperses and blesses the mitre and places on the head of the newly consecrated bishop, according to the prayer which sccompanies the act, "the helmet of protection and salvation," the two horns of which represent "the horns of the Old and New Testaments," a terror to "the enemies of truth," and also the horns of " divine brightness and truth " which God set on the brow of Moses on Mount Sinai. There is no suggestion of the popular idea that the mitre symbolizes the "tongues of fire" that descended on the heads of the apostlics at Pentecost.
Acconding to the Roman Caenomomiale the bishop wears the mifra pretiosa on high festivals, and always during the singing of the Tc Deum and the Cloria at mass. He is allowed, however, "on sccount of its weight." to substitute for the pretiosa the auriPhrygiabs during part of the services, is. at Veupers from the first pealom to the Xagnsfical, at mass from the end of the Kyrie to the
avill π
canon. The auriplity fiats is morn daring Advent end frem Septusgesima to Maundy Thursday, except on the third Sunday in Advent (Gaudete), the fourth in Lent (Laetare) and on such greater festivals as fall within this time. It is worn, too, on the vigits of fasts, Ember Days and days of intercession, on the Feast of Holy Innocents (if on a week-day), at litanies, penitential processions, and at otber than solemn benedictions and consecrations. At mass and vespers the mitra simplex may be substituted for it in the same way as the auriphrygiata for the praiosa. The simplex is worn on Good Friday, and at masses for the dead; also at the blessing of the candles at Candlemas, the singing of the absolution at the cotta, and the solemn investiture with the palium. At provincial synods archbishope wear the pretiose, bishops the auriphrygiato, and mitred abbots the simplex. At general councils bishops wear white linen mitres, cardinals mitres of white silk damask; this is also the case when bishops and cardinals in pontificalibus ascist at a solemn pontifical function presided over by the pope.

Lastly, the mitre, though a liturgical vestment, differs from the others in that it is never worn when the bishop addreswee the Almighty in prayer-e.g. during mace he tabes it of when be turne to the altar, placing it on his head again when be turas to address the people (see 1 Cor. xi. 4).
The origin and antiquity of the episoopal mitre have been the subject of much debate. Some bave claimed for it apostolical sanction and found its origin in the liturgical head-gear of the Jewish priesthood. Such proofs ortanaod as have been adduced for this view are, however, based on the fallacy of reading into words (mitra, infule, \&ce.) used by early writers a special meaning which they only acquired later. Mitra, even as late as the 15th century, retained its simple meaning of cap (see Du Cange, Glossariwom, s.s.); to Isidore of Seville it is specifically a woman's cap. Infula, which in late ecclesiastical usage was to be confined to mitre (and its dependent bands) and chasuble, meant originally a piece of cloth, or the sacred fillets used in pagen worship, and later on came to be used of any ecclesiastical vestment, and there is no evidence for its specific application to the liturgical head-dress earlier than the 12 th century. With the episcopal mitre the Jewish miznephet, translated "mitre" in the Authorized Version (Erod. xxviii. 4, 36), has nothing to do, and there is $n o$ evidence for the use of the former before the middle of the roth century even in Rome, and elsewhere than in Rome it does not make its appearance until the IIth. ${ }^{1}$
The first trustworthy notice of the use of the mitre is under Pope Loo IX. (1049-1054). This pope invested Archbishop Eberhard of Trier, who had accompanied him to Rome, with the Roman milra, telling him that he and his successors should wear it in ecclesiostico officio (i.e. as a liturgical ornament) according to Roman custom, in order to remind him that he is a disciple of the Roman see (Jaffe, Regesta pont. rom., ed. Leipzig, 1888, No. 4158). This proves that the use of the mitre bad been for some time established at Rome; that it was specifically a Roman ornament; and that the right to wear it was only granted to ecclesiastics elsewhere as an exceptional honour. ${ }^{2}$ On the other hand, the Roman ordines of the 8th and gth centuries make no mention of the mitre; the evidence goes to prove that this liturgical head-dress was first adopted by the popes some time in the 1oth century; and Father Braun shows convincingly that it was in its origin nothing else than the papal regnum or phrygium which, originally worn only at outdoor processions and the like, was introduced into the church, and thus developed into the liturgical mitre, while outside it preserved its original significance as the papal
${ }^{1}$ Father Braun, S. J., has dealt exhaustively with the supposed evidence for its earlier use-e.g. he proves conclusively that the mitra mentioned by Theodulph of OTleans (Paraenes. ad episc.) is the Jewish miznephet, and the well-known miniature of Gregory the Great (not St Dunstan, as commonly assumed) wearing a mitro (Cotton MSS. Claudius A. iii.) in the Britiab Museum, often ascribed to the ioth or early 11 th century, he judges from the form of the pallium and dalmatic to have been produced at the end of the 11th century "at eariest." The papal bulls granting the use of mitres before the inth century are all forgeriea (Linurgisehe Cexomdme, 431-448).
*That it had been already $\mathbf{s o}$ granted is proved by a miniature containing the earliest extant representations of a mitre, in the Exullete rotula and baptismal rotula at Bari (reproduced in Berteaux, L'Art dens 'Italis moradionale, I., Paris, 1904).

tiara (q.v.). From Leo IX.'s time papal grants of the mitre to eminent prelates became increasingly frequent, and by the 12 th century it had been assumed by all bishops in the West, with or vithout papal sanction, as their proper liturgical head-dress. From the 12th century, too, dates the custom of investing the bisbop with the mitre at his consecration.
It was not till the 12th century that the mitre came to be regarded Nom Abebope. as specifically episcopal, and grown up of granting it howoris causa to other dignitaries besides bishops. The first known instance of a mitred ahbot is Egelsinus of St Augustine's, Canterbury, who received the honour from Pope Alexander II. in 1063. From this time onward papal hulls bestowing mitres, together with other episcopal insignia, on abbots become increasingly frequent. The original motive of the recipients of these favours was douhtless the taste of the time for outward display; St Bernard, zealous for the monastic ideal, denounced abbots for wearing mitres and the like more pontificum, and Peter the Cantor roundly called the abbatial mitre "inane, superfluous and puerile" (Verb, abbrev, c. xliv. in Migne, Patrolog. Lat. 205, 159). It came, however, to symbolize the exemption of the abbots from episcopal jurisdiction, their quasi-episcopal character, and their immediate dependence on the Holy See. No such significance could attach to the grant of the usus mitrae (under somewhat narrow restrictions as to where and when) to cathedral dignitaries. The first instance is again a bull of Leo IX. (1051) granting to Hugh, archhishop of Besancon, and his seven cardinals the right to wear the mitre at the altar as celebrant, deacon and subdeacon, a similar privilege being granted to Bishop Hartwig of Bamberg in the following year. The intention was to show honour to a great churcin by allowing it to follow the custom doubtless already established at Rome. Subsequently the privilege was often granted, sometimes to one or more of the chief dignitaries, sometimes to all the canons of a cathedral (e.g. Campostella, Prague).

Mitres were also sometimes bestowed by the popes on secular sovereigns, e.g. hy Nicholas II. (1058-1061) on Spiteneus (Spytihnew) II., duke of Bohemia; by Alexander II. on Wratislaus of Bohemia; hy Lucius II. (1144-1145) on Roger of Sicily; and hy Innocent III., in 1204, on Peter of Aragon. In the coronation of the emperor, more particularly, the mitre played a part. According to the 14th Roman ordo, of 1241, the pope places on the emperor's head first the mitra clericalis, then the imperial diadem. Father Braun (Liturgische Gewandung, p. 457) gives a picture of a seal of Charles.IV. representing him as wearing both.

The original form of the mitre was that of the early papal tiara (rcgnum), i.e. a somewhat high conical cap. The stages of its general development from this shape to the Developweat at Form. high double-borned modern mitre are clearly traceable (see fig. 1), though it is impossible exactly to distinguish them in point of date. The most characteristic modifications may be said to have taken place from the inth to the middle of the $13^{\text {th }}$ century. About 1100 the conical mitre begins to give place to a round one; a hand of embroidery is next set over the top from back to front, which tends to hulge up the soft material on either side; and these bulges develop into points or horns. Mitres with horns on either side seem to have been worn till about the end of the rath century, and Father Braun gives examples of their appearances on episcopal scals in France until far into the 13 th. Such a mitre appears on a seal of Archbishop Thomas Becket (Father Thurston, The Pallium, London, 1802, p. 17). The custom was, however, already growing up of setting the horns over the front and back

of the head instead of the sides (the mitre said to have belonged to St Thomas Becket, now at Westminster Cathedral, is of this type). ${ }^{1}$ and with this the essential character of the mitre, as it persisted through the middle ages, was established. The exaggeration of the height of the mitre, which began at the time of the Renaissance, reached its climax in the 17th century.

ber f. Bramn and reproduced from his Liumgiche Gesanduas by permizsion of B. Herder.
This ugly and undignifed type is still usually worn in the Roman Catholic Church, but in some cases the earlier type has survived, and many bishops are also now reverting to it.

The decoration of mitres was characterized by increasing elaboration as time went on. From the first the white conical cap seems to have been decorated round the lower edge by a band or orphrey (circulus). To this was added later a vertical orphrey (filulas), usually from the centre of the front of the circulas to that of the back, partly in order to hide the seam, partly to emphasize the horns when those were to left and right. When the horns came to be set before and behind, the vertical orphrey retained ins position. Of the surviving early mitres the greater number have only the orphrey embroidered, the body of the mitre being left plain. Very carly, however, the custom arose of omamenting the triangular spaces between the orphreys with embroidery, usually a round medallion, or a slar, set in the middle, but sometimes figures of saints, \&c. (e.g. the early example from the cathedral of Anagni, reproduced by Braun, p. 469). The richness and variety of decora. tion increased from the 14 th century onwards. Architectural motives even were introduced, as frames to the embroidered figures of saints, while sometimes the upper edges of the mitre were ornamented with crockets, and the horns with architectural finials Finally, the traditional circulus and situlws seem all but forgotten, the whole front and back surfaces of the mitre being ornamented with embroidered pictures or with arabesque patterns. The latter is characteristic of the mitre in the modern Roman Catholic Church. the tradition of the local Roman Church having always excluded the representation nif figures on ecclesiastical vestments.
2. Reformed Churches.-In most of the reformed Charches the use of mitres was abandoned with that of the other vestments. They have continued to be worn, however, by the bishops of the Scandinavian Lutheran

Churchin of Pariand Churches. In the Church of England the use of the mitre was discontinued at the Reformation. There is some evidence to show that it was used in consecrating hishops up to 1552, and also that its use was revived hy the Laudian bishops in the 171h century (Hierurgia anglicana ii. 242, 243, 240). In general, however, there is no evidence to prove that this use was liturgical, though the silver-gilt mitre of Bishop Wren of Ely (d. 1667), which is preserved, is judged from the state of the lining to have been worn. The instances of the use of the mitre quoted in Hier, anglic. ii. 3 ro, as carried by the bishop of Rochester at an investiture of the Knights of the Bath (1725), and by the archbishops and bishops at the coronation of George II. (1727), have no liturgical significance. The tradition of the mitre as an episcopal ornament has, nevertheless, been continuous in the Church of England, "and that on three lines: (1) heraldic usage; (2) its presence on the head of effigies of bishops, of which a number are extant, of the $16 \mathrm{th}, 17 \mathrm{th}$, 18 th and igth centuries; (3) its presence in funeral processions, whert
${ }^{1}$ In Father Braun's opinion, expressed to the writer, this mitres which was formerly at Sens, belongs probably to the igit century.
an actual mitre or the figure of one was sometimes carried, and sometimes suspended over the tomb" (Report on the Ornaments of the Church, p. 106). The liturgical use of the mitre was revived in the Church of England in the latter part of the rgth century, and is now fairly widespread.
3. Oriental Rites.-Some form of liturgical head-dress is common to all the Oriental rites. In the Orthodox Eastern Church the mitre (Gr. Mlrpa; Slav. mitra) is, as in the Western Church, proper only to bishops. Its form differs entirely from that of the Latin Church. In general it rather resembles a closed crown, consisting of a circlet from which rise two arches intersecting each other at right angles. Circlet and arches are richly chased and jewelled; they are filled out by a cap of stiff material, often red velvet, ornamented with pictures in embroidery or applique metal. Surmounting all, at the intersection of the arches is a cross In Russia this usually lies flat, only certain metropolitans, and by prescription the bishops of the eparchy of Kiev, having the right to have the cross upright (see fig. 2). In the Armenian Church priests and archdeacons, as well as the bishops, wear a mitre. That of the bishops is of the Latin form, a custore dating from a grant of Pope Innocent III., that of the priests, the saggaharl, is not unlike the Greek mitre (see

From Brann's Lison fircin Gereudore. By pers
F1G. 3.-Mitre of Armenian Prict. fig. 3). In the Syrian Church only the patriarch wears a mitre, which rescmbles that of the Greeks. The birura of the Chaldaean Nestorians, on the other hand, worn by all bishops, is a sort of hood ornamented with a cross. Coptic priests and bishops wear the ballis, a long strip of stuff ornamented with crosses dc., and wound turban-wise round the head; the patriarch of Alexandrin has a helmet-like mitre, the origin of which is unknown, though it perhaps antedates the appearance of the phrygium at Rome. The Maronites, and the uniate Jacobites, Chaldaeans and Copts have adopted the Roman mitre.

The mitre was only introduced into the Greek rite in comparatively modern times. It was unknown in tbe earlier part

Teproduced by Lopd permision of the Archbishop of Wextrioster.
Fig. 4--Mitra pretiose of the Fete Cardinal Vaughan, Roman Catholic Archbishop of West--minster.

A hundred years later the mitre, originally confined to the patriarch, was worn by all bishops.
See J. Braun, S.J., Die litupgische Gewandung (Freiburg.imBreisgau, 1907), pp. 424-498. The question of the use of the mitre in the Anglican Church is dealt with in the Report of the Sub-Commiltes of the Convocation of Canterbury on the Ornaments of the Churck and its Mixisters (1908). See also the bibliography to the article Vestments.
(W. A. P.)

MITROVICA (Hungarian, Mibovics; German, Mitrowiks), a town of Croatia-Slavonia, Hungary, situated on the river Save, in the county of Syrmia. Pop. (1900), 11,518. Mitrovica is on the railway from Agram, 170 m . W.N.W. to Belgrade, $3^{8} \mathrm{~m}$. E. by S. Roman remains have been discovered in its neighbourhood, and it occupies the site of Sirminm or Syrmium, the chief city of Lower Pannonia under Roman rule. The emperor Probus (232-282) was born and buried at Sirminm, where, according to some authorities, the emperor Marcus Aurelius ($121-180$) also died; but this is uncertain. In 351, 357 and 358, ecclesiastical councils of some importance met at Sirmium, which became an episcopal see about 305, and ras united with the diocese of Bosnia in 1773. The city was sacked by the Huns in 441, and by the Turks, who destroyed all its ancient buildings. in 1396 and 1521 .

MITSCHERLICH, EILHARDT (1794-1863), German chemist, was born on the 7th of January 1794 at Neuende near Jever, in the grand duchy of Oldenburg, where his father was pastor. His uncle, Ceristoph Wilaelm Mitsceerlich (1760-1854), professor at Gottingen, was in his day a celebrated scholar. He was educated at Jever under the historian F. C. Schlosser, when he went to Heidelberg in 1811 , devoted bimself to philology, giving special attention to the Persian language. In 1813 he went to Paris to obtain permission to join the embassy which Napolcon 1. was to send to Persia. The events of 1814 put an end to this, and Mitscherlich resolved to study medicine in order that he might enjoy that freedom of travel usually allowed in the East to physicians. He began at Gottingen with the study of chemistry, and this so arrested his attention that he gave up the journey to Persia. From his Gottingen days dates the treatise on certain parts of Persian history, compiled from MSS. in the university library and published in Persian and Latin in 1814, under the titie Mirchondi historia Thaheridarum hisforicis nostris hucusque incognilorums Persiae principwm. In 1818 he went to Berlin and worked in the laboratory of H. F. Link ($1767-185$). There be made analyses of phosphates and phosphites, arsenates and arsenites, confirming the conclusions of J. J. Berzelius as to their composition; and his observation that corresponding phosphates and arsenates crystallize in the same form was the germ from which grew the theory of isomorphism which be communicated to the Berlin Academy in December 18ig. In that year Berzelius suggested Misscherlich to the minister Altenstein as successor to M. H. Klaproth at Berlin. Altenstein did not immediately carry out this proposal, but be obtained for Mitscherlich a government grant to cnable bim to continue his studies in Berzelius's laboratory at Stockbolm. He returned to Berlin in 1821, and in the summer of $\mathbf{1 8 2 2}$ he delivered his first lecture as extraordinary professor of chemistry in the university, where in 2825 be was appointed ordinary professor. In the course of an investigation into the slight differences discovered by W. H. Wollaston in the angles of the rhombohedra of the carbonates isomorphous with calc-spar, he observed that the angle in the case of calc-spar varied with the temperature. On extending his inquiry to other aelotropic crystals he observed a similar variation, and was thus led, in 1825, to the discovery that aelotropic crystals, when heated, expand unequally in the direction of dissimilar ares. In the following year he discovered the change, produced by change of temperature, in the direction of the optic axes of selenite. His investigation (also in 1826) of the two crystalline modifications of sulphur threw much light on the fact that the two minerals calc-spar and aragonite bave the same composition but different crystalline forms, a property which Mitscherlich called dimorphism. In 1833 he made a series of careful determinations of the vapour densities of a large
number of volatile substances, confirming Gay-Lussac's law. He obtained selenic acid in 1827 and showed that its salts are isomorphous with the sulphates, while a few years later he proved that the same thing is true of the manganates and the sulphates, and of the permanganates and the perchlorates. He investigated the relation of benzene to benzoic acid and to other derivatives. In 1829-1830 he published his Lehrbuch der Chemie, whicb embodied many original observations. His interest in mineralogy led him to study the geology of volcanic regions, and he made frequent visits to the Eifel with a view to the discovery of a theory of volcanic action. He did not, however, puhlish any papers on the subject, though after his death his notes were arranged and published by Dr. J. L. A. Roth in the Mcmoirs of the Berlin Academy (1866). In December 186I symptoms of heart-disease made their appearance, but be was able to carry on his academical work till December 1862. He died at Schőnberg near Berlin, on the 28th of August 1863.
Mitscherlich's published papers are chiefty to be found in the Abhasdlusgen of the Berlin Academy, in Poggendorf's Annalen, and in the Annales de chemic et de physique. The 4 th edition of the Lehrbuch der Chemic was published in 1844-1847, a 5th was begun in 1855، but was not completed.

MIITEN, a covering for the hand, with a division for the thumb only, and reaching to the lower joint of the fingers; it is made of silk, lace, wool or other material. The word is of obscure origin; it has been connected with Ger. mille, middle, half, in the sense of that which half covers the hand. There are several Celtic words which may he cognate, e.g. Yrish miotag, mulan, a thick glove, mitten, such as is worn by hedgers and ditchers. The $16 t h-c e n t u r y ~ F r e n c h ~ w o r d ~ m i l o s ~ m e a n t ~ a ~ g a u n t l e t . ~$ A fine mitten made of lace or open network and extending well up the forearm was much worn by ladies in the early part of the roth century, and has been fashionable at various times since that date.

MITTWEIDA, a town of Germany in the kingdom of Sarony, on the Zschopau, 12 m . by rail N. of Chemnitz on the railway to Döbeln and Riesa. Pop. (1905), 17,465. It has a handsome Evangelical church, a classical, a modern and a technical school, and cotton and spinning mills. Other industries are the making of furniture, machinery, cigars and cement.

MIVART, ET GBORGE JACKSON (1827-1900), English hiologist, was born in Iondon on the 3oth of November 1827, and educated at Clapharn grammar-school, Harrow, and King's College, London, and afterwards at St Mary's, Oscott, since his conversion to Roman Carholicism prevented him from going to Oxford. In 1851 he was called to the bar, hut he devoted him. self to medical and biological studies. In 1862 he was appointed lecturer at St Mary's Hospital medical school, in 1869 he became a fellow of the Zoological Society, and from 1874 to 1877 he whs professor of biology at the short-lived Roman Catholic University College, London. In 1873 he published Lessons in Elementary Anotomy, and an essay on Man and Apes. In 1881 appeared The Cat: an Introduction to the Study of Back-boned Animals. The careful and detailed work he bestowed on Insectivora and Carnivora largely increased our knowledge of the anatomy of these groups. In 1871 his Genesis of Species brought him into the controversy then raging. Though admitling evolution generally, Mivart denied its applicahility to the human intellect.

His views as to the relationship existing between human nature and intellect and animal nature in general were given in Naiure and Thought (2882); and in the Origin of Human Reasost (1880) he stated what he considered the fundamental difference between men and animals. In 1884, at the invitation of the Belgian episcopate, he became professor of the philosophy of natural history at the university of Louvain, which had conferred on him the degree of M.D. in 1884. Some articles published in the Nineteenth Century in 1892 and 1893 , in which Mivart advecated the claims of science even where they seemed to confict with religion, were placed on the Index expergaiorius, and other articles in January 1900 led to his excommunication by Cardinal Vaughan, with whom he had a curious correspondence vindicating his claim to bold liberal opinions while
remaining in the Roman Catholic Church. Shortly afterwards he died, in London, on the 1st of April 1900. Mivart was also the author of many scientific papers and occasional articles, and of Castle and Manor: a Tale of owr Time (1g00), which originally appeared in 1894 as Henry Standon, by "D'Arcy Drew."

MIZPAH, or Mizper, the name of several places referred to in the Old Testament, in each case probably derived from a "commanding prospect," the Hebrew name having that sigpificance. (i) Mizpai of Guend, where Jacob was reconciled to Laban (Gen. xaxi. 49); apparently the site of the camp 'ol the Israelites when about to attack the Ammonites under Jephthab's leadership (Judges \mathbf{x}. 17). This ancient sanctuary was probably the scene of Jephthah's vow (Judges xi. 29; d. 8. 11). The identification of this Mizpeh is a difficult problem: it is supposed to be the same as Ramoth Gilead, but the evidence is scarcely conclusive. It is referred to in Hos. v. 1. (2) Miapar of Benjamin. It has been suggested, on hardly sufficient grounds, that the Mispeh where the Hebrews assembled before the extermination of the Benjamites (Judges xx. 1) was not the shrine where Samuel made his headquarters (I Sam. vii. 5). It was fortified by Asa (1 Kings xv. 22), and after the destruction of Jerusalem was the seat of government under the viceroy Gedaliah (2 Kings xxy. 23): here Gedaliah was murdered (ibid. 25). After the exile it retained the tradition of being a seat of government (Neb. iii. 7) and a holy place (1 Macc. iii. 46). It is probably to be identified with the mountain, Neby Samwil, north of Jerusalem, still considered sacred by the Mosiems: a Crusaders' church (now a mosque), covers the traditional tomb of Samuel. (3) A territory near Mount Hermon, a seat of the Hivites, which joined the coalition of Jabin against Joshua (Joshua xi. 3). In the territory was the "valley of Mizpeh" (9.8) where the Canamiles were routed. (4) \mathbf{A} town in the tribe of Judah (Joshua xv. 38). (5) Mizprif of Moab, where David interviewed the king of Moab and found an asylum for his parents (I Sam. xxii. 3).
(R.A.S. M.)

IIZRAII, the biblical name for Egypt (Gen. x. 6, 13, Hehrew Misrayim; the apparently dual termination -aim may be due to a misunderstanding); there is an alternative poetical form Máşor (2 Kings xix. 24, \&c.). In Isa. xi. 11 the name is kept distinct from Pathros or Upper Egypt, and represents some pertion at least of Lower Egypt. It perhaps means "boundary" or "fraatier," a somewhat ambiguous term, which illustrates the topographical problems. First (a), E. Schrader pointed out in 1874 that the Assyrians knew of some Muşri (i.e. Mizraim) in North Syria, and it is extremely probahle that this land is referred to in 2 Kings vii. 6 (mentioned with the Hittites), and in 1 Kings $x .28$ seq., 2 Chron. i. 16 seq., where the word for "droves" (Heb, $m-q-q-h$) conceals the contiguous land Kue (Cilicia). ${ }^{1}$ Next (b), C. T. Beke, as long ago as 1834, concluded in his Origines biblicec (p. 167 a passim) that "Egypt" in the Old Testament sometimes designates a district near Midian and the Gulf of 'Akaba, and the view restated recently and quite independently by H. Winckler on later evidence (1893) has been the subject of continued debate. Egypt is known to have laid claim to the southern half of Palestine from early times, and consequently the extension of the name of Egypt heyond the limits of Egypt and of the Sinaitic peninsula, is inherently probable. When, for example, Hagar, the "Egyptian," is the ancestress of Ishmaelite tribes, the evidence makes it very unlikely that the term is to be understood in the strict ethnical sense; and there are other passages more suitably interpreted on the hypothesis that the wider extension of the term was once familiar. In the second half of the 8 h century B.C., Assyrian inscriptions allude to a powerful Muşi at a time when the Nile empire was disintegrated and scarcely in a position to play the part ascribed to it (i.e. if by Musri we are to understand Egypt). ${ }^{2}$ Not until the supremacy of Tirhakah does the ambiguhy begin to disappear, and much depends upon the

[^44]unbiased discussion of the related biblical history (especially the writings of Isaiah and Hosen) and the Egyptian data. But even in the period of disintegration the minor princes of the Delts were no doubt associated with their eastern neighbours, and although tbe Assyrian Muşi stands in the same relation to the people of Philistia as do the Edomites and allied tribes of the Old Testament, Philistia itself was always intimately associated with Egypt. (See Phiustines.)

The problem is complicated hy the obscurity which overhangs the history of south Palestine and the Delta (sec Edom; Mroian). The political importance of Egypt was not constant, and the known fluctuations of geographical terms combine with the doubtful accuracy of early writers to increase the difficulties. The Assyrian evidence alone points very strongly to a Mugri in north-west Arabia; the biblical evidence alone suggests an extraEgyptian Misrayim. On the whole the result of discussion has been to admit the probability that Misrayim could refer to a district outside the limits of Egypt proper. But it has not justified the application of this conclusion to all the instances in which some critics have relied upon it, or the sweeping inferences and reconstructions which have sometimes been based upon it. Each case must be taken on its merits.

See further, H. Winckler, ALorient. Forschungen, i. 24 seq; Milleil. d. vorderasiaf. Gesell. (1898), PP. 1 sqq., 169 sqq-: Hibberi Journal (April 1904); Keilinschr. u.dos alte Tcst., 3rd ed.. $336 \mathrm{sq9} \cdot \mathrm{i}$ and Im Kampfe um den allen Orient, ii. (1907); T. K. Cheyne. especially Kingdom of $J_{\text {udah (}}$ (1908). pp. xiv. sqq.; F. Hommet, Vier newe arab. Landschafisnamen in A.T. For criticisms (many of them somewhat captious) see Konig's reply to Hommel (Berlin, 1902), A. Noordtzij, Theolog. Tijdsch. (1906, July, September), and E. Meyer. Israditen u. ihre Nachbdistimme, pp. 455 sqq. A valuable survey of the eographical and other conditions is given by N. Schmidt. Hitbert Jourmal (January 1908).
(S. A. C.)

 aids the memory), the general narae applied to devices for aiding the memory. Such devices are also described as memoric lechnsica. -The principle is to enable the mind to reproduce a relatively unfamiltar idea, and specially a series of dissociated ideas, by connecting it, or them, in some artificial whole, the parts of which are mutually suggestive. A pupil is far more tikely to remember the cities which claimed to be the birthplace of Homer when he remembers that their names can be made to form the hexameter line, "Smyrna, Chios, Colophon, Salamis, Rhodos, Argos, Athenac." Among the most famous examples of metrical mnemonics are the "gender rhymes " of the Latin grammars, the hexameter lines (especially that beginning "Barbara Celarent") invented by logicians (for a list sce Baldwin's Dict. of Philos., vol. ii., s.v. "Mnemonic Verses "), the verse for remembering the number of days in the months ("Thirty days hath September, April, June and November "). Other devices are numerous. Thus the name and lights of the sides of a ship may be remembered because the three shorter words "port," "left," " red," go together, as compared with the longer, "starboard," "right," "green."
Memory is commonly classified by psychologists according as it is exercised (a) mechanically, by attention and repetition; (b) judiciowsly, by careful selection and co-ordination; and (c) ingexiously, by means of artifices, i.e. mnemotechny, mnemonics. It must, however, be observed that no mnemonic is of any value which does not possess the quallies of (a) and (b). A mnemonic is essentially a device which uses attention and repetition, and careful selection is equally necessary. A more accurate description of mnemonics is "mediate" or "indirect " memory. In the tecbnical sense the word "mnemonic" is confined to the systems of general application which have been claborated by various writers.
Systems.-Mnemonic devices were much cultivated by Greek sophists and philosophers, and are repeatedly referred to by Plato and Aristotle. In later times the invention was ascribed to the poet Simonides,' perhaps for no other renson than that the strength of his memory was famous. Cicero, who attaches
${ }^{1}$ Pliny. H.N. vii. 24. Cicero. De er. ii 86, mentions this belief without committing himself to it.
considerable importance to the art, bot more to the principle of order as the best help to memory, speaks of Carneades (or perhaps Charmades) of Athens and Metrodorus of Scepsis as distinguished examples of the use of well-ordered images to aid the memory. The latter is said by Pliny to have carried the art so far' "ut nihil non iisdem verbis redderet auditum." The Romans valued such helps as giving facility in public speaking. The method used is described hy the author of Rher. ad Heren. ، iii. 16-24; see also Quintilian (lnst. Or. xi. 2), whose account is, however, somewhat incomplete and obscure. In his time the art had almost ceased to be practised. The Greek and Roman system of mnemonics was founded on the use of mental places and signs or pictures, known as "topical" mnemonics. The most usual method was to choose a large house, \mathcal{O} which the apartments, walls, windows, statues, furniture, \&c., were severally associated with certain names, phrases, events or ideas, by means of symbolic pictures; and to recall these it was only necessary to search over the apartments of the house till the particular place was discovered where they had been deposited by the imagination. In accordance with this system, if it were desired to fix an historic date in the memory, it was localized in an imaginary town divided into 2 certain number of districts, each with ten houses, each bouse with ten rooms, and each room with a hundred quadrates or memory-places, partly on the floor, partly on the four walls, partly on the roof. Thus, if it were desired to fix in the memory the date of the Invention of printing (1436), an imaginary book, or some otber symhol of printing, would be placed in the thirt y-sixth quadrate or memory-place of the fourth room of the first house of the historic district of the town. Except that the rules of mnemonics are referred to by Martianus Capella, nothing further is known regarding the practice of the art until the 13th century. Among the voluminous writings of Roger Bacon is a tractate De arte menerativa. Raimon Lull devoted special attention to mnemonics in connexion with his ars gencralis. The first important modification of the method of the Romans was that invented by the German poet Konrad Celtes, who, in bis Epiloma in utramque Ciceronis rheloricams cum arte memoraling nova (1492), instead of places made use of the letters of the alphabet. About the end of the 1 sth century Petrus de Ravenna (b. 1448) awakened such astonishment in Italy by his mnemonic feats that he was believed by many to be a necromancer. His Phoenix artis memoriae (Venice, 1491, 4 vols.) went through as many as nine editions, the seventh appearing at Cologne in 1608. An impression equally great was produced about the end of the 16th century by Lambert Schenkel (Gasophylacixm \boldsymbol{m}_{4} 1610), who taught mnemonics in France, Italy, and Germany, and, although he was denounced as a sorcerer by the university of Louvain, published in 1593 bis tractate De memoria at Douai with the sanction of that celebrated theological faculty. The most complete account of his system is given in two works by his pupil Martin Sommer, published at Venice in 16ig. In 1618 Jobn Willis (d. 1628?) published Mnemonica; sive ars reminiscendi (Eng. version by Leonard Sowersby, 166t; extracts in Feinaigle's New Art of Memory, 3rd ed., $18 \mathrm{I}_{3}$), containing a clear statement of the principles of topical or local mnemonics. Giordano Bruno, in connexion with his exposition of the ars seneralis of Lull, included a memoria lochmica in his treatise De umbris idearum. Other writers of this period are the Florentine Publicius (1482); Johann Romberch (1533); Hieronimo Morafiol, Ars memoriae (i602); B. Porta, Ars reminisecmdi (i602).
In 1648 Stanislaus Mink von Wenussheim or Winckelmans made known what he called the " most fertile secret " in mnemo-nics-namely, the use of consonants for figures, so as to express numbers by words (vowels being added as required); and the philosopber Leibnitz adopted an alphabet very similar to that of Winckelmann in connexion with bis scbeme for 2 form of writing common to all languages. Winckelmann's method, which in fact is adopted with slight changes by the majority of subsequeat "original" systems, was modified and supplemented in regard to many details by Richard Grey (1694-1771), who published a Memoric sechnice in 1730. The
principa! part of Grey's method (which may be compared with the Jewish system by which ketters also stand for numerals, and therefore words for dates) is briefly this: "To remember anything in history, chronology, geography, \&ce., a word is formed, the beginning whereof, being the first syllable or syllahles of the thing sought, does, by frequent repetition, of course draw after it the latter part, which is so contrived as to give the answer. Thus, in history, the Deluge happened in the year before Christ two thousand three hundred forty-eight; this is signified by the word Del-etok, Del standing for Deluge and clok for 2348 ." To assist in retaining the mnemonical words in the memory they were formed into memorial lines, which, however, being composed of strange words in diffcult hexameter scansion, are by no means easy to memorize. The vowel or consonant, which Grey connected with a particular figure, was chosen arbitrarily; hut in 1806 Gregor von Feinaigle, a German monk from Salem near Constance, began in Paris to expound a system of mnemonics, one feature (based on Winckelmann's system) of which was to represent the numerical figures by letters chosen on account of some similarity to the figure to be represented or some accidental connexion with it. This alphabet was supplemented by a complicated system of localities and signs. Feinaigle, who apparently puhlished nothing himself, came to England in ISII, and in the foliowing year one of his pupils published The New Art of Memory, which, beside giving Feinaigle's system, contains valuable bistorical material about previous systems. A simplified form of Feinaigle's method was published by Aimé Paris (Principes a applicalions diterses de la mnémonique, 7th ed., Paris, $1 \mathrm{~S}_{34}$), and the usc of symbolic pictures was revived in connexion witb the latter by a Pole, Antoni Jazwifisky, of whose system an account was published by the Polish general J. Bem, under the title Expose general de la methode maémonique polonaise, perfectionnte a Paris (Paris, 1839). Various other modifications of the systems of Feinaigie and Aime Paris were advocated by subsequent mnemonists, among them being the Phrenotypics of Major Beniowsky, a Polish refugee, the Phreno-Mnemolechny (1845) of Francois Fauvel Gouraud the Mnemotechnik of Karl Otto Reventlow (generally known as Karl Otto), a Dane, and the Muemolectiny of the American Pliny Mfiles.

The more complicated mnemonic systems have fallen almost into complete disuse; but methods founded chiefly on the so-called laws of association (see Association of Ideas) have been taught with some success in Germany by, among others, Hermann Kothe, author of Lehrbuck der Mnemonik (2nd ed., Hamburg, 1852), and Katechismus der Gedachinisskunst (6th ed. by Montag, Leipzig, 1887); and Hugo Weber-Rumpe, author of Mnemonische Zahkoörterbuch (Breslau, 1885) and Mnemonische Unterrichtsariefe (1887-1888); in England by Dr Edward Pick, whose Memory and the Rational Means of Improving it (5th ed., 1873) and Lectures on Memory Cullure (1899) nbtained a wide circulation. Passing over the work of William Day (New Mnemonical Chart and Guide to the Art of Memory, 1845), Rev. 'T. Brayshaw (Melrical Mnemonics, a very rare work), Fairchild and W. Stokes, the next name nf any importance is the Rev. J. H. Bacon, a pupil of Edward Pick. His book (A Complete Gwide to the Improcement of the Memory, $3^{\text {rd ed., rev. } 1890 \text {) contains a good summary of }}$ the history of mnemonics and a very reasonable account of the principles; it gains in value by its comparative simplicity. More or less successful systems were issued by Lyon Williams (1866), T. Maclaren (1866), Thomas A. Sayer (i867), Rev. Alexander Mackay (1869), George Crowt her (1870), F. Appleby (1880), John Sambrook, why made use of similarities in sounds (gun, 1; Jew, 2), the French scientist Abbé Moigno, J. H. Noble, and Allan Dalzell. Considerable interest was roused both in London and in America by the controversy which raged round the system of "Alphonse Loisette," who taught his "art of never forgetting" successively in London and Washington. It claimed to be original in system, but was attacked in England by F. Appleby and in America by George S. Fellows, and is generally regarded as both unoriginal and inferior on the whole to preceding systems (for the litigation in America sce e.g. Part II. of Middleton's

Memory Systems, pp. p6 sqq.). An interesting work (Memoranda mwemonice) was published by James Copner in 1893, containing a system based partly on the use of letiers for figures and words for dates, as well as a large number of rhymes for remembering facts in hiblical, Roman, Greek and English history. He made use of Grey's system, hut endeavoured as far as possible to invent, where necessary, words and terminations which in themselves had some special fitness in place of Grey's monstrosities. More complicated systems are the Keesing Memory System (Auckland, 1896), the Smith-Watson System of Memory and Mental Training (Washington), and the Pelman memory system.
Bialiography.-A large number of the works referred to in the text contain historical material. Among histories of the subject. see C.F. von Aretin, Systemalische Anleitung sur Theorie wnd Praxis der Mnemonik (Sulzberg, 1810); A. E. Middleton, Memory Syslems. Old and New (espec. 3 rd rev.ed., New York, 1888), with bibliography of works from 1325 to 1888 by C. S. Fellows and account of the Loisette litigation; F. W. Colegrove., Memory (1901), with bibliography, pp. 353-361.
(J. M.M.)

MNESICLES, the architect of the great Propylaea of the Athenian Acropolis, set up by Pericles about 437 b.c.

MOA, apparently the Maori name of the extinct Ratite birds in New Zeatand, comprising the group Dinornithes (cf. Bird: Classification: and Ratitae). The earliest account of these birds is that of Polack (New Zealand, London, 1838), who speaks of the former existence of some struthious birds in the north island as proved by fossil bones which were shown to him. "The natives added that, in times long past, they received the tradition that very large birds had existed, but the searcity of food, as well as the easy method of entrapping them, had caused their extermination." In the North Island the moas seem to have died out soon after the arrival of the Maoris, according to F. W. Hutton, 50 me $700-500$ years ago. In the South Island they seem to have lingered much longer, possibly, according to H. O. Forbes (Nat Sci. II. 1893, pp. 374-380), "down even to the time that Captain Cook visited New Zcaland." But these are only surmises, based upon the fact that in various dry caves limbs still surrounded by the mummified flesb and skin, feathers, and even eggs with the innor membrane, have been found. Great quantities of bones have been found in caves and in swamps, so that now nearly every part of the skeleton, of some kind or other, is known.

The most striking feature of the moas, besides the truly gigantic size of some species, is the almost complete absence of the wings. In fact, the whole skeletons of the wings and of the shoulder girdle seem to have been lost, excepting Anomolopleryx dromaeoides, which, according to Hutton,' had still some vestiges. Such a complete reduction of the whole anterior limb and girdle is unique among birds, but the cassowaries indicate the process. In conformity with these reductions the breastbone of the moas is devoid of any coracoidal facets; there is no trace of a keel, and the number of sternal ribs is reduced to three or even two pairs. The hind limbs are very strong; the massive femur has a large pneumatic foramen; the tibia has a bony hridge on the anterior surface of the lower portion, a character in which the moas agree only with A pleryx amongst the other Ratitae. The number of toes is four, unless the hallux is more or less reduced. The pelvis much resembles that of the kiwis.
The skull has been monographed by T. J. Parker (" On the Cranial Osteology, Classification and Phylogeny of the Dinornithidae," Tr. Z. Soc. (1893), xiii. 373-431, pls. 56-62); it resembles in its general configuration that of the emeus and cassowaries, while it differs from that of A pleryx most obviously by the short and stout bill.

The feathers have a large after-shaft which is of the size of the other balf, likewise in agreement with the Australian Ratitae, while in the others, including the kiwis, the after-shaft is absent. Another important point in which the moas agree with the other Ratitae and difier from the kiwis, are the branched, instead of simple, porous canals in the eggshell.
${ }^{1}$ "The Moes of New Zealand," Tr. N. Zea. Inst. (1892), xxiv. 93-172, pis. xv.-xvii.

The affinities of the moas are undoubtedly with the Australian Ratitae, and, in spite of the difierences mentioned above, with the kiwis. In this respect Max Fürbringer and T. J. Parker are in perfect agreement. The relationstip with Aepyorwis of Madagascar is still problematic. Whilst the moas seem to have been enlirely herbivorous, feieding not ualikely upon the shoots of farns, the kiwis have become highly specialized wormcaters. In this respect cassowaries and emeus hold an intermediate position, their occasional moophagous (especially piscivorous) inclination being well known. Unmolested by enemies (Harpagornis, a tremendous bird of prey, died out with the Pleistocenc), Ilving in an equable insular climate, with abundant vegetation, the moas flourished and seem 10 have reached their greatest development in specialization, numbers, and a bewildering variety of large and small kinds, within quite recent limes. Unfortumately no fossil moas, older than the Pleiocene, are known. Parker recognizes five genera, with about twenty species, which he combines into three sub-lamilies: Dinornithinse with Dinowtis, Anomalopteryginae with Pachyernis, Mesopteryx and Anomalopleryx, comprising the comparatively least specialized forms; and Emeinae with the genus Emens, not to beconfounded with the vernacular emeu. The moas ranged in size from that of a turkey to truly coloseal dimensions, the giant being Dinornis maximus, which, with a tiblal length of 39 in ., stood with its small head about is t . above the ground.
(H. F. G.)

MOAB, the name of an ancient people of Palestine who inhabited a district E. of the Jordan and the Dend Sea, lying N. of Edom and S. of Ammon (g.v.) and the Israelite Transjordanic districts. There is littie material for is earlier history outside the Old Testament, and the various references in the latter are of ten of disputed reference and date. The national traditions of Israel recognize a close relationship between Moab and Ammon, "sons" of Lot, and the "brothers" Esau (Edom) and Jacob (Israel), and Moab is represented as already a powerful peopie when Isracl fied from Egypt (Exod. xv. 15). The detailed narratives, however, give conficting views of the exodus and the conquest of Paiestine. It was supposed that Moab, having expelled the aboriginal giants, was in turn displaced by the Amorite king Sihon, who forced Moab south of the Arnon (Wadi Mojib, a natural boundary) and drove Ammon beyond the Jabbok. The Israelites at Kadesh, almost at the gate of the promised land, incurred the wrath of Yahweb, and, deterned by a defeat at Hormah from pursuing their journey morthwards, were obliged to choose another route (Num. xiv. 40-45; contrast xui. 1-3). (See Exodus, The.) Messengers to Edom were repulsed (Num. 2x. 14-18), or Isracl was met by Edom with force (5.19 seq .); consequently a great détour was made from Kadesh round by the south of Edom (Num. xiv. 25. xxi. 4; Judges xi. 18). At length the people safely reached Pisgah in Mosb (Num. xxi. 16-20; cf. Deut. iii. 27, Exxiv. 1); or, according to another view, passed outside Moab until they reached the border of Sthon's tingdom (Num. xxi. 13, 26; Judges xi. 17 seq.). There are other details in Deut. ii., and the late list ia Num. maxiii even seems to assume that the journey was made from Kadesh across the nort hern end of Edom. Apparently no fixed or distinct tradition existed regarding the joorneys, and it extremely probable that some of the most characteristic features belong to much later periods than the latter half of the second millennium B.c., the age to which they are ascribed (ag. the poem on the fall of Heshbon, Num. xxi. 27-30).
The account of Balaam (q.v.). the son of Beor, the soothsayer, of the children of Ammon (xxii. 5 , some MSS.), or of Aram or of Edom (see Cheyne. Ency. Bib, col. 3685 and below), is noteworthy for the prophocies of Isracl's future supremacy: but he is pased over in the historical sketch, Deut. ii.; and even the allusion, ibid. xxiii. 4 seq., belongs to a context which on independent grounds appears to be a later insertion. Israel's idolatry in Moab is supplemented by a later story of the vengeance upon 1 fidian ($x x v .6-18_{1} \times x \times 1$. .). In Jothua xifi. 2t the letter is aseociated with both Sihon and Balaam, and in some obscure manner Midian and Moabare connected in Num. xxii. 4.7 (cf. xxv. 18, xxxi. 8). An Edomite list of kings includes Bela (cf. Bil'am. i.e. Balanm). son of Beor, and states that a Hadad. son of Bedad, smote Millian in the feth of Moab (Gen.
mxxvi. 32, 35): these events, assigned to an early age, have been connected with the appearance of Moabite power west of the Jordan in the days of the "judge " Ehud (g.o.). However, all that is recorded in Num. xxx. sqq., together with various legal and other matter, now severs the accounts of the Isracite occupation of eax Jordan (Num. mxi., 33-35, xxxii. 39-42). For (ull details see G. B. Gray, "Numbers" (Inlernal. Critical Comment.).
Alhough Moab and Ammon were "brothers," their history was usually associated with that of Judah and Israel respectively, and naturally depended to a considerable extent upon these two and their mutual relations. Jephthah (q.o.), one of the Israelite " judges," delivered Gilead from Ammon, who resumed the attack under its king Nahash, only to be repulsed by Saul (q.v.). Ehud (q.v.) of Benjamin or Ephraim freed Isracl from the Moabite oppression. To the first great kings, Saul and David, are ascribed conquests over Moab, Ammon and Edom. The Judaean David, for bis part, sought to cultivate friendly relations with Ammon, and tradition connects bim closely with Moab. His son Solomon contracted marriages with women of both states (1 Kings xi. 5, 7), thus introducing into Jerusalem cuits which were not put down until almost at the close of the monarchy (2 Kings xxiii. 13). In the gth century b.c. the two states appear in more historical surroundings, and the discovery of a lengthy Moabite inscription has thrown valuable light upon contemporary conditions.

This inscription, now in the Louvre, was found at Dhiban, the biblical Dibon, in 1868 by the Rev. F. Klein, a representative of the Church Missionary Society stationed at Jerusalem. It contains a record of the successes gained by the Moabite king Mesha against Lsracl.! Omri (q.p.) bad previously seized a number of Moabite cities north of the Arnon, and for forty years the Moabite national god Chemosh was angry with his land. At length he roused Mesha; and Moah, which had evidently retreated southwards towards Edom, now began to take reprisals. "The men of Gad had dwelt in the land of 'Ataroth from of old; and the king of Israel built "Ataroth for himsclf." Mesha took the city, slew its people in honour of Chemosh, and dragged before the god the altar-hearth (or the pricsts?) of D-v-d-h (apparentily a divine name, but curiously similar to David). Next Chemosh roused Mesha against the city of Nebo. It fell with its thousands, for the king had "devoted" it to the deity 'Ashtar-Chemosh. Yahweh bad been worshipped there, and his . . . (? vessels, or perhaps the same doubtiful word as above) were dragged before the victorious Chemosh. With the help of these and other victorics (at Jahaz, Aroer, \&c.), Moab recovered its territory, fortified its cities, supplied them with cisterns, and Mesha built a great sanctuary to his god. The inscription enumerates many places known elsewhere (Isa. xv.: Jer. xlviii.), but although it mentions the "men of Gad," makes no allusion to the Israclite tribe Reuben, whose seat lay in the district (Num. xxxii.; Josh. xiii. 15-23; see Reuben). The revolt will have followed Ahab's death (sec 2 Kings i. 1) and apparently led to the unsuccessful attempt by Jehoram to recover the lost ground (ibid. iii.).

The story of Jehoram in 2 Kings iii. now gives prominence to Elisha, his wonders, his hostility to the ruling dynasty and his regard for the aged Jehoshaphat of Judah. Following other synchronisms, the Septuagint (Lucian's recersion) names Ahaziah of Judah; Irom 2 Kings \mathbf{i}. 17, the reigning king could only have been Jehoram's namesake. The king of Edom appears as an ally of isracl and Judah (contrast 1 Kings xxii. 47; 2 Kings viii. 20), and hostile to Moab (comp. above, and the obscure allusion in Amos ii. I-2). But the king of Moab's attempt to break through unto him suggeststhat in the original story (there are several signs of revision) Mcab and Edom were in alliance. In this casc the object of Jehoram's march round the south of the Dead Sea was to drive a wedge between them, and the result hints at an lsraelite disaster. Singularly enough, Jehoram of Judah suffered some defcat from Edom at Zair, an unknown name for which Ewald suggested (ibe Moabite) Zoar (2 Kings viii. 2t; see Jeцоаam).

Moab thus retained its independence, even harrying Israel with marauding bands (2 Kings xiii. 20), while Ammon was
${ }^{1}$ See edition by M. Lidzbarkk, Allsemitische Terte. Bd. I. (Giessen, 1907) ialoo G. A. Cooke, Narth Semilic Inscr.'Pp. 1-14. and ihe articles 2 on "Moab." in Hasting's Dict. Bible (by W. H. Bennett), and - Mesha " in Ency. Bib. (by S. R. Driver).
perpetrating cruelties upon Gilead (Am. i. 13 sqq.). But under Jeroboam II. (q.o.) Israelite territory was extended to the Wadi of the 'Arabah or wilderness (probably south end of the Dead Sea), and again Moab sufered. II Isa. sv. seq. is to be referred to this age, its people fled southwards and appealed for protection to the overlord of Edom (see Uzzing). During the Assyrian supremacy, its king Salamannu (probably not the Shalman of Hos. x. 14) paid tribute to Tiglath-Pileser IV., but joined the short-lived revolt with Judah and Philistia in 711. When Sennacherib besieged Jerusalem in 701, Kamus(Chemosh)-nadab also submitted, and subsequently both Esarhaddon and Assur-bani-pal mention the Moabite king Musuri ("the Egyptian," but cf. Mizanin) among their tributaries. In fact, during the reign of Assur-bani-pal Moab played the vassal's part in helping to repulse the invasion of the Nabayati and nomads of Kedar, a movement which made itself fell from Edom nearly as far as Damascus. It had its root in the revolt of Samas-sumyukin (Shamash-shun-ukin) of Babylonia, and coming at a time immediately preceding the disintegration of the Assyrian Empire, may have had most important consequences for Judah and the east of the Jordan. ${ }^{1}$ (See Palestine: History.)
Moab shares with Ammon and Edom in the gencral obscurity which overhangs later events. If it made inroads upon Judah (2 Kings xxiv. 2), it joined the coalition against Babylonia (Jer. xxvii. 3); if it is condemned for its untimely joy at the fall of Jerusalem (Isa. xxv. 9 seq.; Jer. ilviii.; Ezek. xxv. 8-11; Zeph. ii. 8-10), it had ofered a harbour to fugitive Jews (Jer. xl. II). The dates of the most significant passages are unfortunately uncertain. If Sanballat the Horonite was really a native of the Moabite Horonaim, he finds an appropriate place by the side of Tobiah the Ammonite and Gashmu the Arabian among the strenuous opponents of Nehemiah. Still later we find Moah part of the province of Arabia in the hands of fresh tribes from the Arabian desert (Jos. Ant. xiii. 13, 5); and with the loss of its former independent power, the name survives merely as a iype (Dan. xi. 41). (Sce Jews; Nabataeans.)
A populous land commanding the trade routes from Arabia to Damascus, rich in agricultural and pastoral wealth, Moah, as Mesha's inscription proves, had already reached a high state of civilization by the gth century b.c. Its language differed only dialectically from Hebrew; its ideas and religion were very closely akin to the Israelite, and it may be assumed that they shared in common many features of culture. ${ }^{2}$ The relation of Chemosh, the national god, to his "children" (Num. xxi. 29) was that of Yahweh to Isracl (see especially Judges xi. 24). He had his priests (Jer. xlviii. 7), and Mesha, perhaps himself a priest-king, receives the oracles direct or through the medium of his prophets. The practice of devoting, banning or annihilating city or community was both Moabite and Israelite (cf. above, also Deut. ii. 34, iii. 6, xx. 10-20; 2 Chron. xxv. 12, \&c.), and buman sacrifice, offered as an exceptional gift to Chemosh in 2 Kings iij. 27, in Israel to Molech (q.o.), was a rite once less rare. Apart from the religious cult suggested in the name Mount Nebo, there were local cults of the Baal of Peor and the Baal of Meon, and Mesha's allusion to 'Ashtar.Chemosh, a compound deity, has been taken to point to a corresponding consort whose existence might naturally he expected upon other grounds (see Astarte). The fertility of Moab, the wealth of wine and corn, the temperate climate and the enervating heat supply conditions which directed the form of cult. Natureworship, as in Israel, tay at the foundation, and the impure rites of Shittim and Baal-Peor (Num. xxxi. 16; P3. cvi. 28) would not materially differ from practices which Israelite prophets were calied upon to condermn. Much valuable evidence is to be obtained also from the survival of ancient forms of cult in Mosb

[^45]and east of the Jordan (e.g. sacrifices on the house roofs) and from a survey of epigraphical and other data from the Greek, Roman, and later periods, allowance being made for contamination. The whole question deserves careful investigation in the light of comparative religion. ${ }^{2}$

The relationship felt between Israel and the external states (Moab, Edom, and Ammon) is entirely justified. It extends intermittently throughout the history, and certain complicated features in the traditions of the southern tribes point to affinities with Moab which find a parallel in the traditions of David (see Rutu) and in the allusions to intercourse between Moab and Benjamin (I Chron. viii. B) or Judah (ibid. iv. 21 seq.). But the obscure bistorical background of the references makes it uncertain whether the exclusiveness of orthodax Judaism (Neh. xiii. 1-3; cf. Deut. xxiii. 3-6; Ezra ix. 1, 12) was imposed upon an eartier catholicity, or represented only one aspect of religious spirit, or was succeeded by a more tolerant altitude. Evidence for the last-mentioned has been found in the difficult narrative in Josh. xxii. But Israel remained a great power in religious history while Moab disappeared. It is true that Moab was continuously hard pressed by desert bordes; the exposed condition of the land is emphasized hy the chains of ruined forts and castles wbich even the Romans were compelled to construct. The explanation of the comparative insignificance of Moah, however, is not to be found in purely topographical considerations. Nor can it be sought in political history, since Israel and Jodah suffered as much from external movements as Moab itself. The explanation is to be found within Israel itself, in factors which succeeded in re-shaping existing material and in imprinting upon iz a durable stamp, and these factors, as biblical tradition recognizes, are to be found in the work of the prophets.

See the articles on Moab in Hastings's Dick. Bible (W. H. Bennett), Ency. Bib. (G. A. Smith and Wellhausen), and Hauck; Realencyklopadie (F. Buhl) with their references; also the popular description by W. Libbey and F. E. Hoskins, Jordan Valley and Petra (igos), and the very elaborate and scientific works by R.E. Brannow and A. von Domaszewski, Dut Prouincia Arabia (1904-1905). and A. Musil, A rabia Petrota (1907-1908). Mention should be made of the mosaic map of Palestine found at Medaba, dating perhaps from the Sth century A.D.; for this, see A. Jacoby, Das grograph. Mosaik won A. (1905), and P. Palmer and Guthe (1906). For language and epigraphy see Nabataeans, Semitic Languages; for topography. \&c., Palestine; and for the later history, Jews.
(S. A. C.)
mo'allakXt (Mo'allaqit or Mu'alligat). Al-Míallaqd is the title of a group of seven longish Arabic poems, which have come down to us from the time before Islam. The name signifies "the suspended" (pl.), the traditional explanation being that these poems were hang up by the Arabs on or in the Ka'ba at Mecca. The oldest passage known to the present writer where this is staled occurs in the 'Iqd of the Spanish Arab, Ibn 'Abd-Rabbihi (AD. 860-940), Büláq ed. of 1293 A.B. vol. iii. p. sio seq. We read there: "The Arabs had such an interest in poetry, and valued it so highly, that they took seven long pieces selected from the ancient poetry, wrote them in gold on pieces of Coptic linen folded up, and bung them up ('allaqat) on the curtains which oovered the Ka'be. Hence we speak of 'the golden poem of Amra'al Qais,' 'the golden poem of Zuhair.' The number of the golden poems is seven; they are also called 'the suspended' (al.Mo'allagd)."' Similar statements are found in later Arabic works. But against this we bave the testimony of a contemporary of Ibn 'AbdRahhihi, the grammarian Nabbds (d. A.D. 949), who says in his commentary on the Mo'aliaqat: "As for the assertion that they were bung up in [sic) the Ka'ba، it is not known to any of those who bave handed down ancient poems. " " This cautious scholar is unquestionably right in rejecting a story so utterly unauthenticated. The customs of the Arahs before Mahomet

[^46]are pretty accurately known to us; we have also a mass of information about the affairs of Mecca at the time when the Prophet arose; but no trace of this or anything like it is found in really good and ancient authorities. We bear, indeed, of a Meccan hanging up a spoil of battle on the Ka'be (Ihn Hisham, ed. Wistenfeld, p. 431). Less credible is the story of an important document being deposited in that sanctuary (ibid. p. 230), for this looks like an instance of later usages beiog transferred to pre-Islamic times. But at all events this is quite a different thing from the hanging up of poetical manuscripts. To account for the disappearance of the Mo'allaqat from the Ka'ba we are told, in a passage of late origin (De Sacy, Chrestom. ii. 480), that they were taken down at the capture of Mecca by the Prophet. But in that case we should expect some hint of the occurrence in the circumstantial biographies of the Prophet, and in tbe works on the history of Mecca; and we find no such thing. That a series of long poems was wrillem at all at that remote period is improbable in the extreme. Up to a time when the art of writing had become far more general than it was before the spread of Islam, poems were never-or very rarelywritten, with the exception, perhap,s, of epistles in poetic form. The diffusion of poetry was exclusively committed to orel tradition. Moreover, it is quite inconceivahle that there should have been either a gild or a privete individual of such acknowledged taste, or of such influence, as to bring about a consensus of opinion in favour of certain poems. Think of the mortal offence which the canonization of one poet must have given to his rivals and their tribes. It was quite another thing for an individual to give his own privatie estimate of the respective merits of two poets who had appealed to him as umpire, or for a number of poets to appear at large gatherings, such as the fair of ' Oq 44 (Okad) as candidates for the place of honour in the estimation of the throng which listened to their recitations. No better is the modifications of the legend, which we find, at a much later period, in the Mogadima of Ibn Khaldan (A.D. 1332-1406), who tells us that the poets themselves hung up their poeras on the Ka'be (ed. Paris iii. 357). In short, this legend, so often retailed by Arabs, and still more frequently by Europeans, must be entirely rejected. ${ }^{1}$ The story is a pure fabrication based on the name "suspended." The word was taken in its literal sense; and as these poems were prized by many above all others in after times, the same opinion was attributed to "the [ancient] Arabs," who were supposed to have given effect to their verdict in the way already described. A somewhat simpler version, also given by Nahhis in the passage already cited, is as follows: "Most of the Arabs were eccustomed to meet at "Oqaz and recite verses; then, if the king was pleased with any poem, be said, 'Hang it up, and preserve it among my treasures.' "But, not to mention other difficulties, there was no king of all the Arabs; and it is hardly probable that any Arabian king attended the fair at 'Oq33. The story that the poems were written in gold has evidently originated in the name "the golden poems" (literaHy "the gilded "), a figurative expression for excellence. We may interpret" the designation "suspended " on the same principle. It seems to mean those (poems) which have been raised, on account of their value, to a specially bonourable position. Another derivative of the same root is "ifq, "precious thing" A clearer significance attaches to another name sometimes used for these poems-acrumoif, "the strings of pearls." The comparison of artificially elaborated poems to these strings is extremely apt. Hence it became so popular that, even in ordinary prose, to speak in rbythmical form is called simply magn-" to string pearis."
The selection of these seven poems can scarcely have been
${ }^{1}$ Douhts had already been expressed by various echolars, when Hengetenberg-rigid conservative as he was in theology-openly challenged it, and Sprenger (Das Leben des Mohammad, i. 14, Beriin, ${ }^{1861)}$ declared it a fable. Since then it has been controverted at length in Noldeke's Beitroge aur Kenntniss der Poesie der allen Araber (Hanover, 1864). p. xvil. eqq. Ahlwardt concurs in this conclusion; see his Bemerkungen uber die Aechtheil der allen arabischen Cedichte (1872), pp. 25 eq.
the wook of the ancient Arabs at all. It is much more bikely that we owe it to some connoisseur of a later date. Now Nahhss says expressly in the same passage: "The true view of the matter is this: when Hammand ar-Rawiya (Hammad the Rhapsodist) saw how little men cared for poetry, he collected these seven pieces, arged people to study tbem, and said to them: "These are the [poems] of renown.'" And this agrees with all our other information. Hammad (who lived in the first three quarters of the 8th century a.D.) was perhaps of all men the one who knew most Arabic poetry by heart. The recitation of poems was his profession. To such a rhapsodist the task of selection is in every way appropriate; and it may be assumed tbat he is responsible also for the somewhat fantastic title of "the suspended."

There is another fact which seems to speak in favour of Elamoned as the compiler of this work. He was a Persian by descent, but a client of the Arab tribe, Bakr ibn Wäil. For this reason, we may suppose, he not only received into the collection a poem of the famous poet Tarafa, of the tribe of Bakr, but also that of another Bakrite, Hárith, who, though not accounted a bard of the highest rank, had been a prominent chieftain; while his poem could serve as a counterpoise to another also received-the celebrated verses of Harith's contemporary 'Amr, chief of the Taghlib, the rival brethren of the Bakr. 'Amr praises the Taghlib in glowing terms: Härith, bn a similar vein, extolls the Bakr-ancestors of Hammād's patrons. The collection of Hammad appears to have consisted of the same seven poems which are found in our modern editions, composed respectively by Amra'al-Qais, Tarafa, Zuhair, Labid, 'Antara ibn Shaddad, 'Amr ibn Kulthum, and Härith ibn Hilliza. These are enumerated both by Ibn 'Abd-Rabbihi, and, on the anthority of the older philologists, by Nahbas; and all subsequent commentat ors seem to follow them. We have, however, evidence of the existence, at a very early period, of a slightly different arrangement. Certainly we cannot now say, on the testimony of the. Jemherat ask'dr al "Arab, that twoof the most competent ancient authorities on Arabic poetry, Mofaddal (d. c. 790) and Abu 'Ubaida (d. A.D. 824, at a great age), had already assigned to the "Seven" (viz. "the seven Mo'allaqat ") a poem each of Nabigha and A'shă in place of those of 'Antara and Haritb. For meanwbile it has been discovered that the compiler of the above-mentioned work-who, in order to deceiv́e the reader, issued it under a false name-is absolutely untrustworthy. But the learned Ibn Qotaiba (gth century A.D.), in his book Of Poetry and Poets, mentions as belonging to the "Seven" not only the poem of 'Amr, which has invariably been reckoned among the Mo'allagit (ed. de Goeje, p. 120), but also a poem of 'Abrd ibn Abras (ibid. 144). In place of which poem he read this we do not know; and we are equally ignorant is to wbether he counted other pieces than those indicated above among the seven.

Now Nabigha and A'sha enjoyed greater celebrity than any of the poets represented in the Mo•allaqat, with the exception of Amra'al-Qais, and it is therefore not surprising that scholars, of a somewhat later date, appended a poem by each of these to the Mo'allagat, without intending by this to make them an integral part of that work. This is clear, for instance, from the introductory words of Tibriar (d. A.D. 1109) to his commentary on the Mo'allagat. Appended to this he gives a commentary to a poem of Nabigha, to one of A^{\prime} 'shis, and moreover one to that poem of 'Abid which, as we have just seen, Ibn Qotaiba had counted among the seven. It is a pure misunderstanding wben Ibn Khaidan (loc. cut.) speaks of nire Mo'allaqatt; and weought hardly to lay any stress on the fact that he mentions not only Nabigha and A'shis, but also 'Alqama, as Mo'allaqapoets. He was probably led to this by a delusive recollection of the Collection of the "Six Poets," im which were included these three, together with the three Mo'allaqa-poets, Amra'alQais, Zuhair and Tarafa.

The lives of these poets were spread over a period of more than a hundred years. The earliest of the seven was Amra'alQas (q.v.), regarded hy many as the most illustrious of Arabian
pocts. His exact date cannot be determined; but probably the best part of his career fell within the midst of the 6th century. He was a scion of the royal house of the tribe Kinda, which lost its power at the death of King Harith ibn "Amr in the year 529.' The poet's royal father, Hojr, by some accounts a son of this Hãrith, was killed by a Bedouin tribe, the Banü Asad. The son led an adventurous life as a refugee, now with one tribe, now with another, and appears to have died young. The anecdotes related of him-which, however, are very untrustworthy in detail-as well as his poems, impiy that the glorious memory of his house and the hatred it inspired were still comparatively fresh, and therefore recent. A contemporary of Amra'al-Qais was 'Abld ibn Abras, one poem of whose, as we have seen, is by some authorities reckoned among the collection. He belonged to the Banil Assd, and is fond of vaunting the heroic dead of his tribe-the murder of Hoir- in opposition to the victim's son, the great poet.
The Mo'allaqa of 'AMr herls defiance against the king of Bira, 'Amr son of Mundhir, who reigned from the summer of 554 till 568 or 569 , and was afterwards slain by our poet. ${ }^{2}$ This prince is also addressed by Harite in his Mo'allaqa. Of Tarapa, who is said to have attained no great age, a few satirical verses have been preserved, directed against this same king. This agrees with the fact that a grandson of the Qais ibn Khalid, mentioned as a rich and influential man in Tacafa's Mo'allaqa (v .80 or 8 I), figured at the time of the battle of Dha-Qār, in which the tribe Bakr routed a Persian army. . This battle falls between A.D. 604 and 6so?
The Mo'allaga of 'Antara and that of Zomarr contain allusions to the feuds of the kindred tribes 'Abs and Dhobyan. Famous as these contests were, their time cannot accurately be ascertained. But the date of the two poets can be approximately determined from other data. Kaib, son of Zuhair, composed first a satire, and then, in the year 630, a eulogy on the Prophet; another son, Bujair, had begun, somewhat sooner, to celebrate Mahomet. 'Antara killed the grandfather of Ahnaf ibn Qais, who died at an advanced age in A.D. 686 or 687; he outlived 'Abdallah ibn Simma, whose brother Duraid was a very old man when he fell in battle against the Propbet (early in a.d. 630); and he had communications with Ward, whose son, the poet 'Orwa, may perhaps have survived the flight of Mahomet to Medina. From all these indications we may place the productive period of hoth poets in the end of the 6th century. The historical background of 'Antara's Mo'allaga lies somewhat earlier than that of Zuhair's.
To the same period appears to belong the poem of 'Algama, which, as we have seen, Ibs Khaldun reckons amongst the Mo allagat. This too is certainly the date of Nabigera, who was one of the most distinguished'of Arahic poets. For in the poem often reckoned as a Mo'allaqa, as in many others, he addresses himself to No'man, king of Hira, who reigned in the two last decades of the 6th century. Tbe same king is mentioned as a contemporary in one of 'Alqama's poems.

The poem of A'sin, sometimes added to the Mo'allaqat, contains an allusion to the battle of Dha Qăr (under the name "Battle of Hinw," v. 62). This poet, not less famous than Nabigha, lived to compose a poem in honour of Mahomet, and died not long before a.d. 630 .

Labld is the only one of these poets who embraced Islam. His Mo'allaqa, however, like almost all his other poetical works, belongs to the Pagan period. He is said to have lived till 665, or even later; certainly it is true of him, what is asserted with less likelibood of several others of these poets, that he lived to a ripe old age.

The seven Mo'allaqat, and also the poems appended to them, represent almost cvery type of ancicat Arabian poetry in its excellences and its weaknesses. In order rightly to appreciate these, we must translate ourselves into the world of tbe Bedouin,

[^47]and seek to realise the peculiar conditions of his life, together with the views and thoughts resulting from those conditions. In the Mo'allaqu of Tarafa we are repelled by the long, anatomically exact description of his camel; but such a description had an extraordinary charm of its own for the Bedoains, every man of whom was a perfect connoisseur on this subject down to the minutest points; and the remaining parts of the poem, tagether with the otber extant fragments of his song3, show that Tarafa had a real poetic gift. In the Mo'allaqat of 'Amr and Harith, for the preservation of which we are especially grateful to the compiler, we can read the haughty spirit of the powerful chieftains, boastfully celebrating the splendours of their tribe. These two poems have also a certain historical importance. The song of Zuhair contains the practical wisdom of a sober man of the world. The ot her poems are fairly typical examples of the customary garida, the long poem of ancient Arabia, and bring before us the various phases of Bedouin life. But even bere we have diferences. In the Mo'allaqa of 'Antara, whose heroic temperament had overcome the scorn with which the son of a black slave-mother was regarded by the Bedorains, there predominates a warlike spirit, which plays practically no part in the song of Labid.

It is a phenomenon which deserves the fullest recognition, that the needy inhabitants of a barren country should thus have produced an artistic poetry distinguished by so high a degree of uniformity. Even the extraordinary strict metrical system, observed by poets who had no inkling of theory and no knowledge of an alphabet, excites surprise. In the most ancient poems the metrical form is as scrupulously regarded as in later compositions. The only poem which shows unusual metrical freedom is the ahove-mentioned song of 'Abld. It is, however, remarkable that 'Abid's contemporary Amra'alQais, in a poem which in other respects also exhibits certain coincidences with that of 'Ahid (No. 55, ed. Ahlwardt), presents himself considerable licence in the use of the very same metre -one which, moreover, is extremely rare in the ancient period. Presumably, the violent deviations from the schema in "AbId are due simply to incorrect transmission by compilers who failed to grasp the metre. The other poems ascribed to "Abid, together with all the rest attributed to Amra'al-Qais, are constructed in precise accord with the metrical canons. It is necessary always to bear in mind that these ancient poems, which for a century or more were preserved by oral tradition alone, have reached us in a much mutilated condition. Fortunately, there was a class of men who made it their special business to learn by rote the works either of a single poet or of several. The poets themselves used the services of these rhapsodists (rawi). The last representative of this class is Hammad, to whom is attributed the collection of the Mo'allaqat; but he, at the same time, marks the transition of the rhapsodist to the critic and scholar. The most favourable opinion of these rhapsodists would require us to make allowance for occasional mistakes: expressions would be transposed, the order of verses disarranged, passages omitted, and probably portions of different poems pieced together. It is clear, however, that Hammild dealt in the most arbitrary fashion with the enormous quantity of poetry which be professed to know thoroughly. The seven Mo'allaqat are indeed free from the suspicion of forgery, but even in them the text is frequently altered and many verses are transposed. The loose structure of Arabic poems was extremely favourable to such alterations. Some of the Mo'allaquat have several preambles: so, especially, that of 'Amr, the first eight verses of which belong not to the poem, but to another poet. Elsewhere, also, we find spurious verses in the Mo'allagat. Some of these poens, which have been handed down to us in other exemplars besides the collection itself, exhibit great divergences hoth in the order and number of the verses and in textual details. This is particularly the case with the oldest Mo'allaqa-that of Amra'al-Qais-the critical treat ment of which is a problem of such extreme difficulty that only an approximate solution can ever be reached. The variations of the tert, outside the Mo'allagat collection, have
here and there exercised an influence on the text of that collection. It would be well if our manuscripts at least gave the Mo'allaqit in the eract form of Hammad's days. The best text-in fact, we may say, a really good text-is that of the latest Mo'allaga, the song of Labbd.

The Mo ellagat exist in many manuscripts, some with old commentaries, of wbich a few are valuable. They have also been several times printed. Egpecial mention is due to the edition of Charles (afterwards Sir Charles) Lyall with the commentary of Tibrizi (Calcutta, 1894). Attempts to translate these poems, verse for verse, in poctical lorm, could scarrofy have a happy reault. The strangeneas, both of the expression and of the subjects, only admits of a paraphrastic version for large portions, unless the sense is to be entirely obliterated. An attempt at such a translation, in conjunction with a commentary based on the principles of modern seience, has been made by the present author: Funt Mo'allaqte oberreetri und erkiart," in the Sitsungsbericiche dor kais. Ahad. d. Wiss. in Wien. Philos.-hish. Classe. Bde. cxl-cxiv. A supplement to this is lormed by an article, by Dr Bernh. Geiger, oa the Mo'allaqa of Tarafa, in the Wiener Zoischrift für die Kunde des Morgenlands, xix. 323 uq9. See further the separate articles on the seven poess.
(Тн. N.)
mOAT, a ditch filled with water surrounding a castle, town or other fortified place for purposes of defence. The word is taken from the \mathbf{O}. Fr. mote, or molte, 2 mound or embankment of earth used as a means of defence; the tramsition in meaning from the heap of earth to the trench left hy excavating the earth is parallel with the similar interchange of meaning in dike and ditch (see Dike). In mod. Fr. molle means a lump or clod of earth. The word is probahly of Teutonic origin, and may be connected with Eng. " mud." (See Fortificition and Siegrcraft.)
MOB. (1) A disorderly crowd, a rabble, also a contemptuous name for the common people, the lower orders, the Greek $\mathbf{\text { oxhes }}$, (whence "ochlocracy," mob-rule). The word is a shortened form of Lat. mobile (sc. vulgus), the movable or mutable emotional, easily stirred crowd. "Mobile" in the sense of rabble was used in the 17th century, and was still used after the shortened form, for some time considered a vulgarism, bad become common. Thus Addison (Specteter, No. 335) writes, "It is perhaps this humour of speaking no more than we needs must which has so miserably curtailed some of our words. ... I dare not answer that 'moh' . . . 'incog.', and the like will not in time be looked at as part of our tongue." Roger North's Examen, vii., 574 (1740), dates the beginning of the use of the shortened form " mob"" "I may note that the rabble first changed their title and were called the 'moh' in the assemblies of this club. It was their beast of burden, and called first mobile vulgus, but fell naturally into the contraction of one syllable, and ever since is become proper English." The club alluded to is the Green Ribbon Club (q.v.), and the date would be about 168a. (2) A kind of head-dress for women, usually called a " mob cap," worn during the 18 th and early part of the xgth centuries. It was a large cap covering all the hair, with a bag-shaped crown, a broad band and frilled edge. It seems to have been originally an article of wear for the mornings. It is probably connected with words such as "mop," " mab," meaning untidy, néglige.
MOBRRLY, GRORGE (1803-1885), English divine, was dorn on the roth of October 1803, and educated at Winchester and Balliol. After a distinguished academic career be hecame head master of Winchester in 1835 . This post he resigned in 1866, and retired to Brightstone Rectory, Isle of Wight. Mr. Gladstone, however, in 1869 called him to be bishop of Salishury, in which see he kept up the traditions of his predecessors, Bishops Hamilton and Denison, his chief addition being the summoning of a diocesan synod. Though Moberly left Oxford at the beginning of the Oxford movement, he fell under its infiuence: the more so that at Winchester he formed a most intimate friendship with Keble, spending several weeks every year at Otterbourne, the next parish to Hursley. Moberly, bowever, retained his independence of thought, and in 1872 he astonished his Higb Church friends by joining in the movement for the disuse of the damnatory clauses in the Athanasian Creed. His chief contribution to theology is bis Bampton Lectures of 2868, on

The Administration of the Holy Spirit in the Body of Chrict. He died on the 6th of July 1885

MOBERLY, ROBERT CAMPBBLL ($1845-1903$), English theologian, was born on the 26 th of July 1845 . He was the son of George Moberly, bishop of Salisbury, and faithfully maintained the traditions of his father's teaching. Educated at Winchester and New College, Oxford, he was appolinted senior student of Christ Church in 1867 and tutor in 1869 . In 1876 be went out with Bishop Coppest on to Ceylon fot six months. After his return he became the first head of St Stephen's House, Oxford ($\mathbf{1 8 7 6 - 1 8 7 8 \text {), and then, after presiding for two }}$ years over the Theological College at Salisbury, where he acted as his father's chaplain, be accepred the college living of Great Budworth in Cheshire in 1880, and the same year married Alice, the daughter of his father's predecessor, Walter Kerr Hamiton. In 1892 Lord Salisbury made him Regius Professor of Pastoral Theology of Oxford; and after a long period of delicate health be died at Christ Church on the 8 th
 on "The Incarnation as the Basis of Dogma" (1889); a paper, Belief in a Personal God (1891); Reason and Religion ($\mathbf{1 8 9 6 \text {), a pro- }}$ test against the limitation of the reason to the understanding; Ministerial Priasthood (1897); and Atoncment and Perronality (1901). In this last work, by which he is chiefly known, he aimed at presenting an explanation and a vindication of the doctrine of the Atonement by the help of the conception of personality. Rejecting the retributive view of punishment, he describes the sufferings of Christ as those of the perfect "Penitent," and finds their expiatory value to lie in the Person of the Sufferex. the God-Man.
moberily, a city of Randolph county, Missouri, U.S.A., in the north central. part of the state, about $\mathbf{z} 30 \mathrm{~m}$. E. by N. of Kansas City. Pop. (1890), 8215; (1000), 8012, (923 negroes); (1910), 10,923. It is served by the Missouri, Kansas \& Teras and the Wabash railways, and is a division headquarters of the latter. The city is regularly laid ont on a level prairie site. There are two puhlic parks, a Carnegie lihrary, a commercial college، a Y.M.C.A. building, and a hospital maintained by the Wabash Employces Hospital Assciation. The most important industrial establishments are the large machine shops (established here in 1872) of the Wabash railway. Moberly was platted in 1866, was incorporated as a town and became the countyseat in $\mathbf{1 8 6 8}$, and in 1873 secured a special city charter, which it surrendered in 1889 for city status under the general statute.
MOBILE, a city and the county-seat of Mohile county, Alabama, U.S.A., in the S.W. part of the state, at the mouth of Mobile River, and the head of Mobile Bay. Pop. (1890), 31,076; (1900), 38,469 , of whom 17,045 were negroes and 2111 foreign-born (562 German, 402 Irish, 202 English); (2910 census), 51,521 . It is served by the Southern, the Louisville \& Nashville, the Mobile \& Ohio, the Mohile, Jackson \& Kansas City, and the Tombigbee Valley railways; hy steamboat lines to ports in Europe, Cuba, Mexico, Central America (especially Panama) and South America; by a coastwise steamboat line to New York; and by river boats on a river system emhracing nearly 3000 m . of navigable waters in Alabama, Mississippi, and Georgia. The city occupies about $17 \mathrm{sq} . \mathrm{m}$. of a sandy plain, which rises gradually from a low water front along the river to a range of bills a few miles to the westward. Among the principal buildings are the customs-house and post-office, the court-house, the Battie House (a hoted), the United States marine hospital, the city bospital, the Providence infirmary, Barton Academy (a part of the public school system), a Young Men's Christian Association building, St Joseph's church (Roman Catholif), the cathedral of the Immaculate Conception. the Van Antwerp office building, and the southern market and armoury. Mobile is the see of a Roman Catholic bishopric and the headquarters of the United States district court for the southern district of Alahama. In the city are a public library; the departments of medicine and pharmacy of the university of Alabama; the academy of the Visitation, and the

Immaculate Conception achool, both for girls and both Roman Catholic; the Convent of Mercy; the Emerson normal and industrial school (for negroes), McGill Institute, the University military school, and the Mobile military institute; and 5 m . from Mobile, at Spring Hill, is Spring Hill college (Roman Catholic, founded in 1830, chartered 1836), controlled by the Jesuits. There is an annual celebration in Mobile on Mardi Gras (Shrove Tuesday), conducted by the Order of Myths and the Mystics, two social organizations, successars of the Cowbellion de Rakin Society, which was organized in 1830 and long conducted a somewhat similar celebration annually on New Year's Eve.

- Mobile is the only seaport of Alabama. In i8z6 the channed from it to the Gulf, about 30 m . distant, had a minimum depth of only 5 ${ }^{1} \mathrm{ft}$. through Choctaw Pass and 8 ft . through Dog River bar; but suboequently the channel has been greatly Improved by the United States government, and in Jume 1908' vessels drawing 23 and 24 ft . could pass at low-water to the mouth of Chickasaw Creek above the city. While the channed was atill shallow, and rapidly growing railway systems were sorving otber ports, much foreign commerce was lost to Mobile, the value of the exports falling off from $\mathbf{\$ 1 2 , 7 8 4 , 1 7 1}$ in 1877 to $\$ 3,258,605$ in 1882 , and the value of the imports, during the same period, from $\$ 648,404$ to $\$ 396,573$; but after the improvement of the channel the value of the exports increased from $\$ 8,140,502$ in 1897 to $\$ 26,815,279$ in 1908 , and the value of the imports rost from $\$ 956,712$ in 1897 to $\$ 4,242,169$ in 1908. The foreign commerce consists largely in the export of cotton, lumber, timber, cotton-seed oil, coal, provisions and clothing, and in the import of tropical fruits (especially bananas), sisal grass, coffee, mahogany, asphalt, and manganese and sulphur ores. Vegetables, particularly beans and cabbage, and small fruits are grown extensively in the vicinity, and the city has an important domestic trade in market-ganden produce, fish and oysters, hardspare, dry goods, grain and groceries. In manufacturing Mobile was second (Birmingham being first) among the cities of the state in 1905, when the value of the factory product was $\$ 4,942,331,41 \cdot 8 \%$ more than in 1900. In 1905 it ranked first in the state in the value of fertilizer, lumber and timber, and in the construction of railway cars; and the manufacture of flour and grist mill products and machinery for lumber mills, were important industries.

Founded by Pierre Lemoyne, Sieur d'Tberville (1661-1706), and his brother Jean Baptiste Lemoyne, Sieur de Bienville (1680-1768), in 1702 , Mobile ${ }^{2}$ was the capital of the French province of Louisiana until 1720, when the seat of government was transferred to Biloxi, in the present Mississippi. The original settlement was at Twenty-seven Mile Bluff, about 20 m. above the present site, to which it was removed in 1710 as a consequence of floods in 1709. By the Treaty of Paris (1763) Mobile, as a part of Louisiana east of the Mississippi, was ceded to Great Britgin; but on the 14th of March 1780 it was captured by a Spanish force under Don Bernardo de Galves ($1755-1786$), the governor at New Orieans, and Spain was confirmed in its possession by the treaty of 1783 . Spanish civil institutions were introduced, and new names, such as Conception, St Emanuel and St Joseph, which still survive, were given to the streets. Yet neither the English nor the Spanish occupation made any substantial change in the tone of the place or the habits of its people, even the negroes holding to their French jargon. The alliance between Great Britain and Spain, at the outbreak of the war of 1812 , gave Mobile strategic importance for the military operations in the south-west. Hence, on the ryth of April 1813 General James Wilkinson, acting on President James Madison's instructions, which were based on the claim that Mobile was a part of Louisiana sold by France to the United States in 1803 , seized Mobile for the United States.
${ }^{1}$ Between 1806 and 1908 the Federal government expended \$5,148,179 on the improvement of the harbour. The bar channel aso has boen improved.
1 ${ }^{2}$ The city was named from the Mobile or Mauhila Indians, a Muskhogean tribe, now extinct, who occupied the neighbouring region and were Christlanised by the French.

In August 1814 General Andrew Jackion made Mobile his beadquartern. He repaired Fort Bowyer; on Mobile Point at the mouth of the bay, and garrisoned it just in time for it to resist attack by the British on the 15 th of September. On the 1Ith of February 1815, forty-two days after peace had been declared and thirty-four days after the battle of New Orieans, a British force captured Fort Bowyer; but it made no move against Mobile, and withdrew on the 1st of April. Now began the Americanization of Mobile, a tide of immigration from the up-country setting in and mpidly changing the character of the place, which had previously been distinctly French. A town charter had been granted by the territorial legislature of Mississippi on the 20th of January 1814, and an interesting feature under the town government was the "tarififor bakers," which fixed the weight of loaves of bread in accordance with the price of flour. A city charter, dated the iyth of Docember 1819, was granted by the first state legislature of Alabama, and Mobile became the commercial emporium for Alabama and Mississippi, its cotton erports increasing from 7000 bales in 1818 to 100,000 in 1850 and 450,000 in 1840 . In 1826 Barton Academy, still one of the landmarks of the city, was built; but it was not until 1852 that common schools were opened in Mobile county. Branches of the United States Bank and of the State bank were established at Mobile, and in the panic of 1837 the Bank of Mobile was one of the few banks in the United States that did not suspend payment. The Mobile \& Ohio railroad, begun in 1848, provided amplet communication with the Misxissippi valkey, and Mobile's export of cotton rose to $1,000,000$ bales in 1861 .
During the Civil War Mobile was an important seaport of the Confederacy. A Federal blockade was begun as early as the a6th of May 1861, but trade with West Indian and European ports was continued by a line of swift vessels, which regularly escaped the blockading squadron. On the sth of August 1864 Admiral David G. Farragut (g.v.), with a Federal fleet of four iron monitors, seven wooden sloops of war, and several gunboats, entered the channel by passing the Comfederate defences, Fort Gaines on Dauphin Island and Fort Morgan occupying the site of old Fort Bowyer on Mobile Point, captured the formidable Confederate ironclad ram "Tennessee," destroyed one gunboat and drove another aground. One of the Federal monitors, the "Tecumseh," was destroyed by torpedoes. The Confederate fleet was commanded by Admiral Frankiin Buchanan (1800-1874). Fort Gaines surrendered on the 7th, and Fort Morgan on the 23 rd of the same month. In the spring of 1865 General E. R. S. Canby ($1819-1873$), with a Pederal force of about 45,000 , laid siege to Fort Blakely and Spanish Fort, on the east side of the bay (opposite the city), defeaded by General Randall L. Gibson (1832-1892) with 5000 men. After twenty-five days of resistance the Confederates evacuated the fortifications and then the city, the Federals entering on the 12th of April 1865. Losses from railway enterprises and the panic of 1873 resuited in the bankruptcy of the municipality in 1879, whereupon its charter was vacated, its property vested in certain trustees aciting under the Chancery Court to adjust its debt, and a municipal goveroment under the hame of Port of Mobile succeeded the city of Mobile until 1887, when the latter was again chartered. On the 27th of September 1906 Mobile was swept by a hurricane, which destroyed property valued at $\$ 5,000,000$ or more.
See Peter J. Hamilton, Colonial Mobik (Boston. 1897); and a chapter by the same writer in L. P. Powell's. Hithoric Towas of the Southerx Slates (New York, 1900).
MOBIOS, AJGUST FERDBAND (1790-1868), German astronomer and mathematician, was born at Schulpforta on the 17th of November 1790. At Leipeig, Gottingen and Halle he studied for four years, ultimately devoting himself to matbematics and astronomy. In 18is he settled at Leipzig as privatdocent, and the next year became extraordinary professor of astronomy in connexion with the university. Later he was chosen director of the university observatory, which was erected (1818-1821) under bis superintendence. In 1844 he was elected ordinary professor of higher mechanics and astronomy, a position
which he held till his death on the 26th of September 1868. His doctor's dissertation, De computandis occultationibus fixarum per planetas (Lciprig, 18 r f), established his reputation as a theoretical astronomer. Dic Hauplidize der Astronomic (1836), Dic Elcmente der Meckanik des Himmels (1843), may be noted amongat his other purcly astronomical publications. Of more general interest, however, are his labours in pure mathematics, which appear for the most purt in Crelle's Journal from 2828 to 1858. These papers are chiefly geometrical, many of them being developments and applications of the methods haid down in his great work, Der barycendrische Calcul (Leipaig, 1897), which, as the name implies, is based upon the properties of the mean point or centre of mass (see Algebra: Universal). This work abounds in suggestions and foreshadowings of some of the most striking discoveries in more recent times-such, for example, as are contained in H. Grassmann's Ausdehnurgslehre and Sir W. R. Hamilton's Quaternions. Möhius must he regarded as one of the leaders in the introduction of the poweriul methods of modern projective geometry.

His Gesammelion Werke have been published in four volumes at Leiptig (1885-1887).

MOCATTA, EREDERICK DAVID (1828-1905), Englisb Jewish philanthropist, was a member of the London financial firm, Mocatta and Goldsmid, but retired from husiness in 1874 and devoted himself to works of public and private benevolence. Besides this he was a patron of learning and himself an author of historical works, the chief of which was The Jews and the Inquisition. On occasion of his 7oth birthday, he was presented with a testimonial from more than 200 philanthropic and literary institutions. The Anglo-Jewish Historical Exhibition (1887) owed its inception to him. He bequeathed his fine library to the Jewish Historical Society of England, of which be was at one time president. This library formed the basis of the collections which are now included in the Mocatta Lihrary and Museum, founded in his memory, and located at the University of London (University College, Gower Street).

See Trass. Jewish Hist. Soc. Eng. vol. v.
(I. A.)

HOCCASIN (a North-American Indian word, of which the spelling and pronunciation vary in different dialects), a shoe made of deerskin or other soft leather. It is made in one piecc; the sole is soft and fexible and the upper part is often adorned with embroidery, beading or other ormament. It is the foot wear of the North American Indian tribes and is also worn by hunters, traders and settlers. In botany, the lady's slipper is known in the United States of America, as the "moccasin flower," from its resemblance to a shoe or moccasin. The name moccasin is aleo given to a venomous snake, found as far north as North Carolina and westward to the Rocky Mountains, and popularly called " cottonmouth," from the white rim around the mouth. It belongs to the family Croladidoe, species Ancistrodon (or Cenchris) priscinorus, is about two feet long, and is often found in marshy land. It is sometimes called the eocter moccosin to distinguish it from the upland moccasin (Ancistrodon contortrix or atrofusous), which is commonly called "copperbead " and is found further north in dry and mountainous regions. The name is possibly a distinct word of which the origin has not been traced.

MOCRNIGO, the name of a noble and ancient Venetian family which gave many doges, statesmen and soldiers to the republic. Tommaso Mocenco (1343 -1423) commanded the crusading fleet in the expedition to Nicopolis in 1396, and also won batules against the Genoese. While he was Venetian ambaseador at Cremona be was elected doge (1414), and the escaped in secret, fearing that he might be held a prisoner by Gabrino Fondolo, tyrant of that city. He made peace with the Torkiah sultan, but when hostilities broke out afresh his feet defeated that of the Turks at Gallipoli. During his reign the patriarch of Aqpilleia was forced to cede his territories to the republic (1420), which also acquired Friuli and Dalmatia. Tommaso greatly encouraged comurerce, reconitructed the ducal palace and commenced the library. Pietro Mocesico, doge from 1474 to 1476, was one of the greatest Venetion admirals,
and revived the fortunes of his country's navy, which had fallen very low after the defeat at Negropont in 1470. In 1472 he captured and destroyed Smyma; the following year he placed Catherine Cornaro، queen of Cyprus, under Venetian protection, and by that means the republic obtained possession of the island in 1475 . He then defeated the Turks who were besieging Scutari, but he there contracted an illness of which he died. Giovanni Mocenigo, Pietro's brother, who was doge from 1478 to 1485, fought agninst Mohammed II. and Ercole I., duke of Ferrara, from whom he recaptured Rovigo and the Polesine. Luigi Mocenico was doge from 1570 to 1577. During his reign Venice lost the fortresses Nicosia and Famagosta in Cyprus. He took part in the battle of Lepanto, but after the loss of Cyprus he was forced to make peace with the Turks and to hand them back his conquests. Andera Mocienigo, who flourished in the rgth and 16th centuries, was a senator of the republic and a historian; be composed a work on the league of Cambrai entitled Belli memorabilis Cameracensis adversus Venelos historiae libri vi. (Venice, 1525). Another Luigi Mocenigo was doge from 1700 to 1709 , and his hrother Seiastiano from 1722 to 1732 . Alvise Mocznico ($1701-1778$), who was doge from 1763 until his death, restricted the privileges of the clergy, and in consequence came into bitter conflict with Pope Clement XIII.

MOCHA STONB, a name applied to chalcedony with dendritic markings, said to have been obtained originally from Mocha in Arabia. The markings which sometimes simulate with curious hdelity the form of miniature trees and shrubs, aro caused by the infiltration of solutions carrying iron and manganese, which are deposited as thin films of oxide along the cracks of the stone, producing black, brown or red dendrites, effectively disposed on a ground of grey or white chalcedony. Most of the Mocha stones of commerce are obtained from India, where they are found among the agate-pebbles resulting from the disintegration of the trap rocks of the Deccan. In recent years the formation of dendrites has been artificially effected at the agateworks of Oberstein, so as to imitate the true Mocha stones.

MOCK, an adjective meaning sham, feigned, spurious, falsely imitative. As a verh it means to deride or imitate contemptuously. The derivation of O. Fr. mocquer, mod. moquer; Ital. moccare, from which the English word is adopted, is disputed. Some authorities refer it to Ger. mucken, mucksen, to growl. grumble, which is probably echoic in origin; others to a supposed Late Lat. muccare, formed from mucus-mucus, in the sense of " to wipe the nose at."
MOCICING-BIRD, or MOCE-BIBD (as W. Charieton, J. Ray and M. Catesby called it), the popular name of birds belonging to the American sub-family Miminae of the thrushes, Turdidat, differing by having the tarsus scutellate in front, while the typical thrushes have it covered by a single horny plate. Mimus polyglotus, the northern mocking-bird, inhabits the soutbern part of the United States, being in the north only a summer visitant; it breeds rarely in New England, is seldom found north of the $3^{8 t h}$ parallel, and migrates to the south in winter, passing that season in the Gulf States and Mexico. It appears to be less numerous on the western side of the Alleghanies, though found in suitable localities across the continent to the Pacific coast, but seldom farther north than Virginia and southern Illinois, and it is said to be common in Kansas. J. J. Audubon states that the mocking-birds which are resident all the year round in Louisiana attack their travelled hrethren on the return of the latter from the north in autumn. The names of the species, both English and scientific, have been bestowed from its capacity of successfully imitating the cry of many other hirds, to say nothing of other sounds, in addition to uttering notes of its 0 wn which possess a varied range and liquid fullness of tone that are unequalled, according to its admirers, even by those of the nightingale ($q .0$.).

Plain in plumage, being greyish brown above and dull white below, while its quills are dingy black, variegated with white, there is litule about the mocking-bird's appearance beyond its graceful form to recommend it; hut the lively gesticulations it exhibits are very attractive, and therein its European rival in melody is far surpassed, for the cock-bird mounts aloft in rapid
circling fight, and, alighting on a conspicuous perch, pours forth his ever-changing song to the delight of all listeners; while his actions in attendance on his mate are playfuliy demonstrative and equally interest the observer. The mocking-bird is moreover of familiar habits, haunting the neighbourhood of houses, and is therefore a general favourite. The nest is placed with litule regard to concealment, and is not distinguished by much care in its construction. The eggs, from three to six in number, are of a pale bluish-green, blotched and spotted with light yellowish-hrown. They, as well as the young, are much sought after by snakes, but the parents are often successful in repelling these deadly enemies, and are always ready to wage war against any intruder on their precincts, be it man, cat or hawk. Their food is various, consisting of berries, seeds and insects.
Some twelve or fourteen other species of Mimus have been recognized, mostly from South America; but M. orphess seems to be common to some of the Greater Ancilles, and M. hilli is peculiar to Jamaica. while the Bahamas have a local race in M. bahameetsis. The so-called mountain mocking-bird (Oreoscoptes montanus) is a form not very distant from M imus; but it inhabits exclusively the plains overgrown with sage-brush (Artemisia) of the interior tableland of North America, and is not at all imitative in its notes, so that it is an instance of a misnomer. Of the various other genera allied to Mimus, the best known are the thrashers (genus Harpo rhynchus) of which six or eight species are found in North Amenica, which are thrush-like and shy in their habits and do not mimic; and the cat-bird (Gakeoscoples carolinensis), which in addition to having an attractive song, utters clucks, whistics and mewing sounds. The sooty-grey colour that, deepening into blackish-brown on the crown and quils, pervades the whole of its plumage-che lower tailcoverts, which are of a deep chestnut, excepted renders it a conspicuous object; and though, for some reason or other, far from being a favourite, it is always willing when undisturbed to become intimate with men's abodes. It has a much wider range on the American continent than the mocking-bird, and is one of the few species that are resident in Bermuda, while on more than one occasion it is said to have appeared in Europe.

The name mocking-bird, or more frequently mock-nightingale, is in England occasionally given to some of the warblers (q.o.), espocially the blackcap (Sytria atricapilla), and the sedge-bird (Acrocephalus schoenobacnus). In India and Australia the same name is sometimes applied to other species.
(A. N.)

MODEL (O. Fr. modelle, mod. modlle; It. modello, pattern, mould; from Lat. modus, measurc; standard), a tangible representation, whether the size be equal, or greater, or smaller, of an object which is either in actual existence, or has to be constructed in fact or in thought. More generally it denotes a thing, whether actually existing or only mentally conceived of, whose properties are to be copied. In foundries, the object of which a cast is to be taken, whether it be for engineering or artistic purposes, is usually first formed of some easily workable material, generally wood. The form of this model is then reproduced in clay or plaster, and into the mould thus obtained the molten metal is poured. The sculptor first makes a model of the object he wishes to chisel in some plastic matcrial such as wax, ingenious and complicated contrivances being employed to transfer this wax model, true to nature, to the stone in which the final work is to be executed. In anatomy and physiology, models are specially employed as aids in teaching and study, and the method of moulage or chromoplastic yiclds excellent impressions of living organisms, and cnables anatomical and medical preparations to be copied both in form and colour. A special method is also in use for making plastic models of microscopic and minute microscopic objects. That their internal nature and structure may be more readily studied, these are divided by numerous parallel transverse cuts, by means of a microtome, into exceedingly thin sections. Each of these shavings is then modelled on an cnlarged scale in wax or pulp plates, which are fixed together to form a reproduction of the object.

Models in the mathematical, physical and mechanical sciences are of the greatest importance. Long ago philosophy perceived Represearethe essence of our process of thought to lie in the atonta fact that we attach to the various real objects Thoaghe around us particular physical attributes-our con-cepts-and by means of these try to represent the objects to our minds. Such views were formerly regarded by mathernaticians and physicists as nothing more than uniertile speculations, but
in more recent times they have been brought by J. C. Marweil, H. v. Helraholts, E. Mach, H. Hertz and many others into intimate relation with the whole body of mathematical and physical theory. On this view our thoughts stand to things in the same relation as models to the objects they represent. The essence of the process is the attachment of one concept having a definite content to each thing, but without implying complete similarity betweea thing and thought; for naturally we can know but litule of the resemblance of our thoughts to the things to which we attach them. What resemblance there is lies principally in the nature of the connexion, the correlation being analogous to that which obtains between thought and language, language and writing, tbe notes on the stave and musical sounds, \&c. Here, of course, the symbolization of the thing is the important point, though, where feasible, the utmost possihle correspondence is sought between the two-the musical scale, for example, being imitated by placing the notes higher or lower. When, therefore, we endeavour to assist our conceptions of space by figures, by the methods of descriptive geometry, and by various thread and object models; our topography by plans, charts and globes; and our mechanical and physical ideas by kinematic modelswe are simply extending and continuing the principle by means of which we comprehend objects in thought and represent them in language or writing. In precisely the seme way the microscope or telescope forms a continuation and multiplication of the lenses of the eye; and the notebook represents an external expansion of the same process which the memory brings about hy purely internal means. There is also an obvious parallelism with representation by means of models when we express longitude, mileage, temperature, \&c., by numbers, which should be looked upon as arithmetical analogies. Of a kindred character is the representation of distances by straight lines, of the course of events in time by curves, \&c. Still, neither in this case nor in that of maps, charts, musical notes, figures, \&c., can we legitimately speak of models, for these always involve a concrete spatial analogy in three dimensions.

So long as the volume of matter to be dealt with in science was insignificant, the need for the employment of models was naturally less imperative; indeed, there are self-evident advantages in comprehending things without resort to complicated models, which are difificult to make, and cannot be altered and adapted to extremely varied conditions so readily as can the casily adjusted symbols of thoaght, conception and calculation. Yet as the facts of science increased in number, the greatest economy of effort had to be observed in comprchending them and in conveying them to others; and the firm establishment of ocular demonstration was inevitable in view of its enormous superiority over purely abstract symbolism for the rapid and complete exhibition of complicated relations. At the present time it is desirable, on the one hand, that the power of deducing results from purely abstract premisses, without recourse to the aid of tangible models, should be more and more perfected, and on the other that purely abstract conceptions should be helped by objective and comprehensive models in cases where the mass of matter cannot be adequately dealt with directly.
In pure mathematics, especially geometry, models constructed of papier-mâché and plaster are chiefly employed to present to the senses the precise form of geometrical figures, surfaces and curves. Surfaces of the second order, repre- mosels to sented by equations of the second degree between maxhememics the rectangular co-ordinates of a point, are very and Pingates. simple to classify, and accordingly all their possible forms can easily be shown by a few models, which, however, become somewhat more intricate when lines of curvature, loxodromice and geodesic lines have to appear on their surfaces. On the other hand, the multiplicity of surfaces of the third order is enormous, and to convey their fundamental types it is necessary to employ namerous models of complicated, not to say hazardous, construction. In the case of more intricate surfaces it is sufficient to present those singulacities which exbibit variation from the usual type of surfaoe with synclustic or anticlastic curvatures, such as, for example, a sharp edge or point, or
an intersection of the surface with itself; the elacidation of such singularities is of fundamental importance in modern mathematics.

In pliysical science, again, models that are of unchangeable form are largely employed. For examipie, the operation of the refraction of light in crystals can be pictured if we imagine a point in the centre of the crystal whence light is dispersed in all directions. The aggregate of the places at which the light arrives at any instant after it has started is called the wavefront. This surface consists of two cups or sheets fitting closely and exactly one inside the other. The two rays into which a single ray is broken are always determined by the points of contact of certain tangent-planes drawn to those sheets. With crystals posseasing two axes these wave-surfaces display peculiar singularities in the above sense of the term, in that the ioner sheet has four protuberances, while the outer has four funnel-like depressions, the lowest point of each depression meeting the highest point of each protubefunce. At each of these funnels there is a tangent-plane that touches not in a single point, but in a circle bounding the depression, so that the corresponding ray of light is refracted, not into two rays, but into a whole cone of light -the so-called conical refraction theoretically predicted by Sir W. R. Hamilton and experimentally detected by Humphrey Loyd. These conditions, which it is difficult to adequately express in language, are self-evident so soon as the wave-surface formed in plaster lies before our eyes. In thermodynamics, again, similar models serve, among other purposes, for the representation of the surfaces which exhibits the relation between the three thermodynamic variables of a body, e.g. between its temperature, pressure and volume. A glance at the model of sucb a thermodynamic surface enables the behaviour of a particular substance under the most varied conditions to be immediately realized. When the ordinate intersects the surface hut once e single phase only of the body is conceivable, but where there is a multiple intersection various phases are possible, which may be liquid or gascous. On the houndaries between these regions lie the critical phases, where transition occurs from one type of phase into the other. If for one of the elements a quantity which occurs in calorimetry be chosen--for example, entropyinformation is also gained about the behaviour of the body when heat is taken in or abstracted.

After the stationary models bitherto considered, come the manifold forms of moving models, such as are used in geometry, to show the origin of geometrical figures from the motion of others-e.g. the origin of surfaces from the motion of lines. These include the thread models, in which threads are drawn tightly between movable bars, cords, wheels, rollers, \&cc. In mechanics and engineering an endless variety of working models are employed to convey to the cye the working either of machines as a whole, or of their component and subordinate parts. In theoretical mechanics models are often used to exblbit the physical laws of motion in interesting or special cases-e.g. the motion of a falling body or of a spinning-top, the movement of a pendulum on the rotating earth, the vortical motions of fuids, \&c. Akin to these are the models which exccate more or less exactly the hypothetical motions by which it is sought to explain various physical phenomena-as, for instance, the complicated wave-machines which present the motion of the particles in waves of sound (now ascertained with fair accuracy), or the more hypothetical motion of the atoms of the aether in waves of light.

The varying importance which in recent times has been attached to models of this kind is intimately connected with Thoowes of the changes which have taken place in our conNecmith ceptions of nature. The first method by which an attempt was made to solve the problem of the universe was entirely under the influence of Newton's laws. In analogy to his laws of universal gravitation, all bodies were conceived of as consisting of points of matter-atoms or mole-culcs-to which was attributed a direct action at a distance. The circumstances of this action at a distance, bowever, were conceived as differing from thoee of the Newtonian law of attrac-
tion, in that they could explain the properties not only of solid elastic bodies, but also those of fluids, hoth liquids and gases. The phenomena of heat were explained by the motion of minute particles absolutely invisible to the eye, while to explain those of light it was assumed that an impalpable medium, called luminiferous aether, permeated the whole universe; to this were attributed the same properties as were possessed by solid bodies, and it was also supposed to consist of atoms, although of a much finer composition. To explain electric and magatic phenomena the assumption was made of a third species of matter-electric fluids which were conceived of as being more of the nature of fluids, but still consisting of infinitesimal particles, also acting directly upon one another at a distance. This first phase of theoretical physics may be called the direct one, in that it took as its principal object the investigation of the internal structure of matter as it actually exists. It is also known as the mechanical theory of nature, in that it seeks to trace back all natural phenomena to motions of infinitesimal particles, i.e. to purely mechanical phenomena. In explaining magnetic and electrical phenomena it inevitably fell into somewhat artificial and improbable hypotheses, and this induced J. Clerk Maxwell, adopting the ideas of Michaci Faraday, to propound a theory of electric and magnetic phenomena which was not only new in substance, but also essentially different in form. If the molecules and atoms of the old theory were not to be conceived of as exact mathematical points in the abstract sense, then tbeir true nature and form must be regarded as absolutely unknown, and their groupings and motions, required by theory, looked upon as simply a process having more or less resemblance to the workings of nature, and representing more or less exacily certain aspects incidental to them. With this in mind, Maxwell propounded certain physical theories which were purely mechanical so far as they proceeded from a conception of purely mechanical processes. But he explicitly stated that he did not believe in the existence in nature of mechanical agents so constituted, and that he regarded them merely as means by which phenomena could be reproduced, bearing a certain similarity to those actually existing, and which also served to include larger groups of phenomena in a uniform manner and to determine the relations that beld in their case. The question no longer being one of ascertaining the actual internal structure of matter, many mechanical analogies or dynamical illustrations became available, possessing different advantages; and as a matter of fact Marwell at first employed special and intricate mechanical arrangements, though later these became more general and indefinite. This theory, which is called that of mechanical analogies, leads to the construction of numerous mecbanical models. Maxwell himself and his followers devised many kinematic models, designed to afford a representation of the mechanical construction of the ether as a whole as well as of the separate mechanisms at work in it: these resemble the old wave-machines, so far as they represent the movements of a purely hypothetical mechanism. But while it was formerly believed that it was allowable to assume with a great show of probability the actual existence of such mechanisms in nature, yet nowadays philosophers postulate no,more than a partial resemblance between the phenomena visible in such mechanisms and thooe which appear in nature. Here again it is perfectly clear that these models of wood, metal and cardboard are really a continuation and integration of our process of thought; for, according to the view in question, physical theory is merely a mental const ruction of mechanical models, the working of which we make plain to ourselves by the analogy of mechanisms we hold in our hands, and which have so much in common with natural phenomena as to help our comprehension of the latter.
Although Maxwell gave up the idea of making a precise investigation into the final structure of matter as it actually is, yet in Germany his work, under G. R. Xirchhof's lead, was carried still further. Kirchboff defined his own aim as being to describe, not to explain, the world of phenomena; but as be leaves the means of description open bis theory differs bittle from Maxwell's, soscon as recourse is had to description by
means of mechanical models and analogies. Now the resources of pure mathematics being particularly suited for the exact description of relations of quantity, Kirchhoff's school laid great stress on description by mathematical expressions and formulae, and the aim of physical theory came to be regarded as mainly the construction of formulae by which phenomena in the various branches of physics should be determined with the greatest epproximation to the reality. This view of the nature of physical theory is known as mathematical phenomenology; it is a presentation of phenomena by analogies, though only by such as may be called mathematical.
Another phenomenology in the widest sense of the term, maintained especially by E. Mach, gives less prominence to mathematics, but considers the view that the phenomena of motion are essentially more fundamental than all the others to have been too hastily taken. It rather emphasizes the prime importance of description in the most general terms of the various spheres of phenomena, and hoids that in each sphere its own fundamental law and the notions derived from this must be employed. Analogies and elucidations of one sphere by another -e.g. heat, electricity, \&c.-by mechanical conceptions, this theory regards as mere ephemeral aids to perception, which are necessitated by historical development, but which in course of time, either give place to others or entirely vanish from the dornain of science.
All these theories are opposed by one called energetics (in the narrower sense), which looks upon the conception of energy, not that of matter, as the fundamental notion of all scientific investigation. It is in the main based on the similarities energy displays in its various spheres of action, but at the same time it takes its stand upon an interpretation or explanation of natural phenomena by analogies which, bowever, are not mechanical, but deal with the behaviour of energy in its various modes of manifestation.
A distinction must be observed between the models which have been described and those experimental models which preExpert sent on a small scale a machine that is subsequently Erofth to be completed on a larger, so as to afford a trial of its capabilities. Here it must be noted that a mere alteration in dimensions is often sufficient to cause a material alteration in the action, since the various capabilities depend in various ways on the linear dimensions. Thus the weigbt varies as the cube of the linear dimensions, the surface of any single part and the phenomena that depend on such surfaces are proportionate to the square, while other effects such as friction, expansion and conduction of heat, \&c., vary according to other laws. Hence a flying-machine, which when made on a smaH scale is able to support its own weight, loses its power when its dimensions are increased. The theory, initiated by Sir Isaac Newton, of the dependence of various effects on the linear dimensions, is treated in the article Units, Dimensions of. Under simple conditions it may often be affirmed that in comparison with a large machine a small one has the same capacity, with reference to a standard of time which must be diminished in a certain ratio.

Of course experimental models are not only those in which purely mechanical forces are employed, but also include models of thermal, electro-magnctic and other engines-e.g. dynamos and telegraphic machines. The largest collection of sucb models is to be fornd in the museum of the Washington Patent Office. Sometimes, again, other than purely mechanical forces are at work in models for purposes of investigation and instruction. It often happens that a ceries of natural processes-such as motion in liquids, internal friction of gases, and the conduction of heat and clectricity in metals-may be expressed by the same differential equations; and it is frequently possible to follow by means of meagurements one of the processes in question-e.g. the conduction of electricity just mentioned. If then there be shown in a model a particular ense of electrical cunduction in which the same conditions at the boundary bold as in a prohlem of the internal friction of gases, we are able by mesauring the dectrical conduction in the model to determine at oace the
numerical data which obtain for the analogoas case of internal friction, and which could only be ascertained otherwise by intricate calculations. Intricate calculations, moreover, can very often be dispensed with by the aid of mechanical devices, such as the ingenious calculating machines which perforn additions and subtractions and very elaborate multiplications and divisions with surprising speed and accuracy, or apparatus for solving the higher equations, for determining the volume at area of geometrical figures, for carrying out integrations, and for developing a function in a Fourier's series by mechanical means.
(L. Bo.)

MODELS, ARTISTE, the name given to persons who pose to artists as models for their work. The Greeks, who hed the naked body constantly before them in the exercises of the gymnasium, had far less need of professional models than the moderns; but it is scarcely likely that they could have attained to the high level reached by their works without constant study from nature; and the story told of Zeuxis by Valerius Maximus, who had five of the most beartiful virgins of the city of Crotoma offered him as models for his picture of Helen, proves their occasional use. The remark of Eupompus, quoted by Pliny. who advised Lysippus, " Let nature be your model, not an artist," directing bis attention to the crowd instead of to his own work, also suggesta a use of models which the many portrait statues of Greek and Roman times show to have been not unknown. In Egypt, too, although the priesthood had control of both sculpture and painting as, used for the decoration of temples and palaces, and imposed a strict conventionalism, there are several statues of the eariy periods which afe so lifelike in their treatment as to make it certain that they must have been worked from life. At the period of the Renaissance, painters generally made use of their relations and friends as models, of which mary examplea might be quoted from Venice, Florence, Rome and other places, and the stories of Titian and the duchess of Ferrara, and Botticelli and Simonetta Vespucci, go to show that ladies of exalted rank were sometimes not averse from having their charms immortalized by the painter's brush. But paid models were not unknown, as the story of the unfortunate contadino used by Sansovino as model for his statue of the little Bacchus will show. Artists' models as a special class appear when the establishment of schools for the study of the human figure created a regular demand, and since that time the remuneration offered has ensured a continual supply. The prices and the hours of work vary in different art centres. In England seven shillings is generally paid for a day of six hours, but models of exceptional beauty or talent frequently obtain more from successful artists or wealthy amateurs.

MODELYACHTING, the pastime of building and racine model-yachts. It has always been customary for ship-builders to make a miniature model of the vessel under construction, which is in every respect a copy of the original on a small scale, whether steam-ship or sailing-vessel (there is a fine collection in the Victoria and Albert Museum, London). Many of these models are of exquisite workmamship, every rope, pulley or portion of the engine being faithfully reproduced. In the case of sailing yachts these models were often pitted against each ot ber on small bodies of water, and hence arose the modern pastime. It was soon seen that elaborate fittings and complicated rigging were a detriment to rapid handling, and that, on account of the comparatively stronger winds in which models were sailed, they needed a greater draught. For these reasons modern model yachts, which usually have fin-keels, are of about 15% or 20% deeper draught than full-sized vessels, while rigging and fittings have been reduced to absolute simplicity. This applies to models built for racing and not to elaborate copies of stetmers and ships, made only for show or for " toy cruising."

Model-yacht clubs have existed for many years in Great Britain, Ireland and the United States, most of them holding a number of regatlas during each season. The rules do not generally require the owner or skipper of a model to build his own craft, but amoag model-yachtsmen the designing and the construction of the boats consfitute as important and interesting
a part of the sport as the actual sailing. Models are constructed of some light, seasoned wood-such as pine (preierahly white), white cedar or mahogany-free from knots. The bull may ein her be hollowed out of a solid block of wood, or cut from layers of planks in the so-called "hread-and-butter" styic, or planked over a frame of keel and cross-sections. The first two methods are used in constructing " dug-out " models. Hollowing out from the solid block entails a great deal of labour and has therefore falien into disfavour. In the "bread-and-hutter" style a number of planks, which have been shaped to the horizontal sections of the model and from which the middle has been sawn out, are glued together and then cut down to the exact lines of the design, templates being used to test the precision of the curves. In the planked, or "built-up" model, which is generally chosen by more expert huilders, the planks are tacked to the frame, as in the construction of large vessels. Models now are generally exaggerated cutters, so far as their underbodies are concerned, or, more often, are fitted with fin-keels weighted with lead, after the manner of full-sized yachts. They may have any rig, hut schooner and sloop rigs are most common, the latter being the favourite for racing on account of its simplicity. Two kinds of steering-gear are used, the weighted swinging rudder and the "main-sheet balance gear," the ohject of bath being to keep tbe model on a true course, either before or against the wind. Models are often sailed without rudders, but though a perfectly built boat will sail readily against the wind without steering-gear, it is almost impossihle to keep it on its course before the wind without some contrivance to cbeck divergence. This is accomplisbed by the weighted rudder, which falls over when the vessel heels and tends to counteract the force of the breeze. There are two varieties of the weighted rudder, in the first of which the weight, usually lead, is fixed to the edge of the rudder, while in the second tbe weight, usually a ball of lead, is made to run on the tiller above the deck, so that it can he placed further forward or aft, according to the force needed to overcome the influence of the wind. While the weighted rudder is almost universal in the British Isles, the chief model-yachtsmen in America use the "main-sheet balance gear," in which the boom is connected with the tiller in such a manner that, when it swings out with a pressure of wind, the rudder is automatically pulled round sufficiently to keep the yacht in its course. This apparatus is particularly efficient in sailing before tbe wind.

Model-yacht regattas are very different from the toy-boat matches indulged in by children from one side of a pond to the other. They take place upon sufficiently large bodies of water to allow a course at least a quarter of a mile in length, which is generally sailed twice or three times over to windward and backward. Triangular courses are also sailed. Racing rules correspond generally to those controlling regattas of large boats, and there is full scope to exhibit all the proofs of good soamanship. The yachts are followed in light skifis, and may not be touched more than a certain number of times during a race, on penalty of a handicap. Racing measurements differ in the various clabs, but all are based upon length and saibarea. In Great Britain the regular Yacht Racing Association rule has been generally adopted, and handicaps deducted from it. In America models are divided into a single schooner with a maximum load water-line of 63 in., and three classes of sloops, the first class including yachts with water-lines between 48 and 53 in., the second class those between 42 and 48 in . and the third and smallest clase those between 35 and 42 in . A yacht with a shorter water-line than 35 in. must race in the third class, It has been found that yachts of smaller dimensions possess too little resistance to the wind.

See Model Sailing Yachts, in Marshall's Practical Manuala series, Yor; and How to Build a Moded Yach, by Herbert Fisher (New Yort, 1902).

MODENA (ancient Mrutina), one of the principal cities of Emilia, Italy, the chief town of the province of Modena and the seat of an archhishop, 31 m . E.S.E. of Parma by rail. Pop. (1906), 26,847 (town); 66,762 (commune). It is situated in a
damp, low plain in the open coumtry in the south side of the valley of the Po, between the Secchia to the west and the Panaro to the east. Some of its main streets (as their names indicate) follow the lines of canals, which still (though now covered) traverse the city in various directions. The observatory stands 135 ft , above the level of the sea. Dismantled since 1816, and now. largely converted into promenades, the fortifications give the city an irregular pentagonal contour, modified at the north-west corner by the addition of a citadel also pentagonal Within this circuit there are various open areas-the spacious Ippodromo in front of the citadel, the puhlic gardens in the north-east of the city, the Piazza Grande in front of the cathedral, and the Piazza Reale to the south of the palace. The Via Aemilia passes obliquely right through the heart of the city, from the Bologna Gate in the east to that of Sant' Agostino in the west.

Begun by the Countess Matilda of Tuscany in 1099, after the designs of Lanfranc, and consecrated in 1184, the Romanesque cathedral (S Geminiano) is a low but handsome huibding, with a lofty crypt, under the choir (characteristic of the Tuscan Romanesque architecture), three eastern apses, and a façade still preserving some curious sculptures of the 12 th century. The interior was restored in 1897. The graceful bell-tower, erected in 1224-1319, named La Ghirlandina from the hronze garland surrounding the weathercock, is 335 ft . high; in the basement may be seen the wooden hucket captured by the Modenese from the Bolognese in the affray at Zappolino (1325), and rendered famous by Tassoni's Secchia Rapila. Of the other churches in Modena, the church of S Giovanni Decollato contains a Piela in painted terra-cotta by Guido Maztoni ($1450-1$ 158). The so-called Pantheon Estense (the church of S. Agostino, containing works of sculpture in honour of the house of Este) is a baroque building hy Bibbiena; it also contains the tomhs of Sigonio and Muratori. San Pietro and San Francesco have terra-cottas by Begarelli ($1498-1565$). The old ducal palace, begun by Duke Francis I. in 1635 from the designs of Avanzini, and finished by Francis Ferdinand V., is an extensive building with a fine courtyard, and now contains the military school and the observatory. The Albergo d' Arti, built by Duke Francis III., accommodates the civic collections, comprising the Museo Lapidario (Roman inscriptions, \&c.); the valuahle archives, the Biblioteca Estense, with 90,000 volumes and 3000 MSS ; the Museo Civico, with large and good palseo-ethnological and archacological collections; a fine collection of textile fabrics, and the picture gallery, a good representative collection presented to the city hy Francis V. and since augmented hy the addition of the collection of the Afarchese Campori. Diany of the best pictures in the ducal collection were sold in the 18th century and found their way to Dresden. The town hall is a noteworthy building, with arcades dating from 1194, but in part rebuilt in 1826. The university of Modena, originally founded in 1683 hy Francis II., is mainly a medical and legal school, but has also a faculty of physical and mathematical science. The old academy of the Dissonenti, dating from 1684, was restored in 1814, and now forms the flourishing Royal Academy of Science and Art. In industrial enterprise silk and linen goods and iron wares are almost the only products of any note. Commerce is chiefly agricultural and is stimulated hy a good position in the railway system, and hy a canal which opens a water-way by the Panaro and the Po to the Adriatic. Modena is the point at which the railway to Mantua and Verona diverges from that between Milan and Bologna, and has several steam tramways to neighbouring places. It is also the starting-point of a once important road over the Apennines to Pistoia hy the Abetone Pass.

Modena is the ancient M ulina in the territory of the Boii, which came into the possession of the Romans probstily in the war of $215-212$ B.c. In 183 B.C. Mutina became the seat of a Roman colony. The Roman town lay immediately to the southeast of the modern; its north-western wall is marked by the modern Corso Umberto I. (formerly Canal Grande) It appears to have been a place of importance under the empire, but none of its buildings is now to be seen. The Roman level, indeed,
is some 15 to 20 ft . below the modern town. Its vineyards and potteries are mentioned by Pliny, the latter doing a considerable export trade. Its territory was coterminous with that of Bononia and Regium, as its diocese is now, and to the south it seems to have extended to the summit of the Apennines. During the civil wars Marcus Brutus, the lieutenant of Lepidus, held out within its walls against Pompeius in 78 日.c., and in 44 B.c. the place was successfully defended by D. Brutus against Mark Antony for four months. The $4^{\text {th }}$ century found Mutina in a state of decay; the ravages of Attila and the troubles of the Lombard period left it a ruined city in a wasted land. In the 7th century, perhaps owing to a terrible inundation,' its exiles founded, at a distance of 4 m . to the north. west, a new city, Citta Geminiana (still represented by the village of Cittanova); but about the close of the gth century Modena was restored and refortifed by its bishop, Ludovicus. When it began to buidd its cathedral (a.D. 1099) the city was part of the posscssions of the Countess Matilda of Tuscany; but when, in 1184, the edifice was consecrated by Lucius III., it was a free community. In the wars between Frederick II. and Gregory IX. it sided with the emperor, though ultimately the papal party was strong enough to introduce confusion into its policy. In 1288 Obizzo d'Este was recognized as lord of the city; after the death of his successor, Azzo VIII. (1308), it resumed its communal independence; but by 133^{6} the Este family was again in power. Constituted a duchy in 1452 in favour of Borso d'Este, and enlarged and strengthened by Hercules IL., it became the ducal residence on the incorporation of Ferrara with the States of the Church (1598). Francis I. ($1620-1653$) erected the citadel and commenced the palace, which was largely embellished by Francis II. Rinaldo (ob. 1737) was twice driven from his city by French invasion. To Francis III. (1698-1780) the city was indebted for many of its public buildings. Hercules III. (1727-1803) saw his states transformed by the French into the Cispadine Republic, and, having refused the principality of Breisgau and Ortenau, offered him in compensation by the treaty of Campo Formio, died an exile at Treviso. His only daughter, Maria Beatrice, married Ferdinand of Austria (son of Maria Theresa), and in 1814 their eldest son, Francis, received back the Stati Estensi. His rule was subservient to Austris, reactionary and despotic. On the outbreak of the French Revolution of 1830, Francis IV. seemed for a time disposed to encourage the corresponding movement in Modena; but no sooner had the Austrian army put an end to the insurrection in Central Italy than be returned to his previous policy. Francis Ferdinand V., who succeeded in $\mathbf{1 8 4 6}_{4}$ followed in the main his father's example. Obliged to leave the city in 1848, he was restored by the Austrians in 1849; ten years Jater, on the 20th of August 1859, the representatives of Modena declared their territory part of the kingdom of lialy, and their decision was confirmed by the plebiscite of 1860 .

See Vedriani, Storia di Modena (r666): Tiraboschi. Mem. storiche modenesi (1793); Scharfenberg, Gesch. des Herzopth. Modena (1859); Oreste Raggi, Modena descrilla (1860); Baraldi, Storia di Mlodena: Valdrighi, Diz. Storico, \&ec., delle contrade di Modena (1798-1880) Crespellani, Guida di Modena (1879); Cavedoni, Dichrarasione degli antici marmi Modenesi (1828).

MODERATOR (from Lat. moderare, to impose a modus, limit), a judge or umpire, one who acts the part of mediator, and so a term used of the person chosen to be president of a meeting (as in America, of a town meeting). In academic use, the word was formerly applied to the public officer who presided over the exercises, 8 cc ., prescribed for candidates for degrees in the university schools; it is now used at Cambridge of one or two officers who are appoint ed each year to preside over the examination for the mathematical tripos, at Orford of an examiner in the first public examination, known as "moderations," and at Dublin of a candidate for honours in the examination for degree of Bachelor of Arts. In the Presbyterian churches the name is applied to the minister elected to preside over ecclesiastical meetings or assemblies, as the synod, presbytery or general
${ }^{\text {t }}$ Some authorities (of whom Tiraboschi was the first) attribute its desertion entirely to a succession of inundations, denying that it was even among the citics destroyed by Attila.
assembly (see Presbyterunism). The name was historically given to a party of people who joined toget her to oppose the "Regulators," another party who professed to administer justice in the Carolinas ($1767-1771$). Technically, the word is also used of a particular form of lamp. in which the fiow of oil from the reservoir to the burner is regulated by a mechanical arrangement to which the name is applied.

MODERATUS OF GADEs, a Greek philosopher of the NeoPythagorean school, contemporary with Apolionits of Tyana. He wrote a great work on the doctrines of the Pythagoreans, and tried to show that the successors of Pythagoras had made no additions to the views of their founder, but had merely borrowed and altered the phraseology. He has been given a fictitions importance by recent commentators, who have regarded him as the forerunner of the Alexandrian School of philosophy. Zeller has shown that the authority on which this view is based is entirely unsound. Moderatus is thus left as an unimportant though interesting representative of a type of thought which had almost disappeared since the sth century b.c.

Stobaeus, Exlogae, p. 3, preserves a fragment of his writings.
MODESTINUS, HERENNIUS, a celebrated Roman jurist, who flourished about 250 s.c. He appears to have been a native of one of the Greck-speaking provinces, probably Dalmatia, and was a pupil of Ulpian. In Valentinian's Latw of Citations he is classed with Papinian, Paulus, Gaius and Ulpian. He is mentioned in a rescript of Gordian in the year 240 b.c. in connexion with a responsum which he gave to the party to whom the rescript was addressed. No fewer than 345 passages in the Digest are taken from his writings.

MODICA, a town of Sicily, in the province of Syracuse, 57 m . W.S.W. of Syracuse by rail and 33 m . direct. Pop. (1901), 48,962. It lies on a hill between two valleys; the hill, erowned by the church of S. Giorgio, reconstructed in the rith century, was the site of the Sicel town of Motyca, while the modern part of the lown extends along the river Mauro, an inundation of which did much damage in September 1902 . Remains of megalithic buildings, apparently, however, houses of the Byzañtine period, are described in Notizie degli Scavi, 1806, 242 seq. Six miles to the south-east is the valley known as the Cava d'Ispica, with hundreds of grottoes cut in its rocky sides; of these only a few are Sicel tombs, the majority being catacombs or open tombs of the early Christian and Byzantine periods, or even cave-dwellings of the latter age.
See P. Orsi in Notizic degli Scavi (1905), 43 I.
MODILLION (a French word, probably from Lat. moduders, a measure of proportion), a term in architecture for the enriched block or horizontal bracket generally found under the cornice and above the bedmould of the Corinthian entablature. It is probably so called because of tts arrangement in regulated distances.

MODJESKA, HELENA (1844 -1909), Polish actress, was born at Cracow on the 12 th of October 1844. Her father, Michael Opido, was a musician, and her tastes soon declared themselven strongly in favour of a dramatic career, but it was not until after her marriage in 1861 that she first attempted to act, and then it was with a company of strolling players. Her husband (whose name, Mfodrzejewski, she simplified for stage purposes) died in 1865. In 1868 she married Count Bozenta Chlapowski, a Polish politician and critic, and almost immediat ely afterwards received an invitation to act at Warsaw. There she remained for seven or eight years, and won a high position in her art. Her chief tragic roles were Ophelia, Juliet, Desdemona, Queen Anne in Richard III., Louisa Miller, Maria Stuart, Schiller's Princess Eboli, Marion Delorme, Victor Hugo's Tisbé and Slowacti's Mazeppa. In comedy her favourite roles were Beatrice in Muck Ado About Nothing, and Donna Diana in the Polish translation of an old Spanish play of that name. Madame Modjeska was also the Polish interpretress of the most prominent plays of Legouve, Dumas, father and son, Augier, Alfred de Musset, Octave Fcuillet and Sardou In 8876 she went with her husband to California, where they settled on a ranch. This new eareer, however, proved a failure, and Madame Modjeaka returned to
the stage. She appeared in San Francisco in 1877, in an English version of Adriente Lecoutreur, and, in spite of her imperiect command of the language, achieved a remarkable success. She continued to act principally in America, but was also seen from time to time in London and elsewhere in the United Kingdom, her repertory including several Shakespearian roles and a variety of emotional parts in modern drama. She died on the 9th of April 1009 at her home near Los Angeles, California.

See Mabel Collins, The Story of IIelene Modjeske (London, 1883), and the (autobiographical) Memories and 1 mpressions (New York, 1910).

MODLING, an old town of Austria, in Lower Austria, $10 \mathrm{~m} . S$. of Vienna by rail. Pop. (1900), 15,304 . It is situated at the entrance of the Brihl valley and is a popular summer resort, possessing iron and sulphur baths. It possesses a Gothic church, with a crypt dating from the 15 th century, and a still older Romanesque burial chapel. It has a considerable iron and metal industry, and manufactures of shoes, varnish, \&c.

MODOC (i.e. "southerners"), a tribe of North American Indians of the Lutuamian stock, who formerly lived a round Lower Klamath Lake, south-western Oregon. They were always an aggressive people, and constantly at war with their neighbours. They are known mainly from their stubborn resistance to the United States government in 1872 and 1873. This is called the Modoc War, and was caused by an attempt to place them on a reservation. After some preliminary fighting the Modocs retreated to the "Lava Beds," a basaltic region, seamed and crevassed, and rich in caves. Here they made a stand for several months. During the war two members of a peace commission were treacherously massacred by them while under a flag of truce. On their final submission the leaders were hanged and part of the tribe was removed to Indian Territory (now Oklahoma), and the others were sent back to a reservation on the Klamath.

MODULE (Lat. modulus, a measure), in architecture, the semidiameter of the column at its base, the term was first set forth by Vitruvius (iv. 3), and was generally employed by the architects of the Italian revival to determine the relative proportions of the various parts of a columnar ordinance. The module was divided by the revivalists into thirty parts, called minutes, allowing of much greater accuracy than was thought necessary hy Vitruvius, whose subdivision was usually six parts. The tendency now is to adopt the whole diameter instead of the semi-diameter when determining the height of the column or entablature or any of their subdivisions. The term module is also applied in hydraulics (q.v.) to a contrivance for regulating the supply of water from an irrigation channel.

MOERIS, AELIUS, Greck grammarian, surnamed Alicista (" the Atticist "), probably fourished in the and century A.D. He was the author of an extant (more or less alphabetical) list of Attic forms and expressions ('Arrıkai $\lambda \dot{\xi} \xi \in s)$). accompanied by the Hellenistic parallels of his own time, the differences of gender, accent and meaning being clearly and succinctly pointed out.
Editions by J. Hudson (171I) : I. Pierson (1759) ; A. Koch (1830); r: Bekker (1833): with Harpocration.

MOBRIS, LARE OF, the lake which formerly filled the deep depression of the Fayum to the Nile level, now shrunken and sunk more than 200 ft . to the shallow Birket el Kerün. In remote prehistoric times the Fayum depression was probably dry, but with the gradual rise of the river bed the high Nile reached a level at which it could enter through the natural or artificial channel now known as the Bahr Yusuf. The borders of the lake were occupied by a neolithic people, and the town of Crocodilopolis grew up very early on the eastern slope south of the channel, where the higher ground formed a ridge in the lake. The rise continuing (at the rate of about 4 in . to the century) the waters threatened to 月ood the town; consequently under the XIIth Dynasty great embankments were made to save the settled land from encroachment. The line of the embankment is still traceable in places and marked by monuments of the XIlth Dynasty kings, an obelisk of Senwori . I. at Ebgig. and coloesd of Amenemhe III. at Biahmu. The latter ornamented the quay
of the port of Crocodilopolis, and projected into the lake on high bases. As the Nile fell the broad expanse of the lake lowered, and the water pouring back through the channel was of value ior summer irrigation; the inflow and outfow were regulated by sluices, and the capture of fish here and in the lake was enormous: The channel which was of such importance was called the "Great Channel," Mewér, in Greek Moeris. The native name of the lake was Shei, "the lake," later Piom, "the sea " (whence Fayum); Teshei, "the land of the lake," was the early name of the region. At its capital Crocodilopolis and elsewhere the crocodile god Sobk (Suchus) was worshipped. Senwosri II. of the XIIth Dynasty built his pyramid at Illahun at the outer end of the channel, Amenemhé III. built his near the inner end at Hawara, and the vast labyrinth attached to it was probably his funerary temple. This king was afterwards worshipped in more than one locality about the lake under the name Marres (his praenomen Nemarē) or Peremarres, i.e. Pharaoh Marres. The mud poured in at high Nile made rich deposits on the eastern slope; in the reign of Philadelphus large reclamations of land were made, veterans from the Syrian War were settied in the "Lake" ($\left.\Lambda f_{\mu} \mu\right)$, and the latter quickly became a populous and very fertile province. Strabo's account of the Lake of Moeris must be copied from earlier writers, for in his day the outflow had been stopped probably for two centuries, and the old bed of the lake was dotted with flourishing villages to a great depth below the level of the Nile. Large numbers of papyri of the Ptolemaic and Roman periods have been found in and about the Fayum, which continued to flourish through the first two centuries of the Roman rule.
See W. M. F. Petric, Fawara Biakm z and Arsinoe (London, 1889): R. H. Brown. The Fayam and Lake Moeris (London, 1892): B. P. Grenfell. A. S. Hunt and D. G. Hogarth, Fayum Towns and their Papyri (London, 1900): H. J. C. Beadnell, The Topography and Geology of the Fayum Prorince of Egypt (Cairo, 1905). (F. LL. G.)
 from Mysia in Asia), in ancient geography, a district inhabited hy a Thracian people, bounded on the S. by the mountain ranges of Haemus and Scardus (Scordus, Scodrus), on the W. by the Drinus, on the N. by the Danube and on the E. by the Euxine. It thus corresponded in the main to the modern Servia and Bulgaria. In 75 b.c., C. Scribonius Curio, proconsul of Macedonia, penetrated as far as the Danube, and gained a victory over the inhabitants, who were finally subdued by M. Licinius Crassus, grandson of the triumvir and also proconsul of Macedonia, during the reign of Augustus c. 29 b.c. (see Mommsen, Provinces of the Roman Empire, Eng. trans., \mathbf{i}, 12-14). The country, however, was not organized as a province until the last years of the reign; in a.D. 6 mention is made of its governor, Caecina Severus (Dio Cassius Iv. 29). The statement of Appian (Illyrica, 30) that it did not become a Roman province until the time of Tiberius, is therefore incorrect. Originally one province, under an imperial consular legate (wbo probably also bad control of Achaea and Macedonia), it was divided by Domitian into Upper (superior) and Lower (inferior, also called Ripa Thracia) Moesia, the western and eastern portions respectively, divided from each other by the river Cebrus (Ciabrus, mod. Cibritza or Zibru). Some, however, place the boundary further west. Each was governed by an imperial consular legate and a procurator. As a frontier province, Moesia was strengthened by stations and fortresses erected along the southern bank of the Danube, and a wall was built from Axiopolis to Tomi as a protection against Scythian and Sarmatian inroads. After the abandonment of Dacia ($q .0$) to the barbarians hy Aureian ($270-275$) and the transference of its inhabitants to the sout h of the Danube. the central portion of Moesia took the name of Dacia Aureliani (again divided into Dacia ripensis and intertor). The district called Dardania (in Upper Moesia). Inhabited by the Illyrian Dardani, wis formed into a special province by Diocletian with capital Naissus (Nissa or Nish), the birthplace of Constantine the Great. The Goths, who had already invaded Moesia in 250, hard pressed by the Huns, again crossed the Danube during the reign of Valens (376), and with his permission setuled in

Moesia. But quarrels boon took place, and the Goths under Fritigern defeated Valens in a great batcle near Adrianople (378). These Goths are known as Moeso-Goths, for whom Ulfilas made the Gothic translation of the Bible. In the 7th century Slavs and Bulgarians entered the country and founded the modern kingdoms of Servia and Bulgaria. The chief towns of Upper Moesia were: Singidunum (Belgrade), Viminacium (sometimes called municipium Aelium; Kostolatz), Bononia (Widdin), Ratiaria (Artcher): of Lower Moesia; Oescus (colonia Ulpia, Gigen), Novae (near Sistova, the chief seat of Theodoric), Nicopolis ad Istrum (Nikup), really on the Latrus or Yantra, Odessus (Varna), Tomi (Kustendje), to which the poet Ovid was banished. The last two were Greek towns, which, with Istros, Mcsambria and Apollonia, formed a pentapolis.

See Orosius v. 23, 20; Livy, Epit. 92, 134, 135; Dio Cassius 1 i. 25-27; E. R. Rösler, Romênische Studien (Leıpzig, 1871): T. Mommsen, Corpus inscriptionum latinarum, iii. 141, 263; J. Marquardt, Romische Staalsverwallung (1881), i. 301 ; H. Kiepert, Lehrbuch der allen Geographie (1878), if 298, 299 ; article in Smith's Diclionary of Greek end Romass Geography (1873).
(J. H. F.)
mOPAPpALIYAT, strictly MUPAppaLIfAT, an anthology of ancient Arabic poems, which derives its name from al-Mufaddal, son of Muhammad, son of Ya'la, a member of the tribe of Dabba, who compiled it some time between A.D. 7^{62} and 784 in the latter of which years he died. Al-Mufaddal was a contemporary of Hammâd ar-Râwiya and Khalai al-Abmar, the famous collectors of ancient Arab poetry and tradition, and was somewhat the junior of Aba 'Amr ibn al-'Ala, the first scholar who systematically set himself to preserve the poetic literature of the Arabs. He died about fifty years before Abū 'Ubaida and al-Asma'l, to whose labours posterity is largely indebted for the arrangement, elucidation and criticism of ancient Arabian verse; and his anthology was put together between fifty and sixty years before the compilation by Ahu Tammanm of the Hamasa (q.o.).

Al-Mufaddal was a careful and trustworthy collector both of texts and traditions, and is praised by all authorities on Arabian history and literature as in this respect greatly the superior of Hammad and Khalaf, who are accused (especially the latter) of unscrupulous fabrication of poems in the style of the ancients. He was a native of Kafa, the northernmost of the two great military colonies founded in 638 by the caliph 'Omar for the control of the wide Mesopotamian plain. In Kufa and Baspa were gethered representatives of all the Arabian tribes who formed the fighting force of the Islamic Empire, and from these al-Mufaddal was able to collect and record the compositions of the poets who had celebrated the fortunes and exploits of their forefathers. He, no doubt, like al-Asma'i and Aba 'Ubaida, also himself visited the areas occupied by the tribes for their camping grounds in the neighbouring desert; and adjacent to Kufa was al-Hira, the ancient capital of the Lakhmid kings, whose court was the most celebrated centre in pre-Islamic Arabia, where, in the century before the preaching, of the Prophet, poets from the whole of the northern balf of the peninsula were wont to assemble. There is indeed a tradition that a written collcetion (diwd n) existed in the family of an-Nu'man, the lost Lakhmid king, containing a number of poems by the Fuhull, or most eminent poets of the pagan time, and especally by those who had praised the princes of the bouse, and that this collection passed into the possession of the Omayyad caliphs of the house of Marwan; to this, if the tradition is to he believed, al-Mufadgal probably had access.

The date of al-Mufaddal's birth is unknown; but he lived for many years under the caliphs of the Omayyad line until their overthrow by the 'Abbasids in 749 . In 762 he took part in the rising led by lbrahīm ibn 'Abdallah ibn al-Hasan, the 'Alid, called "The Pure Soul," against the caliph al-Mansur, and after the defeat and death of Ibrahim was cast into prison. AlMlansûr, however, pardoned him on the intercession of his fellowtribesman Musayyab ibn Zuhzir of Dabba, and appoinued him the instructor in literature of his son, afterwands the caliph al-Mahdr. It was for this prince that, at al-Mangor's instigation, al-Mufaddal compiled the M ufaddaliyd.

The collection, in its present form, contains 126 pieces of
verse, long and short; that is the number included in the recension of al-Anbari, who had the text from Abu 'Ikrima of Dabba, who read it with Ibn al-A'rabi, the stepson and inheritor of the tradition of al-Mufadidal. We know from the Filtrist of Muhammad an-Nadim (A.D. 988) that in his time 128 pieces were counted in the book; and this number agrees with that contained in the Vienna MS., which gives an additional poem, besides those annotated by al-Anbari, to al-Muraqqish the Elder, and adds at the end a poem by al-Hzirith ibn Hilliza. The Fihrist states (p. 68) that some scholars included more and others fewer poems, while the order of the poems in the several recensions differed; but the correct text, the author says, is that handed down through Iba al-A'rabi. It is noticeable that this traditional text, and the accompanying scholia, as represented by al-Anbari's recension, are wholly due to the scholars of Kufa, to which place al-Mufaddal himself belonged. The rival school of Başa, on the other hand, has given currency to a story that the original collection made by al-Mufaddal includeda much smallernumber of poems. The Berlin MS. of al-Marzüqi's commentary states that the number was thirty, but a better reading of the passage, found elsewhere, ${ }^{2}$ mentions eighty; and that al-Asma' ${ }^{2}$ and his school added to this nucleus poems which increased the number to a hundred and twenty. It is curious that this tradition is ascribed by al-Marzulif and his teacher Abū 'AII al-Fzrisi to Abu 'Ikrima of Dabba, who is represented by al-Anbari as the transmitter of the cortect text from Ibn al-A'ribl. There is no mention of it in al-Anbäri's work, and it is in itself somewhat improbable, as in al-Asma'i's time tbe schools of Kafa and Baspa were in sharp opposition one to the other, and Ibn al-A'rabI in particular was in the habit of censuring al-Asma i's interpretations of the ancient poems. It is scarcely likely that he would have accepted his rival's additions to the work of his step-father, and have handed them on to Abü 'Ikrima with his annotations.

The collection is one of the highest importance as a record of the thought and poetic art of Arabia during the time immediately preceding the appearance of the Prophet. Not more than five or six of the 126 poems appear to have been composed by poets who had been born in Islam. The great majority of the authors belonged to the days of "the Ignorance," and though a certain number (e.g. Mutammim ihn Nuwaira, Rabria ibn Maqrum, "Abda ibn at-Tahib and Abū Dhu'aih), born in paganism, accepted Islam, their work bears few marks of the new faith. The ancient virtues-hospitality to the guest and the poor, profuse expenditure of wealth, valour in battle, faithfulness to the cause of the tribe-are the themes of praise; wine and the game of maisir, forbidden by Islam, are celebrated by poets who professed themselves converts; and if there is no mention of the old idolatry, there is also little spirituality in the outlook on life. The 126 pieces are distributed between 68 poets, and the work represents a gathering from the compositions of those who were called al-Muqillün, " authors of whom little has survived," in contrast to the famous poets whose woriks had been collected into diwans. At the same time many of them are extremely celebrated, and among the pieces selected hy al-Mufaddal several reach a very bigh level of excellence. Such are the two long poems of "Alqama ibn "Abada (Nos. 119 and 120), the three odes by Mutammim ibn Nuwaira (Nos. 9, 67, 68), the splendid poem of Salăma ibn Jandal (No. 22), the beautiful nosib of ash-Shanfara (No. 20), and the death-song of 'Abd-Yaghath (No. 30). One of the most admirable and famous is the last of the series (No. 126), the long elegy by Aba Dhu'aib of Hudhail on the death of his sons; almost every verse of this poem is cited in illustration of some phrase or meaning of a word in the national lexicons. Only one of the poets of the Mif'allagal (see Mo'allakit), al-Harith, son of Hilliza, is represented in the collection. Of others (such as Bishr ibn Abī Khazim, al-Hảdira, 'Amir ihn aţ-Tufail, 'Alqamah ibn 'Abadah, al-Muthaqqib, Ta'abbą̧a Sharrá and Aba Dhu'aib) ditwins or bodies of collected poems exist, but it is doubtful how far these had been brought together when al-Mufaddal made

I In the dhail or supplement to the Amdff of al-Qali. (Edin Cairo 1324 $\mathrm{H}_{\boldsymbol{\prime}}$ P. 131).
bis compilation. An interesting feature of the work is the treatment in it of the two poets of Bakr ibn Wa'il, uncle and nephew, called al-Muraqgish, who are perhaps the most ancient in the collection. The elder Muraqqish was the great-uncle of Tarafa of Bakr, the author of the Míallaqa, and took part in the long warfare between the sister tribes of Bakr and Taghlib, called the war of Basus, which began about the end of the 5th century A.D. Al-Mufaddal has included ten pieces (Nos. 45-54) by him in the collection, which are chiefly interesting from an antiquarian point of view. One, in particular (No. 54), presents a very archaic appearance. It is probable that the compiler set down all he could gather of this ancient author, and that his interest in him was chiefly due to his antiquity. Of the younger Muraqqish, uncle of Tarafa, there are five pieces (Nos. 55-59). The only other authors of whom more than three poems are cited are Bishr ibn AbI Khazim of Asad (Nos. 96-99) and Rabr'a ibn Maqram of Dabba (Nos. 38, 39, 43 and II3).

The Mufaddaliydt differs from the Pamdsa in being a collection of complete odes (gasidas), while the latter is an anthology of hrilliant passages specially selected for their interest or effectiveness, all that is prosaic or less striking being pruned away. It is of course not the case that all the poems of al-Mufaddal's collection áre complete. Many are mere fragments, and even in the longest there are often locurac; but the compiier evidently set down all that he could collect of a poem from the memory of the rawis, and did not, like Aba Tammam, choose only the best portions. We are thus presented with a view of the literature of the age which is much more characteristic and comprehensive than that given by the brilliant poet to whom we owe the Flamasa, and enables us to form a better judgment on the general level of poetic achievement.
The Mufaddaliydt is not well represented by MSS. in the libraries of the West. There is an imperfect copy of the recension of alMarzüqi (died io30), with his commentary, in the Berlin collection. A yery ancient fragment (dated 1080) of al-Anbäri's recension, containing five poems in whole or part, is in the Royal Library at Leipzig. In the British Museum there is a copy made about a century ago for C. J. Rich at Bagdad of a MS. with brief glosses; and at Vienna there is a modern copy of a MS. of which the original is at Constantinople: the glosses in which are taken from al-Anbari, though the author had access also to al.Marzüql. In the mosque libraries at Constantinople there are at least five MSS. ; and at Cairo there is a modern copy of one of these, containing the whole of al-Anbarit's commenkary. In America there are at Yale University a modern copy of the same recension, taken from the same original as the Cairo copy, and a MS. of Persian origin, dated 1657, presenting a text identical with the Vienna codex. Quite recently a very inleresting MS., probably of the 6th century of the Hegira, but not dated, has come to light. It purports to be the second part of a combination of two anthologies, the Mufadjalisyal of al-Mufaddal and the Asma'iydf of al-Asma't, but contains many more poems than are in either of these collections as found elsewhere. The rem. T:N +ary appears to be eclectic, drawn partly (perhaps chiully) from bn as-Sikkit (died 858), and partly from Abu-Ja'far Abmad ibn iJinid ibn Nasich, ope of al-Anbari's sourcen and a pupil of Ibn al. A't bi; and the compilation seems to be older in date than al. Anbarri, sintsits glosses are often quoted by him without any name being micnticaed. This MS. (which is the property of Mr F. Krenkow of Leicister) apptars to represent one of the recensions mentioned by Mubarn tiad an-Nadirn in the Fikris! (p.68), to which reference has becn raide above.

In 1885 Professor Heinrich Thorbeckebegan an edition of the text based on the Berlin codex, but only the first fasciculus, containing forty-two poems, had appeared when his work was cut short by death. In 1891 the firat volume of an edition of the text, with a short commentary taken from al-Anbarri, was printed at Constantinople. In 1906 an edition of the whole text, with short glosses taken from al-Anbäri's commentary, was published at Cairo by Abü Bakr b. Omar Daghistani al-Madani; this follows generally the Cairo codex bove mentioned, but has profited by the scholarship of Professor Thorbecke's edition of the first half of the work A complete edition of al-Anbāri's text and commentary, with a translation of the poems, undertaken by Sir C. J. Lyall (see J. R. A. S., April 1904) was in the press in 1910.
(C. J. L.)

MOFETPA (Ital. from Lat. mephitis, a pestilential exhalation), a name applied to a volcanic discharge consisting chiefly of carbon dioxide, often associated with other vapours, representing the final phase of volcanic activity. The word is used frequently In the plaral as mofette, or, following the French, mofelles. The volcanic vents yielding the emanations are themselves called
mofette. They are not uncommon in Auvergne and in the Eifel, notably on the shore of the Laacher See; whilst other examples are furnished by the Grotta del Cane, near Puzzuoli, the Valley of Death in Java, and the Death Gulch in the Yellowstone Park.
MOFFAT, ROBERT ($5795-1883$), Scottish Congregationalist missionary to Africa, was born at Ormiston, Haddingtonshire, on the 21st of December 1795, of humble parentage. He hegan as a gardener, but in 1814, when employed at High Leigh in Cheshire, offered himself to the London Missionary Society, and in 1816 was sent out to South Africa. After spending a year in Namaqua Land, with the chicf Afrikaner, whom be converted, Moffat returned to Cape Town in 1819 and married Mary Smith (1795-1870), the daughter of a former employer, a remarkahle woman and most belpful wife. In 1820 Moffat and his wife lelt the Cape and proceeded to Griqua Town, and ultimately settled at Kuruman, among the Bechuana tribes living to the west of the Vaal river. Here he worked as a missionary till $\mathbf{1 8 7 0}$, when he reluctantly returned finally to his native land. He made frequent journeys into the neighbouring regions as far north as the Matabele country. The results of these journeys he communicated to the Royal Geographical Society (Journal xxy.-xraviii. and Proccedings ii.), and when in England on furlough ($1839-1843$) he published his well-known Missionary Labours and Scenes in Sowth Africa (1842). He translated the whole of the Bible and The Pilgrim's Progress into Sechwana. Moffat was builder, carpenter, smith, gardener, farmer, all in one, and by precept and example he succeeded in turning a horde of hloodthirsty savages into a "people appreciating and cultivating the arts and habits of civilized life, with a written language of their own." He met with incredible discouragement and dangers at first, which he overcame by his strong faith, determination and genial humour. It was largely due to him that David Livingstone, his son-in-law, took up his subsequent work. On his return to England he received a testimonial of $£ 5000$. He died at Leigh, near Tunbridge Wells, on the gth of August 1883.
See Lives of Rabert and Mary Moffal, by J. S. Moffat (1885); and C. S. Horne, The Slory of the L. M.S. (I894).

TOFPAT, a burgh of berony, and police burgh, of Upper Annandale, Dumfriesshire, Scotland. Pop. (1901), 2153. It is situated 21 m . N.N.E. of Dumfries by road and 63 m . distant by the Caledonian railway, from both Fdinburgh and Glasgow. It is the terminus of a branch line from Beattock, 2 m . distant. It has been famous for its sulphur and saline waters since the middle of the 18 th century, and also enjoys great vogue as a boliday resort. The hills in the locality range from the adjacent Gallow Hill (832 ft .) to Hartfell (265 ft .), about 5 m . north there is abundance of heautiful and varied scenery on the Annan, the Evan, the Birnock and the Moffat. The spa, a mile to the north of the town, was acquired by the burgh commissioners in 1898, and there are also spas at Hartiell (31 m . north) and Garpel (2 m . South-west). Dumerieff House, 2 m . south-west, is the seat of Lord Rollo.
MOGADOR (Es-Sucira), the most southern seaport on the Atlantic coast of Morocco, in $31^{\circ} 50^{\prime} \mathrm{N} ., 9^{\circ} 20^{\prime}$ W., the capital of the province of Hahd. Pop. (rgo8), about 20,000 , of whom nearly a half are said to be Jews, and about $t 00$ Europeans. The town stands from to to 20 ft . above high water on a projecting ridge of calcareous sandstone. In certain states of wind and sea it is tumed almost into an island, and a sea-wall protects the road to Saff. On the land side stretch miles of sand-dunes studded with broom, and beyond, the argan forests, distinctive of southern Morocco. Approached from this side the city bursts on the view like a mirage between sky and sea, and this perhaps entitles it to its name-Es-Sueira-" the picture." It is the best planned and cleanest town in the empire, and this combined with the climate, which is very equable, makes it a health resort, especially for consumptive patients. The mean temperature of the hottest month is $71^{\circ} .06$, and of the coldest month $58^{\circ} .69$. The rainfall varies between 13 and 20 in . annually. The water supply is carried by an overground conduit from a spring pear

Diabat. The prosperity of Mogador is due to its commerce. The harbour is well sheltered from all winds except the southwest, but escape is difficult with the wind from that quarter, as the channel between the town and Mogador Island is namow and hazardous. It is the best-built port of the sultanate and is generally second in point of trade, which is carried on mainly with Marseilles, London, Gibraltar and the Canaries, the principal exports being almonds, goat-skins, gums and olive-oil, and the principal imports cotton goods, sugar and tea. The exports were valued at $\{407,000$ in 1900 and at $\{364,000$ in 1906. The imports were worth $\{246,000$ in 1900 and $\{368,000$ in 1906. Shipping, 1900, 132,000 tons; 1906, 140,000 tons.

A place called Mogador is marked in the 135 s Portulan of the Laurentian lihrary, and the map in Hondius's Allas minor sbows the island of Mogador, I. Domegador; but the origin of the present town is much more recent. Mogador was founded by Mohammed XVII. (hin Abd Allah) in 1760, and completed in 1770 . The Portuguese called it after the shrine of Sidi Megdul, which lies towards the south half-way to the village of Diabat, and forms a striking landmark for seamen. In 1844 the citadel was bombarded by the French.

See A. H. Dye, "Les Ports du Maroc," in Bull. Soc. Geog. Comm. Paris (1908), xxx. 313 sqq., and British Consular reports.

MOGILA, PETER (c. 1596-1647), metropolitan of Kiev from 1632, belonged to a noble Wallachian family. He studied for some time at the university of Paris, and first became a monk in 1625. He was the author of a Catechism (Kiev, 1645) and other minor works, but is principally celebrated for the Orthodox Confession, drawn up at his instance by the Abbot Kosslowski of Kiev, approved at a provincial synod in $\mathbf{1 6 4 0}$, and accepted hy the patriarchs of Constantinople, Jerusalem, Alexandria and Antioch in 1642-1643, and by the synod of Jerusalem in 1672. (See Orthodox Eastern Church.)

There are numerous editions of the Confession in Russian; it has been edited in Greek and Latin by Panagiotes (Amsterdam, 1662), by Hofmann (Leipzig, 1695), and by Kimmel (Jena, 1843), and there is a German translation by Frisch (Frankfort, 1727).

MOGILEV, a government of western Russia, situated on the upper Dnieper, between the governments of Vitehsk and Smolensk on the north and east, and Chernigov and Minsk on the south and west. In the north it is occupied by the watershed which separates the basins of tbe Dvina and the Dnieper, an undulating tract 690 to 900 ft . above sea-level, and covered nearly everywhere with forcsts. This watershed slopes gently to the south, to the valley of the Dnieper, which enters the government from the northeast and nows due south. The southern part of the government is flat and has much in common with the Polyesie of the government of Minsk; it is, however, more habitable, the marshes being less extensive. Mogilev is huilt up of Devonian deposits in the north, of Cretaceous in the east, and of Tertiary elsewhere, hut generally is covered with a thick layer of Glacial and later alluvial deposits. Interesting finds from the Stone Age, as well as remains of the mammoth, have been made.

The soil is mostly sand, clay (brick-clay and potter's-clay are not uncommon), and peat-bogs, with a few patches of "hlack earth." The climate is harsh and wet, the average yearly temperature at the Gorki meteorological observatory being $40^{\circ} \cdot 4 \mathrm{~F}$, ($14^{\circ} \cdot 2$ in January and $63^{\circ} .8$ in July); cold nights in summer are often the cause of bad crops. The govemment had 947,625 inhabitants in 1870, and in 1897, $1,706,511$, of whom 861 ,533 were women, and 146,752 lived in towns. The estimated population in 1906 was $2,024,300$. The population is mostly White Russian. Agriculture is their chief occupation. Out of the total area of $18,546 \mathrm{sq}$. $\mathrm{m} .40 \%$ is held in commanal ownership by the peasants, 48% is owned by landlords possessing more than 270 acres each, and $3 \frac{1}{3} \%$ hy small owners. Most of the private owners belong to the nobility. The principal crops are rye, oats, barley, buckwheat, potatoes, though wheat, beetroot, flax, he mp and tobacco are also grown. Paper, spirits, wire and nails, leat her and tiles are the chief products of the manufactures. The government is divided into eleven districts, of which the
chief towns with their poputations in 1897 were: Mogilev-0aDnieper, or Mogilev Gubernskiy (47.591 in 1900), Chausy (5550), Cherikov (5250), Homel or Gomel (45,081 in 1900). Gorki (6730), Klimovichi (4706), Mstislavl (10,382 in 1900), Orsha (13,161), Rogachev (0103), Staryi Bykhov (6354), and Syenno (406r).
This government was inhabited in the toth century by the Slav tribes of the Krivichi and Radimichi. In the 14th century it became part of Lithuania, and afterwards of Poland. Russia annexed it in 1772.

MOGILEV OA THE DMIEPER, a town of Russia, capital of the government of Mogilev. Pop. (1900), 47,59r, two-thirds Jews. It is situated on a hilly site on both banks of the Dnieper, $\mathbf{1 2 0 ~ m}$. by rail S.W. of Smolensk. It is the see of an archbishop of the Orthodox Greek Church. The public buildings include the cathedral of the Orthodox Greek Church (founded by Catherine II. of Russia and Joseph IL. of Austria in 1780), a Roman Catbolic cathedral (built in 1692), an old castle, a museum, a church dating from r620, and an old Tatar tower. The principal industries are tanneries. The commerce is mostly in the hands of Jews. Corn, salt, sugar and fish are hrought from the south, whilst skins and manufactured wares, imported from Germany, are sent to the southern gqvernments.

Mogilev is mentioned for the first time in the 14th century as a dependency of the Vitebsk, or of the Mstislavl principality. At the beginning of the isth century it became the personal property of the Polish kings. But it was continually plundered-either by Russians, who attacked it six times during the $\mathbf{x} 6$ th century, or by Cossacks, who plundered it three times. In the rith century its inhahitants, who belonged to the Orthodox Greek Church, suffered much from the persecutions of the United Greek Church. In 1654 it surrendered to Russia, but in $\mathbf{1 6 6 5}$ the Russian garrison was massacred by the inhahitants. In the 18th century the town was taken several times by Russians and by Swedes, and in 1708 Peter the Great ordered it to be destroyed hy fire. It was annexed to Russia in 1772. Near here the French under Davoat defeated the Russians under Bagration on the 2 zrd of July 1812 .
mogiley on The diliester, a town of Russis, in the government of Podolia, on the left bank of the Dniester, 57 m . E.S.E. of Kamenets-Podolsk. Pop. (1900), 25,141, nearly one-half Jews; the remainder are Little Russians, Poles and a few Armenians. The Little-Russian inhabitants carry on agriculture, gardening, wine-growing and thulberry culture. The Jews and Armenians are engaged in a brisk trade with Odessa, to which they send com, wine, spirits and timber, floated down from Galicia, as well as with the interior, to which they send manufactured wares imported from Austria.
Mogilev, named in honour of the Moldavian hospodar Mohila, was founded by Count Potocki about the end of the r6th century. Owing to its situation on the highway from Moldavia to the Ukraine, at the passage across the Dnieper, it developed rapidly. For more than 150 years its posscssion was disputed bet ween the Cossacks, the Poles and the Turks It remained in the hand of the Poles, and was annexed to Russia in 795 .
mogul, Moghat, or Mughal, the Arabic and Persian form of the word Mongol, usually applied to the Mahommedan Empire in India, which was founded by Baber. In consequence the name is applied to all foreign Mahommedans from the countries on the west and north-west of India, except the Pathans. The Great Mogul is the name given to the Mogul emperors of Delhi hy the Portuguese and subsequently hy Europeans generally.

MOHACs, a market town of Hungary, in the county of Baranya, 115 m . S. of Budapest. Pop. (1900), 15.812. It is situated on the right bank of the Danube, and carries on a brisk trede in wine and the agricultural produce of the neighbourhood. Amongst its principal buildings are an old casule and the summer palace of the bishop of Pécs. Mohács is famous in the history of Hungary by the two fateful hattles which took place in the plain situated about 3 m . south-west of the town, and raarked the beginning and the close of the Turkish dominion in Huagary. In the first (Aug. 29, 1526) the Hungarianarmy under Louis II.
was annihilated by the Ottoman forces led by Soliman the Mag－ nificent．In the sccond（Aug．12，1687）the Austrians under Charles of Lorraine gained a decisive victory over the Turks， whose power was afterwards still further broken by Prince Eugene of Sevoy．

MOHAIR，the hair of a varicty of goat originally imhabiting the regions of Asiatic Turkey of which Angors is the centre， whence the animal is known as the Angora goat．The Arabic muhcyyar，from which the word came into English probably through the Ital．moccacaro or Fr．mocayort，meant literally， ＂choice＂or＂select，＂and was applied to cloth made of goats＇ hair．In the 171 h century the word，which before appears in such forms as mocayare or mokaive，became corrupted by con－ nexion with＂hair，＂cf．＂cray－fish＂from ecrevisse．From the English＂mohair＂the French adapted moire，a watered silk fabric．

The typical mohaif fibte is 7 to 8 in long，very lustrous owing to its physical structure（which although akin to wool is different in that the wool scales are indicated only instead of being fully developed，while the fibre is always solid），ofo $t 0$ 各多 of an ixh in diameter，of a soft elastic handle，and usually of a clear white transparent colour．The staples of which the fieece is formed should be uniform in length and clearly defined，naturally lending themselves to a good＂spin＂一a difficult attainment in the case of mohair（see Woollen and Worsted Manufactures）． There are many varieties of mohair，from the first qualities as here defined to lower qualities of a kempy，unsatisfactory character．Thus in Constantinople，the chicf centre of the Turkey mohair trade，a large variety of fleeces is recognized For example，from the Lake Van dist rict a distinctly infernor kind known as＂Van＂mohair is obtained，while other districts pro－ duce varieties ranging from Van up to the typical quality described above．
＇The animal from whlch mohair was originally obtained was a．finely－bred Angora goat．Owing to the demand for raw material exceeding the supply，from 1820 onwards there has been a great deal of crossing of the well－bred Angora with the common kind of goat：in fact it has heen said that by 1863 the original Angora had practically disappeared The growing demand for mohair further resulted in attempts on a commercial scate to introduce the goat into South Africa－where it was crossed with the native goat－the United States，Australia，and later still New Zealand Perhaps the introduction of tbe Angora into Austraha and New Zealand may in part be due to its value as a scrub and blarkberry browser；these growths being the ＂pests＂of the two respective countries．
The manufacture of fabrics from mohair－as in the case of alpaca and rashmere－was in the first instance due to the genius of the rearers of the goat．It would，indeed，be interesting to know if the present day mohair goods－often styled＂alpacas＂ really had their origin in the carlier products of Asia Minor That fabnes of mohair were in use in England early in the 18th century is obvious from Pope＇s allusion：－
＂And，when she sees her friend in deep despair，
Observes how much a chintz exceeds mohair．＂
Raw mohair was first exported from Turkey to England about 1820，and from that date onwards marked strides were made in its manufacture into useful yarms and fabrics．England has always had，and still maintains，supremacy in this manufacture Practically the whole of both the Turkish and Cape clips is at Jeast converted into yarn in Yorkshire mills．Quantities of these yarns are also woven into dress goods，dust cloakings， pile fabries，imitation furs，\＆c，in Yorkshire，but even greater qeantities of mohair yarn are exported to Russia，Germany， Austria，\＆c．，to be converted into astrakans，ordimary braids， brush braids，\＆c．In the first decade of the 20th century the mohair hraid trade received a blow from the introduction of aftificial silk．
The history of the introduction of the Angort goat from Asia Minor into the other countries mentioned is as follows．In ${ }_{183} 8$ puire bred Angoras were introduced into Cape Colony－ atthmeres baving been previousty tried and found unsatisfac－
tory．These pure－bred goats crossed with the common goat laid the basis of the Cape flocks．In $1856-1857$ other importations of pure－bred goats were made．From 1868 to 1897 further impor－ tations were made，but these were not of the pure－bred goat and consequently were not so valuable．It should here be noted that the Cape flock－owner clips twice－the summer clip yielding a staple which should be of not less than 7 in．，and the winter clip a staple which should be of not less than 3 in． 104 in ．Bradford from time to time has objected to the winter clip as being too short，but this clip seems to have established itself and at least once during recent years has been as saleable as the summer clip．The introduction of Angoras into the United States took place in 1849．Ot her importations of goats from Asia Minor were made between 1857 and 1880 ，and interchanges of blood also took place between the United States and Cape Colony Be tween 1856 and 1875 some three bundred goats were introduced into Australia．Other importations from Cape Colony and the United States have also been made from time to time，and it seems at least possible，if not prohable，that Australia may yet find the Angora goat an important asset．

From the following statistics relating to mohair it will be realized that the mohair supply praclically comes from two sources，viz． Turkey in Asia and South Airica：－

Australis 30，000

Yield of Hair．
I1 to $12,000,000 \mathrm{H}$.
is to $14,000,000 \mathrm{tb}$ ．
The price per in of
The price per it of mohair has varied from 4s．Id in 1870 to 13 d ． or 14 d ．in 1903，and it is interesting to note that the shipments from Turkey to England follow these price Aluctuations in a most curious manner．
Of the consumers of English mohair yarns Russia takes from 15 to 25% and the continent of Europe as a whole a very large per－ centage of the total mohair yarn production of Bradford．

MOHAVB（cortupted from hamok－habi，＂three mountains，＂ their native name，with reference to three peaks，which form a prominent feature of their country），a tribe of North American Indians of Yuman stock．They have always lived along both banks of the lower Colorado river，in Arizona and Califoraia．

MOHAWK，a tribe of North Americap Indians，the chicf people of the lroquois confederacy．The name probably means ＂man－eaters＂，they call themselves Kaniengehaga，＂fint people．＂．Their villages were in the valley of the Mohawk river， New York．Their territory extended northward to the St Lawrence and southward to the Delaware river and Catskill Mountains．They were thus early in touch with Dutsh and English，and were the first Indians to oblain firearms．In the War of Independence they fought with the English，and finally took refuge in Canada，where most of them have remained．
See Indians，North American．For Mohawk cosmology ace 21 st Annual Report Bureau Amer．Ethnol．（1899－1900）．
MOHICAN，BAHICAM and MOHEGAN，the first two the alternative names of an important tribe and confederacy of North American Indians of Algonquian stock，and the last a dialectuc form of the name applied to a branch tribe．The Mohicans inhabited the Hudson valley，and their domain extended into Massachusetts．The Mohicans were called by the French Lomps（wolf Indians），a translation of＂Mohican＂At first their council－fire was at Schodac，on an island near Albany， and they were grouped in forty villages．In consequence of attacks by the Mohawks，they moved their council－fire to what is now Stockbridge，Massachusetts，in 1664，in 173° many migrated to the Susquehanna valley．Pennsylvania，and became absorbed into the Delawares．In 1736 those left in Massachu－ setts were placed on a reservation at Stockbridge，and called by that name．A few of these Stock bridge Indians，who may be truly called＂the last of the Mohicans，＂＇are now settled，with some of the Munsees，on a reservation at Green Bay．Wisconsin． The Mohegans，originally an offshoot of the Mohican，lived on Thames river，Connecticut，their county extending into Massa－ chusetts and including Rhode Island．In 1637，on the destruc－ tion of the Pequots，an offshoot of the Mohegans，the Mohegans claimed their country too，and thus the territorial power of the
two tribes was consolidated under one Mohegan chief. For some time the Mohegans remained the supreme Indian people of southern New England. Eventually they sold most of their lands and centred in a small reservation on Thames river. They bave now practically become extinct.

MOEL, HUEO VON (1805-1872), German botanist, was born at Stuttgart on the 8th of April 1805 . He was a son of the Wurttemberg statesman Benjamin Ferdinand von Mohl ($1766-$ 1845), the family being connected on both sides with the higher class of state officials of Wurttemberg. While a pupil at the gymnasium he pursued botany and mineralogy in his leisure time, till in 1823 he entered the university of Tübingen. After graduating with distinction in medicine he went to Munich, where he met a distinguished circle of botanists, and found ample material for research. This seems to have determined his career as a botenist, and he started in $\mathbf{1 8 2 8}$ those anatomical investigations which continued till his death. In 1832 he was appointed professor of botany in Tubingen, a post which he never left. Unmarried, his pleasures were in his laboratory and libtary, and in perfecting optieal apparatus and microscopic preparations, for whleh he showed ext raordinary manual skill. He was largely a self-taught botanist from boyhood, and, little influenced in his opinions even by his teachers, preserved always his independence of view on scientific questions. He received many honours during his lifetime, and was elected foreign fellow of the Royal Society in 1868. Von Mohl's writings cover a period of fortyfour years; the most notable of them were republished in 1845 in a volume entitled Vermischte Schriften (For lists of his works see Bolanische Zeilung, 1872, p. 576, and Royal Soc. Colologue, 1870, vol. iv.) They dealt with a variety of subjects, hut chiefly with the strueture of the higher forms, including both rough anatomy and minute histology. The word "protoplasm" was his suggestion; the nucleus had already been recognized by R. Brown and others, but von Mohl showed in 1844 that the protoplasm is the source of those movements which at that time excited so much attention. He recognized under the name of "primordial utricle" the protoplasmic lining of the vacuolated cell, and first described the behaviour of the protoplasm in celldivision. Tbese and other observations led to the overthrow of J. M. Schleiden's theory of origin of cells by free-cell-formation. His contrihutions to knowledge of the eell-wall were no less remarkable, he held the view now generally adopted of growth of cell-wall hy apposition. He first explained the true nature of pits, and showed the cellular origin of vessels and of fibrous cells; he was, in fact, the true founder of the cell theory. Clearly the author of such researches was the man to collect into one volume the theory of cell-formation, and this he did in his treatise Die vegelabilische Zelle (1851), a sinort work translated into English (Ray Society, 1852). Von Mohl's carly investigations on the structure of palms, of cycads, and of tree-ferns permanently laid the foundation of all later knowledge of this subject: so also his work on Isoeles (1840). His later anatomical work was chiefly on the stems of dicotyledons and gymnosperms; in his observations on cork and bark he first explained the formation and origin of different types of bark, and corrected errors relating to lenticels. Following on his early demonstration of the origin of stomata (1838), he wrote a classical paper on their opening and closing (1850). In 1843 he started in conjunction with F. Schlechtendal the weekly Botamische Zeitung, which he jointly edited till his death. He was never a great writer of comprehenslve works; no text-book exists in his name, and it would indeed appear from his withdrawal from comperation in W. F. B. Hofmeister's Mandbuch that he had a distaste for such efforts. In his latter years his productive activity fell off, doubtless through failing health, and he died suddenly at Tubingen on the ist of April 1872.
See Sachs History of Botany, P. 292, \&c.; De Bary, Botaniscke Zeifung (1872) p. 561, Proc. Roy. Soc., xxiii. i; Augememe Deutsche Brographie, xxii. 55 .
(F. O. B.)

MOHL, JULIUS VON (1800-1876), German Orientalist, brother of Hugo von Mohl (q.0.), was born at Stuttgart on the 25 th of October 1800 . Having studied theology at Tübingen f 8 s 8 -
1823), he ahandoned the idea of entering the Lutheran minist ry, and in 1823 went to Paris, at that time, under Silvestre De Sacy, the great European school of Eastern letters. From 1826 to 1833 he was nominally professor at Tuhingen, but had permission to continue his studies abroad, and he passed some years in London and in Oxford. In 1826 he was charged hy the French government with the preparation of an edition of the Shah Nama (Lizre des rois), the first volume of which appeared in 1838 , while the seventh and last was left unfinished at his death, being completed hy Barhier de Meynard. Discerning this to be his life's work, he resigned his ehair at Tübingen in 1834, and settled permanently in Paris. In 1844 he was nominated to the academy of inscriplions, and in 1847 he became professor of Persian at the Collège de France. But his knowledge and interest extended to all departments of Oriental learning. He served for many years as secretary, and then as president of the Societe Asiatique. His annual reports on Oricntal science, presented to the society from 1840 to 1867 , and collected after his death in Paris on the 3rd of January 1876, under the title Vingh-sept ans d'hisloire des etudes orientales (Paris, 1879), are an admirahle history of the progress of Eastern learning during these years. Concerning the discoveries at Nineveh he wrote Lellres de M. Bolte sur les decousertes id Khorsabad (1845). He also published anonymously, in conjunction with Justus Olshausen (1800-1882), Fragwewts relatifs da la religion de Zoroastre (Paris, 1829); Confucie Chi-king sive liber carminum, ex laline P. Lacharmi indergrelalione (Stuttgart, 1830); and an edilion of Y-King, Anuiquissimus Sinarum hiber, ex inderprelalione P. Regis (Stuttgart, 1834-1839).

His wife Mary (1793-1883), daughter of Charles Clarke, had passed a great part of her early life in Paris, where she was very intimate with Madame Récamier, before their marriage in 1847, and for nearly forty years her house was one of the most popular intellectual centres in Paris. Madame Mohl's friends included a large number of Englishmen and Englishwomen. She died in Paris on the 14th of May 1883. Madame Mohl wrote Madame Recamier, with a Sketch of the History of Sociely in France (London, 1862).
See Kathleen O'Meara, Medeme Mohl, her Salos and Friends (1885); and M. C. M. Simpson, Letters and Recallections of Julixs and Mary Mohl (1887).

Mohl's elder brother, Robrer von Morl (1799-1875), was a well-known jurist and statesman. From 1824 to 1845 he was prolessor of political sciences at the university of Tubingen, losing his position because of some frank criticisms which brought him under the displeasure of the authorities of Würtemberg. In 1847 he was a member of the parliament of Würtemberg, and in the same year he was appointed professor of law at Heideiberg; in 1848 he was a member of the German parliament which met at Frenkfort, and for a few months he was minister of justice. His iater public life was passed in the service of the grand-duke of Baden, whom he represented as amhassador in Munich from 1867 to 1871. He died in Berlin on the sth of November 1875. Among his numerous writings may be mentioned, Die dexlscke Poliserwissenschafl nack den Grumdsatsen des Rechlsstaals (Tübingen, 1832-1834, and again 1866), Geschichte und Literalur der Slaolswissenschaflen (Erlangen, 1855-1858), Encyklopidie der Slatswissenschaften (Tubingen, 1859, again 1881); and Slaatsrecht, Volkerrecht wad Politik (Tübingen, 18601869).

See Mohl's own Lobanserixnerungen (Leipzig. 1901); and H. Schulze, Roberi von Mohl, Ein Erinnerwagsblall (Hiidelberg, 1886).

Another brother, MORITz voin Mohl (1802-1888), entered official life at an early age and was a member of the Frankiort parliament, and later of the parliament of Würtemberg and of the imperial Reichstag. He was a voluminous writer on economic and political questions.

MOBLER, JOHANN ADA娍 (1796 -1838), German theologian, was born at Igersheim in Wurttemberg on the 6th of May 1796, and after studying philosophy and theology in the lyceum at Ellwangen, entered the university of Tubingen in 1817. Ordained to the priesthood in 1819, he was appointed to a curacy at Riedlingen, but speedily returped as "repetent' to Tubingen,
where be became pormatdonent in 1822, extreondinary professor of theology in 1826 and ordinary professor in 1828 His lectures drew large audiences, including many Protestants. The controversies excited by his Symbolik (1832) proved so unpleasant that in 8835 he accepted a call to the university of Munich. In 1838 he was appointed to the deanery of Wurzburg, but died shortly afterwards (April $\mathbf{2 2}, \mathbf{2 8 3 8}$).
Muhler wrote Die Einheil in der Kirche oder des Printio des Katholicismus (Tübingen, 1825), Athanasius der Grosse u. d. Kirche seiner Zcil (2 vols., Mainz, 1827), Symbolik, oder Darstellung der dogmalischen Gegensabe dep Katholiken u. Protestank wach thren offenticken Bekenntrissschriften (Mainz. 1832: 81h cd., 1871-1872, Eng. trans. by J. B. Roberison, 1843), and Newe Unhersuchungen der Lehrgegensaize, zwischen den Katholiker u. Protestanten (1834) His Gesammelte Schriften u. Aufsitze were cdited by Dollinger in 1839: his Patrologie by Reithmayr, also in 1839; and a Biographes by B. Worner was published at Regensburg in 1866 . It is with the Symbolik that his name is chiefly associaled, the interest excited by it in Prolessant circies is shown by the fact that within two years of its appearante it had elicited threc replies of considerable importance, those namely of F C. Baur, P K. Marheinele and C. J. Nitzsch. But, although characterized by learning and acuteness, as well as by considerable breadth of spiritual sympathy, it cannot be said to have been accepted by Catholics themselves as embodying an accura te objective view of the actual doctrine of their church. The liberal school of thought of which Mohler was a prominent exponent was discouraged in official circles, while Protestants, on the other hand complain that the author failed to grasp thoroughly the significance of the Reformation as a great movement in the spiritual history of mankind. while needlessly dwelling on the doctrinal shortcoming, inconsistencies and contradictions of its leaders.
YOHIAND, a Pathan tribe who inhabit the hilly country to the north-west of Peshawar, in the North-West Frontier Province of India. They are one of the strongest tribes on the border after the Afridis and Waziris, and have given mucb trouble to the government of India. The country of the Mohmands may he defined roughly as bounded on the E. by British districts from near Jamrud to Fort Abazai, and thence by the Utman Khel country; on the N by Bajour; on the W by Kunar; and on the S. by the territories of the Shinwari and Afridi, area. about $1200 \mathrm{sq} . \mathrm{m}$. The Indo-Afghan boundary line now runs through the Mobmand country, but the amir of Afghanistan formerly claimed allegiance from all the Mohmands, and only handed over the greater part of this tract to the British hy the Durand Agreement of 1893 . The government has given assurances to the Burhan Khel, Dawezai, Halimzai, Isa Khel, Tarakzai and Utmanzai sections of the Mohmands that they will not suffer by the severance of their ancient connexion with Aighanistan, and these are known as the Assured Clans. The tribe are Afghans by descent, and are more akin to the Yusaizais than any of their neighbours. The aspect of the Mohmand hills is exceedingly dreary, and the eye is everywhere met by dry ravines bet ween long rows of rocky hills and crags, scantily clothed with coarse grass. scrubwood and the dwarf palm In summer great want of water is felt, and the desert tracts radiate an intolerable beat. This, coupled with the unhealthiness of the lowlands, probably accounts for the inferior physique of the Mohmands as compared with their Afridi and Shinwari neighbours, who in summer retire to the cool highlands of Tirah and the Safed Koh. The crops in the Mohmand bills are almost entirely dependent on the winter and autumn rams, and should these fail there is considerable distress, hut the Mohmands supplement this source of livelihood by a through trade on rafts along the Kabul river bet ween the Bntish districts and the hillcountry heyond them The exports are wax, hides, ght and rice from Kunar, and iron from Bajour, the imports are salt, cloth. paper, soap. tea, indigo, sugar, grain. tobacco. needles, scissors and other manufactures of civilization The Mohmands are characterized by great pride and haughtiness, they bear a bad reputation for treachery and ruthless cruelty. and are not as brave as their Afridi neighbours. They number some 18,000 Gighting men. giving roughly a population of 65.000 , but all the clans would never act together under any carcumstances British punitive expeditions have been sent against tbe Mohmands in 1851-52, 1854, 1864, 1879, 8880 , but the principal operations were those of 1897
(${ }^{\text {н }}$ н.")

Campaign of r807.-The year 1897 witnessed an almoat general outbreak among the tribes on the north-west frontier of India. The tribes involved were practically independent, but the new frontier arranged with the amir of Afghanistan, and demarcated hy Sir Mortimer Durand's commission of 1893-1894, brought them within the British sphere of influence. The great dread of these high-spirited mountaineers was annexation, and the hostility shown during the demarcation led to the Waxiri expedition of 8894 . Other causes, however, contributed to bring about the outbreak of 1897 . The easy victory of the Turks over the Greeks gave rise to excitement throughout the Mahommedan world, and the publication by the amir of Afghanistan, in his assumed capacity of king of Islam, of a religious work, in portions of which fanatical antipathy to Christians was thinly veiled, aroused a warlike spirit a mong the border Mahommedans. The growing unrest was not recognized, and all appeared quiet, when, on the roth of June 1897 , a detachment of Indian troops escorting a British frontier officer was suddenly attacked during the mid-day halt in the Tochi valley, where, since the Waziri expedition of 1894-95, certain armed posts had been retained by the government of India. On the 29th of July, with equal suddenness, the fortified posts at Chakdara and Malakand, in the Swat valley, which had been held since the Chitral expedition of 1895 , were for several days fercely assailed by the usually peaceful Swatis under the leadership of the Mad Mullah. On the 8th of August the village of Shabkadar (Shankarghar), withun a few miles of Peshawar, and in British territory, was raided by the Mohmands, while the Afridis besieged the fortified posts on the Samana ridge, which had been maintained since the expeditions of 1888 and 1891 Finally, the Afridis, within a few days, captured all the British posts in the Khyber Pass. A division commanded hy Major-General Sir Bindon Blood was assembled at Nowshera. The post at Malakand was reached on the ist of August, and on the following day Chakdara was relieved. The punishment of the Afridis was deferred till the preparations for the Tirah campaign (see TisaH) could be completed The Mohmands, however, could be immediately dealt with, and aganst them the two brigades of Sir Bindon Blood's division advanced from Malakand simultaneously with the movement of another division under Major-General (afterwards Sir Edmund) R Elles from Peshawar, it was intended that the two columns should effect a junction in Bajour About the 6 th of September the two forces advanced, and Major-Gencral Blood reached Nawagai on the r4th of September, having detached a brigade to cross the Rambat Pass. This brigade being sharply attacked in camp at Markhanai at the foot of the pass on the night of the 14 th, was ordered to turn northwards and punish the tribesmen of the Mamund valley On the 15th Brigadier(afterwards Major.) General Jeffreys camped at Inayat Killa, and on the following day he moved up the Mamund valley in three columns, which met with strong resistance A retirement was ordered, the tribesmen following, and when darkness fell the general, with a battery and a small escort, was cut off and with difficulty defended some buildings until relieved The casualties in this action numbered r49. This partal reverse placed General Blood in a position of some difficulty He determined, however, to rcmain at Nawagai, awaitugg the amnal of General Elles, and sent orders to General Jeffreys to prosecute the operations in the Mamund valley From the r8th to the 23 rd these operations were carried on successfully, several villages being burned, and the Mamunds were disheartened. Meanwhile, the camp at Nawagai was heavily attacked on the night of the 20th hy about 4000 men belonging to the Hadda Mullah's following The attack was repulsed with loss, and on the 2rst Generals Blood and Elles met at Lakarai The junction having been effected, the latter, in accordance with the scheme, advanced to deal with the Upper Mohmands in the Jarohi and Koda Khel valleys, and they were soon brought to reason by his well-conducted operations The work of the Peshawar division was now accomplished, and it returned to take part in the Tirah campaign. Its total casualties were about 30 killed and wounded On the a2nd General Blood joined General Jefireys, and on the a4th he
started with his staff for Panjkora. On the 27th General Jefireys resumed punitive operations in the Mamund valley, destroying numerous villages. On the joth be encouniered strong opposition at Agrah, and had 6r casualties. On the and of October General Blood arrived at Inayat Killa with reinforcements, and on the irth the Mamunds tendered their submission The total British loss in the Mamund valley was 282 out of a force which never exceeded 1200 men After marching into Buner, and revisiting the scenes of the Umbeyla expedition of 1863, the Malakand field-force was broken up on the 21st of January. The objects of the expedition were completely attained, in spite of the great natural difficulties of the country The employment of imperial service troops with the Peshawar column marked a new departure in frontier campaigns.

> (C. J B.)

MOHONK LAKE, a summer setlement at the northern end of Lake Mohonk, Ulster county, New York, U.S A., about 14 m . N.W. of Poughkeepsie. It is served from New Paltz, about 1 m . S.E. (about $5 \frac{\mathrm{~m}}{\mathrm{~m}}$. by stage), by the Wallkill Valley railway, a branch of the West Shore. The lake is a small body of water, picturesquely situated 1245 ft . above the sea-level, on Sky Top Mountain (1542 ft .), one of the highest peaks of the Shawangunk range. The highest point of Sky Top lies just cast of the south end of the lake; close by, to the west, Eagle Cliff rises to a height of 1412 ft . The development of this beautiful region into a summer resort and the holding of Indian and arbitration conferences here have been due to Albert Kcith Smiley (b. 1828), a graduate of Haverford College ($18+9$), who conducted an English and classical academy in Philadelpha in 1853-1857. was principal of the Oak Grove academy at Vassalboro, Maine, in 1858-1860, was principal and superintendent of the Friends' school at Providence, Rhode Lsland, in 1860-1879, and became a member of the United States Board of Indian Commissioners in 1879. In 1869 he bought, at the northern end of Lake Mohonk, a tract of land on which he huilt a large hotel. Here, in October 1883, the first Conference of the Friends of the American Indian met; these conierences have since heen beld annually, their scope being enlarged in 1904 to include consideration of the condition of " other dependent peoples "-i.e. the natives of the Philippines, Porto Rico and Hawaii. The first conference an international arbitration was held here in June i89s.

MOHR, KARL FRIEDRICH ($1806-1879$), German pharmacist, son of a well-to-do druggist in Coblentz, was born on the 4 th of November 1806 . Being a delicate child he received much of his early education at home, in great part in his father's laboratory. To this may be traced much of the skill be showed in devising instruments and methods of analysis. At the age of twenty-one he began to study chemistry under Leopold Gmelin, and, after five years spent in Heidelberg, Berlin and Bonn, returned with the degree of $\mathrm{Pb} . \mathrm{D}$. to join his father's establishment. On the death of his father in 1840 be succeeded to the husiness, retiring from it for scientific leisure in 1857 Serious pecuniary losses led him at the age of fifty-seven to become a privaldosen! in Bonn, where in 1807 he was appointed, by the direct influence of the emperor, extraordinary professor of pharmacy He died at Bonn on the 28th of September 1879. Mohr was the leading scientific pharmacist of his time in Germany, and he was the author of many improvements in analytical processes. His methods of volumetric analysis were expounded in his Lelsrbuch der chemisch-aralytasches Titrirmethode (1855), which won the special commendation of Liebig and has run through many editions. His Geschichse der Erde, etwe Geologze auf newer Grundlage (1866), also obtained a wide circulation In a paper " Uber die Natur der Warme," puhlished in the Zeduchrifl filr Phystk in 1837, he gave one of the earlicst general statemenis of the doctrine of the conservation of energy in the words " hesides the 54 known chemical elements there is in the physical world one agent only, and this is called Kraft (energy) it may appear, according to circumstances, as motion, chernical affinity, cohesion, electricity, ligbt and magnetism, and from any one of these forms it can be transformed into any of the others."

MOH8, PRIEDRICH (1773-1839), German mineralogist, was born at Gernode in the Harz Mountans, on the zgth of January 1773. He was educated at Halle, and at the mining academy at Ereiburg. He spent much time in Austria in studying mineralogy and mining, and became professor of mineralogy at Gratz in 1812. On the death of Werner in 1817, he was appointed to the chair of mineralogy in the mining academy of Freiburg, and in 1826 he became professor of mincralogy and superintendent of the Imperial Cabinet at Viunna. His great work was the Grundriss der Mineralogie (Eng. trans. Treatise on Mineralogy, by Wilhelm Haidinger, 1825). He died at Agardo, near Belluvo, Italy, on the 29th of September, 1839 .

MOHUN, CHARLES MOHUN, 4th BARON (c. 1675-1712), was the son of the 3rd Baron Mohun, who died in October 1677 as the result of a wound received while acting as second in a duel. The boy had no regular guardian, and before he was seventeen he had earned an unpleasant notoriety in London for rowdyism and brawling, had fought a duel and had been tried on a charge of murder. His friend, Captain Richard Hill, a roystering young officer, was in love with the actress Dirs Bracegirdle, and thought William Mouncfort, the actor, to be his successful rival. On the night of the 9th of December 1602 Mohun assisted Hill to attempt the actreas's abduction. The attempt failed, and Mohun and Hill then escorted Mrs Bracegirdle to her house, and subsequently remained together outside drinking till the appearance of Mountfort, who lived close at hand. Greetings were exchanged between Mohun and Mountfort, and the latter made a disparaging remark about Hill, who eitber witbeut warning (according to Mountort's deathbed statement) or in fair fight (according to other evidence) ran Mountfort through the body, and then absconded. Mohun was arrested and put on trial in Westminster Hall before his peers for murder as an accessory before the fact (1693), but by an overwhelming majority the peers found him not guilty. This verdict has been severely criticized, notably by Macaulay, who saw in it merely a gross instance oil class favouritism. But a careiul examination of the evidence (in the State Trials) justifies the decision, and establishes the presumption that the fight was a fair one. In 1699 Mohun was put on his trial for another alleged murder, but was unanimously and quite justly acquitted. His boon companion. Edward Rich, carl of Warwick (1673-170:) who was tried on a separate indictment for the same crimte, was found guilty of manslaughter On this occasion Mohun expressed regret for his past life, and be seems subsequently to have made a genuine attempt to alter his ways and to have taken a practical interest in public affars But in 1712 his violent temper again got tbe better of him, and he forced the 4 th duse of Hamilton, with whom he had been at law for some years, into a desperate duel in Hyde Park in the early hours of the $1 \mathrm{~g}^{\text {th }}$ of November, in whicb both combatants were killed. Thackeray has utilized this incident in Esmond Lord Mohun had no issue, and on his death the barony. which was created in 1628 in favour of his great-grandfather John Mohun (c 1592-1640), became extinct.
See The Whole Life and History of My Lord Mohun and the Eart
of Warwick (London, 1711). Evelyn, Diary and Correspondence; Historical Manuscripts Commission, itth report. appendix v. (Dartmouth MSS), G. C Boase and W P Courtney, Bibliotheca cornubiensts (1874 -i882), Howell. Slate Trias, and Colity Cibber, Apology, edited by R. W. Lowe (is89).

MOHÜN, MICHAEL (c. 1625-1684). English actor, played at the Cockpit in Drury Lane before the Civil War He served on the king's side with credit and was promoted captain, and subsequently, in Flanders, major At the Restoration he returned with Charles II. and took up his former profession, playing a great variety of parts, ysually as second to Charles Hart.

MOHUR, the name of a Persian gold coin, used in India from the toth century. The word is taken from the Persian mukr, a seal or ring Between 1835 and $\mathbf{1 8 9 t}$ a gold coin, also called a " mohur," was struck by the government of British Indie and was of the nominal value of 15 rupees. On the establishment of a gold standard in India in 1899, on the basis of 16 d . a rupee,
the British sovereign was declared legal tender and the mohur was thus superseded.
MOIDORE, (a corruption of the Pcrtuguese moeda d'ouro, literally; money of gold), the name of a gold Portuguese coin, coined from 1640 to 1732. This was of the sterling, value of 13s. $5 \frac{1}{3} \mathrm{~d}$. It is the double moida d'owro, of the value of 4800 reis in 1688, that was current in western Europe and the Wiest Indies for a long period after it ceased to be struck. It was the principal coin current in Ireland at the beginning of the 18th century, and spread to the west of England. At the same period it was current in the West Indies, particularly in Barbados. It was rated in English money at 27 s .

MOIR, DAVID MACBETH ($1798-1851$), Scottish physician and writer, was born at Musselburgh on the 5th of January 1798. He studied medicine at Edinburgh University, taking his degree in 1816. Entering into partnership with a Musselburgh doctor he practised there until bis death on the 6th of July 1851. He was a contributor of both prose and verse to the magazines, and particularly, with the signature of "Delta," to Blackwood's. A collection of his poetry was edited in 1852 hy Thomas Aird. Among his publications were the famous Life of Marsie Wauch, Tailor (1828), which shows his gifts as a bumorist, Oullines of the Ancient History of Medicine (:83i), and Skelch of the Poetical Literabure of the Past Half Century (1851).

MOISSAC, a town of south-western France, capital of an arrondissement in the department of Tarn-et-Garonne, 17 m . W.N.W. of Montauban on the Southern railway between Bordeaux and Toulouse. Pop. (1906) town, 4523; commune, g_{21}. Moissac stands at the foot of vine-clad hills on the right bank of the Tarn; it is divided into two parts by the lateral canal of the Garonne, which crosses the Tarn hy way of an aqueduct a short distance above the town. It contains little of note except the abbey-church of St Pierre, a huilding of the 35 th century with a porch of the 12 th century which is decorated with elaborate Romanesque carving unsurpassed in France. The cloister of the carly t2th century adjoining the north side of the church is also one of the finest of its kind. Romanesque in character, it has pointed arches resting alternately on single and clustered columns with sculptured capitals. Among other remains of the abbey is the abbot's palace, which contains two halls of the Romanesque period. St Martin, the oldest of the other churches of Moissac, dates from before the year 1000 . The town has a sub-prefecture, a tribunal of first instance, a communal college for boys, a library and a museum. Trade is in oil, wine, eggs, wool, poultry and fruit (peaches, apricots, \&zc.)

The town owes its origin to an ahbey probahly founded in the 7th century by St Amand, the friend of Dagobert. After being devastated by the Saracens, the abbey was restored by Louis of Aquitaine, son of Charlemagne. Subsequently it was made dependent on Cluny, but in 1618 it was secularized hy Pope Paul V., and replaced by a house of Augustinian monks, which was suppressed at the Revolution. The town, which was erected into a commune in the 13 th century, was taken by Richard Cour de Lion and by Simon de Montiort.

MOISSAN, HENRI (1852-1007), French chemist, was born at Paris on the 28th of September 1852. Educated at the Museum of Natural History, he was successively proiessor of toxicology (1886) and of inorganic chemistry (1889) at the School of Pharmacy, and of general chemistry at the Sorbonne (1900). In 1886 he succeeded in ohtaining the clement fluorine in the free state by the electrolysis of potassium fluoride and anhydrous hydrofuoric acid at a low temperature. Thence he was led to study the production of carbon in its three varietics and to attempt the artificial preparation of diamond, of which he was able to make some minute specimens (sce Gens, $₹$ Arlificiol). In connexion with these experiments he developed the electric furnace as a convenicnt means of oblaining very high temperatures in the laboratory; and by its aid he prepared many new compounds, especially carbides, silicides and borides, and meited and volatilized substances which had previously been regarded as infusible. For his preparation of fluorine be was
awarded the lacase prize in 1887, and in 1906 be obtained the Nobel prize for chemistry. He died in Paris on the 2016 of February 1907.

His published works include Li four Clectrique (i897), and Le finor at ses compasks (1900), besides numerous papers in the Comples rendus and other scientific periodicals. A Traute de chame minerale in five volumes was published under his direction in 1904-1906.

MOII, a town of Japan, on the Kiushiu side of the Shimonoseki Strait. The strait being only 1 m . in width, Mcji and Shimonoseki would be practically the same port did not the swiftness of the current along the latter shore make it convenient for vessels to anchor of Moji. Moji is one of the places voluntarily opened by the Japanese for purposes of direct export. It is the starting-point of the Kiushiu railway, and as there is ahundance of coal in its neighbourhood, it has become a town of considerable importance. In 1890 it was little more than a hamlet, but it had in 1901 a population of 25,274 , and a considerable foreign trade.

MOJ8ISOVICS VON MOJSVAR JOHANM AUGUST GEORE BDIENXD ($1839-1907$), Austro-Hungarian geologist and palaeontologist, son of the surgeon Georg Mojsisovics von Mojsvar ($1799-1860$), was born at Vienns on the 18th of October 1839. He studied law in Vienna University, taking his doctor's degree in 1864, and in 1867 he eptered the Geological Institute, becoming chief geologist in 1870 and vice-director in $\mathbf{5 8 9 2}$. He retired in 1900, and died at Mallnitz on the 2nd of October 1907. He paid special attention to the cephalopoda of the Austrian Trias, and his puhlications include Dos Gebirge $2 m$ Hallstath (18731876); Die Dolomitriss ton Sidlirad und Venetion (1878-1880); Grundlinien der Geologic won Bosnien-Herregourina (1880) with E. Tietze and A. Bittner; Die Cephalopoder der mediderranen Triasprovins (1882); Die cephalopoden der Hallstaller Kalhe (1873-1903); and Beitage nur Kenntniss der obertriadischen Cephatopodenfamsen des Himalaye (1896). With Meichior Neumayr (1845-1890) he conducted the Beitrage anf Paltiontologie und Geologic Oesterreich-Ungarns. In 1862, with Paul Grohmann and Dr Guido von Sommaruga, be founded the Austrian Alpine Club, and he also took part in establishing the German Alpine Cluh, which comhined with the former in 1873.
MOKANAA (al-Moganma', the Veiled), the name given to HakIm, or 'Ats, a man of unknown parentage, originally ε fuller in Mery, who posed as an incarnation of Deity, and headed a revolt in Khorasan against the caliph Mahdi. For about three years be sustained himself in the field against the troops of the caliph and for two years longer in his fortress of Sanam; then, reduced to straits in 779, he and his followers took poison and set fire to the fortress. Much is related to his magical arts, especially of a moonlike light visible for an enormous distance which he made to rise from a pit near Nalhshah. He is the bero of the first part of Moore's Lolla Rookh.

MOKHA (Macha, properly Makha), a town in Arabia on the Red Sea coast in $13^{\circ} 19^{\prime} \mathrm{N}$. and $43^{\circ} 12^{\prime}$ E. Formerly thechief port for the Yemen coffee export, it has much diminished in im. portance. The ceffee grown in the mountain districts of Haraz Uden, and Ta'iz is now shipped at Hodeda or Aden, though the article retains the trade name of "Macha." The town lies in a small bay 40 m . N. of Perim at the southern entrance to the Red Sea. The anchorage is not good, and the port is only used by native vessels. Seen from the sea the town bas rather an imposing appearance, but a near review shows that the bouses though large and built of stone are mostly in ruins. The neighbouring country is an arid plain without fresh water, the town being supplied by an aqueduct from the village of Muza, situated 16 m . to the east. This is probably identical with the Muza of the Periplus, a great seat of the Red Sea trade in antiquity, which like Betel Fakih, Zubed and other old Tehama towns, formerly seaports, has long since been left by the receding sea. There' is a Turkish kaimakam and a small garrison at Mokha, which is part of the civil district of Tais in the vilayet of Yemen.
mokshany, a town of Russia, in the government of Penza, 24 m. N.W. of the city of Penze. Pop. (1900), 10,710. The

Inhabitants are engaged in agriculture, or work in four-mills, oilworks, tanneries and potash-works Mokshany, which was built in 1535 as a fort to protect the country from the rads of the Tatars and the Kalmucks, is supposed to occupy the site of the Mesbeheryak town of Murunza, mentioned as early as the gth century.

MOLASSES, the syrup obtained from the drainings of raw sugar or from sugar during the process of refining. In American usage the word usually apples to both forms of the syrup, hut in English usage the second form is more usually known as " treacle" (see Sugar) The word, which in early forms appears as melasses, molassos, \&c, is from the Port. melaço, or Fr melasse, cf. the Late Lat. melleceum, syrup made from honey (mel) The geological term "molasse" must be distingushed, this word, applied to the soft greenish sandstone of the distinct between the Jura and the Alps, is French, meaning "soft," Lat. mollis.

MOLAY, JACQUES DE (d. 1314), last grand master of the Enights Templars, was born of a noble but impoverished family, at a village of the same name in the old province of FrancheComte (mod. deparment of Haute-Sadne), about the middle of the $13^{\text {th }}$ century. The family property being the inheritance of an elder brother, Jacques was thrown upon his own resources. Having been brought up in the neighbourhood of a commandery of the Temple, he entered the order in 1265 at Beaune in the diocese of Autun. It is probable tbat he at once set out for the East 10 take part in the defence of the Holy Land against the Saracens. About 1295 he was elected grand master of the order After the Templars had been driven out of Palestine by the Saracens, De Molay took refuge with the remnant of his followers in the island of Cyprus. Here, while attempting to get together a force to retrieve the disasters to the Chnstian arms. he recerved a summons (in 1306) from Pope Clement V 10 repair to Paris The pope's pretert for the summons was his desire to put an end to the quarrels between the Templars and the Knights of St John. and to concert plans for a new crusade, in reality he had entered into a secret agreement with the king of France for the suppression of the Templars. Molay left Cyprus with a retinue of 60 lollowers, and made a triumphal entry into Paris. On the 33th of October 1307 every Templar in France was arrested, and a prolonged examination of the members of the order was held De Molay, probably under torture, confessed that some of the charges brought against the order were true. He was kept in prison for several years, and in 1314 he was brought up with three other dignitaries of the Temple before a commission of cardinals and others to hear the sentence (imprisonment for life) pronounced. Then, to the surprise of the commission, De Molay withdrew his confession. Immediately the king heard of it he gave orders that De Molay and another of the four, who had also recanted, should be burnt as lapsed heretics. The sentence was carried out on the 11 th (or 19th) of March 1314. De Molay's ashes were gathered up by the people, and it is said that with his last breath be summoned the king and the pope to appear with him hefore the throne of God.

For the charges brought against the Templars and the famous process in connexion with them. see Texplaps: J Michelel. Proces des Templiers (1841-1851) and Lavocat. Procis des frires el de liordre du Temple d'aprts des pirces incdites publiees par Af Afichelet (1888). E Besson. "Eivde sur Jacques de Molay in Memorres de da soc d'Emulation du Doubs (Besançon. 1876) i H. H Milman, Hist of Letm Christicnity. bk. xii., chs. 1 and 2; H. Prutz. Enturckelung und Untergang des Tempelherrenordens (Berlin. 1888).

MOLD (formeriy Mould. Welsh \boldsymbol{Y} Wyddgrag, a conspicuous barrow, Lat. Mons altus, the translation of the Welsh name). a market town, contributory parliamentary borough of Flintshire, N. Wales; on the London \& North-Western railway (Chester and Denbigh branch), 182 m . from London and 11 m . from Chester. Pop. of urban district (1901), 4263. The locality is populous owing to the collieries and lead-smelting works in the vicinity At the north end of the town there is a height, Bailey Hill (perhaps from ballia, the architectural term applied to fortified castle courts). This hill. partly natural and partly artificial, was once the site of a Roman fortification, and in old
records is known as Moaldes, Monhault, or Monthault (de monte alto). Mold Castle was probably built by Robert Monthault ((emp Willam Rufus), was taken and destroyed by Owen Gwynedd in 1144-1345, its site lost to the Englash and recalien by Lewelyn ap Iowerth in 1201, and by Gruffydd Lwyd io 1322. On this site, too, where there are now no remans of any fortress, were found, in 1849 , some 15 skeletons, supposed to be of 1 he 13 th or ${ }^{14}$ th centuries. Maes Garmon (the batelefield of Germanus) is about a mile west of Mold Here, as is suppused, the "Allelusa Victory" was ganned over the Picts and Scots by Lupus and Germanus, bishop of Auxerre, according to some about A.D. 430 , but others give A.D. 448, the date of the saint's death A commemorative obelisk was erected on the Maes by N Gritfith of Rhual (1736) Over a mile south of Mold. on the right of the road to Nerquis, is the "Tower" (isth century. but perhaps restored in the 18th), where, in 1465 or 1475. the royal chieftain, Rheinallt ab Grufyd ad Bleddyn, hanged Robert Byrne, mayor of Chester, and subsequently burned alive some 200 Chester folk who tned to arrest him. Many tumuli are visible round Mold.

Mold county gaol, bought in 1880 by Jesuits expelled from France, was by them named St Germanus's House. St Mary's church, a Gothic building, is mentioned as early as the time of Henry VII Its important collieries and lead mines, fire-hrick, ule, earthenware, mineral oil, tinplate and nail manufactures, tanneries, hreweries nnd malt-houses, have made Mold the husiness centre of the county. About 4 m . distant is Cilcain village, of which the church has a carved oak roof, stolen from Basingwerk Abhey at the dissolution of the monasteries. Among the neighbouring Clwyd hills Moel Fammau and Moel Arhur are specially noticeable On the summit of the former is George III's jubilee pyramid. The Ordovices and the Romans fortified Moel Arthur The sites of seven posts established against Rome may be traced along the bills bounding Flintshire and Denbighshire

MOLDAVIA, a former principality of south-eastern Europe, constituting, nfter its union with Wailachia on the gth of November 1859, a part of Rumania (g.v.)
moldavits, an olive-green or dull greenish vitreous substance, named by A Dufrénoy from Moldauthein in Bohemia, where it occurs. It is sometimes cut and polished as an ornamental stone under the name of pseudo-chrysolite. Its bottleglass colour led to its being commonly called Bowleillerstein. and at one time it was regarded as an artificial product, but this view is opposed to the fact that no remains of glass-works are found in the neighbourhood of its occurrence. moreover pieces of the substance are widely distributed in Tertiary and early Pleistocene deposits in Bohemia and Moravia. For a long time it was generally believed to be a variety of obsidian, but its dıfficult fusibility and its chemical composition are rather against its volcanc origir Dr F. E. Suess pointed out that the nodulcs or small masses of moldavite presented curious pittings and wrinkles on the surface, which could not be due to the action of water, but resembled the characteristic markings on many meteorites. Boldly attributing the material to a cosmic origin, he regarded moldavite as a special type of meteorite for which he proposed the name of tectite ($\mathbf{G r}$. тाאTbs, melted) To this type are also referred the so-called obsidian bombs and buttons from Australia and Tasmania, known sometimes as australite, and called by R. H. Walcott obsidianites. Similar bodies have been found in Malaysia and have been termed billitonite, from the isle of Billiton where they occur in tin-bearing gravels. Usually they are flat, rounded or ellipsoidal bodies, sometimes surrounded by an equatorial girdle or rim, and often with a brilliant hlack superficial lustre, as though varnished. Moldavité has been reported also from Scania in Sweden.
See Fronz E Suess. Johrbuch der k.-k. geolog. Reichsenstals (Vienna), 1901, p. I93; E. Weinschenk, Ceniralban f. Mineralozis (Stuttgart), 1908. p. 737.
(F. W, R")

MOLDE, a small seaside town of Norway, in Romsdal amat (county), 204 m . by sed N.N.E. of Bergen, in $62^{\circ} 45^{\prime} \mathrm{N}$. (that
of the Faroe Islands). It has bittle trade, but is the principal tourist centre on this part of the coast, and the steamers from Hull and Newcastle, the Norwegian ports, Hamburg, Antwerp, \&c., call here. The town fronts the broad Molde Fjord, with its long low islands, and to the east and south a splendid panorama of jagged mountains is seen, reaching coro ft. in Store Troldtinder of the Romsdal group. Molde is the port for the tourist route through the Romsdal.
molis, LOUIS MATHIEU, Conte (178 s - t 855), French statesman, was horn in Paris on the 24th of January 1781. His father, a president of the parlement of Paris, who came of the family of the famous president noticed helow, was guillotined during the Terror, and Count Mole's early days were spent in Switzerland and in England with his mother, a relative of Lamoignon-Malesherbes. On his return to France he studied at the écoie centrale des travaux publics, and his social education was accomplished in tbe salon of Pauline de Beaumont, the friend of Chateaubriand and Joubert. A wolume of Essais de morals ef de politiqua introduced him to the notice of Napolcon, who attached him to the staff of the council of state. He became master of requests in 1806, and next ycar prefect of the Côte d'Or, councillor of state and director-general of bridges and roads in 1809, and count of the empire in the autumn of the same year. In November 1813 he became minister of justice. Although he resumed his functions as director-general during the Hundred Days, he excused himself from taking his seat in the council of state and was appareatly not seriously compromised, for Louis XVIII. confirmed his appointment as director-general and made him a peer of France. Diolé supported the policy of the duc de Richelieu, who in 1817 entrusted to him the direction of the ministry of marine, which he held until December 1818. From that time he belonged to the moderate opposition, and he accepted the result of the revolution of 1830 without enthusiasm. He was minister for foreign affairs in the first cabinet of Louis Philippe's reign, and was confronted with the task of reconciling the European powers to the change of government. The real direction of foreign affairs, however, lay less in his hands than in those of Talleyrand, who had gone to London as the ambassador of the new king. After a few months of office Molé retired, and it was not until 1836 that the fall of Thiers led to his becoming prime minister of a new government, in which be held the portfolio of foreign affairs. One of bis first actions was the release of the ex-ministers of Charies \mathbf{X}., and he had to deal with the disputes with Switzerland and with the Strassburg coup of Louis Napoleon. He withdrew the French garrison from Ancona, but pursued an active policy in Mexico and in Algeria. Personal and political differences rapidly arose between Mole and his chief colleague Guizot, and ted to an open rupture in March 1837 in face of the general opposition to a grant to the duc de Nemours. After some attempts to secure a new combination Molé resonstructed his ministry in April, Guizot being excluded. The general election in the autuma gave him no fresh support in the Chamber of Deputies, while he had now to face a formidable coalition bet ween Guizot, the Left Centre under Thiers, and politicians of the Dynastic Left and the Republican Left. Mole, supported by Louis Philippe, held bis ground against the general hostility until the beginning of 1839, when, after acrid discussions on the address, the chamber was dissolved. The new house showed little change in the strength of parties, but Mole resigned on the 31 ist of March 1839. A year hater be entered the Academy, and though he continued to speak frequently he took no important share in party politlcs. Louis Philippe sought his help in his vain efforts to form a ministry in February r848. After the revolution he was deputy for the Gironde to the Constituent Assembly, and in 1849 to the Legislative Assembly, where be was one of the leaders of the Right until the coup d'elat on the and of December 1851 drove him from public ife. He died at Champlatreux (Seinc-et-Oise) on the 2 zrd of November 1855 .

See P. Thurreau-Dangin, Fisloire de la momarchic de jwiptet (r8841892) ; and Robert Cougny. Dect. des pariememonve frangeis (3891).

MOL晩, MATR1EU (1584-1656), French statesman, son of Edouard Mole (d. 1614), who was for a time procureur-gtndral, was educated at the university of Orieans. Admitted comseiller in 1606, be was president anx requites in 1610, procureur-gentral in succession to Nicolas de Bellièvre in 16r4, and he took part in the assembly of the Notables summoned at Rouen in 1617. He fought in vain against the setting up of special tribunals, or commissions, to try prisoners charged with political offences, and for his persistence in the case of the brothers Louis and Michel de Marillac he was suspended in 1631, and ordered to appear at Fontainebleau in his own defence. Hitherto Mole's relations with Richelieu had been fairly good, but his inclination to the doctrines of Port Royal increased the differences bet ween them, and it was not until after Richelieu's death that he was able to secure the release of his friend, the abbe de St Cyran. In 164: he was appointed first president of the parlement, with the preliminary condition that he should not permit the general assembly of the chambers except by express order of the king. After Richelieu's death the pretensions of the parlement increased; the hereditary magistrature arrogated to itself the functions of the states-genetal, and in 1648 the parlement with the ather sovereign courts (the cour des aides, the grand conseil, and the cour des comples) met in one assembly and proposed for the royal sanction twenty-seven articles, which amounted in substance to a new constitution. In the iong conflict between Anne of Austria and the parlement, Mole, without yielding the rights of the parlement, played a conciliatory part. In the popular tomult known as the day of the barricades (Aug. 26, 1648) he sought out Mazarin and the queen to demand the reiease of Pierre Broussel and his coileagues, whose seizure had been the original cause of the outbreak. Next day the parlement marched in procession to repeat Mole's demand. On their way back they were stopped by the crowd. "Turn, traitor," said one of the rebels to Molé, seizing him by the beard, " and unless you wish to be massacred, either bring back Broussel, or hring Mazarin as a hostage." Many magistrates fled; the remnant, headed by the intrepid Mole, returned to the Palais Royal, where Anne of Austria was induced to release the prisoners.

Mole's moderating counscls failed to prevent the outhreak of the first Fronde, but he negotiated the peace of Rueil in 1651 , and averted a conflict hetween the partisans of Condé and of the Cardinal de Retz within the precincts of the Palais de Justice. He refused honours and rewards for himself or bis family, but became ieeper of the seals, in which capacity he was compelled to follow the court, and he therefore retired from the presidency of the parlement. He died on the zrd of January 1656.

The Mamoires of Mole were edited for the Société de 1 'histoire de France (4 vols., $\mathbf{1 8 5 5 \text {) by Aime Champollion-Figeac, and his life was }}$ written by Baron A. G. P. de Barante in Le Parlement et la Fronde (1859). See also the memoirs of Omer Talon and of De Retz.

MOLE (1) A small animal of the family Talpidoe (see below). (2) A mark, or stain, and particularly a dark-coloured raised spot on the human skin. This word, O. Eng. moll, appears in such forms as meil or mail, in old forms of Teutonic languages, and in mal, a sign; cf. Ger. Denkmal, a monument. It is probably cognate with Lat. moculus, spot. Its meaning of stain is seen in the corrupted form "iron-mould," properly "iron-mole," a stain produced on linen or cloth by rust or ink. (3) A large structure of rubble, stone or other material, used as a break water or pier (see Brearwater), or the space of water so enclosed, forming a harbour or anchorage. This word comes through the French from Lat. moles, a mass, large structure. The name of the "Mole of Hadrian " (moler Hadriani) is sometimes given to the mausoleum of that emperor, now the castle of St Angelo at Rome.

In zoology the name of mole (a contracted form of mouldwarp, i.e. mould-caster), is properly applicable to the common mole (Talpa europcea), a small, soft-furred, burrowing mammal, with minute cyes, and broad fossorial fore-feet, belonging to the order Insectivora and the family Talpidac. In 3 wider sense may be included under the same term the otber Oid World moles, the North American star-nosed and other moles, and the

Arrican golden moles of the family Chrysochloridac. In a atill wider sense the name is applied to the Asiatic zokors and the Arican strand-moles, belonging to the order Rodentia, as well as to the Australian marsupial mole.

The common mole is an animal about sir inches in length, with a tail of one inch. The body is long and cylindrical, and, owing to the forward position of the front limbs, the head appears to rest between the shoulders; the muzzle is long and obtusely pointed, terminated by the nostrils, which are close together in front; the minute eye is almost hidden by the fur; the ear is without a conch, opening on a level with the surrounding skin; the fore-limbs are rather short and very muscular, terminating in broad, naked, shovel-shaped feet, the palms normally directed outwards, each with five sub-equal digits armed with strong flattened claws; the hind-feet, on the contrary, are long and narrow; and the toes are provided with slender claws. The body is densely covered with soft, erect, velvety furthe hairs uniform in lengt h and thickness, except on the muzzle and short tail, the former having some straight bristles on its sides, whilst the latter is clothed with longer and coarser hairs. The fur is generally black, with a more or less greyish tinge, or brownish-black, but various paler shades up to pure white have been observed.

The food of the mole consists chiefly of earthworms, in pursuit of which it forms its well-known underground excavations. The mole is one of the most voracious of manmals, and, if deprived of food, is said to succumb in from ten to twelve hours. Almost any kind of flesh is eagerly devoured by captive moles, which have been seen, as if maddened by huager, to attack animals nearly as large as themselves, such as birds, lizards, frogs, and even snakes; toads, however, they will not touch, and no form of vegetable food attracts their notice. If two moles be confined together without food, the weaker is invariably devoured by the stronger. Moles take readily to the water-in this respect, as well as in external form, resembling their North American representatives. Bruce, writing in $\mathbf{1 7 9 3}$, remarks that he saw a mole paddling towards a small island in the Loch of Clunie, 180 yds. from land, on which he noticed molehills.

The sexes come together about the second week in March, and the young-generally from four to six in number-which are brought forth in about siz weeks, quickly attain their full size.

Much misconception has prevailed with regard to the structure of the mole's "fortress," i.e. the large breeding hillock. which is gencrally placed in bushes, or amid the roots of a tree; but a trustworthy account, by Mr L. E. Adams, will be lound in the Memoirs of the Manchester Literary and Philosophical Society for 1903, vol. xlvii., pt. 2.

The geographical distribution of the mole exceeds that of all the other species of the genus taken together. It extends from England to Japan, and from the Dovre-Fjeld Mountains in Scandinavia and the Middle Dwina region in Russia to southern Europe and the southern slopes of the Himplaya, where it occurs at an elevation of $10,000 \mathrm{ft}$. In Great Britain it is found as far north as Caithness, but in Ireland and in the Western Isles of Scotland (except Mull) it is unknown. (See Insectivora.)
(G. E. D.; R. L. ${ }^{*}$)

MOLECULE (from mod. Lat. molecula, the diminutive of moles, a mass), in chemistry and physics, the minutest particle of matter capable of separate existence. The word appears to have been invented during the 17th century, and remained synonymous with "atom" (Gr. àrouos, from a-, privative, and Thuves, to cut) until the middle of the rgth century, when a differentiation was established. "Atom" bas mainly a chemical import, being defined as the smallest particle of matter which can take part in a chemicas reaction; a "molecule" is composed of atoms, generally two or more. For the detailed chemical significance of these terms, see Chemastry; and for the atomic theory of the chemist (as distinguished from the atomic or molecular theory of the physicist) see Aiox; reference may also be made to the article Matrer.

The doctrine that matter can be divided into, or regarded as composed of, discrete particles (termed "atoms" by early writers, and " molecules" by modern ones) has at all times played an important part in metaphysics and natural science.

The leading historical stages in the evolution of the modern conception of the molecular structure of matier are treated in the following pasage from James Clert Maxwell's article Aroar in the gth edition of the Ency. Brit.
"Atom" (aropor) is a body which cannot be cut in two. The atomic theory is a theory of the constitution of bodies which asserts that they are made up of atoms. The opposite theory is that of the homogeneity and continuity of bodies, and asserts, at least in the case of bodies having no apparent organization. such, for instance, as water, that as we can divide a drop of water into two parts which are each of them drops of water. so we have reason to believe that these smaller drops can be divided again. and the theory goes on to assert that there is nothing in the nature of things to hinder this process of division from being repented over and over again, times without end. This is the doctrine of the infinite divisibility of bodies, and it is in direct contradiction with the theory of atoms.

- The atomists assert that after a certain number of such divisions the parts would be no longer divisible, because each of them would be an atom. The advocates of the continuity of matter assert that the smallest conceivable body has parts, and that whatever has parts may be divided.

In ancient times Democritus was the founder of the atomic theory, while Anaxagoras propounded that of continuity, under the name of the doctrine of homoeomeria ('Oponpuppa), or of the similarity of the parts of a body to the whole. The arguments of the atomists, and their replies to the objections of Anaxagoras, are to be found in Lucretius.

In modern times the study of nature has brought tolight many properties of bodies which appear to depend on the magnitude and motions of their ultimate constituents, and the question of the existence of atoms has once more become conspicuous among scientific inquiries

We shall begin by stating the opposing doctrines of atoms and of continuity. The most ancient philosophers whose speculations are known to us seem to have discussed the ideas of number and of continuous magnitude, of space and time, of matter and motion, with a native power of thought which has probably never been surpassed. Their actual knowledge, however, and their scientific experience were necessarily limited, because in their days the reconds of human thought were only beginning to accumulate. It is probable that the first exact notions of quantiry were founded on the consideration of number. It is by the help of numbers that concrete quantities are practically measured and calculated. Now, number is discontinuous. We pass from one number to the next per saluem. The magnitudes, on the other hand, which we meet with in geometry, are essentially continuous. The attempt to apply numerical methode to the comparison of geometrical quaintities led to the doctrine of incommensurables, and to that of the infinite divisibility of space Meanwhile, the same considerations had not been applied to time, so that in the days of Zeno of Elea time was still regarded as made up of a finite number of 'moments,' while space was confessed to be divisible without limit. This was the state of opinion when the celebrated arguments against the possibility of motion, of which that of Achilles and the tortoise is a specimen, were propounded by Zeno. and such, apparently. continued to be the state of opinion till Aristotle pointed out that time is divisible without limit. in precisely the same sense that space is. And the slowness of the development of scientific ideas may be estimated from the fact that Bayle does not see any force in this statement of Aristotic, but continues to admire the paradox of Zeno (Bayle's Dictionary, ar. 'Zeno '). Thus the direction of true scientific progress was lor many ages towards the recognition of the infinite divisibility of space and time.
"It was easy to attempt to apply similar arguments 10 matter. If matter is extended and fills space, the same mental operation by which we recognize the divisibility of space may be applied. in imag. nation at least, to the matter which occupies space. From this point of view the atomic doctrine might be regarded as a relic of the old numerical way of conceiving magnitude, and the opposite doctrine of the infinite divisibility of matter might appear for a time the most scientific. The atomists, on the other hand, asserted very strongly the distinction between matter and space. The atoms, they said, do not fill up the universe; there are void spaces between them. If it were not so, Lucretius tells us, there could be no motion, for the atom which gives way first must have some empty place to move into.

> Ouapropter locus est intactus, inane, vacansque
> Guod si non eseet. nulla ratione moveri
> Res possent; namque, officium quod corporis exstat.
> Officere atque obstare, id in omni tempore adesset
> Omnibus: haud igitur quicquam procedere posset,

Principium quoniam cedendi nulla daret res.'
Da rermm nalmpa, i. 335
"The opposite school maintained tben, as they have always done.

> It will be noted that Clerk Maxwell's "atom" and "atomif theory " have the significance which we now attach to " molecule " and " moolecular theory."
that there is no vactumb-that every part of space is full of matter, that there is a universal plenum, and that all motion is like that of a fish in the water, which yields in front of the fish because the fish haves room for it behind.

Cedere squemigeris latices nitentibus alunt Et liquidas aperire vias, quin post loca pisces Linquant, quo possint cedentes contuere undae.'

Ibid. i. 373 .
"In modern times Descartes held that. as it is of the essence of matter to be extended in length, breadth and thickness, 50 it is of the essence of extension to be occupied by matter, for ertension cannot be an extension of nothings.
'Ac proinde si quaeratur quid Get، si Deus auferat onne corpus quod in aliquo vase continetur, et nullum aliud in ablati locum venire permittat? respondendum est, vasis latera sibi invicem hoc ipso fore contigua. Cum enim inter duo corpora nihil interjacet, secesse est ut se mutuo tangant, ac monifeate repugnat ut distent. sive ut inter ipea sit distantia, et tamen at ista distantia sit nihil; quia omnis distantia est modus extensionis, et ideo sine substantia extensa esse non potest.'-Principia, ji. 18.

This identification of extension with substance runs through the Whole of Descartes's works, and it forms one of the ultimate founda. tions of the system of Spinoza Descartes, consistently with this doctrine, denics the existence of atoms as parts of matter, which by their own mature are indivisible. He scems to admit, however, that the Deity might make certain particles of matter indivisible in this tense, that no creature thouid be able to divide them. These particles, however, would be stili divisible by their own nature, because the Deity cannot diminish hisown power, and therefore must retain his power of dividing them. Leibniz, on the other hand, regarded his monad as the uftimate element of everything.

There are thus two modes of thinking about the constitution of bodies, which have had their adherents both in ancient and in modern times. They correspond to the two methods of regarding quantity -the arithmetical and the geometrical. To the atomist the true method of estimating the quantity of matter in a body is to count the atoms of it. The void spaces between the atoms count for nothing. To thome who identify matter with extension, the volume of apace occupied by a body is the only measure of the quantity of matter in it.

Of the different forms of the atomic theory that of R . J. Boscovich may be taken as an cxample of the purest monadism. According to Boscovich matter is made up of atoms. Each atom is an indivisible point, having position in space, capable of motion in continuous path, and possessing a certain mass, whereby a certain amount of force is required to produce a given change of motion. Besides this the atom is endowed with potential force, that is to say, that any two atorns attract or repel cach other with a force depending on their distance apart. The law of this force, for all distances greater than say the thousandth of an inch, is an attraction varying as the inverse square of the distance. For amaller distances the force is an attraction for one distance and a epulsion for another, according to some law not yet discoversd. Boscovieh himself, in order to obviate the possibility of two atoma cver being in the same place, asserts that the ultimate force is a repulsion which increases without limit as the distance diminishes without limit. so that two atoms can never coincide. But this seems an unfrarrantable concession to the vulgar opiaion that two bodies cannot co-exist in the same place. This opinion is deduced from our experience of the behaviour of bodies of sensible size, but we have no experimental evidence that two atoms may not sometimes coincide. For instance, if oxygen and hydrogen combine to form water, we have no experimental evidence that the molecule of oxygen is not in the very same place with the two molecules of hydrogen. Many persons cannot get rid of the opinion that all matter is extended in length, breadth and depth. This is a prejudice of the same kind with the last, arising from our experience of bodies consisting of immense multitudes of atoms. The system of atoms, according to Boscovich, cocupies a certain region of space in virtue of the forces acting between the component atoms of the bystem and any other atoms when brought nar them. No other system of atoms can occupy the same region of space at the same time, because before it coutd do so the mutual action of the atoms would have ceused a repuision between the two systems insuperable by any force which we can command. Thus, number of soldiers Wilb Grearms may occupy an exiensive region to the exclusion of the enemy's armies, though the space filled by their bodies is but small. In this way Boscovich explained the apparent extension of bodies consisting of atoms, each of which is devoid of extension. According to Boscovich's theory, all action between bodies is action at a distance. There is no such thing in nature as actual contact between two bodies. When two bodies are said in ordinary language to be in contact, all that is meant is that they are so near together that the repulsion between the nearest pairs of atoms belonging to the two bodies is very great.

Thus, in Boscovich's theory, the atom has continuity of existence In time and space. At any instant of time it is at some point of space, and it is never in more than one place st a rime. In passes from one placo to another along a continuous path. It has a definite
mass which cannot be increased or diminished. Atoms are cridowed with the power of aeting on one another by attraction or repulsion, the amount of tbe force depending on the distance between them. On the other hand, the atom itself has no parts or dimensions. In its geometrical appect it is a mere geometrical point. It has no extension in space. It has not the so-called property, of Impenetrability, for two atoms may exist in the same place. This we may regard as one extreme of the various opinions about the constitution of bodies.

The opponite extreme, that of Anamagoran-the theory that bodics apparently homogeneous and continuous are so in realityis, in its extreme form, a theory incapable of development. To explain the propertics of any substance by this theory is impossible. We can only admit the observed properties of auch substance as ultimate facts. There io a certain stage, however, of scientific progress in which a method corresponding to this theory is of service. In hydrostatics, for instance, we define a fluid by means of one of its known properties, and from this definition we make the system of deductions which constitutes the science of Irydrostatics. In this way the acience of hydrostatics may be built upon an experimental basis, without any consideration of the constitution of a Guid as to whether it is molecular or continuous. In like manner, after the Freneh mathemsticians had attempted, with more or less insenuity, to construct a thery of elastic solids from the hypothesis that they consist of atoms in 'equilibrium under the action of their mutual forces, Stokes and others showed that all the results of this hypothesis, so far at least as thy y agreed with facts, might be deduced Irom the postulate that clastic bodies exist, and from the hypothesis that the smallest portions into which we can divide them are sensibly homogeneous, In this way the principle of continuity, which is the basis of the method of Fluxions and the whole of modern mithematics, may be applied o the analysis of problems connected with material bodies by assi ning them, for the purpose of this analysis, to be homogencous. 11 that is required to make the results applicable to the real casc is that the smallest portions of the substance of which we take any neice shall be semibly of the ame kind. Thus, if a railway contractor as to make a tunne! through a hill of gravel, and if one cubic yard if the gravel is so like another cubic yard that for the purposes of the contract they may be taken as equivalent, then, in cstimating the mork required to remove the gravel from the tunnel, he nay, without fear of error, make his calculations as if the gravel vere a continuous substance. But if a worm has to make his way though the gravel, it makes the greatest possible difference to him whether he tries to push right against a picce of gravel, or directs liis course through one of the intervals between the picces; to him, therefore, the gravel is by no means a homogeneous and continuous substance.
"In the same way, a theory that some particular substance, say water, is homogencous and continuous may be a good working theory up to a certain point, but may fail when we come to deal with quantitics 00 minute or $s 0$ attenuated that their heterogeneity of structure comes into prominence. Whether this heterogeneity of structure is or is not consistent with homogencity and continuity of substance is another question.

- The extreme form of the doctrine of continuity is that stated by Descartes, who maintains that the whole universe is equally full of matter, and that this matter is all of one kind, having no essential property besides that of extension. All the properties which we perceive in matter he reduces to its parts being movable among one another, and so capable of all the varieties which we can perceive to follow from the motion of its parts (Principio, ii. 23). Deacartes's own attempts to deduce the different qualities and actioas of bodies in this way are not of much value. More than a century was required to invent methoda of investigating the conditions of the motion of systems of bodies such as Descartes imagined. But the hydrodynamical discovery of Helmholtz that a vortex in a perfect liquid possesses certain permanent characteristics has been applied by Sir W. Thomson (Lord Kelvin) to form a theory of vortex atoms in a homogeneous, incompressibie and frictionless liquid."

Tee Molecular Structure of Matter

An enormous mass of experimental evidence now shows quite conclusively that matter cannot be regarded as having a continuous structure, but that it is ultimately composed of discrete parts. The smallest unit of matter with which physical phenomena are concerned is tbe molecule. When chemical phenomena occur the molecule may be divided into atoms, and these atoms, in the presence of electrical phenomena, may themselves be further divided into electrons or corpuscles. It ought accordingly to be possible to explain all the non-electrical and non-chemical properties of matter by treating matter as an aggregation of molecules. In point of fact it is found that the properties whicb are most easily explained are those connected with the gaseous state, the explanation of these properties in terms of the molecular structure of matter is the aim of the " Kinctic Theory of Gases." The results of this theory have placed the molecular
conception of matter in an indisputable position, but even without this theory there is such an accumulation of electrical and optical evidence in favour of the molecular conception of matter that the tenability of this conception could not be regarded as open to question.

The Scale of Molecular Structure.-Apart from speculation, the first definite evidence for the molecular structure of matter occurs when it is found that certain physical phenomena change their whole nature as soon as we deal with matter of which the linear dimensions are less than a certain amount. As a single instance of this may be mentioned some experiments of Lord Rayleigh (Proc. Roy. Soc., $1: 5 g 0,47$, p. 364), who found that a film of olive oil spread over the surface of water produced a perceptible effect on small floating pieces of camphor, at places at which the thickness of the film was $10.6 \times 10^{-4} \mathrm{cms}$, but produced no perceptible effect at all at places where the thickness of the film was $8.1 \times 10^{-4} \mathrm{cms}$. Thus a certain phenomenon, of the nature of capillary action, is seen to depend for its existence on the linear dimensions of the film of oil; the physical properties of a film of thickness $10.6 \times 10^{-8} \mathrm{cms}$. are found to be in some way qualitatively different from those of a film of thickness $8.1 \times 10^{-7} \mathrm{cms}$. Here is proof that the film of oil is not a continuous homogencous structure, and we are led to suspect that the scale on which the structure is formed has a unit of length comparable with $8 \times 10^{-6} \mathrm{cms}$. The probability of this conjecture is strengthened when it is discovered that in all phenomena of this type the critical length connected with the stage at which the phenomenon changes its nature is of the order of magnitude of $\mathrm{ro}^{-7} \mathrm{cms}$.
Lord Rayleigh (Phil. Mag. 1800 [5], 30, p. 474) has pointed out that the earliest known attempt to estimate the size of molecules, made by Thomas Young in 1805 , was based upon the consideration of phenomena of the kind just mentioned. Discussing the theory of capillary attractions, Young' found that at a rough estimate " the extent of the cohesive farce must be limited to about the 250 -millionth of an inch " ($=10^{-4} \mathrm{cms}$.), and then argues that "within similar limits of uncertainty we may obtain something like a conjectural estimate of the mutual distance of the particles of vapours, and even of the actual magnitude of the elementary atoms of liquids. . . . It appears tolerably safe to conclude that, whatever errors may have affected the detemoination, the diameter or distance of the particles of water is between the two thousand and the ten thousand millionth of an inch" ($=$ between $\cdot 125 \times 10^{-8}$ and $.025 \times 10^{-8} \mathrm{cms}$.).
The hest estimates which we now possess of the sizes of molecules are provided by calculations hased upon the kinetic theory of gases. In the following table are given the values of the diameters of the molecules of sir substances with which it is easy to experiment in the gascous state, these values being calculated in different ways from formulae supplied by the kinetic theory.

Gan.	Diamcke calculated by the kinetic theory of etwe				
	From deviaHons from	From cos effacent viscoity. niscoaly.	From coetrient of conduction of bent.	Frorn coefficent of diffusion.	Mena ralue
Hydrogen Carbon	2.05×10^{-6}	2.05×10^{-4} 2.00×10^{-4}	1.99×10^{-6} 2.74×10^{-4}	2.02×10^{-6} 2.02×10^{-1}	2.03×10^{-1} 2.85×10^{-1}
monoxide Nitrogen	3.12×10^{-4}	$\begin{aligned} & 2.90 \times 10^{-4} \\ & 2.90 \times 10^{-4} \end{aligned}$	2.74×10^{-4} 2.74×10^{-6} 2.7281	2.92×10^{-1}	2.85×10^{-7} 2.92×10^{-1}
	2.90×10^{-4}	2.86×10^{-1}	2.72×10^{-6}		${ }^{2} .83 \times 10^{-1}$
Oxygen		2.81×10^{-4}	2.58×10^{-6}	$2.70 \times 1{ }^{104}$	2.70×10^{-4}
dioxide	3.00×10^{-4}	3.47×10^{-4}	3.58×10^{-4}	3.28×10^{-4}	3.33×10^{-0}

better need not cause surprise when it is stated that the quantitles are calculated on the hypothesis that the molecules are spherical in shape. This hypothesis is introduced for the sake of simplicity, but is known to be unjustifiable in fact. What is given by the formulae is accordingly the mean radius of an irregulariy shaped solid (or, more probably. of the region in which the field of force surrounding such a solid is above a certain intensity), and the mean has to be taken in different ways in the different phenomena. This and the diffculty of ohtaining accurate experimental results fully account for the differences ixter ac in the values of the quantities calculated.

Heal a Manifestation of Malecular Motion.-An essential feature of the modern view of the structure of matter is that the molecules are supposed to be in rapid motion relatively to one another. We are led to this conception by a number of experimental results, some of which will be mentioned later. We are compelled also to suppose that the motion assumes different forms in different substances. Roughly speaking, it is found that there are three main types of molecular motion corresponding to the three states of matter-solid, liquid and gaseous. That the distances traversed by the molecules of a solid are very small in extent is shown by innumerable facts of everyday observation, as for instance, the fact that the gurface of a finely-carved metal (such as a plate used for steel engraving) will retain its exact shape for centuries, or again, the fact that when a metal body is coated with gold-leaf the molecules of the gold remain on its surface indefinitely: if they moved through any but the smallest distances they would soon become mixed with the molecules of the baser metal and diffused through its interior. Thus the molecules of a solid must make only small excursions about their mean positions. In a gas the state of things is very different; an odour is known to spread rapidly through great distances, even in the stillest air, and a gaseovs poison or corrosive will attack not only those objects which are in contact with its source but also all those which can be reached by the motion of its molecules.

As a preliminary to examining further into the nature of molecular motion and the differences of character of this motion, let us try to picture the state of things which would exist in a mass of solid matter in which all the molecules are imagined to be at rest relatively to one another. The fact that a solid body in its natural state is capable both of compression and of dilatation indicates that the molecules of the body must not be supposed to be fixed rigidiy in position relative to one another; the further fact that a motion of either compression or of dilatation is opposed by forces which are brought into play in the interior of the solid suggests that the position of rest is one in which the molecules are in stable equilibrium under their mutual forces. Such a mass of imaginary matter as we are now considering may be compared to a collection of beavy particles held in position relatively to one another by a system of light spiral springs, one spring being supposed to connect each pair of adjacent particles. Let two such masses of matter be suspended by strings from the same point, and then let one mass be drawn aside, pendulum-wise, and allowed to impinge on the other. After impact the two masses will rebound, and the process may be repeated any number of times, but ultimately the two masses will be found again hanging in contact side by side. At the first impact each layer of surface molecules which takes the shock of the impact will be thrust back upon the layer behind it: tbis layer will in this way be set into motion and so influence the layer still further behind; and so on indefinitely. The impact will accordingly result in all the molecules being set into motion,

The agreement of the values obtalned for the same quantity by different methods provides valuable confirmation of the truth of the molecular theory and of the validity of the methods of the kinetic theory of gases. That the results do not agree even
1"On the Cohesions of Fluids," Phil. Trans. (1805); Young's Coll. Worhs, i. 461.
and by the time that the masses have ceased-impinging on one another the molecules of which they are composed will be performing oscillatioss about their positions of equilibrium. The kinetic energy with which the moving mass originally impinged on that at rest is now represented by the energy, kinetic and potential, of the small motions of the
individual molecules. It is known, however, that when two bodies impinge, the kinetic energy which appears to be lost from the mass-motion of the bodies is in reality transformed into heat-energy. Thus the molecular theory of matter, as we have now pictured it, leads us to identify heat-energy in a body with the energy of motion of the molecules of the body relatively to one another. A body in which all the molecules were at rest relatively to one another would be a body devoid of heat. This conception of the nature of heat leads at once to an absolute zero of temperature-a temperature of no heat-motion-which is identical, as will be seen later, with that reached in other, ways, namely, about $-273^{\circ} \mathrm{C}$.
The point of view which has now been gained enables us to interpret most of the thermal properties of solids in terms of molecular theory. Suppose for instance that two bodies, both devoid of heat, are placed in contact with one another, and that the surface of the one is then rubbedover that of the other. The molecules of the two surface-layers will exert forces upon one another, so that, when the rubbing takes place, each lsyer will set the molecules of the other into motion, and the energy of rubbing will be used in establishing this heat-motion. In this we see the explanation of the phenomenon of the generation of heat by friction. At grst the heat-motion will be confined to molecules near the rubbing surfaces of the two bodies, but, as already explained, these will in time set the interior molecules into motion, so that ultimately the heat-motion will become spread throughout the whole mass. Here we have an instance of the conduction of heat. ${ }^{1}$ When the molecules are oscillating about their equilibrium positions, there is no reason why their mean distance apart should be the same as when they are at rest. This leads to an interpretation of the fact that a change of dimensions usually attends a change in the temperature of a substance. Suppose for instance that two molecules, when at rest in equilibrium, are at a distance a apart. It is very possible that the repulsive force they exert when at a distance a-e ruay be greater than tbe attractive force they exert when at a distance $a+6$. If so, it is clear that their mean distance apart, averaged through a sufficiently long interval of their motion, will be greater than a. A body made up of molecules of this kind will expand on heating.

As the temperature of a body increases the average energy of the molecules will increase, and therefore the range of their excursions from their positions of equilibrium will increase also. At a certain temperature a stage will be reached in which it is a frequent occurrence for a molecule to wander so far from its position of equilibrium, that it does not return but falls into a new position of equilibrium and oscillates about this. When the body is in this state the relative positions of the molecules are not permanently fixed, so that the body is no longer of unalterabie shape: it has assumed a plastic or molten condition. The substance attains to a perfectly liquid state as soon as the energy of motion of the molecules is such that there is a constant rearrangement of position among them.

A molecule escaping from its original position in a body will usually iall into a new position in which it will be held in equilibrium by the forces from a new set of neighbouring molecules. But if the wandering molecule was originally close to the surface of the body, and if it also happens to start off in the right direction, it may escape from the body altogether and describe a free path in space until it is checked by meeting a second wandering molecule or other obstacle. The body is continually losing mass by the loss of iadividual molecules in this way, and this explains the process of evaporation. Moreover, the molecules which escape are, on the whole, those with the greatest energy. The average energy of the moleculcs of the liquid is accordingly lowered by evaporation. In this we see the explanation of the fall of temperature which accompanies evaporation.

When a liquid undergoing evaporation is contained in a closed vessel, a molecule which has left the liquid will, after a certain
${ }^{1}$ Other processes also help in the conduction of heat, eapecially in substances which are conductors of electricity.

XVIII it *
number of colifions with other free molecules and with the sides of the vessel, fall back again into the liquid. Thus the process of evaporation is necessarily accompanied by a process of recondensation. When a stage is reached such that the number of molecules lost to the liquid by evaporation is exactly equal to that regained by condensation, we have a liquid in equitibrium with its own vapour. If the whole liquid becomes vaporized before this stage is attained, a state will erist in which the vessel is occupied solely by free molecules, describing paths which are disturbed only by encounters with other free molecules or the sides of the vessel. This is the conception which the molecular theory conpels us to form of the gaseous state.

At normal temperature and pressure the density of a substance in the gaseous state is of the order of one-thousandth of the density of the same substance in the solid or liquid state. It follows that the average distance apart of the molecules in the gaseous state is roughly ten times as great as in the solid or liquid state, and hence that in the gaseous state the molecules are at distances apart which are large compared with their linear dimensions. (If the molecules of alr at normal temperature and pressure were arranged in cubical order, the edge of each cube would be about 2.9×10^{-3} cras; the average diameter of a molecule in air is $2.8 \times 10^{-5} \mathrm{cms}$.) Further and very important evidence as to the nature of the gaseous state of matter is provided by the experiments of Joule and Kelvin. These experiments showed that the change in the temperature of 2 gas, consequent on its being allowed to stream out into a vacuum, is in general very slight. In terms of the molecular theory this indicates that the total energy of the gas is the sum of the separate energies of its different molecules: the potential energy arising from intermolecular forces between pairs of molecules may be treated as negligible when the matter is in the gaseous state.

These two simplifying facts bring the properties of the gaseons state of matter within the range of mathematical treatment. The kinetic theory of gases attempts to give a mathematical account, in terms of the molecular structure of matter, of all the non-chemical and non-electrical properties of gases. The remainder of this article is devoted to a brief statement of the methods and results of the kinetic theory. No attempt will be made to follow the historic order of development, hut the present theory will be set out in its most logical form and order.

The Kinetic Theory of Gases.

A number of molecules moving in obedience to dynamical laws will pass through a series of configurations which can be theoretically determined as soon as the st ructure of each molecule and the initial position and velocity of every part of it are known. The determination of the series of configurations developing out of given initial conditions is not, however, the problem of the kinetic theory: the object of this theory is to explain the general properties of all gases in terms only of their naolecular structure. We are therefore called upon, not to trace the series of configurations of any single gas, starting from definite initial conditions, but to search for features and properties common to all series of configurations, independently of the particular initial conditions from which the gas may have started.
We begin with a general dymamical theorem, whose special application, when the dynamical system is identified with a gas, will appear later. Let $g_{1}, g_{n} \ldots q_{n}$ be the generalized coordinates of any dynamical syttem, and let pht ph . . . pe Dysamiol be the corresponding momenta, If the system is Aant cupposed to obey the conservation of eaergy and to move solely under its own internal forces, the changes in the co-ordinates and momenta can be found from the Hamiltonian equations

$$
\begin{equation*}
4-\frac{\partial E}{\partial Q_{0}}, \forall=-\frac{\partial E}{\partial q_{0}} \tag{1}
\end{equation*}
$$

where $\%$ denotes dq/dt, acc, and E is the tocal energy expremed as a function of $p_{1}, q_{1}, \ldots p_{n,} q_{m}$ When theinitial values of $p_{1} q_{1} \ldots$ $p_{a,} q_{n,}$ are given, the motion can be traced completely from these equations.

Let us suppose that an infinite number of exactly similar systems start simultaneously (rom all possible values of $p_{1}, g_{1} \ldots p_{n}, q_{n}$, each moving solely under its own internal forces, and therefore in accordance with equations (1). Let us confine eur attention to thowe
systems for which the initial values of p_{2}, g_{1}, \ldots. . Pn ge lie within a range such that p_{1} is between p_{1} and $p_{1}+d_{2}$

 of this range of values.

Arter a time df the value of p_{1} will have increased to $p_{2}+p_{1} d t$, where p_{1} is given by equations (1), and there will be similar changes in $g_{1}, p_{2}, q_{2}, \ldots q_{2}$. Thus after a time di the values of the coordinates and momenta of the small group of symetms under con. sideration will lic within a range such that

$$
\begin{aligned}
& p_{1} \text { is between } p_{1}+p_{1} d \rho \text { and } p_{1}+d p_{1}+\left(\dot{p}_{1}+\frac{\partial p_{1}}{\partial p_{1}} d p_{1}\right) d s
\end{aligned}
$$

and 3000. Thus the extension of the range after the interval dt is

$$
d p_{1}\left(1+\frac{\partial \dot{p}_{1}}{\partial p_{1}} d\right) d q_{1}\left(t+\frac{\partial q_{1}}{\partial q_{1}} d t\right) \ldots
$$

or, expanding as far as first powern of $d f$,

$$
d p_{1} \dot{q}_{1} \ldots d p_{n} d q_{k}\left\{1+\Xi_{1}=\left(\frac{\partial p_{1}}{\partial p_{1}}+\frac{\partial d_{1}}{\partial q_{1}}\right) d t\right\} .
$$

From equations (1), we find that

$$
\frac{\partial p_{1}}{\partial p_{1}}+\frac{\partial q_{1}}{\partial q_{1}}=0,
$$

so that the extension of the new range is seen to be $d p_{1} d q_{1} .$. . $d p_{\mathrm{x}}$ dq., and therefore equal to the initial extension. Since the values of the co-ordinates and momenta at any instant during the motion may be treated as " initia! "values, it is clear that the "extension " of the range must remain constant throughout the whole motion.

This result at once disposes of the possibility of all the systems acquiring any common characteristic in the course of their motion through a tendency for their co-ordinates or momenca to concentrate about any particular set, or series of sets, of values But the result goes further than this Let us imagine that the systems had the initial values of their co-ordinates and momenta so arranged that the number of systems for which the co-ordinates and momenta were within a given range was proportional cimply to the extension of the range. Then the result proves that the values of the coordinates and momenta remain distributed in this way throughout the whole motiou of the systems. Thus, if there is any characteristic which is common to all the systems after the motion has been in progress for any interval of time, this same characteristic must equally have been common to all the systems initially. It must, in fact, be a characteristic of all possible states of the systems.

It is accordingly clear that there can be no property common to all systems, but it can be shown that when the system contains a gas (or any other asgregation of similar molecules) as part of it there are properties which are common to all possible states, except for a number which form an insiguificant fraction of the whole. These properties are found to account for the physical properties of gases.

Let the whole energy E of the system be supposed equal to $E_{1}+E_{2}$, where E_{A} is of the form
$\mathrm{E}_{2}=1 \sum\left(m x^{4}+m r^{2}+m v^{2}+\alpha_{0} \theta_{1}^{2}+a \theta_{2}^{2}+\ldots+a_{n} \theta_{n}^{2}\right)$

(2)
where $\theta_{1}, 0_{1}, \ldots \theta_{n}$ and similarly hn. $_{1}, \ldots, \phi_{n}$ are any momenta or functions of the co-ordinates and momenta or co-ordinates alone which are subject only to the condition that they do not enter in to the coefficients as, an \&rc.

In this expression the first line may be supposed to represent the energy (or part of the energy) of s similar molecules of a kind which we shall call the first kind, the terms $1\left(m x^{2}+m \sigma^{2}+m w^{2}\right)$ being the kinetio energy of translation, and the remaining terms arising from energy of rotation or of internal motion, or from the encrgy. kinctic and potential, of small vibrations. The second line in E_{2} will represent the energy (or part of the energy) of s° similar molecules of the second kind, and so on. It is not at present necessary to suppose that the molecules are those of substances in the gaseous tate. Considering only those states of the system which have a gives value of E_{2}, it can he proved, asa theorem in pure mathematics, that when $3, s^{3} . .$. are very large, then, for all states except an infinitesimal fraction of the whole number, the values of $w_{1} v_{1}=$ lic within ranges such that
(i) the values of w (and similarly of $y, च$) are diatributed among thes s molecules of the first kind according to the law of trial and error; and similarly of course for the molecuies of other kinds:
(d)
${ }^{1}$ Soe Jeank Dymanical Theory of Cases (1994), ch. v.

A state of the system in which these two properties are true will be called a " normal state"; other states will be spoken of as "abnommal." Lee all possible states of the rystem be divided into small ranges of equal extension, and of TheNormal these let a number P correspond to normal, and a number seata.
p to abnormai, statcs. What is proved is that, as s, f^{\prime}, \ldots become very great. the ratio P/Q becomes infinite. Considering only systems starting in the p abnormal ranges. it is clear, from the fact that the extensions of the ranges do not change with the motion, that after a sufficient time most of these systemas must have passed into the P normal ranges. Speaking loosely, we may say that there is a probability $\mathrm{P} /(\mathrm{P}+p)$, amounting to certainty in the limit, that one of these systems, selected at random, will be in the normal state after a sufficient time has elapsed. Again, considering the systems Which start from the P normal ranges. we see that there is a probability $p /(P+p)$ which vanishes in the limit, that a system selected at random from these will be in an abnormal state after a sufficient time. Thus, subject to a probability of error which is infinitesimal in the limih, we may state as geweral laws that-

A system slarting from an abnormat stale lends to asswme the normal state; while

A sysfem slarting from the normal slate will remain in the normal state.

It will now be found that the various properties of gases follow from the eupposition that the gas is in the normal state.
If each of the fractions (3) is put equal to $1 / 4$, it is readily found, from the first property of the normal state, that, of the LewerDts s molecules of the first kind, a number

$$
\begin{aligned}
& \text { tribetbos of } \\
& s \sqrt{\left(k^{2} m^{3} / x^{5}\right)} e^{-4 n}\left(r^{2}+\sigma^{2}+w^{2}\right) d u d x d z o \\
& \text { (4) Velocitios. }
\end{aligned}
$$

have velocities of which the components lie between m and $n+d v$, ∇ and $v+d v, w$ and $w+d w$, while the corresponding number of molecules of the second kind is, similarly,

$$
\begin{equation*}
5^{2} \sqrt{\left(h^{2} m^{2} / \pi^{3}\right) e^{-1}} \tag{5}
\end{equation*}
$$

If c is the resultant velocity of a molecule, so that $c^{2}=x^{2}+p^{2}+x^{2}$. it is readily found from formula (4) that the number of molecules of the first kind of which the resultant velocity lies between c and $c+d c$ is

$$
\begin{equation*}
4 r s \sqrt{\left(h^{1} m^{3} / r^{3}\right)} e^{-1}=^{2} c^{2} d c . \tag{6}
\end{equation*}
$$

These formulac express the " law of distribution of velocities" in the normal state: the law is of ten called Mantell's Law of Dis. tribulion.

If $\frac{1}{m u^{2}}$ denote the mean value of $\left\{m w^{2}\right.$ averaged over the s molecules of the first kind, equations (3) may be writien in the form

(7) Epunerts thowing that the mean energy represented by each tom of term in E_{1} (formula 2) is the same. These equations Eerro. express the "law of equipartition of energy." commonly spoken of as the Maxwell-Bolizmann Lato.
The law of equipartition shows that the carious mean energies of different kinds are all equal, each being measured by the quastity 1/4h. We have already seen that the mean energy increases with the temperature: it will now be supposed Temgerre that the mean energy is exactly proportional to the tarth temperature. The complete justification for this supposition will appear later: a partial justification is obtained se soon as it is seen how many physical laws can be explained by it. We aocordingly put $1 / 2 h=R T$. where T cienotes the temperature on the absolute scale, and then bave equations (7) in the form

$$
\begin{equation*}
\overline{w^{3}}=\overline{m v^{2}}=\ldots=\text { RT } . \tag{8}
\end{equation*}
$$

When a system is composed of a mixture of different kinds of molecules, the fact that h is the same for each constituent (cf. formulae (5) and (6)] shows that in the normal state the different substances are all at the same temperature. For instance. if the system is composed of a gas and a solid boundary, some of the terms in expression (2) may be supposed to represent the kinetic energy of the molecules of the boundary, so that equations (7) show that in the normal state the gas has the same temperature as the boundary. The process of equalization of temperature is now seen to be a special form of the process of motion towards the normal state: the general laws which have been stated above in connexion with the normal state are seen to include as special cases the following la ws :-
Matter originally at non-unijorm temperature tends to assume a wniform temperature: while

Matter at unfform temperature winl remain at wniform temperature.
It will at ouce be apparent that the kinetic theory of matter enalites us to place the second law of thermodynamics upon a purely dynamical basis. So far it has not been necessary to suppose the matter to be in the gaseous state. We now pass to the consederation of laws and propertues which are peculiar to the gaseous state.
A simple approximate calculation of the pressure exerted by a gas on its containing vessel can be made by supposing that the molecules are so small in comparison with their distances apart that they may be treated as of infinitesimal size. Prowat Let a mixture of gases contain per unit volume y mole- 4 one cules of the first kind, of the second kind, and so on. Let us fir our attention on a small area $d S$ of the boundary of the
veseri, and let co-ordinate axes be taken such that the origin is in \mathbf{S}, and the axis of x is the narmal at the origin into the gas The number of molecules of the first kind of gas, whose components of velocity lie within the ranges between u and $u+d u$, v and $v+d s$, w and $w+d w$, will, by formula (5). be

$$
\begin{equation*}
v \sqrt{\left(k^{2} m^{2} / x^{2}\right)} e^{-t a\left(v^{2}+v^{2}+w^{2}\right)} d u d v d w \tag{9}
\end{equation*}
$$

per unit volume. Construct a small cylinder inside the gas, having dS as base and edges such that the projections of each on the coordinate axes are udt, vdl, wdl. Each of the molecules enumerated in expression (9) will move parallel to the edge of this cylinder, and each will deacribe a length equal to its edge in time do. Thus each of these molecules which is initially inside the cylinder, wilt impinge on the area $\mathbb{d S}$ within an interval d. The cylinder is of volume $w d t d S$, so that the product of this and expression (9) must give the number of impacts between the area $d S$ and molecules of the kind under consideration within the interval dt. Each impinging molecule exerts an impulsive pressure cqual to $a x$ on the boundary before the component nf velocity of its centre of gravity normal to the boundary is reduced to zero. Thus the contribution to the total impulsive pressure exerted on the area $d S$ in time d from this case is

$m u \times u d u d S \times v \sqrt{\left(h^{2} m^{3} / \pi^{3}\right)} e^{-h=\left(v^{2}+r^{2}+m^{2}\right)} d u d x d m$

(10)

The total presture exerted in bringing the centres of gravity of all the colliding molecules to rest normally to the boundary is nbtained by first integrating this expression with respect to $m, 8,20$, the limits being all values for which collisions are possible (namely from $-\infty$ to 0 for m, and from $-\infty$ tn $+\infty$ for 9 and m), and then summing for all kinds of molecules in the gas Further impulsive pressures are required to restart inta mation all the molecules which have undergone collision. The aggregate amount of these pressures is clearly the sum of the momenta, normal to the boundary, of all moleeulcs which have left $d S$ within a time $d t$, and this will be given by expression (10), integrated with respect ta \approx from 0 to ∞, and with respect to 0 and w from $-\infty$ to $+\infty$, and then summed for all kinds of molecules in the gas. On combining the two parts of the pressure which have been calculated, the aggregate impulsive pressure on $d S$ in time $d t$ is found to be
where Σ denotes summation over all kinds of malecules. This is equivalent to a steady pressure p_{1} per unit area where

Clearly the integral is the sum nf the values of $m w^{*}$ for all the molecules of the first kind in unit volume, thus

$$
\begin{equation*}
p=x \overline{m u^{1}}+v^{m^{2} u^{3}}+\ldots \tag{tI}
\end{equation*}
$$

On substituting from equations (7) and (8), this expression assumes the forms

$$
\begin{align*}
\phi & =\left(r+r^{\prime}+\ldots\right) / 2 h \tag{12}\\
& =\left(v+r^{\prime}+\ldots\right) R T
\end{align*}
$$

The number of molecules per unit volume in a gas at normal temperature and pressure is known to be about 2.75×10^{6}. If in formula Nolocmar (13) we put $p=1.013 \times 10^{\circ},\left(0+p^{\prime}+\ldots\right)=2.75 \times 10^{14}$ Volecmes. to determine the mean velocities produced by heat motion in molecules of any given mass. For malecules of known gases the calculation is stil easier. If p is the density corresponding to pressure f. We find that formula (ii) assumes the form

$$
P=\frac{1}{3} p C^{7}
$$

where C is a velocity such that the gas would have its actual translational energy if each molecule moved with the same velociny C. By substituting experimentally determined pairs of values of p and p we can calculate C for different gases, and 30 obtain a knowledge of the magnitudes of the molecular velocitics. For instance, it is found that

" mercury vapour at 0° " $C=18,500$. 0 *
and other velocities can readity be calculated.
From the value $R=1.35 \times 10^{-6}$ it is readily calculated that a molecule, or aggregation of molecules, if mass 10^{-19}. grammes, ought to warewalay have a mean velocity of about 2 milimetres a second at Movemoets, 0° C. Such a velocity ought accordingly to be set up in a at 0° C.. by the continual jostling of the surroundiag molecules or particles. A particle of this mass is easily visible microscopically, and a velocity of 2 mm . per second would of course be visible if continued for a sufficient length of time. Each bombardment will, however, change the motion of the particle, so that changes are too frequent for the separate motions to be individually visible. Bnt it can be shown that from the aggregation of these separate short motions the particle ought to have a resultant motion, described
with an average velocity which, athoush much amaller than 2 mm . a second, nught still to be microacopically visible. It has been shown by R. von. S. Smoluchowski (Ann. d. Phys., 1906, 21, p. 756) :hat this theoretically predicted mation is simply that seen in the " Brownian movements "first observed by the botanist Robert Brown in 1827. Thus the " Brownian movements" provide visual demonstration of the reality of the heat-motion pontulated by the kinetic theory.

Dallon's Law.-The pressure as given by form ula (12) can be written as the eom of a number of separate terms, one for each
gas in the mixture. Hence we have Dalton's law: The pressure of a mixtwre of gases is the swm of the pressures which would be exerted separably by the seperal constituents if each alone mere presenh.

Prevenors, Relolioas.
Avogadro's Law.-From formula (13) it appears that $v+v^{\prime}+$. the total number of molecules per unit volume, is determined when p, T and the constant R are given. Hence we have Avogadro's law; Different gases, at the same iemperature and pressure, conloin equal numbers of molecules per unit nolmme.

Boyle's and Chorles' Laws.-If $\%$ is the volume of a homogeneous mass of gas, and \mathbf{N} the total number of its molecules, $\mathrm{N}=\mathrm{m}\left(\mathrm{y}+\mathrm{s}^{\prime}+\right.$. . .), so that

$$
p=\text { RNT. }
$$

(14)

In this equation we have the combined laws of Boyle and Charles: When the temperature of a gas is kept conslom! the pressure waries intersely as the volume, and rivis the volwine is hepr constant the pressmere paries as the temperature.
Since the volume at constant pressure is exactly proportional to the absolute temperature, it lollows that the coefficients of expansion of all gases ought, to within the limits of error introduced by the assumptions on which we are working, ta have the same value $1 / 273$.

Van der Waads's Equatios.-The laws which have just been stated are obeyed very approximately, but not with perfect accuracy, by all gases of which the density is nat too great or the temperature too low. Van der Waals, in a famous monograph. On the Continnity of the Liquid and Gaseows States (Leiden, 1873), has shown that the imperfections of equation (I 4) may be traced to two causes:-
(i.) The calculation has mot allowed for the finite size of the molecules, and their consequent interference with one another's motion, and
(ii.) The calculation has not allowed for the field of inter-molecular force between the molecules, which, although small, is known to have a real existence. The presence of this field of force results in the molecules, when they reach the boundary, being acted on by forces in addition to those originating in their impact with the boundary.

To allow for the first of these two factors, Van der Waals firds that - in equation (14) must be replaced by $v-b$. where b is four time the aggregate space occupied hy all the molecules, while to allow for the second factor, p must be replaced by $p+a h^{2}$. Thus the pressure is given by the equation

$$
\left(p+a / \nu^{2}\right)(p-b)=\text { RNT }
$$

which is known as Van der Waals's equation. This equation is fouud experimentally to be capable of representing the relation between p, v, and T over large ranges of valucs. (See Condensation of Gases.)

Let us consider a single gas, consisting of N similar molecules in a volume p, and let the energy of each molecule, as in Celartmetry. tormula (2) be given by

$$
\begin{align*}
\mathrm{E} & =\frac{1}{2}\left(m n^{2}+m n^{2}+m^{2}+\varepsilon_{n}^{2}+\ldots 0^{2}\right) \tag{5}\\
& =N(n+3) / 4 n \text { by equation (7) } \tag{16}\\
& =\frac{1}{1}(n+3) R N T .
\end{align*}
$$

Let a quantity $d Q$ of energy, measured in work units, be absorbed by the gas from some external source, so that its pressure, volume and temperacure change. The equation of energy is

$$
\begin{equation*}
d Q=d E+p d, \tag{17}
\end{equation*}
$$

expressing that the toral energy $d Q$ is used partly in increasing the internal energy of the gas, and partly in expanding the gas against the pressure p. If we take $p=R N T / p$ from equation (14) and substitute for E from equation (16), this last equation becomes $d Q=\frac{1}{3}(n+3) R N T T+R N T d o i{ }^{2}$,
which may be taken as the general equation of calorinctry, for a gas which accurately obeys equation (14).
Second Las of Thermodymamics.-If we divide throughout by T. we obtain

$$
\frac{d A}{T}=3(n+3) R N \frac{d T}{T}+R N \frac{d n}{p}
$$

showing that $d Q(T$ is a perfect differential. This not only verifies that the second ha of thermodynamies is obeyed, but enables us to identify T with the absolute thermodymamical temperature.

If the volume of the gas is kept constant, we put $d v=0$ in equation (18) and $d Q=J C, N m d T$, where C, is the specific Speons heat of the gas at constant volume and J is the mechani- Boats. cal equivalent of heat. We obtain

$$
\begin{equation*}
C_{\theta}=3(n+3) R / J \pi \tag{19}
\end{equation*}
$$

On the other hand, if the pressure of the gas is kept constant
 $\left.C_{7}=1(n+5) R /\right] m$.
(20)

By division of the values of C_{2} and C_{0} we find for γ, the ratio of the specific heate.

$$
\begin{equation*}
\gamma=x+2 /(n+3) \tag{21}
\end{equation*}
$$

The compariton of thit formula with experiment provides a atriking confirmation of the truth of the kinetic theory but at the came time disclowes the most formidable dificulty which the theory has so far had to encounter.

On giving different values to $:$ in formula (ai), we obtain the values lor γ :

$$
\left.\begin{array}{cccccc}
n=1 & 0, & 1, & 2, & 3, & 4, \\
\boldsymbol{T}=1 \cdot 66, & 1 \cdot 5, & 1 \cdot 4, & 1 \cdot 33, & 1 \cdot 28, & 1 \cdot 25,
\end{array}\right]
$$

Thus, to within the degree of approximation to which our theory is accurate, the value of $\boldsymbol{\gamma}$ for every gas ought to be one of this serics. The following are the values of 7 for gases for which 7 can be obscrved with some accuracy:-

It is clear that for the firt four gases smon, while for the remainder n=2. To examine what is meant by a zero value of \approx we refer to formula (15). The value of \boldsymbol{z} is the number of terms in the energy of the molecule beyond that due to translation. Thus when anm, the whole energy must be translational: there can be mo energy of rotation or of internal motion. The molecules of gases for which m $=0$ must accordingly be spherical in shape and in internal structure, or at least must behave at collisions as though they were spherical, for they would otherwise be sct into rotation by the forces experienced at collisions. In the light of these results it is of extreme significance that the four gases for which $8=0$ are all believed to be monatomic: the molecules of these gases consist of single atoms Moreover, these four are the only monatomic gases for which the value of γ is known, 20 that the only atoms of which the shape can be determined are found to be spherical. It is at least a plausible conjecture, until the contrary is proved, that the atoms of all elements are spherical.t

The next value which occurs in $8=2$. The kinetic encrgy of the molecules of these gases must contain two terms in addition to those representing translational energy. For a rigid body the kinetic energy will. in genernl. consist of three terms ($\mathrm{Aws}_{1}{ }^{1}+\mathrm{Bum}^{2}+\mathrm{C}_{4}^{2}$) in addition to the transtational energy. The value $n=2$ is appropriate to bodies of which the shape is that of a solid of revolution, mo that there is no rotation about the axis of symmetry. We must accordingly suppose that the molecules of gases for which $s=2$ are of this shape Now this is exactly the shape which we should expect to find in molecules composed of two spherical atoms distorting one another by their mutual forces, and all gases for which $\approx=2$ are diatomic.

No molectile could possibly be imagined for which n had a negative value or the value $\boldsymbol{M = 1}$. The theory therefore passes a crucial test when it is discovered that no gases exist for which n is either negative or unity. On the other hand, the theory encounters a very serious difficulty in the fact that all molecules possess a great number of possibilities of internal motion, as is shown by the number of distinct lines in their spectra both of emission and of absorption. So far as is known, each line in the spectrum of, say. mercury, represents a possibility of a distinct vibration of the mercury a tom, and accordingly provides two terms (say eqt ${ }^{2}+\beta \phi^{2}$, where ϕ is the normal co-ordinate of the vibration) in the expression for the energy of the molecule. There are many thousands of lines in the mercury spectrum, so that from this evidence it would appear that for mercury vapour n ought to be very great, and γ anont equal to unity. Instead of this we have $\boldsymbol{z = 0}$, and $\boldsymbol{\gamma}=$ \{ $\}$. Asa step towards removing this difficulty we notice that the enery of a vibration such as is represented by a spectral line has the peculiarity of being unable to exist (so lar as we know) without uffering dissipation into the ether. This energy, therefore, comes under a different category from the energy for which the law of equipartition was proved, for in proving this law conscrvalion of

I Very sigmificant confrmation of this conjecture is obtained from a study of the specific heats of the elements in the solid state. If a solid body is reparded as an aggrepation of similar atoms each of mass w, Its specific heat C is given, as in formula (19) by $\mathrm{C}^{\prime}=$ $(n+3) R / J m$. From Dulong and Petic's law that Cm is the same for all elements, it follows that $n+3$ must be the same for all atoms Morcover, the value of $C m$ shows that $n+3$ must be cqual to six. Now if the atoms are regarded as points or spherical bodies oscillating about positions of equilibrium, the value of $n+3$ is preciscly six, for we can express the energy of the atom in the form
where V is the potential and x, y, z are the displncements of the atom referred to a certain set of orthogomal axes.
energy whe assumed. The difficulty is further diminished whea it is proved, as it can be proved.' that the modes of energy reprosented in the atomic spectrum acquire energy so slowly that the atom might undergo collisions with other atoms for centuries before being aet into oscillations which would poesess an appreciabie amount of erergy. In fact the proved tendency for the gas to pess into the " normal state" in which there is equipartition of energy, represents in this case nothing but the tendency for the translational energy to become dissipated into the energy of innumerable small vibrations. We find that this dissipation, although undoubtedly going on, proceeds with extreme slowness, to that the vibrations pass their energy on to the ether as rapidly as they acquire it. and the " normal state" is never established. These considerations suggest that the difficulty which has been pointed out may be apparent rather than real. At the sanic time the difficulty is only one aspect of a wirer difficulty which cannot be lightly pasmed over; Maxwell himself regarded it as the principal obstade in the way of the full acceptance of the theory of which he was so largely the author.
(J. H. Je)
mole-rat, the name of a group of blind burrowing rodents, typified by the large grey Spalax typhlus of eastern Europe and Egypt, which represents the Old World family Spalacidec. All the mole-rats of the genus Spalax are characterized by the want of distinct necks, small or rudimentary ears and eyes, and short limbs provided with powerful digging claws. There are three pairs of cheek-teeth which are rooted, and show folds of enamel on the crown. Mole-rats are easily recognized by the peculiarly flattened head, in which the minute eyes are covered with skin. the wart-like ears, and rudimentary tail; they make burrows in sandy soil, and feed on hulbs and roots Bamboorats, of which one genus (Rhizomys) is Indian and Burmese, and the other (Tachyoryctes) East African, differ by the absence of skin over the eyes, the presence of short cars, and a short, sparsely-haired tail. They hurrow cither among tall grass, or at the roots of trees (see Rodentia).

MOLR-SHREW, any individual of the genera Urobrichus and Uropsilus (see Insectivora). These animals, which are sometimes called shrew-moles, are not moles with shrew-like habits, but shrews with the burrowing habits of moles and resembling them in appearance.
MOLESKIN, a term employed not only for the skin of a mole but also, from a real or fancied resemblance, for a stout heavy cotton fabric of leathery consistence woven as a satin twill on a strong warp. It is shom before being dyed or bleached. Being of an exceedingly durable and economical texture, it has been much worn by working-men, especially outdoor labourers. It is also used for gun-cases, carriage-covers, and several purposes in which a fabric capahle of resisting rough usage is desirable.
MOLESWORTA, MARY LOUISA (I839-). Scotish writer, daughter of Major-General Stewart, of Strath. N.B., was born in Rotterdam on the 29th of May 1839, and was educated in Great Britain and abroad. In 186: Miss Stewart married Major R. Molesworth. Her first novels, Lover and Hushand (1869) to Cicely (1874), appeared under the pseudonym of "Ennis Graham." Mrs Molesworth is best known as a writer of books for the young, such as Tell Mc a Story (1875), Carrots (1876), and The Cuckoo Clock (1877).

MOLESWORTH, ROBEAT MOLESWORTH, IST VIsCOUNT (1656-1725), came of an old Northamptonshire family, His father Robert (d. 1656) was a Cromwellian who made a fortune in Dublin, and be himself supported William of Orange and in 1695 became a prominent member of the Irish privy council. In 1716 he was created a viscount. He was succeeded by his two sons, John, and viscount (1679-1726), and Richard 3rd viscount (1680-1758), the lalter of whom saved Martborough's life at the battle of Ramillies and rose to be a field-marshal. The 3 rd viscount's son Richard Nassau (1748-1 793) succeeded to the title, which has descended accordingly.
A great-grandson of the ist viscount, John Edwasd Nassau Molesworta (1790-1877), vicar of Rochdale, was a wen-known High Churchman and controversialist; and two of his sont became prominent men-William Nassau Molesworte (i8i61890), author of History of England 1830-1871 (1871-1873). History of the Reform Bill (1865), and History of the Church of

* J. H. Ieans, Drmamical Theory of Gaws, ch. ix

Dingant (1882); and Sir Gutlpord Molesworit (b. 18a8), an eminent enginect and economist.

MOLESWORTH, SIR WILLIAY, BART. (1810-1855), English politician, son of the 7th baronet, was born in London on the 23 dd of May 18 so , and in 1823 succeeded to the baronetcy. At Cambridge he fought a ducl with his tutor, and for some time studied abroad. On the passing of the Reform Act of 1832 be was returned to parliament for the eastern division of Cornwall, to support the ministry of Lord Grey. Through Charles Buller he made the acquaintance of Grote and James Mill, and in April 1835 he founded, in conjunction with Roebuck, the London Review, as an organ of the "Philosophic Radicals." After the publication of two volumes he purchased the Westminster Review, and for some time the united magazines were edited by him and J. S. Mill. From 1837 to 1841 Sir William Molesworth sat for Leeds, and acquired considerable influence in the House of Commons by his speeches and by his tact in presiding over the select committee on transportation. But his Radicalism made little impression either. on the house or on his constituency. From 184 I to 1845 be had no seat in parliament, occupying his leisure time in editing the works in Latin and English of Thomas Hobbes of Malmesbury, a recreation which cost him no less than $\mathbf{f 6 0 0 0}$. In 1845 he wras returned for Soutbwark, and retained that seat until his death. On his return to parliament he devoted special attention to the condition of the colonies, and was the ardent champion of their selfgovernment. In January 1853 Lord Aberdeen included him in the cablnet as first commissioner of works, the chief work by whlch his name was brought into prominence at this time being the construction of the new Westminster Bridge; he also was the first to open Kew Gardens on Sundays. In July 1855 he was made colonial secretary, but he died on the a2nd of October. Molesworth was for many years a great friend of Mr and Mrs Grote, and Mrs Grote's privately printed work on The Philasopthical Radicals (1866) contains an account of his Hie. He married in $\mathbf{8 4 4}$, but had no children, and the baronetcy passed to a cousin. His sister (d. 1910) married Richard Ford, famous for his Handbook of Spain.

A Life by Mrs Fawcett was published in 1903. A full pedigree of the Molesworth lamily is printed in Sir Joho Maclean's Irige Minor, vol. i.: the titues of his speeches and worls may be found in the Bibl. Cornubiensis, vol. i and iii.

MOLFETYA, a seaport and episcopal see of Apulia, Italy, in the province of Bari, from which it is 16 m . N.N.W. by rail. Pop. (1901), 42,363. The old cathedral of S. Conrad is a Romanesque structure. The old town is surrounded by walls, and has medieval bouses; the new town is more spacious, and is an active seaport. The origin of Molfetta is uncertain, though there was a neolithic settlement here. The town was given by Charles V. to the duke of Termoli in 1522, and during bis lordship it was sacked by the French under Lautrec. In 163: Cesare Gonraga cook the title of duke of Guastalla and prince of Molfetta; but in 1640 the fief was sold to the Spinola family, and in 1798 incorporated with the royal domain. The bishopric is directly subject to the papal see.

HOHITR ($5622-1673$), the nom de cheatre chosen, for some undiscovered reason, by the great French dramatist Jean Baptiste Poquelin, and ever since substituted for his family mame. He was horn in Paris, probably in January 1622. The baptismal certificate which is usually, end almost with absolute certainty, accepted as his is dated 85 th January 1622, but it is not possible to infer that he was born on the day of his christening. The exact place of his birth is also disputed, but it seems tolerably certain that he saw the light in a house of the Rue St Honort. His father was Jean Poquelin, an upholsterer, who، in 1631, succeeded his own uncle as " valet tapissier de chambre du rod." The family of Poquelin came from Beauvais, where for some centuries they had been prosperous tradesmen. The legend of their Scotch descent seems to have been finally disproved by the researches of M. E. Révérend du Mesnil. The mother of Moliere was Marie Cresse; and on his father's side he was connected with the family of Masuel, musiciana attached to
the court of France. In 1632 Molizre lost his mother; his father married again in 1633. The father possessed certain shops in the covered Halle de la Foire, Saint Germain des Pres, and the biographers have imagined that Molière might have received his first bent towards the stage from the spectacles offered to the boliday people at the fair. Of his early education little is known; but it is certain that his mother possessed a Bible and Plutarch's Lives, books which an intelligent child would not fail to study. In spite of a persistent tradition, there is no reason to believe that the later education of Moliżre was neglected. "Il fit ses humanitez au college de Clermont," says the brief life of the comedian published by his friend and fellow-actor, La Grange, in the edition of his works printed in 1682. La Grange adds that Molière "eut !'advantage de suivre M. le Prince de Conti dans toutes ses classes." As Conti was seven years younger than Molière, it is not easy to understand how Molière came to be the school contemporary of the prince. Among more serious studies the Jesuit fathers encouraged their pupils to take part in ballets, and in later life Molizre was a distinguished master of this sort of entertainment. According to Grimarest, the first writer who published a life of Molière in any detail (1705), he not only acquired "his humanities," but finished his "philosophy" in five years. He left the Collige de Clermont in 1641, the year when Gassendi, a great contemner of Aristotle, arrived in Paris The Logic and Ethics of Aristotle, with his Physics and Melophysics, were the chief philosophical textbooks at the Collage de Clermont. But when he became the pupil of Gassendi (in company with Cyrano de Bergerac, Chapelle, and Hesnaut), Molière was taught to appreciate the atomic philosophy of Lucrelius. There seems no doubt that Moliare began, and almost or quite finished, a translation of the De matura rerxm. According to a manuscript note of Trallage, published by M. Paud Lacroix, the manuscript was sold by Molizre's widow to a bookseller. His philosophic studies left a deep mark on the genius of Molière. In the Jugement de Pluton sur les dews parties des nonveaux dialogutes des morls (1684), the verdict is "que Moliere ne parleroit paint de philosophie." To "tall philosophy" was a favourite exercise of his during his life, and his ideas are indicated with sufficient clearness in several of his playx There seems no connerion between them and the opinions of "Molière le Critique" in a dialogue of that name, published in Holland in 1709 . From his study of philosophy, too, he gained his lnowledge of the ways of contemporary pedants: of Pancrace the Aristotelian, of Marphorius the Cartesian, of Trissotin, "quin s'attache pour Yordre au PEripatétisme", of Philaminte, who loves Platonism, of Belise, who relishes "les petits corps," and Armande, who loves "les tourbillons." Grimarest has an amusing anecdote of a controversy in which Moliere, defending Descartes, chose a lay-brother of a begging order for umpire, while Chapelle appealed to the same expert in favour of Gassendi. His college education over, Moliere studied law, and there is even evidence-that of tradition in Grimareat, and of Le Boulanger de Chalussay, the libellous author of a play called Elomire kypockondre-to prove that he was actually called to the bar. More trustworthy is the passing remark in La Grange's short biography (1682), "an sortir des ecoles de droit, il choisit is profesaion de comedien." Before joining a troop of halfamateur comedians, however, Molierre had some experience In his father's business. In 1637 his father had obtained for bim the right to succeed to his own office as "valet tapiesier de chambre du roi." The document is mentioned in the inventory of Molierre's effects, taken after his death. When the king travelled the alet tapissie accompanied him to arrange the furniture of the royal quarters. There is very good reason to believe (Loiseleur, Poinfs obscurs, p. 94) that Moliere accompanied Louis XIII. as his valet capissier to Provence In 1642 . It is even not impossible that Molizre was the young valed de chombre who concealed Cinq Mars just before hits arrest at Narbonne, on the 13th of June 1642. But this is part of the romance rather than of the history of Moliere. Our next glimpse of the comedian we get in a document of 64h Jenuary 1643. Molizre acknowledges the receipt of moner
due to him from his deceased mother's estate, and gives up his claim to succeed his father as "valet de chambre du roi." On the 28th of December of the same year we leam, again from documentary evidence, that Jean Baptiste Poquelin, with Joseph Béjard, Madeleine Béjard, Geneviève Béjard, and others, have hired a tennis-court and fitted it up as a stage for dramatic performances. The company called themselves L'Illustre Théatre, illustre being then almost a slang word, freely employed hy the writers of the period.
We now reach a very important point in the private history of Molière, which it is necessary to discuss at some length in defence of the much maligned character of a great writer and a good man. Molière's connexion with the family of Bejard brought him much unhappiness. The father of this family, Joseph Bejard the elder, was a needy man, with eleven children at least. His wife's name was Marie Herve. The most noted of his children, companions of Molière, were Joseph, Madeleine, Geneviève, and Armande. Of these, Madelcine was a woman of great talent as an actress, and Molière's friend, or perhaps mistress, through all the years of his wanderings. Now, on the i4th of Fehruary 1662 (ior we must here leave the chronological order of events), Molière married Armande Claire Elisabeth Gresinde Betjard. His enemics at that time, and a number of his biographers in our own day, have attempted to prove that Armande Bejard was not the sister, but the daughter of Madeleine, and even that Molière's wife may have been his own daughter hy Madeleine Béjard. The arguments of M. Arsène Houssaye in support of this abominable theory are based on reckless and ignorant confusions, and do not deserve criticism. But the system of M. Loiseleur is more serious, and be goes no further than the idea that Madeleine was the mother of Armande. This, certainly, was the opinion of tradition, an opinion hased on the slanders of Montfleury, a rival of Moliere's, on the authority of the spitelul and anonymous author of La Fameuse comedienne (1688), and on the no less libellous play, Elomire hypochondre. In 1821 tradition received a shock, for Beffara then discovered Moliere's "acte de mariage," in which Armande, the bride, is spoken of as the sister of Madeleine BEjard, hy the same father and mother. The old scandal, or part of it, was revived by M. Fournier and M. Bazin, but received another blow in 1863. M. Soulie then discovered a legal document of the roth of March 1643, in which the widow of Joseph Bejard renounced, in the name of herself and ber children, his inheritance, chiefly a collection of unpaid bills. Now in this document all the children are described as minors, and among them is "une pelite non encore baptisfe." This little girl, still not christened in March 1643, is universally recognized as the Armande Béjard aiterwards married by Moliere. We reach this point, then, that when Armande was an infant she was acknowledged as the sister, not as the daughter, of Madeleine B ℓ jard. M. Loiseleur refuses, however, to accept this evidence. Madelcine, says he, had already become the mother, in 1638 , of a daughter by Esprit Raymond de Moirmoron, comte de Modène, and chamberlain of Gaston duc d'Orléans, hrother of Louis XIII. In 1642 Modene, who had been exiled for political reasons, "was certain to return, for Richelieu had just died, and Louis XIII. was likely to follow him." Now Madelcine was again-this is M. Loiseleur's hypothesis-about to become a mother, and ii Modène returned, and learned this lact, he would not continue the liaison, still less would he marry her-which, by the way, he could not do, as his wife was still alive. Madeleine, therefore, induced her mother to acknowledge the little girl as her own child. In the first place, all this is pure unsupported hypothesis. In the second place, it has always been denied that Béjard's wife could have been a mother in 1643 , owing to her advanced age, probably fifty-three. But M. Loiscleur himself says that Marie Hervé was young enough to make the story "sufficiently probable." If it was probable, much more was it possible. M. Loiseleur supports his contention by pointing out that two of the other children, described as legally minors, were over twenty-five, and that their age was understated to make the account of Armande's birth more probable. Nothing is less likely than
that Modene would have consulted this document to ascertain the truth about the parentage of Armande, yet M. Loiseleur's whole theory rests on that extreme improbability. It must also be observed that the date of the birth of Joseph B \mathcal{j} jard is unknown, and be may have been, and according to M. Jal (Diclionnaive critique, p. 178) must have been, a minor when he was so described in the document of the toth of March 1643, while Madelcine had only passed her twenty-fifth birthday, her legal majority, by two months. This view of Joseph's age is supported by Bouquet (Molitre \& Roven, p. 77). M. Loiseleur's only other proof is that Marie Herve gave Armande a respectable dowty, and that, as we do not know whence che money came, it must have come from Madeleine. The cradition in Grimarest, which makes Madeleine behave on fomme fxricuse, when she heard of the marriage, is based on a juster appreciation of the character of women. It will be admitted, probably, that the teasons for supposing that Moliere espoused the daughter of a woman who had been his mistress (if she had been his mistress) are flimsy and inadequate. The affair of the dowry is insisted on by M. Livet (La Fameuse comedienne, reprint of 1877. P. 143). But M. Livet explains the dowry by the hypothesis that Armande was the daughter of Madeleine and the comte de Modène, which exactly contradicts the theory of M. Loiseleur, and is itself contradicted by dates, at least as understood hy M. Loiseleur. Such are the conjectures by which the foul calumnies of Molière's enemies are subported in the essays of modern French critics.

Michelet accepted the scandal apparently as a buttress to his charges against Louis XIV. and Madame (Histoire de Prance, 1879, xv. 63, 64, 332).
To retum to the order of events, Molizire passed the year 1643 in playing with and belping to manage the Theatre Hlustre. The company acted in various tennis-cours, with very little success. Moliere was actually arrested by the tradesman who supplied candics, and the company had to borrow money from one Aubrey to release their leader from the Grand Chatetet (Aug. 13, 1645). The process of turning a tennis-court into a theatre was somewhat expensive, even though no yeals were provided in the pit. The troupe was for a short time under the protection of the duc d'Orleans, but his favours were not lucrative. The duc de Guise, according to some verses printed in 1646, made Molière a present of his cast-off wardrobe. But costume was aot enough to draw the public to the tennis-court theatre of the Croix Noire, and empty bouses at last obliged the Théarre Illustre to leave Paris at the end of 1646.
"Nul animal vivaut n'entra dans notre salle," says the author of the scurrilous play on Molière, Elomire hypochondre. But at that time some dozen traveling companies found means to exist in the provinces, and Moliere determined to play among the rural towns. The career of a strolling player is much the same at all times and in all countries. The Roman corrique of Scarron gives a vivid picture of the adventures and misadventures, the difficulty of transport, the queer cavalcade of horses, mules, and lumbering carts that drag the wardrobe and properties, the sudden metamorphosis of the tenniscourt, where the balls have just been ratting, into a slage. the quarrels with local squires, the disturbed nights in crowded country inns, all the loves and wars of a troupe on the march. Perrault tells us what the artangements to the theatre were in Molière's early time. Tapestries were hung round the stage, and entrances and exits were made by struggling through the heavy curtains, which often knocked off the hat of the comedian or gave a strange cock to the helmet of a warrior or a god. The lights were candles stuck in tin sconces at the back and sides, but luxury sometimes went so far that a chandelier of four candles was suspended from the roof. At intervals the candles were let down by a rope and pulley, and any one within easy reach snuffed them with his fingers. A flute and tambour, or two fidders, supplied the music. The highest prices were paid for seats in the dedans (cost of admission fivepence); for the privilcge of standing up
in the pil twopence-halipenny was the charge. The doors were opened at one o'clock, the curtain rose at two.

The nominal director of the Theatre Hustre in the provinces was Du Fresne; the most noted actors were Molière, the Béjards, and Du Farc, called Gros Rene. It is extremely difficult 10 follow exactly the line of march of the company. They played at Bordeaux, for example, but the date of this performance, when Molière (according to Montesquieu) failed in tragedy and was pelted, is variously given as 1644-i645 (Trallage), 1647 (Loiseleur), $1648-1658$ (Lacroix). Perbaps the theatre prospered better ekswhere than in Paris, where the streets were barricaded in these early days of the war of the Fronde. We find Molière at Nantes in 1648, at Fontenay-la-Compte, and in the spring of 1649 at Agen, Toulouse, and prohably at Angoulême and Limoges. In January 1650 they played at Narbonne, and between 1650 and 1653 Lyons was the headquarters of the troupe. In January 1653, or perhaps 1655, Molière gave L'Élourdí at Lyons, the first of his finished pieces, as contrasted with the slight farces with which he generally diverted a country audience. It would be interesting to have the precise date of this piece, but La Grange ($\mathbf{1 6 8 2 \text {) says that " in } 1 6 5 3 \text { Molière went to Lyons, }}$ where be gave his first comedy, L'Elourdi," while in his Registre La Grange enters the year as 1655. At Lyons de Bric and his wife, the famous Mlle de Brie, entered the troupe, and du Parc married the " marquise" de Gorla, better known as Mle du Parc. The libellous author of La Fameuse comedienne reports that Molière's heart was the shuttlecock of the beautiful du Pare and de Brie, and the tradition has a persistent life. Molière's own opinion of the ladies and men of his company may be read between the lines of his I mpromptu de Versailles. In 1653 Prince de Conti, after many political adventures, was residing at La Grange, near Pezénas, in Languedoc, and chance brought him into relations with his old schoolfellow Maliere. Conti had for first gentleman of his bed-chamber the abbe Daniel de Cosnac, whose memoirs now throw light for a moment on the fortunes of the wandering troupe. Cosnac engaged the company " of Molière and of La Béjart"; hut another company, that of Cormier, nearly intercepted the favour of the prince. Thanks to the resolution of Cosnac, Molière was given one chance of appearing on the private theatre of La Grange. The excellence of his acting, the splendour of the costumes, and the insistence of Cosnac, and of Sarrasin, Conti's secretary, gained the day for Molière, and a pension was assigned to his company (Cosnac, Memoires, i. 128; Paris, 1852). As Cosnac proposed to pay Molière a thousand crowns of his own money to recompense him in case he was supplanted by Cormier, it is obvious that his profession had become sufficiently lucrative. In 1654, during the session of the estates of Languedoc, Molière and his company played at Montpellier. Here Moliere danced in a ballet (Le Ballet des incompatibles) in which a number of men of rank took part, according to the fashion of the time. Molière's own roles were those of the Poet and the Fishwife. The sport of the little piece is to introduce opposite characters, dancing and singing together. Silence dances with six women, Truth with four courtiers, Money with a poet, and so forth. Whether the ballet, or any parts of it, are by Molière, is still disputed (La Jeunesse de Molizre, suivie du ballet des incompafibles, P. L. Jacoh, Paris, 1858). In April 1655 it is certain that the troupe was at Lyons, where they met and hospitably entertained a profligate buffoon, Charles d'Assoucy, who informs the ages that Moliere kept open house, and "une table bien gamie." November 1655 found Molière at Pézénas, where the estates of Languedoc were convened, and where local tradition points out the barber's chair in which the poet used to sit and study character. The longest of Molière's extant autographs is a receipt, dated at Pézenas, on the 4 th of February 1656, for 6000 livres, granted by the cstates of Languedoc. This year was notable for the earliest representation. at Béziers, of Molière's second finished comedy, the Depil amonreux. Conti now (1656) began to "make bis soul." Almost his first act of penitence was to discard Molière's troupe (1657), which consequently found that the liberality of the estates of Languedoc wes dried
up for ever. Conti's relations with Molizre must have definitively closed long before 1666, when the now pious prince wrote a treatise against the stage, and especially charged his old schoolfellow with keeping a new school, a school of atheism (Traits de la comedic, p. 24; Paris, 1666). Molière was now (1657) independent of princes and their favour. He went on a new circuit to Nismes, Orange and Avignon, where he met another old class-mate, Chapelle, and also encountered the friend of his later life, the painter Mignard. After a later stay at Lyons, ending with a piece given for the benefit of the poor on the 27 th of February 1658 , Molière passed to Grenoble, returned to Lyons, and is next found in Rouen, where, we should have said, the Théatre Illustre had played in 1643 (F. Bouquet, La Troupe de Molière a Rouen, p. 90 ; Paris, 1880). At Rouen Molière must have made or renewed the acquaintance of Pierre and Thomas Corneille. His company had played pieces by Corneille at Lyons and elsewhere. The real business of the comedian in Rouen was to prepare his return to Paris. "After several secret journeys thither he was fortunate enough to secure the patronage of Monsieur, the king's only brother, who granted him his protection, and permitted the company to take his name, presenting them as his servants to the king and the queen mother " (Preface to La Grange's edition of 1682). The troupe a ppeared for the first time before Louis XIV. in a theatre arranged in the old Louvre (Oct. 24, 1658).

Molière was now thirty-six years of age. He had gained all the experience that fifteen years of practice could give. He had seen men and cities, and noted all the humours of rural and civic France. He was at the head of a company which, as La Grange, his friend and comrade, says, "sincercly loved him." He had the unlucrative patronage of a great prince to back him, and the jealousy of all playwrights, and of the old theatres of the Hotel de Bourgogne and the Marais, to contend against. In this struggle we can follow him hy aid of the Registre of La Grange (a hricf diary of receipts and payments), and hy the help of notices in the rhymed chronicles' of Loret.

The first appearance of Molière before the king was all but a failure. Nicomide, by the elder Corneille, was the piece, and we may believe that the actors of the Hotel de Bourgognc, who were present, found much to criticize. When the play was over, Molière came forward and asked the king's permission to act " one of the little pieces with wbich he had been used to regale the provinces." The Doctewr amoureux, one of several slight comedies admitting of much "gng," was then performed, and "diverted as much as it surprised the audience." The king commanded that the troupe should establish itself in Paris (Preface, ed. 1682). The theatre assigned to the company was a salle in the Petit Bourbon, in a line with the present Rue du Louvre. Some Italian players already occupied the house on Tucsdays, Fridays, and Sundays; the company of Molière played on the other days. The first picce played in the new housc (Nov. 3, 1658) was L'Etourdi. La Grange says the comedy had a great success, producing seventy pistoles for each actor. The success is admitted even by the spiteful author of Elomire hypochondre (Paris, 1670):-
"Je jouai I Etourdi, qui fut une merveille."
The success, however, is attributed to the farcical element in the play and the acting-the cuckoo-cry of Molière's detractors. The original of L'Elourdi is the Italian comedy (1629) L'Inoyvertilo, by Nicold Barbieri detto Beltrame; Molière pushed rather far.his right to "take his own wherever he found it." Had he written nothing more original, the contemporary critic of the Festin de Piarre might have said, not untruly, that he only excelled in stealing pieces from the Italians. The piece is conventional: the stock characters of the prodigal son, the impudent valet, the old father oocupy the stage. But the dialogue has amazing rapidity, and tho vivacity of M. Coquelin to Mascarille made L' Elourdi a favourite on the modern stage, though it cannot be read with very much pleasure. The nest piece, new in Paris, though not in the provinces, was the Depit amowremx (first acted at B\&xiers, 16:56). The play was not
lese successful than L^{\prime} Elowrdi. It has two parts, one in Italian imbroglio; the other, which alone keeps the stage, is the original work of Molizre, though, of course, the idea of amantism irce is as old as hiterature. "Nothing so good," says Mr Saintsbury, "had yet been seen on the French stage, as the quarrels and reconciliations of the quartette of master, mistress, valet and soubrette." Even the hostile Le Boulanger de Chalussay (Elomire hyfochondre) admits that the audience was much of this opinion:-
" Et de tous les cotes chacun cria tout haut:

- C'est la faire et jouer les piêces comme il faut.' "

The same praise was given, perhaps even more deservedly, to Les Preciexses ridicules (Nov. 18, 1659). Douhts have been raised as to whether this famous piece, the first true comic satire of contemporary foibles on the French stage, was a new play. La Grange calls it pitce noutelle in his Registre; hut, as he enters it as the third piece nowelle, he may only mean that, like L'Elowrdi, it was new to Paris. The short life of 1682, produced under La Grange's care, and probably written by Marcel the actor, says the Preciewses was "made" in 1659. There is another controversy as to whether the ladies of the Hotel Rambouillet, or merely their bourgeoises and rustic imitators, were laughed at. Menage, in later years at least, professed to recognize an attack on the over-refinement and affectation of the original and, in most ways, honourable precieuses of the Hotel Rambouillet. But Chapelle and Bachaumont had discovered provincial preciewses, hyper-aesthetic literary ladies, at Montpellier hefore Molière's return to Paris; and Furetière, in the Roman bowrgeois (1666), found Paris full of middle-class pricieuses, who had survived, or, like their modern counterparts, had thriven on ridicule. Another question is: Did Molierre copy from the carlier Prtcieuses of the abbe de Pure? This charge of plagiarism is brought by Somaize, in the preface to his V criables prtcienses. De Pure's work was a novel (1656), from which the ltalian actors had put together an acting-piece in their manner-that is, a thing of "gag," and improvised speeches. The reproach is interesting only because it proves how early Moliere found enemies who, like Thomas Corneille in 1659, accused him of being skilled only in faree, or, like Somaize, charged him with literary larceny. These were the stock criticisms of Molière's opponents as long as he lived. The success of the Precieuses ridicules was immense; on one famous octasion the king was a spectator, leaning against the great chair of the dying Cardinal Mazarin. The play can never cease to please while literary affectation exists, and it has a comic force of deathless energy. Yet a modern reader may spare some sympathy for the poor heroines, who do not wish, in courtship, to "begin with marriage," but prefer first to have some less formidable acquaintance with their wooers. Moliere's next piece was less important, and more purely farcical, Sganarelle; ow Le cocu imagincire (May 28, 1660). The public taste preferred a work of this ligbt nature, and Sganarelle was played every year as long as Molizre lived. The play was pirated by a man who pretended to have retained all the words in his memory. The counterieit copy was published by Ribou، a double injury to Moliere, as, once printed, any company might act the play. With his habitual good-nature, Molière not only allowed Rihou to publish later works of his, but actually lent money to that knave (Soulie, Recherches, p. 287).

On the 1rth of October 1660 the Thêtre du Petit Bourbon was demolished by the superintendent of works, without notice given to the company. The king gave Mohère the Salle du Palais Royal, hut the machinery of the old theatre was maliciously destroyed. Meanwhile the older companies of the Marais and the Hotel de Bourgogne attempted to lure away Molière's troupe, but, as La Grange declares (Registre, p. 26), "all the actors loved their chief, who united to extraordinary genius an honourahle charecter and charming manner, which compelled them all to protest that they would never leave him, but always share his fortuncs." While the new theatre was being put in order, the compeny played in the bouses of the great, and before the ting at the Louvre. In their new house (ariginally built by

Richelien) Molizre began to play on the zoth of Junuary 106z. Molière now gratifed his rivals by a failure. Dom Garcie de Naverre, a heavy tragi-comedy, which had long lain among his papers, was first represented on the 4th of Fehruary 1661. Either Molière was a poor actor outside comedy, or his manner was not sufficiently "stagy," and, as he says, "demoniac" for the taste of the day. His opponents were determined that he could not act in tragi-comody, and he, in turn, burlesqued their pretentious and exaggerated manner in a later piece. In the Precieuses (sc. ix.) Moliè re had already rallied " les grands comediens " of the Hôtel Bourgogne. "Les autres," he makes Mascarille say about his own troupe, "sont des ignorants qui récitent comme l'on parle, ils ne savent pas faire ronfler les vers." All this was likely to irritate the grands comodicus, and their friends, who avenged themselves on that unfortumate jealous prince, Don Garcie de Navarre. The subject of this unsoccessful drama is one of many examples which show how Molière's mind was engaged with the serious or comic aspects of jealousy, a passion which he had soon cause to know most intimately. Meantime the everyday life of the stage went on, and the doorkeeper of the Thedtre St Germain was wounded by some revellers who tried to force their way into the house (La Grange, Registre). A year later, an Italian actor was stabbed in front of Moličre's house, where he had sought to take shelter (Campardon, Noxpelles pidees, p. 20). To these dangers actors were peculiarly subject: Molière himself was frequently threatened hy the marquises and others whose class he ridiculed on the stage, and there seems even reason to believe that there is some truath in the story of the angry marquis who rubbed the poet's head against his buttons, therchy cutting his face severely. The story comes late (1725) into his biography, but is supported by a passage in the contemporary play, Zelinde (Paris, 1663, scene viii.). Before Easter, Molière asked for two shares in the profts of his company, one for himself, and one for his wife, if he married. That fatal step was already contemplated (La Grange). On the 24th of June he brought out for the first time L'Ecole des maris. The general idea of the piece is as old as Menander, and Molière was promptly accused of pilfering from the Adelphi of Terence. One of the ficelles of the comedy is horrowed from a atory as old, at least, as Boccaccio, and still amusing in a novel by Charles de Bernard. It is significant of Moliére's talent that the grotesque and baffed-paternal wuoer, Sganarelle, like several other butts in Molière's comedy, does to a certain extent win our sympathy and pity as well as our laughter. The next new piece was Las Pascheux, a comedioballet, the Comedy of Bores, played before the king at Fouquet's house at Vaux le Vicomte (Aug. 15-20, 1661). The comedians, without knowing it, were perbaps the real "foscheux" on this occasion, for Fouquet was absorbed in the schemes of his insatuable ambition ($Q u \frac{1}{}$ non ascendom? says his motto), and the king was organizing the arrest and fall of Fouquet, his rival in the affections of Le Valliere. The author of the prologue to Les Fascheux, Pellisson, a fricnd of Fouquet's, was arrested with the superintendent of finance. Pellisson's prologue and name were retained in the later editions. In the dedication to the king Molière says that Louis suggested one scene (that of the Sporsman), and in another place he mentions that the piece was written, rehearsed, and played in a fortnight. The fundamental idea of the play, the interruptions by bores, is suggested by a satire of Régnier's, and that hy a satire of Horace. Perhaps it may have been the acknowledged suggestions of the king which made gossips deciare that Molière habitually worked up hints and memeiras given him by persons of quality (Nownolles noupelles, 1663).

In Fehruary 1662 Molière married Armande Béjard. The date is given thus in the Registre of La Grange: "Mardy. 14, Les Visionnaires, L'Ecol des M.

> "Part. Visite chez M• d'Equeuilly."

And on the margin he has painted a hlue circle-his way of recording a happy event-with the words, " mariage de M. de Molière au sortir de la Visite." M. Loiseleur gives the date in one passage as the 29th of February; in another as the 20th of

February. But La Grange elsewhere mentions the date as "Shrove Tuesday." which was, it seems, the 14th of February. Elsewhere M. Loiseleur makes the date of the marriage a vague day "in January." The truth is that the marriage contract is dated the 23 rd of January 1662 (Soulie, Docimments, p. 203). Where it is so difficult to establish the date of the marriage, a simple fact, it must be infinitely harder to discover the truth as to the conduct of Mme Molière. The abominable assertions of the anonymous libel, Les Intrigues de Molière at cellas de sa fomme; ou la fameuse combdicnne (i688), have found their way into tradition, and are accepted by meny biographers. But M. Livet and M. Bazin have proved that the alleged lovers of Mme Molière were actually absent from France, or from the court, at the time when they are reported, in the libel, to have conquered her beart. A conversation between Chapelle and Molière, in which the comedian is made to tell the story of his wrongs, is plainly a mere fiction, and is answered in Grimarest by another dialogue between Molière and Rohault, in which Molière only complains of a jealousy which he knows to be unfounded. It is noticed, too, that the contemporary assailants of Moliere counted him among jealous, but not among deceived, husbands. The hideous accusation brought by the actor Montfleury, that Moliere had married his own daughter, Louis XIV. answered hy becoming the godfather of Molierre's child. The king, indeed, was a firm friend of the actor, and, when Moliere was accused of impiety on the production of Don Jman (r665) Louis gave him a pension. We need not try to make Mme Molizte a nerlu, as French ladies of the theatre say, but it is certain that the charges against ber are unsubstantiated. It is generally thought that Molière drew her portrait in Le Bourgeois sentilhomme (acte III. sc. ix.), "elle est capricieuse, mais on souffre tout des belles."

From 1662 onwards Moliere suffered the increasing hatred of his rival actors. La Grange mentions the visit of Floridor and Montfleuty to the queen mother, and their attempt to obtain equal favour, " lo troupe de Molière leur donnant beaucoup de jalouzie" (Aug. 12, i662). On the 26th of December was played for the first time the admirable Ecole des femmers, which provoked a literary war, and caused a shower of "paper bullets of the brain." The innocence of Agnes was called indecency; the sermon of Arnolphe was a deliberate attack on Christian mysteries. We have not the space to discuss the religious ideas of Molière; hut both in L'Ecole des femmes and in Don Juan he does display a bold contempt for the creed of "boiling chaldrons" and of physical hell. A brief list of the plays and pamphlets provoked by L'Ecole des femmes is all we can offer in this place.

December 26, 1662.-Esole des femmes.

February 9, 1663. - Nowwelles nowvelles, by De Vise Molière is accused of pilfering from Straparola.

June 1. 1663.-Moliere's own piece, Critique de l'école des femm:s. In this play Moliere retorts on the critics, and especially on is favourite butt. the critical marquess.

August 1663 . - Zdinde, a play by De Vise, is printed. The scene is in the shop of a seller of lace, where persons of quality meet. and attack the reputation of "Elomire"-that is, Moliere. He stens from the Italian, the Spanish, from Furctiere"s Francion, " il lit sous les vieux bouquins." lie insults the noblesse, he insults Cbristianity, and so forth.
November 17, 1663-Poriraif du peintre is printed-an atta k on Moliere by Boursault. This piece is a detailed criticism, iy scveral persons, of L'Ecole des femmes. It is pronounced dili. vulgar, farcical, obscene and (what chicfly vexed Moliere, who knew the danger of the accusation) impious. Perhaps the only hidgraphical matter we gain from Boursault's play is the interestiag fact that Moliere was a tennis-player. On the 4 th November 1623 . Molière replicd with L^{\prime} Imprompiu de Versailles, a witty and merril as attack on his critics, in which Boursault was mentioned by nane. The actors of the Hotel de Bourgogne were parodied on the stis, and their art was ridiculed.

The next seenes in this comedy of comedians were:-
November 30.-The Panégyrique de l'ícole des fammes. ivy Robinet.

December 7.-Rtponse d l'impromptu; ou la Erigansion tes marguis, by De Vise.

January 19. 1664-L'Impromple de rislel de Conde. It is a reply by a son of Montfleury.
March 17. 1664.-La Gwerre comique; on defense de ricela des

1664--Lethe sur les affaiges ds anctive, published in Dinersiths galames, by the author of 2slinde.

In all those quarrels the influence of Comeille was opposed to Molierre, while his cause was espoused by Boileau, a uscful ally, when " les comediens et les auteurs, depuis le cedre [Corneille? jusqu'a l'hysope, sont diablement animes contre lui " (Impromplu de Versailles, sc. v.).

Molière's next piece was Le Mariage force (Feb. 15. 1664), a farce with a ballet. The comic character of the reluctant hridegroom excites contemptuous pity, as well is laughter. From the end of April till the 2 2nd of May the troupe was at Versailles, acting amons the picturesque pleasures of that great festival of the king's. The Princesse d'Elide was acted for the first time, and the three first acts of Tartuff were given. Molière's natural hatred of bypocrisy had not been diminished by the charges of blasphemy which were showered on him after the Ecole des fommes. Tarfuffe made enemies everywhere. Jansenists and Jesuits, like the two marquesses in L'/mprompta de Versailles, each thought the ochers were aimed at. Five years passed before Moliere got permission to play the whole piece in public. In the interval it was acted before Madame, Conde, the legate, and was frequently read by Molidre in private houses. The Gaselte of the 17th of May 1664 (a paper hostile to Molière) says that the king thought the piece inimical to religion. Louis was not at that time on good terms with the denoks, whom bis amours scandalized; but, not impossibly, the queen mother (then suffering from her fatal malady) disliked the play. A most violent attack on Molière, "that demon clad in human flesh," was written by one Pierre Roulle (Le Roy gloriewx aw monde, Paris, 1664). This fierce pamphlet was suppressed, but the king's own copy, in red morocco with the royal arms, remains to testify to the bigotry of the author, who was cure of Saint Barthelemy. According to Roulle, Molière deserved to be sent through eerthly to eternal fires. The play was prohihited, as we have seen, but in August 1665 the king adopted Moliere's troupe as his servants, and gave them the title of "troupe du roy." This, however, did not cause Molière to relax his efforts to obtain permision for Tartmfe (or Tartufe, or Tartuffe, as it was variously spelled), and his perseverance wat at length successful. That his thoughts were busy with contemporary hypocrisy is proved by certain scenes in one of his greatest piecea, the Fastis de Pierre, or Don Juan (Feb. 15, 1665). The legend of Don Juon was familiar already on the Spanish, Italian and French stages. Molière made it a new thing: terrible and romantic in its portrait of un grand seigneur mounoris hommen modern in its suggested substitution of la humanite for religion, comic, even among his comedies, by the mirthful character of Sganarelle. The piece filled the theatre, but was stopped, probably by authority, after Easter. It was not printed by Moliere, and even in 1683 the publication of tbe full text was not permitted. Happily the copy of De la Regnie, the chief of the police, escaped obliterations, and gave us the full scene of Don Juan and the Beggar. The picce provoked a virulent criticism (Obsersations sur lo fantin de Pierre, 1665). It is allowed that Molierre has some farcical talent, and is not unskilled as a plagiarist, hat he "attacks the interests of Heaven" "keeps a school of infidelity," "insuls the king," "corrupes virtue," "offends the queen-mother" and so forth. Two replics were published, one of which is by some critics believed to show traces of the hand of Moliere. The king's reply, as has been shown, was to adopt Molière's compeny as his servants, and to pension them. L'Amowy madecin, a light comedy, appeared on the and of September 1665 . In this piece Molitre, for the second time, attacked physicians. In December there was a quarrel with Racine about his play of Alexamdre, which he treacherously transierred to the Hotel de Bourgogne. The 4th of June 1666 saw the first representation of that famous play, Le Misanthrope (on L'Atrabiliaive amourewx, as the original second title ran). This piece, perhaps the masterpiece of Molière, was more successful with the critics, with the court, and with posterity than with the public. The rival comedians called it "a new style of comedy," and so it was. The eternal
passions and sentiments of human nature, modified by the influence of the utmost refinement of civilization, were the matter of the piece. The school for scandal kept by Célimène, with its hasty judgments on all characters, gave the artist a wide canvas. The perpetual strife between the sensible optimism of a kindly man of the world (Philinte) and the sacea indignatio of a nohle nature soured (Alceste) supplies the intellectual action. The humours of the joyously severe Celimene and of ber court, especially of that deathless minor poet Oronte, supply the lighter comedy. Boileau, Lessing, Goethe have combined to give this piece the highest rank even among the comedies of Molière. As to the "keys" to the characters, and the guesses about the original from whom Alceste was drawn, they are as valueless as other contemporary tattle.
A hriefer summary must be given of the remaining years of the life of Molière. The attractions of Le Misanthrope were reinforced (Aug. 6) by those of the Medecis malgre lui, an amusing farce founded on an old fabliaw. In December the court and the comedians went to St Germain, where, among other diversions, the pieces called Melicerle, La Pastorale comique (of which Molitere is said to have destroyed the MS.) and the charming little piece Le Sicilien were performed. A cold and fatigue seem to have injured the health of Moliere, and we now hear of the consumptive tendency which was cruelly ridiculed in Elowire hypochondre. Molière was douhtless obliged to see too much of the distracted or pedantic physicians of an age when medicine was the hattlefield of tradition, superstition, and nascent chemical science. On the 17th of April 1667 Robinet, tbe rhyming gazetteer, says that the iffe of Moliere was thought to be in danger. On the roth of June, however, be played in Le Sicilien before the town. In the earlier montbs of 1667 Louis XIV: was with the army in Flanders. There were embassics sent from the comedy to the camp, and on the sth of August it was apparent that Molière had overoome the royal scruples. Tartuffe was played, but Lamoignon stopped it after the first night. La Grange and La Torillière hastened to the camp, and got the king's promise that he would reconsider the matter on his return. Molière's next piece (Jan. 13, 1668) was Amphitryon, a free-a very free-adaptation from Plautus, who then seems to have engaged his attention; for not long afterwards he again borrowed from the ancient writer in L'Aporc. Tbere is a controversy as to whether Amphitryon was meant to ridicule M. de Montespan, the husband of the new mistress of Louis XIV. Mfichelet has a kind of romance based on this probably groundless hypothesis. The king still saw the piece occasionally, after he had purged himself and forsworn sack under Mme de Maintenon, and probably neither he nor that devout lady detected any personal references in the coarse and witty comedy. As usual, Molière was accused of plagiarixing, this time from Rotrou, who had also imitated Plautus. The next play was the immortal George Dardin (July ro), first played at a festival at Versailles. Probably the piece was a rapid palimpsest on the ground of one of his old farces, but the addition of these typical members of a county family, the De Sotenville, raises the work from farce to satiric comedy. The story is borrowed from Boccaccio, but is of unknown age, and always new-Adolphus Crosbic in The Small House at Allinglon being a kind of modern George Dandin. Though the sad fortunes of this peasant with social ambition do not fail to make us plty him somewhat, it is being too refined to regard George Daudin as a comedy with a concealed tragic intention. Molière must bave been at work on L'Avare before George Dandin appeared, for the new comedy after Plautus was first acted on the oth of September. There is a tradition that the piece almost falled; hut, if unpopular in the first year of its production, it certainly gained favour before the death of its author. M. de Powrcoangnac (Sept. 17, 1669) was first acted at Chambord, for the amusement of the king. It is a rattling farce. The physicians, as usual, bore the brunt of Molierre's raillery, some of which is still applicable. Earlier in $\mathbf{1 6 6 9}$ (Feb. 5) Tarluffe was played at last, with extraordinary muccess. Les Amants magrifages, a comedy-ballet, was seted first at St Germain
(Feb. 10, r670). The king might heve been expected to dance in the ballet, but from Racine's Brilannicus (Dec. 13, 1669) the majestical monarch learned that Nero was blamed for exhibitions of this kind, and ie did not wish to out-Nero Nero. Astrology this time took the place of medicine as a butt, but the satire has become obsolete, except, perhaps, in Turkey, where astrology is still a power. The Bourgeois gentilhomme, too familiar to require analysis, was first played on the 23rd of October 1770. The lively Fourberies de Scapis "saw the foollights" (if (cootights there were) on the 24th of May 1671, and on the 7th of May we read in La Grange, "les Repetitions de Spsyche ont. commance." La Grange says the theatre was newly decorated and fitted with machines. A " concert of twelve violins " was also provided, the company being resolute to have everything handsome about them. New singers were introduced, who did not refuse to sing unmasked on the stage. Quinault composed the words for the music, which was by Lulli; Molière and Pierre Corneille collaborated in the dialogue of this magnificent opera, the name of which (Psyche) La Grange eventually learned how to spell. The Comiesse d'Escarbagnas (Feb. 2, 1672) was another piece for the amusement of the court, and made part of an entertainment called Le Ballet des ballets. In this play, a study of provincial manners, Molière attacked the financiers of the time in the person of M. Harpin. The comedy has litule importance compared with Les Femmes sasantes (Feb. 1t), a severer Preciecuses, in which are satirized the vanity and affectation of sciolists, pedants and the women who admire them. The satire is never out of date, and finds its modern form in Le Monde of l'on s'enmuie, by M. Pailleron. On tbe rith of February Madeleine Béjard died, and was buried at St Paul. She did not go long before her old friend or lover Molière. His Mariage forct, founded, perhaps, on a famous anecdote of Gramont, was played on the 18th of July. On the 7th of August La Grange notes that Molìre was indisposed, and there was no comedy. Moliere's son died on the iith of October. On the and of November the preparations for the Malode imaginaire were begun. On the 1oth of February 1673 the piece was acted for the first time. What occurred on the 17 th of February we translate from the Registre of La Grange:-
"This same day, about ten o"clock at night, after the comedy Monsieur de Moliere died in his house, Rue de Richelieu. He had played the part of the said Malade, suffering much from cold and inflammation, which caused a violent cough. In the violence of the cough he burst a vessel in his body, and did not live more than half an hour or three-guarters after the bursting of the vessel. His body is buried at St Joseph's, parish of St Eustache. There is a gravestone raised about a foot above the ground."

Moliere's funeral is thus described in a letter, said to be by an eyewitness, discovered by M. Benjamin Fillon:-
"Tuesday, 21 st February about nine in the evening, was huried Jean Baptiste Poquelin Molière, tapissier valet de chambre, and a famous actor. There was no procession, except three ecclesiastics: four priests bore the body in a wooden bier covered with a pall. six children in bue carried candles in silver holders, and there were lackeys with burning torches of wax. The body... was taken to St Joseph's churchyard, and buried at the foot of the cross. There was a great crowd, and some twelve hundred lives were distributed a mong the poor. The arch bishop had given orders that Molière should be interred without any ceremony, and had even forbidden the clergy of the diocese to do any service for him. Nevertheless a number of masses were commanded to be said for the deceased."

When an attempt was made to exhume the body of Molière in 1792, the wrong tomb appears to have been opened. Unknown is the grave of Molière.

Molière, according to Mile Poisson, who bad seen him in ber extreme youth, was "neither too stout nor too thin, tall rather than short; he had a nohle carriage, a good leg, walked slowly, and had a very serious expression. His nose was thick, his mouth large with thict lips, his complexion brown, his eyebrows black and strongly marked, and it was his way of moving these that gave him his comic expression on the stage." "His eyes seemed to search the deeps of men's hearts," says the author of zainde. The inventories printed by M. Sonite prove that Molière was fond of rich dress, splendid furniture,
and "old books. The charm of his conversation is attested by the names of his friends, who were all the wits of the age, and the greater their genius the greater their love of Molidre. As an actor, friends and enemies agreed in recognizing him as most successful in comedy. His ideas of tragic declamation were in advance of his time, for he set hisface against the prevalent habit of ranting. His private character was remarkable for gentlenesa, probity, generosity and delicacy, qualities attested not only by anecdotes hut by the evidence of documents. He is probably the greatest of all comic writers within the limits of social and refined, as distinguished from romantic, comedy like tbat of Shakespeare, and political comedy like that of Aristophanes. He has the humour which is but a sense of the true value of life, and now takes the form of the most vivacious wit and the keenest obscrvation, now of melancholy and pity and wonder at the fortunes of mortal men. In the literature of France his is the greatest name, and in the literature of tbe modern drama the greatest after that of Shakespeare. Besides his contemplative genius he possessed an unerring knowledge of the theatre, the knowledge of a great actor and a great manager, and hence his plays can never cease to hold the stage, and to charm, if possible, even more in tbe performance than in the reading.
The best biography of Moliere on a level with the latest researches into his life is that in vol. x . of his works in Grands tcrinains de la France (Eugene Despois and Paul Mesnard). The next best is probably that of M. Taschereau, prefixed to an edition of his works (Furves complutes, Paris, 1863). To this may be added Jules Loiscleur's Les Points obseurs de la vie de Molizere (Paris, 1877). We have seen that M. Loiseleur is not always accurate, but he is mborious. For other books it is enough to recommend the excellent Bibliographie moliéresque of M. Paul Lacroix (1875), which is an all but faultess guide. The best edition of Molieres sworks for the purposes of the student is that published in Les Grands deripains de la France (Hachette, Paris, 1874-1882). It contains reprints of many contemporary tracts, and. with the Registre of La Grange, and the Collection molierresque of M. Lacroiz, is the chief source of the facts stated in this notice, in cases where the rarity of documents has prevented the writer from studying them la the original texts. Another valuable authority is the Recherches sur Molière ef sur sa famille of E.d. Soulie (1863). Lotheisen's Moliere, seis Leben und seine Werke (Frankfurt. 1880), is a respectable German compilation. Le Molizriste (Tresse, Paris, ed. by M. Georges Monval) was a monthly serial, containing notes on Molière and his plays. by a number of contributors. The essays. biographies, plays and poems on Molière are extremely numerous. The best guide to these is the indispensable Bibliographic of M. Lacroix.
(A. L.)

MOLINA, LUIS (1535-1600), Spanish Jesuit, was born at Cuenca in 1535 . Having at the age of eighteen become a member of the Society of Jesus, he studied theology at Coimbra, and afterwards became professor in the university of Evora, Portugal. From this post he was called, at the end of twenty years, to the chair of moral theology in Madrid, where he died on the 12 th of October 1600 . Besides other works he wrote Liberi arbitrii cum gratice donis, divina praescientia, providentia, proedeslinations ef reprobatione, concordia (4to, Lisbon, -1588); a commentary on the first part of the Summa of Thnmas Aquinas (2 vols., fol., Cuenca, 1593); and a treatise De justitia el jure (6 vols., 4503-1609). It is to the first of these that his lame is principally due. It was an attempt to reconcile, in words at least, the Augustinian doctrincs of predestination and grace with the Semipelagianism which, as shown by the recent condemnation of Batus (q.v.), had become prevalent in the Roman Catholic Church. Assuming that man is free to perform or not to perform any act whatever, Molina maintains that this circumstance renders the grace of God neither unnecessary nor impossible: Hot impossible, for God never fails to bestow grace upon those who ask it with sincerity; and not unnecessary, for grace, although not an efficient, is still a sufficient cause of salvation. Nor, in Molina's view, does his doctrine of free-will exclude predertination. The omniscient God, by means of His "scientia media " (the phrase is Molina's invention, though the idea is also to be found in his older contemporary Fonseca), or power of knowing future contingent events, foremes how we shall employ our own free-will and treat His profiered grace, and
upon this forcknowiodge He can found His predestinating decrees. These doctrines, although in harmony with the pro vaiting feeling of the Roman Catholic Cburch of the period, and further recommended by their marked opposition to the teachinga of Luther and Calvin, excited violent controversy in some quarters, especially on the part of the Dominicans, and at last rendered it necessary for the pope (Clement VIII.) to interfere. At first (${ }^{5994}$) he simply enjoined silence on hoth parties so far as Spain was concerned; but ultimately, in 1598, be appointed the "Congregatio de auxilis Gratiae" for the setthement of the dispute, which became more and more a party one. After holding very numerous sessions, the "congregation" was able to decide nothing, and in 1607 its meetings were suspended by Paul V., who in 1611 prohibited all further discussion of the question "de auriliis," and studious efforts were made to control the publication even of commentaries on Aquinas. The Molinist subsequently pessed into the Jansenist controversy (see Jansenisu).

A full account of Molina's theology will be found in Schneeman's 'Entstehung der thomistisch-molinistischen Controverse," published in the Appendices (Nos. 9, 13, 14) to the Jesuit periodical, Stimmen aus Maria-Lach. To the lay reader may be recommended Ernest Renan's article, "Les congrégations de axxiliiis" in his Nourelles atuder d'histoire redigieuse.

MOLNE, a city of Rock Island county, Ilinois, U.S.A., in the north-west part of the state, on the Mississippi river, adjoining the city of Rock Island and opposite the upper end of Rock Island. Pop, (1900), 17,248 , of whom 5699 were forcignborn, principally Swedes and Belgians; (1910 census), 24,199. It is served by the Chicago, Burlington \& Quincy, the Chicaga, Milwaukee \& St Paul, the Chicago, Rock Istand \& Pacific, and the Davenport, Rock Island \& North-Western railways, A channel in the Mississippi river here, 250 ft . wide and 4 ft . deep at low water, projected in 1905, was completed in 1908; and in 1907 a lock was finished which affords a draught of 6 ft . and is a part of the 6 ft . channel improvement of Rock Island Rapids. The city has large and varied manufacturing industries; water-power is derived from a dam maintained by the Moline Water-Power Company; and there is a large electric-power plant. The most important industry is the manufacture of agricultural implements (particularly steel ploughs, which seem to have been made here first in the United SLates, and cornplanters). Among tbe other manufactures are boilers and gasolene engines, wagons and carriages, automobiles, and pianos and organs. The Chicago, Rock Island \& Pacifc railway has a 900 -acre yard and machine shop east of the city limits, and there is a large U.S. arsenal on Rock Island. Moline was settled in 1832, laid out as a town in 1842, and was chartered as a cily in $\mathbf{1 8 5 5}$ and rechartered in 1872.

MOLINET, JRAN (1433^{-1507}), French poet and chromicer, was born at Desvres (Pas de Calais). In 1475 be succeeded Georges Chastellain as historiographer of the house of Burgundy, and Margaret of Austria, governor of the Low Countries, made him her librarian. His continuation of Chastellain's chronicle, which covers the years from 1474 to 1504 , remained unpublished until 1828 when it was edited (Paris, 5 vols.) by J. A. Buchon. It is far from possessing the historical value of his predecessor's work. A selection from his voluminous poetical works was published at Paris in 1531, Les Faicts at Dicts de fas . . . Jekan Molinet. . . . He also translated the Romar de la rose into prose (pr. Lyons, 1503). He became, in 150t, canon of the church of Notre-Dame at Valenciennes, where be died on the 23rd of August 1507 . He is noteworthy as the head of the vicious Burgundian school of poetry known as the rheloriqueurs, characterized by the excessive use of puns and of puerile metrical devices. His chief disciple was his nephew, Guillaume Cretin (d. 1525), ridiculed by Rabelais as Raminagrobis, and Jean Lemaire des Belges was his friend.
See A. Wauters in the Biographic mationale de Belgique (vol. xv.. 1899).

HOLDIER, ADGUSTB (1851-1904), Fremch historian, was born at Toulouse on the 30th of September 1851. He was a pupil at the Ecole des Chartes, which be left in 1873, and also
at the Ecole des Fantes Etudes; and he obtained appointments in the public libraries at the Mazarine (1878), at Fontainebleau (1884), and at St Geneviève, of which he was nominated librarian in 1885. He was a good palacographer and had a thorough knowledge of archives and manuscripts; and he soon won a first place among scholars of the history of medieval France. His thesis on leaving the Ecole des Chartes was his Calalogue des actes de Simon at dmauri de Montfort (inserted in vol. xxiv. of the Bibliotheque de l'ecole, an important contribution to the history of the Albigenses. This marked him out as a capable editor for the new edition of L'histoire gontrate do Languadoc by Dom Vaissète: he superintended the reprinting of the tert, adding notes on the fcudal administration of this province from 900 to 1250, on the government of Alphonso of Poitiers, brother of St Louis from r226 to 1271, and on the historical geography of the province of Languedoc in the middle ages. He also wrote a Bibliographis du Languedoc, which was awarded a prize by the Academic des inscriptions al belleslettres, but remained in manuscript. He also published several documents for the Société de l'Orient Latin (linera hierosolymitama, in collaboration with Cb. Kohler, 1885); for the Société de 1'Histoire de France (Chronique normarde du xive siecle, assisted by his brother Emile, 1883); for the Collection de textes relalifs a l'onseignement de l'histoire (Vie de Lowis le Gros, by Suger, 1887); for the Collection des documents intdits (Correspondance administrative d'Alfonse de Poitiers, 1894-1900); for the Recueil des historiens de la France (Obituaires de la province de Sens 1904, 1906), \&ec, and several volumes in the Recueil der calalogues des bibliotheques publiques de Frasce. Applying to the French classics the rigorous method used with regard to the terts of the middle ages, he published the Penstes of Pascal, revised with the original manuscript (1887 -1889), and the Provinciales (1891), edited with notes. In 1893 he was nominated professor at the Bcole des Chartes, and gave a successful series of lectures which he published (Manuel des sources de lhistoive de France ax moyen dge, 1902-1006). He also taught at the Ecole des Hautes Etudes. He died on the rgth of May 1go4, after a short illness, leaving in manuscript a criticism on the sources of the Speculums historiale of Vincent de Beauvais.
His elder brother, Charles (b. 1843), is also of some importance as an historian, particularly on the history of art and on the heresies of the middle ages. He was appointed professor of history at the university of Toulouse in 1886 .
A younger brother, Emile (1857-1906), became an assistant in the print-room at the Bibliotheque Nationale, and afterwards joined the staff at the Musee du Lourre, of which he eventually became keeper, retiring in 1902. Ho was a well-known connoisseur of art, He organized the famous Exposition Rétrospective beld at the Petit Palais in 1900, and published a number of expert volumes on enamels, ceramics and furniture.

MOLNOS, BIGORS DE (c. I640-1697), Spanish divine, the chief apostle of the religious revival known as Quietism, was born about 1640 near Saragossa. He entered the priesthood and settled in Rome about 1670. There be became well known as a director of consciences, being on specially friendly terms with Cardinal Odescalchi, who in 1676 became Pope Innocent XI. In the previous year Molinos had published a volume, Guida spirituale, che disinsolge l'anima e la conduce per l'interior camino all acquisito della perfotla contomplazione e del ricco tesoro della pace interiore. This was shortly followed by a brief Trattato della cotidiane commannionc. No breath of suspicion arose against Molinos until 168r, when the Jesuit preacher, Segneri, attacked his views, though without mentioning his name, in his Concordia tra la fatica a la quiete nell orazione. The matter was referred to the Inquisition. It promoenced that the Guida spirisuale was perfectly orthodox, and censured the intemperate zeal of Segneri. But the Jesuits set Father La Chaise to work on his royal penitent, Louis XIV., who prided himself on being a pillar of orthodoxy; but he was on very bad terms with Innocent XI., and somn yielded to the pleasure of diecovering heresy in an intimate friend of the pope. Following oa afficial repretertations by the French ambanador in Rome
who happened to be a cardinal, Molinos wha arrested in May 1685. At first his friends were confident of an acquittal, but in the beginning of 1687 a number of his penitents of both sexes were examined by the Inquisition, and several were arrested A report got abroad that Molinos had been convicted of moral enormities, as well as of heretical doctrines; and it was seen that he was doomed. On the 3rd of September 1687 he made public profession of his errors, and was sentenced to imprisonment for life. In the following November, Innocent signed a bull coordemning sixty-eight propositions from the Gwide spiriluale and other unpublished writings of its author. At some date unknown in 1696 or 1697 Molinos died in prison.

Contemporary Protestants saw in the fate of Molinos nothing more than a persccution by the Jesuits of a wise and enlightened man, who had dared to withstand the petty ceremonialism of the Italian piety of the day. But Molinos was much mere than the enlightened semi-Protestant that his English admirers took him to be; and his Quietism, had it been suffered to run its course would have swept aside beliefs and practices more important than the rosaries of nuns, though it is most unlikely that he realized the consequence of his own theories. Segneni and La Chaise were not so easily deceived. They were Jesuits; and Jesuitism is built up on the double assumption that God reveals Himself wholly and only through Jesus, and that Jesus reveals Himself wholly and only through the Church of Rome. Luther had already broken through one link in this chain, when be taught the Protestant world to come directly to Jesus, without troubling about the Church; but Luther still assumed that God could only be reached through the intermediacy of Jesus. Molinos wished to find a royal road to God without any intermediaries at all. The Reformation maintained that the Church, so far from being a help, was a hindrance, to union with Jesus; whereas Molinos welcomed both Church and Jesus as helps to union with God, always provided that the believer treated both as means to an end beyond themselves. In other words, he held that there was a triple stage in piety. Beginners gave themselves wholly to the Church. At the second step came devotion to Jesus. At the third and highest stage both Church and Jesus were leit behind as deiformes, sed now Deus, and God remained alone.
But bow could a finite being bring himself into direct relation with Infinity? Following very ancient precedents, Molinos fell back on those phenomena of our consciousness which seem least within our own power. The less sense of proprietorship we had in a thought or action-the less it was the fruit of our deliberate will-the more certain might we be that it was divinely inspired. But what state of mind is most likely to be visited by these spontaneous illuminations? Plainly the atate that Molinos calls the "soft and savoury sleep of nothingness," where the soul is content to fold its hands, and wait in dreamy musing till the message comes; meanwhile it will think, do, will as little as it can. For this reason disinterested love became the great hall-mark of Quietist sanctity. Why it is unfitted to be a test of sanctity in general has been explained at length by Bossuet in a remarkable Instruction sur les thats d'oraison, published while the Quietist controversy was at its height. But, although Molinos's system did not long survive him, he had at least the double merit of courage and tenacity. Few writers have struggied so long and so hard to disengage the essence of religion from its transitionary embodiment in an historical creed.
The Gxida spirituale was published in Italian in 1675, and has been reprinted. An English translation appeared in 1688; it has been reedited by Mrs Arthur Lyttelton. French, Spanish and Latin translations have also appeared. For the history of its author see C. E. Scharting. Michael de Molizot (Ger. trans. froon Danish: Gotha, 1855). H. Heppe, Geschichte der guielistuschem Mystik (Berlin, 1875). On the whole subject of Quietism see H. Delacroix. Eudes d'histoire et ds psychologic du mystictrsme (Paris, 1908). There is a brilliant, but very fancifut, account of Molinos and his doctrinet in J. H. Shorthouse's romanese Jahe Inglasant
(SI C.)
MOLGOE EILHETM BERYHARDT ($1802-1869$), Cerman violinist and composer, was born at Nuremberg on the pthof October, 1802, and learnt the violin at Munich upder Pietro

Rovelli. In 1826 he became music-director at Stutgart. As a composer for the violin Molique was commonly compared with Spobr. He also wrote some charming songa. He died at Cannstadt in 1869.
MOLKO (1500-1532), a Marano kabbalist, who proclaimed the advent of the Messiah. He was associated with David Reubeni, who also made Messianic claims. Molko, after a chequered career, was condemned to death by the ecclesiastical court at Mantua. He was offered his life by the emperor Charles V. if be would return to Christianity, in which he had been educated. He refused, and died at the stake. (I. A.)

MOLLENDORF, RICHARD JOACHIM HEINRICH VON (1724-1816), Prussian soldier, began his carcer as a page of Frederick the Great in 1740 . The outhreak of the Silesian wars gave him his first opportunity of seeing active service, and the end of the second war saw him a captain. In the Seven Years' War his brilliant conduct at the churchyard of Leuthen (1757) and at Hochkirch won him his majority. In 1760 his exertions retrieved the almost lost battle of Torgau, and the last success of the great king was won by the brigades of Prince Wied and Möllendorf (now major-general) at the Burkersdorf heights. Seventeen years later, as lieutenanl-general, he won at Brix one of the few successes of the Bavarian Succession (or " Potato') War. In the years of peace he occupicd considerable posts, being made governor of Berlin in 1783. Promoted general of infantry in 1787 , and general field marshal in $\mathbf{1 7 9 3}$, he commanded the Prussian army on the Rhine in 1794. In the disastrous campaign of Jena (1806) Möllendorf 'played a considerable part, though he did not actually command a corps. He was present with the king at Auerstadt, falling into the hands of the French in the debecle which followed. After his release he passed the' remainder of his life in retirement. He died in 1816.

MOLLIEN, NICOLAS FRANCOIS, COUNT (1758-1850), French financier, was born at Paris on the 28th of February 1758 . The son of a merchant, he early showed ability, and entered the ministry of finance, where he rose rapidly; in 1784, at the time of the renewal of the arrangements with the farmers-general of the taxes, he was practically chief in that department and made terms advantageous to the national exchequer. Under Calonne he improved the returns from the farmers-general; and he was largely instrumental in bringing about the erection of the octroi walls of Paris in place ol the insufficient wooden barriers. He, however, advocated an abolition of some of the restrictions on imports, as came about in the famous AngloFrench commercial treaty of 1786 , to the conclusion of which he contributed in no small measure. The events of the French Revolution threatened at times to overwhelm Mollien. In 1794 be was hrought before the revolutionary tribunal of Evreux as a suspect, and narrowly escaped the fate that befell many of the former farmers-general. He retired to England, where he observed the financial measures adopted at the crisis of 1796-1797. After the coup d'elat of Brumaire (November 1799) he re-entered the ministry of finance, then under Gaudin, who entrusted to him important duties as director of the new caisse d'amorissement. Napoleon, hearing of his abilities, frequently consulted him on financial matters, and after the Proclamation of the Empire (May r804) made him a councillor of state. The severe financial crisis of December 1805 to January 1806 served to reveal once more his sound sense. Napoleon, returning in haste not long after Austerlitz, dismissed Barge-Marbois from the ministry of the treasury and confided to Mollien those important duties. He soon succeeded in freeing the treasury from the interference of great banking houses. In other respects, however, he did something towards curbing Napoleon's desire for a precise regulation of the money market. The conversations between them on this subject, as reported in Mollien's Memoirs, are of high interest, and show that the ministry had a far truer judgment on financial matters than the emperor, who often twitted him with being an idEologue. In 1808 Mollien was awarded the title of count. He scon came to see the impossibility of the measures termed collectively " the continental
system "; hut his warnings on that suhject were of no avail After the first abdication of the emperor (April 11, 1814), Mollien retired into private life, but took up his ministerial duties at the appeal of Napoleon during the Hundred Days (1855), after which he again retired. Louis XVIII. wished to bring him back to office, but he resisted these appenls. Nominated a peer in 1819, he took some part in connexion with the annual hudgets. He lived to see the election of Louis Napoleon as president of the Second Republic, and died in April 1850, with the exception of Pasquier, the last surviving minister of Napoleon I.

See Mollien's Mémoives d'wn ministre dw treser public 1780-18is. 4 vols. (Paris 1845 : new ed., Paris, 3 vols., 1898): A. G. P. Barante, Eludes historiques et biographeques; Salvandy, Nolice sur Mollien; also M. M. C. Gaudin (duc de Gaête), Notice historique sur les finances de la France 1800-1814 (Paris, 1818).
(J. HL. R.)

MOLLUSCA, one of the great "phyla," or sub-kingdoms, of the animal pedigree or kingdom. The shell-bearing forms belonging to this group which were known to Linnaeus were placed by him (in 1748) in the third order of his class Vermes under the name "Testacea," whilst the Echinoderms, Hydroids and Annelids, with the naked Mollusea, formed his second order termed "Zoophyta." Ten years later he replaced the name "Zoophyta " by " Mollusca," which was thus in the first instance applied, not to the Mollusca at present so termed, but to a group consisting chiefly of other organisms. Gradually, however, the term Mollusca became used to include those Mollusca formeriy placed among the "Testacea," as well as the naked Mollusca.

It is important to observe that the term $\mu \mathrm{\lambda}$ axca, of which Mollusca is merely a latinized form, was used by Aristotle to indicate a group consisting of the cuttle-fishes only.

As now classified, the Mollusca consist of the following sub-divisions:-

Grade A.-Isopleura.
Class I.-Amphineura (see Curron).
Grade B.-Prorhipidoglossomorpha.
Class II.-Gastropoda (g.r.).
Class III.-Scaphopoda (q.v.).
Class IV.-Lamellibranchia (g.v.).
Grade C.-Siphonopoda.
Class V.-Cephalopoda (q.v.).

Fistory of Classification. - The definte erection of the Mollusca into the position of one of the great primary groups of the animal kingdom is due to George Cuvier (1788-1800), who largely occupied himself with the dissection of representatives of this type." An impependent anatomical investigation of the Mollusca had been carried on by the remarkable Neapolitan naturalist Poli (1791), whose rescarches ${ }^{2}$ were not published until after his death (1817), and were followed by the beautiful works of another Neapolitan 20 Jogist, the illustrious Delle Chiaje. ${ }^{2}$

The embranchement or sub-kingdom Mollusca, as defined by Cuvier, included the following classes of shellfish: (1) the cuttles or poulps, under the name CEpItalopoda: (2) the snails, whelks and slugs, both terestrial and marine, under the name Gastropoda; (3) the sea-butterlies or winged-snails, under the name Ptekdpoda; (4) the clams, musscls and oysters, under the name Acephala; (5) the lamp-shells, under the name Brachiofoda; (6) the seasquirts or ascidians, under the name NuDA; and (7) the barnacles and sea-acorns, under the name Cirmitoroda.

The nain limitations of the sub-kingdom or phylum Mollusca. as laid down by Cuvicr, and the chief divisions thus recognized within its limits by him, hold good to the present day. At the same time, three of the classes considered by him as Mollusca have been one by one removed from that association in consequence of improved knowledge, and one additional class, incorporated since his day with the Mollusca with general approval, has, after more than forty yeus, been again detached and assigned an independent position owing to newly acquired knowledge.

The first of Cuvier's classes to be removed from the Mollusca was that of the Cirrhopoda. Their affinities with the lower Crustacea were recognized by Cuvier and his contemporaries, but it was one of the brilliant discoveries of that remarkable and too-litle-honoured na turalist. J. Vaughan Thompson, of Cork, which decided their prosition as Crustacea. The metamorphoses of the Cirrhopoda were described and figured by him in 1830 in a very complete manner and the legitimate conclusion as to their affinties was formulated by him." Thus it is to Thompson (1830), and not to Burmeister (1834), as erroneously stated by Keferstern, that the merit of this discovery belongs. The nex! class to be removed from Cuvier's

Mollusca was that of the Nuda, better known as Tunicata. In 1860 the Russian embryologist Kowalewsky startled the zoological world with a minute account of the developmental changes of Asciduc, one of the Tunicata, ${ }^{\text {' }}$ and it became evident that the affinities of that clase were with the Vertebrata, whilst their structura! agreements with Mollusca were ouly superficial. The last class which has been removed from the Cuvierian Moliusca is that of the Lamp-shells or Brachiopoda. The history of its dissociation is connected with that of the clrss, viz. the Polyzoa or Bryozoa, which has been both added to and again removed from the Mollusca between Cuvier's date and the present day. The name of J. Vaughan Thompson is again that which is primarily connected with the history of a Molluscan class.; In 1830 he pointed out that among the numerous kinds of " polyps" at that time associated by naturalists with the Hydroids, there were many which had a peculiar and more elaborate type of organization, and for these he proposed the name Polyzoa. Subsequently ${ }^{6}$ they were termed Bryozoa by Ehrenberg (183i).
Henri Milne-Edwards in 1844 demonstrated the affinities of the Polyzoa with the Molluscan class Brachiopoda, and proposed to associate the three classes Brachiopoda, Polyzoa and Tunicala in a large group "Molluscoidea." co-ordinate with the remaining classes of Cuvier's Mollusca, which formed a group retaining the name Mollusca. By subsequent writers the Polyzoe have in some cases been kept apart from the Mollusca and claseed with the "Vermes": whilst by others they have, together with the Brachiopoda, been regarded as true Moilusca. Increase of knowledge has now, however, established the conclusion that the agreement of structure supposed to obtain between Polyzoa and true Mollusca is delusive; and accordingly they, together with the Brachiopoda, were removed from the Molluscan phylumby Lankester in his article in the 9th edition of this work (on the which present article is based). Further details in regard to this, the last revolution in Molluscan elassification, will be found in the article Polyzoa.

As thus purified by successive advances of embryological research, the Moll usca were reduced to the Cuvierian classes of Cephalopoda, Pteropoda, Gastropoda and Acephala. Certain modifications in the disposition of these classes are naturally enough rendered necessary by the vast accumulation of knowledge as to the anatomy and embryology of the forms comprised in them. Foremost among those who between 1840 and 1880 laboured in tbis held are the French zoologists Henri Milne-Edwards' and Lacaze Duthiers, ${ }^{10}$ to the latter of whom we owe the most accurate dissections and beautiful illustrations of a number of dufferent types. To Kolliker, ${ }^{1}$ Gegenbaur, ${ }^{12}$ and more recently Spenger. ${ }^{12}$ amongst German anatomists, we are indebted for epoch-making researches of the same kind. In England. Owen's anatomy of the pearly nautilus." Huxley's discussion of the general morphology of tbe Mollusca, ${ }^{17}$ and Lankester's embryological investigations, ${ }^{\text {" }}$, have aided in advancing our knowledge of the group. Two remarkable works of a systematic character dealing with the Moilusca deserve mention here-the Manual of the Mollusta, by Dr S. P. Woodward, a model of clear systematic exposition, and the exhaustive treatise on the Malacozoa or Weichthiere by Professor Keferstein of Gottingen, published as part of Bronn's Klassen und Ordnwngen des Thier. Reichs.
The arrangement adopted by Ray Lankester in the 9 th edition of the Ency. Brit. (art. "Mollusca "; i883) was as follows: Of the four Cuvierian classes mentioned above, the Pteropoda were united with the Cephalopoda, on account of the apparent similarity of the cephalic tentacles in some of the former to the arms of the latter. An additional clase was instituted for the reception of Dentalium and its few allies, and for this class Bronn's name Scaphopoda was used. The Chitons and their allies were placed under the Gastropoda, as a distinct branch called lsopleura, and for the Acephala de Blainville's name Lamellibranchia was substituted. The latter were regarded as forming a distinct branch, equivalent in rank to the other three classes together, the latter all possessing the radula which is wanting in Lamelibranchs.

Since the gth edition of the Ency. Brit. was published important advances have been made in our knowledge of the Mollusca, as the result of researches largely due to the interest excited in the subject by Lankester's article. Attention has been especially directed to the investigation of the most primitive forms in each group, and accordingly we can now form much more definite conceptions of the phylogeny and evolution of the various classes. The most important and extensive contributions to this progress have been made by the Belgian zoologist, Dr Paul Pelseneer, who has made the Mollusea his special study.

The Chitonidac and the Aplacophora are now separated from the Gastropoda and raised to the rank of a distinct class, under the name of Amphineura. On the other hand, Boas and Pelseneer have shown that the Pteropoda have nothing to do with the Cephalopoda, but are Gastropoda modifed for a pelagic life: they are therefore now united with the Gastropoda. The Lamellibranchia are no longer regarded as a distinct branch in conerast to the remaining Mollusca; according to Pelseneer they are allied to the Gastropoda and Scuphopoda, all three classes being derived from a common hypothetical ancestor, called Prorhipitoglossum. These three cidsses have therefore been united hy Grobben ino one branch or grade, the Prorhipidoglossomorpha,

Geweral Characters of the Mollusca.-The forms comprised in the various groups, whilst exhibiting an extreme range of yariety in shape, as may be seen on comparing an oyster, a cuule-fish, and a sea-slug such as Doris; whilst adapted, some to life on dry land, others to the depths of the sea, others to rushing streams; whilst capable, some of swimming, others of burrowing, crawling or jumping, some, on the other hand, fixed and immobile; some amongst the most formidable of carnivores, others feeding on vegetable mud, or on the minutest of microscopic organisms-yet all agree in possessing in common a very considerable number of structural details which are not possessed in common by any other animals.

The structural features which the Mollusca do possess in common with other animals belonging to other great phyla of the animal kingdom are those characteristic of the Coclomata, one of the two great grades (the other and lower heing that of the Coelentera) into which the higher animals, or Metazoa as distinguished from the Protozoa, are divided. The Melazoa all commence their individual existence as a single cell or plastid, which multiplies itself by transverse division. Unlike the cells of Protozoa, these embryonic cells of the Metazoa do not remain each like its neighbour and capable of independent life, hut proceed to arrange themselves into two layers, taking the form of a sac. The cavity of the two-cell-layered sac or dihlastula thus formed is the primitive gut or arch-enteron. In the Coelentera, whatever subsequent changes of shape the little sac may undergo as it grows up to be polyp or jelly-fish, the original arch-enteron remains as the one cavity pervading all regions of the body. In the Coelomata, on the other hand, there is another cavity, dividing the body-wall into two layers: an internal layer surrounding the gut, and an external layer. This cavity is excavated in a third mass of cells distinct from the cells lining the gut, forming the endoderm, and the cells covering the surface of the body, the ectoderm. This third mass of cells is the mesoderm. The Mollusca agree in being coelomate with the phyla Vertebrata, Platyhelmia (flat-worms), Echinoderma, Appendiculata (insects, ringed-worms, \&c.), and olhers-in fact, with all the Metazoa except the sponges, corals, polyps, and medusac.
In common with all other Coelomata, the Mollusca are at one period of life possessed of a prostomium or region in front of the mouth, which is the essential portion of the "head," and is connected with the property of forward locomotion in a definite direction and the steady carriage of the body (as opposed to rotation of the body on its long axis). As a result, the Coelomata, and with them the Mollusca, present (in the first instance) the general condition of body known as bilateral symmetry; the dorsal is differentiated from the ventral surface, whilst a right and a left side similar to, or rather the complements of, one another are permanently estahlished. In common with all other Coelomata, the Mollusca have the mouth and first part of the atimentary canal which leads into the metenteron formed by a special invagination of the outer layer of the primitive body-wall, not to be confounded with that which often, but not always, accompanies the antecedent formation of the archenteron; this invagination is termed the stomodaeum. Similarly an anal aperture is formed in connexion with a special invagination which meets the hinder part of the met-enteron, and is termed the proctodaeum.

The coelom is primarily and essentially the generative cavily: the reproductive cells arise from its walls, i.e. from the coelomic epithelium. True nephridia do not primarily open into the coelom, as was formerly taught, but are intra-cellular ducts in the mesoderm. Such organs are absent in Mollusca in the adult state, but a pair of nephridia usually occurs in. the larva. The coelom opens to the exterior by ducts which are primarily genital ducts by which the ova or sperms are discharged. Theso ducts, however, as well as the coelomic epithelium, may assume excretory functions. In Mollusca the coelom is reduced and consists of two parts, the pericardial cavity which surrounds the beart, and the cavity of the gonads or generative organs There is usually one pair of coclomic ducts leading from the
pericardium to the exterior, and these are the excretory organs or kidncys, formerly known as the organs of Bojanus. The walls of the pericardium are also excretory in perts, these parts forming the pericardial glands. In the majority of Mollusca the gonads are provided with a pair of ducts of their own. There are thus two pairs of coelomic ducts. This fact gives rise to the question whether the Mollusca are to be regarded as primitively segmented animals or not. In animals which exhibit typical segmentation or metamerism, such as segmented worms (Chaetopoda), each segment or metamere possesses its own coclomic cavity, a pair of coelomic ducts, and a pair of nephrldia. The structure of the Mollusca in the greater number of cases agrees with the hypothesis that the primitive form was unsegmented, and therefore had but one pair of coelomic ducts and one pair of nephridia. In existing forms the latter disappear in the adult. In the most primitive forms of several classes there are no distinct genital ducts, the gonads when mature discharging into or through the kidneys. Among the Gastropoda, in the Aspidobranchia, there is no genital duct, and the gonad opens into the right kidney; in the more modiged forms the left kidney alone is functional, the right has been converted Into the genital duct. Among the Lamellibranchia again the kidneys serve as genital ducts in the Protobranchia and some Filibranchia. In the higher forms the opening of the gonad is shifted more and more towards the external apert ure of each kidney until finally it is situated on the external surface, and thus the gonad secondarily acquires an independent aperture. In the Scaphopoda there is no distinct genital duct, the relations are as in Aspidobranchia. Among the Amphineura we fird one pair of coelomic ducts in the Aplacophora, two pairs in the Chitons. In the former the genital coclom and the pericardial coeiom arc continuous and the reproductive cells escape by the renal ducts. In the Chitons or Polyplacophora, on the other hand, the two cavitics are separate, and there are independent genital ducts. It is possible thercfore to regard the latter condition as secondary, and to conclude that the separate genital ducts have been derived from the original single pair of coelomic ducts, as in Lamellibranchs.
The Cephalopoda, however, do not harmonize so well with this view. The earliest forms of this class geologically are the Nautiloidea. Assuming that these ancestral forms resembled the existing Nautilus in their internal anatomy, they had two pairs of renal ducts and one pair of genital ducts, which would apparently indicate, not a single metamere or unsegmented body, but three metameres. There are however only two pairs of branchiae. The Dibranchia, with only one pair of branchiae, one pair of renal organs. and one pair of genital ducts, are much more recent, not appearing till the end of the Secondary epoch, and therefore must be regarded as descended from the Tetrabranchia. The latter are represented in the Upper Cambrian formations, together with Lamellibranchia and Gastropoda, and there are no earlier Molluscan fossils than these. Palaeontology therefore throws no light on the question whether the metameric or the unsegmented Mollusca were the earlier. The development of the Cephalopoda affords at present no better evidence that the metamerism is secondary. That of Nautilus, which would be most important in this inquiry, is unfortunately still unknown. In the Dibranchia true nephridia have not been detected in the embryo, nor has it been shown that the genital ducts are derived from the renal tuhes. On the o:her hand, there is no evidence that the forms which show no metamerism, such as the Gastropoda, are descended from metameric ancestors. On the whole, then, the most probable conclusion is that the original ancestral form of the Mollusca was unsegmented, possessed one pair of true nephridin, and one pair of coelomic ducts whose function was to conduct the generative products to the exterior. The chief types of Mollusca were already differentiated at the beginning of the geological record, and the metamerism which occurs in the Cephalopoda has been evolved within the limits of that class.

Exlernal Characters.-The characteristic organs of Mollusca are the mante and shell, the foot, the ctenidia and the radula,
of which afl but the last are external. The origtual form was bilaterally symmetrical, and this symmetry is retained in all the classes except the Gastropoda. At the anterior end the head is differentiated; it bears the sense-organs, and contains the muscular pharynx within which is the radular apparatus. The rest of the body consists of the foot ventrally and the visceral mass dorsally. The foot is a muscular mass without cuticle or skeleton, excepting certain cuticular structures such as the byssus of Lamellibranchs and the operculum of Gastropods, which do not aid in locomotion. The foot is usually the only organ of locomotion. It comresponds to the ventral part of the body-wall in other enimals. The muscular tissue of the dorsal body-wall is much reduced and the integument here is thin and

Fic. I.-Ctenidia of various Mollusca (original).
A, Of Chilon: f.l., fibrous tissue; a.b.v., afferent blood-vessel; e.b.刀., efferent blood-vessel; $2 . l$., laterally paired lamellae. B, Of Sepia: letters as in A.
C. Of Fissurella: letters as in A.

D, of Nucula: $d_{\text {, position of axis with hlood-vessels: } a \text {, inner: }}^{\text {D }}$ b and c, outer row of lamellac.
E, Of Paludina: i, intestine running parallel with the axis of the ctenidium and ending in the anus $a ; b r$., tows of elongate processes corresponding to the two series of lamellae of the upper figures.
soft. The external epithelium of the dorsal region secretes the shell. Between the edge of the shell and the foor there is a groove or cavity, chiefly developed laterally and posteriorly. The dorsal border of this groove is extended outwards and downwards as a fold of the integument. There is some confusion of terms bere: some writers call the free fold the mantle or pallium. and this is the proper use ol the term; hut others apply the term to the whole of the dorsal integument, includiag both the projecting fold and the part covering the visce:a. The shell extends to the edge of the mantle.fold, and the cavity between the mantle and the side of the body is the pallial chamber. This chamber serves two purposes: it is primarily
the respiratery cavity containing the gills, but it also serves to enclose the body so that the latter is surrounded by the shell, from which the head and foot can be protruded at the will of the animal.

The shell consists of an organic basis the substance of which is called conchiolin, impregnated with carbonate of lime, with a small proportion, $1-2 \%$ of phosphate of lime. On the outside of the shell is a non-calcified layer of conchiolin called the periostracum, secreted by the thickened edge of the mantle. The zone of the external surface of the mantle within the edge secretes a layer formed of prisms of calcite; the rest of the epithelium from this zone to the apex secretes the inner layer of the shell, composed of successive laminae; this is the nacreous layer, and in certain species has a commercial value as nacre or motber-of-pearl. Thus the growth of the shell in extent is due to additions to the prismatic layer at the edge, its growth in thickness to new layers of nacre deposited on its inner surface. In many cases in various classes the mantle is reflected over the edges of the shell, so as to cover more or less completely its outer surface. When this covering is complete the shell is contained in a closed sac and is said to be "internal," hut the sac is lined by ectoderm and the shell is always morphologically external. In one or two cases the epithelium of the foot secretes a calcified shell, which is either free as in Argonauta or adherent as in Hipponyx.

The ctenidia (fig. I) are the branchial organs of the Mollusca. In the primitive condition there is one on each side in the mantle cavity, towards the posterior end of the body. Each is an outgrowth of the body-wall at the side of the body, and consists of an axis containing two main vessels, an afferent and efferent, and hearing on cither side a series of transverse plates whose blood-sinuses communicate with the vessels of the axis. The afferent vessel of the ctenidium receives blood from the vena cava or principal blood-sinus of the body, the efferent vessel opens into the auricle of its own side. Near the base of the ctenidium is a patch of sensory epithelium innervated from the branchial nerve, forming a sense-organ called the osphradium, whose function is to test the water entering the branchial cavity. The branchial current is maintained by the cilia which cover the surface of the ctenidia, except in Cephalopoda, in which cilia are absent and the current is due to muscular action. Thus in the primitive mollusc the mantle-cavity contains a symmetrical group of structures at the posterior end of the body, and this group of structures is called the pallial complex. It consists of the anus in the middle, a renal organ and renal aperture on each side of this, and a ctenidjum outside or anterior to the renal organ, an osphradium being situated at the base of the ctenidium.

Internal Anatomy: Digestive Tube,-In primitive Mollusca the mouth and anus are the two extremities of the body, but the anus may be brought to an anterior position by a ventral fiexure, complicated in Gastropoda by a lateral torsion. The alimentary tube consists of three regions: firstly, the antcrior buccal mass with the oesophagus, of ectodermic origin, and therefore bearing cuticular structures, namely the jaws and radula; secondly, the mid-gut, of endodermic origin and including the stomach and liver; and. thirdly, the hind-gut or intestinc. The radula consists of a chitinous band bearing teeth, secreted by a ventral caecum of the pharnyx and moved by an apparatus of cartilage and muscles. It was present in the ancestral mollusc, occurs in nearly all archaic types, and is only absent in the most specialized forms, in which it has evidently been lost; these forms are certain Neomeniomorpha, all the Lamellibranchia, various degenerate Gastropoda, and the Cirrkoteuthidae among Cephalopods. The teeth are secreted by a small number of cells at the closed end of the caecum, the basal membrane by a transverse row of cells in front of these. The tecth are disposed in transverpe rown and in each row they are arranged symmetrically on either side of a central tooth. In Polyplacophora there are cight on each side (8.1.8): in Scaphopoda two on each side (2.1.2); in almost all Cephalopoda three on cach side (3.1.3) in Gastropoda the number varies very. much in different subdivisions Bencath the anterior parts of the radula where it emerges from the caccum are a pair of cartilages, and attached to these a number of special muscles by which the radula is moved backwards and forwards to act as a rasp. The secretion of the radula at the closed end of the caccum is continuous, so that it is constantly growing forward as fast as its exposed anterior portion is worn away by use, just as a fingernail is puahed forward by constant growth at its ponterior end,
and is worn away or has to be cut short from time to tinse at its outer end.

Circulation.-The system of blood-vessels is entirely separate from the exelomic cavities. It consists of arteries, veins and sinuses, but ramified capiliaries are usually absent except in the integuments of Cephalopods. The arteries and veins have proper endothelial walls; they pass abruptly into the sinuses and in some cases communication is effected by orifices in the walls of the vessels. as for example io the vena cava of Naxtitus. The heart is situated in the pericardium on the dorsal side of the intestine and at the posterior end of the animal. The pericardium never contains blood, as is well shown in those forms which have red corpuscles in their blood; these corpuscles are never found in the pericardium.
The heart receives blood from the gills and mantle, and pumps it through arteries to the body. It consists of a median ventricle with musculbr walls and a cavity traversed by muscular strands On either side of the ventricle, in the primitive condition, is a thinwalled auricle, opening into the ventricle by a valved opening. Each auricle forms the terminal enlargement of the eflerent vein of the ctenidium of its own side. In Nautilus two pairs of auricles"are present, corresponding with the two pairs of ctenidia. In the primitive form a single anterior aorta is given of from the ventricle, the two together representing the dorsal blood-vessel of Chactopode In more specialized forms a posterior aorta passes backwards Irom the ventricle, as in Gastropods and the majority of Lameilibranchs. The ramifications of the arteries convey the blood to all parts of the body, and it finally reaches the venous sinuses, the chief of which are the pedal. the pallial and the merian-ventral. The last is between the pericardium and the foot; from it the blood passes through the renal organs to the ctenidia. Some blood, bowever, enters the auricles directly from the mantle, without passing through the ctenidia. In the majority of Gastropoda one gill and one auricle are lost.
The blood is usually a colourless liquid containing amoeboid cells and sometimes other corpuscles called haematids. It may be coloured blue by hacmocyanin, a respiratory compound containing copper. In a few forms the blood contains haemoglobin, either in solution or in hacmatids (red blood-corpuscles). In the Gastropoda the muscular tissue of the buccal mass is coloured red by haemoglobin.

Neroous System,-The central nervous systern may be described as consisting of a collar surrounding the oesophagus, and two pairs of cords arising from the collar and passing backwards. The two pairs of cords arise from the same point of the collar. The ventral cords are the pedal. the dorso-lateral, the pleural. the former innervating the foot, the latter the manile. The dorsal half of the collar is the cerebral commissure, the ventral the labial commissure. The pedal cords are connected by commissures, and the pedal and pleural of cach side are similarly connected. The pallial cords are united to one another posteriorly, dorsal to the rectum. This is the condition of the nervous system found in Chiton and the other Amphineura, but may not be in all respects the ancestral condition. Generally the system is differentiated into ganglia connected by nerve-cords consisting of nerve-fibres only. At the point of the collar whence the nerve-cords arise are the cerebral ganglia; from these ene paif of connectives passes to a pair of pedal ganglia, and anolher pair of connectives to a pair of pleural ganglia. Pedal and pleural on each side are connected by a pleuro-pedal connective Each pleural ganglion gives of a long nerve which supplies the viscera, and the two unite posteriorly below the intestine. There are usually three small ganglia on the course of this visceral commissure, namely. the right and left visceral ganglia aud the abdominal: The perioesophageal nerve-ring of Chaetopoda and Arthropoda is represented, not by the collar first mentioned in the above description, but by the commissures connecting the cercbral and pedal ganglia. The labial commissure supplies only the buccal mass and the oesophagus and stomach.
The special sensc-organs are a pair of eyes on the head, a pair of otocysts or statocysts, and a pair of osphradia which have already been mentioned. In certain cases accessory eyes are also present, e.p. the pallial eyes of Pecten and other Lamellibranchs, and of Chitons. The otocysts are invaginations of the epithelium of the foot, hut are innervated from the cerebral ganglia, and the sarae innervation has been proved in some cascs for the osphradia.
Reproduction and Deselopment.- Molluscs are ussally of spparate sexes, but sexual dimorphism is seldom highly developed. Hermaphroditism is secondary, and occurs in one sub-class of Gastropoda. is some Lamellibranchs, and in one sub-order of Amphineura. In Cephalopods and the majority of Gastropods copulation occurs. As a rule no parental care is exhibited, but incubation of the developing ova within some part of the parental body, or receptacles attached to the parent, occurs in some Lamelibranchs, some Gastropods, and in Argomouta among the Cephalopods. True viviparity, that is the devclopment of the ova within the oviduct. is very rare. occurring only in one case among the Amphincura and in some aquatic and pulmonate Gastropoda.

The esg-cell of Mollusca is either free from food-materialsimple protoplasmic corpuscle-or charged with food-material to a greater or kess extent. Those cascs which appear 10 be most typical i.e. which adhere to a procedure which was probably common at one time to all then existing Mollurca and has been departed from ouly

In later and epasial lipea of descent-nhow- approximately the following himory. By division of the ezp-cell a mulberry-mame od embryonic-cells is formed (morula), which dilaten, forming a one-celllayered sac (blastula). By invaginatioa one portion of chis sphere becomes tucked into the other-as in the preparation of a woven night-cap for the head. The orifice of invagination (blastopore) narrows, and we now have a two-cell- layered sac-the gastrula. The invaginated layer is the enteric cell-Layer.or endoderm; the outer cell-Layer is the dermic cell-lay yer or ectoderno. The cavity communicating with the blastopore and lined by the endoderm is the archenteron. The blastopore, together with the whole embryo now elongates The blastopore thea closen along the middee portion of its extent. which corresponds with the later developed foot. At the same time the stomodacum, or oral linvagination, forms around the anterior remnant of the blastopore, and the proctodaeum, or anal invagination, formes around the posterior remnant of the blastopore. There are. however, variations in regard to the relation of the blastopore to the mouth and to the anus which are probably modificationa of the original process deacribed above.
In eggs which contain a larger quantity of food-yolk. the process by which the endoderm is enveloped by the ectoderm is oome what different. Segmentation in these is very unequal, and results in the formation of small cells called micromeres and large cells called megameres, as in fig. 4. As the micromeres become more numerous they gradually envelop the megameres until the latter are completely enclosed. The gastrula is in these cases said to be formed by epibole. Between ectoderm and endoderm a third intermediate cell-layer

(Aftur Lanketer, ig.)
. Fig. 2.-Development of the Pond-Snail, Limmoews stagnalis.
i. Directive corpuscle.
bi, Blastopore.
en, Endoderm or enteric ceil Layer.
ec. Ectoderm or deric cell-layer.
s, Velum.
m, Mouth
f_{1}. Foot.
i. Tentaclen to the pedial gland?).
$m f$. The mantle-fiap or limbus palliatis
sh The shell.
l, The eub-pallial space, here deatined to become the lung.

A, First four cells resulting from the cleavage of the original egz-celi.
B, Side-view of the qame.
C. Diblast tula stage showing the two cell-layers and the blastopore.
D, E, F, Trochosphere stage, D older than E or F.
G. Threequarter view of a Diblastula, to show the orifice of invagination of the eododerm or blastopore, (bl).
H, 1. Veliger stage later than D.
is formed, which is called the mesoderm, and gives rise to the muscular and connective tissues to the vascular system, and to the excretory and generative organs. The mesoderm arises for the most pert from the endoderm. When the segroentation is unequal one of the megameres gives rise by succesaive divisions to two primary mesoderm cells called mesomeres; these divide to form two masses of celle called mesoblastic bands. The coelom is formed as a cavity or cavities in the interior of these cell-mases. In some cases the
coelom is formed at a single cavity, and renal and generative organs are formed from its wails. This is the primitive method, but in other cases the organs mentioned may be formed separately in the mesoderm. The renal organs are tubular cutgrowthe of the pericardial parts of the coelom; the reproductive oella are derived from cells lining the generative portion.
The external form of the embryo meanwhile pasaes through bighly characteristic chaoges, which are on the whole fairly coustant

Fic. 3.-Development of the River-Snail, Palmdina sivipara
$d c$, Directive corpuscio (outcast A, Gastrula phase (optical secoell).
a_{1} Arch-enteron or cavity lined by the enteric cell-layer or endoderm.
b, Blastopore.
B, The Gastrula has become a Trochosphere by the devel. Trochosphere by the devel.
opment of the ciliated ring op (optical section).
2r, Velum or circlet of ciliated cells.
ds, Velar area or cephalic dome. sey, Site of the as yet unformed mouth.
f. Foot.
mes, Rudiments of the skeletotrophic tissues.
$p i$, The pedicle of invagination, the future rectum.
shg, The primitive shell-anc or shell-gland.
m Mouth an, anus.
N.B.-In this development the blastopore is not elongated; it persists as the anus. The mouth and romodneum form independently of the blactopore.
throughoat the Molluace. A circlet of cilia forms when the embryo is etill pearly spherical in an equatorial position. As growth proceeds, one hemisphere remains relatively small, the other clongates and enlargea. Both mouth and anus are placed in the larger area; the manler area is the proctomium amply; the ciliated band is therefore in front of the mouth. The larval form thus produced is known as the trochosphere. It exactly agrees with the larval form of many Chaetopod worms and ot her Coclomata. Most remarkable is its resemblance to the aduit form of the Wheel animalcules, or Rotifera. which retain the prae-oral ciliated Dand as their chief organ of locomotion and prehension throughout life. So far the young mollusc has not reeched a definitely molluacan stage of
development, being only in a condition comanon to it and other Coelomata. It now passes to the veliger phase, a definitely molluscan form, in which the disproportion between the area in front of the ciliated circlet and that behind it is very greatly increased, to that the former is now simply an emarginated region of the head iringed with cilis. It is termed the "yelum," and is frequently drawn out

Fic. 4.-Early Stages of division of the Fertilized Egg-cell in Nassa mulabilis.
A, The egg-cell has divided into two spheres, of which the lower contains more food-material, whilst the upper is again incom. pletely divided into two smalier spheres. Resting on the dividing upper sphere are the eight-shaped "directive corpuscles," better called praeseminal outcast cells or apoblasts," since they are the result of a cell-division which affects the egg-cell before it is impregnated, and are mere refuse, destined to disappear.
B, One of the two smaller spheres is reunited to the larger sphere.
C. The single small sphere has divided into two, and the reunited mass has divided into two, of which one is oblong and practically double, as in 8 .
D. Each of the four segment-cells gives rise by division to a small pellucid cell.
E, The cap of small cells has increased in number by repeated formation of pellucid cells in the same way, and by division of those first lormed. The cap will spread over and enclose the four segment-cells.
into lobes and processes. As in the Rotifera, it serves the veliger larya as an organ of locomotion. The body of the veliger is characterized by the development of the visceral hump on one surface, and by that of the foot on the other. Growith is kreater in the vertical dorso-ventral axis than in the longit udinal oro-a nal axis; consequently the foot is relatively small and projects as a blunt process between mouth and anus, which are not widely distant from one another, whilst the antipedal area projects in the form of a great hump or dome. In the centre of this antipedal ares there has appeared (often at a very early period) a gland-like deprission or follicle of the integument. This is the primitive shell-sac di-covered by Lankester in 15.1. and shown by him to precede the development of the permanent shell in a variety of molluscan types. The shell-gland is bounded by a ridge of ectodermic cells. This ridge forms the edge of the shell-secreting epithelium, and therefore of the mantle, since the shell extends to the edge of the mantle. The shell-gland, as development proceeds, extends from its point of origin as an ectodermic thickening, which may be only slightly concave or may be deeply invaginated and then evaginated.
In the larvae of several Gastropoda and Lamellibranchia occur excretory organs which have the characters of true nephridia. There is a gingle pair of these organs situated immediately behind the velum. They agree with primitive nephridia in being of ectodermic origin, in consisting of perforated celis in linear series, a nd in having no communication with the coelom. The inner end of each of these organs consists of a flame-cell, i.e. a cell with an internal cavity containing a vibrating filament or flagellum. They are best developed in the Pulmonata; in some cases they are very rudimentary and may be destitute of an external opening. They invariably disappear before the adult stage is reached, but their presence in the larva is evidence that the ancestral molluse possessed a pair of true nephridia quite distinct from the coelomic excretory organs, which are so characteristic of existing forms in the adult condition.

The ctenidia, it will be observed, have not yet been mentioned, and they are indeed the lat of the characteristic Molluscan organs to make their appearance. They arise as outgrowths of the sides of the body within the cavity formed by the development of the mantle. The veliger, as sson as its shell has attained some exient and begins to assume definite shape, is no longer of a form comnon
to Mollusca geserally, but acquiroe characters pecutiar to the partlcular clases to which its parents belong. For the later development therefore the articles on the several classes musk be consulted.

Relations between the Classes.-From the preceding discussion an idea may be formed of the primitive characters of the Phylum

D. Velum.
c, Visceral dome with dependent mantle-skirt.
p Foot.
\&, Cephalic tentactes
op, Operculum.
Mollusca, and it is possible to construct a diagrammatic mollusc, as was first done by Lankester, which will possess these primitive features. The figure here given represents such a hypothetical form according to present views. We cannot assert thal this was in all respects the condition of the common ancestor, as will be seen when we attempt to derive the various sub-types from it. In the Amphineura the nervous system, having no

(From Lankester's Tratise am Zoolery. A. ind C. Blact.)
Fig. 6.-Diagram of a primitive Mollusc, viewed from the left side.
a, Anus.
cg, Cerebral ganglion.
f, Foot.
g. Gill, in the pallial cavity.
fo, Gonad.
n. Heart.
la.c, Labial commissure.
m, Mouth.
pa, Mantle.
separate ganglia and no ventral visceral commissure, may be still more primitive. The metameric repetition of the shellplates and of the ctenidia are probably special modifications, but it is difficult to explain the spicules of the dorsal integument except as a condition more primitive than the shell itself. The Prorhipidoglossomorpha are distinguished by the separation of the genital coelom from the pericardium, and by the long visceral commissure passing ventral to the intestine. The Lame'libranchia have markedly diverged from the original type by the adoption of filtration as a method of feeding. This has
lod to the loss of the radula, and is accompanied by the division of the shell into two valves. The peculiarities of the Gastropoda are all due to the corsion of the shell and body. The Cephalopoda can be derived without much difficulty from the schematic Mollusc, if we assume that some metameric repetition of organs has occurred, as explained above in reference to the coelom. The foot has been developed into long proceses which have extended in a circle round the mouth; all the ganglia, including the visceral, have been concentrated around the oesophagus.
Habits and Distribwtion.-More than 28,000 species of living Molluscs have been distinguished, of which more than half are Gastropods. They are essentially aquatic arimals, and the

(Prom Leakester's Troafse on Zoology. A and C. Black.)
Fig. 7.-Diagrams of the five classes of Mollusca, from the left side.
A. Amphineura.
B. Scaphopoda.
C. Gastropoda.
D. Lamellibranchia.

E, Cephalopoda.
a. Anus.
a.a, Anterior adductor.
c.E. Cerebral ganglion.
f Foot.
fu, Funnel.
2, Ctenidium.
majority live in the sea. Some, like many Cephalopods and the Pteropods, are pelagic or free-swimming; others creep or lie on the sea bottom. Some are littoral, living between tide-marks; others are found at very various depths, up to 2800 fathoms. A few species have invaded the fresh waters, while the pulmonate and terrestrial Gastropods are distributed over the whole surface of the land in all latitudes and to a height of $15,000 \mathrm{ft}$. As a rule Molluscs are free and more or less active, but many Lamellibranchs are sedentary, and a few of these and of Gastropods are permanently fixed to their habitat. Commensalism occurs in a few instances, but parasitism either external or internal is rare. The latter is confined to certain Gastropods which live in Echinoderms and are extremely degenerate in structure. Protective resemblance is exhibited by some Nudibranch Gastropods which bave assumed the colour and appearance of their ha hitat.

Literature.-I. Morphology. (1) G. Cuvier, MEnoires powe servir d thistoive ef d l'anatomie des molurguas (Paris, 1816). (a) J. Poli. Testaced ntrimsque Siciliec. cor mmqus historia et anatone, labalis aoneis \$9 illmstrata, vols, i.-iii.. fol. (Parma, 1791-1795 and 1826-1827). (3) St delle Chiaje, Mcmoric sulla storia e amatomia dopli awimali sensa verlebre del regno di Napoli (Naples, 1823-1829), Dew edition
with 172 plates, fol., 1843. (4) J. Vaughan Thompson, Zoological Rescarches (Cork, 1830) ; memoir iv., "On the Cirripedes or Barnacles. demonstrating their deceptive characier." (5) A. Kowalewsky, "Entwickelungsgeschichee der einfachen Ascidien". in Mem. de Cacnd. des sciences de St Petersbourg (1866), and "Entwickelungs. geschichte des Amphioxus lanceolatus," ibid. (1867). (6) J. Vaughan Thompsoni. Zoologhal Researches (Cork, 1830) : memoir v. "Polyzoa, a n. animal discovered as an inhabitant of some Zoophytes.". (7) C. C. Eisenberg, "Die Koratlerithiere des Rothen Mecres" (Berlin, 1834); Abhand. d. k. Akad. d. Wissenschoften in Berlin (1832). (8) I?. Miilne-Edwards. Recherches sur les polypiers de France (Paris, 1841-IS-4). (9) H. Milne-Edwards, papers in the Annales des sciences n.:srelles ($1841-1860$). (10) H. de Lacaze-Duthicrs, papers in the A inales des sciences naturelles, e.f. "Anomia " (185.), "Myrilus" (1.56), "Dentalium" (1856-1857), "Purpura " (1859), "Haliotis (1-59), "Vermetus" (i860). (I1) A. Kolliker, Entwickehungsgesal:hite der Cephalopodes (Zurich, 184.4). (12) C. G. Gegenbaur, Litepsuchungen über Pteropoden und ITeleropoden, (Leipzig, 1855). (1i) J. W. Spengel, "Die Geruchsorgane und das Nervensystem der Mallusken," Zeilsehr. f. wiss. Zool. (1881). (14) Richard Owen, Memoir on the Pearly Nautilus (London, 1832). (15) L. Cuenot, "Excrétion chez les molfusques," Arch. d.bial. xvı. (1899). (16) P. Geddes. "On the Mechanism of the Odontophore in certain Mollusca." (17) T. H. Huxley, "On the Morphology of the Cephalous Mollusca," Phil. Trans. (1853). (18) Von Jhering, Vergleichende Anasomic des Nervensystems und Plsylogenie der Mollusken (Leipzig. 1877). (19) E. R. Lankester. "Contributions to the Developmental History of the Molluscã." Phil. Trans. (t875): "Note on the Coclon ay 1 Vascular Sysiem of Mullusca and Arthropoda, "Quort. Journ. I'ic. Sci. xxxiv. (1893). (20) P. Pelsencer: Introduclion à l'étude de: Mollusques (Brussels, 1804); "Recherches sur hes Mollwsques archaigues," Mem. cont. Acad, belgn, Lvis. (1899); "Mollusca." Lankester's Treatise on Zoology, pt. v. (igo6).
II. Conchology.-(2I) Cooke, Molluscs," Cambridge Natural History, vol. ini. (1895). (22) Fischer, Manuel de conch yliologie (1887). (23) Jeffreys. British Conchology (1862-1869). -(24) Simroth. " Mollusce," Bronn s Klassen wnd Ordnwengexides Thierreicks. Bd. iii. (i8gs), in prog. (25) Tryon, Mansal of Conchology (1878), in prog. (26) Woodward, A Mansal of the Mollusca (1880). (E.R. L.; J. T. C.)

MOLLOSCOIDA, a name long employed to denote a division of the animal kingdom which contained Brachiopods (q.i.), Polyzoo (g.v.), and Tunieata (q.v.), the members of the three groups having been supposed to resemble the Mollusca. As it is now known that these groups have no relation to molluscs, and very little to one another, the name Molluscoida bas been abandoned.

MOLEY MAGUIREX, an Irish American secret society which maintained numerous branches in the anthracite coal regions of Pennsylvania, U.S.A., from 1854 to 1877 , and perhaps later. The name was imported from Ircland, where it had been used to designate one of the Ribbon societies that devoted its energies to intimidating and maltreating process servers and the agents of landlords, and whose greatest activity was between 1835 and 1855 . The Irish society of Molly Maguires seems to have been organized in 1843 in the barony of Farney, Co. Monaghan, to co-operate with the ribbonmen, and its membership seems to have been confined to the very lowest classes. The Molly Maguires of Pennsylvania consisted of similar classes of Irishmen, but there seems to have been no connexion between the two societies. Every member of the American organization was also a member of the Ancient Order of Hibernjans, an association organized for benevolent purposes, and having branches throughout the United States and Great Britain. To the Ancient Order of Hibernians none might be admilted but persons of Irish birth or descent, who were Roman Catholics, and whose parents were Roman Catholics; but notwithstanding this requirement, the organization-being a secret society-was under the ban of the Catholic Church. At the head of each division or lodge there was a " body master," who communicated directly with a county delegate; the county delegates reported to the state delegate, and the state delegates to a national delegate. The supervision of the whole order was vested in a "Board of Erin," meeting quarterly in England, Ireland or Scotland, and at each meeting arranging a new code of signals and passwords, which were communicated to the national delegate in the United States by the steward of a transatlantic steamship, and thence were transmitted to the various subdivisions. In the mining districts of Pennsylvania the organization fell under the contral of a lawless element,
which created the inner order of "Molly Maguires," with the object, it appears, of intimidating the Welsh, English, and German miners, and of ridding the region of mine superintendents, bosses and police who should make themselves in any way objectionable to members of the order. Any member having a grievance might lay a formal complaint before his "body master," who thereupon conferred with the officers of the neighbouring divisions and secured members from a distance to make away with the offending person. Under this system the crimes in a given district were always committed hy strangers rendering identification of the criminal difficult and escape easy. The society grew in strength during the Civil War, when the increased demand for coal caused an influx of miners, many of them lawless characters, into the coal-fields, and in 1862-1863 it opposed enlistments in the Federal Army and roughly treated some of the enlisting officers. After the war its activity was shown by an increasing number of assassinations, burnings and other outrages, until hy 1875 it completely dominated the mining classes and forced a general strike in the coal regions. After repeated efforts to bring the criminals to justice had failed, Franklin B. Gowen (1836-1889), president of the Philadelphia and Reading Coal and Iron Company, sent James McParten, on Irish Catholic and a Pinkerton detective (who some thirty years later attracted attention in the investigation of the assasaination of Governor Steunenberg of Idaho), to the mining region in 1873; he joined the order, lived among the "Molly Maguires " for more than two years, and even became secretary of the Shenandoah division, one of the most notoriously criminal lodges of the order. The evidence he secured led to the arrest, conviction, and execution or imprisonment of a large number of members during the years $1876-1877$, and subsequently the outrages ceased and the society was disbanded.
See F. P. Dewees, The Molly Maguires (Philadelphia, 1877): Allan Pinkerton, The Molly Maguires and che Deloctives (New York, 1877); E. W. Lucy, The Molly Maguires of Pennsydoania; (London. n.d.): The Commompeallth versus John Kehoe et al. (Portsville, Pa-, ${ }^{2878}$); and an article by J. F. Rhodes in Amer. Hist. Reviewn, April, 1910.

W0LOCH, or MoLech (in Hebrew, with the doubtful exception of I Kings xi. 7, always "the Molech "), the name or title of the divinity which the men of Judah in the last ages of the kingdom were wont to propitiate by the sacrifice of their own children. According to the Hebrew consonants it might simply be read "the king" (melek), an appellation for the supreme deity of a Semitic state or tribe. The traditional pronunciation (MoNbx), which goes back as far as the Septuagint version of Kings, probably means that the old form was perverted by giving it the vowels of bosheth "shame," the contemptuous name for Baal (g.v.). In I Kings ri. 7 (see above) it is the name of the god of the Ammonites, elsewhere called Milcom or Malcam; but it appears from 2 Kings mxiii. so, 13 that the worship of Milcom at the shrine set up by Solomon was distinct from Molech worship, and the text should probably therefore be emended to the longer form (so the Septuagint).

The phrase employed in speaking of these sacrifices is that of dedication-" to mate one's son or daughter pass through (or by means of) fire to (the) Molech" (2 Kings mxii. 10; but elsewhere without the words "through fire" Lev. aviii. 11); and it appears from Jer. vii. 31, rix. 5; Exek. zvi. 20 seq., that this phrase denotes a human holocaust, ${ }^{1}$ and not, as sometimes has been thought, a mere consecration to Molech by passing through or between fires, as in the Roman Palilic and similar rites elsewhere (on which see Frazer, Golden Bough, and ed., ii. 40 sqq., iii. 237 sqq.). Human sacrifice was common in Semitir beathenism, and at least the idea of such sacritices was
${ }^{1}$ In 2 Chron, xxviii. 3 (parallel to 2 Kings xvi. 3) a single letter is transposed in the phrase, changing the sense from "caused to pess through the fire "to "caused to burn with fire." Geiger (Ursehrift und Uebersetsung, p. 30) very unnecessarily supposed that this was everywhere the original reading, and that it had been changed to soften the enormity ascribed to the ancient Hebrews. The phrase "to give one's seed 10 Molech "(Lev. xx. 2 seq.), and the fact that these victims wero (like other sacrifices) regarded as food for the deity (Exel. mwi. 20) explain and jurtify the common reading.
not unknown to Israed from early timen (see Isaac; Jxpititair).* We learn from 2 Kings iii. 27 that the piacular sacrifice of hie son and heir was the last offering which the king of Moab made to deliver his country. Even the Hebrew historias ascribes to this act the effect of rousing divine indignation against the invading host of Israel; it would not, therefore, be surprising if under the miseries brought on Palestine by the west ward march of the Assyrian power, the idea of the sacrifice of one's own son, as the most powerful of atoning rites, should have taken bold of thoee kings of Judah (Ahaz and Manasmeh, 2 Kinge avi. 3, xui. 6) who were otherwise prone, in their hopelesseness of help from the old religion (lise. vii. 12), to seek to strange peoples and their rites. Ahaz's sacrifice of his son (which indeed rests on a somewhat late authority) was apparently an isolated act of despair, since human sacrifices are not among the corruptions of the popular religion spoken of hy Isaiah and Micah. In the 7th century, however, when the old worship had sustained rude shocks, and all religion was transformed into servile fear (Mic. vi. I seq.), the example of Manasseh did not stand alone, and Jeremiah and Ezekiel made frequent and indignant reference to the "high places" for the sacrifice of children by their parents which rose beneath the very walls of the temple from the gloomy ravine of Hinnom or Tophet.' (Jer. vii. 31, xix., rxxii. 35; Exek. 2vi. 18 sqq., x xiii. 37). The children apparently were not burned alive; they were slain and burned like any other holocaust (Ezel. loc. cit.; Isa. Ivii. s), their blood was shed at the sanctuary (Jer. xix. 4; Ps. cvi. 38). Thus the late Rabbinical picture of the calf-headed brazen image of Molech within which children were burned alive is pure fable, and with it falls the favourite comparison between Molech and the Carthaginian idol from whose brazen arms children were rolled into an abyss of fire, and whom Diodorus (xIx. 14) naturally identifies with the child-eater Kronos, thus leading many moderns to make Molech the planet Saturn.

It is with these sacrifices that the trame of "the Molech" is always connected; sometimes "the Baal " (lord) appears as a synonym. At the same time, the horrid ritual was so closely associated with Yahweh worship (Ezek. xxiii. 39) that Jeremiah more than once finds it necessary to protest that it is not of Yahweh's institution (vii. 31, xix. 5). So too it is the idea of sacrificing the firstborn to Yahweh that is discussed and rejected in Micah vi. It is indeed plain that such a sacrifice-for we have here to do, not with human victims in general, but with the sacrifice of the dearest earthly thing-could only be peid to the supreme deity; and Manasseh and his people never ceased to acknowledge Yahweh as the God of Israel. Thus the way in which Jeremiah (Jer. xix. 5) and the legislation of Leviticus (xviii. 21, xx. 2-5) and the author of Kings, seem to mark out the Molech or Baal as a false god, distinct from Yahweh, is precisely paralled to the way in which Hosea speaks of the golden calves or Baalim. In each case the people thought themselves to be worshipping Yahweh under the title of Molech or Baal; but the prophet refuses to admit that this is so, because the worship itself is an apostasy to heathenism. Note, also, the attitude of Erekiel in 2I. 25 seq., 31, references which cannot be explained away.

Although the motive came from within, the form taken by the cult has appeared to many to be of non-Israelite origin. Bahylonia and Assyria, however, seem to be out of the question: molik," arbiter, decider," is there an epithet of various gods, and as an appellative means "prince " and not king; further, little
${ }^{2}$ In Hos xiil 2, the interpretation " they that sacrifice men " is improbable, and 2 Kings xvii. 17 and Lev. xviii., x. are of too Late date by theonselves to prove the immolation of children to Moloch in old larael. The "bant" (ov), which was a religious execution of criminals or enemies, was common ta larael fith its heathea neighbours (cf. the inscription of Mesha), but lacked the distinctive character of a sacrifice in which the viction is the food of the deity. conveyed to him through fire.
${ }^{3}$ The etymology of the word Tophet is obecure; it it poneibly of Aramaic origin and means " fire-ploce," cf. toptheh, "pyre, (Isat xox. 33). The vocalization is artificial, the Masoretes having given it the vowel-points of bosheth See W. R. Smith, Religiom of ite Semites. and ed. 377.
evidence for the prevalence of human sacrifice has as yet been found in those lands (A. Jeremias, Das Alle Test, im Lichte d.allem Orients, and ed., p. 454). Among the Canaanite branch, the king-god is more prominent, and apart from the Ammonite variant Milcom, numerous names compounded with Milk-are found on Phoenician inscriptions and among western Semites mentioned in cuneiform literature (H. Zimmern, Keifisscke. w. das Alle Test., 3rd ed. pp. 470 sq9.). It is true that childsacrifice in connexion with fire prevailed among the Pboenicians, and, according to the Greeks, the deity honoured with these grisly rites was Kronos (identified with the Pboenician El, "God "). On the other hand, the seat of the cult appears to have been at Jerusalem, and the period during which it flourished does not favour any strong Phoenician influence. Again, the form of the word Tophet and Ahar's association with Damascus might point to an Aramacan origin for the cult; bat it would not be safe to support this view by the statements and names in 2 Kings xvii. 31. On the whole, the biblical tradition that the Molech-cult was Canaanite and indigenous (Deut. xii. 29 sq9., rviii. q seq.) holds the ground. There was a tendency in time of misfortune to revert to earlier rites (illustrated in some ancient mourning customs), and it may have been some old disused practice revived under the pressure of national distress.

See, generally, G. F. Moore, Eucy. Bib., s.0.: Lagrange, EIudes swr les religions stmiliques 2nd ed. pp. 99-109; B. Stade, Bib. Theod d. A4. Tesf. i 232 seq., 244 seq. ij. G. Frazer, Adonis, \&c., 2 ad ed . pp. 144 seq. 401 sq9: and J. A. Montgomery, Journ. Bib. LiL., 1908, 1. 40 eqq. On archaeological evidence for human sacrifice from Palestimian soil, se H. Vincent, Caraas d'apres Cexplonation ricente, pp. 50, 116, 189 syq.
(W. R.S.; S.A.C.)

MOLSHEIM, \& town of Germany, in the imperial province of Alsace-Lorraine at the foot of the Vosges, on the Brensch and at the junction of railways to Zabern and Straseburg. Pop. (1905), 3164. It contains a beautiful Roman Catholic and a Protestant church, a handsome new town-hall and an agricaltural school. Its industries embrace the manufacture of iron and steel goods, tanning and organ-building. There is also some trade in wine. Molsheim was known in the gth century as Molleshem, and formerly was the seat of a famous Jesuit college, which in 1702 was removed to Strassburg and united with the university of that city.

HOLTIKE ADAM GOTILOB, CoUNT (1710-1792), Danish courtier, was born on the roth of November 1710, at Riesenhof in Mecklenburg. Though of German origin, many of the Moltkes were at this time in the Danish service, which was considered a more important and promising opening for the young north German noblemen than the service of any of the native principalities; and through one of his uncles, young Moltke became a page at the Danish court, in which capacity he formed a life-long friendship with the crown prince Frederick, afterwards Frederick V. He never had any opportunity of enriching his mind by travel or study, but be was remarkable for a strongly religious temperament and seems for some time to have been connected with the Moravians. Immediately after bis accession, Frederick V. made him hofmarskal (court marshal), and overwhelmed him with marks of favour, making him a privy councillor and a count and bestowing upon him Bregentved and other estates. As the inseparable companion of theking, Maltke's infuence soon became so boundless that the foreign diplomatists declared he could make and unmake ministers at will. Fortunately be was no ordinary favourite. Naturally tactful and considerate, he never put difficulties in the way of the responsible ministers. Especially interesting is Moltke's attitude towards the two distinguished statesmen who played the ieading parts during the reign of Frederick V., Johan Sigismund Schulin and the elder Bernstorff. For Schulin he had a sort of veneration. Bernstorf irritated him hy his grand airs of consciors superiority. But though a Prossian intrigue was set up for the supersession of Bernstorff by Moltke. the latter, convinced that Bernstorf was the right man in the tight place, supported him with unswerving loyalty. Moltke was far less liberal in his views than many of his contemporaries. He looked askance at all projects for the emancipation of the
serfs, but, as one of the largest landowners of Denmark, he did much service to agriculture by lightening the burdens of the countrymen and introducing technical and scientific improvements which greatly increased production. His greatest merit, however, whe the guardianship he exercised over the king, whose sensasi temperament and weak character exposed him to many temptations which might have been very injurious to the atate. Frederick had the good sense to appreciate the honesty of his friend and there was never any serious breach between them. On the death of Queen Louisa the king would even have married one of Moltke's daughters had he not peremptorily declined the dangerous honour. On the decease of Frederick V., wbo died in his arms (Jan. 14, 1766), Moltke's dominion was at an end. The new king, Christian VII., could not endure him, and exclaimed, with reference to his lanky figure: "He's stork below and fox above." He was also extremely unpopular, because he wha wrongly suspected of eariching himself at the public expense. In July 1766 be was dismissed from all his offices and retired to has estate at Bregentved. Subsequently, tbrough the interest of Russia, to whom he had always been tavourable, he regained bis seat in the council (Feb. 8, 1768), but his infinence was slight and of brief endurance. He was again dismissed without a pension, on the roth of December 1770, for refusing to have anything to do with Struensee. He lived in retirement till his death on the 25th of September 1792.
His memoirs, written In German and published in 1870, have considerable historical importance. See H. H. Langhorn, Historische Nachricht uiber die dänischem Mollhes (Kiel, 1871). (R. N. B.)

MOLTKE, ADAM WILBEIM, COONT (1785-1864), Danish statesman, son of the minister Joachim Godske Molthe (17461818), and grandson of Adam Gottlob Moltie, was born at Einsiedelsborg in Funen, on the 25th of August 1785 . Under the influence of the agricultural reformer Cbristian Colbjornsen he ahandoned the legal career he had adopted and entered the administrative service of the state, to which be devoted the remainder of his life. In 183 y be succeeded Johan Sigismund Mosting ($1789-1843$), as minister of finance. On the death of Christian VIII. he was one of the most prominent members of the Council of State, and when the constitutional crisis came in 1848 he seemed marked out as the man who could bridge over the gap bet ween the ofd era and the new. The services which Count Moltke rendered to Denmark cannot be too highly appreciated. The mere fact that a distinguished statesman who had served the last two absolute kings of Denmark now voluntarily placed himself at the head of a ministry which included the most advanced of the popular agitators, gave the new government the hall-mark of stability and trustworthiness, whilst the fact that he still retained the ministry of finance was of itself a guarantee of security during the earlier years of a troublesome and costly war. It was this, his first administration, which introduced the constitution of the sth of June 1849. and he also presided over the third constitutional ministry which was formed in July 1851 ; but he resigned on the 27 th of January 1852, because he could not approve of the decree which aimed at transforming Denmark into a composite, indivisible, monarchy. Moltke continued to take part in public life as a member of the Landsting, or Upper House, but henceforth kept in the background. On the and of October 1855 he was elected a member of the consultative Rigsrasd, a position he continued to hold till 1863. He died on the 15 th of February 1864
See Swalin. Dat danshe Shaatsraad (Stockholm, 1881): Madvig, Liescrindringer (Copenhagen, 1887).
(R. N. B.)

MOLTKR, HELMUTH CARL BERNBARD, COONT VOH (1800-1891), Prussian feld marshal, for thirty years chief of the stafl of the Prussian army, the greatest strategist of the latter half of the igth century, and the creator of the modern method of directlag armies in the field, was born on the 26th of October 1800, at Parchim in Mecklenburg, of a German family of ancient nobility. His fatber in $\mathbf{8 0 5}$ settled In Holstein and
${ }^{1}$ He was said to be worth 10 million rix-dollars, but proved thet be had lems that ore million.
became a Danish subject, but about the same time was impoverished by the burning of his country house and the plunder by the French of his town house in Lübeck, where his wife and children were. Young Mollue therelore grew up in straitened circumstances. At the age of nioe he was sent as a boarder to Hohenfelde in Holstein, and at the age of eleven to the cadet school at Copenhagen, heing destined for the Danish army and court. In 1813 he became a page to the king of Denmark and second lieutenant in a Danish infantry regiment. But at twenty-one he resolved to enter the Prussian service, in spite of the loss of seniority. He passed the necessary examination with credit, and became second lieutenant in the Sth Infantry Regiment stationed at Frankfort-on-Odec. At twenty-three, after much less than the regulation term of service, be was allowed to enter the general war school, now the war academy, where he studied the full three years and passed in 8826 a brilliant final examination. He then for a year had charge of a cadet school at Frankfort-on-Oder, after which he was for three years employed on the military survey in Silesia and Posen. In 1832 he was seconded for service on the general staff at Berlin, to which in 1833 on promotion to first lieutenant he was trangferred. He was at this time regarded as a brilliant officer by his superiors, and among them by Prince William, then a lieutenant-general, afterwards king and emperor. He was well received at court and in the best society of Berlin. His tastes inclined him to literature, to bistorical study and to travel. In 1827 he had published a short romance, The T 200 Friends. In 1831 it was followed by an essay entitled Holland and Belgium in their Mulual Relations, from their Separation wrder Philip II. to their Reunion under William I., in which were displayed the author's intercst in the political issues of the day, and his extensive historical reading. In 1832 appeared An Account of the Intarnal Circumstances and Social Conditions of Paland, a secoad study of a burning question based both on reading and on personal observation of Polish life and character. In 1832 he contracted to translate Gibbon's Dedine and Fall into German, for which be was to receive $\mathbf{2 7 5}$, his object being to earn the money to buy a horse. In eighteen months he had finished nine volumes out of twelve, hut the publisher failed to produce the book and Moltke never received more than f25, so that the chief reward of his labour was the historical knowledge which he acquired. He bad already found opportupities to travel in south Germany and northern Italy, and in 1835 on his promotion as captain be obtained six months' leave to travel in south-castern Europe. After a short stay in Constantinople he was requested by the sultan to enter the Turkish service, and being duly authorized from Berlin he accepted the offer. He remained two years at Constantinople, learned Turkish and surveyed for the sultan the city of Constantinople, the Bosporus and the Dardanelles. He travelled in the suhan's retinue through Bulgaria and Rumelia, and made many other journeys on both sides of the Strait. In 1838 be was sent as adviser to the Turkish general commanding the troops in Armenia, who was to carry on a campaign against Mehemet Ali of Egypt. During the summer he made extensive reconnaissances and surveys, riding several thousand miles in the course of his journeys, navigating the dangerous rapids of the Euphrates, and visiting and mapping many districts where no European traveller had preceded him since Xenophon. In 1839 the army moved south to meet the Egyptians, but upon the approach of the enemy the general became more attentive to the prophecies of the mollahs than to the advice of the Prusslan captain. Moltke resigned his post of staff officer and took charge of the artillery, which therefore, in the ensuing battle of Nezib or Nisib, was the last portion of the Turkish army to run away. The Turks were well beaten and their army dispersed to the four winds. Moltke with infinite hardship made his way back to the Black Sea, and thence to Constantinople. His patron Sultan Mahmoud was dead, so be returned to Berlin where he arrived, broken in health, in December 1839. When he left Berlin in 1834 he had already " the courtier's, soldicr's, scholar's eye, tongue, sword." When he returned it was
with a mind expanded by a rare experience, and with a character doubly tempered and annealed. While away, he had been a constant letter-writer to his mother and sisters, and he now revised and published his letters as Letters on Conditions and Eocnts in Turkey in the Years 1835 to 1839. No other book gives so deep an insight into the character of the Turkish Empire, and no other book of travels better deserves to he regarded as a German classic. One of his sisters had married an Eoglish widower named Burt, who had settled in Holstein. Her stepdaughter, Mary Burt, had read the traveller's letters, and when he came bome as a wooer was quickly won. The marriage took place in 1841, when Mary was just turned sixteen. It was a very happy union, though there were no children, and Molike's love-letters and letters to his wife are among the most valuable materials for his biography. On bis return in 1840 Mollke had been appointed to the stafi of the $4^{t h}$ army corps, stationed at Berlin; he was promoted major on his wedding day. The fruits of his Eastern travels were by no means exhausted. He publisbed his maps of Constantinople, of the Bosporus and of the Dardanelles, and, jointly with other German travellers, a new map of Asia Minor and a memoir on the geography of that couatry, as well as a number of periodical essays on various factors in the Eastern Question. In 1845 appeared The Russo-Turkish Campaign in Europe, 1828-29, described in 2845 by Boron ton Molike, Major in the Prussian Slaff, a volume which was recognized by competent judges as a masterpiece of military history and criticism. Molcke at this period was much occupied with the development of railways. He was one of the first directors of the Hamburg-Berlin anilway, and in 1843 published a review article entitled What Considerations should determine the Choice of the Course of Railmays? which reveals a mastery of the technical questions involved in the construction and working of railway lines.

In 1845 Moltke was appointed personal adjutant to Prince Heary of Prussin, a Roman Catbolic who lived at Rome. He thus had the opportunity of a long stay in the Eternal City, with no more than nominal duties to perform. It was a life which be and his wife much enjoyed, and he spent much of his leisure in a survey, of which the result was a splendid map of Rome, published at Berlin in 1852 . In 1846 Prince Henry died, and Moltke was then appointed to the stafi of the 8 th army corps at Coblens. In 1848, after a brief retarn to the great general staff at Berlin, be became chief of the staff of the 4 th army corps, of which the beadquarters were then at Magdeburg, where be remained seven years, during which he rose to lieutenantcolonel (1850), and colonel (1851). In 185s be was appointed first adjutant to Prince Frederick William (afterwards crown prince and emperor), whom be accompanied to England on his betrothal and marriage, as well as to Paris and to St.Petersburg to the coronation of Alezander II. of Russia. Prince Frederick William was in command of a regiment stationed at Breslau, and there as bis adjutant Moluce remained for a year, becoming major-general in 1856. On the 23rd of October 1857, owing to the serious illness of King Frederick William IV., Prince William became prince regent. Six days later the regent selected Moltke for the then vacant post of chief of the general staf of the army. The appointment was made definitive in January ${ }^{18} 58$. Moitke's posthumously published military works disclose 2 remarkable activity, beginning in 1857 , devoted to the adaptation of strategical and tactical methods to changes in armament and in means of communication, to the training of staff officers in accordance with the methods thus worked out, to theperfection of the arrangements for the mobilization of the army, and to the study of European politios in connerion with the plans for campaigns which might become necessary. In 1859 came the war in Italy, which occasioned the mobilization of the Prussian army, and as a consequence the reorganization of that army, by which its numerical strength was nearly doubled. The reorganization was the work not of Moltike but of the king, and of Roon, minister of war; but Moltke watched the Italian campaign closely, and wrote a history of it, published in r862, and attributad on the tille-page to the historical division of the Prussian
staff, which is the cleareat account of the campaizn and contains the best criticiem upon it. In December 1862 Moluke was asked for an opinion upon the military aspect of the quarrel with Denmark then becoming acute. He thought the difficulty would be to bring the war to an end, as the Danish army would if possible retire to the islands, where, as the Danes had the command of the sea, it could not be attacked. He sketched 2 plan for turning the flank of the Danish army before the autack upon its position in front of Schleswig, and hoped that by this means its retreat might be intercepted. When the war began in February 1864, Molthe was not sent with the Prussian forces, but kept at Berlin. The plan was mismanaged in the execution, and the Danish army escaped to the fortresses of Dïppel and Fredericia, each of which commanded a retreat across a strait on to an island. The allies were now checked; Düppel and Fredericia were besieged by them, Düppel taken by storm, and Fredericia abandoned by the Danes without assault; but the war showed no signs of ending, as the Danish army was safe in the islands of Alsen and Fünen. On the zoth of April Moltke was sent to be chief of the staff to the commander-in-chicf of the allicd forces, and, so soon as the armistice of May and June was over, persuaded Prince Frederick Charles to attempt to force the passage of the Sundewitt and attack the Danes in the island of Alsen. The landing was effected on the 2gth of June, and the Danes then evacuated Alsen. Moltke next proposed a landing in Fünen, hut it was unnecessary. The Danes no longer felt safe in their islands, and agreed to the German terms. Molke's appearance on the scene had quickly transformed the aspect of the war, and his influence with the king had thus acquired a firm basis. Accordingly, when in 1866 the quarrel with Austria came to a head, Moltke's plans were adopted and be was almost invariably supported in their execution. A disciple rather of Clausewitz, whose theory of war was an effort to grasp its conditions, than of Jomini, wbo ex. pounded a system of rules, Moltke regarded strategy as a practical art of adapting means to ends, and had developed the methods of Napoleon in accordance with the altered conditions. He had been the first to realize the great defensive power of modern fircarms, and had inferred from it that an enveloping attack had become more formidable than the attempt to pierce an enemy's front. He had pondered the tactics of Napoleon at Bautzen, when the emperor preferred to bring up Ney's corps, coming from a distance, against the flank of the allies, rather than to unite it witb his own force before the battle; he had also drawn a moral from the combined action of the allies at Waterloo. At the same time be bad worked out the conditions of the march and supply of an army. Only one army corps could be moved along one road in the same day; to put two or three corps on the same road meant that the rear corps could not be made use of in a battle at the front. Several corps stationed close together in a small area could not be fed for more than a day or two. Accordingly he inferred that the essence of strategy lay in arrangements for the separation of the corps for marching and their concentration in time for battle. In order to make a large army manageable, it must be broken up into separate armies or groups of corps, each group under a commander authorized to regulate its movements and action subject to the instructions of the commander-in-chief as regards the direction and purpose of its operations. In the strategy of 1866 the conspicuous points are: (1) The concentration of effort. There were two groups of enemies, the Austro-Saxon armies, 270,000; and the north and south German armies, 120,000 . The Prussian forces were 64,000 short of the adverse total, but Moltke determined to be superior at the decisive point against the Austro-Saxons; he therefore told off 278,000 men for that portion of the struggle, and employed only 48,000 men in Germany proper. His briliant direction enabled the 48,000 to capture the Hanoverian army in less than a fortnight, and then to attiack and drive asunder the south German forces. (2) In dealing with AustroSaxony the difficulty was to heve the Prussian army first ready -no easy matter, as the king would not mobilize until after the Austrians. Moltke's railway knowledge helped him to save
time. Five lines of railway led from the various Prussian provinces to a series of points on the southern frontier on the curved line Zeitz-Halle-Görlitz-Schweidnitz. By employing all these railways at once, Moltise had the several army corpe moved simultaneousty from their peace quarters to points on this curved line. When this first move was finished the corps then marched along the curve to collect into three groups, one near Torgau (Elbe army), another at the west end of Silesia (first army. Prince Frederick Charles), the third between Landshut and Waldenberg (second army, crown prince). The first army when formed marched eastwards towards Gorlitz. The small Saxon army at Dresden now had the Eibe army in its front and the first army on its right flank, and as it was outnumbered by either of them, its position was untenable, and so soon as hostilities began fell back into Bohemia, where it was joined by an Austrian corps, with which it formed an advance guard far in front of the Austriao main army concentrated near Olmuitz. The Elbe army advanced to Dresden, left a garrison there, and moved to the right of Prince Frederick Charles, under whose command it now came. (3) Moltke now had two armies about 100 miles apart. The problem was how to bring them together 50 as to catch the Austrian army between them like the French at Waterloo between Wellington and Blucher. If, as was thought likely, the Austrians moved upon Breslau, the first and Elbe armies could continue their eastward march to co-operate with the second. But on the 15 th of June Moltke learned that on the inth of June the Austrian army had been spread out over the country between Wildenschwerdt, Olmütz and Briunn. He inferred that it could not be concentrated at Josefstadt in less than thirteen days. Accordingly he determined to bring his own two armies together by directing each of them to advance towards Gitsclun. He foresaw that the march of the crown prince would probably bring him into collision with a portion of the Austrian army; but the crown prince had 100,000 men, and it was not likely that the Austrians could have a stronger force than that within reach of him. The order to advance upon Gitschin was issued on the 22nd of June, and led to one of the greatest victories on record. The Austrians marched faster than Moltke expected, and might have opposed the crown prince with four or five corps; but Benedek's attention was centred on Prince Frederick Charles, and he interposed against the crown prince's advance four corps not under a common command, so that they were beaten in detail, as were also the Saxons and the Austrian corps with them, by Prince Frederick Charles. On the ist of July Benedek collected his already shaken forces in a defensive position in front of Koniggritz. Moltke's two armies were now within a march of one another and of the enemy. On the 3rd of July they were brought into action, the first against the Austrian front and the second against the Austrian right flank. The Austrian army was completely defeated and the campaign decided, though an advance towards Vienna was needed to bring about the peace upon Prussia's terms. Moltke was not quite satisfied with the battle of Königgrattz. He had tried to have the Elbe army brought up to the Elbe above Koniggratz so as to prevent the Austrian retreat, but its general failed to accomplish this. He also tried to prevent the first army from pushing its attack, hoping in that way to keep the Austrians in their position until retrent should be cut off by the crown prince, but he could not restrain the impetuosity of Prince Frederick Charles and of the king. During the negotiations Bismarck, who dared not risk the active intervention of France, opposed the king's wish to annex Saxony and perhaps other territory beyond what was actually taken. Moleke would not have hesitated; he was confident of beating both French and Austrians if the French should intervene, and he submitted to Bismarek his plans in case of need for the opening moves against both French and Austrians.

After the peace, the Prussian Diet voted Moltae tbe sum of C 30,000 , with which be bought the estate of Creisau, near Schweidnitz. in Silesia. In 1867 was published The Campaign of 1860 in Germany, a history produced ander Molike's personal
supervision, and remarkable for its combination of accuracy with reticence. On the 24th of December 1868 Moltue's wife died at Berlin. Her remains were buried in a small chapel erected by Moltice as a mausoleum in the park at Creisau.
In 1870 suddenly came the was with France. The probability of such a war had occupied Moltke's attention almost continuously since 1857 , and a series of memoirs is preserved in which from time to time he worked ont and recorded his ideas as to the best arrangement of the Prussian or German forces for the opening of the campaign. The arrangements for the transport of the army by railway were annually revised in order to suit the changes in his plans brought about by political conditions and by the growth of the army, as well as by the improvement of the Prussian system of railways. The great successes of 1866 bad strengthened Moltke's position, so that when on the r5th of July 1870 the order for the mobilization of the Prussian and south German forces was issued, his plans were adopted without dispute and five days later he was appointed "Chief of the general staff of the army at the headquarters of his Majesty the King " for the duration of the war. This gave Molke the right to issue in the king's name, though of course not without his approval, orders which were equivalent to royal commands. Motike's plan was to assemble the whole army to the south of Mainz, this being the one district in which an army could best secure the defence of the whole frontier. If the French should disregard the neutrality of Belgium and Luxemburg, and advance on the line from Paris to Cologne or any other point on the Lower Rhine, the German army would be able to strike at their flank, while the Rhine itself, with the fortresses of Cohlenx, Cologne and Wesel, would be a serious obstacle in their front. If the French should attempt to invade south Germany, an advance of the Germans up either bank of the Rhine would threaten their communications. Moltke expected that the French would be compelled by the direction of their railways to collect the greater part of their army near Metz, and a smaller portion near Strassburg. The German forces were grouped into three armies: the first of 60,000 men, under Steinmetz, on the Moselle below Trèves; the second of 131,000 men, under Prince Frederick Charles, round Homburg, with a reserve of 60,000 men behind it; the third under the crown prince of 130,000 men, at Landau. Three army corps amounting to 100,000 men were not reckoned upon in the first instance, as it was desirable to kecp a considcrable force in north-eastern Germany, in case Austria should make common cause with France. If, as seemed probable, the French should take the initiative before the German armies were ready, and for that purpose should advance from Metz in the direction of Mainz, Moltke would merely put back a few miles nearer to Mainz the points of debarcation from the railway of the troops of the second army. This measure was actually adopted, though the anticipated French invasion did not take place. Moltke's plan of operations was that the three armies while advancing should make a right wheel, so that the first army on the right would reach the bank of the Mosclle opposite Metz, while the second and third armies should push forward, the third army to defeat the French force near Strassburg, and the second to strike the Moselle near Pont-à.Mousson. If the French army should be found during this advance in front of the second army, it would be attacked in front by the second army and in flant by the first or the third or both. If it should be found on or north of the line from Saarhurg to Luneville, it could still be attacked from two sides hy the second and third armies in co-operation. The intention of the great right wheel was to attack the principal French army in such a direction as to drive it north and cut its communications with Paris. The fortress of Metz was to be observed, and the main German forces, after defeating the chief French army, to march upon Paris. This plan was carried out in its broad outlines. The battle of Worth was brought on prematurely, and therefore led, not to the capture of MacMahon's army, which was intended, but only to its total defeat and hasty retreat as lar as Chalons. The battle of Spicheren was not intended by Moltke، who wished
to keep Basaine's army on the Sasr till he could attack it with the second army in front and the first army on lits left flank, while the third army was closing towards its rear. But these unintended or unexpected victories did not disconcert Moltke, whocarried out his intended advance to Pont-d-Mousson, there crossed the Moselle with the first and second armies, then faced north and wheeled round, so that the efiect of the batlle of Gravelotte was to drive Bazaine into the fortress of Metz and cut him off from Paris. Nothing shows Moluke's insight and strength of purpose in a clearer fight than his determination to attack on the 88 th of August, when many strategists would have thought that, the strategical victory having been gained, a tactical victory was unnecessary. He has been blamed for the last local attack at Gravelotte, in which there was a fruitless heavy loss; but it is now known that this attack was ordered by the king, and Moltke blamed himself for not having used his influence to prevent it. During the night following the batte Moltke made his next decision. He left one army to invest Bazaine and Metz, and set out witb the two others to march towards Paris, the more southerly one leading, so that when MacMahon's army should be found the main blow might be delivered from the south and MacMahon driven to the north. On the 25 th of August it was found that MacMahon was moving north-east for the relief of Bazaine. The moment Moltke was satisfied of the accuracy of his information, he ordered the German columns to turn their faces north instead of west. MacMahon's right wing was attacked at Beaumont while attempting to cross the Meuse, his advance necessarily abandoned, and his army with difficulty collected at Sedan. Here the two German armics were so brought up as completely to surround the French army, which on the 1st of September was attacked and compelled to raise the white flag. After the capitulation of. Sedan, Moltke resumed the advance on Paris, which was surrounded and invested. From this time his strategy is remarkable for its judicious economy of force, for he was wise enough never to attempt more than was practicable with the means at his disposal. The surrender of Metz and of Paris was a question of time, and the problem was, while maintaining the invest ment, to be able to ward off the attacks of the new French armies levied for the purpose of raising the sicge of Paris. Meta surrendered cn the 27th of October, and on the 28th of January 1871 an armistice was concluded at Paris by which the garrison became virtually prisoners and the war was ended.
On the 29th of October 1870 Moltke was created graf (count or earl), and on the 16th of June 1871, field marshal. After the war he superintended the preparation of its history, which was published between 1874 and 1881 hy the great general staff. In 1888 he resigned his post as chief of the stafi. In 1867 Moltke was elected to the Norch German Diet, and in 1871 to the Reichstag. His speeches, dealing mostly with military questions, were regarded as models of conciseness and relevancy. He died suddenly on the 24th of April 1891, and after a magnificent funeral ceremony at Berlin his remains were laid beside those of his wife in the chapel which he had erected as her tomb at Creisau.
As a strategist Moltke cannot be estimated by comparison with Frederick or Napoleon, because he bad not the authority either of a king or of a commander-in-chief. While it is doubtful whether he can be convicted of any strategical errors, it seems beyond doubt that he never bad to face a situation which placed any strain on his powers, for in the campaigns of 1866 and 28;0 his decisions seemed to be made without the slightest effort, and he was never at a loss.

He had a tall spare figure, and in his latter years his tanned features had received a set expression which was at once hard and grand. He was hahitually taciturn and reserved, though a most accomplished linguist, so that it was said of him that he was "silent in seven languages." The stern school of his early life had given him a rare self-control, so that no indiscreet or unkind expression is known to have ever fallen from him. Long before his name was on the lips of the public be was knows

In the army and in the steff as the "man of gold," the ideal character whom every one admired and who had no enemies.
Autimonities-Gcrammeltos Sahriften and Denkuoirdiatecien des General Foddmarschalls Grafen Helmuth mom Mollhe (8 vola, Berlin, 1892-1893); Molike's militarische Worke (Berlin, 9 vols, 1892-1900): Foddmarschall Moifike, by Max Jahns (3 vols., Berth. 1894-1000); Feldmarschall Graf Moube: Ein mifiedrisches Lebensbild, by W. Bigse, Obertit, \&c. (2 vols, Munich, 1901).
(H.S. W.)
moldiccas, or Spict Islands, a name which in its wider sense includes all the islands of the Malay Archipelago between Celebes on the W., New Guinea on the E., Timor on the S., and the open Pacific Ocean on the N. They are thus distributed over an area between $2^{\circ} 43^{\prime} \mathrm{N}$. and $8^{\circ} 23^{\prime} \mathrm{S}$. and $124^{\circ} 22^{\prime}$ and $\mathbf{3 3 5}$ E., and include: (i) the Moluccas proper or Ternate group, of which Halmahera is the largest and Ternate the capital; (2) the Bachian, Obi, and Xulla groups; (3) the Amboyma group. of which Ceram (Serang) and Buru are the largest; (4) the Banda Islands (the spice or nutmeg islands par excellence); (5) the southeatern islands, comprising Timor-Laut or Tenimber, Larat, \&c.; (6) the Kei Islands and the Aru Islands, of which the former are sometimes attached to the south-eastern group; and (7) the south-western islands or the Babar, Sermate, Leti, Damar, Roma and Wetar groups. At the close of the 16th century this part of the archipelago was divided among four rulers settled at Ternate, Tidore, Halmahera and Bachian. The northern portion belongs to the Dutch residency of Ternate, the southern portion to that of Amboyna.
The name Moluccas is said to be derived from the Arabic for "king." Argensola (1609) uses the forms islos Malucas, Maluco, and al Maluco; Coronel (1623), islas del Molwco; and Camoens, Maluco. Since 1867, when the political unity, under a governor, was dissolved, the Moluccas are often named by the Dutch the "Great East " (Groote Oart). Most of the islands are mountainous, with still active volcanoes. As they lie near or under the equator, the monsoons biowing over them are less regular, and the rainfall, of large volume throughout the year, is dependent on the height and direction of the chains. The vegetation of the small and narrow islands, all encompassed by the sea, is very lururiant, and the products, principally nutmegs, mace, and other spices, include also rice and sago. The inhahitants are of mixed descent. In some islands are people of obvious Papuan blood, while in others are Polynesian or Malayan tribes. With these three main races have crossed traders and colonists, Macassars, Buginese, Javanese and Europeans.
The geology of the Moluccas is very imperfectly lonown. The great chain of volcanoes which runs through Sumatra and Java is continued eastwards into the Moluccas, and terminates in a hookCilie curve which pasces through the Damar Ialavds to the Banda group. Outaide thin hook lies a concentric arc of non-volcanic Iliands, including Tenimber, the Lesser Kei lslands, Ceram and Buru; and beyond is etill a third concentric arc extending from Taliabu to the Greater Kei Islands. The islands of these outer arcs consist chiefly of crystalline schists and limentones, overlaid by Jurasic, Cretaceous and Tertary deposits. On the whole it appears that the older rocke are found more particularty towards the interior of the curve, and the newer rocks towards the exterior. Eruptive rocks of supposed Cretaceous age are met with in these outer islands. but Tertrary and recent volcanic lavas are confined to the imermost arc. Halmahera lies outside these arcs. It appeare to condix chiefly of gabbro, peridotite, eerpentine and otber very basic eruptive rocks, which are believed to be of Cretaceous age. Nummulitic limestone occurs in the south-ast. Upon the floor of older rock rise a number of volcanoce, some of which are now extinct while others are still active. Most of them lie near the west const or on the lalande off this const; and they are arranged in lines which run approximately from north to south, with, generally, a slight converity towards the weat.

See furthes Malay Arcmipelago, and aeparate articles on the. principal istands and groups.

MOLF (Gr. $\mu \omega \bar{\omega}$), a mysterious plant with magical powers described in Homer, Odyssey, x. 302-306. Hermes pulls it up and gives it to Odynecus as a protection against the arts of Circe. It is further described as "having a black root and a flower like milk, and hard for mortals to pull up." There has been mauch controversy as to the identification Philippe Champault-Phfniciens at Grecs en Italie d'afrds r'Odysste (1906),

PP. 504 seq.-decides in favour of the Peganum hommala (of the order Rutaceac), the Syrian or African rue (Gr. xì (awo), from the husks of which the vegetable alkaloid harmaline $\left(\mathrm{C}_{4} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}\right)$ is extracted. The flowers are white with green stripes. Victor Bérard-Les Phtniciens at COHysste, ii. 288 seq.-relying partly on a Semitic root, prefers the Atripler halimus (atriplex, Lat. form of Gr. ärphoakus, and \quad a $\mu \mu 0$, marine), order Chenopodiaceac, a herb or low shruh common on the south European coasts. These identifications are noticed by R. M. Henry in Class. Rev. (Dec. 1906), p. 434, who illustrates the Homeric account by passages in the Paris and Leiden magical papyri, and argues that moly is probably a magical name, derived perhaps from Phoenician or Egyptian sources, for a plant which cannot be certainly identified. He shows that the " difficulty of pulling up" the plant is not a merely physical one, but rather connected with the peculiar powers claimed by magicians. In Tennyson's Lotus Eaters the moly is coupled with the amaranth (" propt on beds of amaranilh and moly ').
LOLYBDEIITX, a mineral consisting of molybdenum disulphide, MOS. It closely resembles graphite in appearance, but may readily be distinguished from this by its greater density (4.7) and by its behaviour before the blowpipe. Crystals have the form of six-sided plates or scales, but they are never aharply defined, and their reference to the hexagonal system is doubtful. They have a perfect cleavage parallel to the large surface of the plates, and the flakes are readily bent, but are not clastic. The mineral is very soft ($\mathrm{H}=\mathrm{I}$ to $\mathrm{I} \frac{1}{2}$) and unctuous, and makes a bluish-grey mark on paper: it is opaque and has a hright metallic lustre. The colour is lead-grey difering slightly from that of graphite in having a bluish tinge. The name molybdenite is from the Greek μ phupbos, meaning lead or lead ore, with which graphite (black-lead) and molybdenite were confused; the latter wis distinguished by P. J. Hjelm, who in 1732 discovered the element molytdenum in this mineral.

Molybdenite occurs as disseminated scales in crystalline rocks-such as granite, gneiss, schist and marble-and also in quartz-veins. It has been found in small amounts at many localities, but only those which have yielded large crystals need be specially mentioned here, viz. in a pyroxene-rock at Aldfield in Pontiac county, Quebec; with native bismuth at Kingsgate in Gough county, New South Wales; with wolframite and scheelite in quarta-veins at Caldbeck Fells in Cumberlend; and recently, as crystals 6 in. across, at Slangsvold near Raade in Norway.

Molybdenite has been used mainly for the preparation of molybdates for use as chemical reagents. Recenth, however, it has been used in the manufacture of molybdenum steel (fero-molybdenum), which by reason of its hardness and toughness is specially suitable for tools.

EOLYBDRTUM [symbol, Mo; atomic weight, 96 ($0=16$)] a metallic chemical element. The name is derived from Gr. matufios, lead, and was originally employed to denote many substances containing or resembling lead; ulimately the term was applied to graphite and to molybdenum sulphide. The diference between these two latter substances was first pointed out by Cronstedt, and in 1778 C. Scheele prepared malybdic acid from the sulphide. Molybdenum occurs in nature chiefly as the minerals molybdenite (MoS_{7}) and wolfenite $\left(\mathrm{PbMOO}_{4}\right)$, and more rarely as molybdic ochre $\left(\mathrm{MoO}_{2}\right)$ and ilsemannite; it also occurs in many iron ores. The metal may be obtained by heating the trioxide with carbon in the dectric furnace (H. Moissan, Comples rendus, 1893, 116, p. 1225), or by the Goldschmidt method (Rosenheim and Braun, Zeil. anorg. Chom., 1905, p. 31I) or by dissociating the tetra- and pentachloride in a graphite crucible with an electric current below ${ }^{1330^{\circ}}$ U. N. Pring and W. Fielding, Jour. Chem. Soc., 1909, 95, p. 1497). It forms a grey coloured powder of specific gravity 9.or; it is malleable, and not as hard as glass. It is rapidly oxidized on heating to a temperature of $500^{\circ}-600^{\circ} \mathrm{C}$., and siso when fused with nitre or potassium chlorate. It is soluble in dilute nitric acid, and in concentrated sulphutic acid; in the
latter case with the formation of a blue solution which on heating becomes colourless, molybdenum trioxide being formed with the liberation of sulphur diozide.

Molybdenum combines with oxygen to form many oxides, thy sist important of which are, the monoxide, MoO.n (H, O), the scsquioxide. Mon_{2}, the dioxide, MoO_{2}, and the trioxide, MoO_{3}. Molymemam monoxide, $\mathrm{MoO}, n_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$, is a black powder obtained whot the dichloride is boiled with concentrated potash solution. Accorsliay to W. Muthmann and W. Nagel (Ber., 1898, 31, p. 2009), this oxide d.es not exist, the reaction leading to the formation of an hydroxide according to the equation: $\mathrm{MO}_{3} \mathrm{Cl}_{4}(\mathrm{OH})_{2}+4 \mathrm{KHO}+3 \mathrm{H}_{2} \mathrm{O}=$ $3 \mathrm{Mo}(\mathrm{OH})_{3}+4 \mathrm{KBr}+3 \mathrm{H}_{\text {. }}$ Molybdenum sesquioxide, Mos $\mathrm{O}_{\text {s }}$ a black mass insoluble in acids, is formed by beating the corresponding hydroxide in wacwo, or by digesting the trioxide with zinc and hydrochloric acid. Malybdenum dioxide, MoO_{2}, is formed by beating sodium trimolybdate, NasMos O_{10}, to redness in a current of hydrogen (L. Svanberg and H. Struve, Jowr. prak. Chem., 1848, 44, p. 3o1), or by long fusion of a mixture of ammonium molybdate, potassium carbonate, and boron trioxide (W. Muthmann, Anm., 1887, 238. p. 114). It forms quadratic prisms, having a violet reflex and insoluble in boiling hydrochloric acid. Molybdenum broxide, MoO_{3}, is prepared by oxidizing the metal or the sulphide by heating them in air, or wich nitric acid. It is a white powder, which turns pale yellow on beating. and melts at a red heat. It sublimes in small rhombic tables or needles, and is slightly soluble in cold water, the solution posscssing an acid reaction. Several hydrated forms of the oxide are known, and a colloidal varicty may be obtained by the dialysis of a string hydrochloric acid solution of sodium molybdate. Molybrimum trioxide, like chromium trioxide, is an acidic oxide, and forms salts known as molybdates. The normal molybdates show a teriency to pass into polymolybdates, The molybdates are also ctrpabla of combining with other oxides (such as phosphorus and asmeaic pentoxides) yielding very complex salts The ordinary omino nium molybdale, used as a test reagent for phosphates, is a salt of composition ($\left.\mathrm{NH}_{4}\right)_{1} \mathrm{MO}_{2} \mathrm{O}_{41}$; it has been cxamined physicochernically by J. Sand and F. Eisenlohr (Abst. J.C.S., 1907, ii. PP. 178, 179). The molybdates may be recognized by the fact that tliey gise a white precipitate on the addition of hydrochloric or nitric acids to their solutions, and that with reducing agents (zinc and sulphuric acid) they give generally a blue coloration which turns to a green and finally to a brown colour.

Molybdenum combines with the halogen clements in varying proportions, forming with chlorine a di-, tris, tetra-and penta-chtoride, and similar compounds with bronine and iodine Molybdenam dichloride $\left(\mathrm{MoCl}_{1}\right)_{3}$ or $\mathrm{Cl}_{4} \mathrm{MO}_{3} \mathrm{Cl}_{2}$ (chlormolybdenum chloride), is prepared. (together with some tetrachloride) by heating the trichloride in a stream of carbon dioxide (C. W. Blomstrand, Jour. f. prak.Chem.,1857,71, p. 449;1861,82, p. 433). It is a yellow amorphous powder which is soluble in dilute alkalis, the solution on acidification giving an hydroxide, $\mathrm{Cl}_{4} \mathrm{M} \mathrm{O}_{\mathrm{y}}(\mathrm{OH})$, which is soluble in nitrie acid, and does not give a reaction with silver nitrate. The molecular weight determinations of W. Muthmann and W. Nagel (Ber. 1898, 31, p. 2009) show the salt to possess the composition $\mathrm{Mo}_{3} \mathrm{Cl}_{5}$. Molybden um priciloride, MoCl_{3}, is obtained when the pentachloride is heated to a temperature of about $250^{\circ} \mathrm{C}$. in a current of hydrogen. It forms red crusts, is insoluble in cold water, but is decomposed by boiling water. It is casily soluble in hot nitric acid. Molybdenum pentackloride, MoCl e is obtained when molybdenum is gently healed in dry chlorime (L. P. Liechti and B. Kempe, Ann, 1873, 169, p. 345). It is a dark-coloured crystalline solid which melts at $194^{\circ} \mathrm{C}$. and boils at $268^{\circ} \mathrm{C}$. It fumes in moist air and deliquesces gradually. It is occasionaliy used as a chlorine carrier. It is solubte in absolute alcohol and in cther. Molybdenum disulphide, MoS S_{2} is found as the mincral molybdenite, and may be prepared by heating the trioxide with sulphur or sulphuretted hydrogen. It is a black crystalline powder, rescmbling graphite in appearance. It is readily oxidized by nitric acid, and when strongly heated in a current of hydrogen is reduced to the metallic condition. Molybdenum trisulphide, MOS_{3}, is obtained by saturating a solution of an alkaline molybdate with sulphuretted hydrogen and adding a mineral acid. It is a brown powder which on heating in air loses sulphur and leaves a resisue of the disulphide. A telrosulphide, MoS, has aleo been described.

Many varying values have been given for the atomic weight of molybdenum. f. J. Berzelius (Pogg. Ann., 1826,8, p. 23), by converting lead molybdate into lead nitrate, obrained the value $95 \cdot 2$; while J.B. A. Dumas (Ann., 1860,113, p. 32), by converting the trioxide into the metal, obtained the value $95.65, \mathrm{~K}$. Seubert and W . Pollard (Zeif, anorg. Chem., 1895, 8, p. 434) using this second method obtained the value $96 \cdot 28$; whilst E. F. Smith and P, Mass (Zeih anorg. Chem., 1894,5, p. 280), by heating pure sodium molybdate in hydrochtoric acid and estimating the amount of aodium chloride formed, obtained the value 960087 .

MOLYNEUX. This historic English name came Into the country from France at the time of the Noman Conquest through William de Molines (Moleyns, Molyneux), who obtained a grant of Sefton, in Lancashire, whence come the earls of Sefton to-day. His descendant Adam de Molyneux (Moleyns or

Molins), who died in $\mathbf{4 4 5 0}$, was bishop of Chichester and x zeper of the privy seal; he was a son of Sir Richard Molyneux of Seftom, and uncle of the Sir Richard Molyneux (d. 1459), the Lancastrian and favourite of Henry VI., whose descendant Richard Molyneux (1593-1636) was created in 1628 1st Viscount Molyneux of Maryborough, a title now merged in that of Sefton (created 1771). Another Molyneux family of some importance is the Irish one, descended from Sir Thomas Molyneux (1531-1597 2), Irish chancellor of the exchequer, who, born at Calais, settled in Ireland in 1576. He was the great-grandfather of Sir Thomas Molyneux, Bart. ($1661-1733$), a well-known physician and zoologist, and of William Molyneux ($1656-1698$), the philosopher, astronomer and politician, the friend of Locke, and author of Dioptrice nova (1692), whose famous work on the legislative independence of Ireland (The Case of Ireland, \&c. 1698) created much stir at the time. The latter's son Samuel Molyneux (1689-1728), was also a well-known astronomer.

HOMBASA the principal seaport of Brikish East Africa, in $4^{\circ} 4^{\prime}$ S., $39^{\circ} 43^{\prime}$ E., 150 m . N. of Zanaibar. Pop. about 30,000. Mombasa is built on a coralline island which nearly fills the mouth of a deep arm of the sea. The channel on either side of the island-Mombasa to the N.E., Kilindini to the S.W.affords safe harbourage, and each leads to a deeper ramification of the sea, Mombasa Harbour to Port Tudor, Kilindini Harbour to Port Reitz. Mombasa town is on the N.E. side of the island, 2 m . from Kilindini, with which it is connected by rail and tramways. Viewed from the sea Mombasa has a picturesque appearance, the most conspicuous object being the fort, built on a coral hill 40 ft . high. Except for the main street and Government Square (close to the harbour and containing the customs-house and other official buildings), Mombasa proper presents the usual aspect of an Oriental city-a maze of narrow, irregular streets and lanes. To the south, overlooking the sea, is the European suhurb. There are Anghcan and Roman Catholic churches (the Roman Catholic church and mission house is one of the finest buildings in Mombasa), mission schools, Hindu, Parsce, and Mahommcdan temples, and hospitals and law courts, the last named completed in 1902 . Built into the facade of the courts is a stone with an inscription recording the building of a fort, dedicated to $\$ 1$ Joseph, by the Portuguese at Kilindini in 1666. This stone was found in the ruins of Fort St Joseph. Mombasa Fort, or citadel, quadrangular in form, was built by the Portuguese in 1503-1595 (as an inscription in the interior testifies), was dedicated to the Saviour, and known as the Jesus Fort. It bears the symbol I.H.S. The fort was repaired by Seixas de Cabreira in 1635 , the restoration being recorded in an inscriplion over the gateway. By the British anthorities the fort is used as a military store and central gaol. In the public garden on the point of the town facing the sea a hronze statue of Sir William Mackinnon-to whom Mombasa owes its renaissanc-has been placed. The population of the city is cosmopolitan, with three well-marked racial distinctions: the Arab (Swahili), the Indian and the European. The climate is fairly healthy, and Europeans live there with comfort.
The harbour at Mombasa is more than a mile in length, but only 1200 ft . in width. It is consequently not so suitable for large ships as Kilindini (" the place of deep water "), which possesses the finest land-locked harbour on the East Coast of Africa. The entrance is about the same width as that of Mombasa, but Kilindini Harbour widens to m . and is 3 m . long, the depth of water varying from 25 to 30 fathoms. Kilindini is a depot of the British navy. Port Reitz, which opens out of Kilindini Harbour westward, is 4 m . long and I m . broad, with excellent anchorage. At Kifindini is a pier alongside which ships 450 ft . In length and drawing 27 ft . can load and unload cargo. Here is the virtual terminus of the Ugands railway, and the offices, workshops and hospital connected therewith, also a brancb customs-house. The Ugande railway crosses to the mainland on a bridge, 1 m . long, buile over the shallow channel which on the north-west separates the island from the continent. Mombasa is the outlet for the produce of a large tract of territory, including the European
settlementa in the highlands of the protectorate, and by means of the railway to Victoria Nyanzs taps the rich regions of the Nile sources. German, British, French and Austrian mailboats call regularly at the port, whicb is connected by submarine cable with Zanzibar. Trade statistics are included in those of British East Africa (q.v.).

Mombasa Island (named after the town) is 3 m . long by ${ }^{2} \mathrm{f} \mathrm{m}$. broad, with an area of 9 sq. m. Except at the western end, the coast of the island consists of clifis from 40 ft . 1060 ft . high. The island contains many fertile plantations, chiefly of coco-nut palms, except on the side facing the ocean, where there is little vegetation, the coral reefs being hut thinly coveted with carth. There are no springs and the island is dependent for water on rain collected in tanks or drawn from wells-the latter brackish. Ruing of Arab, Portuguese and Turkish buildings are found in various parts of the island. At Ras Serani are the ruins of a chapel "Nossa Senhora das Merces," built by the Portuguese in the 17th century on tbe site of a Turkish fort, and afterwards turned into a fort again by the Arabs.
Mombasa takes its name from Mombasa in Oman. A PersoArabic settlement was made bere about the irth century. It is mentioned by Ibn Batuta in 1331 as a large place, and at the time of Vasco da Gama's visit (1498) it was the seat of consider-. able commerce, its inhabitants including a number of Calicut Banyans and Oriental Christians. The ruler of the city tried to entrap da Gama (or so the Portuguese navigator imagined), and with this began a series of campaigns which gave full force to its Swahili name Mpila (war). The principal incidents are the capture and burning of the place by Almeida (1505), Nuno da Cunha (1529), and Duarte de Menezes (1587)-this last as a revenge for its suhmission to the sultan of Constantinoplethe revolt and flight (1631) of Yusuf ibn Ahmed (who murdered all the Portuguese in the town-over 100), and the three-years' siege by the imam of Omam 1696-98(the garrison being reduced to eleven men and two women), ending in the expulsion of the Portuguese. From the 12th of March 1728 to the 29th of November 1729 a Portuguese force from Goa again held Mombasa, when they were finally driven out by the Muscat Arabs. In December 1823 the Mazrui family, who had ruled in Mombasa from the early part of the 18 th century, first as representatives of Oman, afterwards as practically independent princes, placed the city under British protection; and in February 1824 Lieut. J. J. Reitz was appointed commandant or resident at the city by Captain (afterwards Vice-Admiral) W. F. W. Owen. Reitz, after whom Port Reitz is named, died at Mombasa either in 1824 or 1825 . The protectorate was repudiated hy the British government, wbich left the place to he bombarded and captured by Seyyid Said of Oman, who made repeated attacks between 1829 and 1833 , and only got possession in 1837 by treachery. Said thereafter made Zanzibar his capital, Mombasa becoming of secondary importance. A revolt against Zanzibar in 1875 was put down with British assistance. The British government in the following year vetoed a proposal hy the khedive Ismail to annez Mombasa and its hinterland up to the equatorial lakes to Egypt - project which originated with Gencrai C. G. Gordon, when that officer administered the Upper Nile provinces. In 1887 the city was handed over by the sultan of Zanzihar to the British for administration. It became the capital of the province of Seyyidle and of the East Africa protectorate. In 1907. how. ever, the seat of the central government was removed to Nairobi (q-v.). Mombass still forms, nominally, part of the sultanate of Zanzibar. The city; togetber with Malindi, is mentioned in Paradise Losl.

MOMEIN, the Burmese name of the Chinese city Teng-yuehchow, in the S.W. of the province of Yunnan, China. It was opened to foreign trade by the Burmese Convention of 1897, but so far no advantage has been taken of the permission. It bes close to the Burmese frontier and on the old irade route from Bhamo to Yunnan, but its importance as an outpost of the British Empire is political rather than commercial. The distance from Téng-yuch to Bhamo by the usual trade route is 160 m ., and is generally traversed by pack-animals in seven
or eight days. In a straight line the two towns are only 80 m . apart. Near Momein and witbin its jurisdiction is the frontier town of Manwyne, where A. R. Margary was assassinated in Fanuary 1875.

MOMMSEN, THEODOR (1817-1903), German historian and archaeologist, was born on the 3oth of November 1817 at Garding, in Schleswig. After being educated at the university of Kiel he devoted himself to the study of Roman law and antiquities. In. 1843 a grant from the Danish government enabled him to undertake a journey to Italy, which was to be decisive for his future career. There he began the study of Roman inscriptions, in association with other Italian and German scholars, especially Borghesi, de Rossi and Henzen. His first work was directed to the restoration of the old Italian dialects, and tbe French government, whicb at one time proposed to undertake the task of compiling a complete collection of ah extant Roman inscriptions, asked for his co-operation. When they gave up the project it was taken up by the Berlin Academy, which had recently completed the collection of Greek inscriptions edited by Boeckb. They had already made a grant to Mommsen, and in 1844 Savigny proposed that he should be appointed to carry out the great work. Many years, however, passed before the plan was fnally approved. Meanwhile Mommsen continued his work in Italy: he drew up a full memorandum explaining the principles on which a Corpus inscriprionmm should be compiled, and on which alone he could undertake the editorship. As a specimen he collected the inscriptions of Samnium, and in 1852 puhlished those of the kingdom of Naples. These works caused him to be recognized as the first authority in this field of learning. In 1847, however, he was obliged to return to Germany: he first went to Schleswig, where during the Revolution he edited a paper in which he supported the claims of the Elbe Duchies; at the end of 1848 be was appointed professor of civil law at Leipzig. His work there was interrupted by his political opinions. During 1848, when the extreme party was in the ascendant, Mommsen supported the monarchy against the Republicans. With characteristic courage and independence, next year, when the Revolution had spent its force and Beust executed his cow p d'efot, he protested, with many of his colleagues, against this act. In consequence he was summoned before a disciplinary court, and, together with Haupt and Jahn, dismissed from his professorship.

Mommsen found an asylum in Switzerland, and became professor at Zurich: he repaid the hospitality of the Republic by writing exhaustive monographs on Roman Switzerland, His spare time was occupied with the Roman History, the three volumes of which appeared between 1854 and $\mathbf{1 8 5 6}$. His name at once became known throughout Europe. In this work, witb a true insight into the relative importance of things, he passed over with a few strong broad touches the antiquarian discussions on the origins of the city, on which previous historians had laboured so long; but in place of this be painted with astonishing vigour the great political struggle that accompanied the fall of the republic. It was, above all, his new reading of old characters which demanded attention, if not always approval: Ciccro, the favourite of men of letters, was for him "a journalist in the worst sense of the word"; Pompey, the hero of Plutarcb and the Moralists, was hrushed aside as a mere dril-sergeant; and the book culminated in the pisture of Caesar, who extablished absolute rule in the name of democracy, "the complete and perfect man."
The three volumes ended with the dictatorship of Caesar. The book has never been continued, for the volume on the Roman Provinces under the Empire, which appeared in 1884, is in reality a separate work. Mommsen was henceforward fully occupied with work of a more technical nature. In 1854 the definite offer was made to him by the Academy that he should be chief editor of a Corpus inscriptionwm, with full control, and in order that he might carry on the work he was appointed in 1858 to a professorship at Berlin. The first volume appeared in 1867 ; five of the succeeding volumes he edited himself, and the
whole was executed under his immediate supervision end with the co-operation of scholars whom he had himself trained.

Enormous as was the labour, this task occupied only a small part of his extraordinary intellectual energy. He found time to write two larger works, the History of the Romas Coinage and the Romischas Slaatsrecht, a profound analysis of Roman constitutional law, and Romisches Strafrecht, on Roman criminal jurisdiction. His Roman Provinces already mentioned gives a singularly interesting picture of certain aspects of social life under the empire. His smaller papers amount to many hundreds in number, and there is no department of Roman life and learning, from the earliest records of the Roman law to the time of Jornandes, which he has not illuminated. As secretary to the Berlin Academy for over twenty years he took a leading part in their deliberations, and was their spokesman on great occasions. His interest in political problems of the present was as keen as in those of the past. He was one of the founders of the Preussische Jahrbilcher, the most influential of German political periodicals. For many years he was a member of the Prussian Parliament. His political opinions were strong but ill-regulated. Intensely nationalist, he acquiesced in the annexation of his native land to Prussia, and in a public letter to the Italian nation in 1870 defended the German cause before the nation which had become to him a second fatberland; but he was of too independent a character ever to be quite at ease under Prussian goverament. Loving liberty, he hated its consequences; a democrat, be had end always expressed a profound contempt for the mob. Like many idealists, he was a severe critic of the faults of his own end other countries, and be added something to the increasing Chauvinism in Germany.

It was, however, above all, German scholarship which remained his first interest. There is probably no other instance in the history of scholarship in which one man has established so complete an ascendancy in a great department of learning. Equally great as antiquary, jurist, political and social historian, he lived to see the time when among students of Roman history he had pupils, followers, critics, but no rivals. He combined the power of patient and minute investigation with a singular faculty for boid generalization and the capacity for tracing out the effects of thoughts and ideas on political and social life. Partly, perhaps, owing to a philosophical and legal training, he had not the gift of clear and simple narrative, and he is more successful in discussing the connexion between events than in describing the events themselves. Though his History ends with the fall of the republic, his most enduring work has been that on the empire; and if he has not written the history of the empire, he has made it possible for others to do so.

Mommsen died at Charlottenburg on the ist of November 1903. His brothers, Carl Johann Tycho (1819-1900), a great anthority on Pindar and Shakespeare, and August (b. 1821), who wrote chiefly on ancient chronology and Greek festivals, were also prominent among German scholars in their day.

The History of Rome (including the volumes of the provincea) has been translated into English by W. P. Dickson (the Provinces, revised by F. Haverfield, 1909); there is a French edition of his woik on Roman Coinage. Many of his pamphlets and articles have bean collected under the title Romische Forschungen. Of his other works, the more important are the Roman Chronology to the Time of Cacs ? (18 s 8), a work written in conjunction with his brother August; his edilions of the Mfonsmentum Ancyranum and of the Digest in the Corpus juris civilis, and of the Chronica of Cassiodorus in Monstmenta Germaniae hislorica, the Auclores anliguissimi section of which was under his supervision. A great part of his work is to be lound in the German learned publications such as Hermes, Rheinisches Museum, \&c. His Reden und Aufsatze and Gecammelle Schriften, i. ii., were published after his death. A rull list of his works is given by Zangemeister, Mommsen als Schrifisteller (1887 ; continued by Jacobs, 1905). See also monographs by C. Bardt (1903) and Gradenwitx (1904 , in the Zeischriff der Saviguy Stiftung fir Rechisgaschickte), and O. Hirechfeld, Gedochendireds axf Theodor a 0 ommsen (1904).
rOMORDICA, in botany, a genus of annual or perennial climhing berbs belonging to the natural order Cucurbitaceac, satives of the tropics, especially Africa, and known in cultivation chiefly as hothouse plants. They are grown for their ornamental
fleaby fruits, which are oblong to cylindrical in shape, orange to red in colour, prickly or warted externally, and burst when ripe, generally with elastic force, into irregular valves M. Balsomina, known as balsam apple, is a very pretty annual, well adapted for trellises, \&c., in warm outside situations.
M01108, in Greek mythology, the son of N0 ξ (Night), the personification of censoriousness. He is frequently mentioned in Lucian as the lampooner of the gods. It is said that Pallas, Hephaestus, and Poseidon entered into a competition as to which of them could create the most useful thing. Hephaest us made a man, Poseidon an ox, Pallas a house. Momus, being called upon to pronounce an opinion as to the merits of these productions, expressed dissatisfaction with all: with the man, because a window ought to have been made in his hreast, through which his heart could be seen; with the ox, because its horns were in the wrong place; with the house, because it ought to have been portahle, so as to be easily moved to avoid unpleasant neighbours. Momus is reported to have burst with chagrin at being unable to find any but the most trifling defects in Aphrodite. He is represented sometimes as a young, sometimes as an old man, wearing a mask, and carrying a fool's bauble.
Hesiod, Theogony, 214; Lucian, Hermatimas, 20, and especially Deorum Concilium; Philostratus, Epistolee, 37.

MONA, the name used by classical writers, and in particular by Tacitus, to denote Anglesey (q.v.). This island was raided by the Roman general Suetonius about A.D. 60 and conquered by Agricola about a.D. 79. The Romans probahly mined copper there, but no trace has yet been found of any Roman military post, and the villages of the inhabitants which have been recently excavated show only mediocre traces of Roman civilizalion. The name Mona seems also to have been occasionally used, perhaps from ignorance, for the other large island lying between England and Ireland, Man. The ancient name of this latter was probably not unlike that of Mona, but is not accurately known to us (? Monapia, Manavia).
(F. J. H.)

MONACO, a territory of south-eastern France, the smallest of the sovereign principalities of Europe. Area about 8 sq . m ., the length being 2i m . and the width varying from 165 to 1100 yds. Pop. (1900), 15,180 . Monaco is situated on the coast of the Mediterranean, 9 m . east of Nice, and is bounded on all sides by the French department of Alpes-Maritimes. It includes the towns of Monaco (3292), Condamine (6218) and Monte Cario (3794). The principality at one time included Mentone and Roccabruna, now known as Roquehrune, which towns, however, were ceded to France in 186 f for a sum of four million franca. The town of Monaco occupies the level summit of a rocky hendland, rising about 200 ft . from the shore, and still defended by ramparts. Though largely modernized, the palace is an interesting specimen of Renaissance architecture; the "cathedral" (Romanesque-Byzantine stylc), and the oceanographical museum may also be mentioned. For this museum a fine building, appropriately decorated, was opened in March 1910 by the prince of Monaco. It stands on the edge of the cliff rising from the see at the gardens of St Martin, and was designed to house the collections made by the prince during twenty-five years of oceanographical research, and others. Behind the rock, between Mont Téte de Chien and Mont de la Justice, the high grounds rise Lowards La Turbie, the village on the hill which takes its name from the tropoea with which Augustus marked the boundary bet ween Gaul and Italy. On the north lies the bay of Monaco; along the lower ground on the west of the bay stretches the health and bathing resort of Condamine, with orange-gardens, manufactures of perfumes and liqueurs, and the chapel of Ste Devote, the patron saint of Monaco; to the north of the bay on the rocky slopes of the Sptlugues (speluncae) are grouped the various buildings of the Casino of Monte Carlo with the elaborate gardens and the numerous villas and hotels which it has called into existence. Adjoining the Casino terrace and overlooking the sea is the pigeon-shooting ground, the competitions on which are celebrated.

There appear to have been gambling-tables at Monte Cario.

In the year 2856, but it was in 186 r that Frangois Blanc, seeing his tenancy at Homburg coming to an end, with no hope of renewal, obtained a concession for fifty years from Charles III. This concession passed into the hands of a joint-stock company, which in 1808 obtained an extension to 1947, in return for a payment to the prince of $\{400,000$ in $\mathbf{1 8 9 9}$ and of $£ 600,000$ in 1913, together with an increase of the annual tribute of $\{50,000$ to $£ 70,000$ in 1907, $£ 80,000$ in 1917, $£ 90,000$ in 1927, and $£ 100,000$ in 1937. None of the inhabitants of Monaco have access to the tables; and their interest in the maintenance of the stotus quo is secured by their complete exemption from taxation and the large prices paid for their lands. The ruler of the principality, Prince Albert, born 1848, succeeded his father, Prince Charles III., in 1889. He married in $\mathbf{8 6 6 9}$ Lady Mary Douglas Hamilton, by whom in 1870 he had a son, Prince Louis: that marriage was, however, annulled in $\mathbf{2 8 8 0}$, and subsequently Prince Albert married Alice, dowager-duchess of Richelieu, from whom he was divorced in 1902. The prince is absolute ruler, as there is no parliament in the principality. He is advised by a small council of state, the members of which are appointed hy himself. The maire and other municipal authorities are also appointed by the prince. A governor-general presides over the administration: The judicial system is the same as that of France, there being a court of first instance and a juge de paix. By arrangement, two Paris judges form a court of appeal. Monaco is the seat of a Roman Catholic bishop.
A temple of Heracles seems to have been huilt on the Monaco headland by the Phoenicians at a very early clate, and the same god was afterwards worshipped there by the Greeks under the surname of Mbvowos, whence the name Monaco. Monoeci Portus or Portus Herculis is frequently mentioned by the later Latin wrilers. From the roth century the place was associated with the Grimaldi, a powerful Genoese family who held high offices under the republic and the emperors; hut not till a much later date did it become their permanent possession and residence. In the beginning of the 14th century it was notorions for its piracies. Charles I. (a man of considerahic matk, who, after doing great service by sea and land to Philip of Valois in his English wars, was severely wounded at Crecy) purchased Mentone and Roceabruna, and bought up the claims of the Spinola to Monaco. The princes of Monaco continued true to France till 1524، when Augustin Grimaldi threw in his lot with Charles V.' Honoré I., Augustin's successor, was made marquis of Campagna and count of Canosa, and peopic as well as rulers were accorded various important privileges. The right to exact toll from vessels passing the port continued to be exercised till the close of the 18th century. Honore II. in $\mathbf{1 6 4 I}$ threw off the supremacy of Spain and placed himself under the protectorate of France; he was compensated for the loss of Canosa, \&c., with the duchy and peerage of Valentincis and various lesser lordships; and "duke of Valentinois" long continued to be the title of the heir-apparent of the principality. In 1731 Antoine, his great-grandson, was succeeded by bis daughter Louise Hippolyte; she had married Jacques Goyon, count of Matlgnon and Thorigny, who took the name of Grimaldi and succeeded his wife. The National Convention annexed the-principality to France in 1793; restored to the Goyon Grimaldis by the Treaty of Paris in 1814 , it was placed by that of Vienna under the protection of Sardinia. The Sardinian government took the opportunity of disturbances that occurred in 1848 to annex Mentone and Roccabruna, which were occupied by a Sardinian garriaun till 1859. With the transference of Nice to France in 1860 the principality passed again under French protection.
See H. Metivier. Monaco et res princes, La Fieche (1862).
MONAD (Gr. monds, unit, from mbeor, alone), a philosophic term which now has curroncy solely in its connexion with the phllosophy of Leibnitz. In the earlier Greek philosophy the term mennt unity as opposed to duality or plurality; at a later time it meant an individual, or, with the Atomists, an atom. It was first used in a sense approxlmate to that of Leibnitz by Bruso, who moant by it a primary spiritual element as opposed to the material atom. Leibnitz, however, ceems to have
borrowed the terra not directly from Bruno, but from a contemporary, Van Helmont the younger. Leibnitz's view of things is that the world consists of monads which are immaterial centres of force, each possessing a certain grade of mentality, self-contained and representing the whole universe in miniature, and all combined together by a pre-established harmony. Material things, according to Leibnitz, are in their ultimate nature composed of monads, each soul is a monad, and God is the monar monadum. Thus monadism, or monadology, is a kind of spiritual atomism. The theory has been revived in recent years by C. B. Renouvier.
ITOMADHOCR, a term derived from Mount Monadnock in New Hampahire, U.S.A., to denote the " jsolated remnants of hard rock which remain distinctly above their surroundings in the late stages of an erosion cycle" (T. C. Chamberlin, R.D. Salisbury). Examples are frequently found where a hard pipe of igneous rock surrounded by softer rock is gradually exposed by the washing away of the softer rock and becomes a conspicuous feature of the landscape, forming a volcanic " neck," and finaliy, in the later stages of erosion, a stump. The Peak Downs, Queensland, furnish many examples, and Mato Tepee, Wyoming, is a remarkably conspicuous instance of this type of formation.
EOHABEAAR, a county of Ireland in the province of Ulster, bounded E. by Armagh, S.E. by Louth, S. by Meath, S.W. hy Cavan, W. by Fermanagh, and N. by Tyrone. The area is 3Ig,74I acres, or about $496 \mathrm{sq} . \mathrm{m}$. The north-western part of the country is included in the great central plain of ircland; but to the south and east the surface is irregular, altbough none of the hills is of great elevation. The principal range is that of Slievebeagh, a rugged and barren tract extending into the county Fermanagh, its highest summit being 1254 ft . above sea-level. The principal rivers are the Finn, which risos near the centre of the county and passes into Fermanagh, and the Blackwater which forms the boundary with Tyrone. The Ulster Canal passes the towns of Monaghan and Clones, affording communication between Lough Neagh and Lough Erne. In geological structure the county drops from the Upper Carboniferous outlier of Stievebeagh in the north-west to a Carboniferous Limestone area towards Monaghan town; but south of this a tumhled Silurian area stretches actoss the Cavan and Armagh borders. At Carrickmacross, an outlier of Carboniferous Limestone, Coal Measures (with poor seams of coal) and Trias is encountered. Gypsum has been quarried in the Trias, and lead ore was formeriy mined in many places in the Sifurian area. The Triassic clay furnishes excellent bricks. Eskers or glacial ridges occur at several places. The limestone is not only abundant and good, but from the position of the rocks it can be obtained at small expense in working. Freestone and slates are quarried in considerable quantities. The soil in the more level portions of the county is fertile where it rests on limestone, and there is also a mixed soll of deep clay, which is capahle of high cultivatlon; but in the hilly regions a strong retentive clay prevails, which could be made productive only by careful draining and culture. Spade husbandry generally prevails. The proportion of tillage to pasturage is roughly as ito 13 . Oats, potatoes and turnips are the principal crops, but the quantity grown decreases. The number of cattle, sheep, pigs, goats and poultry, on the other hand, increases or is well maintained. Linen is the only manufacture of consequence, but the cultivation of flax has almost died out. The Belfast and Clones line of the Great Northern railway crosses the county from north-east to west, passing the town of Monaghan, and the Dundalk and Clones line of the same company runs from southeast to west, with branches to Carrickmacross and to Cootehill (county Cavan).

The population (86,206 in 1891; 74,611 in 1901) decreases as rapidly as any county population in Ireland, and emigration is very heavy. The total includes about 73% of Roman Catholics, and about 12% each of Protestant Episcopalians and of Presbyterians. The principal towns are Monaghan (the county town, pop. 2932), Clones (2068), Carrickmacross (1874),

Castleblayney (1576) and Ballybay (1208). The county includes five baronies. Assizes are held at Monaghan, and quarter sessions at Carrickmacross, Casleblayney, Clones and Monaghan. The two county members sit for the north and south divisions respectively. The county is in the Protestant and Roman Catholic dioceses of Clogher.
The district now called the county Monaghan was included in the district of Uriel or Orgial, and long known as Macmathon's country. It was made shire ground under its present name by Sir John Perrot in the reign of Elizabeth. At Clones there is a round tower in good preservation, but very rude in its masonry, another at Inishkeen is in ruins. Near Clones there are two large raths. Although there are several Danish forts there are no medieval castles of importance The only monastic structure of which any vestiges remain is the abbey of Clones, which was also the seat of a bishopric. The abbey dates from the 6th century, but was rebuilt in the 14th century after destruction by fire
MONAGHAN, a market town and the county town of county Monaghan, Ireland, on the Ulster Canal and the Beliast and Clones line of the Great Northern railway, by which it is 52 m . S.W by W. of Dublin. Pop (1901), 2932. There is a modern Roman Catholic cathedral (1862-1892) for the diocese of Clogher, a convent of the Sisters of St Louis, and a Protestant church (1836), and the public and county buildings include court-house, gaol, workhouse, asylum, hospital and barracks. Educational establishments include a national model school and the college of St Macartan, preparatory for the Roman Catholic priesthood. The town takes its name (Muinechan, the town of monks) from an early monastery. It was incorporated by James I., but was little more than a hamlet until the close of the 18th century Rossmore Park, the fine demesne of Lord Rossmore, is the most noteworthy of several neighbouring residences The town is governed by an urban district council.
MONA MONKEY a West African represcntative of the group of monkeys gencrally known as guenons, and scientifically as Cercopilhccus. The mona (C. mona) typifies a sub-genus of the same name (Mona) characterized, among other features, by the presence of a black band running from the angle of each eye to the ear. In the mona itself the general colour of the upper parts is black, with a pair of oval white spots near the root of the tail, while a band across the forehead and the whole under surface are likewise white. (See Primates)
MONARCHIANISM, a theological term designating the view taken by those Christians who, within the Church, towards the end of the and century and during the 3rd, opposed the doctrine of an independent personal subsistence of the Logos. During the middle of the ind century a number of varying christological views began to germinate, growing for a time side by side. They fall into (wo great classes: (a) Christ was a man in whom the Spirit of Cod had dwell; (b) Christ was the Divine Spirit who had assumed flesh. Each class based its position on Scripture, but the latter (which prevailed) had the advantage of being able easily to combine with cosmological and theological propositions current in the religious philosophy of the time. The opposition to it arose out of 2 fear that it threatened monotheism. The representatives of the extreme monotheistic view, which while regarding Christ as Redeemer, clung tenaciously to the numerical unity of the Deity, were called Monarchians, a term hrought into general use by Tertullian It has to be remembered (t) that the movement originated within the pale of the Church, and had a great deal in common with that which it opposed; (2) that it was ante-Catholic rather than anti-Catholic, e.f. the Canon of the New Testament had not yet been established. It is usual to speak of two kinds of monarchianism-the dynamistic and the modalistrc, though the distinction cannot be carried through without some straining of the texts. By monarchians of the former class Christ was peld to be a mere man, miraculously conceived indeed, but constituted the Son of God simply by the infinitely high degree in which he had been filled with Divine wisdom and power. This view was represented in Asia Minor about the year 170 by the anti-Montanistic Alogi, so called by

Epiphanius on account of their rejection of the Fourth Gospel. it was also taught at Rome about the end of the and century by Theodotus of Byzantium, a currier, who was excommunicated by Bishop Victor, and at a later date by Artemon, excommunicated by Zephyrinus. About the year 260 it was again propounded within the Church by Paul of Samosata (q.r.), who held that, by his unique excellency, the man Jesus gradually rose to the Divine dignity, so as to be worthy of the name of God. Modalistic monarchianism, conceiving that the whole fullness of the Godhead dwelt in Christ, took exception to the "subordinatianism" of some Church writers, and maintained that the names Father and Son were only two different designations of the same subject, the one God, who " with reference to the relatons in which He had previously stood to the world is called the Father, but in relerence to His appearance in humanity is called the Son." It was first taught, in the interests of the " monarchia " of God, by Praxeas, a confescor from Asia Minor, in Rome about 190, and was opposed by Tertullian in his wellknown controversial tract. The same view-the "patripassian" as it was also called, because it implied that God the Father had suffered on the cross-obtained fresh support in Rome about 215 from certain disciples of Noetus of Smyrna, who received a modified support from Bishop Callistus. It was on this accoumt that Hippolytus, the champion of hypostasian subordinatianism, along with his adherents, withdrew from the obedience of Callistus, and cormed a separate community. In Carthage Praxeas for a time had some success, but was forced by Tertullian not only to desist but to retract. A new and conciliatory phase of patripassianism was expounded at a somewhat later date by Beryilus of Bostra, who, while holding the divinity of Christ not to be lita, or proper to Himself, but $\pi a \tau p u x j$ (belonging to the Father), yet recognized in His personality a new xpbownar or form of manifestation on the part of God. Beryllus, however, was convinced of the wrongness of this view by Origen (g.e.), and recanted at the synod which had been called together in 244 to discuss it. (For the subsequent history of modelistic monarchianism see Sabelluvs.)
See the Historics of Dogma by A. Harmack, F. Loofs R. Seeberg: also R. L. Ontey, The Doctrne of the Incarnation.
MONARCHY (Fr . monarchie, from Lat monarchia, Gr. μ rapxia, rule of one, μ bow, alone, dpxt, rule), strictly, the undivided sovereignty or rule of a single person. Hence the term is applied to states in which the supreme authority is vested in a single person, the monarch, who in his own right is the permanent head of the state. The character of true monarchy is well defined in the well-known lines of Cowper (Verses supposed to be writlen by Alexander Selkuk):
" I am monarch of all I survey,
My right there is none to dispute."
The word "monarchy" has, however, outhved this original meaning, and is now used, when used at all, somewhat loosely of states ruled over by hereditary sovereigns, as distinct from republics with elected presidents, or for the "monarchical principle," as opposed to the republican, involved in this distinction.
The old iden of monarchy, viz that of the prince as representing within the limits of his dominions the monarchy of God over all things, culminated in the ryth century in the doctrine of the divine right of kings, and was defined in the famous dictum of Louis XIV.: L'dat c'est moil The conception of monarchy was derived through Christianity from the theocracies of the East; it was the underlying principle of the medieval empire and also of the medieval papacy, the rule of the popes during the period of its greatest development being sometimes called "the papal monarchy." The monarchical principle was shaken to its foundations hy the English revolution of 2688 , it was shat tered by the French revolution of r 789 ; and though it surviver as a political force, more or less strongly, in most European countries, " monarchists," in the strict sense of the word, are everywhere a mall and dwindling minority. To express the change phrasea were invented which have come into general usc, though invalviag a certain contradiction in terms, viz. "limited" or
"constitutional monarchy," as opposed to "absolute" or " antocratic monarchy."
Finally, a distinction is drawn between "elective" and "hereditary" monarchies. Of the former class the most conspicuous was the Holy Roman Empire; but in Europe ah monarchies were, within certain limits, originally elective; and, after the introduction of Christianity, the essential condition of the assumption of sovereign power was not so much kinship with the reigning family as the "sacring" by the divine authority of the Church. The purely hereditary principle was of comparatively late growth, the outcome of obvious convenience, exalted under the influence of vatious forces into a religious or quasi-religious dogma. (See also Governient and Sovereignty.)
monassir (Monastr), an African tribe of Semitic stock, living in the Nile valley (Berber mudiria) between Birti (their headquarters) and Dar Robatab. They are a prosperous, sedentary tribe, claim kinship with the Ababda, and speak Arahic, but are of very mixed blood. Next to Birti their chief settlement is at Salamat. Both places are on the left bank of the Nile. It was by Monassir tribesmen that Colonel J. D. H. Stewart, Gordon's comrade at Khartum, was murdered in 1884 .

MONASTICISI (Gr. movaotukbs, living alone, mbvos), a system of living which owes its orlgin to those tendencies of the human soul which are summed up in the terms "asceticism" and "mysticism." Mysticism may broadly be described as the effort to give effect to the craving for a union of the soul with the Deity already in this life; and asceticism as the effort to give effect to the hankering after an ever-progresslve purification of the soul and an atoning for sin by renunciation and self-denial in things lawful. These two tendencies may well be said to be general instincts of humanity; because, though not always called into activity, they are always liable to be evoked, and in all ages and among all races they frequently have asserted themselves. (See Asceticism and Mrstictsm.) Indeed the history of religion shows that they are among the most deep-rooted and widespread instincts of the human soul; and monasticism is the attempt to develop and regulate their exercise. Thus monasticism is not a creation of Christianity; it is much older, and before the Christian era a highly organized monasticism existed in India. (See the articles on Brammanism; Budohism; and Lhasa.)

1. Pre-Christian Monasticism.-Greek asceticism and mysticism seem never to have produced a monastic system; but among the Jews, hoth in Judaea and in Alexandria, this development took place. In Judaea the Essenes before the time of Christ lived a fully organized monastic life (see Scharer, Jewish People, ii. 830); and the same is true in regard to the Therapeutae in the neighbourhood of Alcxandria (the authenticity of Philo's De Vita contemplativa, which describes their manner of life, is again recognized by scholars).
A general sketch of pre-Christian asceticism and monasticism, with indication of the chief authorities, is given in O. Zockjer's Askese sund Mönchlum (1897), pp. 32-135. This account is epitomized by J. O. Hannay, Spiril and Origin of Christian Mfonasticism (1903), app. i: the view now common among scholars is there maintained, that these pre-Christian realizations of the monastic idea had little, and indeed no, influence on the rise and development of Christian monasticism.
2. Beginnings of Christian Monasticism.-The practice of asceticism asserted itself at an early date in Christian life: men and women abstained from marriage, from flesh meat, from the use of intoxicating drink, and devoted themselves to prayer, religious exercises and works of charity (S. Schiwietz, Das morgenlandisclie Monchtum, roo4, pt. i.; J. O. Hannay, op. cif. chs. 2, 3). This they did in their homes, without withdrawing from their families or avocations. In time, however, the tendency to withdraw from society and give oneself up wholly to the practice of religious and ascetical exercises set in; and at any rate in Egypt, at the middle of the 3rd century, it was the custom for such ascetics to live in solitary retirement in the neighbourhood of the towns and villages. This was the manner of life
which St Anthony (q.v.) began to lead, c. 370; but after fifteen years be withdrew to a degerted fort on the east bank of the Nile, opposite the Fayum. Here he enclosed himself and led a life cut off from all intercourse with man. There are reasons for doubting that Anthony was the first Christian hermit: probably there is some historical foundation for the tradition that one of those who fled to the desert in the Decian persecution continued to dwell in a cave hy the shore of the Red Sea, unknown to men, till visited by St Anthony long years afterwards (see E. C. Butler, Lausiac History of Palladius, 1898, pt. i. p. 230). But this was a single case which does not affect the fixed tradition of monastic Egypt in the $4^{\text {th }}$ century that Anthony was the father of Christian monachism.

During twenty years Anthony lived a life of seclusion, never coming forth from his fort, never seeing the face of man. But his fame went abroad and a number of would-be disciples came and took up their abode in the caves and among the rocks that surrounded his retreat, and calied on him to guide them in the path of life they had chosen. In response to these appeals Anthony came forth and set himself to organize the life of the muititude of ascetics that had grown up around him. This act, which took place in the first years of the $4^{\text {th }}$ century, must be regarded as the inauguration of Christian monachism.
3. St Anthony's Monachism.-The form of monastic life dircetly derived from St Anthony was the type that prevailed in middle and northern Egypt up to the middle of the 5 th century. The chief authoritics for the study of this type of monastic life are the Vila Anionii (probably by Athanasius), the Historia monachorum (ed. E. Preuschen), the Historia lausiaca of Palladius (ed. E. C. Butler)-these works are to be found in Latin in Rosweyd's Vitae Patrum (Migue, Patrol Lat. LXXIII., LXXIV.)-and the writings of Cassian (English translation by Gibson in " Nicene and Post-Nicene Library "). A generation ago all this literature was in disrepute; hut it has been revindicated, and its substantially historical character is now recognized on all hands (see E. C. Butler, op. cil. pt. ii. 8 I).

Antonian monachism grew out of the purely eremitical life, and it retained many of the characteristic features inherited from its origin. The party of travellers whose journey in 394 is narrated in the Historia monachorsm found at the chici towns along the Nile from Lycopolis (Assiut or Siut) to Alexandria, and in the deserts that fringed the river, monastic habitations, sometimes of hermits, sometimes of several monks living together but rather the life of hermits than of cenobites. It is at the great monastic settlements of Nitria and Scete that we are best ahle to study this kind of Egyptian monasticism. Here in one portion of the desert, named Cellia, the monks lived a purcly eremitical life; hut in Nitria (the Wadi Natron) they lived either alone, or two or three together, or in communities, as they preferred. The system was largely voluntary; there was no organized community life, no living according to rule, as it is now understood. In short the life continued to he semieremitical. (See Butler, op. cil. pt. i. p. 233; Hannay, op. cif. chs. 4, 5 ; Schiwietz, ap. cil. pt. ii. §§ 1-11.)
4. Si Pachomius's Monachism.-Very different was the type of monastic life that prevailed in the more southerly parts of Egypt. Here, at Tabennisi near Dendera, about 315-320, St Pachomius (q, v.) established the first Christian cenobium, or monastery properly so called. (On St Pachomius and his monastic institute see P. Ladeuze, Cenobitisme Pakhomien (1898); Schivietz, op. cil. pt. ji. 58 12-16; E. C. Butler, op. cil. pt. i. p. 234, pt. ii. notes 48, 49, 54, 59). Before his death in 346 Pachomius had established nine monasteries of men and one of womea, and after his death other foundations continued to be made in all parts of Egypt, but especially in the south, and in Abyssinia. Palladius tells us that c. 410 the Pachomian or Tabennesiot monks numbered some seven thousand. The life was fully cenobitical, regulated in all details by minute rules, and with prayer and meals in common. As contrasted with the Antonian ideal, the special feature was the highly organized aystem of work, wherehy the monastery was a sort of agricultural and industrial colony. The work was an integral part
of the life, and was undertaken for lts own sake and not merely for an occupation, as among the Antonian monks. This marks 2 distinctly new departure in the monastic ideal.
In another respect too St Pachomius broke new ground: not only did he inaugurate Cbristian cenobitical life, but be also created the first "Religious Order." The abbot of the head monastery was the superior-general of the whole institute; he nominated the superiors of the otber monasteries; he was visitor and held periodical visitations at all of them; he exercised universal supervision, control and authority; and every year a general chapter was held at the head house. This is a curious anticipation of the highly organized and centralized forms of government in religious orders, not met with again till Cluny, Citeaur, and the Mendicant orders in the later middle ages.
A passing reference should be made to the Coptic abbot Shenout, who governed on similar lines the great "White Monastery," whereof the ruins still survive near Akhmim; the main interest of Shenout's instltute lies in the fact that it continued purely Coptic, without any Infiltration of Greek ideas or influence. (See J. Leipoldt, Schenute von Atripe, 1goz.)

Egyptian monachism began to wane towards the end of the sth century, and since the Mahommedan occupation it has ever been declining. Accounts of its present condition may be found in R. Curzon's Monasteries of the Levant (1837), or in A. J. Butler's Ancient Copric Churches (1884). Hardly half a dozen monasteries survive, inhabited by small and ever dwindling communities.
5. Oriental Monachism.-The monastic institute was imported early in the 4th century from Egypt into Syria and the Oriental lands. Here it had a great vogue, and under the influence of the innate Asiatic love of asceticism it tended to assume the form of strange austeritics, of a kind not found in Egyptian monachism in its best period. The most celebrated was the life of the Stylites or pillar hermits (see Snceon Stylires). Monastic life here tended to revert to the eremitical form, and to this day Syrian and Armenian monks are to be found dwelling in caverns and desert places, and given up wholly to the practiee of austerity and contemplation (see E. C. Butler, Lausiac Hislory of Palladius, pt. i. p. 239, where the chief authorities are indicated). Before the close of the 4 th century monachism spread into Persia, Babylonia and Arabia.
6. Basilian and Greek Monachism.-Though Eustathius of Sebaste was the first to introduce the monastic life within the confines of what may be called Greek Christianity in Asia Minor (c. 340), it was St Basil who adapted it to Greek and European ideas and needs. His monastic legislation is explained and the history of his institute sketched in the article Basiluan Monss. Here it will suffice to say that he followed the Pachomian rather than the Antonian model, setting himself definitely against the practice of the eremitical life and of excessive asceticism, and inculcating the necessity and supcriority of labour. The lines laid down by St Basil have continued ever since to be the lines in which Greek and Slavonic monasticism has rested, the new multitudinous modifications of the monastic ideal, developed in such abundance in the Latin Church, having no counterpart in the Greek. But the element of work has decreased, and Greck and Slavonic monks give themselves up for the most part to devotional contemplation.
7. Early Western Monachism.-The knowledge of the monastic life was carried to western Europe by St Athanasius, who in 340 went to Rome accompanied by two monks. The Vita Antonii was at an early date tranalated into Latin and propagated in the West, and the practice of monastic asceticiam after the Egyptian model became common In Rome and throughout Italy, and before long spread to Gaul and to northern Africa. A resumt of the chlef facts will be found in E. C. Butler, op. cil. pt. i. p. 245; see also Hannay, op, cif. ch. 7. The monatic ideals prevalent were those of the Antonian monachism, with its hankering after the eremitical life and the practice of extreme bodily austeritics. But climatic conditions and racial temperament rendered the Oriental manner of monasticism unattainable, as a rule, in the Weat. Hence it came to pane that by the end of
the 5th century the monastic institute in western Europe, and especially in Italy, was in a disorganized condition, sinking under the weight of traditions inherited from the East. It was Se Benedict who effected a permanently worting adaptation of the monastic ideal and life to the requirements and conditiona of the western races.
8. St Benadict's Morackisw.-St Benedict (c. 500) effected his purpose by a twofald break with the past: he eliminated from the idea of the monastic life the element of Oriental asceticisn and axtreme bodily austerity; and be put down the tendency, so marked in Egypt and the East, for the monks to vie with ane another in ascetical praclices, commanding all to live according to the rule. The life was to be self-denying and hard, but not one of any great austerity (for details see Bentict or Nursia; and E. C. Butler, op. cif. pL i. pp. 237 and 251). The individual monk was sunk in the community, whose corporate life be had to live. St Benedict's rule was a new creation in monastic history; and as it rapidly supplanted all other monastic rules in western Europe, and was for several centuries the only form of monasticism in Latin Christianity (outside of Ireland), it is necessary to speak in some littic detail of its spirit and inner character. ${ }^{1}$ It has to be emphasized at the outset that the monasteries in which the Benedictine rule was the basis of the life did not form a body or group apart within the great " monastic order," which embraced all monasteries of whatever rule; nor had Benedictine monks any special work or object beyond that common to all monk-viz. the sanctifying of their souls by living e community life in accordance with the Gospel counsels. St Benedict defines his monastery as "a school of the service of the lord " (Reg., Prol.). The great act of service is the public common celebration of the canonical office, the "work of God" he calls it, to which " nothing is to be preferred " (Reg. c. 43). The rest of the day is filled up with a round of work and reading. Work, and in St Benedict's time it was predominantly field work, took an even more recognized and integral place in the life than was the case under St Pachomius or St Basil, occupying notably more time than the church services. St Benedict introduced too into the monastic life the idea of law and order, of rule binding on the abbot no less than on the monks; thus he reduced almost to a vanishing point the element of arbitrariness, or mere dependence on the abbot's will and whim, found in the earlier rules. Lastly, he introduced the idea of stability, whereby monk and community wcre bound to each other for life, the normal thing for the Benedictine being to live and die in the monastery of his profession: thus the power hitherto enjoyed by monks, of wandering from monastery to monastery, was cut away, and the Benedictine community was made into a famlly whose members were bound to onc another by bonds that could not be severed at will.
9. Western Morochism in the Early Middle Ages.-It is easy to understand that a form of monastic life thus emptied of distinctively Oriental features and adapted to the needs of the West by a great religious genius like St Bencdict, should soon have distanced all competitors and have become the only monastic rule in western Europe. The steps in the propagntion of the Benedictine rule are traced in the article Benedictines. The only acrious rival was the Irish rule of Columban; and here it will be in place to say a word on Irish monasticism, which, in its birthplace, stood aloof to the end from the general movement. The beginnings of Celtic monachism are obscure, but it scems to have been closely connected with the tribal system.' When, however, Irish monachism emerges into the full light of history, it was in its manifestations closely akin to the Egyptian, or even to the Syrian type: there was the same love of the eremitical life, tbe same craving after bodily austerities of an extraordinary kind, the same individualistic piety. The Irish monks were great missioners in the north of England and the northern and
${ }^{1}$ This topic is dealt with by F. A. Gasquet. Sketch of Mowastic Constimtional History (pp. viii.-xxii.), the Introduction 10 and edition of the translation of Montalembert's Monks of the West (1895).
${ }^{3}$ See Willis Bund. Cellic Ckurch in Wales (1897): H. Zimmer, art. "Keltische Kirche " in Herrog-Hauck, Realoncyulopddie (3nd ad). translated into English by Kuno Meyer (1902).
centrill parts of Europe, and in the course of the 7 th century the Irish rule of St Columban and the Roman rule of St Benedict met in the monasteries is central Europe that had been founded by Columban and his Irish monks. The Benedictine ruie supplanted the Irish so inevitably that the personnel ccased to be Irish, that even in St Columban's own monastery of Luxeuil his ruie was no longer observed, and by Charkmagne's time all remembrance of any other mouastic rule than the Bemedictine had died out.

During the 7th and 8th centuries the Benedictine houses were the chicf instrument in the christianizing, civilizing and educating of the Teutonic races. In spite of the frequent pillage and destruction oi monasteries by Northmen, Saracens, Armbs and other invaders; in spite of the existence of even widespread local abuses, St Benedict's institute went on progressing and consolidating; and on the whole it may be said that throughout the early middle ages the general run of Benedictine houses continued to perform with substanifal fidelity the religious and social functions for which they were created.

1a. Ofshoots and Mfadificotions of Bencdictine Monachism: the Rise of "Orders."-Up to the begianing of the roth century we do not meet in the West such a thing as an "order"-an organized corporate body composed ol several houses, diffused through various lands, with centralized government and objects and methods of its own. As stated above, St Pachomius's monasteries formed an order-a curious anticipetion of what six centuries later was to become the vogue in Western monasticiem. The Benedictine houses never coalesced in this manner; even when, later on, a system of national congregations was introduced, they were but loose federations of autonomous abbeys; so that to this day, though the convenient expression "Benedictine order" is frequently used, the Benedictines do not form an order in the proper sense of the word. But with the roth century we reach the period of orders, and it is on this line that all subeequent developments in Western monasticism have run.
The first order was that of Cluny, founded in gro; in rule and manner of life it continued purely Benedictinc, and it wielded extraordinary power and religious inftuence up to the middle of the zath century. (See Cluny.)

The chicf offroot from the Benedictine institute were the Cistercians ($c, 100$); their ground idea was a return to the letter of St Benedict's rule, and a reproduction, as close as could be, of the exterior conditions of life as they existed in St Benedict's own monastery; consequently field work held a prominent place in the Cistercian ideal. This ideal it has not been possible permanently to maintain in the great body of the order, but only in limited circles, as Trappists (q.v.). But for a century (11251225) Citeaux supplanted Cluny as the spiritual centre of western Eurape. The Cistercians were an organized, centrulized arder in the full sense al the word. (See Cistercians.)
Towards the end of the roth century and during the isth a strong tendency set in to revert to the eremitical lific, probebly awing to the example of the Greck monks, who at this time entered Sicily and south Italy in great numbers. This tendency produced the orders of the Camaidulians or Camaldolese (c. 975) in Italy, and in France the Grandmontines (10;6) and Canthusians (ro84), all leading practically eremitical lives, and asembiling ordinarily only for the church services. The Vallombrosians (1038) near Florence maintained a cenobitical Hie, but eliminated every element of Benedictine life that was not devoted to pure contemplation. At Fontevrault (founded in 1095) the special feature was the system of "double monasterics" ie. neighbouring, but rigorously separated, monasteries of neen and of women-the government being in the hands of the abbesses.
In all these lesser orders may be discerned the tendency of a return to the clements of Eastern monasticism diacarded by St Benedict-to the eremitical lifo; to the purely contemplative Hie with litlle or no factor of work, to the undertaking of yigorous bodlly austerities and penances-it was at this time that the practice of self-infficted scourgings as a penitential exercise was
x VIII 12

Introduced. All thit was a reaction fiem St Bebediet's reconstruction of the monastic lifo-a reaction which in the matter of austerities and individualistic piety has made itself increasingly felt in the later manifestations of the monastic ideal in the West.

It New Kiads of Religions Orders.--Up to this point we have met only with monasticism proper, and if the term were taken strictly, the remainder of this article would be concerned only with the later history of the instituses already spoken of; for netther canons regular, friars, nor regular clerks, are in the strict sense monks. But it is usual, and it will be conivenient here, to use the term monnstictsm in a broader sense, as equivalent to the technical "religious life," and as embracing the various forms that have come into being so prolifically in the Latin Church at all periods since the middle of the zith century.
The first of these new forms was that of the canons regular or Augustinian ranons (q.a.) who about the year 1060 arose out of the older semi-monastic conorical institute, and lived according to the so-called "Rule of St Augustine." The essential difference between-monks and regular canons may be explained as follows: monks, wheiher hermits or cenobites, are men who live a certain kind of life for its own sake, for the purpose of leading a Christian life according to the Gospel's counsel and thus serving God and saving their own souls; external works, either temporal or spiritual, are accidental; clericature or ordination is an addition, an accession, and no part of their ohject, and, as a matter of fact, till well on In the middle ages it was not usual for monks to be priests; in a word, the life they lead is their object, and they do not adopt it in order the better to compass some other end. But canons regular were in virtue of their origin essentially clerics, and their common life, moaastery, rule, and the rest, were soracthing additional grafted on to their proper clerical state. The difference manifested itself in one external paint: Augustinian canons frequently and freely themselves served the parish cburches in the patronage of their houses; Benedictine monks did so, speaking broadly, hardly at all, and their doing so was forbidden by law, both ecclesiastical and civil. In other respects the life of canons regular in their monasteries, and the cxternal policy and organization among their houses, differed little from what prevailed among the Black Benedictines; their superioss were usually provosts or priors, but sometimes abbots. As contrastod with the friars they are counted among the monastic orders. Alongside of the local federations or congregations of bouses of Augustinian canons were formed the Premonstratensian order (1120) ($q, 0$.), and the English "double order" of St Gilbert of Sempringham (1148) (q.v.), both orders, in the full sense of the word, composed of Augustinian canons.

Two special kinds of orders arose ont of the religlous wars waged by Christendom against the Mahommedans in the Holy Land and in Spain: (1) the Military orders: the Knights Hospitallers of St John and the Knights Teraplars, both at the beginning of the 12th exptuty, and the Teutonic Knights at its close; (2) the orders of Rensoin, whose object was to free Christian prisoners and slaves from caplivity under the Mahommedars, the members being bound by wow even to offer themselves in exchange; such orders were the Trinitarians (q.a.) founded in 1198, and the order of Our Lady of Ransom (de Mereede), fousded by St Peter Nolasco in 1223; both were under the Augustinian rule.
At the beginning of the isth century arose the series of great Mendicant orders. Their nature and work and the needs that calied them into being are explained in the article Mindicant Movement, and in the separate articles an St Francis of Assigi and Franciscans (i210), St Dominic and Dondinicane (1315), Carmelitrs (1245), Augustinian Hermits (1256)-these were the four great orders of Mendicant friars-ta them were addod, in 1487 , the Servites ($q . v$.) founded in 1233 .

It will be in place bere to explain the difference between friarn, monks, and canons regular. The distinction between the two lat hes already been brought out; but they agree in this that the individual monk and canon alike belongs to his bouse of profession and not to any greater or wider corporation. They
are bound by place and the unit is the individual community. Thus among monks and canons regular each monastery has its own fixed community, which is in a real sense a family; and the monk or canon, no matter where he may be, looks on his monastery as his "bome," like the ancestral home of a great family. With the friars this is all changed: the friar does not belong to any particular honse, but to the province or order, so that there is no reason, beyond the command of his superiors, why he should be living in one house rather than another. In the monk attachment to his own one monastery is a virtiue; in the friar detachment is the ideal. The monk, or the canon, nomally exercises his influence on the world in and through his community, not as an individual but as a member of a corporate body. The friar's sphere of work is normally outside his convent, and he works and influences directly and as an individual. Lastly, ia regard to the object aimed at there was an important difference, for the professed object of the friars was to be clerical helpers of the parocbial clergy in meeting the specifically retigious needs of the time. Already, in St Francis's lifetime, his friars had grown into an order dedicated to spiritual ministrations mong the poor, the sick, the igmorant, the dutcasts of the great cilies; while hy the very conception of their institute the Dominicans wene dedicated to the special work of preaching, especially to heretics and heathens. Here, too, should be mentioned St Francis's other great creation, the Tertiaries (q.v.), or devout men and women living in the world, who while continuing their family life and their ordinary avocations, followed a certain rule of life, giving theinselves up to more than ordinary prayer and the pursuit of good works, and abstaining from amusements of a worldly kind.
12. The Religious Orders in the Later Middle Ages.-The 13th century was the heyday of monasticism in the West; the Mendicant orders were in their first fervour and enthusiasm; the great abbeys of Benedictines, Cistercians and Augustinian canons reflected the results of the religious reform and revival associated with Hildebrand's name, and maintained themselves at a high and dignified level in things religious and secular; and under the Benedictine rule were formed the new congregations or orders of Silvestrines (1231), Celestines (c. 1260) and Olivetans (1319), which are described under their several headings. But towards the end of the century a perlod of decline set in, which ran its course in increasing volume througbout the 14th century. A great wave of secularity rolled over the Church, engulfing the religious orders with the rest; love waxed cold, fervour languished, learning declined, discipline was relaxed, bitter rivalries broke out, especially between Franciscans and Dominicans. The great schism was reflected in the Mendicant orders which were divided into two obediences, to the destruction of discipline. The great wealth of the old monamic orders exposed them, especially In France and Italy, to the vicious system of commendation, whereby a hishop, an ecclesiastic, or even a layman was appointed " commendatory abbot "' of a monastety, merely for the purpose of drawing the revenues (see ABBOI); the monasterics where often deprived even of necessary malntenance, the communitics dwindled, and regular observance became impossible. There is resson to believe that in England a relatively good level was maintained throughout, thanks in greax measure to the fact that the kings resolutely refused to allow the introduction of commendation-Wolsey was the first and last eommendatory abbot in England. In the German lands, the \$owest level was touched, and the writings of the Augustinian canon Johann Busch, and of the Benedictine abhot Trithemius reveal a state of things fn the first half of the 1 gth century -that urgently called for reform. The first move in this direotion was made in the Netherlands and north Gurmany under the influence of Gerhard Groot (q.v.), and issued in the formation of the Windesheim congregation of Augustinian canons and the secular congregation of Brothers of Common Life (\%.v.) fourided c : 1384 , both of which became centres of religious revival. During the first haif of the 1 gth century numerous and effective efforts at reform were bitiated in all the orders without exception, and ln every part of Europe. These
movements. promoled by the councils of Constance and. Bamel, partook of the spirit of the time and were characterised by an extreme austerity of tife and a certain bardness of spirit, and a sort of police regulation easily understandable at a time of reaction from grave ahuses. At this time arose the Hieronymites (q.p.) founded in 1375, onder the Augustinian rule, the Observants (1415) among the Franciscans (q.e.), and the Minims (founded.c. 1460 by St Francis of Paola, q.e.), whose programme was to outdo the Minors or Franciscans. These varions reform movernents among the orders were widely but not universally successful; and so the Reformation found religious houses in an unsatisfactory state in sufficient numbers to afford the reformers one of their chief handles against the old religion. The Reformation and the religions wars that followed in its wake destroyed the monasteries and religious orders of all kinds in northern Europe and crippled them in central Europe.
13. The Modern Orders.-During the Reformation period there sprang up, to meet the needs of the time, a new kind of religious order, called Regular Clerka. These are religious orders in the full sepse of the word, as the members take the solemn religious vows. Regular clerks are by their institute clerics and priests, and they are devoted to some particular work or works as their own special object-as education, the preaching of missions and retreats, or the going on mistions to the heathen. They carry still further the tendencies that difierentiate the friars from the monks; and in particular, in order to be more free in devoting themselves to their special works, the orders of regular clerks have commonly given up the choral celebration of the canomical office, which had been maintained by the friars.

Of regular clerks by far the most importamt are the Jesuits ($q . v$.), founded in 1540 ; there sre abso the Theatines (founded 1524 by St Cajelan and Caraffa, afterwards Paul IV.); the Bamabites (founded 1530, by St Antonio Zaccaria) and others (see Max Heimbucher, Order u. Kongregationex (1897), IL. 8\% 108-114). Strictly speaking the "religious congregations" should be distinguished from the orders of regular clerks, the difference being that in the former the vows, though taken for life, are only "simple vows" and more easily dispensable by authority; but the character and work of the two institutes is very similar. The chicf of these congregations are the Passionists (founded by St Jahn of the Cnoss, 1725) and the Redemptorists (founded by St Alfonsus Liguori, 1749), both dedicated to giving missions and. retreats. The Christian Brothers, devoted to primary education, founded by St Jean Baptiste de la Salle in 1679, are not in orders (Heimbucher, -p. cil. $8 \S 115-118$).
Besides the religions congregations there are a number of "secular congrogations," composed of secular priests living together under temporary vows and free to leave at will; the following descrve mention: Oblates of St Charles (founded by St Charies Borromeo, 1578); Oratorians (founded by St PhDlip Neri, c. 1570); the French Oratory (founded by Cardinal Berulle, 26I3), a similar but distinct, institution, which produced a number of schotars of the highest. diatinction-Thomasion, Morin, Marlebranche, Richard Simon, Juenin, Lebrum, Masillon, and others; Lazarists (founded by St Vincent de Paul, 1624); Sulpicians (founded by M. Olier, 164e), and a vast number of others, including several for the mission to the heathen (see Heimbucher op. cil. \$8 124-140).

During the period under review, from the Reformation to the French Revolution, the old orders went on alongelde of the new, and many notable revivals and congregations arose amons them: the most noteworthy were the Capuchins (q.v.) among the Franciscmens (5 528); the Discalced Carmeliter (q.v.) of St Teresa and St John of the Cross (1562); the Trappists (q.o.) among the Cistercians ($\mathrm{I} 6 \mathrm{CH}_{3}$); and, most famous of all, the Mearists (q.s.) among the Benedictines of France (3628).
14. The Redigious Orders in Recent Times.-At the end of the 18th century and the opening of the igth the religious orders received a succession of blows in those countrios in which thesy had aurvived the Reformation from which they have only
in the present generation recovered. The Jesuits were suppressed by_Pope Clement XIV. in 1773, and restored by Pius VII. in $\mathbf{1 8 r} 4$. As the result of the ecclesiastical policy of the emperor Joseph 1I.' nearly all religious houses of all kinds were suppressed throughout the Austrian dominions (1780). The French Revolution swept them out of France and caused the secularization of the great majority in central Europe and Italy. In Portugal and Spain they were dissolved in $1834-\mathrm{r} 835$; in Italy in $\mathbf{1 8 6 6}$; in the Prussian dominions in r87r. The last half of the roth century, and more especially the last quarter, witnessed a remarkable. revival of vitality and growth in most of the older orders in nearly every country of western Europe, and besides, an extraordinary number of new congregations, devoted to works of every sort, were founded in the 19th century: Hefmbucher (op. cit., 85 r18, $134-140$) numbers no fewer than seventy of these new congregations of men. In the new countries, especially in the United States and Australin, but also in South Africa, orders and congregations of all kinds are most thriving. The chief set-back has come again in France, where, by the Association Laws of r903, the religious orders bave nearly all been suppressed and expelled and their property confiscated.
15. The Nuns:-In the foregoing sketch not hing has been said concerning the nuns; and yet in all ages women, bardly less than men, have played their part in monasticism. In the earliest Christian times the veiled virgins formed a grade or order apart, more formally separated from the community than were the mate ascetics. There is reason for believing that there were organized convents for women befare there were any for men; for when St Anthony left the world in 270 to embrace the ascetic life, the Vita says he placed his sister in a nunnery ($\pi a \rho \theta e y \dot{\omega}$). We learn from Palladius that by the end of the 4 th century nunneries were numerous all over Egypt, and they existed also Im Palestine, in Italy and in Africa-in fact throughout the Christian world. It is a curious coincidence that the sister of each of the three great cenobitical founders, Pachomius, Basil and Benedict, was a nun and ruled a community of nuns according to an adaptation of her brother's rule for monks. In the West the Benedictine nuns played a great part in the Christian settlement of north-western Europe. As the various monastic and mendicant orders arose, a female branch was in most cases formed alongside of the order; and so we find canonesses, and hermitesses, and Dominicanesses, and Franciscan nuns for Clares (q, v.) --requisite information will be found in the respective articles. Then there were the "double orders" of Sempringham (see Sr Gilbert) and Fontevrault, in whicb the nuns were the predominant, or even the dominant, element. Of the modern orders of men only a Iew include nuns. But on the other there are a vast number of purely female orders and congregations, The great majority of these modern congregations of women follaw tbe Augustinian rule, supplemented by special constitutions or by-laws; such are the Brigittines, the Ursulines and the Visitation nuns: others follow the rule of the third order of the Franciscans or other Mendicants (sec Tertineyes). In early times nuns could go out of their enclosure on occasion; but in the later middle ages, up to the council of Trent, the tendency was to keep them more and more strictiy confined within their convent precincts. In 1609 an English lady, Mary Ward, founded at Munich the "Institute of Mary," the nuns of which were not bound to enclosure. 'i his new departure, or rather, return to old ideas, encountered vebement opposition and difficulties that nearly wrecked it; but it has survived; and has been the pioneer in lhe extraordinary development of institutes of women devoled to external good works of every kind. St Vincent of Paul soon followed; in 1633 he established the Sisters of Charity, bound only by yearly vows, and wholly given up to works of charity-chiefly nursing in hospitats and in the homes of the poor, and primary cducation in poor schools.

As women are debarred from exercising the spiritual functions of the ministry, it follows that nans have to devote themselves elther to a more purely contemplative life, or eise toa more wholly active one, than is usual a mong the orders of men, who commonly, in virtue of their priesthood, have been able to find a mixed form
of life between the two extremes. The nuns belonging to the older orders tend to the contemplative idea, and they still find recruits in sutficient numbers, in spite of the modern rush to the active congregations. These latter exist in wondrous number and variety, exercising every imaginable form of good workeducation, both primary and secondary; the care of hospitals, orphanages, penitentiaries, prisons; of asylums for the blind, the deaf and dumb, the insane; of refuges for the aged poor and the destitute.
, See the works of Helyot and Heimbucher, referred to helow under "Literature"; also Lina Eckenstein, Woman under Monasticism (1896); and for information on the various orders of women, J. N. Murphy, Terra incognita (1873); and F. M. Steele, Convents of Greal Bricuin and Ircland (1902).
16. Conclusios.-Fcw phenomena are more striking than the change that has come over educated Protestant opinion in its estimate of monasticism. The older Protestantism uncompromisingly judged the monastic ideat and life to be both unchristian and unnatural, an absolute perversion deserving nothing but condemnation. But now the view of the rritico-historical school of Protestant thought, of which Dr Adolf Harnack is so represen. tative a spokesman, is that the preservation of spiritual religion in Catholic Christianity, both Eastern and Western, has been mainly, if not wholly, due to monasticism (sec Harnack's early tractate Dos Monchlum, translated under the title Aonaslicism, by E. E. Kellett, 1901; also the lectures on Greek and Roman Catholicism in Das Wesen des Christonhums, translated by Bailcy Saunders, 1902; the first-named work is the most suggestive general apercs of the whole subject-though writen from a irankly hostile standpoint, it is in large measure a pancgyric).

The views of the new l'rotestantism concerning monasticism are probably no less excessive than those of the old. The truth probably lies somewhere between them. It may perhaps be ugreed that not the least of the services rendered to the Christian poople at large by monasticism is this: luto equery life the spirit of renunciation must eater; in most lives there are crises in which the path of mere duty can be followed only in virtue of a great renunciation; if we are able to make these ordinary and necessary renunciations, it is in some measure owing to the fact that the path has been made easie: for us by those who (like the author of the Imitation of Christ) have shown the example, and thereby been able to formulate the tbeory, of renunciation in a supreme degree.

Literature.-Theliterature on monasticism is immense. Thechied tepertory for information on the historical side is Helyot's Hestoire fers ordres recigienex (8 vols., 1714;2nd ed. 1792; digested in dictionary lorm by Migne, 1860). This information has been condensed and brought up to date by Max I Eimbucher. Orden und Kongregatiouen (2 vols., 1896-1897; a 2nd ed. in 3 vols., 1907)-this most uspful handbook is equipped throughout with an excellent and well chosen Libliography. Oıto Zockler's Askese und Morchtum (1897), also tovers the whole ground, and is written more from the point of view of theory. The inner spirit and working af the older monasticism is Hell portrayed in F.A. Gasquet's English Monassic Iife (1904); more popular accounts are given in H. J. Feasy's Momasticism (180)s), and F. M. Stecte's Monasteries and Religious Houses of Cireal Britasn and Ireland (1903). The rules of the various orders are collected In Brockie's edition of Holsten's Codex regularum (6 vols., 1759). The erticle Monchemm in Herzog-Hauck Realenc yklopodie (3rd ed.), and in Wetzer und Wehe Kurchrmexicon (znd ed.) go over the same general ground as the present article, in the earlier portion entering into freater detail as to facts, but in the fater dealing much more sumfiarily. The relevant separate articles in these two great dictionarics, Protestant and Catholic respectively. will supply adequate Information and ample references on most points. The Calhatic Diethonary contans usefulf aricles on most of the subjects here louched on; and an extensive Colholic Encyclopaedia is in course of preparalion at the Catholic University of Washinglon. The habrits and dress of the various orders may be seen in Helyot's Histoire. Which abounds in plates, coloured, in she ed. of 1792 . There are plates representing members of the chief orders in Dugdale's Monaslicon, and in the books of Casquet and Sicele mentioned above: also (colourcd) in Tuker and Malleson, IIandbook to Cliristion Rume. pl. ii. (tgoo).

MONASTIR, or BITOLIA, the second city of Macedonia, and the capital of the vilayet of Monastir in European I'urkey, on the Salonica-Monastir railway, 400 m . W. of Constantinople. Pop. (1905), about 60,000 . Monastir is situated at an altitude
of 2019 ft on the eastern versant of the richly wooded mountains Which culminate in the Peristeri (8300 ft .) and sever Lake Prespa from the valley of the Kara-Su or Tzerna. A rributary of this river, the Dragor or Drahor, traverses Monastur through a rocky channel which is rarely filled except after a thaw or beavy rain. The city possesses many mosques, churcbes and schools, baths and a military bospital. It is the seat of numerous consulates, an American Protestant mission, and a Lazarist mession. The annual value of its trade is about $£ 400,000$. Grain, flour, cloth, bides and bones are exported, and a large amount of gold and silver ornaments is manufactured, though this indusiry tends to decline.

The military advantages of its position at the meeting-place of roads from Salonica, Durazzo, Uskub, and Adrianople led the Turks, about 1820, to make Monastir the headquarters of an army corps. Since then the general and commercial importance of the city bas greatly increased, and in 1808 it was made the see of a Bulgarian bishop. The ancient diocese of its Greek archbishop is known as Pelagonia, from the old name of the Kara-Su Plain. Monastir itself has been identified with the ancient Heraciea Lyncestis on the Via Egnatia; its modern name is derived from the monastery of Bukova ('' the beeches') near the southern outskirts of the city.

MONAZITE, a mineral consisting of anhydrous phosphate of the corium metals ($\mathrm{Ce}, \mathrm{La}, \mathrm{Di}$) PO_{4}, together with small and variable amounts of thorium (ThO_{3}, $\mathrm{I}-\mathrm{ro} \mathrm{\%}$) and yttrium. It is of considerable commercial importance as a source of thoria for the manufacture of the Welsbach and other mantles for incandescent gas-lighting: the cerium is used to a limited extent in pharmacy.
The following analyses are of monazite from: (1.) Burke county, North Carolina; (It. Arendal, Norway; (Iti.) Emmaville, Gough county, New South Wales.

	1.	11.	111.
Phosjhorus pentoxide $\mathbf{P 8}_{8} \mathbf{O}^{\mathbf{S}}$	$29 \cdot 28$	27.55	25.09
Cerium oxide ($\mathrm{Ce}_{2} \mathrm{O}_{2}$)	$31 \cdot 38$	29.20	36.64
Lanthanum oxide ($\mathrm{L}_{2}, \mathrm{O}_{2}$) $\}$	$30 \cdot 88$	$26 \cdot 26$	30-2I
Didymium oxide ($\left.\mathrm{(Oiz}_{3} \mathrm{O}_{3}\right)$	3	3.82	30.2
Thorium oxide (ThO_{2})	$6 \cdot 49$	$9 \cdot 57$	1.23
Silica (SiO_{2})	1.40	1.86	3-21
Alumina ($\mathrm{Al}_{2} \mathrm{O}_{3}$)	-.	-	311
Iron oxide ($\mathrm{Fe}_{2} \mathrm{O}_{3}$)	-	1.13	-
Lime (CaO).	-	0.69	-
Water ($\mathrm{H}_{2} \mathrm{O}$)	0.20	0.52	
-	99.63	100.60	

Thorta and silica being often present in the molecular ratlo $1: 1$, it has been suggested that they exist as thorite (ThSiO., as a mechanical impurity in the monazite.

Crystals of monazite belong to the monoclinic system, and are usually flattened parallel to the ortho-pinacoid (a in the figure). The large (up to 5 in . in length) reddishhrown, dull and opaque crystals from Norway and the Urals are simple in form, whilst the small, translucent, honey-yellow crystals from the Alps are bounded by numerous bright faces: Crystals of the latter habit were described in 1823 from Dauphine under the name turnerite, and owing to their rarity were not until many years afterwards analysed chemically and proved to be identical with monazite. Monazite from the Urals was described by A. Breithaupt in 1829, and named by him from Gr. μ ovik 5ω, to be solitary, because of the rarity of the singly occurring crystals. The bardness is 5t, and the specific gravity $5 \cdot 1-5 \cdot 2$. Light Which bas traversed a crystal or grain of monazite exhibits a characteristic absorption spectrom, and this affords a ready means of detecting the mineral.

As minute idiomorphic crystals monartec is of wide distribution in granites and gncisses, being present in very small amoumts as an accessory constituept of these rocks. By powdering the rock and washing away the lighter minerala in a stream of water the heavy minerals (zircon, anacuse, rutile, magnetite, garnet,
monazite, xenotime, \&c.) may be collected. This separation has been effected naturally by the weathering and disintegration of the rocks and the accumulation of the heavier minerals in the beds of streams. Under these condilions nonazite has been found as rounded water-worn grains in the alluvial gold-washings of the Urals, Finland, Siberia, the United States, Brazil, Colombua, New South Wales, \&ic., and in tin-gravels in Swariland, South Africa. Larger crystals of monazite are found embedded in pegmatite veins in the Ilmen Mountains (southern Urals); at Arendal and other places in southern Norway, where it is collected in the feldspar quarries to the extent of about one ton per annum; and in the mica mines at Villeneuve in Quebec, where masses of monazite weighing 20 lb have been found. The small crystals of the "turnerine" habit occur implanted, often with anatase and rutile, on the crystallized quartz and alhite, which line crevices in the crystalline schists of the French, Swiss and Tirolese Alps; similar crystals with the same associations occur very exceptionally in the clay-slate at Tintagel in Cornwall. Microscopic crystals of monazite (cryptolite, from kpurfos. concealed) have been observed embedded in the crystallized apatite of Arendal in Norway.
The deposits worked commercially are the monazite-bearing sands of North Carcolina and Brazil and to a smaller exient those of South Carolina: In North Carolina it occurs over a wide area in the streams rising in the South Mountains, an castero outlier of the Blue Ridge. The roctso of the district are granitic biotitegheise and hornblende-gneise, and are intersected by veins of auriferous quartz. The percentage of monaxite in the river-gravels varies from very small anounts up to 1 or 2%. The heavy minerals contained in the gravels are collected in the same manner as in washing for gold (which is often aiso preaentl: magnetite is sepasated with a magnet; but other minerals, such as zircon, rutile, garnet. corundum, \&c., cannot be separated by mechanical means. Tho product ts a fine-grained yellowish sand containing $65-85 \%$ of monazite and $3-9 \%$ of thoria. In Brazil it occurs in river-gravela and also in the sand on the mea-beaches ; an extensive accumalation of very rich reonazite gand occurs on the seashore near Aloobaga in Bahia, and this has been shipped as ballast in the natural statc. See H. B. C. Nitze," Monazite" (6 oth A rnual Report of the United States Geological Surpey, pt. iv. (I895), pp. 667-693). (L. J. S.)
HONBODDO, JAMES BURKETT, LORD (1714-r799), Scottish judge and anthropologist, was born in 1714 at Monboddo in Kincardineshire. He studied at Aberdeen, and, after passing his law examinations in Edinburgh, he quickly took a leading position at the Scottish bar, being made a Lord of Session in 1767 with the title of Lord Monboddo. Many of his eccentricities, both of conduct and opinion, appear less remarkable to us than they did to his contemporaries; morcover, he seems to have heightened the impression of them by his humorous sallies in their defence. He may have had other reasons than the practice of the ancients for dining late and performing his journeys on horseback instcad of in a carriage. He is remembered more particularly for his writings on human origins. In his Anticnt Melaphysics (1779-1799), Monboddo conceived man as gradually elevating bimself from an animal condition, in which his mind is immersed in matter, to a state in which mind acts independently of body. In his equally voluminous work, The Origin and Progress of Language (1773), he brought man under the same species as the orang-outang. He traced the gradual elevation of man to the social state, which he conceived as a natural process determined by "the necessities of human life." He looked on language (whict is not "natural" to man in the sense of being necessary to his self-preservation) as a consequence of his social state. His views about the origin of society and language and the faculties by which man is distinguished from the brutes have many curious points of contact with Darminlsm and neo-Kentianism. His iden of studying man as one of the animals, and of collecting facts about savage tribes 10 throw light on the problems of civilization, bing bim into contact with the one, and his intimate knowiedge of Greek philosophy with the other. In borh respects Monboddo was far in advence of his neighbours. His studied abstinence from fiae writios-from "the rhetorical and poetical style fashionable among writers of the present day " -0 such subjects as be handied confirmed the iden of his contempoctries that ho was only an eccentria
concocter of supernely abount paradores. He dited on the sth of May 1799.

Boewell's Life of Johnson givee an account of the lexicographer's vialr to Burnelt at Monboddo, and is full of references to the natural contemporary view of a man who thought that the human race could be descended from ronkeys.

EOMOEY, BOM ADRIEH JBANMOT DE, DUEE OF COAEGLANO (1754-1842), marshal of France, was the son of a lawyer of Besminen, where he was born on the 3 1st of July 1754. In his boybood he twice enlisted in the French army. but his father procured his discharge on both occasions. His desire was at last gratified in 1778 , when he received a commission. He was a eaptain when, in 1791, the embraced the principles of the French Revolution. Moncey mon great distinction in the campaigns of 1793 and 1794 on the Spadish frodier (see French Revortmomary Wars), rising (rom the command of a battation to the comnmend in chief of the Army of the Western Pyrenés in a fet months, and his successinil operatlons were largely instrumentel in compeling the Sparish government to make peace. After this he was enaployed in the highest commands until 1799, when the gevernment, suspecting him of Royalist views, dismised him. But the comp d"elal of 18. Brumaire brought him back to the active list, and in Napoleon's Italian cempaign of i 800 he led a cotps from Switzeriand into Italy, surmounting all tho difficulties of bringing horses and guns over the then formidable pass of St Gothard. In 1801 Napoleon made hlm inspector-general of gendarmerie, and on the assumption of the imperfal titfe created him a marshal of France. In 1805 Moncey received the grand cordon of the legion of honour, and in 1808 the title of duke of Conegliano. In the latter year, the first of the Peninsular War, Moncey was sent to Spain in command of an army corps. He signalized himself by his victorious advance on Valencia, the effect of which was, however, destroyed by the disaster to Dupont at Baylen, and took a leading part in the emperor's campraign on the Ehro and in the second siege of Saragossa in 1809. He refused to serve in the invasion ol Russia, and therefore had no share in the campaign of the gramde armbe in 1812 and 1813. When, however, France was Invaded (1814) Marshal Moncey reappeared in the field and fought the last bartie for Paris on the heights of Montmartre and at the barrier of Clichy. He remained neutral during the Hundred Days, feeling himself bound to Louis XVIII. hy his engagements as a peér of France, hut after Waterloo he was punished for refusing to take part in the court-martial on Ney by imprisonment and the loss of his marshalate. He was reinstated in 1816, and re-entered the chamber of peers three years later. His last active service was as commander of an army corps in the short war with Spain, r823. In 1833 he became governor of the Invalides. He died on the zoth of April 1842.

MOMCANINS, a town of southerm Portugal, in the district of Faro (formeriy the province of Algarve); 13 m . S. of Saboia atation on the Lisbonsfaro railway, and 12 m . N. of Villa Nova on the Atlantlc. Pop. (1900), 7345. Morichique is one of the principal Portuguese health-resorts, finely situated among the wooded hefghts of the Serra de Monchlque, which rise on the west to 2963 ft . There are hot sulphur springs, with batha and a sanatorium 4 m. south. Wheat, tifliet, rye, beans, oranges, wine, olive oil and chestnuts are the chief products, and there is 3 woollen factory.
monction, a city and port of entry in Westmoreland county, New Brunswick, Canada, 89 m . by rail N.E. of St John, at the head of navigation on the Petitcodiac river, the seat of the workahops and general offices of the Inter-Colontal railway and the eastern terminus of the new Grand Ttunk Pacfic railway. Pop. (1901), qo26. It has large stove factories, engine and boiles works, end is a flourishing manufacturing town. The workshops of the railway and great part of the town were swept away by fire in February 1006, but have been rebuilt on a larger and more modern scale.

MOID, LUDWIG (1839-1go9), British chemist, was born at Caseel in Germany on the gth of Merch 1839. After studying
at Marburg under Fiermann Kolbe and at Heldolberg under Robert Bunsed, he came to England in 1862 and obtained a position in a chemical works at Widnes, where he claboraled the practical application of a method he bad devised for recovering the suiphur lost as calcium sulphide in the black ash waste of the Leblanc aikali process. He became a naturalized British subject in $\mathbf{1 8 6 7 \text { . In } 1 8 7 3 \text { he entered into partnership }}$ with Sir John Tomlinson Brunner (b. 1842-), whom he had met when he was at Widnes, and thus founded the great chemical manufacturing firm of Brunner, Mond \& Co. They began to make alkali by the ammonia-soda process, under licence from the Beigian chemist, Ernest Solvay, but at first the venture threatened to prove a failure. Graduaily, however, the technical difficulties were overcome and success assured, largely as a result of umproved methods worked out by Mond for the recovery of the ammonia. About 1879 he began experiments. in the economital utilization of fuel, and his efforts ied bim to the system of making productr-gas, known by his name (see Gas: II. For Fuel and Power). Later, while attempting to utilize the gas for the production of electricity by means of a Grove gas battery, he noticed that the carbon monoxide contained in it combined with nickel. The resuiting compound, nickel carbonyl, which was described to the Chemical Society in r890, is both formed and decomposed within a very moderate range of temperature, and on this fact he based a successful process for the extraction of nickel from its ores. A liberal contributor to the purposes of scientific research, Mond founded in $\mathbf{8 9 6}$ the Davy-Faraday Research Laboratory in connexion with the Royal Institution. On his death, which occurred in London on the irth of December 1go9, he bequeathed a large part of his collection of pictures to the nation.

MONDAY (in O.E. Monandadg, the moon's day, a translation of the Late Lat. Zurae dies, from which the French fundf is taken), the second day of the week (see Calendar). The day has been humorously canonized as St Monday, the festival of colihlers, who seldom work on Mondays, and were supposed not to know exactly on which day St Crispin's (their patron saint) festival fell, save that it should be a Monday, and thus celebrated each Monday in the year as a holiday so as to be certain to honour the day. In some parts of Yorkshire any holiday is called Cobblers' Monday. Collop Monday, in the north of England, is the Monday before Shrove Tuesday, so called in allusion to the dish of fried eggs and bacon, and slices of salted, dried meat, called collops, taken on that day preparatory to the Lenten fast. Plough Monday in England is the Monday after Twelfth Day, the first Monday after Epiphany, in allusion to the fact that in pedieval times the ploughmen had their fete-day and went around the villages begging ploughmoney. The lord mayor of London holds a Grand Court of Wardmote at the Guildhall on Plough Monday of each year, to receive returns from the wards of the election of common. councilmen and to hear pettions against sucb returns.

MONDORT:DO, a city of northern Spain, in the province of Lugo, 27 m . N.N.E. of the city of Lugo, on the river Masma. Pop. (1000), 10,590. Mondofiedo occupies a sheltered valley among the northern outiers of the Cantabrian Mountains. The principal buildings are the cathedral, s Corinthian structure of the ifth century, an ex-convent of Franciscan friars of Alcantara, which is used for a theatre and a public school, and the civil bospital. The industries include lace-making, linen-weaving; and leather manufacture.

According to local tradition, the bishopric of Dumfum, near Braga, was transferred to San Martin de Mondotiedo (io m. from Mondotiedo) in the 8th century; it was brought to Mondotiedo itself in the beginning of the rath century. After having been for nearly a century and a half in the bands of the Moors, Mondofiedo was recaptured by Ordonto I. in 858; and the Christian possession was made permanent by Alphonso III. In 870. It was taken by surprise by the French in 1800 .

HONDOVI, a town and episcopal see of the province of Cúneo, Piedmont, Italy, 17 m . by rail E. of Cuneo. Pop. (1901), 5379 (town); 18,982 (commune). The lower town is r283 ft:
above sea-level, the upper 1834 ft . There is a school of the industrial arts and hundicrafts, and majolica, paper, and silk cocoons are produced. The upper town contains the heragonal piazza, a citadel, erected in 1573 by Emanuel Philibert, the cathedral of S. Donatus, a spacious episcopal palace, and higher up is a tower, the Belvedere, with a fise view. At the foot of the hill along the banks of the Ellero (a tributary of the Po) lie the industrial and commercial suburbs of Breo, Borgatto, Pian della Valle and Carassone, with their potteries, tanneries, paper-mills, marble-works, \&c. The mansion of Count San Quintino in Pian della Volle was the seat of the printing-press which from 1472 issued books with the imprint Mons Regali.

Mondovi-Mons Vici,Mons Regalis,Monteregale-did not take its rise till about A.D. 1000 . The bishopric dates from 1388. About 2 m . to the east is the sanctuary of Vico, a church designed by Ascanio Vittozzi in 1596 and crowned by a famous dome ($6730-1748$), whicb has been declared a national monument. In the square before it is a monument (189 I) to Charies Emmanuel I. of Savoy.

See L. Melano Rossi, The Sancluario of the Madoma di Vico (London, 1907).

MOMET, CLAUDE ($8840-$), French painter, was born in Paris on the 14th of November 1840. His youth was passed at Havre, where bis father had settled in 1845 . Until he was fifteen years old be led a somewhat irregular life, learning little at school, and spending all his time in decorating his books with drawings and caricatures which gave him notoriety in Havre. At the same time he became acquainted with Boudin, a clever sen-painter, under whose guidance be learned to love and to understand nature. At the age of twenty he became a soldier, and spent two years of his military time with the regiment of the Chasseurs d'Arique in.the desert. Falling ill with fever, he was sent home, and entered the studio of Cleyre. This classical painter tried in vain to keep him to conventional art and away from truth and nature, and Monet left his studio, where he had become acquainted with two other " impressionistic " painters-Sisley and Renoir. At that time he also knew Manct ($q .0$.), and in 1869 be joined the group of Cézanne, Degas, Duranty, Sisley, and became a plein air painter. During the war of 8870 he withdrew to Engiand, and on his return was introduced by Daubigny to a dealer, M. Durand-Ruel, in whose galleries almost all his works have been cxhibited. In 1872 he exhibited views of Argenteuil, near Paris; in 1874 a series entitled "Cathedrals," showing the cathedral of Rouen under different lights. He afterwards painted views of Vetheuil (1875 , see Plate), Pourville and clifis of Etretar (1881), of Bordighera (1886), of the Creuse (1889), Le Meules (1891), and some further views of cathedrals ($\mathbf{1 8 9 4}$). In December 1900 he exhibited şome pictures called "Le Bassin des Nymphéas," and was engaged at the beginning of 1901 in painting views of London. Several of Monet's paintings, bequeathed by M. Caillebotte, are in the Lurembourg Museum, Paris. (See Impressionism.)

MONETARY CONFERENCES (International). These assemblies were one of the features of the later half of the igth century, due to the decided tendency towards securing reforms by concerted international action. The disorganized state of the European currencies, which became more serious in consequence of the great expansion in trade and industry, came into notice through the great gold discoveries and their effect on the relations between the two precious metals. Both by its situation and its currency system, France was the country that was first led to aim at the establighment of a currency union, in which French ideas and infuences would be predominant. A preliminary step was the formation of the Latin union, whereby the currencies of France, Italy, Belgium and Switzerland werein respect to their gold and silver coins-assimilated. In 1867 the Paris Exhibition furnished the occasion for summoning a moneyary conference, to which the principal countries of the world sent representatives. The guiding spirit of this assembly was the eminent economist, De Parieu, who had originated the Letin Onion. By his advice a scbeme was approved recommending the adoption of the single gold standard, the use of the decimal
system, and the co-ordination of the varions crurencies with the French system. Difficulties as to the mode of bringing thete principles into practical operation ware diacussed, and full liberty had to be given to the several nations to carry out the proposals in the way that seemed best. The result proved that the obstacles were insurmountable, e.g. the British government could not obtain the assent of a Royal Comntinsion to the assimilation of the sovereign to the 25 -franc piece; and the courre of political events soon completely altered the relative position of the leading countries, even in their monetary relations, Germany and the United States reformed their currencies, without reference to any international considerations.

The meeting of the next international conference took place under very different conditions. A great fall in the value of silver as measured in gold, in progress from 1873, had affected the relations of silver-using countries, and disturbed the level of prices. Indian interests as well as those of American producers of silver suffered, while the management of all double-standard currencies became a task of increasing difficulty. The government of the United States invited the representatives of the leading powers to meet in Paris for the purpose of considering (1) the desirability of retaining the unrestricted use of silver for coinage, (2) the adoption of international bimetallism ($q . v$.), by the acceplance of a ratio to be fixed by agreement. Eloven nations sent delegates, Germany being the only great power uarepresented. After somewhat protracted discussion and the presentation of a large number of documants the European states accepted the American proposition "that it is decessary to maintain in the world the monetary functions of silver "; but declined to bind the discretion of particular states as to the methods to be employed. They further declared it impossible to enter into an agreement for a common ratio. The conference, therefore, separated without any result being obtained.
In consequence of the continuing fall in the value of silver, which stimulated the bimetallic agitation, a third conference was convened by the joint action of France and the United States; it also met in Paris, and was more influential than its predecessor, since Germany sent representatives, as did Spain, Portugal, Denmark and India. The charactecistic of this conference was the greater strength of the support given to the bimetallic proposal by France and the United States, together with the opposition of the dolegates of the smaller European countries, and the refusal of Germany to promise any co-operation. The inevitable consequence of this situation vas the adjournment of the conference to obtain fresh instructions, which, however, were never furnished.

After several abortive attempts the fourth (and last) of the conferences of this class was hrought together at Brussels in November 1892 on the initintive of the United States. A full representation of the powers attended, but delay arose from the absence of definite proposals by the American government. These, when they were presented, proved to be only a reafirmation of the bimetallic policy, and showed no advance. The conference, therefore, proceeded to consider the plans of Levy, Baron de Rothschild and Sotbecr for the more extended use of silver. Such devices, being merely alleviations, failed to gain any effective support. Appeals to England and Germany to grant some concessions likewise failed. Thus, like its Paris forerunners, the Brusecls conference adjourned, but never resumed its sittings.

After 1892 the currency problem passed into a new stage, in which action was national rather than international. The method of procedure by conference was for the time abandoned.
The proceedinga of the several confereacest have beten issued by the governments taking part in them. Those of the United States are the most convenient for English and American readers. See also H. B. Ruswell, International Monetary Conferences (New York. 4898).
(C.F.B.)

YONET. 1. Definilion and Fundions.-The difficult question as to the best definition of money has been complicated by the efforts of writers so to define the term as to give aupport to their particular theories. It is hard to frame a precise account which
whil hode good of the many objects that have served for monetary use. From denoting coined metal, money has come to include anything that performs the money work: though there has been conaiderable hesitation in extending the term to those forms of credit that are in modern societies the chlef instrument of cuctmange. It is therefore best to avoid a formal definition; end, instead, to bring out the character of money hy describing the furetions that it performs in the social system, The most important is, clearly, that of facilitating exchange. It is not necessary to dwell on the great importance of this office. The nifghteat consideration of industrial organization shows that it thased on the division of employments; but the earliest economic writers saw plainly that division of employments was only poseible through the agency of a medium of exchange. They recognized that che resalt of increasing specialization of habour was to establish a state of things in which each individual produced little or nothing for the direct satisfaction of his own wents, and bad thesefore to live by exchanging his product for the products of others. They saw, further, that this only became peasble by the existence of an article' that all would be willing to acdept for their special products; as otherwise the difficulty of bringing together persons with reciprocal wants would prove in insurmonntable obstacle to that development of exchange, which alone made division of labour possible. A second function tardly Inferior in importance to the one just mentioned is that of affording a ready means for estimating the comparative values of different commodities. Whhout solme common objoct as a otandard of comperison this would be practically impossihle. "If a tallor had only coats and wanted to huy bread or a horse, it would be very troublesome to ascertain how much bread he ought to obtain for a coat or how many coats he should give for a horse "; and as the momber of commoditics concerned increased the problem would become harder, "for each commodity would have to be quoted in terms of every other commodity." There Es, indeed, a good deal to be said for the view that the concoption of general excbange value could never have been formed without the previous existence of money; it has certainly support from the evidence of competent observers respecting the methods of exchange followed by savage communities. The sclection of sone particular article as the criterion makes the comparison of values easy. "The chosen commodity becomes a common denominator, or common measture of value in terms of which we estimate the value of all other goods," and in this way money, which in its primary function renders exchange possible by acting us an intermediate term in each transfer, also makes exchanges easier by making them definite. Still another function of money tomes into being with the progress of society. One of the most distinctive features of advancing civilization is the increasing tendency of people to trust each other. There is thus a continuous increase in relations arising from contract, as can be seen by examining the development of any legal system. Now, a contract implies something to be done in the future, and for estimating the value of that future act a standard is required; and here money which has already acted ns a medium of exckange and as a measure of palue at a given time, performs a third function, by affording an approximate means of estimating the present value of the future act; in this respect it may be regarded as a standard of value, or as some prefer to say, of deferred payments. Nor does this exhaust the list of servicts that money renders. In the carlier stages of economic life it acts as a store of ralue; for in no other way could a large body of wealth be concentrated. Though this is no longer needed by individuals, even at the present day the great banks find that their reserves must take the form of a monetary store. Again, money in its various forms has been the great agency for transmitting values from place to place. Its international function in this respect still continues. The halance of debt between countries is ultimately settled by the passage of bullion from the debtor to the creditor nation. But, though money has these powers, it is nevertheless correct to say that its essential functions are three in number, i.e. it supplies: (1) the common medium by which exchanges are made possible; (a) the common measure by which the compirative
values of those exchanges are esthnated; (3) the stamdard by which future obligations are determined.
2. The Value of Money, its Determining Cansos. The Quantily of Mowey requirsd by e Country. - The value of money is in principle only a special case of the general problem of value; but owing to its peculiar position the medinm of exchange has in this respect become surrounded by difficulties that need to be removed. The very phrase "value of money "is employed in two senses, which on the surface seem to have no connexion with cach other, and are the cause of much comfusion to those who have not looked into the matter. In mercantile phrastology the value of money means the intercst charged for the use of loanabio capital. When the market rate of interest is high, money is said to be dear; when it is low, money is regarded as cheap. Witbout entering into the reasons for this use of the term, it is sufficient to state the other and for our present purpose more correct meaning of the phrase. As the value of a thing is what it will exchange for; so "the valut of money is what money will exchange for, or its purchasing power. If prices are low, money will buy much of other things, and is of high value; if prices are high, it will buy little of other things, and is of low value. The value of money is inversely as general prices, falling as they rise and rising as they fall." Now the proximate condition under which value is determined is admittedly the estahlishment of an equation between demend and supply. In the case of money, however, some explanation as to the nature of both these eiements in the probiem becomes necessary. In what forms is the supply of, and the demand for, meney exhibited? The supply of a commodity is the quantity of it which is offered for sale. But in what shape does the sale of money take place? Plainly, by being offered for goods. The supply of money is the quantity of it which people are wanting to lay out, i.e. all the money in circulation at the time. Demand, in like manner, means the quantity of a commodity desired, or, according to another mode of expression, the amount of purchasing power offered for it. Taking the lat ter as the more convenient for the case of money, we can say that the demand for it consists in all goods offered for sale. The position of money as the medium of exchange introduces a further novel feature; for the market in its case is world-wide and the demand is unceasing; money is consequently in a constant state of supply and demand. It thus appears that the factors determining the value of money at a given time are: (a) the amount of money in circulation, and (2) the amount of goods on sale. Closer examination reveals other influencing conditions. The mere quantity of money is not the only element on the supply side. The varying circulation of the monetary units must be taken into account. Some coins do not make a single purchase in a year, while others change hands in transactions hundreds of times. By averaging, we may estimate the effect of the rapidity with which money docs its work, or, to employ a technical terri, the "efficiency of money." Similarly, the amount of sales rather than the quantity of commodities is the determining element on the demand side. Thus, if the inflwence of credit be omitted, it is true to say that the value of money varies inversely as its quantity multipliod by its efficiencys the amount of transactions being assumed to be constant. Some additional explanation is required before this formula can be accepted as an expression of the wholetruthon the subject. It must be noticed that it is not commodities only that are exchanged for money. Services of all hinde const;tute a large portion of the demand for the circulating medium, while the payment of interest on the many kinds of obligations makes a further call on it. The potent influence of credit must also be recognided. The latter force is indeed the chief agency to be considered in dealing with the variations of prices; though so far as it is based on deposits of metallic money it may be regarded as a form of increased monetary efficiency, and therefore as coming within the formula given above. In its wider aspect, credit acts as a substitute for ordinary money, and tay be Interpreted as equivalent to a system of perfected barter, or, better, as a new currency deveiopment. An interesting but paradoxical conclualom should be noticed: it in that increased
trade and expanding busiocss are causes which operate not to raise, but to lower. prices; for by enlarging the work that money has to do they raise fts value, ie provided that other things remain the same. Another more obvious deduction is that a large addition to the stock of money does not necessarily raise prices, since money is only efiective when brought into circulation.

The chief topic of dispute is respect to the theary of moneyvalue has been concerned with the question as to tbe ultimate regulating influence. The value of freely produced commodities in-acoording to economic theory-determined by "cost of production," or, where the article is produced at different costs, by the cost of production under the most unfavourabie circum. stances. As demand varies wheh price, it follows that an edjustment of value takes place through the interaction of cont and demand, the latter indicating the influence of the uility of the commodity on the quantity required. In applying the theory to the special case of money. the first consideration is the fact that gold and silver, the principal money materials, are the products of mines, and are produced at difierent costs, $s 0$ that their values depend on the portions raised at greatest cost. We thus ohtain the proposition that has figused in so many textbooks; viz. that "the value of money depends on its cost of production." The theory of normal value, bowever, involves certain assumptions, which are significant in this connexion. Competition is conceived as absolutely free; it is assumed that there are accurate dota for computing costs, and that the determination of value by cost is effeative only "in the long run." It is recognized, also, that cost operates on value through its power in regulatiag supply. "The latent induence," says MiH, "by which the value of things are made to conform in the long run to the cost of production is the variation that would otherwise tatie place in the supply of the commodity." From such considerattons it follows that the influence of cost on the value of money is not so prodominant as a rigid interpretation of the theory of value seams to suggest.
In eariter times it has been a common proceeding on the part of governments to restrict or stimulate both mining for the precious metals and the business of coining. At ail times the working of gold and silver mines has been rather a hazardous speculation than a legitimate busjipete. "When any person undertakea 10 work anew mine in Peru ${ }^{\text {" }}$ says Adam Smith, "he is universally looked upon an a man destined to bankruptcy and ruin, and is upon that accoumt shunned and avoided by everybody. Mining, it seems, is considered there in the same Kight as here, as a loitery in which the prizes do not compensate the blanks." The modern capitalistic organization of gold mining has not done much to alter this condilton. As regards the adjustment of supply to meet an altered cost of production the dificulices are, if possible, greater. The actual supply of money is so large, when compared wih the annual production of the precious metais, that a change in output can operate but slowly on its value. The total stoppage of fresh supplies from the mines would not be sensibiy relt for some years: and though increased production is more rapid in its operation, it takes some time to produce a decided effect. Hence the conclusion is reached that "the effects of al changes in the conditions of production of the precious metals are at first, and continue to be for many years, questions of quantity oniy, with litde reference to cost of production." Thfs is the position which is usually known as that of the "quantlty" theory : thoush wory different degrees of doctrine are comprised under the generas title. With due gualification and comment it may be taken as the prevalent theory. At all events It is beyond dispute that the cost of production is not lor short periods the controlling force which governs the value of money; while even for long periode its influence is mery hard to ascertain, in consequence of the apeculative nature of the industrics of gold and silver mining. Another peculiar feature of the problem of money value arises from the fact that it is only tlirough an actual change in the supply of money that its value can be aftered. With other commodites the knowledse that they can be produced at tower cow will bring about a reduction in their value. To the case of money, this does not hold. There must be an adjustment of the amount, or of the efficiency, of the money stock, since, as explained above. It is in a constant state of supply and demand. Ita value is outabiished in the very process of carrylng on exchanges. and that process is influenced by the available supply. In regard to another form of money the effect of the amount in existence is still more decisive. This is paper money, not immediately redecmable In coin. In this case the rdea of cost is manifestly mapplicable; the quantity in circulation is evidently, as proved by abundant eupenence, the ruling taflomence on value. la fact, the "quantity"
theory receives its simplest illumtratiog in the ame of Inconvertable paper. The truth that the theory is but an inatance of the action of supply and demand ha equally shown by this prominent clase of instancee. Where metallic coinage is artfically limired the amone principle holds good. The value of suck currencies plaiuly depende on the conditions of supply and demand.

The immense growth of credis and ite embodiment in inetriments that can be used as substitutes for mooey has led to the promulgation of a view respecting the value of money which atay be called the "credit" theory. According to the uphaiders of this doctrine, the ectual amount of metallic money has but a trifling effect on the range of prices, and therofore on the value of mocey. What is really importanc is the volume of crodit instruments in circulation. It is on their amount that price movements depend. Cold has become anly the small change of the wholcsale markets, and its quantiny is comparaively unimportant as a determinant of prices. The theory has some conacxion with the view of, "moacy" as consisting to the Joanable capital of the market, taking elape in the chequat ther cransfer liabilities. Thus the rate of jnterest comes to form a factor in the creation of "manay," and the mercantije use of the phrase " value of moncy " reopives a justification. Like the pure "cont" theory of money value, the "eredit " theory given 100 one-sided a view of the facts. In particular, it fails to recognite the ultimate dependence of all kinds of credit on the stock of moaey to the full sense, i.ar on movallic legal-tender money. The truths adumbeated in the atheory are betuer er pressed in the statement of the quentity theory in ita developed form, as set forth above. It is necessary to take thto account the varying quantitics of the precious metaln, the modes of ose in respect to them; the infuence of cost of production, and the way in which credit expedients replace standard maney. A complete theory must include all thene elementa, while not unduly emphasizing aoy one of them.

At the beginning of ratisuical inguiry mancb attention wal siven to the question: What quantity of money does a country require for the proper working of ita industrial system? Petty and Looke were ready to give definike apswara; but modern inquirers decline making any quanthative statament, and content themselves with indicating the conditions to be considered, Amongat these are: Population, amount of tramactions, the efficiency of money, the development of credit, and the height to which barking organization has altained. Other elements in the problem are the disponition towards hoarding, and the employment of some form of barter in transactions. The contrast between India and the United States in monetary and industrial hahits supplies an effective series of illustrations on this matter. The coaclusion is obvious that economic progress it accompanied by a more oparing use of money. Tho most important aspect of the question in modern times is in relation to the division of money between couptrics. Regarded from this point of view, the quantity of money that a country needs is thet which will keep its prices, in due level with those of the countries with which it has commarcial rclations. For, this in the condtion of equilibrium; there would atherwise be an excens. of either exports or imports, involving a transfer of money to adjust the belance. It may be odded that the organization works automatically, since fluctuations in the stock of money are corrected by the action of trade. The best estimates place the gold circulation of the United Kingdom at somewhat under Eroo,000,000, the token currency at about $£ 15,000,000$, and the note circulation as nearly $\mathrm{E}_{43,000,000 \text {. The French use of }}$ metallic money is much larger; probably over $£ 200,000,000$, and the note circulation is also over $\{200,000,000$.
3. Early Forms of Currency.-Up to the present we have considered money as being fully established and properiy adapted to fulfil its various functions. We bave now to trace the steps by which a suitable system of currency was evolved from a state of barter. It is important for a right understanding of the question to grasp the fact that exchanges, took place originally between groupe, and not between individuals. The slow growth of exchanges is thus explained, as each group produced most of the articlea necessiry lor itself, and such acts of barter an took
place were rather reciprocal presents than mercantile exchanges. Such is actually the case among modern savages. "It is instructive to see trade in its lowest form among such tribes as the Australlans. The tough greenstone valuable for making hatchets is carried hundreds of miles by natives, who receive from other tribes in return the prized products of their districts, such as red ochre to paint their bodies with; they have even got so far as to let peaceful traders pass unharmed through tribes st war, so that trains of youths might be met, each lad with a slab of sandstone on his head to be carried to his distant home and shaped into a seed-crusher. When strangers visit a tribe they are received at a friendly gathering or corrobboree, and presents are given on both sides. No doubt there is a general sense that the gifts are to be fair exchanges, and if cither side is not satisfied there will be grumbling and quarrelling; but in this roughest kind of barter we do not yet find that clear notion of a unit of value which is the great step in trading." This vivid description of E. B. Tylor's enables us to realize the way in which money came into existence. When any commodity becomes an object of desire, not merely from tis use to the persons desiring it, but from their wanting it as being readily exchangeable for other things, then that article may be regarded as rudimontary money. Thus the greenslone and ochre are on their way to being promoted to the position of currency, and the idea of a "unit of value" is all that is needed to complete the invention. "This bigher stage is found among the Indians of Britiah Columbia, whose strings of haiqua-shells worn as ornamental borders to their dresses serve them also as currency to trade with-2 string of ordinary quality being reckoned as worth one beaver's skin." Such shells are in reality money, inasmuch as they discharge its functions.

On a review of existing aavage tribes and ancient races of more or loss civilization we are surprised at the great varicty of objects Which have been used to supply the need of a circulating medium. Skins, lor instance, deem to be one of the earliest forms of money. They have been found among the Indians of Alasica performing this service, while accounts of leather money seem to show that thetr use was formerly more general. As the huning stage gives place to the pastoral, and animals become domestlcatod, the animal itself, instead of its skin, becomes the principal form of currency. There is a great mass of evidence to whow that, in the most distant regions and at very different times, cattle formed a currency for pastoral and early agricuitural nations. Alike among existing barbarous tribes, and in the survivals discovered among classical nations, sheep and oxen both appear as units of value. Thus we find that at Rome, and through the Italian trives generaly, "oxen and sheep formed the oldest medium of exchange, ten sheep being reckoned equivalent to one ox. The recognition of these objects as universal legal representatives of value, or, in other words, as money, may be traced back to the epoch of a purely pastoral economy: The lcelandic taw bears witness to a similar state of things; while the various fines in the different Teutonic codes are cstimated in cattle. The Latin word pecunia (pecks) is an evidence of the carliest Roman money being compooed of cattle. The Engish fee and the lamous term fewdal, according to its most probebite etymology, are derived from the same root. In a well-known passage of the lliad (vi. 235-6) the value of two different sets of armour is estimated in terme of oxen. The Irish law tracts bear evidence as to the use of cattle as one of the measures of value In carly Irish civilization. Similarly, oxen from the principal weaith and the circuiating medium among the Zulus and Raffirs. On the teatimony of an eye-witness we are assured that. "as cattle constitute the sole pealth of the people, so they are their only medium of such transactions as involve exchange, payment or reward." So also we find that cattle-rente are paid by the pastoral Indian tribes to the Unlted States government. From the prominence of slavery in early societies tt is reasonable to suppose that slaves would be adopted as a medium of exchange, and one of the measures of value in the Irish law tracts, cumhal, is said to have originally meant a female slave. They are at present applied to this purpose in Central Arrica, and also in New Guinea. On passing to the agricultural stage a greater number of objects are found capable of being applied to currency purposes. Among these are corn-used even at present in Norway-maize, olive oil, coco-nuts and tea. The most remarkabie instance of an agricultural product being used as currency is to be found in the case of tobacco, which was adopted as legal tender by the English colonists in North America. Anol her class of articles used for money conslsts of ornaments, which among all uncivilized tribes serve this purpose. The haiqua-shells mentioned before are an instance, cowries in India, whales' teeth among the Fijians, red leathers *mony some South Sca island tribes, and finally, any mttractlve kinds - atooc which can be easily worleed. Mineral products, so far as
they do net come urder the preseding hoed, furnhth another claca. Thus alt was used in Abysinia and Mexdico; while the metalsa phenomenon which will require a more careful examination-havo succeerded in finally driving all their inferior competitore out of the field, and have become the sole substances for money.
4. The Melals as Money. Reasons for their Adoptiow. Superiority of Siloer and Gold.-The employment of metals as money material can be traced far back in the history of civilization; hut as it is impossible to determine the exact order of their appearance in this capacity, it will be convenient to take them in the order of their value, beginning with the lowest. Ironto judge from the statement of Aristolle-was widely used as currency. One remarkable instance is the Spartan money, which was clearly a survival of a form that had died out among the other Greek states; though it has often been attributed to ascetic policy. In conjunction with copper, iron formed one of the constituents of early Chinese currency, and at a later time was used as a subsidiary coinage in Japan. Iron spikes are used as money in Central Africa, while Adam Smith notes the employment of nails for the same purpose in Scotland. Lead has scrved as money, e.g. in Burma. The use of copper as money has been more extensive than is the case in respect to the metals just mentioned. It, as stated, was used in China along with iron-an early instance of bimetallism-and it figured in the first Hebrew coins. It was the sole Roman coinage down to 269 B.c. and it bas lingered on to a comparatively recent date in the backward European currencies. It even survives as a part of the token coinage of the present. Tin has not been a favourite material for money: the richness of the Cornish mines accounts for its use by some British kings. Silver holds a more prominent place than any of the preceding metals. Down to the close of the 18th century it was the chief form of money, and often looked on as forming the necessary standard substance. It was the principal Greek money material, and-was introduced at Rome in 269 B.c. The currencies of medicval Europe bad silver as their leading constituent; while down almost to the present day Eastern countries seemed to prefer silver to gold.
The pre-eminence of gold as money is now beyond dispute; there, is, however, some difficulty in discovering its carliest employmen. It is, perbaps, to be found in "the pictures of the ancient Egyptians weighing in scales heaps of rings of gold and silver." According to W. Ridgeway's ingenious theory gold comes into use as a currency in due equation to the older catileunit, the ox. It was certainly employed by the great Eastern monarchs; its further development will be considered lator on. Metals of modern discovery-such as nickel and platinum-are oniy used hy the fancy of a few governments, though the former makes a good token coinage.
The preceding examination of the varied materials of currency, metallic and non-metallic, suggests some conclusions respecting the course of monetaryevolution, viz.: (i) that the metals tend to supersede all other forms of money among progressive communities; and (2) that the more valuable metals displace the less valuable ones. The explanation of these movements is found in the qualities that are specially desirable in the articles used for money. There has been a long process of selection and climination in the course of monetary bistory.

First, it is plain that nothing can serve as money which has not the attributes of wealth; i.c. unless it is useful, tranaferable and limited in supply. As these conditions are essential to the existence of value, the instrument for measuring and transferring values must possess them. A second requisite of great effect is the amount of value in proportion to weight or mass. High value in small bulk gives the quality of portability, want of which has been a fatal obstacle to the continued use of many early torms of money. Skins, corn and tobacco were defective in this quality, and so were iron and copper. Sheep and oren, though technically described as "self-moving," are expemsive to transport from place to place. That the material of money shall be the same throughout, so that one unit shall be equal in value to another, is a further desideratum, which is as decidedly lacking in cattle-currency as it is prominent in the metals. It is, further, desirable that the substance used as money shall be
capable of being divided without lose of vilue, and, if needed, of being reunited. Most of the articles used in primitive societies-such as eggs, skins and cattle-fail in this quality. Money should also be durable, a requirement which leads to the exclusion of all animal and most vegetable substances from the class of suitable currency materials. To be easily recognized is another very desirable quality in money, and moreover to be recognized as of a given value. Articles otherwise well fitted for money-use, e.g. precious stones, suffer through the difficulty of estimating their value. Finally, it results from the function of moncy as a standard of value that it should alter in its own value as little as possible. Complete fixity of value is from the nature of things unattainahle; but the nearest approximation that can be secured is desirable. In carly societies thls quality ts not of great importance; for future obligations are few and inconsiderable. With the growth of industry and commerce and the expansion of the system of contracts, covering a distant future, the evil effects of a shifting standard of value attract attention, and lead to the suggestion of ingenious devices to correct fluctuations. These belong to the later history of money and currency movements. It is enough for the ordinary purposes of money that it shall not alter within short periods, which is a characteristic of the more valuable metals, and particularly of silver and gold, while in contrast such an article as corn changes considerably in value from year to year.
From the foregoing examination of the requisites desirable in the material of money it is easy to deduce the empirical laws which the history of money discloses, since metals, as compared with non-metallic substances, evidently possess those requisites in a great degree. They are all durable, homogeneous, divisible and recognizable, and in virtue of these superior advantages they are the only substances now used for money by advanced nations. Nor is the case different when the decision has to be made between the different metals. Iron has been rejected because of tis low value and its liability to rust, lead from its extreme soifness, and tin from its tendency to break. All these metals, as well as copper, are unsuitable from their low value, which hinders their speedy transmission so as to adjust inequalitics of tocal prices.
The elimination of the cheaper metals leaves silver and gold as the only sultable materials for forming the principal currency. Of late years there has been a very decided movement towards the adoption of the latter as the sole monetary standard, silver being regarded as suitable only for a subsidiary coinage. The special features of gold and silver which render them the most sultable materials for currency may bere be noted. "The value of these metals changes only by slow degrees; they are readily divisible into any number of parts which may be reunited by means of fusion without loss; they do not deteriorate by being kept; their firm and compact texture makes them difficult to wear; their cost of production, especially of gold, is so considerable that they possess great value in small bulk, and can of course be transported with comparative facility; and their Identity is perfect." The possession by both these metals ni all the qualities needed in money is more briefly but forcibly put by Cantillon when he says that "gold and silver alone are of small volume, of equal goodness, casy of transport, divisible without loss, easily guarded, beautiful and brilliant and durable almost to eternity." This view has even been pushed to an extreme form in the proposition of Turgot, that they became universal money by the nature and force of things, independently of all convention and law, from which the deduction has been drawn that to proscribe silver by law from being used as money is a violation of the pature of things.
5. The InIroduction and Development of Coinage. The State and Money:-The earliest metallic currencies passed by weight; they were, in fact, commodities, though used in a special way. The Hibbrew records, as well at the Greek writers, bear witness to the preqalence of this primitive system. Thus, Aristotle, after cxplaining the circumstances that led to the invention of money, points out how it was at first defined simply by size and weight, although finally men went further and set a stamp on every coia to relieve them from the trouble of weighing it. ${ }^{+}$(Pol. i. 9, 8.)

Coinage systems have had a long period of growth, in which two distinct stages can be noted. In the first only.the quality or fineness of the metal is denoted by the stamp, no attempt being made to fx the weight. The stamp, so to speak, scts as a kind of hallmark. The cubes of gold employed by the Chinese may have been the earliest coins Modern authorities accept the view of herodotus that gold and silver coins were first used by the Lydians; the same author mentions that the first Greek coinage was at Aegina by Pheidon of Argos In order to complete the inveration is became noweinry to certify the weight of metal in the coin as well an its fineness. A further result was the cotablishment of a regular slape for the purpose of preventing any tampering with the coin affer its manufacture. Though various experiments in form were made, by the produetion of hexagonal and octagonal coina, the universally accepted shape came to be that of a fat circle, each sile of which is stamped, as also is many cases the edge. The great number of the Grect city states afforded ample opportunities for experiment and competition, and rapid progress in the direction of securing good cuprencics was made. The improvememt in the Gircek coinages may be regarded as the consequence, and in some degree a cause, of their growing commerce. From Greece the art of coining was introduced into 1 taly hy the Hellenic cettlers and traders, and became one of the essential leatures of a civilized society. Progress, however, did not stop with the emablishment of the institution of coincd moncy. A number of practical quemions had to be decided respecting the best way of overcoming the difficultics that certain technical problems presented. In spite of carly experience, it has at times been suggested that the circular form might be replaced by some other, e.g. the square or oblong. Practice has confirmed the wistom of the old-established thapeAnother question was in respect to the limits of size that were mont suitable for coins. Here the lower limit is prescribed by the convenicnce of the users. Coins that are easily lost, or picked up with trouble, such as the British tirnepenny piece. and the American gold dollar, ought not to the ssued. The determination of the upper limit presints greater dificulties. Very large pieces are hard to cum, and they give facilitics lor improper treatment by driling holes and filling them up with cheaper metal. or cven for the entire removal of the interior, the facces being preserved. The attractive appearance of large gold coins is no compensation for this danger. The English sovereign and, in silver, the half-crown seem to come near the upper limit of safe issue. The comparative wear of coins of different sizes must be considered. A long serics of experiments, supported by ordinary experience, gocs to show that the emalier coins wear more rapidy. The English mint in 1833 estimated the loss per cent. per annum at 2s. 6 d . on half-crowns, 4s. on shillinga, and 78. 6d. on sixpences. There are accordingly reasons for adopting a medium size in preference to large or small coins. The acrual coins imued have, of course, to be adapted to the requirements of the particular community. Even prejudices must be taken into due account. The designs employed in connexion with coinage have proved a fruiful field for the student of Numismatics ($Q .0$. .). From the monctary standpoint the aim of the design is to prevent cither counterfeiting or the abstraction of any. portion of the metal. For the former purpose carciul execution in designing and the use of powerful machinery are the really effective safeguarda. The latter is best obviated by protecting the edges by the process of milling, to which a raised inscription has sometimes been added. Great advances have been made in the organization of the modern Mint (q, n.) by the use of new appliances and scientific methods. The question of the proper alloy in coins has received a great deal of attention. As gold and silver are both by nature soft, some other metal, such as copper or tin, has to be added, in order to secure the necessary hardness. The English gold coins have an alloy of one-twelfth: the silver coins one of three-fortieths. Far more general is the ailoy of one-tenth. which is probably due to the sentiment in favour of a decimal system; but at any rate is simple for calculations. There does not appear to be any strong technical reason for proferring either of these alloys to the other. The French mint authoritics are in favnur of their one-tenth; white the English ons: adhere to the alloy of one-twelfth. There ia agreement only on the point that a very amali amount of alloy, e.g. that of one ia seventy-two, as used in the Austrian ducat, does not give the requisite hardness

A question of far more importance, both politically and economicaily, is that of the issue of money, and the power of the state in regard to it. In the ruder mocietics, where moncy was not sharply distinguishod from commodities, no difieulty presented itself. Skins, shells or cattle were moncy-so to speak-by the force of things: and the mame condition persisted as long as crude metale were employed. But with the introduction of coinege the idca of a regulating authority came into being. The necessity of enforcing coatracts and the parallel system of penalties made it incumbent on the ruler and judges to provide due standards of payment. The combined effect of these influences was reinforced by the establishment of the rudimentary forms of state revenue, which made it a matter of interest to the ruler to provide a good medium of peyment. Accordingly, with the origin of the organized state. we find the coingige as a special prerogative of the king, though

Privete persons often exercisod the poivilege of coming. The very Garge number of the autonomous cities of Greece, which possessed the right of issuing money, was the cause of the competition between different currencies, each having legal tender power only within ite own city. In its practical ourcome this "free coinage "system proved beneficial, for it compelled the maintenance of the true standard in order to gain wider circulation. With the establishment of larger states the control over the iskue of money grew more stringent. In the later Roman Empire the right of coining was reacrved to the emperor excluyively. After the fall of the empire the triditions of prorosative pamed on to the medieval kings, a. right carefulty guarded by the English sovereigns. In France and Germany the principal nobles claimed this seignorial right, but in the modern state the regulation money has been definitely vested in the supreme authority, i.e. the sovercign.
One reason for the close connexion of money with the state is the fact that there is oae attribute of currency which comes within the area of work specially allotted to the public authority. Money ought to have the power finally to close a transaction, i.e. to say it should be "legal tender." This "liberating power," as the French call it, might be regarded as one of the money functiona. Those who look on moncy as a purely legal institution naturally take this view; it seems, however, better to take the economic conditions as the really fundamental oncs. It is only on account of their economic effects that legal regulations require consideration. These effects are, indeed, very far-reaching. By preacribing the asadard and amount of penaltiea, by their power of eelecting the aubstances to be uscd as money, and by their frequent interfergnces with existing currencies, the governments of the world have guidedas well as very often disturbed-the normal course of development. What Aristotle regarded as the "unnatural "character of money to mainly attributable to state intervention. But it is important to remember that the sphere of governmental action in respect to money is limited. A currency system is never an arbitrary creation; it must grow slowly out of the habits and customs of the community, and must subserve ite economic needs. No sadden change at the caprice of the atate is likely to continue. Further, it is dear that to governmeat can determine the results of its interference; these will depend on the existing conditions and will conform to economic law. Monetary history is rich in examples of the failure of legal enactment to direct the course of events, and of the disasters that have followed on the ill-advised measures of public authority.
One result of the close connexion of the state with the busincss of coiniag has been the establishment of regulations in reference to the expense of the process. As coins are manulacturcd articics It seems evident that a charge sufficient to cover the cost may rightly bo imposed. Such a charge is described by the term Seigniorage (q.n). It has in many cases been $s 0$ fixed as to bring in a large profit to the government; but thea it amounts to a depreciation of the currency; for the levy of a charge on coining is the same as the substraction of so much metal from the coins issued. English policy is peculiar in its adoption of gratuitous coinage of gold, an asomaly due in ith origin to the prejudices of the mercantile doctrines, but defeaded on the ground of the convenience to trade from the equivalence of gold bullion and coin. The heavy seigniorage ón the silver coing-at present over 60%-is a source of conwderable proft; in some years exceeding 8800,000 . All other couatrice levy moderate charges on thoir sold coinages, and make profit on their siiver inucs, though in different ways. As it has become the duty of the state to maintain the currency in a sound condition, it has to deal with the question of its expense. This is composed of several ciements. vik (i) the cost of manufacture, just mentioned; (2) the loss through the wear which money uadergoes in the work of circulating; and (3) the interest on the capital sunk in the monetary stock. A country with a metaliic circulation of f100,000,000 incurs a loss of the interest which that amount of capital would produce by invest ment, i.e. at $4 \% ~ \$ 4,000,000$. The expense io amply justified by the services that a good currency renders; but, at the same time, it provee the desirability of any economies that do not detract from efficiency. The great economizing agency is the use of representative money and the various forms of credit, in which so much of the latest advances consibt.
6. Representotive Money; its Introduction and Devolopment. The Made in which Credit is used as Money.-Economy in the employment of the precious metals is naturally suggested by ordinary experience; but the way in which states have profied by the expedient of depreciation affords a special inducement to follow what is practically the same course, and issue paper documents in place of the more costiy metallic medium. In theory, as Rkardo explained, a paper currency is one in wbich the whole value has been appropriated as seigniorage. The cost of keeping a stock of valuable money is obviated, and the new instrument of exchange is supported by state authority. Here the action of economic conditions is instructively illustrated; for though a government can set up a paper currency, it is not within its power to prescribe its value. The quantity theory
(8 2) is conffrmed ty the inevitable decline in value whens issue pasacs a definite point. The only effective mode of preventing depreciation is by limiting the amount of paper money to that of the metallic money previously in clrculation. The easiest way to accomplish this is to leave the use of the paper currency optional by making it convertible into coin at the will of the holder. The amount of the circulation is thus automatically fixed by the action of the community. An evident disn advantage is the necessity of keeping an adequate reserve of coln to meet actual and prospective demands. For ideal security the whole amount of paper issue should be covered by an equal value of metal. In practice the reserve may be much smaller; but so far as it is required, it means a deduction from the gain of issue. The temptation to reduce the reserve to an inadequato amount and then to escape the difficulty by resorting to the expedient of refusing to pay coin for notes, i.e. making the notes inconvertible, has proved too strong for nearly all governments at times of pressure. The history of atate dealings with paper money may broadly be described as a history of inconvertibility. Hard-bought experience has only now forced on the notice of governments the loss that follows from a disturbance of the standard used in ordinary payments. They are evident to all careful observers, and may be concisely summarized as conaisting in: (1) the injustice to creditors through being paid in a much lower standard than that in which they lent; (2) the disturbance to trade, both domestic and foreign, hy the fluctuations in the value of money; (3) the pressure on the working classes from the slower rise of money wages, in contrabt with the quicker movement of the prices of commodities, resulting in \& fall of real wages; and (4) the check to dealings in relation with the international money market, due to the risk of exchango fluctuations. The only gains are the temporary stimuhus to cortain branches of trade, and the advantage to the state by contracting a forced loan without paying interest.

The origination of paper money by state direction is the easiest to consider and explain. It does not follow that it is the most important or the earliest kind of represcntative currency. As W. Bagehot has pointed out, the real origin of economic institutions is often very different from the apparent onc. In trut H_{1} representative money seems to have grown up out of the elementary cqntrivances of early credit. A claim could be expressed and transferred by a document, which might be used for facisitating exchanges. The rigid formaliam of carly law hindered the extensive use of this convenient mechinery. It was not till tha institution of banking that the coining of credit was made easy. Thus the bank-note comes into use, resting, not on the firt of tho state, but on the repute of the insucr. At this stage the history of the two distinct forms of representative money becomes mfred, owing to the control exercised over banks by government and to the fact that banking companies were in many cascs the agents by which what was virtually state money was issued. There is, however, the fundomental difference that bank money finds its way into use through the ordinary system of granting credit; while govermment money is used in the purchase of commodities and the bire of services. The former, therefore, returms in a short time; the latter remains in circulation and displaces metallic currency. In the long controversy over the Bank Charter Act 1844 this distinction was brought into promlpence. Since that date the extraordinary development of deposit banking in both Great Britadn and the Unfted States had furnished these countries with by far the most flexible form of currency yet known in the cheques that transfer claims on the capital beld by the banking institutions. The confusion 90 often shown regarding the relation of credit to money is connected with this latest progress. When it is remembered that in its origin money is only an instrument to facilitate exchange -we migbt even say to render it possible-it follows that from its earliest to its latest form the ruling influence is the need of society for the best mechanism of exchange.
7. Production and Conswmption of the Prectous Metals in their Bconomic Aspocts.-In considering vatious monetary questions it is essential to have some acquaintance with the tconomit
apectes of the prodaction of gold and silver. The first point to which attention may be directed is the field over which production extends. At one time or other these two metals have been found in every continent. Asia Minor in early times possessed its goldfields, or rather auriferous sands. Ceyion also undoubtedly contaned gold-mines. China and India both produced silver to a cansiderable extent. Egyptian remains show that gold was commonly known in that country, probably procured from Nubia and Ahysainia. On the opposite side of Africa, too, the name of Gold Coast shows that that metal wis thence exported. The mines of Laurium in Attica were a source of supply to the Athenians, and were worked as a state monopoly. At an earlier date the Bahylonian and Ascyrian empires had each accumulated large stores of gold. The Phoenician importations of gold from the Red Sen coasts (Ophir) are known from Scripture. The Persian kings from the time of Darius levied tribute on all their provinces-in gold from India, in silver from the remaining districts, the larger part of which was stored up in the royal treasuries. This tendency of despotic rulers to accumulate treasure had all through ancient history important effects on the economic structure of society. Al present it is quite natural to assume that the materials of money are distributed hy means of international trade, and tend to keep at an equed level all the wordd over-an assumption which is in general well grounded, though an important exception exists. Ancient history presents a widely different set of forces in operation. Gold and silver were produced hy slaves under the pressurre of fear, and were drawn towards the ruling parts of the great empires; in a word, war, not commerce, was the distributing agency. From this condition of affairs it is easy to see that, whatever may be the reasons for assigning to cost of production a potent influence over the value of money in modern times (and grounds have been already advanced for the belief that its infuence has been exaggerated), no such reasons then existed. The production of the precious metals was carried on in similar manner to the great huildings and other works of those periods, on non-economic grounds, and therefore produced quite different effects. The whole history of the Persian monarchy to its overthrow by Alexander (330 b.c.) shows that the hoarded mass of the precious metals continued constantly to increase. On the capture of Persepolis by the Grecian army an edormous treasure was found there, some estimates placing it as higb as 120,000 talents of gold and silvar ($\{27,000,000$). All the temples, 400 , were receptacles for the precious metals, so that the stock accumulated at ahout 300 B.c. must have been very great. The only causes which tended to diminish the store were the losses arising fram wars, when the various treasuries were liable to be plundered and their contenta dispersed. There was therefore a more unequal distrihution of the material of money than at present. The growth of the Roman dominion led to important results, since under their rule the Spanish mincs were developed and became a leading source of supply. The gress masses of treasure set towarda Rome, 80 that it became the monetary centre of the world. The overthrow of the repablican government and the peace which followed also affected the conditions of production. The ineffciency of the Roman administration made it advantageous to let out the mines to farmers, who worked them in a wasteful and improvident manner, while the supply of slaves was reduced, thus depriving the lessees of their principal agency for earrying on production. The result was a continuous decline in the store of mongy. W. Jacoh has made an attempt to estimate the amount at the death of Augustus (A.D. 14), and arrives at the conclusion that it was $\{3088000,000$. (Precious Mectals, 1. 225) Without placing much value on this necessarily conjectural estimate, it is safe to assume that this period marked the highest point of accumulation.
The succeeding centuris exhibit a steady deeline, though It is of course impossible to attach any value to even the most carefully guarded numerical estimates. The phenomenon which hes since 60 often attracted notice-the drain of the precious matals to the East-began at this time, and was a subject of
complaint by the Roman writers, white the stock of gold and silver being thrown into ge_eral circulation suffered from abrasion, and was more likely to be lost than when stored up in the royal treasure-bouses and tempics. These causes tended to deppeess the scale of prices, while the barbarian invasions produced a strong effect on the supply by drawing off the mining population and damaging the various erections used for working the mines. The conjectural estimate is that about A.D. 800 the total supply had been reducod to $\mathrm{f} 33,000,000$ (or aboat oneeleventh of what it had been at the death of Augustrs). A new period in the history of gold and silver production may be fixed at this date. The Moors, now frmly established in Spain, began to reopen the mines in that country which had been allowed to fall into disuse. Other European mines also were opened, notably those of Saxony and the Harz Mountains, as well as the Austrian mines-the chicf medievad sources of supply. The international system of currency, hased on the pound of silver as a unit, whicb was iniroduced by Charlemagne, must have tended to economize the wear of the metals. We may therefore conclude that from this date (A.D. 800) the supply was sufficient to counceract the loss by wear and exportation, and accordingly regard the metalic supply as fixed in. amonnt until the next change in the conditions of production, which was the result of the discovery of America. Though 1492 is the date of the first landing, yet for some time no important additions were made to the supply of money. The conquest of Mexico (1519) geve opportunities of working the silver-mines of that country, while the first mincs of Chile and Peru were almost simultaneously discovered, and in 1545 those of Potosi were laid open. From this latter date we may regard the American supply as an influential factor in causing a continuous increase in the stock of money. The annual addition to the store of money has been estimated as f2,100,000 for the period from 1545 to 1600 . At this date the Brazilian supply began. The course of distribution of these fresh masses of the precious metals deserves some notice. The flow of the new supplies was first towards Spain and Portugal, whence they passed to the larger commercial centres of the other European countries, the offect being that prices were raized in and about the chief towns, while the value of money in the country districts remalned unaltered. The additions to the supply of both gold and silver during the two centuries 2600-1800 continued to bo very considerable; but, II Adam Smith's view be correct, the full effect on prices was produced hy 1640, and the increased amount of honey was from that time counterbalanced by the wider extension of trade. At the commencement of the igth century the annual production of gold had been eatimated as being from $\{1,500,000$ to $\{3,000,000$. The year 1809 seems $t 0$ mark an epoch in the production of these metals, since the outbreak of the revolts of the various Spanish dependencies in South America tended to check the usual supply from those countries, and a marked increase in the value of money was the consequence. During the petiod $1800-$ 1849 the value of gold and silver rose to about two and a half times its former level, notwlthstanding fresh discoverice in Asiatic Russia, which became considerable from 1823. The annual yield in 1849 was estimated at $[8,000,000$. The next important date for our present purpose is the year 1848, when the Californian mines were opened, while in 185 the Australiwn discoverics took place. By these events an enormous mass of gold was added to the world's supply. The most careful estimates fix the addition during the years $885 \mathrm{~F}-187 \mathrm{r}$ at ($500,000,000$, or an amount ncarly equal to the former stock in existence. The problems raised by this phenomenon have received careful sludy. The main features of interest may be briefly summed up. (1) The additional supply was almost entirely of sold, thus tending ta produce a distinction between the two principal monetary metals and an alteration in the currency of bimetallic countrics. Under this influence France, from being a silverusing, became a gold-using country. (z) The contemporancous development of the continental railway systems, and the partial adoption of frec trade, with the consequent facilities for freer circulation of commoditiek, led to the course α diadrihution
being different from that of the $\mathbf{1 0 t h}$ century. The more backward districts were the principal gainers, and a more general equalization of prices combined with a slight elevation in value was the outcome. (3) The increased supply of gold rendered a general currency reform possible, and made the use of a gold monometallic standard appear feasible. The movements for currency reform, as will be seen, all arose after these discoveries. (4) The change in the value of money, which may for the period 1849-1869 be fixed at 20%, enabled a general increase of wages to be carried out, thus improving the condition of the classes living on manual labour. It may be added that the difficulty of tracing the effects of this great addition to the money stock is a most striking proof of the complexity of modern economic development. (5) The last point to be noticed is the very small influence exercised on the value of silver by the new gold. The gold price of silver in London rose only from $50 \% \mathrm{~d}$. per oz. to 62$\} \mathrm{d}$. per oz.-i.e. bet ween 4 and 5%. Hardly had the gold discoveries of $1848-1851$ ceased to produce a decided effect when new silver mines of unusual fertility came into working. During the period immediately succeeding the gold discoveries the production of silver remained at an annuad a mount of from $£ 8,000,000$ to $\{0,000,000$. This amount suddenly, about 1870 , increased to $\{15,000,000$, and remained at that amount for the next five years. More than half of the aupply came from new mines opened in Nevada. This increased supply was accompanied by a marked depreciation in the gold price of silver, though the prices of commodities in countries having a silver standard did not rise. The disturbances resulting from the combined effect of the new silver and the diminution in the annual output of gold which began about 1870 and continued for nearly twenty years were the cause of much controversy and led to the propounding of novel monetary theorics. Bimetallism came into prominence; and the modes of relieving trade depression caused by the fall in prices were keenly discussed. Before any monctary adjustment took place the situation again changed in consequence of a renewal of the Australian gold production, soon followed by the great gold discoveries in South Africa. The annual output of gold, which had fallen below $\{20,000,000$, in 1884 rose rapidly to $(600,000,000$, and in 1908 reached the prodigious figure of over $\{80,000,000$, with the prospect oi still larger yields in the near future. By this change the difficulties that had led to the agitations for "free sitver" in the United States, and for "international bimetallism" in Europe and in India were removed, showing the close connexion between the production of the precious metals and the economic, especially the monetary, policy of all periods.
The modes of consumption of the precious metals -under which their uee is included-are of equal importance with those of their production. Claseed roughly, they come under three heade, viz, (1) their use as merchandise, (2) their use as money, (3) the "drain" to the East. With regard to the first. though precise data are not available, it may be said with eome confidence that the demand for personal use teads, after society has made some progress, to dectine in otrength. The desire for adornment is not a heen one with most civilized persons; and, so far as it exists, is gratified in other ways than by using silver or gold. For purposes of manufacture their use is large and increasing. The second head is that with which we are principally concerned. It is evidently connected with the noed for metallic currency; and this again depends on the level of prices and the monetary organization, including in the latter the banking system. Currency requirementa still form the laryest part of the demand for the precious metals. Under the third head a remarkable exception to the tendency towarda the equal diffusion of the precious metals io presented. For nearly two thousand years the movement of silver from west to east has been noticed. Humboldt has made the ingenious remark that the course of these metals is in the opposite direction to that of civiliza. tion, and history supports his view. During the middle ages the chiof Easters products used in Europe were luxuries, such as silk and spices, and silver was sent from Europe to pay for them. Eastern trade increased, owing to the discovery of the passage round the Cape of Good Hope, and the flow of silver became greater. Special circumatances have from time to time influenced the movement. Thus, the new supplies of gold in the middle of the hext century caused by their sction on the bi-metallic currencies of Europe an acceleration in the flow, the amount exported bet ween 1851-1862 reaching \& $110,000,000$. To this drain of silver a more recent one of gold has been added. Indis taloes year by year a
comaiderable amount of gold barn, which may in the future have a anonetary use, but up to the present appear to be hoarded or used for ornasment. With the complete reconstruction of Eattern currencios that wow seems probable there may come a decided change in the character of the damand. Another influencing condition is also undergoing change; the tendency to fix prices on a customary basis is bound to yield to the pressure of competition. The itf evitable result will be to make the price level alter with each influx of money, and thus to limit the demand for bullion througt the action of the exchanges.

One of the technical features of the production of the precionen metais should be noted, in consequence of its economic effect. Gold has more frequently been found near the surface; silver io wally obtainod by deep mining. It follow that the amount of the former metal produced depends more on accidental circumstances, in contrast to thet of silver. which is affected by the standard of mining skill. The mines of Nevada were exceptional in their posessing both metals and in nearly equal value. The gold-mines of South Arrica have come to be worked at deep levels and therefore are technically in the same clase as silver ones. In fact, there is a pronounced tendency all the world over towarde the system of capitatistic working.
8. Review of the Eistory of Some Important Carrencies.Monetary theory requires to be elucidated by the constant reference to history; just as in turn the history of currency has to be interpreted by the aid of general principles. Each country has its peculiar problems, which call for special treatment; though at the eame time there is no way of avoiding the operation of those economic conditions and forces that are to be found in all countries. The first decisive fact that emerges from the vast material presented by the history of money is the tendency at most periods towards deteriorition. In the time of purely metallic currency debasement is the mont serious danger; when representative money has come into being extravagant issues of paper are chosen as the readiest way of evading the limits of a sound currency. It is perbaps too extreme to say that monetary history is altogether made up of accounts of debasements and over-issucs. The truth is better expressed in the proposition that there bas been a constant struggle between the influences that make for deterioration and those that give support to the maintenance of a good currency condition. There is also the cheering circumstance that in spite of much popular ignosance there has on the whole been a steady improvement in the treatment of monetary systems. Expert knowledge has more effect in the later than in the earlier periods. The crude expedients of the Tudors would not be tolorated in modern England. There is much fuller recognition of the danger of over-issue in paper money; and this is accompanjed by greater care in the treatment of credit intitutions in their relation to the modern media of circulation. It is also noteworthy that mere popular agitation has lost a great deal of its power, as shown in the failure of both the "solt money" and the "free sifver" movements in the United States. On the other hand the teadency to accept scientific methods is illustrated in the treatment of the Indian currency question.
Great Currencies.-As already noticed the political conditions of Greek life supplicd a varied field for monetary experiments. Unfortunately the details are very incompletely known, and the subject of Hellemic money has not boen sufficiently studied from the eonomic side. Certala broed facts are prominent. The Athenian wee of silver sa the mtandard mubatanco, coupled with the lator employment of goid to serve for an extra or commercial currency, is a characteristic leature. The alteration of the standard by Soloa appears in the light of an exceptional revolutionary expedient. It amounted to the creation of a new standard unit-the Atticwhich was imitated by other otates, e.f. Corinth. Oaly one doubt ful inatance of debesement can be fousd in the subwequent history of Achoms. This honeaty in respect to the monetary atandard neema on tho whole to have prevailed in the Greek statea. Sorme deepots, as Dionymius, issued adulterated coins, but these were inolated casea. The use of gold and silver in an amalgam, known an dectram, was an admieplble device; it, however, had the evil effect of curgenting the uno of poorer alloys.
Roman Momey.-The hittory of money In Rome io rether different. Beginning with copper, the currency wae changed into a double pandard one by the introduction of siltver (269 B.c.). Gold came io for commerciat uee with the extencion of the Roman dominions, and copper was reduced to a token colnage. In the strese of the Pumic Wars debasement was one of the financial devices of the magitrates. The conquent of the Greok territories brought about the regulation
of their currencies. Siver was prescribed an the money subitance The catablishment of the empire led to the definite concentration of the right of coining in the sovereign: though concessions were rade in various localitien, where the smaller coinages were aliowed to contiaue. But the principal interest of the money of the Roman Empire is due to the remarkable way in which it illustrates the tendency of despotic and bureaucratic rule to lower the condition of good administration. A long course of debasement is the cheracteristic aspect of the currency system. "Under the empire," we are told, "the history of the silver coinage in one of melancholy debasement. The most extensive frauds in connexion with money wexe perpetrated by the Romans." The gold aurous, which in the sime of Augustus was one forty-fifth of a pound, was under Constantine anly one seventy-second of a pound. The alloy in the silver coins gradually rose to three-fourths of the weight. Plated coins came into extensive use. The practice of debasement was ia accordance with the theories of the jurists, who seem to have regarded money as eimply the croature of the ptate, i.e. the personal ruler.
Mediepal Money.-Aiter the overthrow of the Western Empire, though the invaders, were in the condition of what has been called "natural economy," the state in which money has not come into being, they soon were disposed to carry on the Roman tradition, and their rulers adopted some form of silver currency. With the temporary revival of the empire under Charlemagne there comes the effort to found a general standard money on the basis of the silver pound. From this new btarting-point it is posible to trace the course of some of the leading currency systems of Europe. For purposes of illustration it will be sufficient to sketch the movements in England and France, which are typical of the general course of monetary development. The syotems of these countries are moreover remarkable (i) in the contratts that they present to each other, and (2) in the widesprcad influence that they bave exercised on the monetary arrangements of other nations.
English Monelary History.-The English currency begins with the pound of silver (troy weight) as the standard unit, subdivided into 20 shillings, each containing 12 pernies. The only coin at first in use was the silver penny. This system, in force before the Conquest, is the direct descendant of the Carlovingian system, and it continued without change until about 1276 , when a slingt depreciation was istroduced by coining the pound into 243 pennies, instead of the orivinal 240. This was the first of a serics of changes generally in the direction of lowering the weight of the coin. Two periods are remarkable for the operation of this tendency, vit. (1) the reign of Edward 1., when the silver was debased by 20% in the period 1344^{-1351}; and (2) the close of the reign of IIenry VIII. and that of Edward VI., 8543-1552. In this short space of ten years the expedient of degrading the quality of the coinage by bringing the alloy up to three-fourths of the mass was practised for the only tigie in English history. The substitution of the pound troy for the Tower pound in 1527 was accompanied by a lowering in weight which far exceeded the gain from the higher weight of the new pound (5760 instead of 5400 grains). The reformation of the silver coinage under Elizabeth (1560), and its definite settlement in 1601 on the basis of coining 62 shillings from the pound troy also deserve mention. Turning to the gold currency, we find some gold pernies issued in 8257 , probably in imitation of the issue of the Italian cities, which were due to the opening of eastern trade and the example of the Greek Empire, which had always retained its gold currency. The regular serics of English gold coins begins in 134.3, when Edward 111. ordered the coinage of forins-the title is significant-at 50 to the Tower pound. The "nobie" soon foliowed. The "sovercign" was first issucd in 1489 . But gold was treated as a commercial money, to be used as subsidiary to the standard silver. Its value was therefore varied from time to time to meet the dificulty that local bimetallism is certain to cause, in consequence of the undervaluing of one or other metal. During the 17 th century the most noticeable monetary events are: the proposals for depreciation, of which the most remarkable was that of W. Lowndes (1652-1724). (or lowering the standard by some 25%; the introduction of the guinea as the lcading gold coin, and the frequent readjustment of the values of the two metals by proclamation. The great recoinage of 1696 , carried out on the principles advocated by Locke, reformed the silver currency. In the 18th century the establishment of the guinea at 21 s . by N'cwton's advice made the adoption of gold as the standard inevitable, since it was overvalued in an appreciable degrec. The position of gold as the practical standard is elearly recognized by Adam Smith (1776) and is regarded as settled by Ricardo (1800). The full legal establishment of the present metallic currency took place in 1816, when the guines made way for the present pound or "sovercign," and silver was formally reduced to the level of a token coinage, being slightly lowered by the coinage of the pound of silver into 66 shillings. Thus, by a course of devclop ment extending over 700 years the English currency has been traosformed froin a crude silver standard systern into one resting on gold, but employing both silver and remesentative money for the greater part of the actual work.

Freach 1 omey: its Daselopment.-Though the monetary system or Charienagne noon dieappeared in Germany and Itary, it octi-
tinued in the part of his empire that became France. The entrence confusion nf the time of his successors enabled the feudal lords to tlaim the right of coinage. No less than 150 scigneurs are said to have cxercised this power at the accession of the first Capet. With the growth of the royal authority the freedom of private coining was reasricted, in order to reserve to the Crown the profitable right of seigniorage. Unfortunately the legitimate proft Irom this source was not sufficient to satisly the wants of the royal treasury. Therefore French monetary history is marked by a long series of debasements, extending from the time of Phillp 1. to that of Louis XV. (1060-1774). In sharp contrast to English policy the tampering with the currency was peraisrent, so that Louis IX. was looked on as quite exceptional. "In later days his management of the royal mint was always appealed to as the equitable standard for the observance of his successors." Yet in his time the livre had been debased to less than one fourth of ith primitive level. The Hundred Ycars' War presented the occasion for still further degradation. At the accession of Louls XI. (1461) the livre had been brought down to one-filteenth of its original value. The 16 th century is equally an age of depreciation, no less than nineteen occurring between 1497 and 1602. Again, in contrast to the English system, the absolute monarchy continued the process of debasing the standard under Louis XIV., and the livre was only one-half what it had been under Henri IV. At the Revolution the decline had proceeded so far that the livre had been reduced to one seventy eighth of its primaitive value. The new spirit of reform produced an entire change. The franc was substituted for the livre at the equation: 80 francs, 81 livres. In fact, until the establishroent of constitutional government the French people had to depend on popular violence to procure any temporary reform in their curcency. Since the Revolution the course of development has been essentially orderly and regular. All through the time of the ancien regime silver was the principal money and the standard, as the use of the word "argent" as a aynonym for money shows. Just an England got a gold currepcy by overvaluing gold, eo did France get a silver one by overvaluing eiver. Indeed, it may be said that the different ratios chosen by the two countries necessarily caused a reciprocal drain, affording a good example of the action of local bimetallic systems with different ratios between the two metals. A further result from the comparioon of the systeme of England and France is the greater maturity of the former. England gained an honest curreacy before France; she led the way in the adoption of the gold atandard. while in her treatment of representative moncy she has beld as decided a priority. The difference in economic conditions in the nations in pert explains the contrast. There is no doubt that in both cases a high degree of development has been reached. Finally, it shnuld be remarked, that as England has worked out in practice the bystem of "composite legal tender," so has France, with its monetary allles, been the first to show effectively the operation of the "Ilmping standard" (etatom boiteux). Each nation has thus cupplied a type, which recent monetary changes give evidence of baving been used as the paticrn for other less advanced countries-
9. Some General Qmestions respecting the Constilution of Money. -The consideration of the history of currency systems naturally suggests the general problems that the more advanced countries have had to encounter. Of these, some may be described as formal, i.e they relate to the arrangement and the definition of coinage and standards. Others are in essence issues of principle involving the most complicated theoretical doctrines, on which there is even yet sharp differences of opinion between competent students of economics. In some instances an intermediate class may be found, e.s. the question of subdivision of the coins does raise some difficult matters of application; though it clearly belongs of right to the group of formal questions. But the distinction is a valid one. Whether a country should edopt the "gold standard" or prefer a "bimetallic" standard is obviously very different from the elementary points about units and the different classes of coins. We will therefore begin by noticing some of the characteristics that are found in an modern currencies and some of which are implied in the iden of monoy. Thus it is trae that every currency system must be based on a standard upiti of value which consists of a "fixed quantity of some concrete substance defined by reference to the units of weight or space." The English unit, for example, is the powend, Which consists of a definite quantity of gold (123.27447 gra . standard fineness) while the French unit is the franc (composed of 5 grammes of silver nine-tenths fine). It is not necessary, though it is usually the case, that there shall be a coin oorresponding to the standard unit, all that is needed is that the current coins shall be multiples or submultiples of the unit, or at the least casily reducible to it. The Portuguese rei is too amall to be coined, and the pound of silver that [ormod the unit of the
early English and French currencies was too large. Qaite distinct from hoth the actual coins and the unit of value is the money of accownt, though in practice it is usually Identical with one of them. In Russia in eariy times the rouble was an imaginary money of account not coined, while the copper copeck was the unit of value. Connected with the distinction between the coins and the unit is the highly important one between stardard and token money, the former being of full pawer for discharging debts, and in the case of most systems only of equal value to the metal out of which it is made, while the latter is rated at a nominal value higher than that of its material. The silver and copper coinage in England and the smaller coins in the Latin union are only tokens; in the case of English siver coins, the cost value is ress than 40% of the nominal one. The French tokens are made of inferior fineness (835 per 1000) to the full tender silver. Two restrictions are applied to token issues: (i) they are only legally availahle to discharge small debts-in England silver is limited to the payment of $40 \mathrm{~s} . ;$ (2) they can be coined only by the permission of the state. Thus in England the Bank of England is the state agent for the silver coinage. The limitations are evidently required to prevent the expulsion of standard money, and to avoid the flooding of the clrculation with coinage that is not needed for the purpose of the limited exchanges to which it is confined. Intermediate between standard and token currency are those forms of coinage that are free from the first limitation, but restricted by the second. They have this further point of resemhlance to tokens in that their nominal value is highet than that of their material-the French 5 -franc pieces and the Indian rupecs are prominent examples. Similarly, the analogy between representative money and token money is deserving of attentinn, and suggests the desirability of the latter being regarded as in some respects a fiduciary issue, for which the issuing authority incurs responsibility.

A class of considerations already referred to (\$5) requires explicit notice here, viz. the influence of popular sentiment on the character and forms of a coiumtry"s currency. The fact that money has to circulate amongst all classes of society makes it indispensable that it should be suited to the wants and even the prejudices of the users. Many curious instances of preferences for partieular coins or special forms of paper money can be given. The Austrian Maria Theresa dollar of 1780 is a lavourite on the African coasts and has been frequently reissued for use therc. Reasons of convenience and of security combine with sentiment; as in the determined rejection of the U.S. "greenbacks" by the inbabitants of California during the inconvertibility of that currency. Recognition of the desires and tastes of the community is almost essential in carrying out any monetary reform. It is only by building on the habits and customs that have become established that improvements in the monetary systen can be effectively completed. Not only is this careful observance of the disposition of the mass of society expedient; there is still greater need for taking account of the methods and interests of those sections of the business world that deal specially with moncy. A currency change that was bitterly opposel! by the banking interest would certainly be dificult to introduce in cither England or the United States; traders have great influernce as to the forms of moncy that they will accept and facilitate the use of. In another aspect the study of the interest of dealers in the arrangement of the monetary system presents itself. One of the features that caused much surprise in the infancy of economic study was the disappearance of good coins from the circulation, while inferior ones remained in use indefinitely. To the first obeervers there ocemed to be something perverve in the preference tipparently ghown towards debased or worn coins. In business transactions inferior articles are taken only at a lower price. The explanation is casily understood, when furmished; it consists in stating the difference between a commodity which is sought lor its use, and money which is taken as merely a medium of exchange. Provided that coin is not too bad for further circulation it will be accepted without difficulty. Still less wiil there be any trouble if the difference is only in the relative value of two metals, such as silver and gold. The great majority of any population will give and take money without particularly observing it. It is enough if the coin conforms to the usual type. There exists, however, in all mercantile communitics a class of dealers in money, who make a profit by selecting the best coins for exportation, or if two metals are in concurrent use, the coins of that metal which is undervalued in the proportion fixed. In the case of inconvertible paper issues the withdrawal is also for the purpose of hoarding to secure the profit expected when there is a high premium on bullion. The action ol selt-interest under these conditions produces an effect
which has been briefly formulated in the staterneat " that bad money tends to drive out good moncy." The proposition has beea styled "Gresham's Law (q.v.). Abunchint illustrations of its working are available. The establishment of the English gold carrency and the French silver one in the 18th century, already mentioned (8 8), is an effective one. Quite as good is the transition of France from the silver to the gold currency form after the great gold discoveries of the middle of the 19th century. In truth it may be said that most of the monetary transitions have been due to the operntion of the force indicated in Gregham's Law. The importance of the law lies in the warning that it gives against the attempt to reform a degraded currency by the inaue of better money. Such "operations of the mint are," in Adam Snith's judgment, "sornewhat like the web of Penclope." The caution holds equally in respect to the seform of a depreciated paper currency or to an eiort to force an undervalucd metal inta circulation. The suconss of $s o$ mary monetary reforms in the last forky yeara has been in great measure due to the better appreciation of the working of the principle. Its aid can also be obtained by setting up the suitable conditions; while it can be counteracted through the use of the princtple of limitation, so clearly expounded by Ricardo. Some of the constituent parts of the Freach and American currencies rest altogether on the mainterance of an overvalued coinage, along with one nf higher value by the limitation of the quantity of the former to the amount that can be employed without expeling the remaining part of the circulating medium trom monetary nse.

Another part of the structure of any currency is the scale on which its accounts, and by consequence the degrees of its coins, are arranged. The pound, the shilling, and the penny in the older English system represented so many grades in the subdivision of value. All other currencies have the same need for divisiona The simplest scale would be what is called the "binary"; in which each coin is the ball of the next higher, and double the one immediatcly below it. Most actual systems have series of coins on the binary scale. The penny, the halfpenny, the farthing: the 40. pioce, the forin, the shilling, the sixpence. the threepenny; at a higher level the sovereign, the half-sovereign, the crown, the halfcrown, are English examples. The Latin and Scandinavian unions, as also Germany and the United States, have several binary coinage series. But no country adopts a purely binary scale. England in part retains the ofd "duodecimal" division in the relation of the ahilling and the penny. Nearly all civilized nations have come to accept the syatem of Decimal Cormage (q.v.), though in their actual currencies they admit certain dlvergences from the strict decimal system. The convenience of having the monetary scale of accounts in socordance with the arithmetical scale will probably mocurs the uitimate vistory of the decimal aystem everywhere, in spite of the objections to it on the ground of its having only two factors2 and 5 -as against the larger number of the duodecinal scale ($2,3,4$ and 6). The immense trouble involved in altering nccounte and the difficulty of overcoming the hostility to change lelt by the ordinary members of the community are the obstacles that preveat the adoption of the decimal system in England.

Conaceted with the composition of a currency and the scale on which it is based is the question of its relation to otber currencics From a very carty time the conception of a moncy that thould not be confined by a political limit appears to have existed. in fact until the state took oyer the control of money its more important forms had a wide diffusion. The talent, equated to the ox, is a prominent instance. Even when the city-state provided ita particular coinage we can still perceive the circulation of the better coinages outside their legal area. The effect on the Greek currencies has been noted above (8). Under the Roman hegemony and the empire that arose out of it there was the equivalent of an international currency in the wide circulation of the coinages adopted from the conquared states. Such coins as the drachma and the denarius were of genernal use in the then civilized world. Ia later times the Carolingian silver currency for a short period supplied an international medium, which vanished in the confusion of the middie ages. Owing to the rise of national governments money became a national dintinction peculiar to each state. It is ooly fa the lates sixty ycars that the idea of international money bas been revived in a practical form. Unfortunatcly the revival was speedily checked by the reaction in favour of nationalism that followed the Franco-German War ($1870-71$) and by the controversies as to the proper standard. (See Bnertallism and Monstaxy ConFERENCES for further discuseion of this topic.)
10. Typical Currency Systemst their Enolusion and Goserning Principles.-At first sight it appears that the syatems of currency are almost infinite in their variety. They have grown up in different nations under the influence of local coaditions and refiect the customs of the particular society. But, underlying these superficial differences, there are certain general princlpies that permit of a grooping into a small namber of clearly marked types, The classification, though resting on logical grounds, is very largely in conformity with the course of historical development.

Better form have come into being as social progress has become more pronounced; and further improvement may be expected in the future. The condition of things when money is coming into being is characterized by the waighing or messuring of the substances used for aiding the course of exchangea. It has therefore been called the system of "currency by weight." In strictness, it is better regarded as the stage before the introduction of real money; and thus outside the field of currency systems proper. The simplest system of currency seems to be that in which the state coins ingots of different metals and allows them to circulate without assigning any ratio for their respective values. Such an inconvenient form is not likely to be of long continuance; hut it has sometimes arisen at a later time through the introduction of foreign cofnages. Holtand at the end of the 16th century, Turkey down to the present day may be given as countries approaching this state. The titie of "currency hy tale " is Jevons's apt denomination for such a currency system. The next form in logical order is that in which a single metal is definitely appointed as the sole standard money. In carly ages this is the most natural arrangement, and it has, therefore, been widely adopted. Silver has been the metal generally used in this way; as the instances previously given (88) prove. The title of "single legal tender" system is the obvious one for this form. With the growth of transactions a difficulty soon presents itself. If the chosen metal is not of bigh value it is cumbrous for making large payments; if on the other hand its value is high, it is unsuitable for use in small transactions. Hence there almost inevitably follows the use of other metals, which are better suited for certain particular uses. Thus silver is at oace too heavy and too light. To pay $£ 1000$ in silver at its present value would take 800 ib troy, while a silver penny would be under the convenient limit of size. Partly for these reasons, but also to a large extent through the persistence of currency by tale, we find that along with the standard money other kinds are brought into or retained in use. Copper long survives beside silver; and gold is employed for the more important commercial transections. Public convenience leads to the valuation of these subsidiary forms of money, and in this easy manner another currency system-that of "mukiple legal tender"-comes into being. Though, theoretically, several substances might be valued for use as money, in praclice some kind of bimetallism is used, and generally gold and silver are the constituents of the system. Thus for over three centuries England had a currency in which the values of gold and silver were fixed from time to time by royal proclamation. France and the United States, as well as many other countries, have had long experience of national bimetallism. The great problem in such a form of currency has always been that of keeping the two metals in effective circulation. As the values of the precious metals fluctuate, the principle of Gresham's Law is exemplified by the expulsion of the undervalued one. Each change in the conditions of production or in the ratios fixed by other countries tends to disturb the balance and is harassing to trade. Local or national bimetallism comes to be unsuatainable, and is replaced by otber currency types. The most remarkable is that known as the "composite legal tender" system. Its object is to combine any advantages of multiple legal tender with the maincenance of the single standard principle. One metal is selected as the standard and is legal tender to any amount; other metals are utilized for the purpose of token currency. Thus in the system of the United Kingdom gold is the oaly standard coinage; but silver and copper are employed for the lower coins and for smaller payments. The establishment of this ingentous arrangement is rather the outcome of the circumstances that governed the Ruglish monetary situation in the 18th centary than any refined considerations of theory; but its justification on grounds of principle is furnished in Lord Liverpool's Coiss of the Readm (1805). The extent to which the system has been copied by clier nations and the stability of the Eaghish aurrency are strong confirmations of its merits as asolution of currency difficulties. Though the composite legal sender system has been a decided success, it does not follow that it aupplies the only
mode of dealing with the troubles that attend on the nse of the local double atandard. Other methods have been evolved from the monetary experiences of France and India, which take distinct forms according to the special features of the case. There is the currency system known as the "limping standard," the easence of which is the concurrent wes of two metals, one boing overvalued and coined only by state authority. The quantity of this favoured metal is necessarily limited in amount. to avoid depreciation ar the ejection of the other metal from the circulation. It, bowever, has the position of money in the fullest sense, in that it is legal tender for any amount. The 5 -franc pieces incued by the Latin union are the beat known specimen of such coinage. In this case also the origin of the syotem was not theorctical, it was the result of the fall in the value of silver and the fear entertained by the French government that gold would be displaced by the cheaper metal. The temporary expedient of limiting the coinage of standard silver has developed into the maintenance during more than thirtyfive years of the limping staodard, which derives its name from the shortness of one limb of the currency body. Equally suggestive for monetary theory is another phase or system, usually described as the "gold-exchange standard" system, in which the ordinary currency is of a metal coined only by the state, and so limited as to keep it in a prescribed value ratio to another metal (gold) which does not circulate, but acts as the stenderd of value. This variation on the limping standard has been produced by the effort of the Indian goverament to meet the embarrassment caused by the continuous fall in the gold value of silver. Under the pressure of failing revenue and of persons suffering from the rupee depreciation in gold, the limitation on ailver coinage was first enacted (1893); to be followed some years later (1899) by the establishment of gold as the standard, with a definite parity assigned for the state silver issues. The success of the Indian experiment-for such it avowedly was-has led to its imitation by the American administration in the Philippine Islands and by Mexico. It may be looked on as the natural product of the condition in which the single legal tender system is proving unfit, while the materis for the composite legal tender system is wanting. The employment and theoretic explanation of these methods of currency adjustment mark the greatest advance made in monetary science and practice in recent years. Whet her the limping, or the gold-exchange standards will be permanent forms is difficult to determine; but they are beyond doubt of much importance in meeting the risks of a period of transition. In any case they are entilled to recognition as distinct forms of currency organization, resting on a scientific basis.

The lypes presented by purely metallic currencies can be considered by themselves for the purpose of theoretical exposition. In actual working they are now affected by the existence of representative money. The state issues paper money which may be either convertible or inconvertible, or if it refrains from so doing, the banks take up the task and supply a medium of exchange in the form of notes, or by a later development through providing for the use of cheques by their customers. An inconvertible paper currency has some pronounced affinities with overvalued metal; a duly regulated issue of this kind is quite on the lines of the gold-exchange system, and the diffculties of the two forms are very similar. But, just as the crudet systems of metallic money have gradually given way to the bigher ones, so it may be said that the grosser forms of mismanagement in representatlve money are being removed, notwithstanding the recurrence of such monetary crises as that of 1907 in the United States. The great instance of government paper money is the United States notes, known, as "greenbacks," whlch are fixed at the amount of $\$ 346,681,016$. The most prominent case of bank issue of notes is that of the Bank of France, with somewhat over $\{200,000,000$ in circulation. Examples of the cheque currency are more difficult to state in quantitative shape; as the constituent parts are continually being created and cancelled, but the clearing-house returns give rome idea of its extent in England. The figure for 1909 was
\{i3,525,446,000. It seems highly probable that the next stage in improvement will be the extension of currency based on credit, after the Anglo.American pattern, to the other commercial countries of the word. But this movement can only be slow, it will not affect Eastern countrics. For a long time they will remain in the metalic currency stage, with the moderate use of a guaranieed note circulation.

There are several plans which have been advocated as superiot to any of the systems actually in use. Most of these schemes are undeserving of notice; a few, however, claim attention on the ground of theoretical or practical importance. The most conspicuous is that known as "international hmetallism," which was designed to obviate the evils ald to reault from the demonetization of silver and the overflow of the eatablisbed ratio between the precious metals. Its central idea was the creation of a monetary teague, composed, if not of all, at least of the leading states (the larger the number the better), the members being bound to coin any amount of gold and silver at an agreed ratio. By such an agreement an didequate field for the use of both metals would be'provided, and fluctuations in the relative value of silver and gold would be completely prevented. The expulsion of the cheaper metal would be impossible, owing to the absence of any place to which it could be driven. Variations in the production of the precious metals would act on both metals, not on one. Another phan for meeting the same set of difficulties is the composition of the monetary standard by taking assigned amounts of both metals in combination as the unit-say 1 oz. of gold with 10 oz. of silver. The title "symmetallism" has been given to this ingenious mode of trying to obtain a more stable standard than that afforded by the employment of a single metal. Amongst the many devices that the use of paper money has suggented the most noticeable are those that aim at the replacement of metallic money by some other basis. The sodalist conception of a "labour note". may be paralleled by the idea of "commodity notes," resting on a develiopment of the clearing system. Viewed from the practical atandpoint it may be said that the double standard in any form is condemned by the course of events; it has been defeated by the gold standard. In respect to the other proposed methods there is the almost insurmountable difficulty of making them in any way sufficiently popular to overcome the resistance that they must necessarily encounter. This criticism holds good, quite apart from the objections of prixciple to which they are all open, in very different degree it is irue. The influence of custom in relation to money can never be ret aside. For this reason it is certain that very gradual change is the onty possible kind of monetary reform that can hope for success. It is essential to preserve as far as possible the old surroundings and avoid the intrusion of novel devices. The adoption of what Sir R. Giffen bas styled "fancy monetary standards " is reserved for a distant future.

In the course of the devclopment of monetary syatems important theoretioal problems have presented theroselves. For the middle ages the great question was the best mode of recuring an honest metalic custency. At the beginning of the modern national states the problem of keeping a parity between silver and gold was the most serious issue which each state attempted to solve independettly. With the stse of credit there followed debate on the proper management of paper money in its various forms, which has not yet been completely closed. But the tendency in the last fifty years has been to concentrate attention on the meaning and due constitutloni of the monetary standard. In particular, the difficulties that result from an alteration in general prices, and the inconvenience to foreign trade from, different currency atandards have been exhaustively considered. It is therefore desirahle to present in a concise form what
sppears to be the outcome of these discussions. The frast established conclusion is the mpoestrility of obtaining an absolute and invariable standard. The best that can be boped is a near approximstion by balancing the elements of fuctuation. The construction of the most suitable monetary gystem is a work of practical adjustment. The iafluence. of the ectual conditions, which has been elready emphasised, helps to indicate the fimits of profitable inquiry. In respect to the metallic basis the choice is bet ween the single st andard-gold or silver, and rome combina. tion of these. The single standard of silver cas be set aside, though it has had influential sapporters. On the other hand the only combinations that need be considered are those indicated above by the titles " bimetallism " and " symmet allism."

The theory of the gold standard rests on the principle that one metal is a better criterion for measuring values than two, since the furtuations that occur by the substitution of one metal for the other are cenain to be disturbing. There is the further difficulty that no ratio can be permanently fixed between twometals, as their values must vary with the alterations in production. The inherent simplicity, and. so to speak, "raturalness," of the single standard is best realized by embodying it in golel, which is universally desired. of high cost and yet found in sufficient amount to discharge the money work of the standard. The verdict of history is appealed to as confirming the theorctic presumption, for gold has been gaining ground from century to century- The struggles to reverse this process have only made it more pronounced (sec Monetary ConFterences). Most of the objections to che gold standard rest on ideas which are the support of other economic fallacies. The attempis to supersede it involve the rejection of the rule of economic law. The foumdation of the doetrine of "bimetallism" is the theory thit the value of moncy is determined, not simply by cost of production, nor by unregulated supply and demand. but by the action of regulated demand, in conjunction with the actual conditions of production. States are the demanders of metal for monetary usc. and by adjusting that demand chey can powerfully influence the course of production, especially as the cost at which either

Table 1.-Estimatod Prodwction of Gald and Siloar, 1495-1900.

Period.	No.d Years.	Amount in Kilos.		Value in Millions of France		Ratio of Value of Gold to Silver.
		Cold.	Silver	Gold.	Silver.	
1493-1520	28	163.400	1,316,000	560	492	II• 3
1511-1544	24	171.890	2.165,000	592	481	$11 \cdot 2$
1545-1580	36	2730000	10,976,000	940	2.439	11.5
$1581-1600$	20	147600	$8,378,000$	508 587	8,869	119
1601-1620	20	170.400	8,458,000	587	1,880	13.0
1621-1640	30	166,000	7,872,000	572	1.749	13.4
164 1-1660	20	175.400	7.326.000	604	1,628	13.8
7661-1680	26	185.200	6,740,000	638	1.498	14.7 1
1681-4700	20	215300	6,838,000	742	1.520	150
1701-1730	29	256.400	7413.000	883	:1.580	15.2
1721-1740	20	381.600	8,624.000	1.314	1,916	15.1
$1741-1760$	30	499,200	10,663.000	1.695	3.370	14.8
t701-1780	29	414.100	13,055.000	1,426	3.900	14.8
1781-1800	20	355800	17.581 .000	1236	3.906	15.1
1801-1810	10	177,800	6,942,000	612	1,987	15.6
1811-1880	10	114,400	5.408.000	394	1,202	15.5
1821-1830	10	142200	4.606,000	490	1,003	H58
$1831-1840$ $1841-1850$	10	202,900	5.964.900	- 699	1,985	157
1841-1850	10	542.600	781046000	1,886	1.784	45.8
1851-1855	5	987,600	4.431,000	3.402	985	t5.4
$\begin{aligned} & 1856-1860 \\ & 1861-1865 \end{aligned}$	5	1,030,000	4628,000	3.59	1.006	53.3
$186!-1865$	5	925,600	5506000.	3.188	1,283	554
1866-1870	5	959.500	6,695,000	3.305	1.488	156
1871-1875	5	869,500	9,847,000	2.985	2,188	180
1876-1880	5	862.100	12,251,000	2,960	2522	17-8
$1881-1885$	5	745,700	14-308,000	2,679	2,640	186
$\begin{gathered} 1886-1890 \\ 1801 \end{gathered}$	5	796,800 196,600	$17.362,000$	2.743	2.832	21.8
$\begin{aligned} & 1891 \\ & 1892 \end{aligned}$	1	196,600 220,900	4266,000	677	669	209
t893	8	230,900	4,893,000 ${ }^{5} 165000$	26	9	25
1894		273.200	\$0.121,000	941	512	$38 . \%$
1895	t	301.500	\$234000	1.045	544	316
1896	1	305.700	4,908,000	1.049	549	30\%7 '
1897	I	356,900	5,013,000	1,215	499	$34 \cdot$
1898	I	433.200	5,413,000	1.486	530	350
1899 1000	1	433,500	\$,235,000	1,590	goo	339
$\mathrm{I9CP}^{180}$	${ }^{ \pm}$	384,600	5.377,000	${ }_{16} 1.325$	356	334
1493-1850	358	4.752,100	149,828,000	16.368	33.292	14.05.
$1851-1885$ $1886-1900$	35	6.380,000	\$7.563,000	21,968	12,052	16.3
$1886-1900$ $1493-1900$	15 408	$3,069,600$ $+5,101,700$	\$,31070,000	13.647	8,510	17:2
1493-1900	408	15,101,700	260461,000	51.983	53.854	14.72

gold or silver is obtained varies with the productivences of the poorest mine in working. Thus by directing consumption, states are controlling producticn, and therelore-within timits-fixing the relative value of the two mecals. This power has been shown in she stability of the ratio during the continuance of the French doublestandard (t803-1873). The possibility of maintainang a given ratio being thus exablished, the argument proceeds to show the advantage of the system. (i.) It secures the concurrent use of the precious motale and avoids throwing all the money work on gold. (ii.) Greater stability in value may be expected, since the fluctuations of either metal will be compensated by those of the other. At the worst the variation can only be as great. (iii.) The larger stock of money tends to keep up prices to the benefit of trade: Lor falling prices hamper production. (iv.) The fixed ratio provides a stable par of exchange between silver-using and gold-using countries; though universal bimetallism would remove this dis-
tinction. (v.) The establishment of a world-currency would be facilitated by allowing both metals a well-defined relation. This enumeration of the heads of the "bimetallic" case shows that its working depends on the area of its operation. It must be "inter. atconal" and the states composing the union must be "great powers" in the monetary sense. Otherwise, their action woukd be comparatively ineffective. The crucial difficulty has been the determination of the common ratio. The risk of failure in currying out the policy has proved a deterrent to such great powers as England and Cermany, who are in possession of the goid standard. On the theoretic ssde the chtef weakness of bimetallism bas been its failuse to supply any clear account of the limits within which states can negulate the ratio of gold to silver. If the ratio $155: 1$ can be set Up why should not the ratio 100%, or that of equality? Its practical failure has resulted partly from political conditions, partly from the removal of most of the difficultics which it wis

Table II.-The Coinage Systems of Continculal Europe, axhibiting the gald and siver coims, thero meighr, fimemess, remidy and approximate oalue in English and United Staks maney..

${ }^{1}$ Present system introduced in 1894. in place of the syatera adopted in 1870 . The Maria Theresa dollar is only used as a commercial money in levantine trade.
"The system of the Scandinavian union came into force on the Ist of January 8875 . It is based on gold monometalism.
The coinage systern of France came into force on the 6 th of May 1799 . It was extended to the countries forming the Larin union in 1865; it has been adopted by Greece, Rumania. Servia and Spain. It is the most widely extended system in Eurome. The Austrian 8 and 4 gulden pieces were equivalent to the 20 and to franc pieces. In 3879 it was estimated that the sysim was used hy populations amounting to $148,000,000$. In its nrilin a double standard (with ratio of $15.5: 1$) it has become a limr ng standard by the limitation of the silver coinage. The unit is the same value all through the union, but receives difierent names in different countrics. The tieles are: in France. Belgium and Swiezerland, frane and centime: in lialy, lipg and centesimo in Greece. drachme and lepra; in Rumania, bèz and ban: in Scritia, dimar and para: in Spain, peseta and rentesimo.

- The German coitage law came into force on the ast of Janury

1875. It was modelled on the English system, but it la only In the last few years that the old silver has been tompletely withorawn.

- The Dutch standard has been changed more than orce. In 1847 a ailver standard was introduced. and retained till 1872, the unit being the silver guilder. In 1875 the free coinage of gold was decreed; eilver coinage having been restricted since i872. Thus the limping standard is in forse.
- The mominal standard of Portugal is sold. The Eaglith sovereign is legal tender at 4500 reis.
The Rusulan currency uncil 1897 was nominally a silver standard one: but really was inconvertible. The currency was Ithproved in 1885 : and in 1897 the gold otandard was adopted, provision being made for the wiahdrawal of the paper money. Finland, which had a curreucy on the French model, is now being compelled to accept the Russian currency.
: The Spanish roinage was assjmilated to that of the Latin union in 1871 . Spaih, difering fron the other countries of the group, coine a 25 peste ploce.
T The Medjide coinage was intreduced in 1844. Englth sovereigns cirçulate at 125 piastres; 20 franc pieces at 100 piantreas.
intended to meet by the mbeequent eoonemic dewlopment. The proposal for a joint standard formed by using a unit in which the two metals are combined has the advantage of escaping the risk of failure to maintain the ratio, for it makes the employment of boch milver and gold emential. Ita influence in caysing atability is also likely to be greater; but it is open to the danger that a chortape of one metal would not be compensated by the abundance of the other. The further advantage that it does not need international agreement (for each country could settle its own combination) is counterbalanced by the atrangeneta of the plan and by its neceumi. cesing the use of representative money. The sugestion of
"goloid " coina on the model of the Greek electrum would hardly be acceptable.

11. The Present Manay Systems of the Warld: Changes of the last Hald Century. - The facts as to the money of the leading countrios of the world are given in Tables II. and LII. It is, bowever, necessary to explain the way in which this position has been reached by the reforms of the last fifty yeara. Since n 860 the alterations in standards and In coin denominations have beenof a very extensive nature. England is one of the

Table III.-Curremcies of the more important man-Eucropean Stales.

- Incomwartible prper cariancy.

UUntil 1906 there was no mint in Canada. English and American octas circulate. The trandind it gold ($f 1=4,866$ dollars). There were formerly different methods of counting, viz. English secrling, Halifax currency and Canadian sterling; the respective ration being 100: 120 : 108.
The Mexican currency has beeh enturely altered in its standard by the legislation of 1905. The gold-exchange system has been brought into force. The ofd-established dollar, which is called piostres is reduced so as to reprevent as ratio of about $3 j-1$.
${ }^{2}$ The dollar wa iniroduced in 5787 as the unit. In 8992 the ratio of gold to silver was fixed at ito 15 . This valuation underrated gold, conseq itricly silver became the standard. In 1834 the ratio was pitered to 1 to 16 . and it was again changed in 1837. In these cbanges kold was overrated, and silver was driven out of circulation. This led. in 1853 . to the reduction of the metal in the silver coins, which therefore became a token-currency. The ouppenision of cash payments took place in 1861. In 1873 silver was demanetized, and gold became the standard. In 8878 the "Bhand Bill". was pasoed, making the silver dollar a legal iender, but confining its conage to the expective, and fixing the amount at from two to four million dollars per month The difficul(ies that resulted from this measure led to the Sherman Act of 8890 , providing for the connage of silver to the annual amoum of $54.000,000$ 0asi Owing to the critir al situation created by these efforta to aid silver, the repeal of the Sberman Act was casried in $\mathbf{8 9 3}$. Since then the chte problem has been to matitain an effective gold resyrve.
9. The Argentime currency is, in practice. one of inconvertible paper. The gold coins were alcered in 1881 . The old South American ome weighed 27 grammes, was 875 fine and worth 63.45. 6d.

- The Braziliza currency is greatly depreciated. It in derived from the Portoguere.
"The Chilean coinage was reformed in 1895, when the gotd standard was adopted, and the syrtem brought lito relation to the Eaglish one. Two Chilena Condors (20 peso pieces) being equal to 13.
ifi 1904 Colombia adopted the gold mandard by taking the equivalent of the U.S. dollar as the unit: but the inconvertible paper is the main currency; and the old coine pans ts commercial money.
- Ater attempting a parity with the Latin union, and pescing through a period of inconvertibte paper, Peru has adopted the English gold standard and coinage, but keepe her own silver denominations,
- The silver atandard was prescribed in India in 1835, with the use of the gold mohura. The latter was demonetized in 1853 . In consequence of the fall in the gold value of silver, the Indan maiats were clowed to the coinage of sitver, otherwise than by the governowent, in 1893. The emostat of cerrency was so biaited as to bring the rupee to the value of is 4 d . On the reatiantion of thin ponitioa, Englich movereigne were made legal tender at the ratio of is rapersei soveretgn. Indts has, by these measores joined the clasa, now becoming numerous, of gold-exchange standard cointrles.
*The old Japancee corroncy consinter of gold cobange and silver itzibas, with a ratio of 4 to 1 . This antique symem was replaced th 1871 by a doublestandard one on the French plan. the ratio being 16.17: 11. The rymem passed first into one of sitver monometallism: and then became one of inconvertible paper The great relorm of 1897 , aided by the Chinese War indemprity, placed the curreqcy on the gold beas.
few countries that has not found change desirable. France has reorganized her token coins (1864), entered into the Latin union (:865) and adopted the limping standard in 1874. Germany has completely transformed the monetary system hitherto existing in the German States (1873). The Scandinavian union has been set up (i8;5). Holland has changed her system wore than once. Still later, Austria-Hungary (1892) and Russia (1897) have come over from the siver standard with the practical use of inconvertible paper to new currencies on the gold basis. In America the United States, after a series of monet ary experiences, has made the gold dollar its standard unit, though the silver complication still exists. Mexico has succeeded in establishing a goid-exchange standard at such a ratio as to induce the import of gold. British India has had its rupee currency put into relation to the English gold unit, and has been lollowed by the Straits Settlements. Japan first abandoned its ancient currency (1871). It then adopied a double standard system which became in practice a silver one and later passed into inconvertible paper. Finally, it has (1897) established a composite legal tender system on the gold basis. The Dutch Indies have the gold-exchange standard on the same plan as British India.

Remorks.-In addition to the tabular statements, the following points respecting the currencies of less advanced countries may be indicated. Though there is a rendency to establish the money of the mother-country in colonies, some of the British possessions, acquired by conquest, have kept their former currency. There has been a videspread movenient in the backward countries of the world towards reforming their money; chielly by setting up some line of connexiou with the gold standard. In South and Central America the dollar bas been retained as the unit; but the movement for co-ordination with the French system has ceased. The English standard has been preferred as a model by Chile and Peru. In Asia the currency of the Philippines has been reorganized under American control. China is cunsidering monetary reform, and Siam has made progress in the direction of the gold-exchange ttandard. Probably the most defective currencies are now those of Turkey and her tributary states.

- Binliography. - The literature on the subject of money has been well described as " almost measureless.". The list of writers who have contributed to it begins with Aristotle, and includes such famous names as Copernicus, Locke and Newton. A full enumera. tion would fill a volume of no slight size. All that can be done here is to give a short classified list of the most serviceable books.

1. Economic text books: English and American-1. S. Mill, Principles of Political Economy (London, 1848: new ed. by Ashley, 1909): Sidgwick. Principles of Polivical Economy (London, 1883; 3 rd ed., 1got); J. S. Nicholson. Principles of Polifical Ecomomy 3 rd ed., 1901); ${ }^{3}$ vols. London. 1893-1goi): F. A. Walker, Political Economy (New York, 1883: and ed. 188? often reprinted): A. T. Hadley, Ezomomics (New York, 1896); E. R. A. Seligman, Principles of Econo. mics (New York, 1gos); H. R, Seager, Introduction lo Economics (New York, 1904: 3rd ed.., 1908). French: M. Chevalier, Cours deconomic polifique (vol. iili. "La Monnaie." Paris, 1850) : P. LeroyBeaulieu, Traité d'economie politique (4 vols., Paris, 1896); C. Gide, Cours déconomie politique (Paris, 1909). German: H. Mangoldi, Grundriss der Volkswivtschafiskhre (2nd ed.. Stuttgar. 1871): G. Schonberg. Handouch der palitischen Oeconomie (Tibingen, 1882; 4th ed. 1904); G. Schmoller, Grundrass der allgemeinen Volkswirtsckafislehre (Leipzig, 1900-1904). The Dutch work by N. G. Pierson has been translated into English with the title Principles of Economics (London, 1902)
II. Special treatises on "Money ": W. S. Jevons. Money and the Mechanism of Exchange (London, 1875): F. A. Walker. Moncy (New York, 1878): J. S. Nicholson. Morey and Monclary Problems (London, 1888; 6th ed., 1902); C, A. Conant. The Prenctples of Mon'y and Benking (2 vols., New York, 1905): A. Arnaune. La Monnaic, If credit et le change (Faris. 1894: 2nd ed.. 1002): A de Foville. La Mfonnaie (Paris. I907): C. Knies, Geld and Kredit (Berlin, 18731879): G. F. Knapp. Slaalliche Theorie des Geldes (Leipzig, 1905).
III. Works on special questions: See BIBETALLISM; BANKING: and Monetary Conferencesfor writings on the problems of the standard and depreciation. For the history of money-F. Lenormant, Le Monnave daws lantiquete (Paris, 1876): W. A. Shaw. IIsiory of Currency. 1252-1804 (Loadon. 1895). For the history of the English currency, besides the works on the numismatic side-Lord Liverjool. Coiss of the Realm (1805: reprinted 1880). For America-W.G. Sumner, Hestory of American Currency (New York, 1874). On the production and consumprion of money materials, W. Jacob. Production and Consmmption of the Precious Metals (2 vols., London, 1831): and A. Del Mar. (instory of the Prectoes Metals (London, 1880). Technical details in Tate's Cambis! (many editims),
-MONEY-LENDING, the lending of money on usury (g.v.) MONEY-LENDING, the lending of money on usury (g.v.)
The business of the professional money-lender is one which, as
tyrany and abuse are *ikely to appear, ill countrits have at different times endeavoured to regulate. In England the lessons of cxperience have shown that the abuess of this businees are best regulated by a systens of registration coupled with relief to debtors against harsh and uncenscionable bargains. Other countries however still appear to cling to the belief that it is wisest to fix a maximum rate of legal interest. Thus in Germany the commercial code fixes the legal rate of interest on commercial transuctions at 5% Moneover in that country trader can demand interest on commercial debes from the day on which the debus fall due. In France, again, the Code fixes the rate of interest on ordinary loans at 5%, and on commercial transactions at 6% In the United States of America the lav relating to the leading of money on usury varies in the different statct. All the states have what is called a "legal rate" of interest; and when no rate ol interest is specified in the contract between the parties, there is a presumption that the borrower has igreed to pay the legal rate. This legal rate varies from 5% in Louisiana to 8% in Wyoming; in the Eastern states it isigencrally 6%. Some of the states have usury laws giving relict to borrowers in cases where circumstances have compelled thent to agroe to extortionate rates; but other states have no such laws, except that a contract in writing is invariably required in all cases where the "legal rate" is exceeded.
Prectically every form of investment in which a man is capable of indulging involves the lending and borrowing of monsy, the interest exacted beirg the profit which the lender receives for the use of his capital. The existence of the professional lender, as apart from the ordinary facilities for borrowing moncy on good security, is obviously due $t 0$ the fact that it is not every borrower who is in a position to give good security for a_{i} loan. Where the security is bad the market is narrowed; the individuads who are prepared to lend the money on merely personal securit y require a high rate of interest.

The first people to practise the profession of money-lending in Eingland regularly were the Jews, and the business has remaned largely in their hands, though they are in the habit of itteding under assumed names. The Norman and Angevin kings were fully alive to the advantages which accrued to the peorle through borrowing at usury from the Jews, but they were also alive to the advantages which they themselves were able to riap hy extorting from the Jews the wealth which the latter had acquired from the people. The Jews wera regarded as the king's serfs, and squeeting them was but a popular form of taxing the people. Indeed in the reign of Henry II. the Scaccarium Judaeorum was established as a separate branch of the exchequer and used for the purpose of filling the royal coffers. The English people on the other hand were not so prone to foater the money-tending busioess. Sections 10 and 11 of Magna Carta provided that when a persen died owing money to a Jew no itterest should accrue during the minorfity of the heir, and further that the widow should be entitied to her dower, and any children who were minors chould be provided with necesaeries before the repayment of the loan. Then followed a large atumber of statutes known generally as the Usury Laws (see also Usury). The first of these was passed in 1235 (20 Hen. II. C. s). The acts were đirected to restrain the lending of money at usurious rates. The earlicr ones in some cases prohibited the lending of money on usury at all, as inf a statute of Jewry of the reign of Edviriti I.; but the iater statut es were chiefly confined to limiting the ratc of interest. Thus $2 i$ Jac. 1 , c. 17 declared void all contracts where the interest was more thar 8%. In 88 m 8 seled commited of the Howse of Commons was appointed to consifer. the Usury Laws and in 1841 a similar committee of the House of Lords was appointed. As a result an act was pasted
 usur' were repaled.

The question whether any interest is payable or not, and also the amount of such interest, depends on wheiber the parties, to the transaction have expressiy or impliedly agreed to the payment of faterest by the boriowier, for epert from such agroment no intereat can lawfully be demended on' loan.

Atbough in general thero is so linit on the amount of interest which a borrower may agree to pay, equity has always been ready to grant relief from unconscionable bargains. This equitable relief is still available, though it is not 10 wide as the relief now given to borrowers under the Money-lenders Act sgon. This act provides that where proceedings are taken in any court by a money-lender for the recovery of money lent, and there is evidence which satisies the court that the interest charged on the loan, or the amounts charged for expenses, inquiries, fines, bonus, premium, renewals, okc., are excessive, and that in either case the transaction is harsh and unconscionable, or is otherwise suct that a court of equity would grant relief, the court may reopen tho tranemetion and take an account between the money-lender and the person sued, and may, not withstapding any staterment or settlement of account or any agreement purporting to close previous dealings and create a now obligation, reopen any account already taken between them and relleve the person sued from payment of any sum in excess of tho sum adjudged by the court to be fairly due in respect of ouch principal, interest and charges as the court, having regard to the risk and all the circumstances, may adjudge to be reasonable.
The Money-kenders Act $\alpha 3800$ was passed in consequence of grave abuses which had arisen. It had been the practice of a certain clase of lemder to trade under a variety of names; so that onder one name the aame individual would lend money to a person who borrowed from him under another name; the second loan would be spent in liquidating the first, and the borrower finding it always easy to obtain more money would continue borrowing until he became hopelessly involved. The act struck at the root of this pernicious system by providing that every money-lender, as defined by the act, must register himself as such, under his own or usual trade name, and in no other name, and with the address, or all the addresses if more than one, at which he carries on his business of a money-lender. If a money-lender fails to register himself, or if he carries on a money-lending business otherwise than in his registcred name, or in more names than one, or elsewbere than at his registered address, be is liable on summary conviction to a fine, not exceeding one bundred pounds. For the purposes of the act "money-lender" is defined as including every person whose business is that of money-lending, but it does not include pawnbrokers, in respect of busincess carried on by them under the Pawnbrokers Act, Registered Friendly, Loan or Building Societies, coporate bodies incorporated or empowered by special act of parliament to lend money, persons bona fido carrying on the business of banking or iasurance, or bona fide carrying on any business not having for its primary object the lending of money, or bodies corporate for the time being exempted from registration by order of the Board of Trade.
The act is not confined to providing for the registration of money. lenders and for the reopening of harsh and unconscionable bargainsA chack is placed on false representations and promises made with the intention of inducing a borrower to enter into a loan trannaction. If any money-lender, or any manager, agent or clerk of a moneylender. or any person being a director, manager or other officer of a corporation carrying on the business of a money-lender, by any Talse, misleading or deceptive statement. representation or promise, or by any dishonert concealment of material facts, fraudutently induces. or attempts to induce, any person to borrow, mooey or to agree to the terms on which money is to be borrowed, be is declared by the act to be guilty of a misdemeanour and is liable on indictment to imprioonmear with or without hard habour for a term not exceeding t imo years, or to a fine not excoeding five huadred pounde, or to botz
The act further provides that if any one for the purpose of carning interest, commission, reward or other profit ende or causces to bevent to a person whom he knows to be an infant any circular or other document which invites the pereon receiving it to bortow money or to apply to any percon or at any place with a view to obtailing information or advice as to borrowing money, he ahall be liable. If convicted on indictment, to imprisanment with or without hard labour, or to a fine, or to both imprisonment and Gine. If any zuch clrcular or document sent to an liffant purports to losue frond any addreas named therein or indicatem any zddrems as the place at which bpplication is to be made with reference to the sonject matter of the document, and at that place there is carried os any business connected with loans, every person who attends auch place for the purpore of taking part io or asisting in the
carrying on of auch buminem will be decreed to have weat or canmed to be sent such circular or document, unlese be proves that ho wes not in any way a party to and was wholly ignorant of the sending of such document. Moreover, by section 5 of the Money-lenders Act 1900 , where any proceedings are taken against the senders of these circulars to infants, if it is proved that tho permon to whom the document was sent is an infant, the person charged will be deemed to have been cognisant of the fact unless be proves that he had reasonable grounds for believing the infant to be of full age. Under the act of 1892 this stifting of the burden of proof only occurred if the circular had been sent to eny person at eny univeraity, college, school or other place of education.

As for the recovery of money lent; if the loan is not tainted with illegality or immorality. or made for a purpose contrary to public policy, the amount may be recovered by a common law action. Where an intending borrower brain his agreement to borrow, apecific performance will not be grainaxd, and the damages recover: able must be measured by the loss sestained through the breach and not by the sum agreed to be lent (The Sowth African Tarritories, Limiled v. Wallington (1897), 1 Q.B. 692).

Autuorities.-On equitable relief to bormwers reference thould be made to Bellot and Willis's Bargaises with Momay-dendars. On the law under the act of 1900 soe Hastings's Law relating to MonnyLexders and Unconscionable Bargains; aod Edmonden's Monoylenders Act 1000 . For the taxation of the Jews in the midde ages, Bridges, The Jews of Exrope in the Middle Ages, and Cnoint's Hislory of the English Comstitubion. For American law relating to Usury, see Stimeon's Americam Slatute Lano, and the tatutes of the verious states. For France and Germany, wee the codes of thove countrica.
(C. G. ALA.)

MONFORTE, or Monforte de Lemos, a town of north-wettern Spain, in the province of Lugo, on the Cabe, a small righthand tributary of the Sil, and at the junction of the raitways from Tuy and Astorgn to Corunna. Pop. (1900), 22,912. Monforte is built on a hill surmounted by a ruined medieval citadel; it contains an ancient Benedictine monastery converted into a boupital, a Jesuit college, and a fine Renaissance parish church, besides several convents and palaces of the Leonese nobility. Monforte has manufactures of soap and linen, and some trade in timber end livestock.

MONGE GASPARD ($1746-1818$), French mathematician, the inventor of descriptive geometry, was bom at Beaune on the coth of May 1746. He was educated first at the college of the Onntorians at Beaune, and then in theircollege at Lyons-where, at sixteen, the year after he had been learning physics, he was made a teacher of it. Returning to Beaune for vacation, he made, on a large scale, a plan of the town, inventing the methods of obwervation and constructing the necessary instruments; the plan was presented to the town, and preserved in their library. An officer of engineers seeing it wrote to recommend Monge to the commandant of the military school at Mexieres, and he was recelved as a draftsman and pupil in the practical school attached to that institution; the school itself was of too aristocratic a claracter to allow of his admission to it. His manual skill was duly appreciated: "I was a thousand times tempted," be said long afterwards, "to tear up my drawings in disgust at the esteem in which they were held, as if I had been good for nothing better." An opportunity, however, presented itself: being required to work out from data supplied to him the "dsficement " of a proposed fortress (an operation then only performed by a long arithmetical process), Monge, substituting for this a geometrical method, obtained the result so quickly that the commandant at first refused to receive it-the time necessary for the work had not been taken; but upon examination the value of the discovery was recognized, and the method was adopted. And Monge, continuing his researches, arrived at that general method of the application of geometry to the arts of construction which is now called descriptive geometry (see Geometry, Descripirve). But such was the system in France before the Revolution that the officers instructed in the method were strictly forbidden to communicate it even to those engaged in other hrenches of the public service; and it was not until many years alterwards that an account of it wes published.

In 1768 Monge became professor of mathematics, and in 1775 professor of physica, at Mexières; in 177^{8} be mamied Mme Horbon, a young widow whom he had previously defended in a very apirited manner from an unfounded charge; in 1780 he was appointed to a chair of hydraulics at the Lyceum in Paris
(held by him together with bis appolmtments at MExieres), and was received as a member of the Acodemic; his intimate friendship with C. L. Berthollet began at this time. In 1783, quiuing Mézières, he was, on the death of E. Bezout, appointed examiner of neval candidates. Although pressod by the minister to prepare for them a complete course of mathematics, he declined to do so, on the gropand that it would deprive Mme Bézout of ber only income, from the sale of the works of her late husband; be wrote, however (1786), his Traile stementaire de la statique.

Monge contrihuted (177^{-1790}) to the Memorrs of the Academy of Turin, the Memoires des savames dirangers of the Academy of Paris, the Mimoires of the same Academy, and the Annakes do chimis, various mathematical and physical papers. Among these may be noticed the memoir "Sur la thforie des déblais et des remblais " (Mem. de Pacad. de Paris, 1781), which, while giving a remarkably elegant investigation in regard to the problem of earth-work reierred to in the title, establishes in connerion with it his capital discovery of the curves of curvature of a surface. Lsonhard Euler, in his paper on curvature in the Berlin Memoirs for 1760, had considered, not the normals of the surface, but the normals of the plane sections through a particular normal, so that the question of the intersection of successive normals of the surface had never presented itself to him. Monge's memoir just referred to gives the ordinary differcntial equation of the curves of curvature, and estahlishes the general thēory in a very satisfactory manner; but the application to the interesting particular case of the ellipsoid was first made by him in a later paper in 1795. A memoir in the volume for 1783 relates to the production of water by the combustion of hydrogen; but Monge's results had been anticipated by Henry Cavendish.

In 1702, on the creation by the Legislative Assembly of an executive council, Monge accepted the office of minister of the marine, but retained it only until April 1793. When the Committee of Public Safety made an appeal to the savants to assist in producing the mattricl required for the defence of the republic, he applied himself wholly to those operations, and distinguished himself by his indefatigable activity therein; he wrote at this time his Descripsion de l'arl de fobriquer les canons, and his Avis aux owerriers en for sur la fobrication de l'acier. He took a very active part in the measures for the establishment of the normal school (which existed only during the first four months of the year 1795), and of the schoot for public works, afterwards the polytechnic school, and was at each of them professor for descriptive geometry; his methods in that science were first puhlished in the form in which the shorthand writers took down his lessons given at the normal achool in 1795 , and again in 1798-1 799 . In 1796 Monge was sent into Italy with C. L. Berthollet and some artists to recoive the pictures and statues levied from several Italian towns, and mado there the acquaintance of Gencral Bonaparte. Two years afterwards he was sent to Rome on a political mission, which terminated in the establishment, under A. Massina, of the short-lived Roman republic; and he thence joined the expedition to Ebypt, taking part with his friend Berthollet as well in various operations of the war as in the scientific labours of the Egyptian Institute of Sciences and Arts; they accompanied Bonaparte 20 Syria, and returned with him in 1798 to France. Monge was appointed president of the Egyptian commission, and be resumed his connexion with the polytechnic school. His later mathematical papers are publisbed (1794-1816) in the Journal and the Correspordance of the polytechnic school. On the formation of the Senate he was appointed a member of that body, with an ample provision and the title of count of Pelusium; but on the fall of Napoleon he was deprived of all his honours, and even excluded from the list of members of the reconstituted Institute. He died at Paris on the 28 th of July 1818.

For further information see B. Brisson, Notice hishrigua sume Gaspard Monge: Dupin. Essal hislorique sur les services el les lravaux scientifques do Gaspard Monre (Paris. 1819), which contains (pp. 162(60) a list of Moage's memoirs and works; and the biography by F. Arago (Exises, it is., 1854).

Alonge's various mathealatical papers are to a cansiderable
extent reproduced in the Applicalionde lanalyse da ghomifie (fth
ad, hat revired by the terbor, Paita, refig); the pare eext of thit is reproduced in the sth ed (revue, corrighe et annotse par M. Louville) (Paris, 1850), which contains also Gauss's Memoir, "Die. quisitiones generales circa superficics curvas," and some valuable notes by the editor. The other orincipal seperate works are Trand elimentairy de la adaligue, 8 taction, confownie a la precodente, par M. Hackelle, et sutwe d'mue nose \&c., par M. Canchy (Pars, 1946): and the Gtometre descriptuve (onginating, as mentioned above. in the lemons given at the normal school). The 4th edition; published shortly after the author's death, seems to have been substantially the seppe te the 7th (Gbanderie ddscriptive par G. Monge, suiwe d'une theorie des ombres et de la perspection, astraiit dee pappers de「autewr, par M. Brasson (Paris, 1847).
(A. CA.)

MONGHYE, a town and clistrict of. British India, in the Bhagalpur division of Bengal. The town is on the right bank of the Ganges, and has a raikway station, with steam ferry to the railway on the opposite hank of the river. Pop. (rgor), $35,890$. In 1195 Monghyr, a fortrass of great natural strength, appears to have been taken by Mahommed Bakhiyar Khilji, the frot Mloslem conqueror of Bengal. Henceforth it is often tremetioned by the Ma hommedan chroniders as a place of militmry importance, and was frequently chosen as the seat of the local govermenent. After 1590, whon Akbar established his supremacy over the Afghan chiefs of Bengal, Mongiyr was long the headquartera of his general, Todar Mal; and it also figures proninently during the rebellion of Sultan Shuja against his brother, Aurangzeb. In more recent times Nawah Mir Kasim, in his war with the Engliah. sclected it as his residence and the centre of his military preparations. Monghyr is famous for its manufactures of iron: firqarms, swords, and iron articles of every kind are produced in abundance but are noted for cheapoess rather than quality. The art of inlaying sword-hilts and other articles with gold and silver affords employment to a few families.

The District of Monciyr has an area of 3922 sq. m . The Genges divides it into two portions. The northern, intersected by the Burbi Gandak and Tiljuga, two important tributaries of the Ganges, is always liable to inundation during the rainy season, and is a rich, flat, wheat and rice country, supporting a large population. A considerable area, immediately bordering the banks of the great rivers, is devoted to permanent pasture. Immense berds of buftaloes are sent every hot scason to graze on these marshy prairies; and the ghi, or clarified butter, made from their milk forms an important article of export to Calcutta. To the south of tbe Ganges the country is dry, much less fertile, and broken up by fragmentary ridges. Irrigation is necessary throughout the section lying on the south of the Ganges. The population in 1901 was $2,008,804$, showing an increase of 1.6% ip the decade. The principal exports sent to Calcutta, both hy rall and by river, are oil-seeds, wheat, rice, Indigo, grain and pulse, hides and tobacco; and the chief imports consist of Edropean piece-goods, salt and sugar. The southern portion of the district is well provided with railways. At Lakhisarai junetion the arc and chord lines of the Fast Indian rail way divide, and here also starts the hranch to Gaya. At Jamalpur, which is the junction for Monghyr, are the engincering workshops of the company. In the early years of British rule Monghyr formed a part of Bhagalpur, and was not created a separate distriet till 1832.

See Monghy Dislrict Gazelleer (Calcutta, 1909).

MOnG MaI (called by the Burmese and on most old mapa $M o L^{2}$), one of the largest and most important of the states in the eastern subdivision of the southern Shan States of Burma. The state of Kang Tawng (Burmese Kyaing Taung) in a dependency of Mong Nai. It lies approximately between $20^{\circ} 10^{\prime}$ and $25^{\circ} \mathrm{N}$. and between $97^{\circ} \cdot 30^{\circ}$ and $98^{\circ} 45^{\prime} \mathrm{E}$., and occupies an area of 2777 sq. m.; pop. (1901), 44,252, of whom more than five-sixths are Shans. The Salween river bounds it on the east. The main state and the sub-state of Kong Tawng consist of two plaias with a ridge between them. There is much lite rice bottom, but a considerable portion consists of gently undulating plain: land. In the central plain rice is the only crop. Outside this considerable quantities of sugar are produced. Tobacco of a quality highly esteemed by the Shass is grownl in the Nawas Wawp circle at an alitude of 3100 ft . above sea-level; sram,
manathet (a leaf uned for cigar-wreppera), mad gandon cropa ane the chivef produce otherwise. In the outlying tracts quantities of coarse native paper are manufactured trom the bark of a apecies of mulberry, and much is exported to other parts of the Shan States.
moncolia, a vast territory belonging to the Chinese empive, the administrative Bmits of which cannot be dowermined with precision. On the $\mathrm{N}:$ it is bounded by the frontier of Rumsia, beginntng at Mount Kalas or Kanas ($49^{\circ} 5^{\prime} \mathrm{N} ., 87^{\circ} 40^{\circ}$ E.) in the Altai, and running to the S.E. corner of Transbaikelia in the vicinity of Dalai-nor, thus having on the N. the Siberian provinces of Tomsk. Yeniselsk. Irkutak and Transbaikalin. In the E. the boundary line which separates Mongolia from Manchuria runs past Dalai-nor and Lake Buir, crossing the Great Khingan in $47^{\circ} 30^{\prime}$ N., towards Tsitsihar in Manchuria; then, crossing the Nonai river, it strikes the Sungeri at Xhulanchen, where it turns westwards up this river, reaching the Shara-muren river in $123^{\circ} 30^{\prime}$ E. From China proper on the S. Mongolia is separated by a line running in a south-westward direction up the Shara-muren and ecross the Mongolian phateau to the bending of the Hwang-ho or Yellow river in about $40^{\circ} \mathrm{N}$. and $110^{\circ} 30^{\prime} \mathrm{E}$. Thence the boundary describes a sinuous line, following the Great Wall, and thus includes the Ordos ($\mathrm{Ho}-\mathrm{tau}$) and Alashañ (Si -tao), and reaches its most southern point in $30^{\circ}{ }^{\circ} 0^{\prime}$ N., $104^{\circ} 20^{\circ}$ E. Thence it turns north-west, following the Great Wall for over 300 im ; it then crosses the plateau so as to separate Mongolia from the Chinese province of Sin-Kiang (Han-suisin-siang, which includes the Nan-shan highlands and castern Turkestan), and from Dzungaria, reaching the Chinese or Ektagh Altai in $46^{\circ} 30^{\prime} \mathrm{N}$., 92° i $30^{\prime} \mathrm{E}$. Prom that point the boundary coincides with the main waterparting of the Altai Mountains till it reaches Mount Kelas.
Geographically, Mongolia may thus be said to occupy both terraces of the great plateau of east. Asia, which stretches in the south of Siberia, between the Sailughem range of the Great Altai and the Great Khingan-with the exception of the Dzungarian depression. Prom Manchuria and China it is eeparatod by the border ridge of the plateau-the Great Khingan, while in the south-west it runs up to the foot of the high northern bonder ridges of the Tibetan plateau-an artificial frontier separating it from east Turkestan and Dzungaria. Broadly speaking. Mongolia may be divided naturally into three parts: (1) north-westem Mongolia, which oocupics the high tetrace of the plateau; (2) the Gobi, in its wide sense, covering the lower terrace of the plateau, together with a slightly more elevated and better-watered zone along the western slope of the Great Khingan and its sooth-western continuation; and (3) soutbeastern Mongolia, on the eastern slope of the Khingan. Of these perts, the recond is considered in detail under the heading Giass.

North-western Monghis was formerly represented as a reciua intertected by lofty mountain chains. It appears, however. froci Northe Russian explorations during the last third of the 191: westora Century, that it has al the characteristics of an elevated Mosports. by four mountain ranges; namely. the Russian Altai the N.W., the Sayans on the N.E., the Kentei range on the S.E and the Ektagh Aitai on the S.W. The border-ridge characte, of the Sayans (Esgik-Largak-taiga) is well established. and the mame orographic character is confirmed by recent cxplorers with regard to the Sailughem range of the Altai. The only point still remaining undecided is whether the valleys of the Bom-kemchil: (a tribetary of the Yeniset) and its left-hand tributaries do not be. long geogrephically to the Altaí region-At any raten throughout the whole of north-west Mongolia, which covers an area of nearly $370,0008 \mathrm{q} \mathrm{m}$., the altitudo nowhere falls below 2370 ft (Ubsa-nor); and the area round this lake which has less than 3000 ft of altitude covers only 6600 sq. Th. The remander of this extensive cerritory ranges at akitudcs of 3000 to 4500 It, even in the bottoms of the river valleys and. in the lower plains: while the ridgee which constitute the water-partings nse about 2600 ft : above the gencral level of the platcau. Along the south-western border of this division of Mongolia a grgantic border-ridye, the Ektigh (or Mongolian) Altai. runa in an ESE. direction from the Rustian Altai to 99° E. and is probably continued even farther by the Artsa-bogdo. the Saikhat and other ranges as far as the northern loop of the Yellow river The passes across the Ektagh Altai lie st atitude of to,000 ft. In the north-wete and

9250 ft . in $93^{\circ} 20^{\prime}$ E.; farther elst they become much lower. But while its southern foot stands in the Deungarian trench, i.e. at altitudes of 1559 ft . only near Lake Ulungur, and at 3000 ft . in $94^{\circ} \mathrm{E}$, ils north-eastern foot rests on the. high plateau, i.e. at 4260 it at Kiobdo, 5410 at Onhlau, 4070 at Orok-nor on the rouste from Kiakhta to Suchow, and so on. Thus the Ektagh Altai is a true border.rangethat is, a lofty and steep escarpment facing the Dzungarian depression, with a geatle and relatively short slope towards the plateau.

In the same way the Kentei (or Gentei) Mountains, as they are called, to the north of Urga, and the Yablonoi Mountains of Iransbaikalia, separate the higher terrace of north-west Mongolin (drained by the tributaries of the Selenga) from the lower terrace of the Gobi, which is drained by the upper tributaries of the Onon and the Herulen, both belonging to the basin of the Amur. It is also very probabie that the Iannu-oln Mountaing northeast of Ubanemor, and the Khangai Mountaine between Ulyasutai and the upper Orkhon, both running W.N.W. to E.S.E., border another slightly higher terrace of the same great plateau of north-west Mongolia, upon which Lake Kossogol lies, at an altitude of 5320 ft . On this vast upper terrace ever the bottoms of the river valleys are at altitudes of 4200 to 5500 ft ., with one single exception-the narrow gorge of the Khua (Khi)-whem, or upper Yenisei; while the highest pass acroes the Tannu-ola Mountains is 7090 ft ., though the others are much lower. The conception of north-west Mongolia as a ritgion filled with mountain manges radiating from the Alcai must thus be abandoned. It is a mastive sweiling of the earth's crust, representing the morthern counterpart of the plateau of Tibet. This massive swelling is cut into, between the Ektagh Altal and the eastern Tien-shan, by the relative depression of Tarbagatai and Dzungaris, 1500 to 3000 ft . in altitude; while to the gouth of the eastern T'ies-shan comes the Tarim depression, from 2200 to 3000 ft. high, and occupying an aren of about 88,000 sq. m. Neither of these "depressions," however, penetrates beyond 94° E., and on the route from Kiakhta to Su-chow, in 100° E., there is only one single place (42° N.) in which the altitude drops its low as 3300 ft .5 everywhere else it varies between 4000 and 5000 ft.

Lakes and Rivers.-North-western Mongolia is well watered, and has in its western part a group of lakes which possess no outlict to the ocean, being in reality the rapidiy desiccating remains of what were formerly much larger basins. The chicd of tbem is Ubatnor ($2370 \mathrm{ft} . \mathrm{h}$ which receives the large river Tes. It lies in the middte of a large plain, and has to the west of it a smaller but much bigher lake, Urga-nor, besides several smaller ones. Farther south on the same wide plain lie the sister lakes Kirghiz-nor and Airyk-nor, Which receive another large river, the Drap'hyn, and the Kungui Many small lakes are scattered over the plain to the eant of them A third sroup of lakes occur in the neigbbourhood of Kobdo. The Kobdo river, which rises in the Dain-gol (7060 ft.) in the Ektagh Altai, winda in great curves across the plateau, and enters Lake Kara-ustu (3840 ft), which also meceives the Buyantu, an outfiow from Lalke Kobdo, and is connected by a small giver with another large lake, Durga-nor, situated a score of miles to the east. There are also many smaller lakes fed by the glaciers of the Sallugherm (Achit-nor, 4650 ft ., and Uryu-nor), and others scattered through the Ektagh Altai. The largest lake of this region is, however. Koeogol (Khubsu-gul), which lies at an altitude of 5320 ft ., cloee to the Rusian frontier, at the foot of the snow-clad Munku-sardyk. Besides the rivers just mentioned, there are others belonging to the basin of the Yenisei (Khua-or Khi-khem, Bei-khem and Bomkemchik): while yet withers belong to the Selenga, a river formed by the junction of the Eder with the Telghir. The Selenga reccive the Orkhon, at the head of which remarkable inscriptions were discovered in the end of the 19 th century, and cleyerly deciphered by Professor V. Thomsen of Copetihagen. ${ }^{1}$ The rivers which flow down the outer slupes of the border-ridges become loot in the Gobi shortly after enteriag it.

A very Large portion of north-west Mongolia constitutes a bigh plain, 3000 to 4200 ft in alititude, which penctrates from the southeast in a north-western direction between the Ektagh Attai and the Khangas Mountains. It has a true Mongolian character, i. c. it is covered with gravel, and presents the appearance of a dry prairie devord of forests. This same character is also exhibised by the bottoms of the brond valleys, while the more clevated and hilly portions of the territory, especially on their northern slopes, are covered with larch, cedat. pine and deciduous trees belonging to the Siberian flora. where the forests fail they are marshy or asoume the character of Alpine meadows-e.g. in the Khangai, the Tannu-ola, and on the slopes of the border-ridges. The whole of this region it covered with excellent pasture. The forests decrease as one travels southwards. For instance. while both slopes of the Sayans are covered with forests, the Tonnu-ola and the Khangai Moustains have woods on their northern faces only. and the Ektagh Altai is quite devoid of woods. even on its nort hern slope.

Climatr.-Owing to its high altitudc, north-westem Mongolia is very cold, and the weverity of the winter so intensifised by the prevalence of cold but dry north-western winds. The north-cast wind bringe more moisture. In summer the warm winds come from the south and south-east. but having first to cross the Cobi.
${ }^{1}$ See V Thomsen. datucriphions de ('Ophhow (Hicisingtors, 1900)
they are dried before they reach porth-western Mongolia. The ycarly amount of rain at Urga (altitude 4350 ft ., at the northern loot of the Kentei Mountaias) is only of in., and the average temperatures are : year $27^{\circ} \mathrm{F}$., January -18^{3}, July 64°; a minimum of $-35^{\circ} \mathrm{F}$. has been observed. The climate of Ulyasutai ($\$ 400 \mathrm{ft}$.) may be taken as typical, ite average temperaturcs beiog: year 31.6°. January -12°, uly 66°.
The taology is atill very imperfectly known. The plateas in buiit up of granites, gneisses and crystalline achists of Archean and probably Primary age. Coal is known to exist to the southeast of Kobdo, in the Tannu-da, and in the besin of the Yenivei. but its age is unknown (fresh-water Jurasaic ?). Graphite and some bilver ores have alto been found.

The fauna is a mixture of the Siberian and the Daurian-the latter penetrating up the valleys of the Seicnga basin. The chiof towns of north-west Mongolia are Urga. Ulyasutai, Kobdo and Ulankom.

South-eastern Mongolia is the part of Mongolia which lies on the castern slope of the Great Khingan Mountains, entering like a wedge somth. between the lower course of the Nonni river and the easters. middie Sungari. Chiefly owing to the dryness of climete, Mancoun its physical charactenstics are similar to thove of much lower. This portion of Mongolia is also much better watered, namely, by the Khatsyr, the Lao-ho and tbe Shara-muren, all fowing from the Khingan Mountains eastwards, and the late making the frontier between Mongolia and the Chinese province of Chilit.

Population.-The population of the whole of Mongolia is estimated at about $5,000,000$. It consists of Mongols-Eastern Mongols and Kalmucks in the west-various Turkish tribes, Chinese and Tunguses. The Mongols proper, with the exception of those who inhabit north-west Mongolia, may be divided into northern and southern (more properly north-western and southeastern) Mongols. The former, belonging to the Khalkas, occupy the Gobi and the regions of the Kentei Mountains and Khingan Mountains, while the second, divided into numerous minor branches, roam over south-eastern and southern Mongolia. The principal occupation of the Mongols is catte-breeding, and Russian writers estimate that on an average each yurta, or family, has ahout 50 sheep, 25 horses, 15 horned cattle and 10 camels. The transport of goods is their next most important occupation. It is calculated that 100,000 camels are used for the transport of tea only from Kalgan to Siberia, and that no less than $1,200,000$ camels and 300,000 ox-carts are employed in the internal caravan trade. Agriculture is only carried on sporadically, chiefly in the south, where the Mongols have been taught by the Chinese. Various domestic lndustries are also carried on. The trade is chiefly concentrated at Urga, Ulyasutai and Kobdo in north-west Mongolia; Kalgan, Kuku-khoto, Kuku-erghi, Dolon-nur and Biru-khote in southern and south-eastern Mongolia; and at Kerulen in the north-east.

Administrution.-Before the Manchurian conquest the Mongols were governed by their own feudal princes, who regarded themselves as being descended from seven different anceators, all, however of the same kin. Each group of priacipalities constituted a separate aimak, and each principality a separate hoshwoh. Under Manchu rule the aimaks became converted into the same number of military corps, each composed of so many hoshuins as military units. Each of these again was divided into sumuns or squadrons, each containing 150 families. In case 2 hoshum contained more than 6 sumsuns, every 6 of the latter were organimed into a regiment-bsalan. Four Manchu Lsian-lsuns, or governor-generals, acted as chiefs of the troops, and the prince of each aimak, nominated from Peking, was considered as the lieutenant or assistant of his respective Manchu chief. The hoshuns were subject to their own princes, each of whom had a military adviser, generally a Manchu. Their internal or tribal affairs were in the hands of the princes, those which concerned a whole aimak being settled at gatherings of the princes under the eldest of them, named than. This organization was maintained by tbe Manchu rulers, the khan being elected from among the princes, and the latter having each an adviser, tusalakchi, nominated from Peking.
Mongolia is now administered hy a Lifon Yuen or superintendency with headquarters at Peking. Excluding the teritory to which the name of Mongolia is geograplically applied, but which is included in the provinces of Shansi and Chihli, Mongolia is divided into inger and outer divisions. Inver Mongolin,
lying between the desert of Gobi, Chins proper and Manchurin, is divided into 24 aimals. There are two militery governort general and two commissaries of the viceroy of Chihli, having control of civil matters. One of each pair of officials is stationed at Kalgan, and the other at Jehal. Outer Mongalis, the remainder of the territory, has 4 aimahb, three of which are under heredieary thoms. There is a Chinese imperial agent at $\mathbf{U}^{\text {rga }}$

Authorities.-The following works in Russian are the most important: Prjevalsky, Mongolia and the Lard of the Tenguls (1875), and his Third and Fourth Journey (1883 and 1888): G. N. Potanin. Sketches of North-West Mongolia (1881-1883); The Tangut-Jibs Border of China and Centrat Mongolia (1893 seq.): V. Pyevt solf, Sketch of a Journey to Mongolia. Erc. (Omsk, 1883): D. Pozdneeff, Towns of North Mongolia (1880); Mongolia aud the Mongols (1896 and 1ing): and the article "Mongolia" in Russian Encycl. Dictiomary. vil. xix. (1896) : G. and M. Grum Grzimailo, Description of a Joumey to Western Chima ($1898-1809$): V. Pyevtsof, K. Bogdanovitch. V. I. Roborovsky and P. K. Kozloff, The Tibet Expeditions (18861002): V. Obrucheff. Central Asid, Northern China and the Nanshan (1900-1901); Z. Matusovskity Geogr. Descr. of Chimese Empies (1888): Batorskiy, Essay of a Military and Slatistic Skelch (i800); A. Woyeikoff, Climates of the Earth (1884); Mongolia and Kham (I mperal Russian Geographical Socicty's Expedition, 8 899-190r). Sce also R. Pumpelly, Geol. Researches (Washington, 1866) Ney Elias, in Journal R.G.S. (1873); Baron Richthofen, Chine (1877); J. Gilmour, Among the Mongols (1883); W. W. Rockhill, Journey' ohrough Mongelia and Thibet (1894); F. E. Younghusband, The \boldsymbol{H} cart of a Condianat (19ys).
($\mathrm{P}, \mathrm{A} . \mathrm{K}$.)
Mosiols, the name of one of the chief ethnographical divisions of the Asiatic peoples (see also Turics). The early history of the Mongols, like that of all central-Asian tribes, is exiremely obscure. Even the meaning of the name "Mongol" is a disputed point, though a general consent is now given to Schot''s etymology of the word from mong, meaning brave From the earliest and very scanty notice we have of, the Mongols In the history of the T'ang dynasty of Chima (A.D. 6ig-6go) and in works of later times, it appears that their original camping: grounds were along the courses of the Kerulen, Upper Nonmi and Argun rivers. But in the absence of all historiond particulas of their origin, legend, as is usual, has been busy with therr early years. The Mongol historian Sanans Setzen gives curreney to the myth that they sprang from a blue wolf; and the sobercst story on record is that their ancestor Budantsar was miraculously conceived of a Mongol widow. By craft and violence Budantsar gained the chieftainship over a tribe living in the neigbbourhood of his mother's tent, and thus left a heritage to his son. Varying fortunes attended the descendants of Budantsar, but on the whole their power gradually increabed, until Yesukai, the father of Jenghix Khan, who was eighth in descent from Budantsar, made this authonty felt over a considerable area. How this dominion was extended under the rule of Jenghiz Khan is abown in the article Jencria Kbus, and when that great conqueror was laid to rest in the valliey of Kilien in 1227 he left to his sons an empire which stretched from the China Sea to the hanks of the Drieper.
Over the whole of this vast region Jenghiz Khan set his second surviving son Ogotai or Ogdai as khakan, or chief khan. while to the family of his deceased eldest son Juji be assigned the country from Kayalik and Khwarizm to the borders of Bulgar and Saksin " where'er the hoofs of Mongol horse had tramped "; to Jagatai, his cldest surviving son, the territory from the borders of the Uighur country to Bokhara; while Tule, ine youngert, received charge of the home country of the Mongols, the care of tbe imperial encampment and family, and of the archives of the state. The appointment of Ogdai as his successor being contrary to the usual Mongol custom ond of primogeniture, gave rise to some bitterness of whea. feeling among the followers of Jagatai. But the commands of Jenghiz Khan subdued these murmurs, and Ogdaj was finally led ta the throne by his dispossessed brether amid the plaudits of the assembled Mongols. In accordance with Mongol customs, Ogdai signalized his acceasion to the throne by distributing among his grandees presents from his father's treasures, and to his falher's spirit be sacrificed forty maidens and numerous horses. Once fairly on the throne, he set himself vigorously to
follow up the conquests won by fin father. At the theed of a large army be marched southwards into China to complete the ruin of the Kin dynasty, which had already been so rodely shaken, white at the same time Tule advancod into the province of Honan from the side of Shonsi. Against this combined allack the Kintroops made a vigorous stand, but the akill and courago of the Mongols bore down every opposition, and over a hocatomb of sauughtered focs they captured Kaj-feng Fu. the capital of their enemies. From Kai-fenng Fu the emperor flod to Ju-ring Fu , whither the Mongols quickly followed. After gustaining a siege for some weeks, and enduring all the horrons of starvation, the garrison submitted to the Mongols, and at the same time the emperor cormmitted suicide by hanging. Thus fell in 1234 the Kin or "Golden" dysesty, which had ruled over the northern portion of China for more than a century.
But though Ogdei's first care was to extend his empire in the rich and fertile provinces of China, he was not forgetful of the obligation under which Jeughia Khan's conquests in westem Asia bad mald him to maiatain his supremacy over the kingdom of Khwarizm. This was the mbre incumbent on him since Jelal ed-dina, who had been driven by Jenghiz into India, had returned, reinforced by the support of the sultan of Delhi, whose daughter he had married, and, having reconquered bis hereditary domains, had advanced westward as lar as Tiflis and Kelat: Once more to disposscess the young sultan, Ogdai sent a force of 300,000 men into Khwarizm. With such amazing rapidity did this army march in pursuit of its foe that the advanced Mongol guards reached Amid (Diarbekr), whither Jelal ed-din had retreated, before that unfortunate sovereign had any idea of their approach. Accompanied by a few followers, Jetial ed-din fied to the Kurdish Mountains, where he was basely murdered by a peassant. The primary object of the Mongol invasion was thus accomplished; but, with the instinct of their race, they made this conquest but a stepping-stone to another, and without a moment's delay pushed on still farther westrarth. Unchecked and almost unopposed, they overran the districts of Diarbekt, Mesopotamia, Erbrl and Kelat, and then advancod upon Azerbaijan. In the following year ($\mathbf{2} 236$) they invaded Georgia and Groat Armenla, cormmitting frightful atrocities. Tiffis was among the cilies captured by assault, and Kars was surrendered at their approach in the vain hope that submission would gain clemency from the victors. Meanwhile, in 1235, Ogdai despatched three armies in an many directions. One was directed against Korea, one against the Sung dynasty, which ruled over the provinces of China south of the Yangtsze Kiang, and the third was sent westward Into eastern Europe. This last force was commandod by Batu, the son of Juji, Ogdai's deceased eldest hrother, who took with him the celebrated Sabutai Bahadur as his chici adviser. Bolgari, the capital city of the Bulgars, fell before the force under Sabutai, while Batu pushed on over the Voiga. With irresistible vigour and astonishing speed the Mongols made their way through the forests of Penza and Tambov, and appeared before the "beautiful city" of Ryazan. For five days they discharged a ceaseless storm of shot from their balistas, and, having made a breach in the defences, carried the city by assault on the 21st of December 1237. "The prince, with his mother, wife, sons, the boyars and the inhabitants, without regard to age or sex, were slaughtered with the savage cruelty of Mongol revenge; some were impaled, some shot at with arrows for sport, others were flayed or had nails or splinters of wood driven under their naifis. Priests were roasted alive, and nuns and maidens ravished in the churches before their relatives. 'No eye remained open to weep for the dead.' "Moscow, at this time a place of little importance, next fell into the hands of the invaders, who then advanced against Vladimir. After having held out for several days against the Mongol attacks, the city at length succumbed, and the horrors of Ryazan were repealed. If possible, a more dire fate overtook the inhabitants of Kozelsk, near Kaluga, where, in revenge for a partial defeat infficted on a Mongol force, the followers of Batu held so terrible a "carnival of death" that the city was renamed by fts captors Mobelig, "the city of woe." With the tide of victory thus gtrong in
their favour the Mongobs advanced against Riev, "the mother of cities," and carried it by assault. The inevitable massacre followed, and the dity was razed to the ground.

Victorious and always advancing, the Mongots, having desolated this portion of Russia, moved on in two divisions, ons under Batu into Hungary, and the orher under Baidar and Kaidu into Poland. Without a check, Batu marched to tho neighbourbood of Pest, where the wholo force of the kingdom was arrayed to resist him. The Hungarian army was posted on the wide heath of Mohi, which is bounded by "the vino-clad hills of Tokay," the mountrins of Lomnitz, and the woods of Diosgyor. To an army, thus hemmed in on all sides defieat theant rum, and Batu instantly recognizod the dangerous position to which his enemies had placed themselves. To and to bis chances of success be determined to deliver his attack by night, and whllo the carolens Hungarians were sleeping bo launched his battations into their midst. Panic-stricken and helpless, they fled \ln all directions, followed by their merellese foes. Two archbishops, three bishops, and many of the nobility' were among the slain, and the roach for two days' journey from the field of bettle were etrewn with corptess. The king, Betla IV., was saved by the fleetness of his horse, though closely pursued By a body of Mongols, who followed at his heels as tar as tho coast of the Adriatic, barning and destroying everything in their way. Meanwhile Batu captured Pest, and on Christmas Day 1241, having crossed the Danuhe on the ice; took Esaztergom by ascauit. While Batu had been thus triumphing, the forse under Baidar and Kaidu had cartied fire and sword into Poland. While laying waste the country they recolved the announcement of the deach of Ogdai, and at the same time a summons for Batix to return eastwards inta Mongolia.
While his lieutenants had been thus carrying his arms in alt directions, Ogdai had been giving himeelf up to ignoble case and Hloentiousness. Like meny Mongols; ho was mach given to drink, and it was to a disease produced by thls cause that he finally succumbed on the rith of December 1241. He was succeeded by his son Kuyuk, who relgned only seven years. Lltue of his character is known, but it is noticenble that his two ministers to whom he left the entire conduct of affairs worte Cbristians, as also were his doctors, and that a Christian chapel stood before his tent. This leantag towards Christizalty, however, brought no peaceful tendencies with it. On the death of Kuyuk dissensiona which had been for a long time smouldering between the houses of Ogdaj and Jagatai broke out into open war, and after the short and disputed reigns of Kaidu and Chapai, grandsons of Ogdal, the fordship passed away for ever from the house of Ogdai. It did not go, however, to the housc of Jagatai, but to that of Tule.
On the ist of July r25t Mangu, the eldest son of Tule, and nephew to Ogdai, was elected khakan. With perfoct impartiality, Mangu allowed the light of bis countenance to fall upon the Christians, Mahommedans and Mang: Buddhists among his subjects although Shamanism was recognized as the state religion. Two years after hla accession his court was visited by Rubruquls (q.0.) and other Christian monks, who were bospitably received. The description given by Rubruquis of the khakan's palace at Karakorum shows how wide was the interval which separated him from the nomad, tent-living life of his forefachers. It was "surrounded by brick walls. . . . Its southern side had three doors. Its central hall was like a church, and consisted of a nave and two aisles, separated by columns. Fiere the court sat on great occasions. In front of the throne was placed a silver tree, having at its base four fions, from whose mouths there spouted into four siliver basins wine, kumiss, bydromel and terasine. At the top of the tree a silver angel sounded a trumpet when the reservoirs that supplied the four fountains wanted replenishing." On his accession complaints reached Mangu that dissensions had hroken out In the province of Persia, and he therefore sent a force under the command of his brother Hulagu to punish the Ismailhes or Assassins Ardagn (q.v.), who were held to be the cause of the disorder. Marching
by Samarkend and Kershi, Halagu oroesed the Oxue and advanced by way of Balkh into the proviace of Kuhistan or Kohistan. The terror of the Mongol name induced Rukneddin Gurshah II. (Rokn al-din), the chief of the Alssessins, to deprecate the wrath of Hulagu by offers of submission, and he was so far successful that he was able to purchase a temporary immunity from massacre by dismantling fifty of the principal fortresses in Kohistan. But when once the country had thus been left at the mercy of the invaders, their belief in the old saying "Stone dead hath no fellow " sharpened their battle-axes, and, sparing neither man, woman, nor child, they exterminated the unhappy people. Rukneddin having been killed, 1256 (see Assasswns), Hulagu marched across the smowy mountains in the dinection of Basdad to attack the last Abbasid caliph and his Soljuk protectors. On arriving before the town he demanded its surrender. This being refused, he laid siege to the walls in the usual destructive Mongol fashion, and at length, finding reaistance hopeless, the caliph was induced to give himself up and wopen the gates to his enemica. On the igth of Fobruary 1258 the Mongols entered the walls end sacked the city (see Carirtaife ad fin). While at Bagdad Hulagu gave his astronomer, Nasir aldin permistion to build an observatory. The town of Maraghs was the site chosen, and, under the superintendence of Nisir al-din and four western Asiatic ascronomers who were associated with him, a handsome observatory was built, and furnished with "armillary spheres and astrolabes, and with a beautifully-ezecuted terrestrial globe showing the five climates." The fall of Bagdad was almost contemporaneous with the end of the Seljuks of Konia as an independent power, though their actual destruction did not take place until 1308 (see Seljurs). One terrible result of the Mongol invasion was a feariul famine, which desolated the provinces of Irak-Arabi, Mesopotamia, Syrie and Ram. But, though the inhebitants starved, the Mongols had strength and energy ieft to continue their onward march into Syria. Aleppo was stormed and sacked, Damascus surrendered (1260) and Hulagm was meditating the capture of Jerusalem with the object of restoring it to the Christians when he received the news of Mangu's death, and, as in duty bound, at once set out on his return to Mongolia, leaving Kitboga (Kitubuka) in command of the Mongol forces in Syria.
Hitherto a vassal of Mangu, as is shown by his striking coins bearing the name of Mangu as well as his own, Hulagu was now recognized as ruler of the conquered provinces. He assumed the title of ilkhan, and, although acknowledging the khakan as supreme lord, was practically independent. The tille of ilkhan was that borne by his successors, who ruled over Persia for about a century (see infra, "The Ilkhans of Persia ").

While Hulagu was prosecuting these conquests in western Asia, Mangu and his next hrother Kublai were pursuing a like course in gouthern China. Southward they even advanced into Tong-king, and westward they carried their arms over the frontier into Tibet. But in one respect there was a vast difforence between the two rampaigns. Under the wise command of Kublai all indiscriminate massacres were forbidden, and probably for the first time in Mongol history the inhabitants and garrisons of captured cities were treated with humanity. While carrying on the war in the province of Szech'uen Mangu was seized with an attack of dysentery, which proved fatal after a few days' illness. His body was carried into Mongolia on the backs of two asses, and, in pursuance of the custom of slaughtering every one encountered on the way, 20,000 persons were, according to Marco Polo, put to the sword.
At the Kuriltai, or assembly of notables, which was held at Shang-tu after the death of Mangu, his brother Kublai (see Kublai Khan) was elected khakan. For thirty-five years he sat oa the Mongol throne, and at his death in 1294, in his seventyninth year, he was succeeded by his son Timur Khan, or, as ho was otherwise called, Oldjeitu or Uldsheitu Khan (Chinese Yuen-cheng). The reign of this sovereign was chiefly remarkable for the healing of the division which had for thirty years separated the families of Ogdai a nd Jagatai from that of the ruling khaken. Uldsheitu was succeeded by his nephew Khaissan, who was
gathered to his fathers th February 1321, aftet a short reign, and at the early ape of thirty-one. His aephew and successor, Buyantu (Chineso Yen-tsung), was a man of considerable cultare, and sabstantially patronised Chinese literatures Among other benofits which he conterred on letters, he rescued the celebrated inscription-bearing "stone drums," which are commonly said to be of the Chow petiod ($2122-255$ B.C.), from the decay and ruin to which thoy were left by the last emperor of the Kin dynasty, and phand them in the gateway of the temple of Confuciue at Peking, where they now stand. After a reign of nine years, Buyantu was succeeded by his son Gegen (Chinese Ying-tsuns), who perished in s32: by the knife of an assassin. YisunTimur (Chineac Tai-ting-ti), who was the next sovereign, devoted himself mainly to the administration of his emptre He divided China, which until that time had been apportioned into twelve provincte, into elghteen provinces, and rearranged the system of state granaries, which had fallen into disorder. His coort was visited by Friar Odoric, who gives a minute description of the palace and fis inhabitants. Speeking of the palace this writer says:-
" Ita basement was raised about two peces from the ground, aind within there were tweoty. four columns of gold, and all the walts were hung with akine of red leather, said to be the finest in the world. In the midst of the palace was a great far more than two paces in heighe, made of a oertain precious stote called mendactas (jade); ite price exceeded the value of four large towns. ... Into this vessel drink was conducted by certain conduits from the court of the palace, and beside it were many golden goblcta, from which those drank who listed. . . When the khakan sat on his throne the queen was on his keft hand, and a step lower two others of his women, while at the bortom of the steps stood the other ladies of tris family. All those who were married wore upon their heads the foot of a man as it were a cubit and a hall in length, and at the top of the foot there were certain cranes' feathers, the whole foot being ect with great pearla, so that if there were in the whole wordd any fine and large pearls they were to be found in the deooration of those ladies.
The following years were years of great natural and political convulsions. Devastating floods swept over Chine, carrying death and ruin to thousands of homes; carthquakes made desolate whole districts; and in more than one part of the empire the banners of revolt were unfurled. Under various leaders the rebels captured a number of cities in the provinces of Kiang-nan and Honan, and took possension of Hang-chow, the capital of the Sung emperors. At the same thme pirates ravaged the coests and swept the imperial vessels off the sea.
In 1355 a Buddhist priest named Chu Yuen-chang became $s o$ impressed with the misery of his countrymen that he threw of his vestments and enrolled himself in the rebel army. His military genius soon raised him to the position of a leader, and with extraordinary success he overcame with his rude levies the trained legions of the Mongol emperar. While unable to defeat or check the rebels in the central provinces, Toghon Timur Khan was also called upon to face a rebellion in Korea. Nor were his arms more fortunate in the north than in the south. An ormy which was sent to suppress the revolt was cut to pieces almost to a man. These events made a dream which the emperor dreamt about this time of easy interpretation. He saw in his slecp " a wild boar with iron tusks nush into the city and wound the people, who were driven hither and thither without finding shelter. Meanwhile the sun and the moon rushed together and perished." "This dream," said the divincr, " is a prophecy that the khakan will lowe his empire." The fulfiment followed closely on the prophecy. By a subterfuge the rebels, after having gained possession of most of the central provinees of the empire, captured Peking. But Toghon Timur by a hasty flight escaped from his enemies, and sought safocy on the shores of the Dolon-nor in Mongolia. For a time the western provinces of China continued to hold out against the rebels, but with the flight of Toghon Timur the Mongoi troope lost heart, and in 1368 the ex-Buddhist priest ascepded the throne as the first sovercign of the Ming or "Bright" dynasty, under the title of Hung:wu.

Thus ended the sovereignty of the bouse of Jenghix Khan in China, nor need we look far to find the cause of is fall, Brave
and bardy the Mongols have always shown themselves to be; but Tho mongote the capacity for consolidating the fruits of victory, expelled for establishing a sectled form of government, and from cuduc. for gaining the allegiance of the conquered peoples, have livariably been wanting in them.

Not content with having recovered China, the emperor Hungwu sent an army of 400,000 men into Mongolia in pursuit of the forces which yet remained to the khakan. Even on their own ground the disheartened Mongols faited in their resistance to the Chinese, and at all points suffered disaster. Meanwhile Toghon Timur, who did not long survive his defeat, was succeeded in the khakanate by Biliktu Khan, who again in 1379 was followed by Ussakhal Khan. During the reign of this last prince the Chinese again invaded Mongolia, and inflicted a crushing defeat on the khan's farces in the neighbourhood of Lake Buyur. Besides the slain, 2994 officers and 77,000 soldiers are said to have been taken prisoners, and an immense booty to have been secured. This defeat was the final ruin of the eastern hranch of the Mongols, who from this time surrendered the supremacy to the western division of the tribe. At first the Keraits or Torgod, as in the early days before Jenghiz Khan rose to power, exercised lordship over the eastern Mongols, but from these before long the supremacy passed to the Oirad, who for filty years treated them as vassals. Notwithstanding their subjection, however, the Keraits still preserved the imperial line, and khakan after khakan assumed the nominal sovereignty of the tribe, while the real power rested with the descendants of Toghon, the Oirad chief, who had originally attached them to his sceptre. Gradually, however, the Mongol tribes broke away from all governing centres, and established scattered communities with as many chiefs over the whole of eastern Mongolia. The discredit of having finally disintegrated the iribe is generally attached to Lingdan Khan (1604-1634), of whom, in reference to his arrogant and brutal character, has been quoted the Mongolian proverb: "A raging khakan disturbs the state, and a raging saghan (elephant) overthrows his kcepers."

At this time the Mongols, though scattered and in isolated bodies, bad recovered somewhat from the shock of the disaster The which they bad suffered at the band of the first Ming Cheshars. sovercign of China. When first driven northwards, they betook themselves to the banks of the Kerulen, from whence they had originally started on their victorious careers bu! gradually, as the Chinese power became weaker among the frontier tribes, they again pushed southwards, and at this time bad estahlished colonies in the Ordus country, within the northern bend of the Yellow River. The Mongol royal family and their immediate surroundinge occupied the Chak bar country to the north-west of the Ordus territory, where they became eventually subjugated by the Manchus on the overthrow of the Ming dynasty in 1644 by the present ruders of China. At timcs the old vigour and strength which had nerved the arm of Jenghia Khan seemed to return to the tribe, and we read of successful expeditions being made by the Ordu Mongols into Tibet, and even of invasions ineo China. The relations with Tibel thus inaugurated brought about a rapid spread of Buddhism among the Mongolians, and in the beginning of the 17th century the honour of having a Dalai Lama born among them was vouchsafed to them. In 1625 Toba, one of the sons of Bushuktu Jinung Khan, went on a pilgrimage to the Dalai Lama, and brought back with him a copy of the Tanjur to be translated into Mongolian, as the Kanjur had already been. But though the prowess of the Ordu Mongols was still ungubdued, their mode of living was as barren and rugaed as the steppes and rocky hills which make up their territory. Their flocks and herds, on which they are entircly dependent for food and clothing, are not numerous, and, like their masters, are neither well fed nor well favoured. But though living in this miserable candition their princes yet keep up a certain amount of barbaric state, and the people have al least the reputation of being honest.

Several of the tribes who had originally migrated with those who finally settled in the Ordu terrilory, Ginding the country to
be so inhospitable, mqued farther eastwerd into richer pestures. Among these were the Tumeds, one of whose chiefs, Altan Khan (Chineso Yen-ta), is famous in later Mongol history for the power he acquired. For many years during the 16 th century he carried on a not altogether unsuccessful war with China, and finally, when pare was made (1.571), the Chinese were fain to create him a prince of the empire and to confer a golden seal of authority upon him. In Tibot his arms were as successful as in China; but, as has often happened in history, the physical conqueroas became the mental subjects of the conquered. Lamaism his always had a great attraction in the eyes of the Mongois, and, through the instrumentality of some Lamaist prisoners whom Altan brought hack in his train, the religion spread at this time rapidly among the Tumeds. Altan himself embraced the faith, and received at his court the Bogda Sodnam Gyamtso Khutuktu, on whom he lavished every token of honour. One immediate effect of the introduction of Buddhism among the Tumeds was to put an end to the sacrifices which were commonly made at the grave of their chieftains. In 1584 Altan died, and was succeeded hy bis son Senge Dugureng Timur. The rich territory occupied hy the Tumeds, together with the increased intercourse with China which spreng up after the wars of Altan began to effect a change in the manner of life of the people: By degrees the pastoral habits of the inhabitants became more agricultural, and at the present day, as in Manchuria, Cbinese immigrants have so stamped their mark on the fields and markets, on the towns and villages, that the country has become to all intents and purposes part of China proper.
Passing now from the inner division of the Mongols who live in the southern and eastern portions of the desert we come to the outer division, which occupies the territory to the

The Kathas. north of the desert. Of these the chicf are the Kalkas, who are divided into the Western and Eastern Kalkas These people form the link of communication between Europe and eastern Asia. Early in the $17^{\text {th }}$ century the Russians sent an embassy to the court of the Golden Khan with the object of persuading the Mongol khan to acknowledge allegiance to the tsar. This he did without much hesitation or inquiry, and he further despatched envoys to Moscow on the return of the Russian embassy. But the allegiance thus lightly acknowledged was lighuly thrown off, and in a quarrel which broke out bet ween the Khirghiz and the Russians the Kalkas took the side of the former. The breach, however, was soon healed over, and we Gud the Golden Khan seading an envoy again to Moscow, asking on behali of his master for presents of jewels, arms, a telascope a clock, and " a monk who had boen to Jerusalem that be might leach the Kalkas how the Cbristians prayed.". Their submission to Russia on the north did not save them, however, from the Chinese attacks on the south. At that time the present Manchp dynasty ruled in China, and to the then reigning sovereign the Kallas gave in their submission. For some time the Chinesf yoke sat lighty on their consciences, but diff. culties having arisen with the Kalmucks, they were ready enough to claim the protection of China, To cement the alliance the emperor K'ang-hi invited all the Kalka chiefs to meet him at the plain of Dolon-nor. This ceremony brought the separate history of the Kalkas to a close, slnce from that time they haye been engulled in the Chinese Empire.
During the Kin dynasty of China the Keraits, as has been pointed out, were for a time supreme in Mongolia, and it was duriag that period that one of the earliest necognized sovercigns, Merghus Buyuruk Khan, sat on the throne, In an ensagement with a neigbbouring Tatar tribe their khan was captured and sent as a propitiatory present to the Kin emperor, who put him 10 death by nailing him on a wooden ass. On the treacherous Tatar chiel the widow determined to avenge herself, and chose the occasion of a feast as a fitting opporiunity. With weil. disguised friendship she sent him a present of ten oxen, a hundred sheep and a hundred sacks of koumiss. These, last, however, instead of being filled with shins of the liquor which Mongolians love so well, contained armed men, who, when the Tatar was feasted, rushed from their concealment and killed him.

A grandson of Merghus was the celebrated Wang Khan, who was sometimes the ally and sometimes the enemy of Jenghiz Khan, and has also been identified as the Prester John of carly western writers. In war he was almost invariably unfortunate, and it was with no great difficulty, therefore, that his brother Ki Wang detached the greater part of the Kerait tribes from The Terece his banner, and founded the Torgod chieflainship, themacives. The unrest peculiar to the dwellers in the Mongolian desent diaturbed the Torgod as much as their neighbours. Their history for several centuries consists of nothing but a succession of wars with the tribes on either side of them, and it was not until 1672, when Ayuka Khan opened relations with the Russians, that the country obtained an even temporarily settied existence. Its position, indeed, at this time made it necessary that Ayuka should ally himself either with the Russians or with his southern neighbours the Turks, though at the same time it was obvious that his allianee with the one would bring him into collision with the other. His northern neighbours, the Cossacks of the Yaik and the Bashkirs, both subject to Russia, had the not uncommon propensity for invading his bordert and harassing his subjects. This gave rise to complaints of the tsar's government and a disposition to open friendly relations with the Krim khan. A rupture with Russia followed, and Ayuka carried his arms as far as Kazan, burning and laying waste the villages and towns on his route and carrying off prisoners and spoils. Satisfied with this vengeance, he advanced no farther, hut made a peace with the Russians, which was confirmed in 1722 at an audience which Peter the Great gave him at Astrakhan. On Ayuka's death shortly after this event, he was suceeeded by his son Cheren Donduk, who received from the Dalai Lama a patent to the throne. But this spiritual support availed him litte against the plots of his nephew Donduk Ombo, who so completely gained the suffrages of the people that Cheren Donduk fled before him to St Petersburg, where he died, leaving his nephew in possession. With consummate impartiality the Russians, when they found that Donduk Ombo had not only seized the throae but was goveming the country with vigout and wisdom, formally invested him with the khanate. At his death he was succeeded by Donduk Taishi, who, we are told, went to Moscow to attend the coronation of the empress Elizabeth, and $t 0$ swear fealty to the Russians. After a short reign he died, and his throne was occupied by his son Ubasha. The position of the Torgod at this time, hemmed in as they were between the Ruscians and Turks, was rapidly becoming unbearable, and the question of migrating "bag and baggage" was very generally mooted. In the war between his two powerful meighbours in 1769 and 1770 , Ubasha gave valuable assistance to the Ruseians. His troops took part in the siege of Ochakov, and gained a decided victory on the river Kalaus. Flushed with these successes, he was in no mood to listen patiently to the taunts of the governor of Astrakhan, who likened him to a "bear fastened to a chain," and he made up his mind to break away once and for all from a tutelage which was as galling as it was oppressive. He determined, therefore, to migrate eastward with his people, and on the sth $^{\text {th }}$ January 1771 he began his march with 70,000 families. In vain the Russians attempted to recall the fugitives, who, in spite of infinite hard ships, after a journey of eight months reached the province of If, where they were welcomed by the Chinese authorities. Food for a year's consumption was supplied to each family; and land, money and cattle were freely distributed. It is believed that 300,000 persons survived to receive the hospltality of the Chinese. By this desperate venture the Torgod escaped, It is true, the oppression of the Russians, but they fell into the hands of other masters, who, if not so exacting, were equally determined to be supreme. The Chinese, flattered by the compliment implied by the transference of allegiance, settled them on lands in the province of III, in the neighbourhood of the Altal mountains, and to the west of the desert of Gobi. But the price they were made to pay for this liberality was absorption in the Chinese empire.

Among the Mongol chiefs who rose to fame during the ruie of the Ming dynasty of China was Toghon, the Kalmuck khan, who, taking advantage of the state of confusion which
reigned among the tribes of Mongolia, established The for himself an empire in north-western Asia. Death carried him off in 1444, and his throne devolved upon his son Ye-seen, who was no degenerate offspring. Being without individual foes in Mongolia he turned his arms against China, which through all history has been the happy huntingground of the northern tribes, and had the unexampled good fortume to take prisoner the Chinese emperor Cheng-t'ung. But victory did not always decide in his favour, and after having suffered reverses at the hands of the Chinese, he deemed it wise to open acgotiations for the restoration of his imperial prisoner. Thus, after a captivity of seven years Chêng-t'ung re-enteted his capital in 1457 , not altogether to the general satisfaction of his subjects. On the death of Yi-sien, shortly after this event, the Kalmucks lost much of their power in eastern Asia, but retained enough in other portions of their tenitory to annoy the Russians by raids within the Russian fronticr, and by constant acts of pillage. In the 17 th century their authority was partly restored by Galdan, a Lama, who succeeded by the usual comblnation of wile and violence to the throne of his brother Senghe. Having been partly educated at Lhasa, he was well versed in Asiatic politics, and, taking advantage of a quarrel between the Black and White Mountaineers of Kashgar he overran Little Bothara, and left a viceroy to rule over the province with his capital at Yarkand. At the same time he opened relations with China, and exchanged presents with the emperor. Having thus secured his powerful southern neighbour, as he thougbt, be turned his arms against the Kalkas, whose chief ground of offence was their attachment to the cause of his brothers. But his restless ambitlon created alarm at Peking, and the emperor K'ang-hi determined to protect the Kalkas against their enemy. The emperor, in person commanding one of the two forces, marched into Mongolia. After enduring incredible hardshipa during the march through the desert of Gobi the imperial army encountered the Kalmucks at Chao-modo. The ensagement was fiercely contested, but ended in the complete victory of the Chinese, who pursued the Kalmucks for ten miles; and completely dispersed their forces. Galdan, with his son, daughter and a few followers, fled westward and escaped; and thus collapsed a power which bad threatencd at one time to overshadow the whole of Central Asia. For a time Galdan still maintained resistance to his powerful enemy, but death overtook him while yet in the field against the Chinese.
But though Galdan was dead the Chinese did not enjoy that complete immunity from war at the hand of his successor that they had looked for. Tsi-wang Arabtan was, however, hut the shadow of his brother and predecessor, and a dippute which arose with the Rossians during his reign weakened his power In other directions. Little Bokhara was said to be rich in gold mines, and therefore became a coveted region in the eycs of the Russians. Under the vigorous administration of Peter the Great an expedition was despatched to force a passage into the desired province. To oppose this invasion the Kalmucks assemhled in force, and alter a protracted and undectded engagement the Russians were glad to agree to retire down the Irtish and to give up all further advance.

To Tai-wang Arabtan succeeded Amursama owing to the support he received from the Chinese emperor K^{\prime} ien-lung, who nominated him khan of the Katmucks and chief of Dzungaria. But, though to the ear these ifties were as high-sounding as those of his predecessors, in reality the power they represented was curtailed by the presence of Chincse commissioners, in whose hands rested the real authority. The galling weight of this state of dependence drove Amursama before long into revolt. He dispersed the Chinese garrisons stationed in Iti (Kulja), killed the generals, and advanced his own forces as far as Pelikun on the river IM. To punish this revolt, K'ien-lung sent a large force into the rebelions province. As on the previous occasion the

Guinese were ederywhere victorious, aod Amursama fied into Stheria, where be died of small-pox after a short illnese.

While China was thus absorbing the Mongols within her reach, Rusaia was gathering within her borders those with whom she camoivto contact. Among these were the Burlats, who occupied a lagge teritoty on both sides of Lake Baikal. As usual in such cases, disputes arose out of disturbances on the tronticr, and were anded by the Buriats and the neighbouring Mongol tribes becoming one and all tributary to Rusaia,

The dominions given by Jenghiz Khan to his son' Jagatai were involved in the quarrels between Kaidu ahd Kuthal for the
khakanate, but at the beginning of the tath century
The Hourse Dua, a great-great-grandeon of Jagatai, made himself undisputed lord of the whole region. Shortiy after Dus's death the Mongols of Eastern Turkestan, descendants of those who had favoured the pretensions of Kaidu to be khakan, separated from their western brethren and chose a son of Dea as their khan. Henceforth the Jagataids were divided into two dynasties, the western reigning at Samarikand, the anstern first at Kashgar and biter at Yarkand and Aksu. Kezan ($1343-1346$) was the last independent khan of the western Jagataids; thereafter power tell into the hands of amits, who, however, continued to place a titular khan on the thronc. In 1360 Toghiuk-Timur, a grandson of Dua and khan of the castern Jagataids (the kingdem called by the Porsian historians MiogoUstan), invaded the territories of the western Jagataids. About this time Tirmur ($q: v$.), otherwise Timurdileng (Tameriane), a young amir at the court of the western Jagataids, allied himself with the leaders who had dethroned Kazan, and after the death of Toghluk-Timur became by right of conquest khan of both sections of the Jagataids. A'fler Timur's death the two sections again divided, while a third kingdom, Ferghana, was held by the Timurids (descendants of Timur). At the beginning of the $\mathbf{1 6 t h}$ centucy all three dynasties were swept away by Mahommed Shatbani, head of the Uzbeg Mongols (see infro, Uzbegs).
The empire of the Ilkhans established by Hulagu lasted sominally until 1353, bat after the death of the Ilkhan Abu Said in r335 the real power was divided between five Thenthasess
OPArsice petty dynasties which had been formed out of the provinces conquered by Hulagu. Meantime islam had made great progress among the Mongols, the third Hthan, Nikudar Ahmed (reigned $128 \mathrm{r}-\mathrm{F} 284$) having embraced that faith. The western frontiers of their empire bordering on the Syrian ponsessions of Egypt tbere was frequent intercourse, sometimes friendly, sometimes warlike, between the Mkhans and the eullars of Egypt (q.0.). Of the petty dynastics which dupplanted that of Hulagu, one known as the Jetairids held Bagrlad until about 1400 . Another dynasty which reigned in Azerbiijan was overthrows in 1355 by the western Kipchaks (ree infra, Golden Honde). Between 1369 and 1400 Timur had made hilmself master of tbe greater part of Persia and established there a second Mongol dynast y, which in turrigave place to that of the Ak Kuyumli (see Perstif).
Of the Mongol tribes who became entirely subject to Russit the principal are those of the Crimea, of Kazan, and Astra-
The
Galsea
Horcte. khan; of these the Tatars of Kazan are the truest representatives of the Golden Horde or western Kipchaks, who originally formed the sebjects of Batu and Orda. Batu, whose victorious campaign in Rusala has already been sketched, wat finally awanded as his fief the vast steppes which stretch from the Carpathian Hoanstains to Lake Balkash. He fixed his headquarters on the Volga, and there act up his Golden Tent from which the borde acquired the name of the Golden Horde. In 1255 Batu died and was succeeded by hls hrother Bercke Khan. During the reign of this sovereign the exactions which were demanded from the Russian Christians by the Mongols aroused the Christian world against the barbarian conquerors, and at the command of Pope Alexander IV. a gencral crusade was preached against them. But though the rage of the Christians was great, they lacked that united energy which might have availed them against their enemies; and, while they were yet breaching out denunciations,
a Tacar host, led by Nogai mod Tulabagha, appeared in Poland. After a rapid and triumphant march the tiveaders took and degt troyed Cracow, and from thence actvaneed as far as Bythom (Beuthen) in Oppeln, from which point they eventually retired, carrying with them a crowd of Christian slaves. From this time the Mongols became for a season an iniportant factor in European politics. They corresponded and traxted with the European sovereigns, and intermarried with royal families. Hulagu married a daughter of Michael Palaeologus; Toktu Khen tdok as this wife Maria, the daughter of Andronicus II.; and to Nogai Michael betrothed his daughter Irene. Toktu, the second khan in succession to Bereke, is the first Mongot'ruler whom we hear of as having struck coins. Those 'lssued during his reign bear the natnt marks of Sarai, New Sarai, Bulgar, Ukek, Khwariam, Krim, Julad and Madjarui, and vary in date from 129 to 1515.

The adoption of Islam by the tulers of the Golden Horde had as one reault the drawing closer of the rclations of the Mongols with Conatantinople and Egypt. Embassies passed between the three courta, and so important was the alliance with the Mongels deemed by the sultan NEşir, ruler of Egypt, that hesent to demand in marriage a princess of the house of Jenghiz Khan. At first his request was refused by the proud Mongois, but the present of a million gold dinars, besides a number of horses and suits of ermour, changed the refusal into an acquiescence, and in October 1319 the princess landed at Alcuandria in regal state. Her reception at Cairo was accompanied with feasting and rejoicing, and the mombers of her escort were sent back laden with presents. With that roliglows tolertion common to his race, Uzbeg Khan, having married one princess to Nasir, gave another In marriage to George the prince of Moscow, whose cause he espoused in 2 quarrel existing between that prince and his uncle, the grand-prince Michael. Assuming the attitude of a judge ia the dispute, Uzbeg Khan suminonet Michael to appear'before him, and, having given hls decision against him, ordered his execution. The ecentence was carried out with aggravated cruolty in sight of his nephew and accuselt. From this time Uzbeg's sympathies turned towards Christianity. He protected the Russian churches within hls frontiers, and pert tis gead to hla new religious views by marrying a daughter of the Greek emperor, Andronicus III. He died in 1340, after a relgo of twenty-eight years. His coins were strucke at Sarad, Khwarian, Mokshl, Bulgar, Azak and Krim, and ars-dated from r313 to 1340 ; His son and successor, Tinibeg Khan, after a reign of oniy a few months, was murdered by his brother Janibeg Khar, who usurped his throne, and, accerding to the historian Ion Haldar, proved himsclf to be "Just, God-leaving, and the patron of tbe meritorious" Theso excellent qualities did not, however, prevent his making a rald into PPoland,-which was-oonducted in the usual Mongol manner, nor did theysave his countrymen from being decimated by the black plagie. The throne. Janibeg hed seized by violenoe was, in 1357, snatohed from him by violence. As he lay il on he return from a'sucecssfut expedinion against Persia he was mundered by his son Berdibeg, who in his lurn was, after a short reign, murdered by hits son Kuipa. With the death of Berdibeg the fortunet of the Golden Horde began rapidly to deciline. As the Uzbeg prowerb eays, "Tha hump of the camel was cut off in the peroon of Berdibeg."

But while the power of the Golden Howe was dvindlling away, the White Horde or Eastetn Klpchak, which was the inherikance of the elder branch of the family of Jufi, remainod: prooperous and full of vitality. The desoendants $\boldsymbol{T h y}$ whum of Orda, Batu'y older brother, being far removed Hondo, er from the dangerous infuences of European courts, Ekpochent. maintained much of the dimplicity and vigour of their nomad ancestors, and the throne deacended from father to son witb undiminished autharity until the reign of Urus Khen (1360), when complications arose witich changed the fottunes of the tribe. Like many other opponethes of the Mongol rulers, Khan Tuli Khoja paid with his life for his tesuerity in opposing the political schemes of his conpexion Urus Khan. Toktamish, the son of the murdered man, flod at the news of his
father's death and sought refuge at the court of Timur, who received him with honour and at once agreed to espouse his cause. With this intention be despatched a force against Urus Khan, and gained some advantage sver him, but, while fitting out another army to make a fresh aituck, news reached him of the death of Urus. Only at Sighnak are coins known to have been struck during the reign of Urus, and these bear date from 1372 to 1375 .

He was followed on the throne by his two sons, Tuktakia and Timur Malik, each in turn; the first reigned but for a few weeks, Tho Retea and the second was killed in a battle against TokTho Retera tamish, the son of his father's enemy. Toktamish now (1378) seized the throne, not only of Eastern Kipchak but also of the Golden Horde, over which his arms had at the same time proved victorious. He reigned as Nasir ed-din Jetal ed Mahmud Ghujas Toktamish. His demands for tribute from the Rusian princes met with evasions from men who had grown accustomed to the diminisked power of the later rulera of the Golden Horde, and Toktamish therefore st once marched an army into Russia. Having captured Serpukhov, be advasced on Moscow. On the 23 rd of August 1382 his troops appeared before the doomed city. For some day the inhabitants bravely withstood the constant attacks on the walls, but failed in their resistance to the stratagems which were so common a phase in Mongolian warfare. With astonishing credulity they opened the gates to the Mongols, who declared chemselves the enemies of the grand-prince alone, and not of the people. The usual result followed. The Russian

Secked

 general, who wes invited to Toktamish's tent, was there slain and at the same time the signal was given for a general slaughter. Without discriminating age ox sex, the Mongol troops butchered the wretched inhabitants without mercy, and, having made the streets desolate and the houses tenantless, thoy first plandered the city and then gave it over to the flames. The same pitiless fate overtook Vladimir, Zvenigorod, Yuriev, Mozhaisk and Dimitrov. With better fortune, the inhabitants of Peresiavl and Kolomna escaped with their lives from the troops of Toktamish, but at the expense of their cities, which were burned to the ground. Satisfied with his conquests, the khan returned homewards, traversing and plundering the principality of Ryazan on his way. Flushed with success, Toktamish demanded from his patron Timur the restoration of Khwarizm, which had fallen into the hands of the latter at a period when disorder reigned in the Golden Horde. Such a requeat was not likely to be well received hy Timur, and, in answer to bis positive refusal to yield the city, Toktamish marched an army of 90,000 men against Tabris. After a siege of eight days the city wastaken by assault and ruthlessly ravaged. In the meantime Timur was collecting forces to punish his rebollious protegt. When his plans were fully matured, he advanced upon Old Urgenj and captured it. More merciful than Toktamish, he transported the ighabitanls to Samarkand,
Whars wids 7harer

 but in order to mark his anger againat the rebellious 7 mone, on tho site where it had stood. On the banks of the Oxus he encountered his enemy, and after a bloody battle completely routed the Kipchaks, who fled in confusion, A lull followed this victory, but in 1390 Timur again took the field. To each-man was given "a bow, with thirty arrows, a qulver, and a buckler. The army wes mounted, and a spare horse was supplied to every two men, while a tent was furnished for every ten, and with chis were two spades, a pickaxe, a sickle, a saw, an ane, an awl, a hundred noedles, 81 th of cord, an ox's hide, and a strong pan." Thua equipped the army set forth on its march. Aiter a considerable delay owing to an illness which overtook Timur his troops arrived at Kara Saman. Here envoys arrived from Toktamish bearing presents and a message asking pardon for his past conduat; but Timur was inezorable, and, though he treated the messengers with consideration, be paid no attention to their prayer. In face of innumerable difficulties, as well as of cold, bunger, and weariness, Timur marched forward month aiter month through the Kipchak country in pursuitof Toktamish. At last, on the rech of Jtine, he overtook hitb at Kandurcha, in the country of the Bulgars, and at once focoert him to an engagement. For three days the battle lasted, and, after inclining now 00 this side and now eo that, victory finelly decided in favour of Timur. Tha Kipchaks were completely routed and fled in all direcciont, whilo it is said as many as 100,000 corpses testifiod to the severity of the fighting.
Toktamish, thoush defeated, was not subdued, and in 1398 Timur found it necessary agaln to undortake a campaign ageinat him. This time the armict met upon the Terck, and after a fiercely-contested batule the Kipehaks agaib fled in confusion. Timur, threatened by the advaacing autumn, gave up further pursuit, and retired witb a vast beoty of gold ingots, silver bars, pieces of Antioch linen and of the embroidered cloth of Russia, \&ec. On his homeward march southwards he arrived before Asal, which was then the entrepot where the merchants of the east and wesc exchanged their wares. In vain the natives, with the Esyptian, Venetian, Gemoenc, Catalan and Basque inhabitants, bcsought him to eparc the city. His answer was a command to the Moslens to seperate thamselves from the rest of the people, whom he put to the aword, and then gave the city over to the flames. Gircamin and Georgia next felt his iron heel, and the fastnesses of the central Caucasus were. one and all destroyed. Aiter these muccesses Timur gave himself up for a time to foasting and rejoicing, accompanied by every manifestation of Oriental lusury. "His tent of audience was hung with silk, its poles were golden, or probably cavered with golden plates, the nails being.silver; his throne was of gold, enriched with precinme tonss; the floor was sprinkled with rose water." But him vengeames was not satisfed, and, having refreshed his troops by, this halt, he marched northwards against Astrakhan, which be utterly destroyed. The inhahitants were driven out into the country ta perish with the cold, while the commander of the city. was killed by being forced benealb the ice of the Volga. Sarai next shared the same fate, and, Timurr, having thus crushed for the second time the empire of Toktamish, get out on his retum home by way of Derbeat and Acérbäijiln.

The power in the hands of the successors of Toktamish never revived after the last campaign of Timur. They were constantly engaged in wers with the Russians and the Krip Tatars, with whom the Russiaps had allied themselves, and by degrees their empire docayed, until, on the seizure and death of Ahmed Khan at the begining of the 10 th century, the domination of the Golden Horde.came to an end.
The fate which thus overtook the Colden Horde was destined to be thared by all the western branches of the great. Mongol family. The fhans of Kazan and Kasimov had alreedy in 1552 succumbed to the growing power of Russia, and the Krim Tatars were next, to fall under the same yoke. In the 15 th century, when the Krim Talars firgt appear as an independent power, they attempted to strengthen their position, by allying themselves with the Ruesians to whom they looked for belp against the attaoks of the Golden Horde. But while they were in this state of dependence another power erose in eastern Asia which modified the political events of that region. In 1453 Constantinople was taken by the Omanli Turks, who, having quarrelled with the Genoese merchants who monopolized the trade on the Black Sea, sent an expedition into the Crimea to punish the presumptuous traders. The power which had captured Constantinople was not likely to be held in check by any forces at the disponal of the Genoese, and without any serious opposition Kafta, Sudak, Balaklava and Inkerman fell before the troopa of the sultan Mahommed. It was plain that, situated as the Crimes was between the two great powers of Russia and Turkey, it must of necessity (all under the direction of one of them. Which it should be was decided hy the invasion of the Turks, who restored Mengli Girai, the deposed khan, to the throne; and virtually converted the khanate into a dependency of Constantinople. But though under the tutelage of Turkey, Mengli Girai, whose leading.policy secms to haye beed
the deake to etrengethen himsolf agalist the khans of the Golden Horde, formed a close alliance with the grand-prince Ivan of Russia. One result of this friendship was that the Moigols were enabled, and encouraged, to indulge their predatory habits at the expense of the enemies of Russia, and in this way both Lithuanie and Poland suffered terribly from their incursions. It was destined, however, that in their turn the Russians should not escape from the marauding tendencies of their allies, for, on pretert of a quarrel with reference to the succescion to the Kazan throne, Mahommed Giral Khan in 1521 marched an army northwards until, after having devastated the country, massacred the people, and desecrated the churches on his route, he artived at the heights of Vorobiev overbooking Moscow. The terior of the unfortunate inhabitants at the sight once again of the dreaded Mongols was extreme; but the horrors which had accompanied similar past visftations were happily averted by a treaty, by which the grand prince Basid undertook to pay a perpetual tribute to the Krim khans. This, however, proved but a truce. It was impossible that an aggressive state like Russia should live in friendship with a marauding power like that of the Krim Tatars. The primary cause of contention was the khanate of Kazan, which was recovered by the Mongols, and lost again to Russia with that of Astrakhan in 1555 . The sultan, however, dedined to accept this condition of things as final, and instigated Dovlet Girai, the Krim khan, to attempt their recovery. With this object the latter marched an army northwards, where, finding the road to Moscow unprotected, he pushed on in the direction of that in-starred city. On arriving before its walls he found a large Russian force occupying the suburbs. With these, however, he was saved from an encounter, for just as his foremost men approached the town a fire broke out, which, in consequence of the high wind blowing at the time, spread with frightful rapidity, and in the space of six hours destroyed all the churches, palacen and houses, with the exception of the Kremlin, within a compass of 30 miles. Thousands of the inhabitaints perished in the flames. "The river and ditches about Moscow," says Horsey, "ware stopped and filled with the multitudes of people, laden with gbld, silver, jewels, chains, ear-rings and treasures. So many thousands were there burned and drowned that the river could not be cleaned for twelve monchs afterwards." Satisfied with the destruction be had indirectly caused, and unwilling to attack the Kremlin, the khan withdrew to the Crimea, ravaging the country as be went. Another invasion of Russia, a few years later (1572), was not so fortunate for the Mongols, who suffered a severe deleat near Mofodi, 30 versts from Moscow. A campaign against Persia made a diversion in the wars which were constantly waged between the Krim kban and the Russians, Cossacks and Poles. So hardly were these last pressed by their pertinacious anemics in 2649 that they bound themselves by treaty to pey an annum subsidy to the khan. But the fortunca of war were not always on the side of the Tatars, and with the advent of Peter the Great to the Russian throne the power of the Krim Mangols began to decline. In 1696 the tsar, supported by a large Cossack force under Mazeppa, took the field against Selim Girai Khan, and gained such successes that the latter was compelled to cede Azov to him. By a turn of the wheel of fortune the khan had the satisfaction in 1714 of having it restored to him by treaty; but this was the last real success that attended the Tatar arms. In 1735 the Russians in their turn invaded the Crimea, captured the celehrated lines of Perekop, and ravaged Bakhchi-sarai, the capital. The inevitable fate which was henging over the Krim Tatars was now being rapidly accomplished. In 1783 the Krim, together with the eastern portion of the land of the Nognis, became absorbed into the Russian province of Taurida.

It will now only be necessary to refer briefly to the Uzbega, who, on the destruction of the Golden Horde, assumed an

7n

ethegr. important position on the east of the Caspian Sea. The founder of their greatness was the khan Abulkhair, who reigned in the 1 gth century, and who, iike apother Jenghiz Khan, consolidated aporer out of a number
of small clans, and added lustre to ft by his successful wass Shaibani Khan, his grandson, proved himself a worthy succeseor, and by him Baber (g.v.), the Timurid khan of Ferghana, who afterwards founded the Mogul Empire in India, was driven from his ancestral dominions. In 1500 he inflicted a severe defeat on Baber's forces, and captured Samarkand, Herat and Kandahar. By these and other conquests be became poseessed of all the country between the Oxus and the Jaxartes, of Ferghana, Khwarizm and Hissar, as well as of the territory of Tashkent from Kashgar to the frontiers of China. In the following year, by a dashing exploit, Baber recovered Samarkand, but only to lose it again a few months hater. During several succeeding years Shaibani's arms proved victorious in many fields of battle, and but for an indiscreet outrage on the territories of the shah of Persia he might have left behind him a powerful empirc. The anger, however, of Shah Ismail roused against htm a force before which he was destined to fall. The two armies met in the neighbourhood of Merv, where, after a desperate encounter, the Uzbegs were completely defeated. Shaibani, with a few followers, sought refuge in a cattle-pound. But finding no exit on the farther side, the refugees tried to leap their horses over the wall. In this attempt Shaibani was killed (1510). When his body was recognized by his exultant enemies they cut off the head and presented it to the shah, who caused the skull to be mounted in goid and to be converted into a drinking-cup. After this defeat the Uzbegs withdrew across the Oxus and abandoned Khorisan. Farther east the news aroused Baber to renewed activity, and before long he reoccupied Samarkand and the province "Beyond the River," which had been dominated by the Uzbegs for nine years. But though the Uzbegs were defeated they were by no means crushed, and ere long we find their khans reigning, now at Samarkand, and now at Bokhara. As time advanced and European powers began to encroach more and more into Asia, the history of the khanates ceases to be confined to the internecine struggles of rival khans. Even Bokhara was not beyond the reach of Russian ambition and English diplomacy. Sevaral European envoys found their way thither during the first half of the sgth century, and the murder of Stoddart and Conolly in 1842 forms a melancholy episode in British relations with that fanetical capital. With the absorption of the khanate of Bokhara and the capture of Khiva by the Russians the individual history of the Mongol tríbes in Central Asia comes to an end, and their hame has left its imprint onily on the dreary stretch of Chineseowned country from Manchuria to the Altai Mountains, and to the equally unattractive country in the nelghbourhood of the Roko-n 5 r.
Bibliogra PiAY--Sit H. Howorth, Hisfory of the Moneols (1876, 1878) ; D'Ohsson, Histoire des Mongols (1834); Cahun, Introduction
 Strakosch-Groesmana, Der Einfall der Mompolex is Milel-Europa; (for the general reader) Jeremiah Curtion the Mongols, a hisfory (1908).
(R. K. D.)

Languace. - The Mongol tongue is one of the members of the great stock which recent scholars designate as Ural-Altaic, which also includes the Finno-Ugric, Turkish, Manchu and Samoyede. The members of this group are not so closely related to one another as thoee of the Indo-European stock; but they are all bound together by the common principle of agplutinative formation. especially the so-called harmony of vowels, by their grammatical structure, and also by certain common cements in the stock of roots which run through them all. or through particular more closely-connected families within the group. ${ }^{1}$ The fatherland proper of the Mongols is Mongolia (q.v.). The sum tocal of the Mongol popilation uader Chinese governmeat in calculated at between two and three millions.
Generally the whole Mongol tribe may be divided into three branches: East Mongols, West Mongolsand Buriats.

1. The East Mongols are divided into the Kalkas in the borders just mentioned, the Shara Mongols south of the Gobi along the Great Wall northeastward to Manchuris, and lastly the Shiraigol or Sharaigol in Tangut and in northern Tibet.

[^48]2. On the signification and employment of the different names of the West Mongols (Kalmucks, Oelod, Oirad or Dorboon Oirad = the four Oirad, Mongol Oirad), and also as regards the subdivision of the tribes, there is much uncertainty. The name Kalmuck, so benerally employed among us, is in lact only used by the Volga Kalmucks (Khalimak), but cuen with them the na me is not common, and almost a byname. It is of foreign origin, and most likely a Tataric word which has yet to be explained. Ohrad means the " near ones," the "related." The usual explanation given is that the single tribes consider themselves as being related to each other -hence Mongol Oirad. "the Mongol related tribe." This is the favourite name among Kalmucks Dörbōn Oirad, or the four relased tribes, comprise (1) Dzungars, (2) Torgod, (3) Koshod, (4) Derbet. The signification of the name Oeldd, in the East Mongolian Oegeled, now the most widely-spread among the tribes living in China, is tikewise very doubtful. Some assert that "Oelōd " is nothing but the Chinese transcription of Oirad, as the ordinary Chincse language does not possess the sound r. We have, however, to bear in mind that we have a Mongolian root ogelek", with the sense " to be inimical," "to bear hasred, ill-will, \&c. The main population of the Kalmucks live, or rather drag out, their existence alter the usual fashion of nomad tribes in Dzungaria, in the eastern part of the Tian-shan, on the south border of the Cobi, on Kokō-nōr, and in the province of Kan-suh. All these are under the Chinese government. In consequence, however, of the extension of the Russian empire in Tian-shan and Alatau, many hordes have come under the Russian sway. According to an approximate account we may reckon in the territory Semiryershensk (Kulja) and Semipalatinsk 34,000 Kalmucks, while in the southern part of the government Tomsk, on the Altai, the Kalmuck population amounted formerly to 19,000. Besides these we find a section of Kalmuck population far in the west, on the banks of the Volga (near Astrakhan). From their original seats in Dzungaria they turned in their migrations to the north, crossed the steppe of the Kirghiz, and thus gradually reached the Emba and the Or. Between these two rivers and the Ural the Torgod settled in 1616; thence they crossed the Voiga in 1650 , and took possession of the now so-called steppe of the Kalmucks, being followed in 1673 by the Derbet and in 1675 by the Koshod. In 1771 a considerable number returned to the Chinese emplre. There is still a not unimportant population in the so-called steppe of the Kalmucks, which extends between the Caspian and the Volga in the east and the Don in the west, and from the town of Sarepta in the north to the Kuma and the Manych in the south. According to modern statistical accounts, this population amounts to 76,000 . To these we have to add 25,000 more on the borders of the Cossacks of the Don, and lastly 8000 in the bordering provinces of Orenburg and Saratov.
3. In the southern part of the Russian province of Irkutsk, in a wide circle round Lake Baikal, lies the heirdom proper of the Buriats, which they also call the "Holy Sea": the country east of the lake is commonly called Transbiakalia. Their country practically extends from the Cbinese frontier on the south within dmost parallel lines to the north, to the town Kirensk on the Lena, and from the Onon in the east to the Oka, a tributary of the Angara, in the west, and still farther west towards Nizhni-Udinsk. They are most numerous beyond the Baikal Lake, in the valleys along the Uda, the Onon and the Selenga, and in Nertchinsk. These Transbaikalian Buriats came to these parts only towards the end of the 17 th century from the Katkas. While Mongols and Kalmucks generally continue to live after the usual fashion of nomads, we find here agricultural pursuits, most likely, however, due mainly to Russian inftuence. Christianity is also making its way. The sum votal of the Buriats amounts to about 250,000.

Another tribe separated from the rest of the Mongols is the socalled Hazara (the thousand), and the four Aimak (i.e. tribes), who sander about as herdsmen in Alghanistan, between Herat and Kabul. In external characteristics they are Mongols, and in all probability they are the remains of a tribe from the time of the Mongol dynasty. Their language, which shows, of coursc, Persian influence, is strictly Mongolian, more particularly West Mongolian or Kalmuck, as has been proved by H. C. von der Gabelentz,'
Agrecably with this threcfold division of the Mongols we have also a threefold division of their respective languages: (1) East Mongolian or Mongolian proper. (2) West Mongolian or Kalmuck. (3) Buriatic.

The dialects just mentioned are found to be in close relation to each other when we examine thelr roots. inflections and grammatical structure. The difference between thern is indeed so slight that whoever understands one of them understands all. Phonetically a characteristic of them all is the "harmony of vowels." which are divided into two chief classes: the hard a. $0, u$ and the soft $\varepsilon, \delta, \dot{\psi}$ between which is in the middle. All vowels of the same word must necessarily belong to the same class, so that the nature of the first or root-vowel determines the nature of the other or inflectionvowels: now and then a son of retrogressive harmony takes place, so that a latct vowel determines the nature of the former.
"See his essay. "Ucber die Sprache der. Hasar as und Aimaks," in

The consonants preceding the vowels are equally under their induence.

The Mongolian characters, which in a slightly altered form are also in use among the Manchus, are writter perpendicularly from above downward, and the lines follow from left to right, the alphabet having signs for seven vowels-a, $e, i, 0, w, \delta, z$, and diphthongo derived from them-aO, ai, ei, ii, oi, mi, oi mi, and tor seventcen con-
 $s 5, s h, w$. All these are modified in shape according to their position. in the beginning, middle, or end of a word, and also by certain orthographic rules. In Mongolian and Manchu writing the syllable (i.e. the consonant together with the vowel) is considered as a unit. in other words a syllabarium rather than an alphabet. The existing characters are lineal descendants of the original Uighurian forms, which were themselves derived from the Syriac, having been brought to the Uighurs by Nestorian missionarics. An Indian and Tibetan influence may also be noticed, while the arrangement of the characters in perpendicular lines is common to the Chinese. The writing was brought into its present shape by the learned Lamas Saskya Pandita. Phags-pa Lama, and Tshoitshi Odser in the i3th century, but is exceedingly imperfect. To express the frequently-accurring letters borrowed from Sanskrit and Tibetan, which are wanting in the Mongol alphabet, a special alphabet, called Calik, is employed. Every one who has tried to read Mongolian knows how many
difficultics have to be overcome, arising from the ambiguity of difficulties have to be overcome, arising from the ambiguity of
certain letters, or from the fact that the same sign is to be pronounced differently, according to its position in the word. Thus, there are no means for distinguishing the 0 and u, δ and 2 , the consonants g and $k_{i} t$ and d, y and $s(d s)$. A and $c_{,} o(u)$ and $\delta(Q), a(c)$ and π, s and $k h, t$ (d) and on, are liable to be mistaken for each other. Other changes will be noticed and avoided by advanced students. It is a great defect that such common words as ado (a fury) and ende (here), ende (here) and node (me), aldon (fathom) and allan (gold). ordu (court-residence) and urtu (long), onokhu (to scize) and unukhs (to ride), tere (this) and dere (pillow), gebe (said) and kebe (made), gem (evil) and kem (measure), ger-(house) and ker (how), naran (sun) and nere (name), yagon (what) and dsagon (hundred), should be written exactly alike. This list might be largely increased. These defects apply equally to the Mongolian and Buriatic alphabets.
In 1648 the Saya Pandita composed a new alphabet (the Kalmuck), in which these ambiguities are avoided, though the graphic differences between the two alphabets are only slight. The kalmuck alphabet a voids the angular and clumsy shapes of the Mongolian, and has, on the contrary, a rounded and pleasing shape. The Kalmuck alphabet has also this great advantage-that every sound has its distinct graphic character; a mistake between two characters can scarcely occur. The Kalmuck words once mastered, they can be easily recognized in their Mongolian shape. The dialectical differences are also very slight.
The Kalmuck, therefore, is the key of the Mongolian, and should form the groundwork of Mongolian studies. The Kalmuck and East Mongolian dialects do not differ much, at least in the spoken language; but the Kalmucks write according to their pronusciation, while the Mongols do not. For example, sonn (dsonn), "hundred," is pronounced alike by the Kalmucks and the East Mongolians; but according to Mongolian orthography the word appears in the form dsagon. The dialectic difference between the two dialects very Irequently lies ouly in a different pronunciation of some letecrs Thus East Mongolian ds is in Kalmuck soft s, \&c. The chief differ. ence between the two dialects lies in the fact that in Kalmuck the soft guttural g between two vowels is omitted. While. through the joining of the two vowels, a long vowel is produced. In the pronunciation of common East Mongolian the 8 is likewise omitted, but it is written, while in Kalmuck, as just now mentioned, the guttural can only be traced through the lengthening of the syllable, Thus we find: Mongol khagan, "prince, "Kalmuck khän: M. dagaz, "volce, sound." K, dōn, dūn, M. dologan, "seven,"K. dolōn; M. agole, "mountain"" K. ola, sila; M. nagor, "lake", K. nor, nul: M.
ulagan. "red," K. ulan; M. yagon, "what." K. yon (ywn): M. dabagan, "mountain ridge" K . daban; M . ssanagan, "thought." K. ssandn; M. baragon, "on the right," K. barön, barinn: shibagon, "bird," K, showōn: M. rhlagon, "stone," K. chiling
(chulūn); M. jirgogon, six." K, surgän; M. degcre," high, above." K. dere: M. ugukhu, to drink," K. ukhm: M. Logodshs, "history, K. tödshi, tudshi: M. equiden. "door," K. סden; M. dsegü, "" leit,"

 kegir. "corpse." K. kū: M. bharigad, "rerumed," K, kharid. \&ez East Mongolian. with which it is in every respece closely allied. In ine pronunciation of some letters the transition of East Mongolianf tso tse into Buriatie ss is notieeable; for instance: Mong. tsetsek, "flower," Buriatic sressek; M. Bsak, "time"" B. ssak; M. isagani times pronounced like (the German) ch. East M. ssain. "good," BF
${ }^{2}$ Ci. H. C. von der Gabelentz, in the Zerischrift f. d. Kunde d. Morgeniondes' (Cabringen, 838), ii. $1-21$. "Versuch ubcr cine alte
chaim, M. ssedkit, "heart," B. chedtik X is the begiasing or middle of a word is always aspirated

The noun is declined by the help of appended parterles, some of which are independent post positions, viz. Cen yim, u, wis: Dat. dur. a. Acc yu, i, Ablat eise. Instrum ber, yer. Assoctarive, luga, drige The dative and accusative have also special forms which have at the same tume a possessuve sense, viz Dat. dogan, degen; Aocus ben, yen. The plural is expressed by affixes (nar, ner, od, 3s. d). or frequently by words of plurality." all," "many." e.f. umin mogdd (man. many =men) The oblique cases have the same endings in singular and plural. Gender is not indicated. The adjective is uninflected both as attribute and as predicate, there is no comparative form. this idea being expressed by the construction or by the use of certain particles. The personal pronouns are bs. 1. «chs, thou, bada, we, ta, ye, their genitives serve as possessives. The demonstratives are ene. tere (this, that). plural ede, tede interrogative ken, who? The relative is lacking, and its place is supplied by circumlocurions. The numerals are. 1, nigen, 2, khoyar. 3. gurban, 4, dorben. 5, tabun; 6, jırgugan: 7, dologan. 8, nasman. 9. yesw; 10, apban, 100 , dsagon, 1000 , minggan. The nrdinaly are formed by appending tugap, aiger. The theme of the verb is seen in the imperative, as bari, grasp. The confugation is rich in forms for tense and mood. but the person and number are with few exceptions unexpressed. The present is formed from the theme by adding mws (barimus), the preterite by bai or luga (baribas. biriluga), the (uture by ssugas or ssu (barissugas, barissu). The preterite has also in the third person the terminations drugus and rsen : the future has in the third person yu, and in the first ya. The conditional ends in bass\% (bormassu), the precative in fugas, ligri, the potential in sa (barimuisa), the imperative plural in kfwn, the gerund in the present in $n, d s u$ (bartn, baredsu) or tala, "while, till" (baritala, "inser capiendurn"), in the preterite it is formed in god (barigad), the present part, has kichs (barikichi). the past pirt. kssan (barsksan); the supine ends in pa, the infinitive in khu (barkhw, or when used substantively barkhtai). There is but one perfectly regular conjugation, and derivative forms, derived from the theine by infixes, are conjuyated on the same scheme. Thus the passive has infixed ta or kda (baritdakhu, to be grasped), the causative gul (barsgulkhu, to cause to grasp), the co-operative or sociative lisa or Ida (barillsakhu, to gresp together).
There are no prepositions, only post-positions. Adverbs are either simple particles (affirmative, negative, interrogative, modnl, \&e.) or are formed by suffixes from other parts of speech. There are very lew conjunctions: the relations of clauses and sentences are mainly indicated by the verbal forms (part., sup., conditional, but manily by the gerund).

The order of words and sentences in construction is pretty much the opposite of that which we follow. In a simple sontence the indication of time and place. whether given by an adverb or a substantive with a post-position, always comes first; then comes the eubject, always preceded by its adjective or genitive, then the object and other cases depending on the verb, last of all the verb itself preceded by any adverbs that belong to it. So in the structure of a period all causal, hypothetical, concessive clauses. which can be conceived as preceding the main predication in point of time, or even as contemporary with it, or as in any way modifying it, must come first; the finite verb appears only at the end of the main predication or apodosis. The periods are lunger that in other languages, a single one may fill several pages.

Authorities.-Crammars and dictionaries may be divided according to the three dialects. For East Mongolian, 1. J. Schmids gave the first grammar (Si Petersburg, 1831), and a Monzolian-Cicrman-Russian dictionary (St Petersburg, 2835). Next Jos, Kovalevski published in Russian a Mongolian grammar (Kasan, 1835), a chrestomathy (2 vols., Kasan, 1836, 1837), a and his great Dictionnaire whongol-russe-frangass (3 vols., Kasan. 1844. 18.46, 1849). W'e may mention R. Yuille. Shart Mongolian Grommop (in Mongolian), xylographed at the mission press near Selenginsk beyond Lake Ba!kal (1838). A. Bobrovnikav's Russian Crammar of the MongolianKalmuch Lawguage (Kasan. 18s9) is also very good. An abringment of Schmidt's work is C. Puini, Elements della prammatica mongolica (Florence, 1878). A. Popov's Mongolian Chreslomalhy appeared in 2 vols. at Kasan (1836). For the Kalmuck we have grammars by Popov (Kasan, 1847). Bobrovnikov, as above, and If A. Zaick (s l. ed a.). autographed at Donaueschingen (1851). Zwick's autographed Kalmuck and German dictionary with a printed German index appeared (s.l. el a.) in 1852:8. Jülg's edition of the tales of Siddhi-kur (Leipzig, 1866) gives a complete glossary to these stories. There are small Russlan and Kalmuck vocabularies by P Smimov (Kasan. 1857) and C. Golstunskyi (St Petersburg, 1860). For the Buriatic we have Castron. Versuch etwer burjdisches Sprocklehe, ed. by Schiefner (1857), and A. Orlov's Russian grammar of the Mongol-8uriatic colloquial languarge (Kasan, 1878).

Liferafure. - A clear distinction must be drawn between the higher and nobler written or book-language and the common or conversational language of every-day life. The difference between the swo is very considerable, and may befairly compared to that bet ween the modern High German book-language and the different dialects

Literary documents are written in this higher otyle. The exceptions are the Gesser-Kham, and the Siddht-ktir and Djangarlad (the last two published by Colstunskyi). The popular or convertational language has been fixed in writing by A. Pozdneev in his Russian work, Specimens of the Poputar Literature of the Mongelian Tribes, pt. i., "Popular Songs" (St Petersburg. 1880), which contains rich material for the study of the popular literature.

The literature consists mostly of translations from the Tibetan, the holy language of Buddhism, which ts still the language of the kearned. The Tibetan Buddhist literature is itself tmaslated from the Sanskrit, hence, now and then, through Mongols and Kalmucks we get acquainted with Indian works the originals of which are not known in Sanskrit. Such is the case, for instance, with the tales of Siddhi-kür. Many books have also been translated from the Chinesc. Most of the wrisings are of a religous, historical, philosophical, medical, astronomical or astrological character Favourite subjects are folk-lore and fairy tales Among the religious books, perhaps the most important is that containing the legends entuled üliger in dalar, "ocean of comparisons" (ed. by 1. Jacob Schmidt under the title, Der Wesse und der Thor, in Tibetan and Cerman (St Petersburg, 1843). To this may be added the boddh mor, or "the holy path." the clian gerel, "gluaming of gold," the mant gambo and yerlunchil yin bolt. "murror of the world." Wbat was known of poetical literature before Pozdneev is scarcely worth mentioning. In some parts of the historical and narrative literature we find, wherever the narrative takes a higher flight, an adnuxture of poecical diction. The poctry appears in a certain parallelism of the phrases, with a return either of the same endings (rhyme) or of the same words (refrain). Frequently we find, besides the rhyme or refrain, alliteration. The essay of H. C. von der Gabelentz in 2 d. Kunde des Morgenlandes, i. 20-37. "Einuges uber mongolische Pocsie," has been superseded by the work of l'ozdneev

Among historical works a high place is due to that composed by the tribal prince, Sanang Setzen, in the middle of the 17 th century (Ceschachise der Ost-Mongolen und thres Fürstenhauses, Mongolian and German, by 1.]. Schmidt, St Petersburg, 1829), and to the Alion Lobichi, i.e. "golden knob "or" precious contents" (text and Russian trans. by the Lama Galsang Gomboyev, St Petersburg, 1858). Of folk-lore and fairy cales, we have the legend of the hero GesserKhan (text ed. by 1. J. Schmidt. St Petersburg. 1836 and German version, 1839: cl. Schott, Ueber die Sage v. Geser-Khon. Berlin. 1851, and 3. Julg in the Trassactions of the Wurzburger Philol. Versam. of 1868 , pp. 58 sq9., Leipzig, 1869): and the tales about Ardsht Bordshi (Russian version by Galsang Comboyev. St Petersburg, 1858; text and Cerman trans. by B. Jiklg, Innsbruck, 1867, 1868). A tavourite book is the tales of Siddfi-kur, based on the Sanskrit Vestla panchavinsafi (Russian trans. by Galsang Comboyev, St Peters burg, 1865, nine of the tales in Nlongolian and German, by B. Julg Innsbruck, 8868). The futler collection of these tales in Kalmuek frrs became known by the German trans. of B. Bergmann in vol, i. of hi: Nomodische Streffercien wnter d. Kalmüken (4 vols, Riga, 1804, 1805): an autographed edition in the vulgar dialect was publiched by C. Golstunskyi (Se Petersburg, 1864); text and Germaa trans, with glossary by B. Julg (Leipzig, 866). A poctic heroic story is the Djangariod, extracts Irom which were given by Bergmann (op. cit., iv 181 sqq.) : a complete Russian version by A. Bobrovnikov (St Petersburg, 1854), a Cerman version by F v Erdmann in $2 . D$ M.G., 1857 (Kalmuck text by Golstunskyi, St Petersburg, 1864), A similar poem is the history of Ubasha Khuntaidshi and his war with the Oirad, Kalmuck text and Russian trans. by G. Gomboyev in his Altan tobichi as above, and text alone autographed by Golstunskyi (St Petersburg, 8864). Some books of religion for the Christian Buriats (transcribed in Russian characters) represent the Buriatic dialect. The Russian and English Bible Societies have given us a translation of the whole Bible. 1 J. Schmidt translated the Gospels and the Acts into Mongolian and Kalmuck for the Russian Bible Society (8 vols., St Petersburg, 1819-1821)-a masterly work. The English musionaries, E. Stallybrass and W Swan, and alterwards R. Viville, translated the whole Old Testament into Mongolian (1836-1840). This work was printed at a mission press erected at great cost for the purpose near Selenginsk, beyond Lake Baikal in Siberia. In 18.6 the New Testament by the same hands appeared at London. Auttorities. - The richest collections of Alongolian and Kalmuck printed books and MSS. are in the Asiatic muscum of the St Petersalso a good collection in the royal library at Dresden. Consult in general, besides the already-cited works of Bergmann and Pozdneev, S. Pallas, Sommiungen kistorischer Narhruchen u. d. mongolisehen V olkerschaften (2 vols., St Petersburg, 1776-1801), 1. I Schmiltt. Forschwngen in Gebiete der dleren Bildungspeschuchue der Volker Mirselasiens, evorz. d. Mongolen und Tibeter (Se Petcrshurg and Leipzig. 1824); B. Julg. "On the Present State of Mongolian Rescarches," Joums. R. As. SoC., xiv. (1882), pp. 42-65.
(B. J.)

MONG PAI (called Mobyė by the Burmese), the most southwesterly of the British Shan States of Burms. It has an approximate area of to00 sq. m., and a population (1901) of 19.351 The general character of the country is hilly, rising westwards in a gentle slope from the chief stream, the Nim Hpllu or Balu.

This is navigable for native boats throughout the year to the point where it sinks underground in Karen-ni. The chief cultivation is rice, with about two acres of dry or hill rice to one of wet bottom. The hill fields are left fallow for ten years after two gears' cultivation. The chief, the Sawhwa Hkun Yon, held charge through the reigns of four Burmese kings; and submitted early in 1887 on the first arrival of British troops. He abdicated in favour of his son in 1800 , and died a few years later.

MONO PAN (the Burmese Moingfon), a state in the eastern division of the southern Shan States, lying approximately between $19^{\circ} 45^{\prime}$ and $20^{\circ} 25^{\prime} \mathrm{N}$. and between 98° and 99° E., with an area of 2299 sq . m., and a population (1901) of $16,029$. The main state lies, except for a few insignificant circles, entirely west of the Salween, but beyond that river are the four subfeudatory states of Mong Tun, Mong Hang, Mong Kyawt and Mong Hta. The only considerable area of flat land is round the capital, which lies in a large and fertile plain, marking roughly the centre of the state. From this plain rise on all sides low hills covered with scrub jungle, sloping up to ranges of about 5000 ft . on nearly every side. Rice is the ooly crop, imigated where possible; clsewhere dry cultivation prevails. The state has valuable teak forests on both sides of the Salween, which cover a-considerable but undetermined area. The general altitude of the valleys is about 2000 ft . The capital is small, and has only about 200 houses. The chief is of Sawbwa rank.

HONGREi (earliest form mengrel, probably from the root meng-, or mong-, to mix, cf. mingle, among), a dog that is the progeny of two different breeds, or one whose breed it is impossible to tell on account of the various crossings. In the case of other animals or plants it is the result of a fertile cross bet ween two varieties of the same species, and so to be distinguished from a " hybrid," the result of a fertile cross betwoen two distiact species (see Hybrmisa).

MONIER-WILLIAMS, SIR MONIER (1819-1899), British orientalist, son of Colonel Monier-Williams, surveyor-general in the Bombay presidency, was born at Bombay on the 12th of November 1819. He matriculated at Oxford from Balliol College in 1837, but left the university on receiving in 1839 a nomination for the East India Company's civil service, and was completing his course of training at Haileybury when tbe entreaties of bis mother, who had lost a son in India, prevailed upon him to relinquish his nomination and return to Oxford. As Balliol was full, be entered University College and, devoting himself to the study of Sanskrit, he gained the Boden scholarship in 1843. After taking his degree he was appointed professor of Sanskrit, Persian and Hindustani at Haileybury, where he remained until the abolition of the college upon the transfer of the government of India from the Company to the Crown. He taught oriental languages at Cheltenham for ten years, and in 1860 was elected Boden profossor of Sanskrit at Oxford after a contest with Professor Max Muller (q.v.), which attracted great public interest and severe criticism, the motive of the nonresident voters, whose suffrages turned the acale, being notoriously not so much to put Monier-Williams in as to keep Max Moller out. Although, however, far inferior to his rival in versatility and Ilterary talent, Monier-Williams was in no way inferior in the special field of Sanskrit, and did bimself and his professorship much honour by a succession of excellent works, among which may especially be named his Sanskrit-English and EnglisbSanskrit dictionarics; his Indion Wisdom (1875), an anthology from Sanskrit literature; and bis translation of Sakumala (1853). In his later years be was especially attracted by the subject of the natlve religions of India, and wrote popular works on Brahmanism, Buddtism and Hinduism. His principal undertaking, however, was the foundation of the Indian Institute at Oxford, which owes its existence entircly to him. He brought the project before the university in May 1875, and in that year and the following, and again in 1883 , visited India to solicit the moral and financial support of the native princes and other leading men. Lord Brassey came to his aid with a donation of 60000 , and in November 1880 the instltute was adopted by the university, but the purchase of a site and the erection of a huilding were left
to the professor. Upwards of $\{30,000$ was eventually collected; the prince of Wales, in memory of his visit to India, laid the foundation stone in May 1883; and the edifice, erected in three instalments, was finally completed in 1896 . Ere this, fidling health had compelled Monier-Williams to withdraw from the active duties of his professorship, which were discharged by the deputy-profeasor, Dr A. Macdonell, who afterwards succeeded him. He continued, nevertbeless, to work upon Sanskrit philology until his deatb at Cannes on the rith of April 1899. He had been knighted in 1886, and was made K.C.I.E. in 1889, when be adopted bis Christian name of Monier as an additional surname.

MONIBI (from Gr. μ boos, alone), the philosophic view of the world which bolds that there is but one form of reality, whether that be matcrial or spiritual. The aim of knowledge is explanation, and the dualism or pluralism which acquiesces in recognizing two or more wholly disparate forms of reality has in 50 far renounced explanation (see Duarrsm). To this extent monism is justified; but it becomes mischievous if it prompts us to ignose important differences in facts as they preaent themselves to our intelligence. All forms of monism from Plotinus downwards tend to ignore personal individuality and volition, and merge all finite existence in the featureless unity of the Aboolute; this, indeed, is what inspires the passion of the protest against monism. Tuming to the historical forms of the theory we may cless Plotinus as a mystical monist: he attains to the One which is the All by an act of mystic union raising him above the phenomenal aphere. Spinoza is a materialistic monist with an inconsistent touch of mysticism and a certain concession, more apparent than real, to the spiritual side of experience. Hegel's is an intellectualist monism, explaining matter, sensation, personal individuality and will as forms of thought. The doctrine of Schopenhaver and von Hartmann is a monism of cosmic will which submerges the individual no less completely than Hegelianism, though in a different manner. Haeckel's monism is mere materialism dignified by a bigher title. Those who maintain that all these forms of synthesis are hasty and superficind stand by the conviction that the right philosophic attitude is to accept provisionally the main distinctions of common sense, above all the distinction of personai and impersonal; but to press forward to the underlying unity so far as experience and reflection justify.

SeeAbsolute:Dualisic Metaphysics;Materialism:Idealisu.
MOMITION, or ADMONITION (Lat. monere, to admonish), in English ecclesiastical law, an order requiring or admonishing the person complained of to do something specified in the monition, or appear and show cause to the contrary, "under pain of the law and penalty thereof." It is the lightest form of ecclesiastical censure, whether to clergymen or laymen, but dicobedience to it. after it bas been duly and regularly served, entalla the peaalities of contempt of court. Monitions of a disciplinary character are either for the purpose of enforcing residence on a bencice, or in connexion with suits to restrain ritual alleged to be undawful.

MONITOR (from Lat monere, to warn, advise), an advisor or counsellor, one who warns another person as to his course of action, also used of things that are more or less personified, as conscience. The word is chiefly applied to senior pupils (also known as "prefects") in some of the great secondary schools in England; in America to senior students in certain colleges to whom special duties are assigned, particularly that of keeping order; and also to pupil teachers in English elementary schools. It is used in a general way of anything that gives warning, and in this sense is applied to a lixard of the family Konitoridae, or Varanidae, found in Africa and Australin, which is supposed to give warning of the approach of crocodiles. The name of monitor was also given to a particular kind of ironciad invented for the American navy hy Captain John Ericsson (q.v.) in 1882, which had a very low freeboand and revolving gun-turrets. The letter of Ericsson to the assistant secretary of the navy, of the 2oth of January 1862 (quoted in the Centwry Dictionary), gives the inventor's reason for the name. "The impregrable and aggressive character of this structure will admonish the leaders of the Southern Rebellion that the batteries on the banks
of their rivena will no longer preacat barriers to the entrance of the Union forces. The ironclad intruder will thus prova aspere monior to thoeo lenders . . . 'Downing Street' will handly viow with indifference this last 'Yankee notion;' this monitor," It is aloo the aame of an ironclad rallway truck used for carrying a hid gun. In America the raised part of the roof of a railway carriaga or omnibus in which the lights or ventilators are placed is known as a monitor roof or top. In mining the word is applied to a jointed nozzle which may be turned in all directions, and in meed in hydraulic.mining.

MONK (or Moncr), GEORGE, ist DUKe of Alapmale ($1608-1669$), second son of Sir Thomas Monk, a gentleman of good familly but in embarrassed circumatences, was born at Potheridge, near Torrington, in Devonshire, on the 6th of December 1608. Having thrashed the under-cherifl of the county in revenge for a wrong done to his father, he had to loave home, and naturally took to the canser of arms. He served as a volunteer in the expedition to Cadir, and the nest year did good service at the Isle of Rhe. In 1629 Monk weat to the Low Countries, then the schood of war, and there he gained a bigh reputation a leader and disciplinarian. In 1638 be threw up his commission in consequence of a quarrel with the civil authoritios of Dordrecht, and carpe to Eagiend. He obtatned the lieutenant-colonelcy of Newport's regiment. During the operations on the Scottish border he showed his skill and coolness in the diapositions by which he saved the English artillery at Newburn, though himself destitute of ammunition. At the outbreak of the Irigh rebollion be was eppointed colonel of Lord Leicester's regiment. All the qualitics for which he was noted through lifo-his talent of making himself indispensable, his imperturbable temper and his impenetrabje secrecy-were fully displayed in this employment. The governorship of Dublin was vacant, and Monk was appointod by Leicester. But Cherles I. overruled the appointment in favour of Loud Lambart, and Monk with great shrewdness gave up his claims. Ormonde, however, who viewed him with suspicion as one of the two officers who refused the oath to support the Royal cause in England, sent him under guand to Bristol. But he justifiod himself to Charles in person, and his soldicrly criticisms on the canduct of the Irish War impressed the king, who gave him a command in the corps sent over from Irelend during the English Civil War. Monk was, however, soon taken prisoner, at Nantwich (1644), and spent the next two years in the Tower, where he found it difficult to live orring to his want of means. The king himself sont him froo, a gift for which Monk himeelf was sincerely grateful. He beguiled his imprisonment by writing his Observotions on Military and Political Affairs.

Monk's Irish experience, however, led to his release and an invitation to take service in the pariament's army against tha Irish rebels, Making a distinction like ocher soldiers of the time between fighting the Irish and taking arms against the king, he accepted the offer and took the covenant. At fimat as adju-tant-general to the Partiamentary lord-lieutenant, his old friend Lord Lisle, and afterwards as governor of Ulater, he rendered great services to his new masters. In conjunction with Calonel Michael Jones, governor of Leinster, he made head against the rebels for two years, but in the third (1649) the Parliamentarians, weakoned by defections brought about by the execution of the king, were wo longer able to keep the field. Losing one strong place after another, Monk concluded an armistice with the rebel Owen Roe O'Neill upon terms which he knew the parliament would not ratify. The convention was indeed a military expedient to deal with a military necessity, and alihough most of his army went over to the Royalist cause, he himself remained faithful to his employers and returaed to England. As be expected, parliament "ntterly disapproved" of the armistice but exonerated their general. His next service was in Cromwell's army in Scotland. He commanded a hrigade at the great victory of Dunbar, and afterwards captured a number of small places. When in rosr Cromtwell with the field army hurried southward into England to hring the inveding Seots to battle, Monk was left bebind to complete the
subjugation of the country. In February 1652 he lofit Scotland to recruit his broken health at Bath, and in November of the same year be became an admiral, or rather a "general at sea," instead of a soldier. Ten days after hoisting his flag for the first time he was engaged with his colleagues, Blake and Deane, in the battle of Portland (Feb. 18, 1653). In the action of Juno 2-3 Monk exercised the goneral command after Deane's death. A third battle followed on the 29th and zoth of July, which was a decisive victary for the Commonwealth's fleet (see Dutcr Wars). On his raturn be married Anne Clarges, a woman of low extraction, often supposed to have been his mistress, "ever a plain homaly dowdy," says Pepys, who, like other writers who meption her, is usually atill less complimentary. Next year he was back in Scotland, methodically heating down a Royalist insurrection in the Highlands, and when this service was over settled down to a steady government of the country for the next five years. The timely discovery of a plot fomented by Overton, his second in command, in 1654, gave him an excuse for thoroughly purging his army of all Amabaptists, Fifth Monarchy men, and other dangerous enthusiasts. It is improbable that at this time Monk had proposed to himself the restoration of the king, though so astute a diplomatist must have weighed the chances of such an event. His very reticence, however, caused alarm on one aide and hope on the other. In 1655 he received a letter from Charles II., a copy of which he at once sent to Cromwell, who is said to have written to him in 1657 in the following terms: "There he that tell me that there is a certain cunning fellow in Scotland callod George Monk, who is said to lye in wait there to introduce Charles Stuart; 1 pray you, use your diligence to apprehend him, and send him up to me." Monk's personal relations with Cromwell were those of sincere friendship on both sides.

During the confusion which followed Cromwell's death Monk remained silent and watchful at Edinburgh, careful only to secure his hold on his troops. At first he contemplated armed support of Richard Cromwell, but gave up this idea on realizing the young man's incapacity for government, and renewed his waiting policy In July 1659 direct and tempting proposals were again made to him by the king. His brother Nicholas, a clergyman, was amployed by Sir J Grenvil to bring to him the substance of Charles's letter. No bribe, however, could induce him to act one moment before the right time. He bade his brother 80 back to his books, and refused to entertain any praposal. But when Booth rose in Cheshire for the king, so lempting did the opportunity seem that he was on the point of joining forces with him, and a manifesto was prepared. His habitual caution, however, induced him to wait until the next post from England, and the next post brought news of Booth's defeat.

For moment he thought of retinng into private life, but soon Fleetwood and Lambart declared against the parliament, and to their surprise Monk not only sefused to join them, but (Oct. 50,1650) at once took measures of active opposition, Securing his hold on Scouland by a small but trusty corps of occupation, he crossed the border with the rest of his army Holding Lambart in play without fighting until his army began to melt away for want of pay, Monk reccived the commission of commauder-in-chief of the parliament's forces (Nov 24) The navy, some of the English garnoons and the army in Ireland declared lor the parliament, and the army from Scotland crossed the Tweed on the and of January 1660 . It was inferior in number, but in all other respects superior to Lambart's, and Monk slowly marched an to London, disbanding or taking over on his way the detachments of Lambart's army which he met, and eutered the capital on the 3rd of February. In all this his ultimate purpose remained mysterious. At one moment be sccretly encouraged the demands of the Royalist City of London, at another he urged submission to the existing parliament, then again he refused to swear an oath abjuring the house of Stuart, and further hehinted to the attenuated Long Parliament the urgent necessity of a dissolution. Lasty, acting as the stern military agent of the infuriated parliament, he took away the gates and portcullises of the city. Tbis angered not only the
ctivens but his own army, and gave him the lever that he desired to enforce the dissolution of parliament, while at the same time enabling him to break up as a matter affecting discipline, the political camarillas that had formed in his own regiments. He was now master of the situation, and though he protested bis adherence to republican principles, it was a matter of common knowledge that the new parliament, which Monk was imposing on the remnant of the old, would bave a strong Royalist colour. Monk himself was now in communication with Charles II., whose Declaration of Breda was based on Monk's recommendations. The new parliament met on the 25^{2} b of April, and on the zst of May voted the restoration of the monarchy.

With the Restoration the bistoric interest of Monk's career ceases. Soldier as he was, he had played the difficult game of diplontacy with incomparahle akill, and had won it without firing a shot. That he was victor sine sanguine, as the preamble of bis patent of nobility stated, was felt by every one to be tbe greatest service of all. He was made gentleman of the bedchamber, knight of the Garter, master of the horse and commander-in-chief, raiged to the peerage with the titles of Baron Monk, earl of Torrington and duke of Albemarle, and bad a pension of \{7000 a ycor allotted to him. As long as the army existed of which be was tbe idol, and of which the last service was to suppress Venner's revolt, he was a person not to be displeased. But he entirely concurred in its disbandment, and only the regiment of whicb be was colonel, the Coldstream (Guands), survives to represent the army of the Civil Wars. In 1664 he had charge of the admiraity when James, duke of York, was in command of the fleet, and when in 1665 London was deserted on account of the plague, Monk, with all tbe readiness of a man accustomed to obey without thinking of risk, remained in charge of the government of the city. Once more, at the end of this year, he was called upon to fight, having a joint commieaion with Prince Rupert against the Dutch. The whole burden of the preparations fell upon him. On the 23rd of April 1066 the admirals joined the fleet; and on the rst of June began the great four days' battle, in wbich Monk showed not only all his old coolness and skill, but also a reckless daring which had seemed hitherto foreign to his character. Later in the same year be maintained order in the city of London during the Great Fire. His last service was in 1667, when the Dutch fleet sailed up the Thames, and Monk, though ill, hastened to Chatham to oppose their farther progress. From that time be lived much in privacy, and died of dropsy on the 3rd of January 1670, "Hike a Roman general with all his officers about bim." The dukedom became extinct on the death of his son Christopher, 2nd duke of Albemarle ($1653-1688$)
See the Life of Monk, by Dr Gumble, his chaplain (London, 1671), and the memoir and biblography by C. H. Furth in the Dict. Wat. Biogr

MOIKR, JAMES EBNRY (1784 -1856), English divine and classical scholar, was born at Buntingiord, Herts. He was educated at Charterhouse School and Trinity College, Cambridge, andin $\mathbf{8 8 0 9}$ was elected professor of Greek in succesaion to Porson. The establishment of the classical tripos was in great measure due to bis efforts. In 1822 he was appointed dean of Peterborough, in 1830, bishop of Gloucester (with which the see of Bristol was amalgamated in 1836) He is best known as the author of a Life of Bexilcy (1830) and as the editor (with C J Biomfield) of Porson's Adversaria (18 iz)

MONK, MARIA ($c \mathrm{I}_{1} \mathrm{I} 7-1850$), an adventuress and impostor, who, coming to New York in 1835 , clarmed to have escaped from the Montreal nunnery of the Hotel Dieu, concerming which, and the practices prevalent there, she circulated sensational charges in Azoful Discloswres by Marse Monk (1836) Over 200,000 copies of thas book and a sequel were sold, and a volent antsCatholic agitation resulted. She was finally exposed as a moman of bad character, and her story proved to be absolutely false, but not untii she had deceived many people of good standing

MONK (O.Eng. muruc, thus with the Teutonic forms, e.g. Du. monnik, Ger Monch, and the Romanic, e.g Fr moine, Ital. monacho and Span. monjo, are from the Lat. menockus, sdapted
from Gr. movaxbs, one living alone, a solitary; mbos, alone), a member of a community of men living a life under vows of religious observance; the term is properly confined to a thember of a Cbristian community, but is cometimes applied to members of Buddhist and Mahommedan religious brotherhoods. The Greek and Latin name was first used of the bermits, but was early widened to embrace the coenobites. The term "monk" should not be used cither of "friars " or of "canons regular." (See Monasticism.)

MONKEY, a term apparently applicable to all nembers of the order Prnares (q.v.) except man and perhaps the larger apes. In zoology it may be used tn this wider sense, as inclusive of all tbe Primates except man and lemurs; but it may also be employed in a more restricted application, so at to denote all ordinary "monkeys" as distinct from baboons on the one hand and the tail-less man-like apes on the other. The word appears in English first in the roth century. The Low-German version of Roynard the Fox (Reinke de Vos, 1479) calls the son of Martin, the ape, Moneke; and the French version has Monnehin, Monnequir; these are apparently Teutonic diminutives of a word for ape which occurs in several Romanic languages, e.g. Fr. momme, It. monsa, \&c.

MONRHOUSR, WILHAM COBMO (x 840 m -1901), English poet and critic, was born in London on the 18th of March 1840. His father, Cyril John Monkhouse, was a solicitor; his mother's maiden name was Delafosse. He was educated at St Paul's School, quinting it at seventeen to enter the board of trade as a junior supplementary clerk, from which grade he rose eventually to be the assistant-secretary to the finance department of tha office. In 1870-187I be visited South America in connexion with the hospital accommodation for seamen at Velparaiso and other ports; and be served on different departmental committees, notably that of $\mathbf{1 8 9 4 - 1 8 9 6}$ on the Mercantile Marine Fund. He was twice marriod: first, to Laurn, daughter of James Keymer of Dartford; and, secondly, to Leonora Eliza, daughter of Commander Blount, R.N. He died in London on the goth of July 1901. Cosmo Monkhouse was one of those who have not only a vocation, but an avocation. His first biss was to poetry, and in 1865 he insued A Dream of Idleness and Other Poems, a collection strongly coloured by his admiration for Wordsworth and Tennyson. It was marked by exceptional matucity, and scarcely received the recognition it deserved. Owing perhaps to this circumstance, it was not till $\mathbf{1 8 g o}$ that he put forth Cora and Poppras, a collection which contains at least one memonabls effort in the well-known "Dead March." Five years later appeared a limited edition of the striking ballad of The Christ upon the Hill, illustrated with etchings by Mr William Stcang. After his death his poetical output was completed by Pasiteler the Eldar and other Paems (including The Christ mpon the Hitn). In 1868 Monkhouse essayed a novel, A Question of Honowr. Then, after preluding with a Lufo of Twrmer in the "Great Artists Series : (1879), he devoted himseif almoat exciuaively to art criticism Besides many contributions to the Acadenny, the Safarday Review, the Magazine of Art and ot her periodicals, he published volumes on The Italias Pre-Raptacelitas (1887), The Earlser Englash Waber-Colour Paimers (1890 and 1897), Im the Natmonal Gallery (1895) and Britesh Coutematorary Artasts (1899) He was a contributor to the Dict. Nal. Bieg. from the beginning Monkhouse also wrote an excellent Mamotr of Lergh Hund in the "Great Wnters Sencs" (1887), As an art cntic Monkhouse's judgments were highly valued; and he had the rare gift of differng without offending, while be invariably secured respect for his bonesty and ability As a poet, his ambition was so wide and his devotion to the art so thorough, that it is dificuit not to regret the slender hulk of his legacy to posterity

MONKSWEL, ROBERT PORRETT COLLER, yat BMROM (1819-1886), English judge, was born at Plymourh, on the 21st of June 1817, and was the son of a prominent merchant of Quaker extraction. He was educated at Oxford, was called to the har in 1843, and weat the western carcuit He obtained's high reputation by his successful defence of Brazilian pirates in 8845
they were, Indoed, convicted at the astives, but Collier ultimately procured their escape upon a point of law which the judge had refused to reserve. He was elected member of parliament for Plymouth in the Liberal interest in 1852, and in 1859 was appointed counsel to the admiralty and judge-advockte to the floct. In this capacity he gave in $\mathbf{8 8 6 2}$ an opinion in favour of detaining the Confederate rams building in the Mersey, which would have saved his country much money and much credit if it had been acted upon. In 1863 he became solicitor-general, and in 1868 attorney-general, and in 1869 successfully passed a bankruptcy bill. In 187r he was appointed by Mr Cladstone one of four new judges upon the judicial committee of the privy council, although it was expressly provided by the act creating these offices that none of them should be filled by a law-officer of the Crown. This prohibition was evaded by making Collier a judge of common pleas, and transferting him after a few days to the privy counch. This arrangement was unanimously condemned hy puhlic oplnion, and gave the Cladstone cabinet a serious blow. He officiated, nevertheiess, with distinction until his death on the 3 rd of November 1886, and was raised to the peerage as Baron Monkswell in 1885. He was a man of many accomplishments, and especially distinguished as an amateur painter, frequently exhibiting landscapes at the Royal Academy and elsewhere. In his younger days be had been noted as a clever caricaturist. He was succeeded in the peerage by his elder son, Robert (b. 1845), who, aftet taking a first class in law at Cambridge, went to the bar, and became (187x) conveyancing counsel to the treasury, and (1885-1886) an official examiner of the High Court, and, taking to politics as a Liberal, undersectetary for war (1895). The younger son, John Collier (b. 1850), inherited his father's artistic tastes, and became a well-known painter.

MOMLUC, or Mointluc, the name of a French family. The house of Lasseran-Mansencomme, which possessed the estate of Monluc In Agenais, and took its name in the 16th century, is held to be a branch of the family of Montesquiou. Marshal Blaise de Monluc (d. ' $\mathbf{x} 77$), author of the Commentaires, had a son, Pierre Bertrand, called the Capitaine Peyrot, who perished in an expedition to Madeira in 1566, and another son, Fabien de Monluc, whose granddaughter, Jeanne de Monluc (d. 1657), countess of Carmaing, princess of Chabanais, brought the estates of her house to the family ol Escouhleau hy her marringe with Charles d'Escoubleau, marquess of Sourdis and Alluyes. Jean de Monluc, brother of the marshal, was bishop of Valence and Die, and distinguished himself in several embassies. He died in 1579, leaving a natural son, Jean de Monluc (d. 1603), seigneur de Balagny, wbo was at first a zcalous member of the Leaguc, but made his submisslon to Henry IV., and received from hira the principality of Cambrai and the baton of a marshal of France. MONMOUTH, JAMES SCOTT, DUKE or (1649 -1685), leader of his abortive insurrection against James II. in 1685, was the son of Lucy Walters, "a brown, bcautiful, bold but insipid creature," who became the mistress of Charles II. during his exile at the Hague. He was born at Rottordam on the gth of April 1649. That Charles was his father is more tban doubtul, for Lucy Walters had previously lived with Robert Sidney (son of the earl of Leicester), brother of Algernon, and the boy resembled him very closely. Charles, however, always recognized him as his son, and lavished on him an almost doting affection. Until the Restoration be was placed under the care, first of Lord Crofts, by whose name he was known, and then of the queen-dowager, receiving bis education to the age of nine from Roman Catholics, hut thenceforward from Protestant tutors. In July 1662 he was sent Ior by Charles, and at thirteen was placed under the protection of Lady Castlemaine and In the full tide of the worst influences of the court. No formal acknowledgment of his relation to the king was made until his betrothal to Anne Scott, countess of Buccleuch, the wealthisst heiress of Scotland, whom he married in 166 s . During 1663 he was made duke of Orkney, duke of Monmouth and knight of tbe Garter, and received honorary degrees at both universities; and on his marriage he and his wife were created duke and duchess
of Buecleuch, and he took the surname of Scott. At court he was treated as a prince of the blood. In 1665 he served with credit under the duke of York in the sanguinary naval battle off Lowestofi. A captaincy in the Life Guards was given bim, and in 167o, on the death of Monk, he was made captain-general of the king's forces. In 1670 Monmouth was with the court at Dover, and it is affirmed hy Reresby that the mysterious death of Charles's sister, Henrietta, duchess of Orleans, was due to her husband's revenge on the discovery of her intrigue with the duke. It is certain, from an entry by Pepys, that as early as 1666 he had established a character for vice and profigacy. He was the direct author of the attack in December 1670 on Sir John Coventry, and only a few months later received the royal pardon for his share in the wanton murder of a street watchman.

Hitherto Monmouth had been but the spoilcd child of a wicked court. Now, however, hy no act or will of his own, he began to be a person politically important. As early as 1662 the king's excesslve fondness for him had caused anxiety. Even then the fear of a "difference" between Monmouth and James, duke of York, exercised men's minds, and every caress or promotion kept the fear alive. Who could tell but that, in default of legitimate issue from bis queen, Charles might declare Monmouth himself his lawful son? A civil war would be the certain consequence. Soon after 1670 the matter took a more serious aspect. The anti-popery spirt was rapidly becoming a frenzy, and tho succession of James a probability and a terror. Charles was urged to legitimize Monmouth by a declaration of his marriage with Lucy Walters. He returned answer that, much as he loved the duke, he would rather see him hanged at Tyburn than own him for his legitimate son. Every attempt, however, was henceforth madc, especially by Shaftesbury, to accustom people to this idea, and his position was emphasized by James's second marriage, with the Roman Catholic princess Mary of Modena. From this time his popular title was "the Protestant duke." In 1674 he was made "commander-in-chief"; and in connexion with this another unsuccessful attempt, graphically described in Charke's Life of James, was made to gain from Charles a tacit admission of his legitimacy. At Shaftesbury's instance he was placed in command af the army employed in 1675 against the Scotish Covenanters, and was present at Bothwell Bridge (June 22, 1679). In 1678, wben Charles was driven into war with Louis, Monmouth took the command of the English contingent, and again gained credit for personal courage at the battle of St Denis. On his return to London England was in the throes of the popish terror. The idea of securing the Protestant succession by legitimizing Monmouth again took shape and was eagerly pressed on by Shaftesbury; at the time it seemed possible that success would wait on the audacity.

The pensionary parliament was dissolved in January 16781679, and was succeeded by one still more determined in its antipopery spinit. To avoid the storm, and to save, if possible, his brother's interests, Charles instructed him to leave the countiry. James retired to Brussels, the king having previously signed a declaration that he "never was married, nor gave contract to any woman whatsocver but to my wife Queen Catherine." In the summer of 1679 the king suddenly fell ill, and the dangers of a disputed succession became terribly apparent. The party opposed to Monmouth, or rather to Shaftesbury, easily prevailed upon Charles to consent to his brother's temporary return. When, after the king's recovery, James went back to Brussels, he received a promise that Afonmouth too should be removed from favour and ordered to leave the country. Accordingly, in September 1679, the latter repaired to Utrecht, while shortly afterwards James's friends so far gained ground as to obtain for him permission to reside at Edinburgh insteed oi at Brussels. Within two months of his arrival at Utrecht Monmouth secretly returned to England, arriving in London on the 27 th of November. Shaftesbury had assiduously kept alive the anti-popery agitation, and Monmouth, as the champion of Protestantism, was received with every sign of popular delight. The king appeared to be greatly incensed, deprived him of all his offices, and ordered him to leave the kingdom at once. This he refused
to do, and the only notice taken of the disobedience was that Charles forbade him to appear at court.

It was at this time that the Appeal from the Coundry to the City, written by Ferguson, was published, in which the legitimacy was tacitly given up, and in which it was urged that " he that hath the worst title will make the best king." Now it was, $\mathbf{1 0 0}$, that the exclusionists, who in the absence of parliament were deprived of their best basis for agitation, developed the system of petitioning. So promptly and successfully was this answered by the "abhorrers" that Charles, feeling the ground safer under him, recalled James to London-sa step immediately followed by the resignation of the chief Whigs in the council.

Oace more, however, 2 desperate attempt was made, by the fable of the " black box," to establish Monmouth's claims; and once more these claims were met by Charles's public declarations in the Gazette that he had never been married but to the queen. Still acting under Shaftesbury's advice, Monmouth now went upon the first of his progresses in the west of England, visiting the chief members of the country party, and gaining by his open and engaging manner much popularity among the people. In August 1680 James returned to Edinburgh, his right to the succession being again formally acknowledged by Charles. Monmouth at once threw himself more vehemently than ever into the plans of the exclusionists. He spoke and voted for exclusion in the House of Lords, and used language not likely to be forgotten by James when an opportunity should come for resenting it. He was ostentatiously feasted by the city, the stronghold of Shaftesbury's influence; and it was observed as he drove to dinner that the mark of illegitimacy had boen removed from the arms on his coach.

The year 1681 seemed likely to witness another civil war. The parliament finished a session of bysterical passion by passing a series of relsolutions of extreme violence, of which one was that Monmouth sbould be restored to all his offices and commands; and when Charles summoned a fresh parliament to meet at Oxford the leaders of the exclusionists went thither with troops of armed men. Not until the dissolution of this last parliament, on the 27th of March 1681, did the weakness of Monmouth's cause appear. The deep-seated respect for legitimate descent asserted itself, and a great reaction took place. In-November Dryden published Absalom and Achitophet. Shaftesbury was attacked, but was saved for the time by a favouring jury. Monmouth himself did not escape insult in the street and from the pulpit. He was forbidden to hold communication with the court; and when he went, in September $\mathbf{6 8 2}$, on a secohd progress tbrough the western and north-western counties his proceedings were narrowly watched, and he was at length arrested at Stafford. Severity and extreme lenity were strangely mingled in the treatment he received. He was released on bail, and in February 1683, after the flight and death of Shaftesbury, he openly hroke the implied conditions of his bail by paying a third visit to Chichester with Lord Grey and others on pretence of a hunting expedition.

It is probable that Monmouth never went so far as to think of armed rebellion; but there is little doubt that he had talked over schemes likely to lead to this, and that Shaftesbury had gone farther still. The Rye House plot gave an excuse for arresting the Whig leaders; Russell and Sldney were judicially murdered; Monmouth retired to Toddington, in Bediordshire, and was left untouched. Court intrigue favouring him, he succeeded, by the betrayal of his comrades and by two submissive letters, in reconciling himself with the belp of Halifax both to the king and to James, though he had the humiliation of seeing his confessions and declarations of penitence published at length in the Gazetic. His character for pettishness and folly was thus amply illustrated. Charles heartily despised him, and yet appears to have retained affection for him. His partial return to favour raised the bopes of his partisans; to check these, Algernon Sidney was executed. Monmouth was now subpoenaed to give evldence at the trial of young Hampden. To escape from the difficulties thus opened before him he fled to Holland, prohably with Charles's connivance, and though he once more,
in November 1684, visited England, it is doubtful whether te ever again saw the king.

The quiet accession of James II. soon brought Monmouth to the crisis of his fate. Within two months of Charleo'e death he had yielded to the impetuosity of Argyll and others of the exiles and to vague invitations from England. It is curious, as sbowing the light in which his claims were viewed by his fellow-conspirators, that one of the terms of the compact between them was that, though Monmouth should lead the expedition, he should not assume the title of king without their consent, and should, if the rebelion were successful, resign it and accept, whatever rank the nation might offer. Now, as always, he was but a puppet in other men's hands.
On the and of May Argyll sailed with three ships to raise the west of Scotland; and three weeks later, with following of only eighty-two persons-of whom Lord Grey, Fletcher of Saltoun, Wade, and Ferguson, the author of the Appeal from the Conntry to the Cily, were the chief-Monmouth himself set out for the west of England, where, as the stronghold of Protestant dissent and as the scene of his former progresses, he oould alone hope for immediate support. Even here, however, there was no movement; and when on the 1ith of June Monmouth's three ships, having eluded the royal fleet, arrived off Lyme Regis, he landed amid the curiosity rather than the sympathy of the inhabitants. In the market-place his "declaration," drawn up by Ferguson, was read aloud. In this document James was painted in the blackest colours Not only was he declared to be the murderer of Essex, but he was directly charged with having poisoned Charles to oblain his crown. Monmouth soon collected an undisciplined body of some 1500 men, with whom he seized Axminster, and entered Taunton. Meanwhile the parliament had declared it treason to assert Monmouth's legitimacy, or his title to the crown; a reward of $f .5000$ was offered for him dead or alive, and an act of attainder was passed in unusual haste. Troops had been hurriedly sent to meet him, and when he reached Bridgwater Albemarle was already in his rear. From Bridgwater the army marched through Glasionbury to attack Bristol, into which Lord Feversham had hastily thrown a regirment of foot-guards. The attempt, however, miscarried; and, after summoning Bath in vain, Monmouth, with a disordered force, began his retrograde march through Philips Norton and Frome, continually harassed by Feversham's soldiers. At the latter place he heard of Argyll's total rout in the western Highlands. He was now anxious to give up the enterprise, but was overruled by Grey, Wade and others. On the 3rd of July he reached Bridgwater again, with an army little better than a rabble, living at free quarters and behaving with reckless violence. On Sunday, the sth, Feversham entered Sedgemoor in pursuit; Monmouth the same night attempted a surprise, but bis troops were hopelessly routed. He bimself, with Grey and a few others, fled over the Mendip Hills to the New Forest, hoping to reach the coast and escape by sea. The whole country, however, was on the alert, and at midnight on the 8th, whin a month of their landing, James heard that the revolt, desperate from the first, was over and that his rival had been captured close to Ringwood in Hampshire.

On the day of his capture Monmouth wrote to James in terms of the most unmianly contrition, ascribing bis wrong-doings to the actlon of others, and imploring an Interview. On the 13th the prisoners reached the Tower, and on the next day Monmouth was allowed to see James. No mercy was shown him, nor did be in the least deserve mercy; be had wantonly attacked the peace of the country, and had cruelly libelled James. The king had not, even in his own mind, any family tie torestrainhim from exercising just severity, for be had never believed Monmouth to be the son of any one but Robert Sidney. Two ptinful interviews followed with the wife for whom he bore no love, and who for him could feel no respect; another imploring letter was sent to the king, and abject protestations and beseechings were made to all whom be saw. He offered, as the last hope, to become a Roman Catholic, and this might possibly have proved successful, but the priests sent by James to ascertato
the sfincerity of his "converston" declared that he cared only far his life and not for his soul.

He met his death on the scafiold with calmness and dignity. In the papor which he left signed, and to which he reforred in answer to the questions wherewith the busy bishops plied him, be expressed his sorrow for having assumed the royal style, and at the last moment confessed that Charles had denied to him privately, as he had publicly, that he was ever married to Lucy Wafters. He died at the age of thirty-six, on the 15 th of July 1685 .

Monmouth bad four sons and two daughters by his wifo, who in 1688 married the 3rd Lord Comwallis and died in 1732. The elder of the two surviving sons, Jamcs, earl of Dalkeith (1674-1705) had a son Francis (1695-1751), who through his grandmother inherited the tite of duke of Buccleuch in 1732, and was the ancestor of the later dukes. The younger son, Henry ($1676-1730$), was created earl of Deloraine in 1706, and rose to he a major-general in the army.
The best accounto of Monmouth's career, apart from the modern hiotories., are G. Robert's's detailed Life (1844), the articles in the Dict. Nat. Bios. (by A. W. Ward) and in Coflma's Peerage, and the Correspondence of Lord Clarendon wuth James. earl of Abingdon, 1683-1685 (Clarendon Press, 1896). For the rebellion, Lord Grey's Secret History ((1754) Ahould be consulted. See also Evelyn's and Pepys'i Draties, c .
MOMNOUTH, ROBERT CAREY, IST EARL OF (C. 1560-1639), youngest bon of Henry Carey, ist Baron Hunsdon, chamberlain and first cousin of Queen Elizabeth, by Anne, daughter of Sir Thomas Morgan, of Arkestone in Herefordshire, was born about the year 1560 . As a young man he accompanied several diplomatic missions abroad and took part in military expeditions. In 1587 he joined in the attempt to relieve Sluys, in 1588 served as a volumteer against the Spanish expedition, and commanded a regiment in Essex's expedition to Normandy in 1591, taking part in the siege of Roven. He was knighted hy Essex the same year for having by his intetcession with the queen procured his recall. In the pariliaments of 1586 and. 1588 he represented Morpeth; in that of 1593 , Callington; and in those of 1596 and s601, Northumberland. From 1593 till the end of Elizabeth's reign he occupied various posts in the government of the Scottish borders, succeeding to his father's appointment of lord warden of the marches in 1596, which he held till February 1598. In March 1603 he visited the court, and witnessed the queen's last illness, which he described in his Memoirs. Anxious to recommend himself to her successor, and disobeying the orders of the council, he started on horseback immediately after the queen's death on the morning of the 24th of March. in order to be the first to communicate the tidings to James, arrived at Holyrood late on the a6th, and was appointed by the king a gentleman of the bedchamber. But his conduct met with general and merited censure as " contrary to all decency, good manners and respect," and on James's arrival in England he was dismissed from his new post. On the 23 rd of February 160 , however, he was made governor of Prince Charles, in 2611 his master of the robes, in 1617 his chamberiain, and on the 6ih of February 1622, he was ereated Baron Carey of Leppington. In 1623 he followed Charles to Spain, and after the latier's suiccession to the throne he was created earl of Monmouth in $\mathbf{1 6 2 6}$. He died on the 12 th of April 1639 . His eldest son Henky (1506-166r), succeeded him as and eari of Monmouth, and on his death wihout surviving male issue the pecrage became extinct.
His Memoirs were published first by the earl of Cork and Orrery in 1759, a new ediiion, annotated by Sir Walter Scott, being printed in 1808.
MONMOUTH (Welsh Mynwy), a municipal and contributory parliamenlary borough. and the county town of Monmouthshire, England, 18 m . S. of Hereford, on the Great Western railway. Pop. (1901), 5095. It is picturesquely situated at the conftuence of the Wye and the Monnow, between the two rivers, and is almost surrounded by hills. Portions of the town walls remain, and there is a picturesque old gateway on the Monnow hridge; but there are only insignificant ruins of the castle, which was originally a Saxon fortress, and was twice taken by the Parlia-
mentary forces during the Civil War. Besides the charchesthat of St Mary, completed in 1882 on an ancient site, and the chapel of St Thomas, a late Norman structure-the principal huildings are the town-hall, the Rolls Hall and the free grammarachool, which was founded in 1614, and educates about 150 boys on the usual lines of a public school. A statue of Henry V., who wes born in its castle, stands in the market-place. With Newport and Usk, Monmouth forms the Monmouth parliamentary district of boroughs, returning one member.
Monmouth (Monemuta) from the coincidence of position is supposed to be the Blacstium of Antoninus. Situated between the Severn and the Wye its strategic importance was early recognized by the Saxons; who fortified it against the Britons, while in later years it played a leading part in Welsh border wariare. At the time of the Domesday Survey the castle was in the custody of Wifiam Fitz Baderon. Henry III. granted it, together with the lordship of the borough, to his son Edmund Crouchback, through whose descendants both borough and castle passed into the duchy of Lancaster. Since the 18th century the dukes of Beaufort have heen lords of the borough. Monmouth was a borough by prescription as carly as 1256, and was governed by a mayor in 1461, but was not incorporated until ris50 under the title of "Mayor, Bailiffs and Commonalty." This charter was confirmed in 1558, 1606 and 1666, a recorder and town clerk being added to the constitution. In accordance with the act of r535-1 536 Monmouth as county town obtained the right of representation in parliament; the earliest returns existing are for 1553 , since which date one member has been returned regularly. Wednesday and Saturday markets were confirmed to Monmouth in 1550 , with the further proviso that no others were to be held within five miles of the borough. Friday is now the weckly market-day. At the same time an annual three-days' fair, which still exists, was granted on Whit-Tuesday and successive days. During the 16 th and 17 th centuries the manuiacture of Monmouth caps was an important industry, fostered by legislation and mentioned by Fuller in his Worthies of England.
See Charles Heath, The Town of Monmouth (Monmouth, 1804).
MONMOTTH, a city and the county-seat of Warren county, Illinois, in the W. part of the state, about 40 m . S. of Rock Isiand. Pop. (8890), 5936 ; (1900), 7460 , (594 foreign-born); (2910), 9128. It is served by the Chicago, Burlington \& Quincy and the Iowa Central railways, and by clectric railways to Galesburg and to Rock Island. The city is the seat of Monmouth College (1856; United Presbyterian), which in 1908 had 28 instructors and 454 students. Among the public buildings and institutions are the county court-house, the federal building, a hospital and the Warren county library (1836)- Monmouth is situated in a good farming region, and cattle, swine and ponies are raised in the vicinity. The city has various manufactures. Monmouth was settled about 8824 , first incorporated as a village in 1836 , chartered as a city in $\mathbf{2 8 5 2}$ and in 2882 reorganized under a general state law.
MONMOUTH, BATTLE OP (1778), a battle in the American War of Independence. The prospoct of an alliance between France and America in 1778 induced the British to concentrate their forces. Sir Henry Clinton, who had surceeded Sir W. Howe in command, determined to abandon Philadelphia, captured in the previous year, and move his troops direct to New York through New Jersey. Washington, who bad spent the winter at Valley Forge, Pennsylvania, and bad materially recruited his army, immediately marched to intercept the British, ant overtook them near Monmonil Court House (Dow Frechold), New Jersey, on the 28ih of June 1778. A strong detachment of Americans under General Charles Lee was sent forward to harass the enemy's rear and if possible cut off a portion of their long baggage train. Clinton strengthened his rearguard, which turned upon the Americans and compelled them to retreat. When Washington, who was well up with his main body, heard of Lee's retreat, be spurred forward and exerted himself in forming a strong line of batule in case the British continued their determined attack. Warm words passed between Washington
and Lee, which subsequently led to the latter's court-martial and suspension for a year. The readjusted American line was composed of the divisions of Lafayelte, Greene, Alexander and Patterson, while Wayne's brigade, which had been in Lee's advance from the first, was posted in a favourable position. The British attacked this line and a warm, though brief, engagement ensued. Both sides encamped at night on the ground occupied. The British, having accomplished their object in delaying Washington's pursuit, continued their march the next day towards New York. Washington turned to the left, crossed the Hudson above, and encamped for the remainder of the season at White Plains, New York, within striking distance of the city. Each side suffered about the same loss in the battle; that of tha British being 400 (60 due to sunstroke), the American somewhat less. In this engagement Lieut.-Colonel Henry Monckton (17401778) of the British Grenadiers was killed in leading a charge.

MONMOUTHSHIRE, a western border county of England, bounded E. by Gloucestershire, N. E. by Herefordshire, N.W. by Brecknock, W. and S.W. by Clamorganshire (Wales), and S . hy the estuary of the river Severn. The area is $534 \mathrm{sq} . \mathrm{m}$. The surface is varied, and in many districts picturesque, especially along the valley of the Wye, and between that river and the Usk. In the west and north the hills rise to a considerable height, and this mountain region encircles a finely undalating country. The highest summits are Sugar Loaf (1955 ft.), Blorenge (1838), and Skirrid Fawr (1601), summits of the bills which almost encircle the town of Abergavenny. On the other hand, along the shore of the Severn estuary on either side of the Usk, are two extensive tracts of marshland, called the Caldicot and Wentlloog levels, stretching from Cardifi to Portskewct, and protected from inundations by strong embankments. The principal rivers are the Wye, which forms the greater part of the castern boundary of the county with Gloucestershire, and falls into the Severn; the Monnow, which forms a portion of its houndary with Herefordshire, and falls into the Wye at the town of Monmouth; tbe Usk, which rises in Brecknock, and flows southward through the centre of the county; the Ebbw, which rises in the north-west, and enters the estuary of the Usk below Newport; and the Rhymney, which rises in Brecknock, and, after forming the boundary between Monmouth and Glamorgan, enters the Bristol Channel a little east of Cardiff. Salmon abound especially in the Wye and the Usk, and trout are plentiful in many of the streams.
Geology.-The oldest rocks in the county are the Silurian strata (Wenlock Shale and Limestone, and Ludlow Beds) which form an extensive anticline at Usk; a smaller inlier appears at Rumney on the south-west borders of the county near Cardiff. These beds dip under the OXd Red Sandstone, a great serits of red marls, sandstones and concretionary limestones (cornstones) which occupies the north-eastern part of the county; the highest beds contain grits and conglomerates which give rise to bold escarpments and lofty plateaux (e.g. the Sugar Loal and Skirnid Fawr) alongside the outcrop of the Carbonilerous Limestone. The western part of the county, between Pontypool and the river Rhymncy, is occupied by the eastern end of the great South Wales coal-field, where the Carboniferous Limestone, Millstone Grit and Coal Measures (Lower Coal Series, Pennant Sandstone and Upper Coal Senes) dip westward and succeed cach other from east to west. The Coal Mcasurcs abound in coal-seams and ironstone, and their densely populated valleys offer a marked contrast to the agricultural and pastoral districts of the rest of the county. The Carboniferous Limestone comes in again in the south eeast ncar Chepstow, and has Imparted its characteriptic scenery to the lower reaches of the Nye. After a prolonged interval, during which these older formations were folded, faulted, upheaved and finally carved by crosion into hills and valleys, the southern portion of the region was submerged beneath the waters of the Triassic lake in which the Keuper Marls were deposited. These consist of red conglomerates and marls which wrap round the heights and fill up the bollows among the older rocks to the south-west of Chepatow, and the subsidence continuing, admitted the waters of the Jurassic sea which deposited the fosililerous Rhactic and Lias limestones and shales of Lianwera aad Goldcliff near Newport. Glacial gravel a nd boulder-clay are found in the valleys and a broad tract of alluvizm borders the ehores of the Bristol Channel.
Agriculture.-Along the Severn shore the soil is deep and loarny, and admirably suited for the growth of treas. The most fertile land is that rescing on the Red Sandstone, esposially along the thancs of the Usk, where whent of fine quality is raised. In the
mountainous regions more attention io paid to grasiag thea to the raising of crops There are a considerable number of datry farms, but sheep-larming in much more largely followed. Only about seven-tenthe of the total area of the county is under cultiva. tion. There is a large extent of hill pariture, and a eonadiderabie acreage under orchards.

Minsng.-The coal-mines and iron-works which Monmouthshlre shares whth South Wales are very important. They occur in the wild and mountainous western part of the county where a meries of upland valleys, running paralle from N.N.W. to S., has each its populous mining townships and railways, which have in many cases necessitated remarkable engineering works-ach as the great Crumlin viaduct. These valleys, in order from east to west, with the principal townshipe in each, are as follow: Afoa Lwyd (Panteg, Pontypool, Abersychan and Blaenavon): Eibbw Fa h (Abertillery, Nantyglo and Blaina), joining the Ebbw (Risca, Ebbw Vale); Sirhowy (Bedwelley and Tredegar); Rhymney (New Tredegar and Rhymney). Beades coal, a considerable quantity of fire-clay and some iron are ralsed.

Communtations.-The principal railway merving the county is the Great Western, but in the mining districts there are aleo various branches of the London and Vorth. Western, Rhymney and Brecou and Merthyr systerns. The Crumlin Canal from the Enbw Valley. and the Monmouthshire Canal from Pontypool converre upon Newport, which is the principal port in the county. The Brecom Canal runs north from Pontypool into the valley of the Uak

Population and Admimistrotion.-The area of the ancient county is 341,688 acres, with a population in 1892 of 252,416 , and in 1901 of 292,317.' The ares of the administrative counky is 349,712 acres. The county comprises 6 bundreds. The municipal boroughs are Abergavenay (pop. 7795), Monmouth (5095), and Newport, a county borough (67,270). The following are urban districts: Abercarn (12,607), Aberaychan (17,768), Abertillery (21,945), Bedwellty (9988), Blacpavon (10,869), Cacrleon (1367), Chepstow (3067), Ebbw Vale (20,994), Llanfrechfa, Upper (2979), Llantarnam (5287), Mynyddislwyn (3337), Nantyglo and Blaina (13,489), Panteg (7484), Poutypool (6126), Rhymncy (7915), Risca (9661), Tredegar (18,497), and Usk (1476). Moamouthshire is in the Oxford circuit, and assizes are beld at Monmouth. It has one court of quarter sessions, and is divided into in petty sessional divisions. The boroughs of Monmouth and Newport have commissions of the peace, but no separate court of quarter sessions. The parliamentary divisions are the northern, western and southern, each. returning one member; and the Monmouth district of parliamentary boroughs, consisting of the towns of Monmouth, Newport and Usk, returns one member.

History. - The district which is now Monmouthshire formed the Welsh kingdom of Gwent at the time of the Heptarchy, and, owing to the extraordinary courage of the Gwentians in resisting the repeated inroads of the Saxons, no permanent English setulement was effected in the district until close upon the middle of the irth century. The incursions of the West Saxons began in the 7 th century, and, during the reign of Alfred, Brochmael and Fermael, kings of Gwent, acknowledged Alired as their lord, and sought his protection against thear enemies. In the 9th and 1oth centuries the district was frequently harried by the Danes, who in 915 , under Ohter and Hwald, sailed round Wessex and Cornwall to the mouth of the Severn and plundered all along the hanks of the Wye, finally taking prisoner the bishop of Llandaff, whom they only rcleased on a ransom of £40. In 926 Athelstan obliged the kings of the north Britons to meet him at Hercford and fixed the Wye as the limit of their territory. In 976 the Danes destroyed Caerleon, at thls time the chief town of the district. The early isth century was taken up with a series of interminable contests between the Welsh princes for the succession \ln South Wales, as a result of wbich the Welsh Chronicle relates that in 104 the whole of South Wales lay waste, and in 1049, when a fleet of Irish pirates entered the Severn estuary, Griffith, the king of South Wales, assisted them in plundering the peighlourhood. In robs Harold conquered the whole district between the lower reaches of the Wye and the Usk, and gave orders for the construction of a hunting box at Portskewet for Edward the Confessor, but very shorly after Caradoc ap Griffith, with a large body of lollowers, killed all the workmen engaged in
the building and carried away the provisions prepared for the ting's reception.

After the Conquest the district conquered by Harold was bestowed on William Fita Osborne, earl of Hereford, who buik Monmouth Castle, and continued the line of defence against the Welsh frontier along the Wye, while a second line of fortifcations adong the Ust Valley matked the continued advance of the Normans, who by 1085 had subjugated almost the whole of Gwent. The lordship of Overwent fell to Hamelin de Baladun, who founded the castle and priory of Abergavenny, and fram him passed to Brian Fitz Count and later to Walter Fitz Miles, earl of Hereford. The lordship of Netherwent remained for many centuries with the Clare family. Penhow Castle was a strongbold of the family of St Maur or Seymour, from whom are descended the present dukes of Somerset, and Grosmont and Skenfrith Castles of the family of Braosc. Gwent still ranked as Welsh territory at the time of the Domesday Survey, but the town of Monmouth, the castle of Caerleon, and the district of Arcbenfeld; are asseased under Herefordshire, and the three hardwicks of Llanwern. Portskewet and Dinam under Gloucestershire. The Norman lords of the present county held their lands "per baroniam," so that the king's writ did not run in them, and the lives and property of the poorer inhabitants were entirely at the mercy of these lords marchers as they were termed. The county still exhibits remains of no less than twenty-five Norman castles. The province of Gwant was formerly divided into four cantrefs, each comprising several commotes. Cantref Uwchcoed, or Upper Gwent, comprised the commotes of Erging and Ewyas, now principally in Herefordshire, and the greater part of the present hundreds of Skenirith, Abergavenny and Usk; Cantref Iscoed; or Lowor or Nether Owent, comprised the present hundred of Raglan and parts of Caldecote and Usk; Cantref Gwentiwg comprised the present hundred of Wentlug; while the fourth cantref, Cantrel Coch, sow forms the Forest of Dean in Gloucestershire. Leland, writing in the 16th century, describes Gwent *s comprising the three divisions of low, middlo and high "Venteland," and at this period it included no less than 24 lordship manches, each governod by its own ancient laws and custorns and ruled by its own lord. Under the act of 1536 for the abolition of the marches, thesc 24 lordships were uaited to form a shire; Monmouth was constituted the shlre town, and the sheriff's court was ordered to be held alternately at Monmouth and Newport. A commission was also appointed to divide the shire into hundreds, which were made 6 in number: Abergavenny, Caldecote, Raglan, Skenlithh, Usk and Wentlwg; the bounds being subsequently ratified by act of parliament of 1542-1543. No sheriffy were actually appointed for Monmouthshire until 1541, and the legal authority of the lorde marchers was not finally aholished until r689. The act of 1536 did not expressly separate the county from Wales, and it was oaly gradually that Monmouthshire came to be regarded as an English county, being included in the Oxford circult for the first time in the reign of Charles II.
Ecclestastically Monmouthshire has been almost entirely included in the diocese of Llandaff since the foundation of that diocese in the 6th.century. Monmouth, however. was in the diocese of Hereford, and a few parisbes formed part of the diocese of St Davids, until under the statute of 1836 the whole county was placed under the jurisdiction of the bishop of Llandafi. It contains, whoily or in part, 134 ecrlesiastical parishes.
The rives fisheries of Monmouthshirc have been famed from very early tirmes, Cacrleon with seven fisheries in the Wye and the Usk yielding a return of 17 , 10s, at the time of the Domesday Survey. Coal is said to have beert worked in the reign of Edward I.. but the industry lapsed altogether until it received new file from the construction of the canal between Blaeravon and Newport, begun in 1792 and completed in 1795. The Grat iron-workers at Poptypool ware a lamily of the name of Grant, who were succeeded in 1565 by Mr Richard Hanbury. In 1740, however, Monmouthshire contained only two furnaces, making goo tons annually. Fifty years later three new furnaces were constructed at Bfenavon, and from that daye the industry ateadily improved.
By the act of 1536 two knights were to be returned for the shire and one burgess for the borough of Monmouth, but the first returns lor the county were made in 1547 and for the borough in 1553 -

From 1698 the boroughs of Newport and Usk returned one member each. Under the Redistribution of Seats Act of 1885 the county auw returns three members in three divisions.

Antiqustes - Of Norman fortresses in Monmouthshire, either buitt or taken possession of by the lords of the marchco, there are remanns of no less than mwenty-five. The more interesting and important are. Caldicot, the seat of the De Bohuns, with a round keep of the 13th century. gatchouse and other portoons. still partly inhabited; Chepstow, one of the finest examples of the Norman forterss extant, in an imposing situation on a cliff above the Wye: Newport, Abergavenny, the gateway and hall of Crosmont, once the residence of the dukes of Lancasier; and Usk Castle, rebuilt by the Clares in the time of Edward IV. Raghan Castle, begun in the reign of Henry V., is a very extensive ruin, still in good preservation, and of special interest as a very late example of the feidal stronghold. Charlcs I. resided in it after the battle of Naseby, and in 1646 it was delivered up to the parliamentary forces after a stubborn resistance of ten weeks against Colonel Morgan and Gencral Fairlax.
At the Reformation there were in Monmouth two hospitals and fifteen other religious houses; but of these there are now impertant remains of only two-Llanthony Abbey and Tintern Albucy, both Cistercian. Llanthony Abbey in the Black Mountains w. 1 founded by William de Lacy in 1103 , and the church. dating from about 1200, is one of the earliest examples in England of the Pointed style. The ruins consist of portions of the nave. transept. ctntral tower and choir. Tintern Abbey (q.v.), founded by Walter de Clare in 1131 , cocupies a position of great beauty on the Wye. and is among the finest monastic runs in England. Of the churches, those chiefly worthy of mention are at Abergavenny, belonging to a Benedistine priory, and contanning a number of old tombs; Chepstow, partly Norman. and possessing a richly moulded doorway; Si Woolos Church, Newport, also Norman; the Norman chapel of St Thomas, Monmouth. Christchurch, principally Norman: Mathern, Early English, with a tablet to Tewdrig, king of Gwent in the oth century; and Usk, formerly attached to a Benedictine priory.
See Vicloria Comnty History, Monmouthshire; Wiliam Coxe, An Histertcal Tour in Monmouthshire, 2 pts. (London, 1801): N. Rogers, Memoirs on Nonmoulhshire (London, 1708); David WiHlams, History of Monmouthshire (1796); George Ormerod, Strigulensia. Archaeological Memoirs relating to the District adjacent to the Comfuence of the Sewrn and the Wye; M. E. Bagnall-Oakeley. Acconnt of the Rude Monuments in Monmouthshire (Newpart, 1889): J. A. Bradney, A History of Monmoulhshire (1904, 8.8.); also the publicatione of the Caerieon Antiquarian Association.

MONNIER, MARC (1827-1885), French writer, was born at Florence on the 7th of December 1827. His father was French, and his mother a Genevesc; be received his early education in Naples, be then studied in Paris and Geneva, and he completed his education at Heidelberg and Bertin. He became profeseor of comparalive literature at Geneva, and eventually vice-rector of the university. He died at Geneva on the 18th of April 1885. He wrote a series of short, satirical, dramatic aketches collected as Thetire de merionelles (1871), and stories, notably Nouvelles napolisainas (1879). numarous works od Italian history, a translation of Goethe's Faust, Genepe et ses poitas (2873), \&ec The first volume of his Histoire de la liftoratwre moderne, La Renaissance, do Dante d Luther (1884), was crowned by the French Academy.
See E. Rambert, Ecrivains nationsux sudsces, vol. i. (Geneva, 2874).
 of North Hokland, on an inlet of the Zuider Zee known as the Gouw Zee. 12 m. N.N.E. of Amsterdam, with which it is connected by steam tramway. It was once a flourishing town, but its quietness now is only disturbed by the advent of the numerous tourists who visit it in the summer, crossing hence to the island of Marken. Among the notable buildings are the weigh-house (t 7th century), the bell-tower (1591), formerly attached to the town-hall before this was destroyed in the 18th century; and the church of St . Nicholas, with its beautiful massive tower. Mention is made of this church in a document of 1356, but it was not completed until the beginning of the 15 th century. It contains some fine carvings, many interesting oid tombs, and a montument of Jan Nieuwenhuizen, the founder of the Society for Public Welfare (Tot Nut pan het Algemeen) In 178 s.

10NOCHORD (Gr. Andxopion, randp povouds): med. Lat monochordum), an instrument having a single string, used
by the ancient Greeks for tuning purposes and for measuring the scate arithmetically. The monochord, ss it travelled west wards during the middle ages, consisted of a long hoard, or narrow rectangular box, over which was stretched the single string; along the edge of the soundboard was drawn a line divided according to simple mathematical ratios to show all the intervals of the scale. A movable bridge was so contrived as to slide along over the string and stop it at will at any of the points marked. The vibrating length of string, being thus determined as on the guitar, lute, violin, \&2c., yielded a note of absolutely correct pitch on being twanged by fingers or plectrum. In order the better to seize the relation of various intervals, a second string tuned to the same note, but out of reach of the bridge, was sometimes added to give the fundamental.

MONOD, ADOLPHE (1802-1856), French Protestant divine, was born on the 21st of January 1802, in Copenhagon, where his father was pastor of the French church. He was educated at Paris and Geneva, and began his life-work in 1825 as founder and pastor of a Protestant church in Naples, whence he removed in 5827 to Lyons. Here bis evangelical preaching, and especially a sermon on the duties of communicans (" Qui doit communier "?), led to his deposition by the Catholic Minister of education and religion. Instead of leaving Lyons he began to preach in a hall and then in a chapel. In 1836 he took a professorship in the theological college of Montauban, removing in 1847 to Paris as preacher at the Oratoire. He died on the 6th of April, 1856. Monod was undoubtedly the foremost Protestant preacher of 19 th-century France. He published three volumes of sermons in 1830 , another, La Credulite de lincredule in 1844, and two more in $\mathbf{1 8 5 5}$. Two further volumes appeared after his death. His elder brother Frédéric (1794-1863), who was influenced by Robert Haldane, was also a distinguished French pastor, who with Count Gasparin founded the Union of the Evangelical Churches of France; and Frederic's son Theodore (h. 1836) followed in his footsteps.

- MONOD, GABRIEL (1844^{-}), French historian, was born at Havre on the 7th of March, 1844. Adolphe Monod (q.v.) was his uncle. Having studied at Havre, he went to Paris to complete his education, and whilst there lived with the family of De Pressense. The influence of Edmond de Pressense, a pastor and large-minded theoiogian, and of Madame de Pressense, a woman of superior inteilect and refined feeling, who devoted her life to educational works and charity, made a great impres. sion on him. In 5865 he left the ecole normale suptrieure, and went to Germany, where he studied at Gottingen and Berlin. The teaching of George Waitz defnitely directed his studies towards the history of the middle ages. Returning to France in 1868 he was nominated by V. Duray to give lectures on history, following the method used in German seminaries, at the scolc det hautes thades. When the Franco-Prussian War broke out, Gabrici Monod, witb his cousins, Alfred and Sarah Monod, organizod an ambulence with which he followed the whole campaign, from Sedan to Mans. He wrote a small book of memoirs of this campaign, Altemaxds at franfois (3gyi), in which he spoke of the conquerors without biteerness; this attitude was all the more praiseworthy as his mother was an Alsatian, and he was unable to resign himelf to the loss of Alsace and Lorraine. The war being over he returned to teaching. At this period of his bife ho wrote Gregoire de Tours at Marius d'Avenche (1872); Fredtgaire, whose history, taken from original MSS., he published in $\mathbf{2 8 8 5}$; a translation of a book of W. Junghans, H istoire crilique das règmas de Childerich et de Chlodoncch, with introduction and notes (1879); Eludes critiques sur les sources de l'histoire carolingianme (1898 , 1st part only published); and Bibliographie de l'histoire de France (1888). He himself said that his pupils were his best books; he intended to teach them not so much new facts as the way to study, endeavouring to develop in them ap idea of criticism and truth, They showed their gratitude by dedicating a book to him in 1896, Efudes d'hisloire du moyen dges and after his retisement in ipos by having bis features engraved on a slab (see $\boldsymbol{\lambda}$ Gabrid

Monad, em sownenir de somenstignoment doois presique des hasken tiudes, 1868-1905, ecole normale suptrieure, r8So-1904. May 26, 1007). In 1875 he founded the Reope Historigue, which rapidly became a great authority on scientific education. Some of his articles in this and other pertodicals have been put together in book form, Les Matires de l'histoive: Renan, Taine, Micheles (1894); Poriraus ef sonvenirs (1897: on Hugo, Fustel de Coulanges, V. Duruy, \&c.).

MONODELPHIA (i.e. "single uterus,"-in sllusion to the fusion of at least the basal portions of this organ, and in contradistinction to their duality in the Didelphis, or Marsupialia), Cuvier's name for the group which includes all the orders of mammals (See Manmalia) except the Marsupialia and Monotremata; other tinles for this group being Placentalia and Eutheria. With the Monotremata (q.e.) this group has no near affinity; and while more mearly related to the Marsupialis (g.v.), in which an imperfect allantoic placenta is sometimes developed, it is broadly distinguished therefrom by the isvariable presence of a functional placenta by the aid of which the foetus is nourished throughout the greater portion of intra-uterine life. Other distunctive features by which marsupials are separated from monodelphians or placentals will be found in the article last mentioned.
(R. L. ${ }^{*}$)

MONOGENLST8, the term applied to those isnthropologists who claim that all mankind is descended from one original stock (μ bpos single, and yevos, race), and generally from a single pair; while polygenists (π anis, many) costend that man has had many original ancestors. Of the older school of scientific monogenists J. F. Blumenbach and J. C. Prichard are eminent representatives, as is A. de Quatrefages of the more modern. The great problem of the monogenist theory is to explain by what course of variation races of man so different have sprung from a single stock. In ancient times titule diffculty was felt in this, authorities such as Aristotle and Vitruvins seeing in climate and circumstance the natural cause of racial diferences, the Ethiopian having been blackened by the tropical sun, dec. Later and closer observations, however, have shown such influences to be, at any rate, far slighter in amount and slower in operation than was supposed. M. de Qualrefages brings forward (Unilt de l'espese humaine, Paris, 1861, ch. 13) his strongest arguments for the variability of eaces under change of climate, \&c. (action $d m$ nilieu), instancing the asserted alteration in complexion, constitution, and character of negroes in America, and Englishmen ia America and Australia. But although the reality of some such modification is not dispured, especially as to stature and constitution, its amount is not enough to countervail the remarkable permanence of type displayed by races ages after they have been transported to climeles entremely different from that of their former homes. Moreover, physically different races, such as the Bushmen and the pure negroid types in Africa, show no signs of approximation under the influence of the same climste; on the other hand, the coast tribes of Tierra del Fuego and forest tribes of tropical Brazid continue to resemble each other, in spite of extreme differences of climate and food. Darwin, than whom no naturalist could be more competent to appraisc the variation of a species, is moderate in his estimation of the changes produced on races of man by climate and mode of life within the range of history (Descery of Man, pt. i. chs. 4 and 7). The sligheness and slowness of variation in human races having been acknowledged, a great difficulty of the monogenist theory was seen tolie in the shortness of the chronology with which it was formerly associated. Inasmuch as several well-marked races of mankind, such as the Egyptian, Phoenician and Ethjopian, .were much the same threc or four thousand years ago as now, their variation from a single stock in the course of any like period could hardly be accounted for except by a miracle. This difficulty was escaped by the polygenist theory (see Georges Pouchet, Plurality of the Human Roce, 1858, and ed., 1864, Introd.). Two modern views have, however, intervened which have tended to reatore, though under a new aspect, the doctrine of a single butan stock. One has been the recognition of the fact that man has
existed during a vast period of time, which has made it easier to assume the continuance of very slow natural variation of races. The other view is that of the evolution or development of species. It does not follow necessarily from a theory of evolution of species that mankind must have descended from a single stock, for the hypothesis of development admits of the argument that several simian species may have culminated in several races of man (Vogt, Lectures on Man, London, 1864, p. 463). The general tendency of the development theory, however, is against constituting separate species where the differences are moderate enough to be accounted for as due to variation from a single type. Darwin's summing up of the ovidence as to unity of type throughout the races of mankind is as distinctly a monogenist argument as those of Blumenbach, Prichard or Quatrefages:-
" Although the existing races of man differ in many respects, as in colour. hatr, chape of skull, proportions of the body, \&c., yet if their whole organization be taloen into consideration they are found to resemble each other closely in a multitude of points Many of these are so unimportant, or of so singular a nature, that it is extremely improbable that they should have been independently acquired by aboriginally distinct species or races. The same remark holds good with equal or greater force with respect to the numerous points of mental similarity between the most distinct races of man. - Now when naturalists observe a close agreement in numerous mall details of habits, tastes and dispositions, between two or more domestic races, or between nearly allied natural forms, they use this fact as an argument that all are descended from a common progenitor who was thus endowed, and, consequently, that all should be classed under the same species. The same argument may be applied with much force to the races of man." (Descent of Man, pt. L.ch. 7.)

A suggestion by A. R. Wallace has great importance in the application of the development theory to the origin of the various races of man; it is aimed to meet the main difficulty of the monogenist school, how races which have remained comparatively fixed in type during the long period of history, such as the white man and the negro, should have, in even a far longer period, passed by variation from a common original. Wallace's view is substantially that the remotely ancient representatives of the human race, being as yet animals too low in mind to have developed those arts of maintenance and social ordinances by which man bolds his own against influences from climate and circumstance, were in their then wild state much more plastic than now to external nature; so that "natural selection" and other causes met with but feeble resistance in forming the permanent varieties or races of man, whose complexion and structure still remain fixed in their descendants (Contributions to the Theory of Natural Sclection, p. 319).

MONOGRAI (from Late Lat. monogramma, it Late Gr. $\mu о \nu \quad \gamma \rho a \mu \mu \nu \nu$, from $\mu \delta \nu 0 s$, single, $\gamma \rho \alpha \mu \mu a$, letter), originally a cipher consisting of a single letter, now a deslgn or mark consisting of two or more letters lntertwined together. The letters thus interlaced may be either all the letters of a name, or the initial letters of the Christian and surnames of a person for use upon note-paper, seals, \&ic. Many of the carly Greck and Roman coins bear the monograms of rulers for whom or the downs in which they were struck. The Late Latin and Greek words were first applied to the signatures, which took this form, of the emperors of the Eastern Empire. The signatures
 of the Frankish kings also took the form of a monogram. The accompanying monogram, from a coin of Charles the Baid, is a good example of a "perfect" monogram, in which all the letters of the pame Karolus can be traced (see Diplowatic and Autograpa). The most famous of monograms is that known as the "Sacted Monogram," formed by the conjunction of the two initial letters of Xpuarbs, Christ. The most usual form of this is the symbol P, and sometimes the a (alpha) and ω (omega) of the Apocalypse were placed on either side of it. The symbol was incorporated in the Labarsm ($q .0$.) when the imperial standard was Christianized. The interlaced LH.S. (also called "The Sacred Monogram") apparently possesses no great antiquity; it is said to have been the
creation of St Bernard of Siena In the middle of the $\mathbf{1 5 t h}$ century. Monograms or ciphers were often used by the carly printers as devices, and are of importance in fixing the identity of early printed books. Similar devices have been used by painters and engravers. The middle ages were, indeed, extremely prolific in the invention of ciphers alike for ecclesiastical, artistic and commercial use. Every great personage, every possessor of fine taste, every art ist, had his monogram. The mason's mark also was, in effect, a cipher. As the merchant had as a rule neither right nor authority to employ heraldic embiems, he therefore fell back upon plain simple letters arranged very much in monogram form. These "merchants' marks " generally took the form of a mbnogram of the owner's initials toget her with a private device. They nearly always contain a cross, cit her as a protection against storms or other catastrophes, or as a Christian mark to distinguish their goods from Mahommedan traders in the East. There is a fine example of a 16 th century gold ring with a merchant's mark in the British Museum. One of the most famous of secular monograms is the interlaced "H.D." of Henri II. and Diane de Poitiers. Upon every huilding which that king erected it was sown profusely; it was stamped upon the buildings in the royal library, together with the bow, the quiver and the interlocked crescents of Diana. It has been argued that "H.D." is a misreading of "H.C.," which would naturally point to hushand and wife; but the question is set at rest by thie fact that Henri II. sometimes signed his letters to Diane with this very monogram. Henri IV. invented a punning cipher for his miftress Gabrielle d'Estrees, the surname being represented by a capital S. with a trait, or stroke through it.
See F. Builliot, Dictionnaire des monogrammes (1832-1834, 3 parts); G. K. Nagier, Die Monogrammister (1857-1876, 5 parts) ; Kis. Paquot, Dictionnaire oncyclopedique des marymes el monagrammes, chiffres, \&s. (1893): also Du Cange, Clossarixm (s.o. Monogramma), with plates giving examples of the monograms of early popes, the emperors of the Western Empire, and of other kings.

MONOLOGUE (from Gr. $\mu \delta \nu o r$, alone, and $\lambda \delta$ yos, speech), a passage in a dramatic plece in which a personage holds the scene to himself and speaks unconsciously aloud. The theory of the monoiogue is that the audience overhears the thoughts of one who believes himself to be alone, and who thus informs them of what would otherwise be unknown to them. The word is also used in cases when a character on the stage speaks at great length, even though not alone, hut is listened to in silence by the other characters. The old-fashioned tragedies of the 17 th and isth centuries greatly affected this convention of the monologue, which has always, however, been liable to ridicule. There is something of a lyrical character about the monologue in verse; and this has been felt by some of the classic poets of France so strongly, that many of the examples in the tragedies of Corneille are nothing more or less than odes or cantalas. The monologues of Shakespeare, and those of Hamlet in particular, have a far more dramatic character, and are, indeed, essential to the development of the play. Equaily important are those of Racine in Phedre and in Athalie. The French critics record, as the most ambitious examples of the monologue in two centuries, that of Figaro in Beaumarchais's Le Mariage de Figaro and that of Charles V. in Victor Hugo's Hernoni, the latter extends to 160 lines. In the Elizabethan drama, the popularity of Kyd's Spanish Tragedy, in which Hieronymo spouts interminahly, set a fashion for ranting monologues, which are very frequent in Shakespeare's immediate predecessors and contemporaries. After 1600 the practice was much reduced, and the teadency of solitary heroes to pour forth columns of blank verse was held in check hy more complex slage arrangements. After the Restoration the classle tragedics of the English playwrights again abused the privilege of monologue to such a degree that it became absurd, and fell into desuel pida.

MONONOTAPA. In old maps of south-east Africa, derived originally from Portuguese and from Dutch sources, an extensive region on the Cuama or Zambezi and to the south of it is styled ragrum monomotapoce. The precise character of the kingdom or empire to which allusion is made has been the subject of much discussion, and some modern historians have gone so fir
as to rolegate the monomotapa to the realm of myth. But such scepticism is unjustifiable in view of the perfect unasimity with which, in spite of variations of detail, all Portuguese writers from the beginning of the 16 th century onwards reiterated the assertion that there was a poweriul rube known lar and wide by that tille.
The word "monomolapa" is of Bantu origin and has been vatiously interpreted. Father J. Torrend, Compurative Grammar of the Soutk African Banu Languages (p. rot) renders it "Lord of the water-elephants," and remarks that the hippopotamus is even to the present day a sacred animal among the Karanga. The earlicst recorded bearer of the narre is Mokomba Menamotapam, mentioned by Diogo de Aleaçova in 1506 as father of the Kiwesaringo Menamotapam who ruled at that date over Vealanga, a large kingdom that included Sofalo. His capital was called Zumubany, an obvious corruption of the term "Zimbabwe." regularly uscd to describe the residence of any important clief. The title is still found during the $18 t b$ century, but had probably become extinct by the beginning of the soth if not earlier. Possibly its use was not confined to a single tribal section, occurring as it does in conjunction with the distinct dynastic names of Mlokomba and Mambo, but the Karanga is the only tribe to which the Portuguese chroniclers attribute if. The latter, indeed, not only refer to the territory and the people of the monomotapa as "Mocaranga " (i.e of the Karanga tribe), but explicilly assert that the "emperor" himeclf was a "Mocaranga." Consequently, he must have been a negro, and the Dominican who records the baptism of Dom Filippe by a friar of the order in the middle of the 17 th century actually states that this "powerful king" was a black man (" oom as carnes pretas "). This alone would be sufficient to controvert the bascless assumption that there existed in southern Rhodesia a ruling caste of different racial origin from the general Bantu population. The events following on the murder of the Jesuit father Dom Gonçnlo da Silveira (ct. Lusiads X. 93) sufficiently demonstrate that the monomotapa, though susceptible to the persuasion of forcigners, was an independent potentate in the 16th century. The state and cercmony of his court, the number of his wives, and the order and organization of his officials, are described by several of the chroniclers.
It is difficult to arrive at an estimate of the extent of territory over which this great negro chief exercised direct or indirect control. The most extravagant thcory is naturally that which was expressed by the Portugucse advocates in connexion with the dispute as to the ownership of Delagoa Bay. The crown of Portugal based its case against England on the cession of territory contained in a well-known treaty with the monomotapa (1629), and stated that this monarch's dominions then extended nearly to the Cape of Good Hope. A more moderate and usual view is given by Diogo de Couto, who in 1616 speaks of "a dominion over all Kallraria from the Cabo das Correntes to the great river Zambezi." Several 17 th -century writers extend the "cmpire" to the north of the Zamberi, Bocarro giving it in all " a circumference of more than three hundred leagues." It was "divided among petty kings and other lords with fewer vassals who are called inkosis or fumos." According to these authors, however, including Dos Santos, the paramountey of the monomotapa was impaired in the 17 th century by 2 scrics of rebellions. His zimbabwe, wherever it may have been in enrlier days, was now fixed near the Portuguese fort of Masapa, only a short distance south of the Zambezi. A Portuguese garrison was maintained in it, and the monarch himself from the year 1607 onwards was little more than a puppet who was generally baptized by the Dominicans with a Portuguese name.
The only authoritics of value are the original Portugucse documents collected, translated and codited by G. McC. Theal under the Bie Rtcords of Somule Eastern Africa, (9 rois, London, $3898-1 g{ }^{\circ} 3$). Reference may be made to A. Wilmor's Momomplapa (London, $1 \mathrm{dq6}$). which is, however, 10 a large extent supersedod by Theal's far richer collection of material.
(D. R.-M.)

CORONGAHELLA, 2 city of Washington county, Pennsylvanis, U.SA., on the Monongahele river, 3 r m . by rail S. of

Pittsburg. Pop. (1890), 4096; (1900), 5173 (7x forelign-born and 345 negroes); (1910) 7598. It. is served by the Pennsylvania and the Pittsburg \& Lake Erie railways, and by electric railways to Pittsburg and Washington. Pa_{2} Monongabela is in a coal region, and the mining of coal is its principal industry. It was laid out as a town in 1792 by Joseph Parkinson, and named by him Williamsport; but it was commonly known as Parkinson's Ferry unil 1833 , when it was incorporated as a borough. Four ycars later the present mame was adopted, and in 1873 Monongahela was chartered as a cily. It was here that the Whisky Insurrection convention met on the $14 \mathrm{t}^{\mathrm{h}}$ of August 1794.

MONOPHYSITES (Gr. pavoфurital), the name given to those who bold the doctrine that Christ had but one (ubvos) composite noture (фiots), and especially to those who maintained this position in the great controversies of the 5 th and 6th centuries. The synod of Chalcedon (q.v.) in 451, following the lines of Pope Leo I.'s famous letter, endeavoured to steer a middle course bet ween the so-called Nestorian and Eutychian positions. But the followers of Cyril of Alexandria, and with them those of Eutyches, saw in the Chalcedon decree of two natures only another form of the "Nestorian " duality of persons in Christ, and rose everywhere in opposition. For a century they were a menace not only to the peace of the Church but to that of the empire.
The first stage of the controversy covers the seventy-five years between the council of Chalcedon and the accession of Justinian in 527. In Palestine the fanatical monks led by Theodosius captured Jerusalem and expelled the bishop, Juvenal. When he was restored, after an exile of twenty months, Theodosius fled to Sinai and continued his agitation among the monks there. In Alcxandria an insurrection broke out over the supersession of the patriarch Dioscurus by the orthodox Proterius, who was killed during the struggle. Timothy Aelurus was chosen hishop, and a synod which he called was so powerful as to impress even the emperor Lco I. at Constantinople, who, however, deposed him as well as Peter Fullo, who at Antioch had usurped the see of the orthodox bishop DIartyrius. The short reign of Basiliscus (474-476) favoured the Monophysites, but the restoration of the rightful emperor Zeno marked an attempt at conciliation. On the advice of Acacius, the energetic patriarch of Constantinople, Zeno issued the Henotikon edict (482), in which Nestorius and Eutyches were condemned, the twelve chapters of Cyril accepted, and the Chalcedon Dcfinition ignored. This effort to shelve the dispute was quite in vain. Pope Fclix III. saw the prestige of his see involved in this slighting of Chalcedon and his predecessor Leo's epistle. He condemned and deposed Acacius, a proceeding which the latter regarded with contempt, but which involved a breach between the two sces that lasted after Acacius's death (489), through the long and troubled rcign of Anastasius, and was only healed by Justin I. in 519. The monophysite causc reached its crowning point in the East when Severus was 'made bishop of Antioch in 513. This man was the stormy petrel of the period. A lav student who had been converted from paganism, he became a monophysite monk at Alexandria. Expelled from that city in 513 , he went with bis followers to stir up strife in Constantinople, and succeeded in bringing about the deposition of the orthodax bishop, Macedonius, and of Flavian, bishop of Antioch. But Severus himself was deprived in 518: he went back in Alexandria, and became leader of the Phthartolatrai (see below), a subsection of the Monophysites.

Justin I. was only a toof in the hands of his nephew Justinian, who sided with the orthodox and brought about the reconciliation between Rome and Constantinople. In Jerusalem, Tyre, and other centres also, orthodoxy was re-established. In Egypt, bowever, monophysitism was as strong as ever, and soon at Constantinople the arrogance of Rome caused a reaction, led by Theodora, the wife of the new emperor Justinian (527 565). Justinian himself, with the aid of Leontius of Byrentium (c. 485-543), a monk with a decided turn for Aristotelian logic and metaphysics, bad tried to reconcile the Cyrillian and

Chalcodonian positions, hut he inclined more and more towards the monophysite view, and even went so far as to condemn hy edict three teachers (Theodore of Mopsuestia, Theodoret, the opponent of Cyril, and Ibas of Edessa) who were offensive to the monophysites. The Eastern hishops subscribed these edicts, and even Pope Vigilius yielded, in spite of the protests of the Western bishops, and at the sth General Council (Constantinople, 553) agreed to the condemnation of the "three chapters"" and the anathematizing of any who should defend them by an appeal to the Definitions of Chalcedon. In the last years of his life (565) the emperor adopted the extreme Aphthartodocetae position, and only his sudden death prevented this being forced on the Church. His successor, Justin LI. took no action either way for six or seven years; and then instituted a quiet hut thorough system of suppression, closing monophysite churches and imprisoning their bishops and priests.
Meanwhile monophysitism had split into several factions. Of these that represented by Severus stood neavest to the Christology of Cyril. Their objection to Chalcedon was that it was an innovation, and they fully acknowledged the distinctness of the two natures in Christ, insisting only that they became indissolubly united so that there was only one
 Harnack points out, "there is no trace of a dieological difference hetween Severus and Leontius," only a difference of terminology and of degree of willingness to assent to the formula of Chalcedon. Severus laid such stress on the human infirmities of Christ as proving that His body was like ours, created and corruptible ($\phi \theta$ aprob) that his opponents dubbed him and his followers Phihartolatrae-worshippers of the corruptible. ${ }^{2}$ The school of Themistius of Alexandria extended the argument to Christ's human soul, which they said was, like ours, limited in knowledge. Hence their name Agnoetae and their excommunication.

An opposite tendency was that of the Aphthartodocetae or Phantasiastac, represented by Julian, bishop of Halicarnassus, and, in his closing days, by Justinian. They beld that Christ's hody was so inseparably united with the Logos as not to be consubstantial with humanity; its natural altributes were so heightened as to make it sinless and incorruptible. An extreme school, the Aktistetae or Gaianists (Gaianus was bishop of Alexandria c. 5°) even beld that from the moment the Logos assumed the body the latter was uxcrected, the human being transmuted into the divine nature; and the Adiaphorites went still further, denying, like Stephen Barsudaili, an Edessan ahbot, all distinction of essence not even between the manhood and the Godhead in Christ, but between the divine and the human, and asserting that "all creatures are of the same essence with the Creator."
A third variety of monophysitism was that known as Theopaschitism, a name given to those who accepted the formula that in the death of Christ "God had suffered and been crucifed." Peter Fullo introduced these words into the Trishogion, and after much controversy the council of Constantinople (553), while disallowing this, gave its sanction to the similar statementмnum crucifiкum esse ax samcla el consubstantiali Trinitate. The devolopment of this line of thought led in some thinkers like John Pbilopanus to a kind of tritheism.

There is no douht that the disintegration caused by monophysitism largely facilitated the rapid and easy victory of Islam in Syria and Egypt. The "ethical complement" of monophysitiom is monothelitism (see Monothehies).
See the Histories of Dogma by A. Harrack, F. Loofs and R. Secberg; also R. L. Ottiey, fhe Docirine of ihe Incarnation.

MONOPOLS, a scaport town and episcopal see of Apuliz, Italy, in the province of Bari, from which it is 25 m . S.E. by rail, 30 ft above sea-level, Pop. (1901), 22,616. The medieval
${ }^{1}$ I.e. (t) The person and writings of Theodore of Mopevestia. (a) the writings of Theodoret in detence of Nouloriun, (3) the letter witten by Ibas to the Persian Maris.
${ }^{2}$ \&aperó, corruptible, from deciour. destroy.
walls are preserved and the caste dates from 2.553. The barbour is small, the principal trade being in agricultural products. Close to it are rock-bewn tombs, possibly belonging to the ancient Gnathia (q.0.).
 from μ vos, alone, and $\pi \omega \lambda \in i v$, to sell), a term which, though used generally in the sense of excluslve possession, is more accurately applied only to grants from the Crown or from parliament, the private act of an individual whereby he obtains control over the supply of any particular article, being properly defined as "engrossing." It was from the practice of the sovereign granting to a favourite, or as a reward for gond service, a monopoly in the sale or manufacture of some particular class of goods that the system of protecting inventions arose, and this fact lends additional interest to the history of monopolies (see Patents). When the practice of making such grants first arose it does not appear easy to say. Sir Edward Coke laid it down that by the ancient common law the king could grant to an inventor, or to the importer of an invention from abroad, a temporary monopoly in his invention, but that grants in restraint of trade were iliegal. Such, too, was the law laid down in the first recorded case, Darcy v. Allen (the case of monopolies, 1602), and this decision was never overruled, though the law was frequently evaded. The patent rolls of the Plantagenets show few instances of grants of monopolies (the earliest known is temp. Edw. III.), and we come down to the reign of Henry VIII. before we find much evidence of this exercise of the prerogative in the case of either new inventions or known articles of trade. Elizabeth, as is well known, granted patents of monopoly so freely that the practice became a grave abuse, and on several occasions gave rise to serious complaints in the House of Commons. Lists prepared at the time show that many of the commonest necessarics of life were the subjects of monopolics, by which their price was grievously enhanced. That the queen did not assume the right of making these grants entirely at ber pleasure is shown, not only by her own statements in answer to addresses from the house, but by the fact that the preambles to the instruments conveying the grants always set forth some public hencfil to be derived from their action. Thus a grant of a monopoly to sell playing-cards is made, hecause "divers subjects of able bodics, which might go to plough, did employ themselves in the art of making of cards "; and one for the sale of starch is justified on the ground that it would prevent wheat being wasted for the purpose. Accounts of the angry debates in 1565 and 1601 are given in Hume and clsewhere. The former dehate produced a promise from the queen that she would be careful in exercising her privileges; the latter a proclamation which, received with great joy by the bouse, really had hut litule effect in stopping the ahuses complained of.
In the first parliament of James I. a " committee of grievances " was appointed, of which Sir Edward Coke was chairman. Numerous monopoly patents were brought up before tbem, and were cancelled. Many more, however, were granted by the king and there grew up a race of "purveyors," who made use of the privileges granted them under the great seal for various purposes of extortion. One of the most notorious of these was Sir Giles Mompesson, who fed the country to avoid trial in 1621. After the introduction of several bills, and several attempts by James to compromise the matter by orders in council and promises, the Statute of Monopolies was passed in 1623. This made all monopolies illegal, except such as might be granted hy parliament or were in respect of new manufactures or inventions. Upon this excepting clause is huilt up the entire English system of letters patent for inventions. The act was strictly enforced, and by its aid the evil system of monopolies was eventually abolished. Parliament has, of course, never exercised its power of granting to any individual exclusive privileges of dealing in any articles of trade, sach as the privileges of the Elizabethan monopolists; hut the licences required to be taken out by dealert in wine, spirits, tobacco, \&ec., are Uneal descendants of the old monopoly grants, while the quasi-monopolies enjoyed by
railways, canals, gas and water companies, \&c., under acts of parfiament, are also representative of the ancient practice.
See W. H. Price, The English Patents of Monopoly (1906).
MONOTHELITES (μ оуofe入र̂тau, monothelitae, from Gr. μ bvos, only, akdety, to will), ${ }^{1}$ in Church history, the name given to those who, in the 7 th century, while otherwise orthodox, maintained that Christ had only one will. Their effort, as defined by Dormer, was "an attempt to effect some kind of solution of the vital unity of Christ's person, which had been so seriously proposed by monophysitism, on the basis of the now firmly-established doctrine of the two natures." The controversy had its origin in the efforts of the emperor Heraclius to win back for the church and the empire the excommunicated and persecuted Monophysites or Eutychians of Egypt and Syria. In Egypt especially the monophysite movement had assumed a nationalistic, patriotic character. It was in Armenia, while on his expedition against Persia, in 622 that, in an interview with Paul, the bead of the Severians (Monophysites) there, Heraclius first broached the doctrine of the pia evipyeta of Christ, i.e, the doctrine that the divine and human natures, while quite distinct in His one person, had but one activity and operation. ${ }^{2}$ At a somewhat later date he wrote to Arcadius of Cyprus, commanding that " two energies" should not be spoken of; and in 626, while in Lazistan (Colchis), he had a meeting with the metropolitan, Cyrus of Phasis, during which this command was discussed, and Cyrus was at last hidden to seek further instruction on the subject from Sergius, patriarch of Constantinople, a strong upholder of the $\mu i a^{2}$ evepycia, and the emperor's counsellor with regard to it. So well did he profit by the teaching he received in this quarter that, in 630 or 631, Cyrus was appointed to the vacant patriarchate of Alexandria, and in 633 succeeded in reconciling the Severians of his province on the basis of $\mu[a \quad \theta \in a v \delta p ı к\rangle$ Evépyesa (one divine-human energy). He was, however, opposed by Sophronius, a monk from Palestine, who, after vainly appealing to Cyrus, actually went to Constantinople to remonstrate with Sergius himself. Sbortly afterwards Sergius wrote to Pope Honorius, and received a friendly reply: Sophronius, however, who meanwhile had been made patriarch of Jerusalem (634), refused to be silenced, and in his Epistola synodica strongly inslsted on the "two energies.". So intense did the controversy now become, that at last, towards the end of 638, Heraclius published an Ecthesis, or Exposition of the Faith (composed by Sergius), which prohibited the use of the phrase " one energy," because of its disquieting effects on some minds, as seeming to militate against the doctrine of the two natures; while, on the other hand, the expression "two energies" was interdicted because it seemed to imply that Christ had two wills. Tlrat Christ had but one will was declared to be the only orthodox doctrine, and all the faithful were enjoined to hold and teach it without addition or deduction. The document was not acceptable, however, to Popes Severinus and John IV., the immediate successors of Honorius; and Maximus, the confessor, succeeded in stirring up such violent opposition in North Africa and Italy that, in 648, Constans II. Judged it expedient to withdraw his grandfather's edict, and to substitute for it his own Typus or Precept (firtos $\pi \in \rho \frac{1}{}$ riarews), forbidding all discussion of the questions of the duality or singleness of either the energy or the will of Cbrist. The scheme of doctrine of the first four general councils, in all lts vaguencss as to these points, was to be maintained; so far as lbe controversy had gone, the disputants on either side were to be held frec from censure, but to resume it

[^49]would involve penal consequences. The reply of the Western Church was promptly given in the unambiguously dyothelite decrees of the Lateran synod held by Pope Martin I. in 649; hut the eruel persecutions to which both Martin and Maxjmus were exposed, and finally succumbed, secured for the Imperial Typus the assent at least of silence. With the accession of Constantine Pogonatus in 668 the controversy once more revived, and the new emperor resolved to summori a general council. It met at Constantinople in 680, having boen preceded in 679 by a hrilliant synod under Pope Agatho at Rome, where it had been agreed to depart in nothing from the decrees of the Lateran synod. The will, Agatho said, is a property of the nature, so that as there are two natures there'are two wills; but the human will determines itself ever conformably to the divine and almighty will.
See R. L. Ottley, The Doctrine of the Incarnation (pt. vin. 55 5. 6, 7); A. Harnack, Hislory of Dogma, iv. 252-267; art "Monotholeten ${ }^{\text {a }}$ in Hauck-Hersog's Ralencyklop. für prok Thootogie (vol. 13). by W. Moller and C. Kriger.

MONOTRBMATA (a name referring to the- single outlet for all the excretory channels of the body), the lowest subclass of the Mammalia, represented at the present day solely by the platypus and the echidnas. It has been proposed to replace this name, when used as a subclass, by Prototheria; but it is perhaps on the whole preferable to retain it both for the subclass and for the single order by which it is now represented, distinguishing the latter as Monotremata Vera.

Existing monotremes are characterized by the following features. In the first place they differ hroadly from all other mammals in being oviparous, or possibly in the case of one family ovoviviparous; and also in the absence of mammae, or teats, the milk-glands opening on the surface of the skin of the breast by means of a number of fine pores. Moreover, the milk-glands themselves are commonly believed to represent sweat-glands and not those of other mammals, although it has been suggested that this distinction may not prove to be valid. In the strict sense of the term monotremes are not, therefore, mammals at all. Another feature in which these creatures differ from all other living mammals is the presence of a pair of coracoid bones, which articulate with the stcrnum, or breast: bone, as well as of paired precoracoids, or epicoracoids, and an unpaited T-shaped interclavicle, the arms of whieh overlie the clavicles or collar-bones. In all these respects monotremes closely resemble many reptiles. The hrain lacks a corpus cullosw m_{1} or band of nerve-tissue connecting the iwo hemispheres. Again, the bodies of the vertebrae are for the most part without terminal caps, or epiphyses; and each rib articulates to the vertebral column solcly by its head or capitulum, instead of by a capitulum and a tubereulum. More important is the circumstance that the testes, which remain throughout life within the abdominal cavity, do not discharge by means of their ureters into a urinary hladder, but into a urino-genital sinus, which is in close communication witb the lower end of the alimentary canal, so that the genital and waste products of the body are discharged by means of a cormmon tube, or cloaca -another reptilian feature, although met with in certain other mammals. As regards other soft parts, the heart has the valve dividing theright auricle and ventricle incomplete and to a great extent fleshy-a feature which may, in some degiee, account for the lower temperature of monotremes as comparod with higher mammals: The presonce of an anterior abdominal vein, on et least fts' supporting membrane, , running right thrdugh the abdominal cavity, is another distinctive fatate of the group. Of tese importance is the presence of a pair of epipubic, of marsupial, bones attached to the front edge of the pelvis. The females have a complote or rodimentary pouch on the abdomen.
In the presence of hair, the relatively high temperature of the blood, the abecnee of nuclei to the red blood-corpasctes, and the existence of only the teft sortic arch, as well as in the absence of a meparate quadrate-bone, and the simple structure of the lower jaw, monotremes conform to the ordinsty mammalian type. On the other hand the skull of the platypas possesses a pecutiar " dunbbell bone," believed to rapresent the reptilian prevomer.

Tha females produce theis young from eggs, which are relatively large, and develop in the same manner as those of birds and reptiles, 2 portion only of the yolk segmenting to form the embryo, while the remainder serves for the nutriment of the lacter. In the cave of Orn ithorhynchus it has been said that two eggs are laid in the chamber at the end of the burrow,' but those of the Echidnidae are carried about in the pouch on the abdomen of the femate, which beoomes enlarged during the cine of incubation. In the adur state neit her of the living groups of Monotremata have teth Sout this is evidentiy only a specialized feature, the young platepus hasing functional teeth. In the latter, three pairs of these tecth are developed in the upper, and three in the lower jaw: but after being for some time in uee, they gradually become worn away, and ave finally shed. Under and around the teeth are developed the horny plates, or "cornules." which gradually grow round them and assume their function, the hollows on the surface of the cornules indicating the positions α the tet:h. In form these teeth make a distant approxination to the molars of some of the extinct Multitubercutata ($0, v$).
A peculiarity of the nales is the presence in the hind-limb of an additional, flat, curved ossicle on the hinder and tibial side of the plantar aspect of the earsus, articulating chiefly to the tibia, supportlng in the adult a sharp-pointed perforated horny spur, with which is connceted the duct of a gland situated beneath the skin of the lack of the thigh. (A rudimentary spur is found in the young female Ornitherhynchus, but this disappears when the animal lecomes adule.) The st-thach is sub-globular and simple; the alimentary canal has no ileo-canical valve, or marked distinction between large and small intestins, hut is furnished with a small, slender vermiorm caecum with glandular walls. The liver is divided into the usual number of lobes, and is provided with a gali-bladder.
The trunk-vertebrae are nineteen in number. The transwme processes of the cervical vertebrae are independently developxd, and remain suturally connected with the bodies of the vertelone mil the animal is full-grown. Though in this respect monotremes ite uent an approximation to reptiles, they differ in that there is no: a gradual transition from these transverse processes of the neck-vertebrae (ar cervical ribz, as they may be considered) into the thom cic ribs. for in the meventh vertcbra the custal element is much smaller than in the ocher, indicative of a very marked meparation of neck from thorax, mot seen in reptiles. The sternal ribs are well ossified, and there are distinct, partly ossifed, intermediate rihs, The brain: cavity, unlike that of the lower marsupials or reptikes, is large and hemispherical, flattened below, arched above, and about as broad aa long. The cribriform plate of the ethmoid ia nearly horizontal. The cranial walla are very thin, and smoothly rounded extermally. and the suturee beeome completely obliterated in advita. The broed occipital region slopes upwards and forwards, and the face is produced into 2 long depressed beak. The bony palate is prolonged beckwards, so that the posterion nares are nearly on at level with the glenoid lossa. The lower jaw, or mendible, is without distinct acoending manus; the coronoid process and angle being rudimentary, and the two halves loosely connected at the symphysis. Thé fibula has a broad. flattened process, projecting from its upper extremity above the articulation, like an olecranon.

The first family, Orizithorhynchidoe, is represented solely by the duck-hilled platypus, or platypus (Ornithorhynchus analinus), in which the hemispheres of the brain are relatively small and smooth, while the muzule is expanded to form a spatula-like beak, covered during life with a delicate sensitive skin, which dries in museum-specimens to a horny consistency, Although, as mentioned above, functional teeth are developed in the young. in the adult their function is discharged by "cornules," or borny stuctures-elongated, narrow and sharp-edged, along the anterior part of the sides of the mouth, and broad. flattopped or molariform behind. The legs are short and adapted for swimming; the foet webbed, each with five well-de veloped toes armed with large claws, and beyond which in the fore-feet the interdigital membrane is extended. Vertebrac: C. 7, D. 17. L. 2, S. 2, Ca. 21. Acetabulum of pelvis not periorated. Tongue not extensile. Mucous membrane of small intestine covered with delicate, closeset transverse folds or ridges. Tail rather short, broad, and depressed. Eyes very small. Fur close and soft.

The platypus, or water-mole, is common to Australia and Tasmania, and entircly aquatic in habits, diving frecly, and making its burrow in the river-banks. It ieeds on insects, snails, small bivalve molluscs, and worms. In the adult state bivalves form its chief food; and it is believed that the substitution of horny plates for brittle tecth is an adaptation for cracking the shells of, these creatures, (See Platypus.)

1 Thére does not appear to be authentic evidence that the edgo in this genus are petually laid. (Sec Puatypus.t

The second family, Echidwidax; hat a wider geperaplical distribution, including Australia, Tasmania and New Guinea, and is represented by two genern. The hemispheres of the brain are large and convoluted; and the musele is produced into a long, tapering, tubular beak, at the end of which the nostrils are situated. The two branches of the lower-jaw are siender and rod-like. Opening of mouth small, and placed below the extremity of the beak. No tecth, though the palate and tongue are furnished with spines. Tongue very long, vermiform, slender and protractile. Liaing membrane of small intestine villous, but without transverse folds. Feet with long strong claws for acratching and burcowing. The hind-feet with the ends of the toes turned outwards and backwards in the ordinary position of the animal when on the ground. Tail very short. Acetabulum with a large perforation. Calcanead spur and gland of the male much maller than in Ornithorhynclus. Fur intermized with strong, sharp-pointed spines. Terrestrial and fossorial jo habits, feeding exclusively on ants.

The typical genus Edridna is represented by the echidna, or porcupime-anteater (E. aculeata), which has a distribution

Bruija's Echidna (Proschidea bruijmi).
equivalent to that of the family, and includes sevaral local races. It is characterized by the presence of five claws to each foot, the moderately long and straight beak, the tapering tongue, with its spines restricted to the basal portion, and the vertebrae numbering C. 7, D. 16, L. 3. S. 3, Ca. 12. In Proechidna, represented by the larger P. bruijni and P. migracculeaks, both from New Guinca, on the other hand, terminal phalanges and claws are present only on the three middle toes of each foot, the tongue is somewhat spoon-shaped and carrics three rows of spines along its upper surface, and there arc 17 dorsal and four lumbar vertebrae. (See Echidna.)

At present no light is shed by palaeontology on the past history of the Monotremata Vcra. Species of Echidna and Ornilhorhynchus have indeed been described from the superficial formatlons of Australia, but they apparently differ in no structural details from their existing representatives.
Possibly some of the extinct Jurassic mammals with a marsupial or insectivorous type of dentition referred to in the article Marsupialia may be monotremes, but there is mo definite evidence that this is the casc. On the other hand, there is a possibility that another extinct group of mammals; dating from the Trias and continuing till the Lower Eocene; may belong to the present subclass, of which they form a secoind order. (See Multituberculata.)
The most importart recent information with regard to the Monotremata will be found in Dr R. Semoo's Reise in Australien, in the Demksohrifl of the Jena Natural History Society.
(R. L*)
(10NOPRIGLYPH, in architecture, the interval of the intercolumniation of the Doric column, which is ohserved by the intervention of one triglyph only between the triglyphs which come over the axes of the columns.' 'This is the usual arrangement, but in the Propylaca at Athens there are two triglyphs over the central intercolumniation, in order to give increased width to the roadway, up which chariots and beasts of sacrifice ascended.
NOMOTYPIC (Gr. μ opos, alone single, and rimos, a type), a term used in biology. \&c., for subjects having only ope expmernt, for examplo a getus containtig oraly one species.

Lomarals (contriction of monto-reale, so called from a palace built here by Roget I.), a town of Sicily, in the province of Palermo, 5 m . inland (W.S.W.) from it, on the slope of Monte Caputo, overlooking the beautiful and very fertile valicy called "La Conca d'oro" (the Golden Shell), famed for its orange, olive and almond trees, the produce of which is exported in large quantities. Pop. (1901), 17,379 (town); 23,556 (commune). The town, which for long was a mere village, owed its origin to the founding of a large Benedictine monastery, with its church, the seat of the metropolitan archbishop of Sicily. ${ }^{1}$ This, the greatest of all the monuments of the wealth and artistic taste of the Norman kings in northern Sicily, was begon about 1170 by William II., and in 1182 the church, dedicated to the Assumption of the Virgin Mary, was, by a bull of Pope Lucius LII., elevated to the rank of a metropolitan cathedral.

The archiepiscopal palace and monastic buildings on the soath side were of great size and magnificence, and were surrounded by a masaive precinct wall, crowned at intervals by twelve towers. This has been mostly rebuilt, and but little now remains except ruins of some of the towers, agreat part of the monks' dormitory and frater, and the splendid cloister, completed about 1200 . This last is well preserved, and is one of the finest cloisters both for size and beauty of detail now extant. It is about 170 ft . square, with pointed arches decorated with diaper work, supported on pairs of columss in white marhle, 216 in all. which were alternately plain and decorated by bands of patterns in gold and colours, made of glass tesserae, arranged either spirally or vertically from end to end of each shaft. The marble caps are each richly carved writh figures and foliage executed with great skill and wonderful fertility of invention-no two being alike. At one angic, a square pillared projection contains the marble fountain or monks' lavatory, evidently the work of Mosiem sculptors.

The church is fortunately well preserved. In plan it is a curious mixture of Eastern and Western arrangement. The nave is like an Italian basilica, while the lange triple apsed choir is like one of the carly threc-apsed churches, of which so many examples still exist in Syria and other eastern countries, it is. in fact, like two quite different churches put together endwise. The basilican nave is wide, with narrow aistes. Monolithic columns of grey oriental granite (except one, which is of cipollino), evidently the spoils of older buildings, on each side support eight pointed arches much stilied. The capitals of these (mainly Corinthian) are also of the classical period. There is no triforium, but a high clerestory with wide two-light windows, with simple tracery like those in the nave-aisles and throughout the church, which give sufficient (if anything too much) light. The other half. Eastern in two senses, is both wider and higher than the nave. It also is divided into a central space with two aisles, each of the divislons ending at the east with an apse. The roofs throughour are of open woodwork very low in pitch, constructionally plain, but richly decorated with colour, now mostly restored. Ac the west end of the nave are two projecting towers, wilh a narthex-entrance between them. A large open atrium, which once existed at the west, is now completely destroyed, having been replaced by a Renaissance portico. The outside of the church is plain, exoept the aisle walls and three eastern apses, which are decorated with intersecting pointed arches and other ornaments inlaid in marble. The outsides of the principal doorways and their pointed arches are magnificently enriched with carving and coloured inlay, a curious combination of ehree styies-Norman-French, Byzantine and Arab.

It is, however, the enormous extent ($70,400 \mathrm{sq}$. ft.) and glitsering splendour of the glass mosaics covering the interior which make this church so splendid. With the excepilinn of a high dado, inself very beautiful. made of marble slabs with bands of mossic between them. the whole interior surface of the walls, including soffits and jambes of all the arches, is covered with minute mosaic-pictures in brilliant colours on a gold ground. The mosaic pictures are arranged in tiers, divided by honzontal and vertical bands. In parts of the choir there are five of these tiers of subjects or single figures one abowe another. The half dome of the central apse has a colossal balflength Gigure of Christ, with a scated Virgin and Child below; the other apses have full-length colossal figures of St Peter and Se Paul. Inseriptions oneach picture explain the subject or saint represented; these are in Latin, except some few which are in Greck. The subjects in the rave begin with scenes from the Book of Genesis, illustrating the Old Testament cypes of Christ and His scheme of redemption, with figures of those who prophesied and prepared for His coming. Towards the east are subjects from the New Testament,

[^50]ch:efly representing Christ's miracles and suffertng, with apostles, evangelists and other saints. The design. execution and choice of bibjects all appear to be of Byzantine origin. the subjects being eciected from the Menotogikm drawn up by the emperor Basilius Ph.rphyrogenitus in the soth century.

III the central apse aq Monreale, behind the high altar, is a fine murlle throne for the archbishop. This position of the throne is a su: vival of the carly basilican arrangenent, when the apse and altar were at the west end. In that case the celebrant stood behind the altar at mass, and looked over is eastwards towards the people. On the forth side, in from of the high altar, is another somewhat similar throne for the use of the king. The tomb of William 1., the founder's father-a magnificent porphyry sarcophagus contemporary with the church, under a marble pillared canopy-and the founder William 11. s somb, erected in 1575, were both shattered by a fire, which in 1811 broke out in the choir, injuring some of the mosaics. and destroying all the fine walnut choir-fittings, the organs, and most ol the choir roof. The tombs were rebuilt, and the whole of the injured part of the church restored, mostly very clumsily, a few years after the fire. On the north of the choir are the tombs of Mlargarec, wife of William 1., and her two sons Roger and Henry. together with an urn containing the viscera of St Louis of France, who died in 1270. The pavement of the eriple choir, though much restored, is a very magnificent specimen of marble and porphyry mosaic in opus alexandrinum, with signs of Arab influence in its main lines. The pavement of the nave, on the other hand, is of the 16 ch century. Two baroque chapels were added in the 17 th and 181h centurics, which are iortunately shut off from the rest of the charch.

Two bronze doors, those on the north and west of the church. are of great interest in the history of art. They are both divided into a number of square panels with subjects and single figurea, chiefiy from Bible history, cast in relief. That on the north is by Barisanus of Trani in southern Italy, an artist probably of Greet origin. It is inscribed barisamus tran. me fecit. The cathedrals at Trani and Ravello also have bronze doors by the same sculptor. The western door at Monreale, inferior to the northem one both in richnees of design and in workmanshlp, is by Bonannuis of Pise, for the cathedral of which place he caut the still extating bronse door on the south, opposite the teaning tower. The one at Monreale is inseribed A.D. MCLXXXYI IND. III. BONANNUS CIVIS PTSANVS ME FECIT. It is superior in exceution to the Pisan one. The door by Barisanut is probably of about the same time, at other examples of hin wort with inecribed dates show that he was a contemporary of Bonannus The effoct of the facade is not improved by the Reneissanoe portico that has been added 6 it. The monastic library containg wome valuable MSS., especially a number or bilingual documents in Greek and Arabic, the atrliest leing dated 1144 . The archbiebop now occupies the eastern part of the momstic buildingen, the original palace being destroyed.
See D. B. Gravina, Ii Duomo di Moxreate (Palermo, 1859-1865). (J. H. M.; T. As.)

MORRO, DAVID BINHING (1836-1905), English Homeric scholar, was born in Edinburgh on the 16 th of November 1836. He was a grandson of Alexander Monro, tertius (1773-1859), professor of anatomy in Edinburgh University, whose father, Alexander Monro, secundus (1733-1817), and grandfather, Alexander Monro, primus ($1697-1767$), both filled the same position. He was educated at Glasgow University, and Brasenose and Balliol Colleges, Oxford. In 1859 be was elected fellow, and in 1882 provost of Oriel, which office he held till his death at Heiden, Switzerland, on the 22nd of August 1905. He was a man of vatied attainments, an excellent lingutst, and possessed considerable knowledge of music, painting and architecture. His favourite study was Homer, and his Grammar of the Homeric Diolect (2nd ed., 8801) established his reputation as an authority on that author. He also edited the last twelve books of the Odyssey, with valuable appendices on the composition of the poem, its relation to the Iliad and the cyclic poets, the history of the text, the dialects, and the Homeric house; a critical texi of the poems and fragments (Homeri opera ef reliqwial, 1806); Homeri opera (rgo1, with T. W. Allen, in Scriplormm classicorum bibliotheca oxoniensis); and an edition of the Miad with notes for schoois. His article on Homer, wrilten for the 9th edition of the Encyclopaedia Britannica, was revised by him for this work before he died. Mention may aso be made of his Mades of Ancient Creek Music (1894), on which see Classical Revicu for December 1894, with author's reply in the same for February 1895.
See Memoir by J. Cook Wilson (Onford, 1907).
MONROB, JAMES ($1758-1831$), fifth president of the Ohited States, was born on Monroe's creek, a tribulery of the Potomed
river, in Westmoneland county, Virginia, on the 28th of April 1758. His father, Spence Monroe, was of Scotch, and his mother, Elizahech Jones, was of Welsh descent. At the age of sixteen he entered the College of Willinm and Mary, Williamsburg, Virgenia, but in 1736 be left collige to take part in the War for Independence. He enlisted in the Third Virginia regiment, in which be became a licutenant, and subsequently took part in the battles of Hartem Heights, White Plains, Trenton (where he was wounded), Brandywine, Germantown, and Monmouth. In November 1777 be was appointed volunteer aide-de-camp to William Alexander ("Lord Stirling")، with the rank of major, and thereby lost his rank in the Continental line; but in the following year, at Washington's solicitation, he recejved a commission as lieutenant-colonel in a new regiment to be raised in Virginia. In 1780 be began the study of law under Thomas Jefferson, then governor of Virginia, and between the two there developed an intimacy and a sympathy that had a powerful influence upon Monroe's later career.
In 1782 be was clected to the Virginia House of Delegites, and though only twenty-four years of age he was chosen a member of the governor's council. He served in the Congress of the Confederation from 1783 to 1786 and was there conspicuous for his vigorous insistence upon the right of the United States to the navigation of the Mississippi River, and for his attempe, in 1785 , to secure for the weak Congress the power to regulate commerce, in order to remove one of the great defects in the extstiog central governmene. On retiring from Congress he began the practice of law at Fredericksburg, Virginia, was chosen a member of the Virginia House of Delegates in 1787, and in 1788 was a member of the state convention which ratifed for Virginh tho Federal constitution. In 1790 he was elected to the United States senate to fill the vacancy caused by the death of William Grayson, and although in this body be vigorously opposed Washington's administration, Washington on the 27tb of May 1794 nominated him as minister to France. It was the bopo of the administration that Monroe's well-known French sympathies would secure for him a favourable reception, and that bis appointment would also conciliate the friends of France in the United States. His warm reception in France and his enthusiastic Republicanism, however, displeased the Federalists at home; be did nothing, moreover, to reconcile the Frencb to the Jay troaty (see Jix, Joan), which they regarded as a violation of the French creaty of alliance of 1778 and as a possible casus belli. The administration therefore decided that he was unable to represent his government properly and late in 1796 recalled him.
Mfonroe returned to America in the spring of r797, and in the following December published a defence of his course in a pamphlet of 500 pages entitied A vicu of the Conduct of the Execulive in the Foreign Afairs of the Uniled States, and printed in Philadelphia by Benjamin Franklin Bache ($1769-1798$). Washington seems never to have forgiven Monroe for this, though Monroe's opinion of Washington and Jay underwent a change in his later years. In 1799 Monroe was chosen governor of Virginia and was twice re-elected, serving until 1802. At this time there was much uneasiness in the United States as a result of Spain's restoration of Louisiana to France by the secret treaty of San IIdefonso, in October 1800; and the subsequent withdrawal of the "right cf deposit" at New Orleans by the Spanish intendant greally increased this feeling and led to muck talk of war. Resolved upon peaceful measures, President Jefferson in January 1803 appointed Monroe envoy extraordinary and minister plenipotentiary to France to aid Robert R. Livingston, the resident minister, in obtaining by purchase the territory at the mouth of the Mississippi, including the island of New Orleans, and at the same time authorized him to co-operate with Cbarles Pinckney, the minister at Madrid, in securing from Spain the cession of East and West Florida. On the 18 th of April Monroe was furt her commissioned as the regular minister to Great Britain. He joined Livingston in Paris on the rath of April, after the negotiations were well under way; and the two ministert, on finding Napoleor willing
to dispose of the eatirt provinot of Loudriamen decided to exceed their Imstructions and effect its purchase. Accordingly, on the soth of April, they signed a ureaty and two conventions, whereby France sold Louisiana so the United States (bee Louisinna Purchase). In July 1803 Monroe left Paris and enterod upoi his duties in London; and in the autuma of $x 804$ be proceeded to Madrid to assist Pinckney in his efforts to secure the definition of the Louisiana boundaries and the acquisition of the Floridas After negotiating with Don Pedro de Cevallos, the Spanish minister of foreiga afiairs, from January to May 1805 , without success, Monroe returned to London and resumed bis negotirtions, which had been interrupted by his journey to Spain, concerning the impressment of American seamen and the seizure of American vessels. As the British ministry was reluctant to discuss these vered questions, litule progress was made, and in May 1806 Jefferson ordered William Pinkney of Maryland to assist Monroe. The British government appointed Lords Auckland and Holland as negotiators, and the result of the deliberations was the treaty of the 3 ist of December $\mathbf{8 8 0 6}$, which contained no provision against impressments and provided no indemnity for the seizure of goods and vessels, In passing over these matters Moaroe and Pinkney hadd disregarded their instructions, and Jefferson was so displeaged with the treaty that he refused to present it to the senste for ratification, and returned it to England fot revision. Just as the negotiations were re-opened, however, the questions were further complicated and their setulement delayed by the attack of the British ship "Leopard " upon the Americhn frigate " Chesapeake." Monroe returned to the United States in Decermber 1807, and was elected to the Virginia House of Delegates in the spring of 1810 . In the following winter be was again chosen governor, serving from January to November 1811, and resigning to become secretary of state under Madison, a position which be held until the 3rd of March 1817. The direction of forcign affairs in the troubled period immediately preceding and during the second war with Great Britain thus devolved upon him. On the 27th of September 1814, after the disaster of Bladensburg and the capture of Washington by the British, he was appointed secretary of war to succeed General John Armstrong, and discharged the duties of this office, in addition to those of the state department, until March 18 I 5.

In 1816 Monroe was chosen president of the United States; he recelved 183 electoral votes, and Rufus King, his Federalist opponent, 34. In 1820 bo was re-clected, receiving all the electoral votes but one, which William Plumer ($\mathbf{1 7 5 9 - 1 8 5 0 \text {) of }}$ New Hampshire cast for John Quincy Adems, in order, it is said, that no one might share with Washington the honour of 2 unanimous clection. The chief events of his administration, which has been called the "era of good feeling," were the Scminole War ($\mathbf{2 8 1} 7-18$); the acquisition of the Floridas from Spain ($\mathbf{1 8 1 0}_{1}-2 \mathrm{II}$); the "Missouri Compromise" (1820), by which the first conflict over slavery under the coastitution was peacefully adjusted; the veto of the Cumberland Raad Bill (1822)' on constitutional grounds; and-most
${ }^{2}$ The Cumberiand (or National) Road from Cumbertand. Maryland, to Wheeling. West Virginia, was projected in 1806, by an appropristion of 1819 was extended to the Ohio River, by an act of 1825 (signed by Monroe on the last day of his eerm of office) was continued to Zanesville, and by an act of 1829 was extended westward from Zanesville. The appropriation of 1806 for the consiruction of the road had brought inion national pollitics the question of the authority of the Federal government to make "indernal improvements." The bill vetoed by Monroe would in effect have given to the Federal government jurisdiction over the road: and in his elaborate me morandum (May 4, 1822) accompanying his veio mescoge. Monroe dirrused al length the conatitulionsl questions involved, argued that the Federal government, was empowered by the Constiution to appropriale money for "interaal improvements." and in concert with the states through which a road was 'c pass might supervise the construction of such a road, but might nol exercise jurisdiction over it, and advocated the adoption of an amendment to the constitution giving larger power to the Fedcral government "confined to great national works only, since. if it were unlimited it would be liable to abuse, and might be productive of evil.: For the history of the Cumberland Road, see Archer B. Hulbert, The Cumberland Road (Cleveland, Ohio, 1994).

Intimately connected with Monroc's name-the enunciation in the presidential message of the and of December 1823 of what has since been known as the Monroe Doctrine (q. .v.), which has profoundly influenced the foreign policy of the United States. On the expiration of his second term he retired to his home at Oak Hill, Loudoun county, Virginic. In 1826 he became a regent of the university of Virginia, and in 1829 was a member of the convention called to amend the state constitution. Having neglected his private affairs and incurred large expenditures during his missions to Europe, he experienced considerable pecuniary embarrassment in his later years, and was compelled to ask Congress to reimburse him for his expenses in the public service. Congress finally (in 1826) authorized the payment of $\$ 30,000$ to him, and after his death appropriated a small amount for the purchase of his papers from his heirs. He died in New York City on the 4th of July 183r, while visiting his daughter, Mrs Samuel L. Couverneur. In 1858 , the centennial year of his birth, his remains were reinterred with impressive ceremonics at Richmond, Virginia. Jefferson, Madison, John Quincy Adams, Calhoun, and Benton all speak loudly in Monroe's praise; but he sulfers by comparison with the greater statesmen of his time. Possessing none of their brilliance, be had, nevertheless, to use the words of John Quincy Adams, "a mind . . . sound in its ultimate judgments, and firm in its final conclusions." Schouler points out that like Washington and Lincoln be was "conspicuous . . . for patient considerateness to all sides." Monroe was about six feet tall, but, heing stoop-shouldered and rather ungainly seemed less; his eyes, a greyish blue, were deep-set and kindly; his face was delicate, naturally refined, and prematurely lined. The beat-known portrait, that hy Vanderlyn, is in the New York City Hall. Monroe was married in 1786 to Elizabeth Kortwright (1708-1830) of New Lork, and at his death was survived by two daughters.

See The Wrilings of James Monroe (7 vols., New York, 1898-r903), edited by.S. M. Hamilton; Daniel C. Gilman, James Mormoe (Bostcu:, 1883), in the "American Statesman Series'"; R. Irelan, History of the Life, Administration and Times of James Monroe, being val. \because of his Republic (Chicago, 1887); John Quincy Adams. The Lives of James Madison and James Monroe (Buffalo, 1850); B. W. Bond, jun, Montoe's Mission to France, 1794-1706 (Baltimore, 1907): Henry Adams, History of the Uniled States (9 vols., New York, 1880-1801), containing a full but unsympathetic account of Monroc's career as i diphnatist; and James shouler, History of the United Setues, vols. if.

MONROE, a city of Louisiana, U.S.A., the capital of Ouachita parish, in the northern part of the state, on the east bank of the Ouachita river, 72 m . W. of Vicksbarg, Mississippi, and 96 m . E. of Shreveport, Louisiane. Pop. (1890), 3256; (1900), 5428 (2834 negroes); (1910), 10.209. It is served hy the Arkansas ${ }_{1}$ Louisiana \& Gulf, the Little Rock \& Moaroe, the Vicksburg, Shreveport \& Pacific (Queen \& Crescent), and the St Louis, Iron Mountain \& Southern railways, and by river stcamers plying between New Orjeans and Camden, Arkansas. Across the Ouachita is the town of West Monroe (pop. in 1910, 1127). The improvement of the river, by the removal of snags and the construction of dams and locks in order to give it a navigable depth of 10 ft . at Monroe and 61 ft . heyond Camden, was nearly completed by the United States government in 1gog. Monroe lies in a level valley, and has broad streets shaded hy live oaks. Arnong the puhlic huildings are a handsome city-hall, a city market-house, a charity hospital and a high school. There are also a parish high school and St Hyacinth's Academy (Roman Catholic). The leading industries are the manufacture of lumber and cotton products.

In 1785 , during the Spanish occupation of Louisiana, Juan Filhiol, commandant of the district of Ouachita, founded a settlement on the site of the present Monroe, which was called Ouachita Post until 1790 and then Fort Mirb, in honour of the governor-general. In 1819 the place was renamed Monroe, in honour of President James Monroc, and in the following year the town was incorporated. Monroe was chartered as a city in 1871, and received a new charter in 1902.

MONROE, a city and the county-scat of Monroe county, Michigan, U.S.A., on the Raisin river, 2 m . from Lake Erie,
near the south-eastern corner of the state. Pop. (1890), 5158; (1900), 5043; (1904), 6128; (1910), 6893. It is served by the Michigan Central, the Lake Shore \& Michigan Southern, the Pere Marquette, and the Detroit a Toledo Shore Line railways, and by electric lines to Detroit and Toledo. There is a shatue here (dedicated in igio) of Gen. G. W. Custer. Monroe has a German Altenheim and St Mary's academy and college for girls. The city has a large trade in farming-produce and fish, and various manufactures. The place was gettled in 1783 by French Canadians and calied Frenchtown. In January 1813 the inhabitants, fearing destruction from the British and their Indlan allies, pleaded to the Americans for protection, and about 660 men from the army of General James Winchester ($1752-1826$), sent from the rapids of the Maumee river, on the 18th of January drove a small British forca from the village. Three days later General Winchester arrived with 300 more men; but at dawn on the aznd Colonel Henry A. Proctor (1787-1859) with a force of British and Indians surprised the Americans, defeated their right wing, captured General Winchester and obtained from him an order for the surrender of his entire force. In 1815 Momrce received its present name in honour of James Monroe. In 1817 it was made the county-seat, and in 1827 it was incorporated as a village. It was chartered as a city in 1837 (being rechartered in 1874), and as a city of the fourth class in 1895.

MONROE DOCTRINE That the United States should avoid entangling Itself in the politics of Europe was a policy recommended by Washangton. The counterpart of this, that European powers should be prevented from taking a controlling share in the politics of the American continent, grew gradually as the importance and influcace of the United States increased. This American attitude towards the European powers became crystallized in what is known as the Monroe Doctrine, since It was first annonnced officially in a concrete form, though not originated, by President Monroe. His declaration was the result of American apprehension that the combination of European powers known as the Holy Alliance would interfere in South America to restore the Spanish colonies, which had asserted their independence, to the crown of Spain. To meet and check this movement, in his message to Congress on the and of December 1823, Monroe made the following pronouncement:-
In the wars of the European powers In matters relating to themselves we have never taken any part, nor does it comport with our policy so to do. It is only when our rights are invaded or seriously menaced that we resent, injuries or make preparations for our defence. With the movements in this hemisphere we are of necessity more immediately connected, and by causes which must be obvious to all enlightened and impartial observers. The political system of the allied powers is essentially different in this respect from that of America. . . . We owe it, therefore, to candour, and to the amicable relations existing between the United States and those powers, to declare that we should consider any attempt on their part to extend their system to any portion of this hemisphere as dangerous to our peace and safety. With the existing colonies or dependencies of any European power we have not interfered and shall not interfere. But with the governments who have declared their independence and maintained it, and whose independence we have nn great consideration and on just principles acknowledsed. we could not view any interposition for the purpose of nppressing them or controlling in any other manner their destiny by any European power is any other light than as the manifestation of an unfriendly disposition towards the United States. \because It is impossible that the allied powers should extend their political system to any portion of either continem without endangering our peace and happiness; nor can any one believe that our Southern brethren, if left to themselves, would adopt it of their own accord. It is equally impossibie, therefore, that we should behold such interposition in any form with indifference.
Earlicr in the same message, while discussing negotiations for the settlement of the respective claims of Russia, Great Britain, and the United States in the north-west, Monroe also said:-
In the discussion to which this interest has given rise and the arrangements by which they may terminate, the occasion has been judged proper for asserting as a principle in which the rights and interesis of the United Staies are involved, that the American continenes, by the free and independent condition which they have
ekomed and maintain. arte henveforth mot to be coomdered at oubjects, for future colonization by any European powern.

With this message Creat Britain was in hestty agreement. Indeed it was Canning's policy, summed up three years later by his famous reference to the neceastyy of calling the New World into existence to restore the balance of the Old.

This announcement of policy, it will be naticed, involved, frstly, a dectaration aimed at foreign interventlon ln the political affairs of independent American states; secondly, a waming against future European colonization on the American continents. The first was awowedly based on the right of self-defence; it was a policy, not a law; it wes not to constrain the pinor cepublics, but to protect thern. The socond, as explained by John Quincy Adams, was intended to state the fact that the American continent was occupied by contiguous etates, leaving mo rom for further coloniantion and introduction of foreign sovercignty. No legislative sanction was given to Monroobs statement of policy et the time, and in fact none was needed, for the mere announcement served to prevent foreign action in South America. It has never formed part of tbe body of International Law, being unilateral. Nor has the United States bound itself by compact with the other republics of the American continent to protect them frem European aggression. Thus it hesitated to rend delegates to the Pansma Congress in $\mathbf{2 8 0 6}$, and took no part in any congress with the Latin Americen states until 1889 .

Nevertheless, on several occasions since its conception the Monroe Doctrine has been enforced. Its spirit permeated the Clayton-Bulwet Treaty, in which Great Britain and the United States, in r850, mutuady renounced the right of colonizing, fortifying or occupying any porton of Central America. It was enforced against Maximilian, who, by French intervention in Mexico, hed been made emperor, and untll the close of the American Civil War hid pextorce been-left undisturbed. Its applicability was urged when de Lerseps's Panama Canal was thought possible of completion. Both Cuba and the Hawaiian Islands at various periods have foit fts influence, the general, though not consistent policy of the United States being, while disciaiming the desire of annexation itself, to deny the right of any European power (except Spain in Cuba's case, until 18g8) to control them. And it was applied to the chaims of British Guians to Venesuelan territory hy President Cleveland's messrge in 1895, which proposed a commission to sattle the boundary end threatened war if its line were not accepted. This commission never reported, but the disputants finally agreed to arbitrate, and the British chaim was in the main upheld.

Between 1823 and 1895 the development and enlargement of this policy on the part of the Unlted States was vety striking. To prevent the overthrow of an independent republic is one thing; to inserfare in the eettlement of a boundary dispute between two states, also on the ground of self-defence, is quite another. Yet Cleveland's doctrine met with general acceptance, and in fact it had been in a sense anticipated by President Grant, who, in urging the annexation of San Domingo upon the United States Senate in 1870, used this language:-

The Doctrine promulgated by President Monroe has been adhered to by all political parties, and I now deem it proper to assert the: equally impertant principle that bersafter no territory on this continent shall be regarded ae subject of trapsier to a European power.

Never having been formulated as law or In exact langage, the Monroe Doctrine has meant different tbings to different persons at different times. It has become deeply rooted in the American heart, and a permanent part of the foreign pollcy of the United States. It tends to change into the principle that every portion of the American continent must be free from European control. It is still coupled, bowever, with the converse principle that America takes no part in European politics, as the disclaimer of the Ametican delegates to the first Peace Conference at the Hagtue proved.

See Tucker's Monroe Docirine; Gilman's Luff of Monros; Wharton's Sulermational Late Digest (title. "Monnoe Doctrine "): Saow'

American Diplomacy! almo an articie by Sar Fuederick Poltocic in the Ninetcenth Cautury and After (1902).
(T. S. W.)

MONROST (1783-1843), French actor, whose real name was Claude Louis Straphia Batizain, was born in Besangon on the 6th of December 1783 , and was abready playing children's parts at the time of the Revolation. He was called to the Comedie Frangaise in 1815 , and was received socildaire in 1817 . A small, active man, with nobile and expressive features and quici, pervous gestures, be was noted as the rascally servant in such plays as Le Berbier ide Seville and Las Fourberies de Scapin. His son, Louns Maktial Barizain (1809-1883), alse called Monrose; was also an ector. He succeeded Samson as professor at the Conservatoire in 1866.

10NS (Flemish Bergen), a town of Belgium situated on a small river called the Troullle in the province of Hainaut of which it is the cepital. Pop. (1904), 27,072. Mons was tbe capital of, the ancient countdom of Hainaut, well known in Enghish histoty from the marriage of Edward III. with lts Countess Philippa. The town was founded by the Countess Waedru in the 8th century, whereupon Chariemagne recognized it as the capital of Hainaut, and it has retained the position ever since. It was only in the rith century, however, that it became the fixed residence of the counts, who had previously occupied the castle of Hornu, leaving Mons to the abbey and the church of St Waudru. Regnier V. moved to Mons at the beginning of that century, and his only child-a daughter-Richilde, married Baldwin VI. of Flanders. The junction of the two countdoms was only temporary, and they again separated in the person of Richilde's sons. In this age Hainaut was known as "the poor land of a proud people," and it was not until the beginning of the rath century that Mons was converted into a trading town by the establishment of a cloth market; At the samo time the count transierred his principal fortress from Valenciennes to Mons. When the Hainaut title became merged in the duchy of Burgundy, Mons was a place of considerable importance on account of its being a stronghold near the French frontier. Its capture, defence and surrender by Louis of Nussau in 1572 was one of the striking incidents of the religious troubles. In the long wars of the 27th and 18th centuries Mons underwent several sieges, but none of the same striking character as those of Namur. Beveral times dismantled and refortified, Mons was fanally converted into an open town in 1862.

The most remarkable buifding in the city is the cathedral of St Waudru, named after the first countess, which was begun in the middle of the 1 gth century, but not finished for more than a century and a half later. It is a fine specimen of later Gothic, and contains some good glasa as well as a few pictures by Van Thudden. The Hotel de Ville fs about tbe same age as the cathedral, having been commenced in 1458 and finished in 1606. The tower was added a centuty fater. There is also a fine belfry with a peal of bells. Mons is now a fourisbing town with a good trade in cloth, lace, sugar refinery, \&rc.; but its chief importance is derived from its proximity to the Borinage (place of boring), district containing mines of the finest coal in Belgium." The military engineering college for the Betgian army is here, and not far from Mons are the battle-ficids of Malplaquet (1709) and Jemappes (1792).

MONBIEUR (Fr., formed from mon, my, and siesm, lord), the general title of address in France used vocatively in speaking formally to any male person, like the English " sir " or prefixed to the mame lize the English " Mr." It is, however, in France also prefixed to nohiliary, official, and other titles, e.g. Monsicur Ie president, Monsiever is duc d"E., Exc. It is abbreviated M., not Mons. As a specific title "Monsieur" (Cowi court) was used from the time of Louis XIV. of the eldest brother of the king, as "Monseigneur " was of the dauphin; as a general title of address it was given to the princely members of a noyal bouse.

FOISIGNOR (It. momsienore, my lord), a title of honour granted by the pope to bishops and to high dignitarics and officials of the pepal houschold. It is abbrevisted Mgr.

Momenin, 8 IR TILHAN (c. 1569-1643), British admiral, wa the third son of Sir John Monson of South Carlton in Lincolnshire, whero the family was of old standing. He matriculated at Balliol College. Oxford, in 1581, but ran away to sea in 1585 , being then according to his own account sixteen. His Girst cervices were in a privateer in an action with a Spanish ship in the Bay of Biscay, of which be gives a somewhat Muncbausenlike account in his Napal Tracts. In the Armada year he served as lieutenant of the "Charles," a small ship of the queen's. There being at that time no regular maval service, Monson is next found serving with the adventurous George Clifford, 3rd earl of Cumberland ($1558-1605$), whom he followed in his voyages of 1589,1591 and 1593 . During the second of these ventures Monson had the ill-luck to be taken prisoner by the Spaniards in a recaptured prize, and was for a time detained at Lisbon in captivity. His cruises must have brought him some profit, for in 1595 he was able to marry, and he thought it worth while to take his M.A. dagree. The earl offended bim by showing favour to another follower, and Monson turned elsewhere. In the expedition to Cadiz in 1596, he commanded the "Repulse" (50). From this time till the conclusion of the war with Spain he was in constant employment. In 1602 he commanded the last squadron fitted out in the reign of Queen Elizabeth. In 1604 he was appointed admiral of the Narrow Seas, the equivalent of the Channel squadron of modern times. In 1614 he was sent to the coasts of Scotland and Ireland to repress the pirates who then swarmed on the coast. Monson claimed to have extirpated these pests, but it is certain that they were numerous a generation later. After 1614 he $3 a w$ no further active service till .1635 , when he went to sea as viceadmiral of the fleet fitted out by king Charles 1 . with the first ship-money. He spent the last years of his life in writing bis Tracts, and died in February 1643.
His cdaim to be remembered is not based on bis services as 2 naval officer, though they were undoubtedly honourable, but on his Tracts. These treatises consist in part of historical narratives, and in part of argumentative proposals for the reform of abuses, or the development of the naval resources of the country. They form by far the best account by a contemporary of the naval life and transactions of the reign of Queen Elizabeth and the beginning of the reign of King James. Monson takes care to do himaself full justice, but he is not unfair to bis contemporaries. His style is thoroughly modern, and has hardly e trace of the poetry of the Elizabethans. He was the first naval officer in the modern sense of the word, a gentleman by birth and education who was trained to the sea, and not simply a soldier put in to fight, with a sailing-master to handle the ship for him, or a tarpaulin who was a sailor only.

Monson's elder brother Sir Thomas Monson (1564-1641), was one of James I.'s favourites, and was made a baronet in 161s. He held a position of trust at the Tower of London, a circumstance which led to his arrest as one of the participators in the murder of Sir Thomas Overbury. He was, however, soon released and he died in May 1641. His eldest son was Sir John Monson, Bart. (1600-1683), a member of partiament under Charles I., and another son was Sir William Mionson (c. 16071678), who was created an Irish peer as Viscount Monson of Castlemaine in 1628. Having been \mathbf{k} member of the court which tried Charjes 1 , the viscount was deprived of his honours and was sentenced to imprisonment for life in 1661. Sir John Monson's descendant, another Sir John Monson, Bart. (16931748), was created Baron Monson in 1728. His youngest son was George Monson (1730-1776), who scrved with the English troops in India from 1758 to 1763 . The baron's eldest son was John, the 2nd baron (1727-1774), whose son William Monson ($1760-1807$) served in the Mahratta War under General Lake. William's only son William John (1796-1862) became 6th Baron Monson in succession to his cousin Frederick John, the sth baron, in October 184r. His son Wilbiam John, the 7 th baron (1829-1898), was created Viscount Oxenbridge in 1886. When he died without sons in 1898 the viscounty became extinct, but the berony desoended to his brother Dabonnaire John
(1830 -1900), whose son Auguatus Debonnaire John (b. re68) became gth Baron Monson in 1900 . Añother of Viscount Orenbridge's brothers was Sir Edmusd Joha Moaton, Bert. (b. 1834), who, after filling rany other diphomatic appointments, was British ambassador in Paris from 1896 to 1004.
The one authority for the life of Sir William Monson is his own Tracts, but a very good account of him is iacluded by Southey in his Lives of the Admurabs, vol. v. The Tracts were firme printed in the third volume of Churchill: Vayages, but they have been edited for the Navy Record Society by Mr Oppenheim.

MOMs00N (Arabic Massim, season), the name given to seasonal winds due to differences of pressure between areas of land and sea, which are primarily caused by seasonal difierences of temperalure. Monsoons may be regarded as the seasonal analogue of the diurnal land and sea breeses. The term is, however, also applied to seasonal winds which change in direction on acconnt of the migrations of wind-belts in the planetary circulation. During the season of rising temperature the surface of the land warms more quickly, and becomes hotter than that of the sea, and during the season of falling termperature the reverse is the case. Barometric pressure tends to be higher over the colder region than over the warmer, and there is accordingly a tendency for air to 60w, in the lower levels of the atmosphere, from the former towards the latter. Thut thero is in general a movement from land to sea during the cold scason, and from sea to land during the warm season.

Within a belt extending from to to 15 degrces on each side of the equator, seaconal changes of temperature are insufficient in range to permit of the occurrence of temperature differences adequate to the development of true monsoons. In the higher latitudes of the west wind-belt, and in the polar zones, the generally low temperature docs not favour the occurrence of wide differences between land and sea. Thus the conditions required for the occurrence of monsoonal winds are best satisfied in intermediale latitudes in the neighbourhood of the tropica. But, as in the case of land and sea breczes, the strength and extension of the monsoon produced by the action described depends to a large extent on the configuration of the tand surface. When the land area consists of a low plain, or of a plateau having a steep cosstal strip of small width, the circulation upon it tends to be local, and to approximate to the typical "continental" climate of the temperate zones. Where, on the other hand, the land slopes upwards gradually to a central massif or ridge the efiect of the differences of temperature is, as it were, cumulative, and the monsoons may extend over large areas, affecting regions distant from thoee in which the causes producing them are directly operative, and the monsoon winds may develop great strength. Ferrel (Pepviar Trealise on the Winds) has compared the conditions in the two cases to those of a stove with a long horizontal flue and with a vertical or inclined fue of the same length.

It is of course to be noted that the bot season monsoon is in general of greater, strength than that of the cold season, because, being usually a see wind the air is fully cherged with moisture, condensation takes place as ascensional morement sets in on reaching the land, and the latent beat set free strengthens the upward current.
The position, outline and relief of the continent of Asia favour the development of monscons to a much greater extem than any otber part of the world; so much so that the chimate of the whole of the southern and eastern parts is entirely controlled by these winds, forming what is typically known as "the monsoon region," a region having distinctly characteristic products. Monsoons form an important element in the climate of Australia, western and southern Africa, and the southern part of the United States of America, but with a few exceptions the monsoons of those regions are local in character, modifying the prevailing winds of the planetary circulation (usually the trade winds) for a longer or shorter period every year.

MONSTER (Lat. monstrum, from root of monere, to warn; i.e. something terrible or portentous). In zoology, monsters or monstrous births are the subject of Animal Teratology, a
department of morphological science treating of deviations from the normal development of the embryo. The term "embryo" is conventionally limited, in human anatomy, to the ovum in the first three months of its intra-uterine existence, while it is still developing or acquiting the rudiments of its form, the term " foetus" being applied to it in the subsequent months during which the organism grows on the lines of development already laid down. It is mostly in the first or embryonic period that those deviations from the normal occur which present themselves as monstrosities at the time of birth, theso early traces of deviation within the embryo may be slight, but they " grow with its growth and strengthen with its strength," until they amount to irreparable defects or accretions, often incompatible with extra-uterine life. The name of "teratology," introduced by Etienne Geofiroy St Hilaire (1822), is derived from ripas, the equivalent of monstrum; teratology is a term new enough to have none but scientific associations, while the Latin word has a long record of superstitions identified with it. The myths of siren, satyr, Janus, cyclops and the like, with the cortesponding figures in Northern mythology, find a remote anatomical basis in monstrosities which have, for the moat part, po life except in the foctal state. The mythology of giants and dwarfs is, of course, better founded. The term monster was originally used in the same sense as portent. Luther ${ }^{1}$ speaks of the birth of a monstrous calf, evidently the subject of contemporary talk, as pointing to some great impending change, and he expresses the hope that the catastrophe might be the Last Day itself. The rise of more scientific views will be sketched in the course of the article.
Although monstrosilics, both in the human species and in other animals, tend to repeat certain definite types of erroneous development, they do not fall readily into classes. The most usual grouping (originally suggested by G. L. L. Buffon, 1800) is into monsira per excessum, monsira per defectum, and monstra per fabricam alienam. It seems useful, however, to place the more simple cases of excess and of defect side by side; and it is necessary, above all, to separate the double monsters from the single, the theory of the former being a distinct chapter in teratology.

1. Monstrosities in a Single Body.-The abnormality may extend to the body throughout, as in well-proportioned giants and dwarfs; or it may affect a certain region or member, as-lo take the simplest case-when there is a finger or toe too many or too few. It is very common for one malformation to be correlated with several others, as in the extreme case of acardiac monsters, in which the non-development of the heart is associated with the non-development of the head, and with other radical defects.

Giants are conventionally limited to persons ovar 7 ft . in height. The normal proportions of the frame are adhered to more or less closely. except in the skull, which is relatively small; but accurate measurements, cven in the best-proportioned cases, prove. when reduced to a scale, that other parts besides the skull-notably the thigh-bone and the foot-may be undersized though overgrown. In persons who are merely very tall the great stature depends often on the inordinate length of the lower limbs; but in persons over 7 ft . the lower linabs are not markedly disproportionate. In many cases the muscles and viscera are not sufficient for the overgrown frame, and the individuals are usaally, but not always, of feeble intelligence and languid disposition, and short-lived. The brain-case cspecially is undersized-the Irish giant in the museum of Trinity Coliege, Dublin, is the single exception to this rule-but the bones of the face, and especially the lower jaw, are on a large scale. Giants are never born of gigantic parents; in fact, sterility esually goes with this monstrosity. Their size is sometimes excessive at birth, but more often the indications of great shature do not appear till later, it may be as late as the ninch year; they attain their full height before the twenty,first year. They have been mpre frequently male than female.
in a passage quoced by T. L. W. Bischoff from the igth volume of Luther's works, Halle ed., p. 2416.

Dhearfe are conventionally limited to persons under 4 ft . They are more likely than giants to have the modulus of the body perfect. Where disproportion occurs in the true dwarf it lakes the form of a large-sived head, broad shoulders and capacious chest, and undersized lower limbs. Dwaris with rickets are perhape to be distinguished from true dwaris; these are cases in which the spine is curved, and sometimes the bones of the limbs bent and the pelvis deformed. As in the case of giants, dwarfs are seldom the progeny of dwarfs, who are, in fact, usoally sterile; the unnatural smallness may be obvious at birth, but is more likely to make itself manifest in the years of growth. Dwarfs are much more easily brought up than giants, and are stronger and longer-lived; they have usually also strong passions and acute intelligence. The legends of the dwartis and giants are on the whole well based on fact. (See Dwarz and Glant.)

Redundancy and Defact in Single Parts.-The simplest case of this redundancy is a sixth digit, well formed, and provided with muscles (or tendons), norves, and bloodvessels like the others; it is usually a repetition of the little finger or toe, and It may be present on one or both bands, or on one or both feet, or in all four extremities, as in the giant of Gath. The want of one, two, or more digits on hand or foot, or on both, is another simple anomaly; and, like the redundancy, it is apt to repeat itself in the same family. J. F. Meckel saw a girl who had an extra digit on each extremity, while a sister wanted four of the fingers of one hand. Where the supernumerary digits are more than one on each extremity, the whole set are apt to be rudimentary or stunted; they look as if two or more of the embryonic buds had been subject to cleavage down the middle and to arrest of longitudinal growth. There are several authentic instances of a whole lower limb appearing at birit as two withered halves, as if from embryonlc cleavage. Other redundancies of the skeleton are extra vertebrae (sometimes the coccygeal, giving the appearance of a rudimentary tail), or an extra rib. A double row of teeth is occasionally met with; the most interesting case of this anomaly is that in which the rudiments of a double row exist from the first, but the phenomenon is sometimes produced by the milk teeth persiating along with the second set. Among redundancies of the soft parts, by far the moat frequent relate to the mammary glands and especially to the nipples. These organs are normally paired amongst mammaks, and the glands of each pair are placed symmetrically on a curved line running from the axilla towards the pubes. When many pairs occur, the glands of each pair diverge less from the median line than those of the immediately anterior pair, the abdominal glands lying close together, those towards the axille being farther apart. When only a single pair is normally present, the pair is abdominal, pectoral or axillary; and whether the normal be one pair or many pairs, additional glands are not infrequent, but occupy the expected position on the mammary lines. Accessory glands or nipples in human beings, if anterior to the normal pair, lie farther from the modian ventral line, and vice versa. Among the sense-organs there is a remarkable instance reconded of doubling of the appendages of the left eye. but not of the eyeball itself; the left half of the frontal bone is double, making two eye-gockets oa that side, and the extra orbit has an eyebrow and eyelid. The external ear (pinna) has also been found double on ene side and its orifice has frequently been found doubled in man and lower animals, and the edditional ears lie in a definite relation to the branchial clefts of the embryo. Doubling of any of the internal organs or parts of organs may occur and innumerable cases have been recorded.
Momirosities from Defeclise Clasure in the Middle Line.-Under this head come some of the cormmonest congenital maliormations, including slight deficiencies such as harelip, and serious defects wuch as a gap in the crown of the head with absence of the brain. The embryo is originally a circular flattened disk spread out on one pole of the yalk, and it is formed into a cylindrical body (with four appendages) by the free margins of the disk, or rather its ventral laminac, folding inwards to meet in the middle line and so close in the pelvic, abdominal, thorecic.
pharyngeal and oral cavites. Meanwhile, and indeed rather earlier, two longitudinal parallal ridges on the top or along the back of the disk have grown up and united in the middle line to form the second barrel of the body-the neural canal-of small and uniform width in the lower three-fourths or spinal region, but expanding into a wide chamber for the brain. This division into neural (dorsal) and haemal (ventral) canals underlies all vertebrate development. Imperiect closure along either of those embryonic lines of junction may produce various degrees of monstrosity. The simplest and commonest forma, hardly to be reckoned in the present category, is harelip with or without cleft palate, which results from defective closure of the ventral laminae at their extreme upper end. Another simple form, but of much more serious import, is a gap left in the neural canal at its lower end, usually the arches of the lumhar vertebrae are deficient, and the fluid that surrounds the spinal cord bulges out in its membranes, producing a soft tumour under the skin at the lower part of the back. This is the condition known as kydrorkachis, depending on the osseous defect known as spina bifda. More rarely the gap in the arches of the vertebrae is in the region of the neck. If it extend all along the back, it will probably involve the skull also. Deficiency of the crown of the head, and in the spine as well, may be not always traceable to want of formative power to close the canal in the mlddle line; an over-distended condition of the central canal of the cord and braln may prevent the closure of the banes, and ultimateiy lead to the disruption of the nervous organs themselves; and injuries to the mother, with inflammation set up in the foetus and its appendages, may be the more remote cause. But it is hy defect in the middle dine that the mischiel manifests itself, and it is in that anatomical category that the maiformations are included. The osseous deficiency at the crown of the head is usually accompanied by want of the scalp, as weil as of the hrain and membranes. The bones of the face may be weli developed and the features regular, except that the eyebalis bulge forward under the closed lids; but there is an a hrupt horizontal line above the orbits where the bones cease, the skin of the hrow jofning on to a spongy kind of tissue that occupies the sides and floor of the cranium. This is the commonest form of an anencephalous or brainless monster. There are generally mere traces of the brain, although, in some rare and curious instances, the hemispheres are developed in an exposed position on the back of the neck. The cranial nerves are usually perfect, with the exception sometimes of the optic (and retina). Vegetative existence is not impossible, and a brainless monster has been known to survive sixty-five days. The child is usually a very large one.
Closely allied, as we have seen, to the anencephalous condition is the condition of congenital kydrocephalus. The nervous system at its beginning is a neural canal, not only as regards its bony covering, but in its interior; ; wide space lined by cliliated epithelium and filled with fluid extends along the axis of the apinal cord, and expands into e series of chambers in the brain. As development proceeds the walls thicken at the expense of the internal spaces, the original tubular or chambered plan of the central nervous system is departed from, and those organs assume the practically solid form in which we familiarly know them. If, however, the spaces persist in their embryonic proportions notwithstanding the thickening of the nervous substance forming their walls, there resultes an enormous brain which is more than half occupied inside with fluid, contained in spaces that correspond on the whole to the ventricles of the brain as norraally bounded. A hydrocephalic foetus may survive its brth, and will be more apt to be affected in its nutrition than in its intelligence. In many cases the hydrocephalic condition does not come on cill after the child is borm.

Returning to the ventrai middle line, there may be defects of closure below the lips and palate, as in the breast-bone (fissure of the sternum), at the navel (the last point to close in any case), and along the middle line of the abdomen generally. The commonest point for a gap in the middle line of the belly is at its lower part, an inch or two above the pubet. At that point in
the embryo there issues the allantois, a balloon-Mke expansion from the ventral cavity, which carries on its outer surface bloodvessels from the embryo to interdigitate with those of the mother on the uterine surface. Having served its temporary purpose of carrying the bloodvessels across a space, the balloon-like allantois collapses, and rolls up into the rounded stem-like umbilical cord through most of its extent, but a portion of the sac within the body of the foetus is retained as the permanent urinary bladder. That economical adaptation of a portion of a vesicular organ, originaily formed for purposes of communication between the embryo and the mother, appears to entail sometimes a defect in the wall of the abdomen just above the pubes, and a defect in the anterior wall of the bladder itselt. This is the distressing congenital condition of fissure of the urinary hladder, in which its interiot is exposed through an opening in the skin; the pubic bones are separated by an inferval, and the reproductive organs are ill-formed, the urachus is wanting, and the umbilicus is always piaced exactly at the upper end of the gap in the skin. A monstrosity recalling the cloacal arrangement of the bird is met with as a more extreme defect in the same parts.

Hermaphroditism.-Although this anomalous condition does not fall under defective closure in the middle line, it may be said to be due to a similar faflure of purpose, or to an uncertainty in the nisus formativus at a corresponding stage of development. Strictly speaking, a hermaphrodite is a creature containing ovaries and testes-the essential organs of each sex. Evidence accumulates, however, that at least in all the higher vertebrates, including man, the sex is predetermined in the fertilized ovam, and it is more than doubtful if true hermaphroditism occurs. On the other hand, if there be no such donble sex in the essential organs (as in the majority of so-cailed hermaphrodites) there is a great deal of doubling and ambiguity entailed in the secondary or external organs and parts of generation. Those parts which are rudimentary or obsolete in the male but highiy developed in the femaie, and those parts which are rudlmentary in the female but highly developed in the mate tend in the hermaphrodite to be developed equally, and all of them badly. Amongst human beings the greater number of so-called hermaphrodites are really females, in which there is an abnormal development of the clitoris, but it also happens that true males may be born with a small clitoris-like penis, with hypospadia-that is to say, with imperfect urethra, open on the ventral side, and with undescended testes. Failure of the development of the testes or ovary, or therr removal in the adult condition Induces an ambiguous condition of the body in which the secondary sexual characters approach those of the other sex. Experimental removal of the ovaries or testes, followed by implantation of organs of the other'sex, has prodaced an Inversion of the secondary sexual characters.

Cyclops, Siren, ©c.-The same feebleness of the formative energy which gives rise to some at least of the cases of defective closure in the middle llne, and to the cases of amhiguous sex. leads also to imperfect separation of symmetrical parts. The most remarkahle case of the kind is the cyclops monster. At a point correspondling to the root of the nose there is found a single orbital cavity, sometimes of small size and with no eyeball in it, at other times of the usual size of the orbit and tontaining an eyeball more or less complete. In still other cases, which indicate the nature of the anomaly, the orbitai cavity extends for some distance on each side of the middle llne, and contains two eyeballs lying close together. The usual nose is wanting but above the singie orbital cavity there is often a nasal process on the forchead, whth which nasal bones may be articulated, and cartllages joined to the latter, these form the framework of a short fleshy protuberance like a small proboscis. The lower jaw is sometimes wanting in cyclopeans; the cheek-bones are apt to be small, and the mouth a small round hole, or altogether absent; the rest of the body may be well developed. The key to the cyclopean condition is found in the state of the brein. The olfactory nerves or lobes are frequently absent; the brain is very imperfectiy divided into hemispheres, and appears as a
somewhat pear-shaped sac with thek walls, the longtudinal partition of dura mater (falx cerebri) being wanting, the surface almost unconvoluted, the corpas callosum deficient, the basal ganglia rudimentary or fused. The optic chlasma and nerves are usually replaced by a single mesial nerve, but sometimes the chiasma and pair of nerves are present. The origin of this monstrosity dates back to an early period of development, to the time when the future hemisphercs were being formed as protrusions from the anterior cerebral vesicle or fore-brain; it may be conceived that, instead of two distinct buds from that vesicle, there was only a single outgrowth with imperfect traces of cleavage. That initial defect would carry with it naturally the undivided state of the cerebrum, and with the latter there would be the absence of olfactory lobes and of a nose, and a single eyeball placed where the nose should have been, A cyclops has been known to live for several days. The monstrosity is not uncommon among the domestic animals, and is especially frequent in the plg.

Another curious result of defective separation of symmetrical parts is the siren form of foetus, in which the lower limbs occur as a single tapering prolongation of the trunk like the hincer part of a dolphin, at the end of which a foot (or both feet) may or may not be visible. The defects in the bones underbying this siren form are very various: in some cases there is only ome limb (thigh and leg-bones) in the middte line; in others all the bones of each limb are present in more or less rudimentary condition, but adhering at prominent points of the adjacent surfaces. The pelvis and pelvic viscera share in the abnormality. A much more common and harmless case of unseparated symmetrical parts is where the hand or foot has two, three, or more digits fused together. This syndactylous anomaly runs in famblies.

Limbs Absent or Stunted.-Allied to these fused or unseparated states of the extremlties, or of parts of them, are the class of deformities in which whole limbs are absent, or represented only by stumps. The trunk (and head) may be well formed, and the individual healthy; all four extremitics may be redueed to short stumps either wanting hands and feet entirely, or with the latter fairly well developed; or the legs oniy may be rudlmentary or' wanting, or the arms only, or one extremity only, Although some of these cases doubtless depend upon aberrant or deficient formative power in the particular directions, there are others of them referable to the effects of mechanical pressure, and even to direct amputation of parts within'the uterus.

Acardiac and Acranial Monsters.-It sometimes happens in a twin pregnancy that one of the embryos fails to develop a heart and a complete vascular system of its own, depending for its nourishment upon blood derived from the placenta of its well-formed twin by means of its umbilical vessels. It grows into a more or less shapeless mass, in which all traces of the human form may be lost. Other viscera besides the heart will be wanting. and no head distinguishable; the most likely parts to keep the line of development are the lumbar region (with the kidneys), the pelvis. and the lower limbs. The iwill of this monster may be a healt hy infant.

Reversed Position of the Viscera. - This is a developmental error associated with the retention of the right aortic arch as in birds, instead of the left as is usual in mammals. The position of all the unsymmetrical viscera is transposed, the spleen and cardiac end of the stomach going to the right side, the liver to the left, the caecum resting on the left iliac fossa, and the sigmoid fexure of the colon being attached to the right. This condition of silus inversus viscerym need cause no inconvenience, and it will probably remain undetected until the occasion should arise for a physical diagnosis or post-mortem inspection.
The causes of congenital anomalies are difficult to specify. There is no doubt that, in some cases, they are present in the sperm or germ of the parent; the same anomalies recur in several children of a family, and lt has been foind possible, through a variation of the circumstances, to trace the influence in some cases to the father alone, and in other cases to the mother-alone. The remarkable thing in this
paremtal muluence' is that the malformation in the child may not have been manifested in the body of either parent, or in the grandparents. More often the malformation is acquired by the embryo and foetus in the course of development and growth, either through the mother or in itself independently. Maternal impressions during pregnancy have often been alleged as a cause, and this causation has been discussed at great leagth by the best authorities. The general opinion seems to be that it is impossible to set aside the influence of subjective atates of the mother eltogether, but'that there is no direct connexion between the cause of the subjective state and the resulting anomaly. The doctrine of maternal impressions has often been resorted to when any other explanation was either difficuit or inconvenient; thus, Hippocrates is said to have saved the virtue of a woman who gave birth to a black child by pointing out that there was a picture of a negro on the wall of her chamber. Injuries to the mother during pregnancy have been unquestionably the cause of certain mafformations, especially of congenital hydrocephalus. The embryo itself and its membranes may become the subject of inflammations, atrophies, hypertrophies, and the like; this causation is doubtless accountable for a good many of them. But a very large residue of malformations must still be referred to variation in the embryonic cells and cell-groupa The nisws formations of the fertilized ovum is always subject to morphological laws, but, just as in extra-uterine life, there may be deviations from the beaten track; and even a slight deviation at an carly stage will carry with it far-reaching consequences. This is particularly noticeable in double monsters.
2. Dowble Monsters.-Twins are the physiological analogy of double monsters, and some of the latter have come very near to being two scparate individuals. The Siamese twins, who died in 1874 the age of slxty, were joined only by a thick fleshy ligament from the lower end of the breast-bone (xiphoid cartilage), having the common navel on its lower border; the anatomical examination showed, however, that a process of peritoneum extended through the ligament from one abdoninal cavity to the other, and that the blood-vessels of the two livers were in free communication across the same bridge. Thero are one or two cases on record in which such a ligament has been cut at birth, one, at least, of the twins surviving. From the most intelligible form of double monstrosity, like the Siamese twins, there are all grades of fantastic fusion of two individuals into one down to the truly marvelious condition of a small body or fragment parasitic upon a well-grown infant-the condition known as foelus in foelv. Thege monstrosities are devlations, not from the usual kind of twin gestation, but from a certain rarer physiological type of dual development. In by far the majority of cases twins have separate uterine appendages, and have probably been developed from distinct ova; but in a small proportion of (recorded) cases therc is evidence, in the placental and enclosing structures, that the twins had been developed from two rudiments arising side by side on a single blastoderm. It is to the latter physiological category that douhie monsters almost certainly belong; and there is some direct embryological evidence for this opinion. Allen Thomson observed in the blestoderm of a hen's egg at the sixteentb or eighteenth hour of incubation two "primitive traces" or rudiments of the backbone forming side by side; and in a goose's egg incubated five days ho found on one blastoderm two embryos, each with the rudiments of upper and lower extremities, crossing or cohering in the region of the future neck, and with only one heart between them. A very large number of similar observations have been published and appear to be found in all cases where a large material is available. The developing ova of fish, available in large numbers in-hatcheries, and the laboratory investigation of the chick and the frog have provided cases of almost every degree of hending. The perfect physiological type appears to be two rudiments on one blastoderm, whose entirely separate development produces twins (under their rarer circamstances), whose nearly separate development produces such doubte monsters as the Siamese twins, and whose less separate development produces the various grotesque forms
of two individuals in one body. There can be no question of a literal fusion of two embryos; either the individuality of each was at no time complete, or, if there were two distinct primitive traces, the uni-axial type was approximately reverted to in the process of developraent, as in the formation of the abdominal and thoracic viscera. limbs, pelvis of head. Double monsters are divided in the first instance unto those in which the doubling is symmetrical and equal on the two sides, and those in which a small or fragmentary foetus is attached to or enclosed in a foetus of average development-the latter class being the so-called eases of "parasitism."

Symmetrical Double Monsters are subdivided according to the part or region of the body where the union or fusion exists -head, thorax, umbilicus or pelvis. One of the simplest cases is a Janus head upon a single body, or there may be two pairs of arms with the two faces. Again, there may be one head with two necks and two complete trunks and pairs of extremities. Two distinct beads (with more or less of neck) may surmount a single trunk, broad at the shoulders but with only one pair of arms. The fusion, again, may be from the middle of the thorax downwards, giving two heads and two pairs of shoulders and arms, but only one trunk and one pair of legs. In another variety, the body may he double down to the waist, but the pelvis and lower limbs single. The degree of union in the region of the bead, abdomen or pelvis may be so stight as to permit of two distinct organs or sets of organs in the respective cavities, or so great as to have the viscera in common, and there is hardly ever an intermediate condition hetween thase extremes. Thus, in the janus head there may he two brains, or only one brain. The siamese twins are an instance of unson at the umbilical region, with the viscera distinct in every respect except a slight vascular anastomosis and a conmon process of peritoneum, but it is more usual for union in that region to be more extensive, and to entail a single set of abdominal and thoracic viscera. The pelvis is one of the commonest regions for double monsters to be joined at, and, as in the head and abdomen, the junction may he slight or total. The Hungarian aisters Helena and Judith (1701-1723) were joined at the sacrum, but had the pelvic cavity and pelvic organs separate, the same condition ohtained in the South Carolina negresses Millie and Christina, knowd as the "two-headed nightingale," and in the Bohemian sisters Rosalie and Josepha. More usually the union In the pelvic region is complete, and produces the most fantestic shapes of two trunks (each with head and arms) joining below at various angles, and with three or fou lower limbs extending from the region of fusion, sometimes in a lateral direction, sometimes downwards. A very curious kind of double monster is produced hy two othervisc distinct foetuses joining at the crown of the head and keeping the axis of their bodies in a line. It is only in rare instances that doubie monsters survive their birth, and the preserved specimens of them are mostly of foetal size.

Unsequal Double Monsters, Foetus in Foelu.-There are some well-authenticated instances of this most curious of all anomalies. The most celebrated of these parasite-bcaring monsters was a Genoese, Lazarus Johannes Baptista Colloredo, boru in 1716, who was figured as a child by Licetus, and again by Bartholinus at the age of twenty-eight as a young man of average stature The parasite adhered to the lower end of his breast-bone, and was a tolerably well-formed child, wanting only one leg, it breathed, slept at intervals, and moved its body, but it had no separate nutritive functions. The parasite is more apt to be a. minature acardiac and acephalous fragment, as in the case of the one borne in front of the abdomen of a Chinaman figured by 1. Geofroy St Hilase. Sometimes the parasite is contained in a pouch under the skin of the abdominal wall, and in another class (of which there is a specimed in the Hunterian Museum) it has actually been included, by the closure of the ventral laminae, within the abdominal cavity of the foetus-a true foolus is foetu. Shapeless parasitic Iragments containing masses of bone, cartilage and other tissue are found also in the space behsad the breast-bope (mediaslinal teratoma), or growing from
the bese of the skull. and protruding through the mouth ("epp) gnathous teratoma," appearing to be seated on the jaw), and, most frequently of aU, attached to the sacrum. These last pass by a most interesting transition into common forms of congenital sacral tumours (which may be of enormous si20), consisting mainly of one kind of tissue baving its physiological type in the curious gland-like body (coccygeal gland) in which the middle sacral artery comes to an end. The congenital sacral tumours bave a tendency to become cystic, and they are probably related to the more periect congenital cysts of the neck region, where there is another minute gland-like body of the same nat ure as the coccygeal at the point of bifurcation of the common caroud artery. Other tumours of the body, especially certain of the sarcomatous class, may be regarded from the point of view of monstra per excessum; but such cases suggest not so much a question of aberrant development within the blastoderm as of the indwelling spontaneity of a single post-embryonic tissuc. (See Tumour and Patholocy,)
Monstrosities in man and anumals have attracted attention since the earliest times, and amongst primitive and uncivilized peoples have been regarded as of supernatural origin. Aristode himself appears to have been the first to examine them as a naturalist, and to explain that althougb they were outside the usual course of nature they were in the strictest sense of natural origin. Pliny described many well-known forms, but did not disunguish between legendary and actual monstrosities. In the middle ages they were treated in the fullest spirit of superstition, and many relacs from such a point of view still survive. The human monstrosilies were regarded as having been engendered in women by the devil who had commerce with them either in his own form or in the guise of some animel. The belief still to be found amongst uneducated persons that unnatural union between women and male animals, or between men and female animals, may be fertile and produce monsters, is an attenuated form of the satanic legend. The scientific apprecialion of monsters has grown with the study of embryology. William Harvey in Exercitathones de gencratione animalium (1651) first referred monstrosities to their proper place as abnormalities in embryonic reproduction. The docirine of pre-formation (sce Herfdity) obsessed biological science until 1759 when C.F Wolf overthrew il, and Harvey's advance was not pursued, except that a number of anatomists published careful studies and descriptions of monsters or monstrous organs. Those who believed that the normal process of development was an unrolling and expansion of a pre-formed manature of the adult had to apply a similar theory to monsters, and Sylvain Regis, a contemporary of Malbranche, obtained acceptance of his view that monstrous germs as well as normal germs had been created at the beginning of the world A discussion almost as memorable as that between E. G. St Hilaire and Cuvier on specific types was pursued in the French Academy from 1724 to 1743 , J. B. Winslow, who supported the current preformationist view, having the belter of the argument with Louis Lemery, who was almosi alone in a rational interpretation of monstrosities. From the time of Wolf it was accepted that normal and abnormal embryos alike developed by processes of epigenetic change. Wolff himself, however, and even J. F. Meckel at the heginning of the igth century, did not recognize the influence of physiological causes in the production of abnormalities; they helieved the latter to proceed certainly in an orderly and natural way, but from abnormal ova. E. G. St Hilaire was the first to attempt experimental teratology and to lay down that many monstrosities were the result of influences causing deviations from the normal course of embryonc development. I. G. St Hilaire, the son of E. G. St Hilaire, carried the experimental method litule further, but published an elaborate descriplive treatise on anomalies (Paris, 1832-1857) which remains one of the most valuable records of the subject. A similar treatise with an incomparable atlas of illugrations was issued by W. Vrolik, the great Dutch anatomist, beıween 1840 and 1849 , whilst A. Forster issued in 1861 a valuable texibock with a very large number of illustrations chiefly from preparations in the museum at

Werzburg. The"great maseums devoted much attention to the collection and display of malfonmations, and no account of the subject can be adequate which does not include reference to the magnificent series in the Muscum of the Royal College of Surgeons of England, with tha descriptive calalogmes of the animal malformations written by B. T. Lowne (IB93) and of the vegetable malformations hy. M. T. Masters (1893).
The work hitherto referred to, as well es a vast bull of scattered contributions to tevatology throughout the roth century, was chiefly descriptive, anatomical and embryological teratology, and carried the experimental side little beyond, where it had been left by the St Hilaires. In $18 g \pi$ Camille Dareste published his Recherches swr la production andificielle des anomatruosites, ou essais de laralogenic experimentate; his experiments; chiefly on the developing egg of the fowl, not only showed the probable cause of many of the most common abnorinatities, but practically created a new branch of science, experimental embryolagy. Texatology has since become a side issue of the general study of the inter-retetions bet weem the inherited tendencies of the developing organism and the play of the circumambient media, and must be tudied in relation to the work of O. Hert wig, W. Roux, H. Driesch, O. Butschh, 1. Loeb and their achool. J. Bland Sutcon's popular Eubiution and Disease (1890) puts in a cogent way the relation batwetn comperative anatomy and common abnormalities, whilst W. Batesoh in his Materials for the Stady of Variation (1894) describes the acquisition of new symmetries hy abnormal organs, and discusses the possible relation between abnormalities and the origin of species.
E. Schwalbe's Morphologic der Missbildurgen (rgo6-1909) is a very complete atudy of the most modern developmenti of ceratology, and contains a careful and elaborate list of authorities from the carliest timen.
(C.C.; P.C. M.)

MONBTRANCB (through the Fronch from Lat. monstrare, to show), a vessel usod in the Roman Church for the exhibition of the Host at Benediction (q.v.) and also when carried in processiona. Another name for the vessel is ostensoriwm, from osfendera, to exhibit, show; whence the usual French name asfensoir. The monstrance was formeriy used of a reliquary, exposing the sacred object to view. The earlier monstrances followod the usual shape of these reliquaries; vis. a cylindrical crystal case mounted in metal frames, claborately ornamented and jewelled. Such often took the form of a turret. There is a rgth-century Italian example is South Kensington Museom of a pilastered turret containing an oblong cryatal case, the whole resting on a stemmed base, and surmountod with a cupola. In the 16th century the present shape was adopted, viz. a erystal or glass circular disk, more suited to the shape of the secred wafer; this is mounted in a frame of golden rays, and the whole is supported by a stem and bases. The exbibition of the Hook dates from the institution of the Festival of Corpus Christi (q.0.) by Urban IV. in 1264.
monstrelet, EmaUERRAND DE (c. 1400-1453); French chronicler, belongod to a moble family of Picardy. In 1436 and later he held the office of lieatenant of the geserice (i,e. receiver of the gave, a kind of church rate) at Cambrai, and he seems to have made this city his usual place of residence. He was for some time bailiff of the cathedral chapter and then provest of Cambrai. He was marrided and left some children when he died on the roth of July 8453 . Littie olse is known about Monstrelet except that he was present, not at the capt ure of Joan of Arc, but at ber subsequent interview with Philip the Good, duke of Burgundy. Continuing the work of Froissart, Monstrelet wrote a Chnowique, which extends to two books and covers the period between 1400 and 1444, when, ticcording to another chronicler, Matthieu d'Esconchy, he ceased to write. But following a custom which was by no means uncommon in the middle ages, a clumsy sequel, extending to r516, was formed out of various chronicles and tacked on to his work. Monstrelet's own wrilags, deallng with the latter part of the Hundred Years' War, are valuable because they contain a large number of documants which are certainly, and reported speeches which
are probably, authentic. Tho author, however, shows little power of aarration; his work, although clear, is dull, and is atrongly tinged with the pedantry of its century, the most pedantic in French history. His somewhat ostentatious assertions of impartiality do not cloak a marked preference for the Burgundians in their struggle with France.

Among many editions of the Chronique may be mentioned the one edited for the Socilld de thistoire de France by M. Douet d'Arca (Paris, 1857-1863), which, howevor, is not very good. See A. Molinier. Les Sources de l'histoire de France, tomes iv. and v. (Paris, 1904).
momitanais (Fr. "mbuntaineers"), the collective French name (1) for a group of North American Indian tribes of Quebec province, (2) for four tribes of the northern division of the Athabascan stock of North American Indians in the interior of British North America.

MONTAOU (Family), Dtu of Montaigu or Montagud, the ancestor of the Montagus, earls of Salisbury, came to England with Robert, count of Mortain, half-brother of William the Conqueror. He is found in Domesday among the chlef tenants of the count in Somerset, where Dru held the manor of Shepton, afterwards celled Shepton Montagu. Upon the hill of Lutgaresburg, in Bishopston, Robert built the castle which he called Montaigu -but there is no reason for believing that Dru's sumame was'dorived from the castle, he being probably a Norman bornfroni Montaigu or Montaigu-les-bois, both in the neighbourhood of Mortain. The Domesday holding of Dru is represented in the veturn of 1166 by the ten knights' fee upon which his descendant, anothet Dru, is assessed. Wiltiam Montagu of Shepton is among the knights summoned by Henry III. to the Gascon War and to the Weish border in 1257. His son Simon, the first of the famlly to make a figure in history, followed Edward I. in 1277 against Llywelyn ap Gruflydd, being then, as it would appear, a minor, and he served again in 1282 , when Llywelyn's power was broken for the last time. By a charter tated in 1290 his Somersetshire manors and the manor of Aston Clinton were confirmed to him by a grant from the Crown. In 1296 a ship under his command broke the blockade of Bordeaur. In 1298 he was summoned as a baron; and in 1301, as Simon lord of Montagu, he sealed the famous letter of the barons to the pope with his scal of the arms of Montaga, the counterseal showing a grifion. One of the earlest examples of quartered arms seen in England was afforded when Simon's banner displayed at Falkirk in 1298 quartered this griffon, gold on a blue field, with the Montagu's indented fesse of three fusits. He died in 1317 and was succeeded by his son Wilfiam (d. r319), a favourite of Edward II., whose household steward he bechme, and senesthal of Aquitaine and Gascony. His eldest ban, another William, came of age in 1323, and in 1330 led the young king's partisans by the secret way into Nottingham Castle, and carried off the earl of March. The day before Mortimer had denounced Montagu as a traitor, but Montagu struck at once and his success was rewarded by grants from the forfefted lands of March.' In 1337 he was created earl of Salisbury, and on the death of Thomas of Brotherton in 1338 he was made marshal of England. His king employed him in missions to France, Scotland, Germany and Castile, but war was, as with most of the men of his house, the chief business of his short life. At some time between 1340 and 1342 he led an expedition of hit own against the Iste of Man, winning from the Scots the little kingdom to which he had inherited a claim. His grandfather Stmon te sald to have married a certaln Auffray or "Aufrica," sometimes described "ts "daughter of Fergus and sister of Orray, king of Mna," and'sometimes as the grand-daughter and hidr of John de Courcy, the conqueror of Ulster, whose wife "Afreca " was sister of King Olaf II. John de Courcy, however, died childless, and in 1287 Simbn names his wife as Hawise. The second Aufrica or Affreca claimed the island as heir of Magnus II. (d. 1265), a letter of Edward I. In 1293 citing John of Scolland to answer her appeal to king John's suzerain. By her charter of zyof the same Aufreca, styling herself "Aufrecik of Counnoght, heir of the land of Man," granted the island to Simotl, and thit grant, ratber than the marriage universally asserted by Simon's biographers, was probahiy the origin of the Montagt
claim. The firat earl diad in 1344 and was buried in the Whitefrisrs Church in London. His wife, Katberine, daughter of William de Graunson, and co-heir, in her issue, of her brothers, is connected by a legend of no value with the foundation of the Order of the Garter. Between William, his son and heir, the second carl ($\mathrm{I}^{2} 28-1397$) and Joen of Kent, daughter of Edmund of Woodstork, there was a contract of marriage which was made null by the pope's bull in 1349. William'was one of the knightofounders of the Order of the Garter, fought at Crecy, and commanded the rearward battle at Poifiers. According to Frolssart he attended the young Richard in Smithficld when the king faced the mob after the death of Wat Tyler. His only son was killed in 1383 at a tournament, and in 1393 the carl sold the lordship and crown of Man to William Scrope of Bolton. He was succeeded by his nephew John, the third carl (c. r350-1400), son of Sir John Montagu by Margaret, the heir of the barons of Monthermer. The new carl was notorious as a Lollard, and was accused, after Henry IV.'s accession, of a share in Clouecster's death, from which he was to have cleared himself in combat with the Lord Morley. But he joined Kent, Huntingdon and Rutland in their plot against Henry, and was beheaded with the earl of Kent hy'the Cirencester mob. By his wife Maude, daughter of Sir Adam Francis, he had Thomas ($1388-1428$), who was summoned as an earl in 1409, his father's dignities being restored to him in 1421, by which time his services at Harfleur and Agincourt had earned him French lordships, the lieutenant-generalship of Normandy and the earldom of Perche. The last of a race of warriors, he ended his service at the famous siege of Orleans, a cannon-ball dashing into his face the stone and ironwork of the window from which he was gazing at the city. By his second wife, the daughter of Thomas Chaucer the Speaker, he had no issue. By his first wife, Eleanor, daughter of Thomas Holand, carl of Kent, he had an only daughter Alice, wlie of Richard Neville, a younger son of the first earl of Westmorland, who claimed and was allowed the earldom of Salisbury in right of his marriage. The famous "Richard Make-a-King," earl of Warwick and Salisbury, was the grandson of the last of the Montagu carls.

Sir Edward Montagu of Boughton, a chicf justice of the king's bench who died in 1557, was ancestor of three lines of peers, the dukes of Montagu, the dukes of Manchester, and the earts of Sandwich. These Montagus of Boughton claimed, by a false pedigree, descent from the third earl of Salisbury. It is possible that there may have been some kinship bet ween the two families, but none, apparently, that could justify the persistent quartering by these later Montagus of the arms of Monthermer.
Authoritriss.-Collinson's Somerset; G. E. C's Complete Peenase; Victoria County. History of Samersel (). H. Round's introduction to Domesday): Rymer's Focedera; Palgrave's Parliamentary Writs; Rolls of Pariament: Ramsay's Lancaster and York; Gesta Henrici V. (English Hist. Soc.): Chronicles of Walsingham, Knighton, Cap-
 Close, Patent,' Charter and Fine Rolls; Dugdale's Monamicon Publi: cations of Somerset Record Society; Charters in British Museum and Public Record Office.
(0. BA.)

MONTAGU, ELIZABETH ROBINSON ($1720-1800$), English Icader of society, was born at York on the 2nd of October 1720. In 1742 she married Charles Montagu, cousin of Edward Wortley Montagu and son of the earl of Sandwich-a wealthy man, considerably her senior. Thanks to her, his Mayfair bouse became the social centre of intellectual society in London, and her breakfast parties and evening conversaziones gained for her from her admirers the title of "The Madame du Defland of the English capital." In other quarters: the term " blue-stocking" was applied to her guests. From ber husband, who died in r 775 , she inberited a considerable fortune and large estates, in the management of which she showed much ability. In in ${ }^{1} 1$ she built Sandleford Priory, pear Newbury, and Mantagu Housa, now 22 Portman Square, London, the latter from deskgos hy James Stuart. With the colliers in the aorth she was extremely popular, and every May-day she entertained thoLondon chimneyaweeps. She died on the 2 gth of August 1800 . Thero is an edsuirable portrait of her by Rcynalds.
 spondence from 1720 to I7 11 , edited by E. J. Climenson (a vols, 1906): and R.Huchon, Mrs Montagu and her Friends, 1720-1800 (Eng. trans., 1907).
montagu, lady mary worthey (r689-1762), English letter-writei, eldest daughter of Evelyn Pierrepont, afterwards duke of Kingston, was baptized at Covent Garden on the 26th of May 1689. Her mother, who ded while her daughter was scill a child, was a daughter of William Feilding, earl of Denbigh. Her fatber was proud of her beauty and wit, and when she was eight years old she is said to have been the toast of the Kit-Kat Clab. He took small pains with the education of his children, but Lady Mary was encouraged in her set-imposed studies by her uncle, William Feilding, and by Bishop Burnet. She formed a close friendship with Mary Astell, who was a champion of woman's rights, and with Anne Worlley Montagn, granddaughter of the first earl of Sandwich. With this lady she carried on an animated correspondence. The letters on Anne's side, however, were citen copied irom deafts writien by her brother, Edward Wortley Montagu, and after Anne's death in 1709 the correspondence between him and Lady Mary was prosecuted without an intermediary. Lady Mary's father, now marquess of Dorchester, declined, however, to accept Montagu as a son-in-law because he refused to entail bis estate on a possible heir. Negotiations were broken off, and when the marquess insisted on another marriage for his daughter the pair eloped (s 712). The early years of Lady Mary Wortley Montagu's married life were spent in rigid economy and retirement in the country. Her husband was M.P. for Westminster in $\mathbf{1 7 1 5}$, and shortly afterwards was made a commissioner of the treasury. When Lady Mery joined him in London her wit and beauty soon made ber a promident figure at court. Early in 1716 Montagi was appointed amhassador at Constantinople. Lady Mary accompanied him to Vienna, and thence to Adriarople and Constantinople. He was recalled in 1757, but they remained at Constantinople until 1718. The story of this voyage and of her observations of Eastern life is told in a series of lively boteers full of graphic description. From Turkey she brought back the practice of inoculation for small-pax. Sbe had her own children inoculated, and encountered a vest amount of prejudice in bringing the matter forward. Before starting for the East she had made the acquaintance of Alexender Pope, and during her absence he addressed to her a series of extravagant letters, which appear to have been chiefly exercises in the art of writing gallant epistles. Very few let ters passed after Ledy Mary's return, and various reasons have been suggested for the subsequent estrangement and violent quasrel. Mr Moy Thomas suggesis that the cause is to be found in the last of the "Letters during the embessy to Conscantinople." It is addressed to Pope and purports to be dated froma Dover, the uat of November s718. It contains a parody on Pope's " Epitaph on the Lovers struck by Lightning." The MS. collection of these letters was passed round a considerahle circle, and Pope may well have been offended at the circulation of this piecio of saitre. Jealousy of her friendship with Lond Hensay has also been alleged, but Lady Louise Stwart says Pope had made Lady Mary a declaration of love, which ahe had received with an outborst of laughter. In any case Lady Mary always profesed complete innoceace of all cause of offence in public. She is ahuded to in the Danciod in a pmassage to which Pope affixed one of his insulting notes. A Pap upon. Pafo was generally supposed to be from her pen, and Pope thought she was part author of One Epistle to Mr A, Pope (1730). Pope attacked her again and again, but with especial virulenct in a gross couplet in the "Imi tation of the First Satire of the Second Book of Hocace," as Sappho. She ashed a third person to remonstrate, and receivad the obvious answer that, Rope could not have foressen that she or any one elee would apply so base an inoult to heraclif. Versat
 reply to these athacks, is generally altributed to the jointefforto of Lady Mary and her sworn ally, Lord Hervey. She had a romantic corrospondence with a Frenchman named Rémond, whe addressed to, her a series of excrsaively allinat letters befoce
ovar secing her. She Invosted mones for him in South Sea stuole at his desire, and as was expressly stated, at his own risk. The value foll to half the price, and he tried to extort the origiaal sum as a debt by a threat of expesing the correspondence to her husbind. Ste seems to have been really alarmed, not at the imputation of gallantry, but lest her husband should discover the extent of her own epeculations. This dieposes of the second balf of Pope's line "Who starves a vister, or forswears a debt" (Epilogus to the Satires, i. 113), and the first charge is quite devoid of foundation. She did in fact try to rescue her favourite sister, the countess of Mar, who was mentally deranged, from the custody of her brother-in-law, Lord Grange, who had treated has own wife with notorious cruelty, and the slander originated with him:

In 1739 she went abroad, and although she continued to write to her busband in terms of affoction and respect they never not again. At Florence in 1740 she visited Horace Walpole, who cherished a great spite against her, and exaggerated her eccentricities into a revolting slovenliness (see Letfers, ed. Cunningham, 1. 59). She lived at Avignon, at Brescia, and at Lovere, on the Lago d'Iseo. She was disfigured by a painful skin diseaso, and her sufferings were so acuto that she hints at the possibility of madness. She was struck with a terrible " ft of sickness" while vielting the countess Palateo and her son, and perhaps her mental condition mado restraint necessary. As Ledy Mary was then in her sixty-thtrd year, the scandalous interpretation put on the matter by. Horace Walpole may safely be discarded. Her husband spent his last years in boarding money, and at his death in $\mathbf{3 7 6 x}$ is said to have been a millionaire. His extrome parsimony is satirized in Pope's Imitations of Horats (2nd satire of the and book) in the portrait of Avidieta and his wife. Her daughter Mary, countess of Bute, whose husband was now prime minister, begged her to return to England. She came to London, and died in the year of her retam, on the arse of Augast 1762.
Her son, Edward Woriley Montigu (ryt3-1776), author and traveller, inherited something of his mother's gift and more than her eccentricity. He twice ran away from Winchestet School, and the second time made his way as far as Oporto. He was then sent to travel with a tutor in the West Indies, and afterwards with a keeper to Holland. He made, however, a sorious study of Arabic at Leiden (1741), and returned twenty years later to prosecuto his studies. His father mado him a meagre allowance, and he was heavily encumbered with debt. Fie was M.P. for Huntingdon in 1747, and was one of the secretaries at the conference of Aix-la-Chapelle. In 1751 he was involved in a disropurable gaming quarrel in Paris, and was imprisoned for eleven days in the Chatelet. He conthiaed ta sit in parliament, and wrote Reflections on the Rise and Fall of the Anticul Republics ... (1759). His father left him an anouity of froco, the bulk of the property going to Lady Bute. He set out for extended travel in the East, and George Rominey describes him as living in the Turkish manner at Venice. He bad great gifls as a linguist, and was an excellent talker. His family thought him mad, and his mother left him a guinea, but her annuity devolved on him at her death. He fied at Padus on the 2gth of April $17 \% 6$.
Lady Mary's "Town Eclogues" were pablished in a pirated edition as Court Poems in 1716. Of her famous Letters from the East she made a copy shortly after her return to England. She gave the MS. to Benjamin Sowden, a cergyman of Rotierdam, in 176 H . After Lady Mary's death this wes recovered by the eari of Bute; but meanwhile an unauthenticated edition, supposed to have been prepared by join Cletand, appeared (1763), and an additional volume, phobably spurious, was printed in 176%. The rest of the correspondence printed by Lord Wharncliffe in the edition of her letters is, ewhed from originald in .the Wortiey collection. This edition (18;3) contained "Introductory Anecdotes " by Lady Bute's daughter, Ludy Louisa Stuart. A more critleat edition of the text, With the "Artecdotes," nod a "Memoir" by W. Moy Thomas, appeared in 1861. A selection of the letters arranged to give a continuous aceoumt of her life, by Mr A. R. Ropes, was published in 1892; and another by R. Brimley Johnson in "Every man's Library". in 1go6. See also George Paston, Lady Mary Wortiey Moukapu and Wif Times (1907), which conthins somic hitberto unpublishied ferters:

Lady Mary's journal was preserved by her daughter, Lady Bute, till shortly before her death, when she burnt it on the ground that it contained much acandal and satire, founded probably on insufficient evidence, about many distinguished persons. There is a full and amusing account of Edward Wortley Montagu in Nichols's A necdoles of Litaraturv, iv. 625-656.
montacu, Ralphy $15 t$ Duke of (c. 1638-1709), English diplomatist, was the second son of Edward, and Baron Montagu of Boughton ($1616-1684$), whose peerage was one of several granted in the 17th century to different members of the Montagu family (q.v.). Sir Edward Montagu, chief justice of the king's bench in the time of Henry VIII., was grandfather of the first earl of Manchester (see Manchestier, Earls and Dukes or), and of Edward, 1st Beron Montagu of Boughton (1562-1644), who was imprisoned in the Tower by the parliament on account of his loyalty to Charles I. The eldest son of the latter, Edward, who succeeded him as 2nd baron, took the side of the parliament in the Civil War, and was one of the lords who conducted the king from Newark to Holmby House after his surrender by the Scots in January 1647. He had two sons, of whom Ralph was the younger. The eldest son, Edward, was master of the horse to Queen Catherine, wife of Charles II., a post from which he is said to have been dismissed by the king for showing attention to the queen of too ardent a nature. Catherine immediately appointed the younger brother, Ralph, to the vacant situation, and the latter soon acquired a reputation for gallantry at the court of Charles II. He took an active part in the negotlations in which Louis XIV. purchased the neutrality of England in the war between France and Holiand. Having quarrelled with Danhy and the duchess of Cleveland, who denounced him to the king, Montagu was elected member of parliament for Northampton in 1678 , with the intention of bringing about the fall of Danby; but, having produced letters seriously compromising the minister, the dissolution of parliament placed him in such danger of strest that he attempted to fly to France. Foiled in this design, he continued to latrigue against the government, supporting the movement for excluding the duke of York from the saccession and for recognizing Monmouth as heir to the crown. His elder brother having predeceased his father, Ralph became Baron Montagu of Boughton on the death of the fatter in 1684. Notwithstanding his former int rigues he gained the favour of James 11. on his accession to the throne; but this did not deter him from welcoming William of Grange, who created him Viscount Monthermer and earl of Montagu in 1689. Montagu was no less avaricious than unscrupulous. In 1673 he had miarried the wealthy widow of the earl of Nor thumberiand, EHizabeth Wriothesley, daughter of the earl of Southampton, who brought him a large fortune; and after her death in 1690 he married the still more wealt by EHzabeth Cavendish, daughter of the duke of Neweastle, and widow of Christopher Monk, and duke of Albemarle. Montagu's position was further strengthened in 1705 by the marriage of his son and heir to Mary, daughter of the great duke of Marlborough. In the same year he was raised to the dukedom as duke of Montagu and marquess of Monthermer. He died on the gth of March 1709. His London resldence, Montagu House, Bioomsbury, was bought by the government in 755 to hold the national collection of antiquities, and on its site was built the British Museum.

The duke was succeeded by his son John, and duke of Montagu ($\mathbf{1 6 8 9 - 1 7 4 9 \text {), who in } 1 7 4 5 \text { raised a cavalry regiment known as }}$ Montagu's Carabineers, which, however, was disbanded after Culloden. He was made a K.G. in $\mathbf{3 7 1 9}$, and was a fellow of the Royal Society. As neither of his' two sons survived him the titio became extinct at his deat h in 1749 , but in 1730 his daughter Mary married George Brudenell, 4 th earl of Cardigan (1712-1790), who on his father-in-law's death assumed the name and arms of Montasu, and in 3766 was created duke of Montaga. On his death, in 1790, this second dukedom of Montagu alee became extinct; his only son, who was created Baron Montagu of Boughton, having predeceased him. His daughter Elizabeth married Henry, and duke of Buceleuch, who thas acquired all the unentailed property of the dukes of Montagu, the entailed portion passing to the earis of Cardigan.

See Abel Boyer, Mistory of the Reige of Quern Anse. Fol. viii. (11 vols, Loadon, 1703^{-171}): Sir J. B. Burke, Genealogical Hislory of Dormant (Ec.) Pearages (London, 1883).
montalo (or Mountague), RICHARD (1577-1641), English divine, was born at Dorney, Buckinghamshire, and educated at Eton and Cambridge. In 1613 be was elected fellow of Eton and became rector of Stanford Rivers, Essex. He was appointed to the deanery of Hereford in 1616, but exchanged it next year for a canonry of Windsor, which he beld with the rectory of Petworth, Sussex. He was also chaplain to James I. Like Laud, be disliked the extremes of Calvinism and Romanism, and this attitude constantly involved him in difficulties. About 1619 he came into collision with some Roman Catholics in his parish, and Matthew Kellison (1560?-1642) attacked him in a pamphlet entitled The Gagg of the Reformed Cospell (Douai, 1623). Montagu replied with A Gagg far like New Cospall? No. A New Cagg for an Old Coose (London, 1624). The publication of the Immediate Addresse unto Cod alone (London, 1624) incensed the Puritans, who appealed to the House of Commons, but Montagu was protected by the king. Alter the appearance of his famous Appello Cacsarem (London, 1625), his case Irequently came before partiament and conferences of bishops, but his influence at court and with Laud enabled him to hold his ground. He was consecrated hishop of Chichester in 1628, and became hisbop of Norwich in 1638. He died on the $13^{\text {th }}$ of April 1641.

MONTAIGNE, MICHEL DE (1533-1592), French ensayist, was born, as he himself tells us, between eleven o'clock and noon on the 28th of February 1533. The patronymic of the Montaigne family, who derived their title from the chatcau at which the essayist was born and which had been bought by his grandfather, was Eyquem. It was believed to be of English origin, and the long tenure of Gascony and Guienne by the English certainly provided abundant opportunity for the introduction of English colonists. But the elaborate rescarches of M. Malvezin (Michet de Montaigne, son origine el sa famille, 1875) proved the existence of a family of Eyquems or Ayquems before the marriage of Eleanor of Aquitaine to Henry II. of England, though no connexion between this family, who were sieurs de Lesparre, and the essayist's ancestors can be made out. Montaigne is not far from Bordeaux, with which the Eyquem family had for some time been cennected. Pierre Eyquem, Montaigne's father, had been engaged in commerce (a herring-merchant Scaliger calls him, and his grandfather Ramon had certainly foliowed that trade), had filled many municipal offices in Bordeaux, and had served under Francis I. in litaly as a eoldicr. He married Antoinetie de Louppes (Lopea), descended from a family of Spanish Jews. The essayist was the third son. By the death of his elder brothers, however, he became bead of the family. He had also six younger brothers and sistera. His father appears, like many ot ber men of the time, to have made a bobby of educntion. Montaigne was not only put out to nurse with a peasant woman, hut had his sponsors from the same class, and was accustomed to associate with it. He was taught Latin orally by servants (a German tutor, Horstasus, is especialiy mentioned), who could speak no French, and many curious fancies were tried on him, as, for instance, that of waking him ewery morning by soft music. But he was by no means allowed to beidle. A ptan of teaching him Greek by some kind of mechanical arrangement is not very intelligible, and was quite unsuccessful. These delails of his education (which, like most else that is known about him, come from his own mouth) are not only interesting in them ${ }^{2}$ selves, but remind the reader how, mot far from the same time, Rabelais, the other leading writet of French during the Remaissance, was exercising himself, though not being exercised, in plans of education almost as fanteatic. At six years old Montaigne oras sent to the collitge de Guienne at Bordeaury then at the height of its reputation. Among its mastert were Buchanan, afterwards the teacher of James L., and Muretua, one of the.first scholars of the age. At thirteen Montaigne ieft the collegge do Guienne and began 10 atudy law, It is not known where, but probably at Taulouse. In is4s he wasent Bordeaux during one
of the frequent riots camod by the gabelie, or salt-tar. Sic years afterwand, having atteined his majority, be was made a counsellor in the Bordeaux pariement. In 1558 he was present at the siege of Thionville, in 1559 and 1561 at Paris, and in 2562 at the siege of Rouen. He was aleo much about the couct, and be admits very frankly that in his youth he led a life of pleasure, if not exactly of excess. In 1565 be married Francoise de le Chassaigne, whose father was, like bimself, a member of the Bordeaux parlement. Three ycars later his father died, and be succeeded to the family possessions. Finally, in 1575, as he tells us in an inscription still extant, he retired to Montaigne to take up bis abode there, having given up his magistracy the year before. His health, never strong, had been further weakened by the hard living which was usual at the time. Ee resolved, accordingly, to retire to a life of study and contemplation, though be indulged in no asceticism except careful diet. He neither had nor professed any enthusiastic affection for his wife, but be lived on excellent terms with her, and bestowed some pains on the education of the only child (a daughter, Leonore) who survived infancy. In bis study-a tower of refuge separate from the house, which he has minutely described-he read, wrote, dictated, meditated, inscribed moral sentences which still remain on the walls and raftera, annotated his books, some of which are still in existence, and in other ways gave himself up to a leamed ease.
He was not new to litereture. In his father's lifetime, and at his request, he had translated the Theologia moluralis of Raymund de Sabunde, a Spanish schoolman (published 1569). On first coming to live at Montaigne be edited the works of his deceased friend Etienne de la Bot́tic, who had been the comrade of his youth, who died early, and who, with poems of real promise, had composed a declamatory and school-boyish theme on repuhlicasism, entilled the Contr' un, which is one of the most over-estimated books in literature. But the yeara of bis studious retirement were spent on a work of infinitely greater importance. Gatrubous after a fashion as Montaigne is, he gives us no clear idea of any original or definite impulse leading him to write the famous Essays. It is very probable that if they were at frist intended to bave any special form at all it was that of a tablebook or journal, such as was never more commonly kept than in the 16th century. It is certainly very noticeable that the earlier essays, those of the first two books, differ from the later in one most striking point, in that of length. Speaking generally, the essays of the third book average fully four times the length of those of the other two. This of itself would suggest a difference in the system of composition. These first two books appeared in 1580 , when their author was forty-seven years old.

They contain, as at present published, no fewer than ninety-three essays, besides an exccedingly long apology for the already mentioned Raymund Sabunde, in which some have seen the kernel of Montaigne's philosophy. The book begins with a short avis (addrese to the reader), opering with the well-known words "C"ess icy sh livre de box foy, lecteut, and sketching in a few lively sentences the character of meditative egotism which is kept up throughout. His sole object, the author says is to leave for his friends and relations a mental portrait of himself, defects and all; he cares neither for utility nor for fame. The essays then begin, without any attempt to explain or classify their subjects. Their tities are of the most diverse character. Sonetimes they are proverbial sayings or moral adages, uuch as "Par divers moyens on arrive à pareille fin." \because Qu'il ne faut juger de notre heur qu'après la mort." "Le profit de l'on est le dommage de f'aultre," Sometimes they are headed like the chapters of a treatise on ethics: " De la tristesse." "De loisiveté," "De la peur," "De l'amitie." Sometimes a fact of some sort which has awaked a train of associations in the mind of the writer serves as a title, such as "On est puni de s'opiniastrer a use phace sans raison." "De la bataille de Dreux," \&c. Occasionally the titles seem to be deliberately Cantastic, as "Des puces" "De l"usage de se vestir." Sometimes, though not very often, the sections are in no proper scuse essays. but merely commonplace book entries of eingular facte or quotations, with hardly any commeint. These point to the haphazard or indirect origin of them, which hat been a neady. sugrested. But generally the emay-character-chat it to may, the discussion of a special point, it may be with wide digres sions and divergenceg-displays isself. The digressions are indeed eonstant, and sometimes have the appearance of being absolutely wilful The nominal title, even when mone atrictly observed. t
merely more than a starting-point ; and, though the brevity of these first essays for the most part prevents the author from journeying wery far, he contrives to get to the utmost range of his tether. Quctatione are very Iroquent.

In 1575 he had received the order of Saint-Micher; in 1574 was with the army of the duke de Montpensier; two years later was made gentleman-in-ordinary to Henry LII., and next year again to Henry of Navarre. He visited Paris occasionally, and travelled tor health or pleasure to Cauterets, Eaux Chaudes and elsewhere. But his health grew worse and worse, and he was tormented by stone and gravel. He accordingly resolved to journey to the baths of Lucca. Late in the 18 ch century a journal wes found in the chateau of Montaigne glving an account of this journey, and it was published in 1774; part of it is written in Italian and part dictated in French, the latter being for the most part the work of a secretary or servant. Whatever may be the biographical value of this work, which has rarely been reprinted with the Esseys themselves, and the MS. of which disappeared early, it is almost entirely destitute of literary interest. The course of the journey was first morthwards to Plombidres, then by-Basel to Augsburg and Munich, then through Tirol to Verona and Padua in Italy. Montaigne visited most of the famous cities of the north and centre, staying five months at Rome, where be had an audience of the pope and was made a Roman citizen, and finally establishing himself at the baths of Lucca for nearly as long a time. There he received news of his election as mayor of Bordeaux with a peremptory royal endorsement enjoining residence, and after some time journeyed homewards. The tour contains much minute informatlon about roads, tood, travelling, \&c., but the singular condition in which It exists and the disappearance of the MS. make it rather difficult to use it as a document. The best argument in its favour is the improbability of anybody having taken the trouble to forge so bald and awkward a heap of details. Of the fact of the journey there is no doubt whatever.

Montaigae was not altogether delighted at his election to the mayoralty, which promised him two years of responsible if not very hard work. The memory of his father, however, and the commands of the king induced him to accept it; and he seems to have discbarged it neither better nor worse than an average magistrate. Indeed, he gave sufficient satisfaction to the citizens to he re-elected at the close of his term, and it may be suspected that the honour of the position, which was really one of considerable dignity and importance, was not altogether indifferent to him. Unfortunately, it cannot be said that " nothing in his office became him like the leaving of it." It was his business, if not exactly his duty, to preside at the formal election of his successor, the marechal de Matignon; but there was a severe pestilenco in Bordeaux, and Montaigne writes to the jurats of that town, in one of the few undoubtedly authentic letters which we possess, to the effect that he will leave them to judge whether his presence at the election is so neceasary as to make it worth bis while to expose himself to the danger of going in to the town in its then condition, " which id apecially dangerous for men coming from a sood air, as he does.". It may be urged in his favour that the general circumstances of the time, where they did not produce reckless and foolbardy daring, almost necessarily produced a somewhat excessive caution. However this may be, Montaigne had difficulty enough during this turbulent period, all the more 50 from his neighbourbood to the chief haunts and possessions of Henry of Navarre, who actually visited him at Montaigne in 1584. He was able, despite the occupations of his journey, his mayoralty, and the pressure of civil war and pestilcace, which was not confined to the town, to continue his essay-writing. His second term of office terminated in 1585; and in 1588 afler a visit of some legeth to Paris, the third book of the Essays was published, together with the former ones considerably revised. The new easays; as has been remarked, differ strikingly from the older ones in respect of length; and the whimsical unexpectedness of the titles reappears in but two of them: "Des Coches " and "Des Boiteux." They are however, identical with the cartier ones in spirlt, and make
with them a harmonions whole-a book whict has hardly been second in infuence to any of the modern world.
This infuence is atmost equally remarkable in point of mattor and in point of form. The latter aspect may be taken first. Montaigne is one of the few great writers who have not only perfected but have also invented a literary kind. The essay as he gave it had no forerunner in modern literature and no dircet ancestor in the literature of classical times. It has been suggested that the form which the essays assumed was in a way accidental, and this of itsetf preo cludes the idea of a definite model, even if such a model could be found. Beginning with the throwing together of a few stray thoughts and quotations linked by a community of subject, the author by degrees aequires more and more certainty of hand, until he produces buch masterpieces of apparent desultoriness and real unity as the escay "Sur des vers de Virgile.". In matter of style and language Montaigne's position is equally important, but the ways which led him to it are more clearly traccable. His favourite author was beyond all doubs Plutarch, and his own explicit confession makes it undeniable that Plutarch's translator, Jacques Amyot, was his master in point of vocabulary and (so far as he took any lessons in it) of style. Montaigne, however, followed with the perfect independence that charactcrized him. He was a contemporary of Ronsard, and his first easays were published when the innovations of the Pliade had fully established themsclves. He adopted thern to a great extent, but with much discrimination, and he used his own judgment in latinizing when he pleased. In the same way he retained archaic and provincial words with a good deal of freedom, but by no means to excess In the arrangement, as in the selection, of his language he is equally original. He has not the excessive classicism of style which mars even the fine prose of Jean Calvin, and which makes that of some of Calvin's followers intolerably stiff. As a rule he is careless of definitely rhythmical cadence, thouph his sentences are always pleasans to hee car. But the principal characteristic of Montaigne's prose style is its remarkable case and flexibility. A few years after Montaigne"s death a great revolution, as is generally known. passed over France. The criticism of Malherbe. followed by the establishment of the Acaderny, the minute grammatical censures of Claude Favre Vaugelas, and the severe literary censorship of Boileau, turned French in less than three-quarters of a century from one of the frest languages in Europe to one of the most restricted. During this revolution only two writers of older date held their ground. and those two were Rabelais and Montaigne-Montaigne being of his nature mone generally readable than Rabelais. All the great prose writers of France could not fail to be influenced by the racy phrase the quaint and picturesque vocabulary, and the uriconstrained constructions of Montaigne.

It would be impossible, however, for the stoutest defender of the importance of form in titerature to assiga the chief part in Montaigne's infuence to style. It is the method, or rather the manner of thinking, of which that style is the garment. which has in reality exercised influence on the world. Like all the greatest writers exceept Shakenpeare, Montaigne thoroughly and completely exhilits the intellectual end moral complexion of his own time. When he reached manhood the French Renaiscance was at high water, and the tum of the tide was beginning. Rabelais, who died when Montaigne was atill in early manhood, exhibits the earrier and rising spirit, thoush be neede to be completed on the poetical sida. With Montaigne begins the age of disenchant pnent. By the time at least when he began to meditate his essa ys in the retirement of his country house it was tolerably certain that no golden age was about to return. As the earlier Renaissance had specially occupied itself with the practical busiacse and pleasures of life, so the later Renaissance specially muned, on the vanity of this business and these pleasures. The predisposing circumstances which affected Montaigne were thus likely to incline him to scepticism, to et hical musings on the vanity ot Ife and the like. But to all this there had to be added the peculiarity of him own temperament. This was a decidedly complicated one, and noglect of is has led mome readers to adopt a more positive idea of Montaigne's scepticism than is fully justified by all the facts. The attitude which he assumed was no doubt ephectic and critical chicfly. In the "' Apologie de Raymund Sabunde." he has apparently amused himself with gathering together, in the shape of quota. tions as well as of reflections, all that can be sail sainst certainty in aesthetics as well as in dogmatics. It is even ald by some who have examined the original (vide infra) that the ext and altera tlons show a progressively freethinking attitude, sit by side with a growing tendency to conceal it by ambiguity and innuendo. But until all the documents are accessible this must remaie douhtful. The general tenor of the casays is in complete contrast with this aceptical attitude, at least in its more decided Iorm, and it is worth notice that the motto "Que scoi-je?" does not appear on the titlepaze till after the writer's death. Montargne is far roo much occypis about all sorts of the roinutest details of human life to make it lor a momem admissible that he regarded that life as a whole but as smoke and vapour. And it is almost ccrtainly wrong. though Bruncticre may have given countenance and currency to the ide. to regard his philosophy as in the main intended as a mecour againat the fear of death. The reason of the misapprehension of bim which ia curreot is due very mainly to the fact that he was eminently a
humorist. Perhaps the only actual paraliel to Montaigne in literatire is Lamb. There are differences between them, arising naturally enough from differences of temperament and experience: but both agree in their attitude-an attitude which is sceptical without being negative and humorous without being satiric. There is hardly any writer in whom the human comedy is treated with such completenese as it is in Montaigne. There is discernible in his essays no atterupt to map out a complete plan, and then to fill up its outlines. But in the desultory and haphazard fashion which distinguishes him there are few parts of life on which he does not touch, if only to show the cternal contrast and antithesis which dominate it. The exceptions are chiefly to be found in the higher and more poetizal strains of feeling to which the humorist temperament fends iteelf with reluctance and distrust, though it by no means excludes them. The positiveness of the French disposition is already noticeable in Rabelais; it becomes more noticeable still in Montaigne. He is always charming, but he is rarely inspiring, except in a very few passages where the sense of vanity and nothingness possesses him with unusual strength. As a general rule, an agrecable grotesque of the affairs of life (a grotesque which never loses hold of good taste sufficienty to be called burlesque) occuples him. There is a kind of anticipation of the scientific spirit in the careful zeal with which he picks up odd aspects of mankind and comments upon them as he places them in his museurn. Such a temperament is most pleasantly shown when it is least personal. A dozen generetions of men have rejoiced in the gentle irony with which Montaigne handles the ludicrum humani saeculi, in the quaint felicity of his selection of exarnples, and in the real though sometimes fantastic wisdom of his comment on his selections.

Montaigne did not very long survive the completion of his book. On his way to Paris for the purpose of getting it printed he stayed for some tlme at Blois, where he met De Thou. In Paris itself he was for a short time committed to the Bastille by the Leaguers, as a kind of hostage, it is said, for a member of their party who had been arrested at Rouen by Henry of Navarre. But he was in no real danger. He was well known to and favoured by both Catherine de' Medici and the Guises, and was very soon released. In Paris, too, at this time he made a whimsical but pleasant friendship. Marie de Jars de Gournay ($1565-1645$), one of the most learned ladies of the r6th and ifth centuries, had conceived such a veneration for the author of the Essays that, though a very young girl and connected with many noble families, she travelled to the capital on purpose to make his acquaintance. He gave her the title of his "fille d'alliance " (adopted daughter), which she bore proudly for the rest of her long life. She lived far into the 17 th century, and became a character and something of a leughing-stock to the new generation; hut her services to Montaigne's literaty memory were, as will be seen, great. Of his other friends in these last years of his life the most important were Etienne Pasquier and Pierre Charron. The latter, indeed, was more than a friend, he was a disciple; and Montaigne, just as he had constituted Mlle de Gournay his "fille d'alliance," bestowed on Charron the rather curious compliment of desiring that be should take the arms of the family of Montaigne. It has been thought from these two facts, and from an expression in one of the later essays, that the marriage of his daughter Leonore to Gaston de La Tour had not turned out to his satisfaction. But family affection, except towards his father, was by no means Montaigne's strongest point. When Henry of Navarre came to the throne of France, he wished Montaigne, whom he had again visited in 1537, to come to court, but the essayist refused. It wouid seem that he returned from Paris to his old life of study and meditation and working up his Essays. No new ones were found after his death, but many alterations and insertions. His various maladies grew worse; yet they were not the direct cause of his death. He was attacked with quinsy, which rapidly brought about paralysis of the tongue, and he died on the 13th of September 1592, in circumstances which, as Pasquier reports them, completely disprove any intention of displaying antiChristian or anti-Catholic leanings. He was buried, though not till some months after his death, in e church in Bordeaux, which after some vicissitudes became the chapel of the college. During the Revalution the tomb, and as it was supposed the coffin, were transferred with much pomp to the town museum; but it was diacovered that the mrong coffin had been taken, and it was afterwards reatored to its ald position. Montaigne's widow
survived him, and his daughter left posterity which became merged in the noble houses of Segur and Lur-Saluces. But it does not appear that any male representative of the family survived.

When Mile de Gournay heard of the death of Montaigne she undertook with her mother a visit of ceremony and condolence to the widow, which had important results for literature. Mme de Montaigne gave her a copy of the edition of 5588 annotated copioualy: at the same time, apparently, she bestowed another copy, also annotated by the author, on the convent of the Feuillants in Bordeaux, to which the church in which his remains lay was attached. Mile de Gournay thereupon set to work to produce a new and final edition with a zeal and energy which would have done credit to any editor of any date. She herself worked with her own copy, inserting the additions, marking the alterntions and translating all the quotations. But when she had got this to prest she sent the proofs to Bordeaux, where a poet of some note, Pierre de Brach, revised thern with the other annotated copy. The edition thus produced in 1595 has with justice passed as the standard, Uven in preference to those which appeared in the author's lifetime Unluckily, Mile de Gournay's original does not appear to exist and her text was said, until the appcarance of $\mathbb{1} \mathrm{M}$. Courbet and Royer's edition, to have been somewhat wantonly corrupted, especially in the importane point of spelling. The Fetillants copy is in existence, being the only manuscript, or partly manyacript. authority for the text; but access to it and reproduction of it are subjected to rather unfortunate restrictions by the authorities, and unil it is completely edited students are rather at the mercy of those who have actually consulted it. It was edited in 1803 by Naigeon, the disciple of Diderot; but, according to later inquiries considerable liberties were taken with it. The first edition of 1580 with the various readings of two others which appeared during the author's liferime, was reprinted by MM. Dezelmerisand Burckhausen in 1870. That of Le Clere (3 vols,, Paris, 1826-1828) and in a more compact form that of Louandre (4 vols., Paris, 185t) bay ve been mont useful; but that of MM. Courbet and Royer (1872-1, , 1) is at present the standard. The Journal, long neglected and still (pide supra) doubtful, was re-cdited by Professor A. d'Ancona (Citia di Castello. 1895) and translated into English by W. G. Waters (1903). The editions of Montaigne in France and elsewhere, and the works upon him during the past three centurics, are innumerable. The moat recent books of importance are P. Bonncfon's Montaignte, Ihomme ed Cewire (1893) and P. Stapter's Montaigre (1895) in the Grands berivains, the latter a book of remarkable excellence. Edme Champion's Infroduction aux essais may also be noticed, and Professor Dowden's Montaigne (1905), which has an exceltent bibliography. The somewhat carlier Montaigne of M. E. Lowndes (Cambridge, 1898) is noteworthy in especial for its attention to his Fife and character. In England Montaigne was early popular, It was long supposed that the autograph of Shakespeare in a copy of Florio's translation showed his study of the Essoys. The autograph has been disputed, but divers passages, a nd especially one in The Tempest, show that at first or second hand the poct was acquainted with the essayist. The book best worth consulting on this head is J. Feis's Shakespeare and Montaigne (1884). Towards the latter end of the $1{ }^{\text {th }}$ century, Coiton, the friend of Isaac Walton, exceuted a comsplete translation, which, though not extraordinarily faithsul, possesses a good deal of rough vigour. It has been frequently reprinted with additions and alterations. Reprints of Florio are abso numerous. One in the "Tudor Translations" (1893) has an introduction by G. Saintsbury. An English biography of Montaigpe by Bayk St John appeared in 1858, and Walter Pater's unfinistred Gaston de Letour borrows from Montaigne and his story. The most noteWbrthy critical handling of the subject in English is unquestioniably Emerson's in Representalive Alen.
(G.SA.)

MONTALBAN, JUAN PEREZ-DE ($\mathrm{r} 602-1638$), Spanish dramatist, poet and novelist, was born as Madrid in 1602. At the age of cighteen he became a lloentiate in cheology, was ordaiaed priest in 1625 and appointed notary to the Inquisition. In rorg he began writing for the siage under the guidance of Lope de Vega, who is sald to have assisted him in composing EI Orfea en lengma castellanc (i624), a poem obviously intended to compete with Jkuregui's Orfeo, published earlier in the same year. The prose tales in Sucesos y prodigios de omer (1624) and Para lados (163a) were very popular. Montalban's father, a publisher at Madrid, issued a pirated edition of Quevedo's Busconn, which roused an angry controverny. The violance of these polemics, the strain of owerwork, and the death of Lope de Vega so affected Montalban that he became insane; he died as Madrid on the $5^{\text {ch }}$ of June 1638 . His last work was a eqlogistic biotraphy of lope de Vega in the Fama postuma (1636). His pleys, publitshed in $1635-1638$, are all in the manner of that great dramatist, and were represented with much succtes, but, with the exception of las Amantes of Tarmel, are litule
mora thas clever improvieations, A libellows ettack. on Quevedo entitled El Tribmal de la justa pengamse (1633), ts often ascribed to him.

MONTALBMBERT, CHARLES FORBES RENG DR (18101870). Freach publicist and historian, was born on the 15 th of March 1810. The family was a very ancient one, belonging to Poitou, or rather to Angoumois. Direct descent is said to be traced back to the inth century, and charters carry the history of the house two centuries furtber. For some generations before the historian the family had been distinguished, not merely in the army, hut for scientific attainments. Montalembert's father, Marc Rene, emigrated, fought under Conde, and subsequently served in the Eaglish army; he married Elise Rosée Forbes, and his eldest son, Charles, was born in London. At the Restoration of 1814 Marc Rene returned to France, was raised to the peerage in 18 Ig , and became ambessador to Sweden (where Charles completed his education) in 1826. He died in 1831, a year after the overthrow of the legitimate monarchy. Charles de Montalembert was too young to take his seat as a peer (twenty-five heing the necesary age), but he retained other rights, and this, combined with his literary and intellectual activity, mede him a person of some importance. He was a Liheral, in the English sense, and had he not resolutely separated himself from the new regime on the religious quastion he would bave approved of the policy of the golden mean represented hy Lonis Philippe. He wished to see the Church free from the control of the state, and passionately attacked the monopoly of public insiruction hy which the monarchy fartifed its position. This latter scheme first hrought. Montalembert into notice, as he was formally charged with unlicensed teaching. He claimed the right of trial hy his peers, and made a notable defence, of course with a deliberate intention of proteat (1882). On tho ather hand, he thought that the Church should not obstinately appose new ideas. He had eagerly entered into the plans of his friends, Lamennais and Lacordaire, and collabocated with them in the newspaper l 'Avenir. The Ultramontane party wis roused by their boldness, and Montalembert and his two friends then left for Rome. This famous pilgrimage proved useless to mitigate tbe measures which the Romen curia took against the I'Avanir. Its doctrines were condemned in two encycticals (Mirovi vos, 1832, and Singulari vobis, 1834), and Montalembert suhmitted. He still clung to his early Liberalism, and in 1848 saw without regret the end of a government towards which he had always been hostile. He had a seat in the Chamber of Deputies till 1857, hat to his great regret was then obliged to retire into private life. He was still, however, recognized as one of the most formidable opponents of the empire. Meanwhile his Liberal ideas had made him some irreconcilahle enemies among the Ultramontanes. Louis Venillot, in his paper, L'Univers, foogbt desperately against him. Montalembert answered hy reviving a review which had for some time ceased puhlication, the Corresposedaut (1855), in which be set himself to fight both against the famatical party of Pius IX. and the Syllabus, and the more or less free-thinking Liborals of the Revere dos dewx mondes. He took great interest in the debuts of the Liberal ompire, whilst trying to parry tho blow which the Uhtramontanes were preparing to deal to Liberal ideas by proclaiming in the Vatican council the dogma of papal infallibility. But once again he would not allow himself to be seduced from obedience to the pope; he now severed his connexion with Père Hyacinthe (Loison) as he had with Lamennais, and made the submission expected of him to the council. It was his last fall. Broken down by the trial of these continued fights against people of his own religion, he died prearaturely on the 19 th of March 1870.

In addition to being an eloquent orator, Montalemhert wrote a styie at once picturesque, fiery and polished. He was an ardent student of the middle ages, hut his medieval enthusiasm was strongly tinctured with rehigious sentiments. His firat historical work, La Vie de Ste Elisabeth de Hontrie (1836), is not so much a history as a religious manifesto, which did much to restore the position of hagiography. It met with great success; but Montalembert was not elected a member of the Academie

Frangaise till hater, after the fall of the July monarchy Gan. in 1851). From this time he gave much of his attention to a great work on monachism in the West. He was at first attracted hy the figure of St. Beenard, and devoted one volume to him; this was, bowever, afterwards withdrawn on the advice of his friend Dupanloup, and the whole edition was destroyed. He then enlarged his original plan and puhlished the first volumes of his Moines d'occident (1860), an eloquent work which was received with much admiration in those circles where language was more appreciated than learning. The work, which was unfinished at the lime of the author's death, was completed later from some long fragments found among his papers (vols. vi. and vii., 1877).

Montalemhert married Mlle de Merode, sister of one of Pius IX.'s ministers. His daughter married the vicomte de Meaux, a Roman Catholic statesman and distinguished writer.

Bibliographt.-Mrs Ollphant, Memoty of Connt de Mentalembert, peer of France, deputy for the department of Dowbs (Edinburgh, 1872). Mrs Otiphant, who has also translated into English Moimes doccident. has given a most charming account of the youth of Montalembert, and especially the first years passed at Stanmore. See also the vicomte de Meaux, Afontalember! (1897); see also L. R. P. Lecanuet, Montalembert, d'apres son journal et sg correspondance (3 vols., 18951902) a work filled with important documents; and Leon Lefebire, Portraits de croyarts au XIX= siccle: Montalembert, Auguste Cochin, Framgois Rio (who was Montalembert's professor of philosophy); A. Guthtin (1905); and Lettres d'Alphowse d'Herbelot d Charles de Montatembert. et LLeon Cornudet (1820-1830).
mONTALEMBERT, MARC RENE, MARquis DE (1714-1800) French miditary engineer and writer, was born at Angouteme on the r6th of July 1714, and entered the French Army in 1732. He fought in the War of the Polish Suecession on the Rhine (1733-34), and in the War of the Austrian Succession made the campaigns of 1748 in Bohemia and Italy. In the years preceding the 'Seven Yearn' War, Montalembert (who had hecome an associate member of the Académie des Sciences in 1747) devoted his energies to the art of fortification, to which Vauban's Troild de lathaque attracted him, and founded the arsenal at Ruelle, near his hirthplace. On the outhreak of war he became French commissioner with the allied amy of Sweden, with the rank of brigadier-general. He constructed the field fortifications of Anklam and Stralsund. Is r76t he was promoted merbsthal decomp, and began the warks on which his fame rests. Montalembert's fortresa has been aptly described by an English author as ao " Immonse battery." The intricacies of trace hy which Vauban and Cormontaigre sought to minimize the power of the attack, are ahandoned in favour of a simple tenaille plan 80 arranged that the defenders can bring an overwhelming fire to hear on the works of the besicger. Montalembert, who himself drew his iden from the praotice of Swedish and Prussian engineers, furnished the German constructors of the early 19 h century with the means of dealgning entrenched camps suitable to modern conditions of warfape. The "polyrgonal" method of fortification is the direot outoome of Montalembert's systems. In his own country the caste-splrit of the eagineer corps was roused to defend Vauban, and though Montalembert was allowed to construct some successful works at Aix and Oleron, he was forbidden to publish his mothod, and given but little opportunity for actual Duilding. After fifteen years of secrecy he published in Paris $(1776-1778)$ the first edition of $L a$ Fortification perpentdiculaine. At the time of the Revolution he surrendered a pension, which had been granted him for the loss of an cye, although he was deeply in debt, particularly on acconnt of his Ruelle foundry, on which 6000 livres were due fo him from the state, which he never roceived. Persuaded by his wife, he joined in the emigration of the meblasse, and for a time lived in England. All his possessions were thereupon sequestrated by the republican government. He very coon returned, divorced his wife, and married again. He oblaioed the annulment of the sequestration. Carnot often called himinto consultation on military affairs, and, In 1792, promoted him general of division. Proposed as a member of the Institm in 1797, he wishdrew his candidstupe in favour of Generad Bonaparte. He died at Parie on the 2gth of March 1800. His wfe, Marie Jorephine de Comatien, was the
hostems of one of the bent-known selons of Louis XVI.'s time. She wrote two arovels of merit, Elise Damasail (1798) and Horcou (1882). She died in 1832 .

Besides his masterpiece, he wrote L'Art defensthe supsricupe a roffensif (1793; in reply to attacks made upon his earliest wurk, La Foplificasion perpendiculaire, of which in later editions it forms part): Memoire hisforique sur le fonle des canons (Paris, 1758), and other works on the same subject; Correspondance pendant la guerre de 1757-1760 (London, 1777): Rolation des bomlets (Acad., 1755): and Relations du sitee de S. Jecue d"Acre (Paria, 1789). He aloo wrote short stories and verse, as well as comedies. He also modelled a complete course of Fortification (92 models), which he offered to the Committee of Public Safety. His bust was sculptured by Bonvallet. Montalembert's position in the history of fortibcation may be summed up as a realization of his own wish to do for the delerce what Vauban had done for the attack. It was the inability of his contemporaries to see that Vauban's strength lay in his parallels and batteries and not in his bastionsthat vitiated their methods, and it was Montalembert's appreciation of this fact which made him the father of modern fortification. See Tripier, La Fortification dofuite de som hishore (Paris, 1866),

MONTALIVET, MARTRE-CAMILLE BACHASSON, COMTE DE (1801-1880), French statesman, was born at Vaience on the 25th of April 1801 , the second son of Jean Pierre Bachasson, comte de Montalivet ($1766-1823$), who had been made a peer of France in 1819 . Both his father and his elder brother Simon Pierre Joseph ($1799-1823$) had been engineer officers, and be was educated at the Ecole Polytechnique and the Ecole des Ponts et Chaussees. Under Louis Philippe be occupied the ministry of the interior from, with short intervals, 1830 to 1840 . After 1840 he was intendant of the civil list, occupying himself with the museums of Versailles and the Louvre, and the restoration of the palaces of Fontainebleau and Saint-Cloud. In 1847 he tried to induce Louis Philippe to edopt electoral reform, and after the catastrophe of the next year undertook the dofence of the July monarchy in two works, Le Roi Lowis Philippe a la liste civile (1851) and Rient Dix anmdes de gompernemens parlementaire (1862). He had beoome a member of the Academy of Fine Arts in 1840 and in 5843 grand cross of the Legion of Honour. The attitude of the comte de Chambord after 1870 led him to accept the republic, and he entered the Senato a year before his death, on the 4th of January 1880.
MONTANA, a north-western state of the United States, situaled hetween latitudes $44^{\circ} 26^{\prime}$ and $49^{\circ} \mathrm{N}$., and between longitudes 27° and $39^{\circ} \mathrm{W}$. from Washington. It is bounded N. hy the Cenadian provinces of British Columbia, Alberta and Assiniboia; E. by North Datota and South Dakota; S. by Wyoming and Idaho; W. by Idaho. Montana has an area of 146,572 sq. $\mathrm{m} ., 796$ sq. m. of which are water surface. (For map, see Idaho.)

Physical Feotures.-The Rocky Mountaine cross the state from north-west to south-east, and with their spars and outlying ranges occupy nearly one-third of its area in the west and southwest; the remaining portion bs occupied chiefly by the Great Plains. The main range of the Rockies follows the boundary line between Montama and Idabo west and north-west from Yellowstone Park in Wyoming to Ravalli county, then turns east-north-east to lewis and Clark county, and from there extends north-north-west into Canada. From where the main range turns east from che Idaho boundary tine the crest of the Bitier Root Mountains continues on that line with a downward slope to within one degree of latitude from the Canadian border. This range of mountains, which was formed by a gieat faudt, has a maximnm elevation at its southern end of about 9000 ft . sbove the sea. On its slope, which rises abruptly from the Bitter Root Basin, glaciers have cut cafons berween high and often precipitous walls, and between these cafions are steep and rocky sidges having peaked or saw-roothed crest lines. To the east and northeast of the Bitler Root Mountains is a considerable basin or peneptain dissected by short ranges having a northwest and soutb-west trend. To the southeest of this basin are the greutest mountain masaea of the state; lofty and rugged rapgen radiate in all directions, and in many instances rise to beights of $10,000-11,000 \mathrm{fl}$., the highest peak in the state being Granite Peak (x, , 34 ft.) in Carbon county. Deep and narrow
cablons are common, anid, at bigher levels, glaciers, carved ont amphitheatres, or "cirques" and "U "-ahaped troughs. In the north the Rocky Mountains consist principally of two parallat ranges, the Lewis and Clark Range to the east, and the Livingston Range to the west, which were formed by a great overthryst; between them is the Waterton-McDonald valley, 8-15 m . wide. The east slope of the Lewis and Clark range is marked by long high spurs, and the valleys between them end in radiating cafions that are crowned with bold cliffs. On the higher summits the range ribes to $8500-10,400 \mathrm{ft}$. above the sea, but in the wind-gaps only to $5500-6500 \mathrm{ft}$. The Livingaton range is less rugged and more massive. Like the Lewis and Clark range, its crest is broken by numerous U-sbaped wind-gaps and its west slope is cut by glacial troughs containing long narrow lake basins. Extending far to the castward, especially in the south of the state, are isolated mountain groups. Arnong these are the Bear Paw Mountains, in the north central part, which occupy a tract 40 m . long and 20 m . wide that on the western side rises abruptly from the plains and reaches an elevation in Bear Paw Peak of 7040 ft. above the sea. The Great Plains in Montana slope from about 4000 ft . (above the sea), at the foothills of the mountains, to 2000 ft . in the north-east of the state. The valleys of the principal streams are deeply eroded; bluffs are common along their bordera, and huttes elsewhere on the plains. The main range of the Rocky Mountains sepwrates that part which is drained west into the Columbia river and the Pacific Ocean from that which is drained east into the Missouri and Mississippi rivers and the Gulf of Mexico, and from a very small part which is drained north-east into Hudson Bay; the water-parting which in Motiana separates the dralnage into Hudson Bay from the drainage into the Gulf of Mexicocrosses only the north-west of Teton county. The principal rivers east of the Rockies are the Missouri and three of its tributaries; the Yellowstone in the south-east, the Musselshell in the middle, and the Milk in the north. The Missouri ts formed by a union of the Jefferson, the Madison and the Gallatin. It flows first east-north-east and then nearly east until it passes into North Dakota. Its channel is generally erratic and constantly shifting; its bed is sandy and its water muddy. In contrast, the Yellowstone is a stream of hright clear water runaing over a gravely bed and among numerous forest-clad islands. The Missouri is navigable for small boats to Fort Benton in Choutean county, but farther upstream near Great Falls, Cascade county, to which it is navigable at high water, it falls 512 ft . in 10 m . The Yellowstone is navigable for about 300 m . The prindpal rivers west of the Main Divide of thie Rockies are the Clark Fork of the Columbia and its principal tributary, the Flathead, which rises in British Colnmbia. Montana has a few mineral aprings, the best known being the Lissner Springs at Helena. Small lakes and waterfalls, the result of glacial action, are numerous in the mountains. There is, however, only one large lake in the stateFlathead (or Selish) Lake, which may be regarded as an enlargement of Flathead river; it is 27 m . long, has an average width of 12 m. , and a depth of more than 1000 ft .
Geolocy.-In the Great Plains region the geological structare is very simple, consisting of nearly horizontal strata of Cretaceove rock in the middle and western portions, ead of Tertiary rock on the castern border, hut in the mountain region the rocks have been tolded and laulted untll the structure is intricate and obscure. Some of the deeper cafons show rocks of nearly all ages. The higher elevations are mostly either Archean or Paleozoic formationa projecting above Tertiary deposits. In the Bitter Root Valley is a large deposit of Quaternary. Fossil remains of mammals, fish and reptiles found in the Tertiary deposits of south-western Montana are preaerved in the Carnegic Museum at Pittsburg, Pennaylvania, and in the museum of the university of Montana. They include the mandible of a maatiodon and a portion of a vertebra of a large fiah, both found in the Lower Madison Valley; the skull and other parts of a dog (Mesocyon drummondanus), found near Drummond, Grimite county; the skufl of a Poobrephes poludicola, found near New Chicago, Granite county; a portion of the skull of a Mesohippus latidens, found near the conduence of the three forks which form the Missoun river : and a portion of the skull of a Hyachyus priscus found near Linn. Beaverhead county. In the reqion eatr of the Crazy Mountalis, in Sweetgrass county, are manne beds of upper Cretaceows or iwwer Tertiary formation contriaing fowsile of Dinonaure and

Mosamars, and in the maseum of the university of Montasa is the greater part of the aloleton of a Dinosaur which was found here. Interesting fomil remains have aleo been found in Carboniferows formations in the south-west of the state.
Fauno.-The native fauna is not oharply distiaguiabed from that of the eurrounding otates. The bison, which once ranged the plains in large herde, have been exterminated; the moose and the elk are found only occasionally in the wilder regions; mountain sheep. antelopen, black and grizzly bears, wolves, coyotes and lynx ("wild cate") are alco becoming rare. Black-tailed and mube deer are still favourite game for sportsmen. Geese, ducks and grouse are numerous about the lakce and rivers. Several kinds of hish, among which are trout, salmon, grayling and white fish, inhabit many of the lakes, rivers and mountain streams, and a government fish hatchery at Bozeman, Gailatin county, restocka waters in which the supply has been diminished.

Flore.-The Great Plains are covered for the most pert only with bunch grass which grows in tuits, leaving the ground visible bet ween, and except in May and June presents a yellow and withered appearance. Mixed with the bunch grass are occasional patches of sage brush. Most of the blufis along the principal river valleys eapecially those in the south-easi, are entircly bare of vegetation, but on the bottom lands along the rivers and streams considerable patches of cortonwood and wiflows are common. The mountain valleye are covered with lit the except grasses: on the higher parts of the mountains there are berren rocks or only a scant growth of timber; but many of the lower mountain slopes, especially those along the western border, are clothed with heavy timber, yellow pine, red fir and tamarack being the principal species.

Climate.-The climate is gencrally dry, althoush lese so on the mountaiss and in the Flathead river basin than on the Great Plains, and is subject to sudden changes and to great extremes of temperature; hut the temperature varies more than the amount of precipitation. In the west the climate is generally delightfal, it being there greatly affected by the warm, dry "Chioook" wind which blows from the Pacific Ocean; to wome extent the wiad modines the temperature nearly to the eastern border. It is the prevailing wind of winter in the mountains and in consequence the periods of cold, though often severe, are short. In the east the wioters are often long and very cold, and the summers dry and hot. The mean anaual temperature ranges from $37^{*} F$. in the north-east to 47° in the sheltered valleys among the mountains. On the Great Plains a range of extremes within a year from $-40^{\circ} \mathrm{F}$. to 100° is not unusual, but in the mountain valleys the range is rarely greater than from -20° to 90°. The records from 1880 to 190% glow a maximuni range from 11° at Glendive, near the eastern borcer, in July 1893, to -663 at Poplar, about 80 , n. north by west of Glendive.
in January $1883^{\text {. }}$ The amount of precipitation is greater in the in fanuary 1885. The amount of precipitation is greater in the mornitains of lower elevation are a less obstruction to the moisturebaating winds from the weat. and in the other the mountains condense the moisture; the mountains which stand in isolated groups upon the plains are frequently in summer the focus of local thunder showers. The average annual precipitation ranges from 10 to 15 in . on the Great Plains to 20 in . or more in the north-west, and over limited areas in the higher mountain region. Nearly one-half of the rain falls during the four months from May to August inclusive. Storms endangering life and property occur only in the east, caused by a hlgh north wind with snow or rain and a low temperature.

Soih, In the river bottoms the soil is for the roost part a black clayey loam lacking in natural drainage, but on the "' bench lands" higher up there is a deep layer of gandy loam beneath which is a bed of gravel. Some of the best soil is in the mountain valleys, for these valleys were once lakes and rich deposits of allavium were made in them. The mountain slopes are often bare or covered only with a thin layer of mould.

Agriculturc--The rainfall is sufficient for good grazing, but except in the Flathead valley cultivation was long considered to be dependent on irrigation 1 and consequently farming was only Oncioental to stock raising and mining until after 1870 , and as late es igoo the ratio of improved farm lapd to the total land area was lese than in any other state or territory except New Mcxico, Wyoming, Arizona and Hawaii. In 1906 the farm area was almost equally divided between "dry" farming and farming under irrigation, threefourths of the wheat produced was grown without Irrigation, and tho dry farming waa very swocessful with the comparatively new and yaluable crops of durum, or macaroni wheat, and Russian barley, which is used in straw for winter feed to sheep and neat cattle. The counties where dry farming had been carried on on the borgent scale were Missoula. Ravalh, Flathead. Cancade, Fergus and Caltetin, where cerreal yiedds, though not neariy so large as from irrigated lands, were high compared with the average for the country. But even where dry larming was successful, the increase of cmps made possible by cheap irrigation seemed to be Inducing farmers to abandon it. Amons the larger privately irrigated tracta are: 16,000 to 18.000 acres in Yellowatone county. fed by a camal built by the Rillinge Land \& Irrigation Company: about 35,000 acres of orchard land in the Bitter Root Valley, in Ravalli county, irrigated by canals from Lake Como, a natural reservoir: and 100,000 acres In Miseoula county, to be watered from a 28 ft. dam acrome live Clark

Fork (or Mimoule Riven) at Bonper. Private irrigation by pumping was first sucoesfully introduced about 1901, and in 1906 a state report estimated that 125 pumping irrigation plants were in use in the state. Boring for underground water supply to be used in irrigation was tried on a small scale. An area of 16,000 acres in Missoula county is watered by a ditch 10 m . long buitt in $1902-1905$ by the co-operative Grass Valley-Frenchtown Irrigation Company. and the Teton Co-operative Canal Company in 1906 began work on a diversion canal from the Teton River, whose waters are to be stored by a dam 62 ft. high and 2100 ft. long. But more important than private and co-operative undertakings are the Federal irsigation projects. In 1894 Congress passed the Carcy Act, under which Montane received titic to $1.000,000$ acres of arid land on condition that the state would reclaim it hy providing an adequate supply of water; the state aocepted the offer, created an irrigation commission, and provided means for securing the necessary funds. Furthermore, Condress in 1902 appropriated the receipts from the sales of public lands in the state to the conatruction of irrigation work. In 1899 there were 6812 m . of irrigation canals and large ditches in the state; the irrigated acreage had increased from 350.582 acres in 1889 to 951,154 acres in 1899, when about 84% of the irrigated area was in the south-west. The great Federal projects were not begun until after 1goo. Among them are: the Huntley project in Yellowstone county, begun in 1904 and practicalify completed in 1908, covering land formerty in the Crow Indian reservation, the irrigable area being 28,921 acres; the Lower Milk river project (and the subsidiary St Mary project, in Choutcal, Valley and Teton counties, by which the water of St Mary river ${ }^{1}$ is stored and diverted to the headquarters of the MilK river to irrigate an area of 300,000 acres; the Sun river project (Tecon, Lewis and Clark, Chouteau and Casende countics), by which, as the ordinary flow of that river is already utilized for irrigation, the flood watern are stored and carried to the higher bench lands of the district; in Montana (Dawson county) and North Dakota (McKenxie county), the Lower Yellowstone project; and the Blackfeet project, to irrigate the Blackfeet reservation in Teton county.
In 1900, $11,844,454$ acres, or 12.7% of the area, was included in farms; of this, $1,736,701$ acres, or 14.7% was improved; 54.7% of the icaproved tarm lend was irrigated; $79 \cdot 4 \%$ of the irrigated lend was used for growing erops and $20-6 \%$ or pasturage; the total acreage of all crops was $1,151,674$. and of this 755.865 , or 65.6% was irrigated. In the same year there were 13.370 farms exclusive ol those on Indian reservations: of these, 6665 contained less than 175 acres each; 1289 contained more than 1000 acres each; 8043 contained some irrignted land, the average amount being 118 acree; 11,592 were worked by owners or part owners, 624 by cash tenants, and 606 by share tenants.
Of the total acreage of all crope in $\mathbf{1 8 9 9} .875 .712$ acres, or 76%, were hay and forage, and $\mathbf{2 5 4 , 2 3 1}$ acres, or 22-1\% were cereals; of the cereal screage 52.7% was oatt, 36.2% was wheat, 9% was barkey, and 1.3\% was Indlan corn. In 1909 the oat crop was $15.390,000$ bushels from 300,000 acrea; the acreage of wheat in 1909 was 350,000 and the production 10.764,000 bushels; the acreage of barley In 1909 was 50,000 acres, and $1,900,000$ bushels were raised; the acreage of Indian corn in 1909 was 5000 acrea, and 175,000 bushels were grown.
Sugar beets were first grown in Montana at Evans. Cascade county, in 1893 without irrigation. In 1906 a refinery (with a daily slicing capacity of 1200 tons), was built at Billings, Yellowatone county. Ruseians, with experience in beet-growing, and Japs nete are furnished by the sugar company to the growers for the bunching. thinning, hoeing and topping of the bects. In 1906 sugar refineriee were projected at Hamilton, Kalispelt, Chinook, Lavel, Missoula. Dillon and Great Falls; and in 1907 the crop was so large that t2,000 freight cars were neoded to carry it and the railwaya had a car and coal "famine."
The east is devoted chiefly to stock rabing; for cattle, horses and sheep thrive well on the bunch grase except when it is covered with snow. The principal sheep-raising countics are Custer, Yellowstone. whither many sheep are brought to be fattened, Rosebud. Beaverbead, Valley, and Meagher. In 1909 the number of sheep in Monta na was 5,747,00a being exceeded only by the number in Wyorming: the number of catile was 922,000 , only 80,000 being milch cown, and the number of hormes 319,000 .
Lumber. - The woodland area was estimated in 1900 at 42,000 eq. m., much of which had been burned over. It is confined mainly to the mountain slopes, and in March 1909 31,858-9 eq. m.t. more than three-fourths of this total, had been set apart in the following " national forests "': Alssaroka (980.440 zcres). Beartooth (685.293 acrea). Beaverhead ($1,506,680$ acres in Montana; and a amaller area in Idabo), Bitterroot ($1,180,900$ acres), Blackfeet ($1,956,340$ acrea).
${ }^{1}$ The St Mary and both forks of the Milk river flow northward into the Dominion of Canada, and as there has been much private irrigation both north and south of the international boundary, the prement Federal project and other undertakings in the same region necessitate an international agreement as to the division of the waters, especially of the St Mary, and commitmioners papresenting the Canadian government and the United States sonfersed in regand ta it In Mey 1908.

Cabinet ($1,020,960$ acres), Cuator (590,720 scres), Deerlodge ($1,080,220$ acres). Flathead ($2,092,785 \mathrm{acres}$), Gallatin (907,160 acres), Helena (930,180 acres), Jefferson ($1,255,320$ acres), Kootenai ($1,661,260$ acres), Lewis and Clark (844,136 acres). Lolo ($1,211,680$. acres), Madison ($1,10,2,860$ acres), Missoula ($1,237,509$ acres) and Sioux (145,253 acres in Montana; 104,400 acres in SouthDakota). A large part of the wood land contains no trees fit for lumber; nevertheless the value of the lumber was $\mathbf{8 3 , 0 2 4 , 6 7 4}$ in 8905 . More than one-half of the product is yellow pine and the remainder is principally red fir and tamarack. There is scarcely any hardwood timber in the state.

Minerals and Mining.-Mining has been the leading industry of Montana ever since the discovery of gold in 1862 . It contains the largest copper producing district in the world, and in 1907 mined more copper than any other state or tegritory except Arizona; this metal constituted nearly three-fourths in value of the state's mining products in 1907 , the total value being $\$ 60,663.51 \mathrm{C}$ and that of copper ${ }_{4} 44.852 .758$. The most important copper minet are in Silverbow, Broadwater, Jeferson and Beaverhead countics. Gold was dis. covered in Deerlodge county as early as 1852 but very little mining was done until ten years later. In 1863 the famous Alder Gulch in Madison county was discovered and in the next year, Last Chance Gulch in the south of Lewis and Clark county. In 1865 the product reached its maximum, as the value of gold and nilver combined (the value of the silver being relatively small) was $\$ 18,000,000$; the production then decreased and in 1903 the value of the gold was only $\$ 1,800,000$. Then copper mining rapidly developed and considerable gold was obtained from eopper oress. Until the development of copper mining, silver was produced only in small quantities along with gold, but as much more silver than gold was obtained from the copper ores the value of the silver product increased from $\$ 2,630,000$ in 1881 to $\$ 24,615.822$ in 1892. The product then fell off, but in 1907, when it amounted to 9.317 .605 fine ounces, valued at 96,1497619 . more than nine-tenths of it was derived from the copper ores in Silverbow county. It was in $\mathbf{8 9} 92$ while Marcus Daly was sinking a shaft at Anaconda in preparation for milling gold and silver ores that he discovered the first rich copper ledge. Other discoveries about Butte followed, and the output of copper increased fram 11.081 long tons in 1883 to 129,805 long tons in 1906, more than 99.6% from Silverbow county. The industrial and political ife of Montana have been strongly influenced by the copper industry and by the wremendous wealth conirolled by the copper interest in the industry three men were long dominant-Marcus D. l_{y}, William A. Clark and F. Augustus Heinge; later the Amalyamited Copper Company gained control of a large part of the mines.

Coal was discovered in Montana before 1880, when 224 tons wime mined. In 1907 the output was $2,016,857$ tons, and in 1,08 I.920,190 tons., The coal underiying the east half of the state, the Great Plains," is lignitic and of inferior quality, but that in the mountain districts is bituminous and generally suitable for coking. The principal fields are: the isolated Bull Mountain deposit, 45 m . north-east of Billings, in Yellowstone county; the large Clark firk Field in Meagher, Sweet Grass. Yellowstone and Carbon countics: the small but valuable Rocky Fork field in the south central part of Cartion county: the Red Lodge feld in Carbon county: the Yell stone field, chichly in Gallarin and Park counties; the Trail Crek deposits, 10 m . south of Bozeman: the Cinnabar fichl in south Park county; the Great Falls field in Cascade county: and the West Gallatin, the Toston and the Ruby valley fields. The out |ut stcadily increased until 1895 when it was $1,504,193$ short as; but from then to 1905 . when in was $1,643,832$ short tons, he quantity varied little from year to year. From 1905 to 1907, when the output was valued at $\mathbf{3}, 907,082$, the increase in production was sueady.

Granite, sandstone and limestone are abundant in the atate, but have been little developed. Granite was quarried in 1907 to the value of $\mathbf{8 1 0 2 . 0 5 0}$. Limestone quarried in the same year was worth $\mathbf{\$ 1 2 4 , 6 9 0 ;}$ and asandstone was valued at $\mathbf{3 9 , 2 1 6}$. Some light grey sandscone found in Rocky Cafion, Gallatin county, looks much like the Berea (Ohio) sandstone; and a sandstone quarried at Columbus, Yellowstone county, was manufactured into grindstones equal to those made from the Berea stone. Gypsum in Carbon county and in Cascade county is worked for plaster. Sapphires are found in several gulches, especially on Yogo Creek, 16 m . from Utica, Fergus coumy, where blue stones are found, and on Rock and Cottonwood creeks, where green, yellow, red and blue sapphires have been found. Many of the sapphires are shipped to Switzerland for watch jewels and for bearings. In 1907 the total value of precious stones was 5929,800 .
Mannfaclures.-With the exception of the smelting and refining of copper, manufacıuring is in Montena a decidedly minor industry. In 1905 the total value of the "isetory" product was $\$ 66,415.452$, and the value of the copper (by state reports) was $848,165,277$. Lumber ond timber products, which ranked second, increased in value from $\$ 2,846,268$ in 2900 , to $\$ 3,024,674$ in 1905 . Flour and grise mill products rose during that period from $\$ 937.462$ to \$2.003.136; and male liquars increased in value from $\$ 1.267 .332$ to S1,731,691. In 1905 the value of the products of the factories of Ansconda and Great Fatls was 63.5% of that for the entire otate.

Tramsport.-Montana is verved by three traascontinental railwaya:
the Great Northern traversing the north, the Northern Pacific traversing the south-east, south and south-west portions, and, noth of the Northern Pacific, the Chicago, Milwaukee \& Puget Sound, ant extension of the Chicago. Mitwaukec \& St Paul to Seattle and Tacoma, practically completed in 1909; branch lines of the Great Northern, from the north. connect with the Northern Facific and the Chicago, Milwauke \& Puget Sound at Butte, and with the Northern Pacific at Laurel. The Oregon Short Line from the south connecte with the Northern Pacific, the (ireat Northern, and the Chicago, Milwaukee \& Puget Sound at Butte, and the Burlington system, also from the south, connects with the Northers Pacific at Billings, Yelowsone county. The Butte, Anaconda \& Pacific railway carries ore from the mines at Butte to the smelters at Anaconda. The first railway was the Oregon Short Line, which wancompleted by the Union Yacific Company from Ogden, Utah, tex Butte in $\mathbf{6 8 8}$, The Northern Pacific reached Helena two years later and the railway mileage in the state increased from 106 m . in
 littie importance since the advent of railway
Populalion.-The population of the state increased from 39,159 in 1880 to 243,329 in 1900, and to 376,053 in 1910. In 1900, 67,067 were foreign-born, 11,343 were Indians, 2441 Japanese, 1739 Chinese and 1523 negroes; most numerous among the foreign-born were 13.826 Canadians, 9436 Irish, 8077 English, 7162 Germans and 5346 Swedes. The Indians are mostly members of the following tribes: the Piegan, the Crow, the Salish (or Flathead), the Sioux, the Assuniboin, the Arapaho Atsina (miscalled Grosventres) and the Northern Cheyenne. The Piegans, with small remnants of a icw other tribes, numbering (1000) ahout 2060 , occupy the Blackicet reservation in the north-west of Teton county, the Crows, numbering 1857, occupy the Crow reservation in the south central part of the state; the Salish, with small remnants of the Pend Oreille, the Spokan, the Lower Kalispell and the Kutenai, numbering 1837, occupy the Flathead reservation in the north of Missoula and the south of Flathead county; Assiniboins and others of Sioux stock, numbering about 1793, occupy Fort Peck reservation in the south-east of Valley county: Atsina and Assiniboins, numbering about 2429 , occupy Fort Belknap reservation in the cast of Chouteau county; and the Northern Cheyennes, numbering about 1357, occupy Northern Cheyenne reservation in the sout h-east of Rosebud county. Many of the Indians arc engaged in stock-raising; the Crows have an irrigation system and are extensively engaged in farming. Roman Catholics are more numerous in Montana than Protestants, having 72,359 communicants out of a total of 98.984 of all denominations in 1906, when there were 7022 Met hodists, 4096 Presbyterians, 3290 Protestant Episcopalians and 2029 Baptists. In 1900 the urban population (i.e. population of places having 4000 inhabltants or more) wis 69,989; the semi-urban (i.e. population of incorporated phaccs having less than 4000 inhabitants) was 30,270 ; and the rural (i.e. population outside of incorporated places) was 143.070 The rural population was therefore in that year 58.8% of the total, and the urban was only 28.7% of the total, but from $\mathbf{1 8 9 0}$ to 1000 the urban increased 185% while the rural increased only 55.6%. The principal cities are: Butue, whose population increased from 10,723 in 1890 to 30,470 in 1900 and to 39,165 in 1910: Great Falls (19:0) 13,948; Helena, the capital, (1910) 12,515; and Amaconda (1910) 10,134.

Adminislration. - The state is governed under a constitatioat adopted In 1889, a month before Montana's admiscion into the Union. The requirements for amending this constitution are: an affirmative vote in each house of the legislature of two-thirds of its members, followed, not less than three months later, by an affirmative vote of a majority of the electors vollng thereoa at a general clection; or, by a like vote of each house of the legislature and of the elcctorate, a convention may be called to revise or amend it, a revision or amendment in this manner requiring the ratification of the electorate not less than two months nor more than six months after the adjournment of the convention. General suffrage is conferred on every male citizen of the Uated States who is iwent y-one years of age and who has lived in the state one year, and in the county thirty days immediately preceding an election, the only exceptions being idiots or insane persons; a woman who has the qualifications for suffrage that are required of a man, may vote at any school district election
and if a tax-payer she may vole on all quebtions submitted to the tax-pagers of the state or of any political division thereof.

The officers of the executive department are the governor, lieutenant-governor, secretary of state, attorney-gencral, treasurer, auditor and superintendent of public instruction, each of whom is elected for a term of four years. No person is eliginie to any of these offices who shall not have lived within the state for two years next preceding the election; no person is eliginle to the office of governor, lieutenant-governor, attorneygeneral or superintendent of public instruction who is not thirty years of age; no person is cligible to the office of secretary of state, treasurer or auditor who is not twenty-five ycars of age; no person is eligible to the office of attorney-general who has not been admitted to practice in the supreme court of the state; and the treasurer is ineligible to his office for the lmmediately succoeding term. The governor's powers are limited. As in olber states he is commander-in-chief of the militia. With the advice and consent of the senate he appoints various administrative officers. With the approval of the majority of a board of pardons (composed of the secretary of st ate, attorney-general and auditor), he may pardon offences or commute punishment, and remit fines and forfeitures. He may veto any bill passed by the assemhly, or in the case of a bill making appropriations of money he may weto any item of it, and no bill or liem of an appropriation bill which he vetoes whin five days (Sunday excepted) after it has been presented to him, can become a law or part of a law unless passed over his veto in each house by a two-thirds vole of the members present. Under an amendment to the Constitution adopted in 1906 his veto power does not extend jo measures referred to the people by the legishative assembly or by initiative and referendum petitions. Without his approval, also, no order or resolution of either House, other tham to adjourn or relating solely to the husiness of the assembly, can take effect until passed agaln hy a two-thirds vote as in case of a bill.
The legislature consists of a senate and a house of representatives. Except when called in special session by the governor it meets (at Helena) on the first Monday of January in odd numbered years only, and the length of its session is limited by the constitution to sixty days. Senators are elected, one from each county, for a term of four years; representatives are elected, one or more from each county according to population, for a term of two years. The qualifications for a senator are that he be at least twenty-four years of age and have resided in his county or district at least one year next preceding his election; for a representative there are no qualifications other than those required for suffrage. The action of the legislature is much restricted by the constitution: a long list of cases is named in which that body is probihited from passlng any local or special laws; it is prohibited from delegating to any special commission power to perform any municipal functions whatever; from making any appropriations for charitable, industrlal, educational or benevolent purposes to any person, corporation or community not wider the absolute control of the state; and from authorizing the state to contract any debt or obligation in the construction of any railway, or to lend its credit in aid of such railway construction. In 1906 at amendment to art. s , sec. 1 of the state constitution, authorized the indiative and referendum, but twofifths of the entire number of counties must each furnish for initiative petitions signatures amounting in number 108% of the whole number of votes cast for governor at the eleciton last preceding the filing of the petition; for referendum petitions two-fifths of the counties must each furnish as signers 5% of the legal voters; and any measure referred to the people shall be in foll force unless the petition for the referendum be signod hy 15% of the legal voters (whose number is that of the total vatea cast for governor, \&c., as above) of a majority of the whole number of counties, but that in such case the law to be referred shall be inoperative until it is passed at the popular election.
The administration of justice is inctusted to a suprerne court, an increasing nomber of district courts, and at least (wo justices'
courts in each organized township, besides police and municipal courts. The supreme court is composed of a chief justice and two associate justices elected for a term of six years. It holds four sessions a year at Helena and bas both original and appellate jurisdiction. For most district courts there is only one judge, but for the more populous there are two; they are all elected for four years. These courts have original jurisdiction in cases at law and in equity in which the value in controversy exceeds \$50, in criminal cases amounting to felony, in all matters of probate, in actions for divorce, \&c., and appellate jurisdiction in cases arising in the inferior courts. Justices of the peace are elected for two years and have civil jurisdiction in several classes of actions in which the amount demanded does not exceed $\$ 300$, and in such cases as petit larceny, assault in the third degree and breach of the peace.

For purposes of local government the state is divided into counties; each county into townships, school districts and road districts; and there are incorporated cities and towns. The county officers are a board of three commissioners, a treasurer, a sherif, a county clerk, a clerk of the district court, an attorney, a surveyor, a coroner, a public administrator, an assessor, a superintendent of schools, and in some instances, an auditor. The commissioners are elected for six years, the other officers, for two years. Among the commissioners' powers and duties are: the management of county property; the levying of taxes; the equalizing of assessments; the division of the county into townships, school districts and road districts; the laying out and management of public highways and ferries, and the care of the poor. The township is of minor importance, its principal officers being two justices of peace and two constahles. Municipal corporations are classified according to population; those having 10,000 inhabitants or more are cities of the first class; those having less than 10,000 but more than 5000 inhabitants, cities of the second class; those having less than 5000 but more than 1000 inhabitants, cities of the third class, and those having less than 1000 but more than 300 inhabitants towns. In a city of the first class, a mayor, two aldermen from each ward, a police judge, and a treasurer who may be ex officio tax-collector are elected, and an attorney, a clerk, a chief of police, an assessor, a street commissioner, a jailer, a surveyor, and, where there is a paid fire department, a chicf engineer with one or more assistants, may be appointed by the mayor with the consent of the council. The officers of cities of the second and third class are the same, except that the clerk is ex officio assessor. In towns* only a mayor and aidermen are elected, and the mayor with the consent of the council appoints a clerk who is ex officio assessor, a treasurer who is ex afficio collector, and a marshal who may be exofficio street commissioner. The principal municipal officers hold office for two years.

A wife may hold property and make contracts as if she were single, and neither husband nor wife is accountable for the acts of the other. The husband is required to support himself and his wife if he is able to do so; if he is unable, his wife is required 10 assist him. On the death of either husband or wife at least one.third of his or her property passcs to the other. Recognized causes for divorce a re aduliery, extreme cruelty, wilful desertion. wilful neglect, habitual intemperance or conviction for felony. The homestead of a head of a family consisting either of a farm not excceding 160 acres or 32500 in value, or of a house and lot-i he lot not exceeding t acre, and the house and lot not exceeding $\$ 2500$ in value-is secured against debtors except in case of judgmente obtained before the homestead was recorded as such, in case of labourers', mechanics' or vendors' liens, and in case of a debt secured by mortgage; il the owner is a marricd person the homestcad cannot be mortgaged without the consent of boik husband and wile. For the settement of disputes between labourers and employers there is a state board, appointed by the governor and consisting of an employer of labour, a Gabourer and a disintercsted citizen. Upon application of either or both of the partics, provided the employees be not less than twenty. this board is required to inquire into the cause of the dispute, with the aid of two expert assistants, who shall be nominated by the parties, and to render a decision, which is binding for at least six months upon the parties to the application.
Charitable and Penal Institutions.-These are a state prison at Deer Lodge, managed by contract: a relorm school ai Miles Clty, an industrial school at Butte, an orphans' home at Twin Bridpes, the soldiers' home at Columbia Falls, a achool for deaf and blind
at Boulder, and an insane asylum at Warm Springs, managed by contract. They are all under the superyision of a state board of charitits and reform. The state also has a bureau of child and animal protection.
Education.-The public school system is administered by state, county and district officers. The common achool of each district is under the immediate supervision of a board of trustees; but a state text-book commission determines what text-books shall be used in these schools; the state superintendent of public instruction prepares the questions that are used in examining applicants to teach, passes judgment on publications for use in achool libraries, and advises with the county superintendent of schools. A county board of education examines applicants for teachers' positions and pupils applying to enter high schools. The county superintendent advises the teachers, and holds teachers' institutes. Each achool district is required by law to keep its school open at least three months a year and all children between the ages of eight and fourteen are required to attend for the full term; if unemployed they are required to continue in school until they have attained the age of sixteen. In igos fifteen of the counties had a county high school, and there were also 10 accredited city high schools in 1908 . The state educa. tional institutions are the university of Montana (1895), at Missoula, the normal college at Dillon, the college of agriculture and mechanic arts (1893) at Bozeman; and the school of mines (1900) at Butte. They are all under the supervision and controi of the state board of education, which consists of the governor, the state superintendent, the attorney-general and eight other members appointed by the governor for a term of four years, two retiring annually. The entire educational system is maintained very largely out of funds derived from lands appropriated by Congress lor that purpose.
Finance:-About one-half of the revenue for state and county purposes is derived from a general property tax. All taxable property in each county except that of railways in more than one county is assessed at its full value by the county assessor. The franchise, roadway, roadbed, rails and rolling stock of railways in more than one county are assessed at their full value by the state board of equalization. The assessment rolls of the county assessor are subject to alteration by the board of county commissioners sitting as a county board of equalization and the assessments as between counties are subject to alteration by the state board of equalization. The state legislature biennially fixes the rate of taxes for state purposes; the amount of this levy is now limited by the Constitution to $2 \frac{1}{2}$ mills on the dollar. The board of county commissioners fixes the rate of county taxes and levies those taxes; and the county treasurer collects the taxes of the state and those of the county. Among the other sources of revenue are a poll-tax of two dollars on each man between the ages of twenty-one and sixty, licences, an inheritance tax, rent of atate lands and the income from invested funds received from the sale of state lands.
The state had a bonded debt in 1909 of $\$ 384,000$, autharized by popular vote in November 1908 ; by the constitution the aggregate indebtedness of the state was limited to $\$ 100,000$ except in case of war, invasign or insurrection, or in case a measure authorizing a greater indebtedness should be submitted by the legislature to the electorate and should receive a majority of the votes cast. The constitution limits the indebtedness of a county to 5% of the value of its taxable property and that of a city, town or school district to 3% except that the question may be submitted to a vote of the tax-payers affected when it is deemed necessary to construct a sewerage system or procure a water supply.

History.-The first exploration within the borders of Montana was made in 1743 hy Sieur de la Verendrye, who in that year led an expedition up the Missouri river to the Great Falis and near where Helena now stands; the first exploration in that part of the state which lies west of the main range of the Rocky Mountains was made hy Meriwether Lewis and William Clark in 1805. That part which lies east of the mountains was Included in the Louisiana Purchase of $\mathbf{r} 803$ and hecame successively a part of Missouri Territory in 1812 , of Nehraska Territory in 1854, of Dakota Territory in 186r and of Idaho Territory in 1863; that which lies west of the mountains became successively a part of Oregon Territory in 1848, of Washington Territory ln 1853 and of Idaho Territory in 1863 . In 1864 Montana Territory was created, and in 1889 this Territory was admitted to statehood. The report of Lewis and Clark attracted many traders and trappers, and within a few years the Missouri Fur Company, the Rocky Mountain Fur Company, the Hudson Bay Company and the American Fur Company had estahlished fortified trading posts on the Missouri, the Yellowstone, the Marias, the Milk and other rivers; the most prominent among ihese was Fort Benton, which was established in 1846 at the head of navlgation on the Missouri, and was made the headquarters of, the American Fur Compeny. In 8841 Father

Peter John De Smet ($1801-1872$), a Belgian Jecuit minionary established Saint Mary's Mission in Bitter Root Valley, hut, es the Indians repeatedly attacked the mission, it was abandoned in 1850 . Fort Owen was, however, cstablished in its place and conlinued for several years the chief settlement west of the mountains.
The development of Montana was scarcely begun when the discoveries of gold were made at Bannack, Beaverbead Valley; in 1862, at Virginia city, Alder Gulch, in 1863 and at Helena, Last Cbance Gulch, in 1864. Several thousand people now rusbed in, and before the Territotial government was created, the gold districts and the roads thereto suffered from a reign of lawlesaness. The citizens organized a "vigilance committee" and banged many of the outlaws. Many traders and trappers were butchered by the Indians, who became still more troublesome after the invasion of the Territory hy the gold-seekers, and the surveying of railway routes had been undertaken. Treaties and military operations were at first of no avail, but in $\mathbf{8 7 6}$ the United States government took steps to reduce them to suhmission, and Generals George Crook (1828-1890), Alfred Howe Terry (1827-1890) and John Gibbon (1827-1896), with 2700 troops (besides the Crow scouts) were sent against the Siout under Sitting Bull, Crazy Horse and others. On the 17th of June General Crook with 1000 men defeated a large force of the Indians near the Rosebud river. On the 22nd of June General George A. Custer was sent up the Rosebud, and on the morning of the 25th passed over the divide of the Little Big Horn, where the Sioux were soon discovered. Custer divided his regiment. into four commands, his own comprising 262 men. Continuing a few miles down stream, he came upon what was supposed to be a single Sioux village; the Indians, however, proved to number. from 8000 to 10,000 , including 2500 to 3000 warriors. Custer was soon completely surrounded and the entire command, save a siogle Crow scouh, was slaughtered. This was, however, the beginning of the end of the Indian troubles. On the 2gth of September a band under American Horse was defeated and their leader killed; in October some 5000 Indians surrendered; and on the 22nd of April 1877, 2000 more under Crazy Horse laid down their arms. General Crook and Colonel Nelson A. Miles especially distinguished themselves. In October 1877 the Nex Percia under Chief Joseph after a masterly retreat from Idabo of over 1000 m ., probably unequalled in Indian warfare, were hemmed in hy greatly superior forces and captured in the Bear Paw Mountains in Chouteau county.

In most of the territorial or state elections the Democrats, or the Democrats and Populists united, have been triumphant, a Republican governor having been elected only in 1892; but the contests have often been ardent and hitter. In 1889 the Democrats were charged with fraud in the 34th election precinct of Silverbow county, and, the dispute remaining unsetuled, two legislatures were seated. Each legislature elocted two semators to the United States Senate, which, having a Repuhlican majority, seated the Repuhlicans. More notable, however, was the feud between W. A. Ciark and Marcus Daly, both Democrats. William Andrews Clarts (h. 1839) removed in 1856 from Pennsylvania to Iowa, in 1862 to Colorado and in 186 s to Momtada, where he became the wealhhiest mine-owner. Marcus Daly (1842-1900) went from Ireland about 2857 to New Yort City, and ibence to California and Nevada, and in 1876 reached Butte, Montana. In 1882 be discovered one of the richest copper deposits in the work. Clark aspired to be a United States senator, but by ridiculing Daly, provoked a powerful opposition Clark was one of the two Democratic claimants who had beem denied a seat in the senate in $\mathbf{1 8 9 0}$. Three years later he was again nominated, but Daly prevented his election. Clark secured his election to the senate in 1899 , hut Daly furnished to the Committee on Electlons and Privileges such evidence of bribery and fraud that it decided against seating him. Daly died on the rath of November 1g00, and in 1goz Clark was elected enator for the full term, which expired in 1907 , when he was succeeded by Joseph Mooro Diron (b. 2867), a Republican.

The goversors of Montana have been as follows:Territorial.

Sidney Edgerton
Thomas Meagher (acting) Green Clay Smith
James Monroe Ashley
Benjamin F. Potts

John Schuyler Crosby
B. Platt Carpenter

Samuel Thomas Hauser
Pretton Hopkins Leslie
Benjamin F. White
Ioseph Kemp Toole
Ohn Ezra Rickards
Robert Burns Smith
Joseph Kemp Toole
Edwin L. Norris

Biheiography. - United Stales Geographical and Ceolopical Sumey of the Territories (Washington, 1872-1874): material indexed in the various bibliographies (e.g. Bulletin 301) of the U.S. Gcological Survey; Annual Reports of the Burcau of A griculture, Labor and Industry of the State of Montana: Samuel Fortier, Irrigation in Montana (Washington, 1906), being Bulletin No. 172 (revised) of the U.S. Department of Agriculture, office of Experiment Stations: the Repores of the United States Census; H. H. Bancroft. The Histury of Washinglon, Idaho and Montana (San Francisco, 1800); Joactuin Miller, An'Ihistrated Histary of the Slate of Montana (Chicago, 189 \dagger); M. A. Lersen (ed.) History of Montana (Chicago, 1885): Alice Harriman. Pacifc History Slupies, Montana Edition (San Francisco, 1903): Robert Vaughn, Then and Notp, or Thiply-six Years in the Rocktes (Minneapolis, 1900); T. J. Dinsdale, The Vigilantes of Montana (Virginia City, 1866), and the Contributions to tho Histor al Seciely of Momanc (Helena, 1876 san.).

HONTANELLI, GIUSEPPE (1813-1862), Italian statesman and author, was born at Fucecchio in Tuscany, and in 1840 was appointed law professor at Pisa. He contributed to the Antologia, a celebrated Florentine review, and in 1847 founded a newspaper called L'Italia, the programme of which was " Reform and Nationality." In 1848 Montanelli served with the Tuscan student volunteers at the battle of Curtatone, where he was wounded and taken prisoner by the Austrians. On being liberated he returned to Tuscany, and the grand duke Leopold II, knowing that he was popular with the masses, sent him to Leghorn to quell the disturbances. In October, Leopold, much against his inclinations, asked him to form a ministry. He accepted, and on the roth of January 1849, induced the grand duke to establish a national constituent assembly. But Leopold, alarmed at the turn affairs were taking, fled from Florence, and Montanelli, Guerrazzi and Mazzini were elected "triumvirs" of Tuscany. Like Mazzini, Montanelli advocated the union of Tuscany with Rome. But after the restoration of the grand duke, Montanelli, who was in Paris, was tried and condemned by default; he remained some years in France; where he became a partizan of Napoleon III. On the formation of the kingdom of Italy he returned to Tuscany and was elected member of parliament; he died in 1862. He was an enthusiastic, but a fickle and ambitious demagogue, and be achicved a better reputation as a writer.
His most important literary work is his Memorie sull Italia e specialmente sulla Toscanc dal 1814 al 1850, in 2 vols. (Turin, 1853); he also wrote II Partilo nozionole ilaliano (Turin, 1856), L'Impero, il papata. e le damecrezia in Ilalia (Florence, 1859): and Dell' ordimamenta nasionate in Ilalia (Florence, 1862). His dramatic poem La Tentazione and his tragedy Camma achieved some success in their day. Sce Assunta Marradi, G. Tescanelli e la Toscana dal i8is ab 1862 (Rome, 1909).
montanes, JUAN MARTINEZ (c. 1580-1649), Spanish sculptor, was born at Alcala-la-real, in the province of Granada. His master was Pablo de Roxas, his first known work (1607) being a boy Christ, now in the sacristy of the copella antigua in the cathedral of Seville. The great eltar at Santiponce near Seville, was compreted in 1812. Montafies executed most of his sculpture in wood, covered with a surface of polished gold, and coloured. Other works were the great altars at Santa Clara in Seville and at San Miguel in Jerez, the Conception and the realistic figure of Christ crucified, in the Seville cathedral; the figure of St John the Baptist, and the St Bruno (1620); a tomb for Don Perez de Guzman and his wife (1619); the St

Ignatius and the St Francis of Borja in the university church of Seville. Montates died in 1649 , teaving a large family. His works are more realistic than imaginative, but this, allied with an impeccable taste, produced remarkable results. The equestrian statue of King Philip IV., caste in bronze by Pistro Tacca in Florence and now in Madrid, was modelled by Montaries. He had many imitators, his son Alonzo Martifez, who dled in 1668 , being among them.

See B. Haendeke, Studien sur Geschichle der spanischen Plastik (Strassburg, 1900); F. Gómez, Historia de la escullurge en Espafla (Madrid, 1885).

MONTANISI, a somewhat misleading name for the movement in the and century which, along with Gnosticism, occupied the most critical period in the history of the Early Cburch. It was the overthrow of Gnosticism and Montanism that made the "Catholic" Church. The credit of first discerning the true significance of the Montanistic movement belongs to Ritschl. ${ }^{2}$ In this article an account will be given of the general significance of Montanism in relation to the history of the Church in the and century, followed by a sketch of its origin, development and decline.

1. From the middle of the and century a change began to take place in the outward circumstances of Christianity. The Christian faith had hitherto been maintained in a few small congregations scattered over the Roman Empire. These congregations were provided with only the most indispersable constitutional forms ("Corpus sumus de conscientia religionis, de unitate disciplinae, de spei foedere"). This state of things passed away. The Churches soon lound numbers within their pale who stood in need of supervision, instruction and regular control. The enthusiasm for a life of holiness and separation from the world no longer swayed all minds. In many cases sober convictions or submissive assent supplied the want of spontaneous enthusiasm. There were many who did not become, but who were, and therefore remained, Christians. Then, in addition to this, Christians were already found in all ranks and occupations-in the Imperial palace, among the afficials, in the abodes of labour and the halls of learning, amongst slaves and freemen. Should the Church take the decisive step into the world, conform to its customs, and acknowledge as lar as possible its authorities? Or ought she, on the other hand, to remain a society of religious devotees, separated and shus out from the world? That this was the question at issue is obvious enough now, although it could not be cloarly perceived at the time. It was natural that warning voices should then be raised in the Church agalnst secular tendencies, that the wellknown counsels about the imitation of Christ should be held up in their literal strictness before worldly Christians. The Church as a whole, however, under pressure of circumstances rather than by a spontaneous impulse, decided otherwise. She marched through the open door into the Roman state, and settled down there to Christianize the state by imparting to it the word of the Gospel, but at the same time leaving it everything except lts gods. On the other hand, she furnished herself with everytbing of value that could be taken over from the world without overstraining the elastic structure of the organization which she now adopted. With the -ald of its philosophy she created her new Christian thoology; its polity furnished her with the most axact constitutional forms; its jurisprudence, its trade and commerce, its art and industry, were all taken into her service; and she contrived to borrow some hints even from its religious worship. With this equipment sbe undertook, and carried through, a world-mission on a grand scale. But believers of the old school protested in the name of the Gospel against this secular Church. They joined an enthusiastic movement which had originated in a remote province, and had at first a merely local importance. There, in Phrygia, the cry for a strict Christian life was reinforced by the belief in a new and final outpouring of the Spirit-a coincidence which has been observed elsewhere in Church history-as, for instance, among the early Quakers and in the Irvingite movement. These
${ }^{1}$ Entstehung der altkatholischev: K'irche, 2nd ed. Bonn, (1857).
zealots hailed the appearance of the Paraclete in Phrygia, and surrendered themselves to his guidance. In so doing, however, they had to withdraw from the Church, to be known as "Montanists," or "Kataphrygians," and thus to assume the character of the sect. Their enthusiasm and their prophesyings were denounced as demoniacal; their expectation of a glorious earthiy kingdom of Christ was stigmatized as Jewish, their passion for martyrdom as vainglorious and their whole conduct as hypocritical. Nor did they escape the more serious imputation of heresy on important articles of faith; indeed, there was a disposition to put them on the same level with the Gnostics. The effect on themselves was what usually follows in such circumstances. After their separation from the Church, they became narrower and pettier in their conception of Christianity. Their asceticism degenerated into legalism, their claim to a monopoly of pure Christianity made them arrogant. As for the popular religion of the larger Church, they scorned it as an adulierated, manipulated Christianity. But these views found very little acceptance in the 3rd century, and in the course of the 4 th they died out.
2. Such is, in hricf, the position occupied hy Montanism in the bistory of the ancient Church. The rise and progress of the movement were as follows.

At the close of the reign of Antonimus Pius-probably in the year 156 (Epiphanius)-Montanus appeared at Ardabau in Mysia, near the Phrygian barder, bringing revelations of the "Spirit" to Christendom. Montanus claimed to have a prophetic calling in the very same sense as Agabus, Judas, Silas, the daughters of Philip, Quadratus and Ammia, or as Hermas at Rome. At a later time, when the validity of the Montanistic prophecy was called in question, the adherents of the new movement appealed explicitly to a sort of prophetic succession, in which their prophets had received the same gift which the daughters of Philip, for example, had exercised in that very country of Pbrygia. The burden of the new prophecy seems to have been a new standard of moral obligations, especially with regard to marriage, fasting and martyrdom. But Montanus had larger schemes in view. He wished to organize a special community of true Christians to wait for the coming of their Lord. The small Phrygian towns of Pepuza and Tymion were selected as the headquarters of bis church. Funds were raised lor the new organization, and from these the leader and missionarics, who were to have nothing to do with worldly life, drew their pay. Only two wornen, Priscn and Maximilla, were moved by the Spirit; like Montanus, they uttered in a state of frenzy the comrands of the Spirit, which urged men to a strict and boly life. This does not mean that visions and significant dreams may not have been of frequent occurrence in Montanistic citcles. ${ }^{1}$

For twenty years this agitation appears to have been confined to Phrygia and the neighbouring provinces. But after the year 177 a persecution of Christians broke out simultaneously in many provinces of the Empire. Like every other persecution it was regarded as the beginning of the end. It would seem that before this time Montanus had disappeared from the scene; but Maximilla, and probably also Prisca, were working with redoubled energy. And now, throughout the provinces of Asia Minor, in Rome, and even in Gaul, amidst the raging of persecution, attention was attracted to this remarkable movement. The desire for a sharper exercise of discipline, and a more decided renunciation of the world, combined with a craving for some plain indication of the Divine will in these last critical times, had prepared many minds for an eager acceptance of the tidings from Phrygia. And thus, within the large congregations where there was so much that was open to censure in doctrine and constitution and morats, conventicles were formed in order that Christians might prepare themselves by strict discipline for the day of the Lord.

[^51]Meanwhile in Phrygie and itt neighbourheed-espectally in Galatia, and also in Thrace-a controversy was raging berweon the adherents and the opponents of the new prophecy. Bet ween 150 and 176 the authority of the episcopate bad been immensely strengthened, and along with it a settled order had been introduced ino the Churches. As a rule, the bishope were resolute enemies of the Montanistic embusiasm. It disturbed the peace and order of the congregations, and threatened their safety. Moreover, it made demands on individual Christians such as very few could comply with. But the disputation which Bishops Zoticus of Cumana and Julian of Apamea arranged with Maximilla and her following turned out disestrously forits promoters. The "spirit" of Maximilla gained a signal victory, a certain Themiso in particular having reduced the bishops to silence. Sotas biahop of Anchialus attempted to refute Prisca, but with no bet ter success (Eusebius, Hist. ecd. v. 19). These proceedings were never forgotten in Asia Minor, and the report of them spread far and wide. In after times the only way in which the discomfiture of the bishops could be explained was by asserting that they had been silenced by fraud or violence. This was the commencement of the excommunication or secession of the Montanists in Asia Minor. Not only did an extreme party arise in Asia Minor rejecting all prophecy and the Apocalypse of John along with it, but tbe majority of the Churches and bishops in that district appear (c. 178) to have broken off all fellowship with the new prophets, while books were written to show that the very form of the Montanistic prophecy was sufficient proof of its spuriousness.2 In Gaul and Rome the prospects of Montanism seemed for a while more favourable. The confessors of the Gallican Church at Lyons were of opinion that communion ought to be maintained with the zealots of Asia and Phrygia; and they addressed a letter to this effect to the Roman bishop, Eleutherus. There was a momentary vaciilation even in Rome. Nor is this to be wondered at. The events in Phrygia could not appear new and unprecedented to the Roman Church. If we may believe Tertullian, it was Praxeas of Asia Minor, the relentless foe of Montanism, who succeeded in persuading the Roman bishop to withbold his letters of conciliation. ${ }^{2}$

Early in the last decade of the and century two considerable works ' appeared in Asia Minor against the Kataphrygians. The first, by a bishop or presbyter whose name is not known, is addressed to Ahircius bishop of Hierapolis, and was written in the fourteenth year after the death of Maximilla-i.e. apparently about the year 103. The other was written by a certain Apollonius forty years after the appearance of Montanua, consequently about 196. From these treatises we learn that the adherents of the new prophecy were very numerous in Phrygia, Asia and Galatia (Ancyra), that they had tried to defend themselves in writing from the charges brought against them (by Miltiades), that they possessed a fully developed independent organization, that they boasted of many martyrs, and that they were still formidable to the Church in Asia Minor. Many of the small congregations had gone completely over to Montanism, although in large towns, like Ephesus, the opposite party maintained the ascendancy. Every bond of intercourse was broken, and in the Catholic Churches the worst calumnies were retailed about the deccased prophets and the leaders of the societies they had founded. In many Churches outside of Asia Minor a different state of matters prevailed. Thowe who accepted the message of the new prophecy did not at once leave the Catholic Church in a body. They simply formed small conventicles within the Church. Such, for example, appeara to have been the case in Carthage (if we may judge from the Acts of the martyrs Perpetua and Felicitas) at the commencement of the persecution of Septimius Severus about the year 202. But even bere it was impossible that an open rupture
 same time as Mítiades, if not earlier, Apollinaris of Hierapolis also wrote against the Montanists.
${ }^{2}$ It was Zephyrinus in A.D. $20 z$ who took the decisive step of refusing 10 ommmenicate wilh the Aseatic Montanista.-(Ea.)
'Quoted in Eusebius, Hist. Eccl. v. 16-18.
should be indefinitely postponed. The bishops and their fiocks gave offence to the spirituatists on $s 0$ many points that at last it could be endured no longer. The latter wished for more fasting, the prohibition of second marriages, a frank, courageous profession of Christianity in daily life, ard entire separation from the wortds the bisbops, on the other hand, sought to make it as easy as possible to be 2 Christian, lest they chould lose the greater part of their congregations. And lastly, the bishops wert compelled mose and more to take the control of discipline into their own hands, while the spintualists insisted that God Himself was the sole judge in the congregation. On this point especially a conflict was inevitablei It is true that there was no rivalry between the new organization and the old, as in Asia and Phrygia, for the Weatern Montanists recognized in its main features the Cathotic organization as it had been developed in the contest with Gnosticism; but the demand that the "organs of the Spirit" should direct the whole discipline of the congregation contained implicitly a protest against the actual constitution of the Church. Even before this latent antagonism was made plain there were many minor matters which were sufficient to precipitate a rupture in particular congregations. In Carthage, for exnmple, it would appear that the breach between the Catholic Chureh and the Montanlstic conventide was caused by a disagreement on the question Whether or not virgins ought to be veiled. For nearly five years (202-207) the Carthaginlan Montanists strove to remain within the Church, which was as dear to them as it was to their opponents. But at length they quitted iv, and formed a congregation of their own.

It was at this juncture that Tertullian, the most famous theologian of the West, left the Church whose cause be had so manfully upheld against pagans and heretics. He too had come to the conviction that the Church had forsaken the old paths and entered on a way that must lead to destruction. The writings of Tertullian afford the clearest demonstration that what is called Montanism was, at any rate in Africa, a reaction against secularism in the Church. There are other indications that Montanism in Carthage was a very different thing from the Montanism of Montanus. Western Mortanism, at the beginning of the 3 rd century, admitted the legitimacy of almost every point of the Catholic system. It allowed that the bishops were the successors of the apostles, that the Catholic rule of faith was a complete and authoritative exposition of Christianity, and that the New Testament was the supreme rule of the Christian life. Montanus himself and his first disciples had been in quite a different positlon. In his time there was no fixed, divinely instituted congregational organization, no canon of New Testament Scriptures, no anti-Gnostic theology, and no Catholic Church. There were simply certain communities of believers bound toget her by a common hope, and by a free organization, which might be modified to any required extent. When Montanus proposed to summon all true Christlans to Pepuza, in order to live a holy life and prepare for the day of the Lord, there was nothing whasever to prevent the execution of his plan except the inertia and lukewarmness of Christendom. But this was not the case in the West at the beginning of the zrd century. At Rome and Carthage, and in all other places where sincere Montanists were found, they were confronted by the imposing edifice of the Catholic Church, and they bad neither the courage nor the inclination to undermine her sacred foundations. This explains how the later Montanism ncver allained a position of infiuence. In accepting, with slight reservations, the results of the development whicb the Cburch had undergone during the fifty years from 160 to 210 it reduced itself to the level of a sect. Tertullian exhausted the resources of dialectic in the endeavour to define and vindicate the relation of the spiritualists to the "psychic "Christians; but no one will say he has succeeded in clearing the Montanistic position of its fundamental inconsistency.

Of the later history of Montanism very little is known. But it is at least a significant fact that proptrecy could not be pepuscitatod. Montanus, Prisca, and Maximilla were always
recognized as the inspired authorities. At rare intervals a vision might perhaps be vouchsafed to some Montanistic old woman. or a brother might now and then have a dream that seemed to be of supernatural origin; but the overmastering power of religioes enthusiasm was a thing of which the Montanists knew as little as the Catholics. Their discipline was attended wilb equally disappointing results. In place of an intense moral earnesiness, we find is Tertullian a legal casuistry, a finical morality, from which no good conld ever come. It was only in the land of its nativity that Montanism held its ground till the 4 th century. It maintained itself there in a number of close communities, probably in places where no Catholie congregation had been formed; and to tbese the Novatians at a later period attached themselves. In Carthage there existed down to the year 400 a sect called Tertullianists; and in their survival we have a striking testimony to the influence of the great Carthaginian teacher. On doctrinal questions there was no real difference between the Catholics and the Montanists. The early Montanists (the prophets themselves) used expressions which seem to findicate a Monarchian conception of the person of Cbrist. After the close of the and century we find two sections amongst the Western Montanists, just as amongt the Western Catholicsthere were some who adopted the Logos-Christology, and others who remained Monarchians. ${ }^{1}$
Sources.-The materials for the history of Montanism, although plentiful, are fragmentary, and require a good deal of critical sifting. They may be divided into four groups: (1) The utterances of Montanus, Prisca and Maximilla ${ }^{2}$ are our most important sources, but unfortunatcly they consist of only twenty-one short sayings. (a) The works written by Tertullian after he became a Montanist furnish the most copious information-not, however, about the first stages of the movement, but only about its later phase, after the Catholic Church was established. (3) The oidest polemical works of the and century, extracts from which have been preterved, cspecially by Eusebius (Hist. Eecles. bk. v.), form the next group. These must be used with the utmost caution, because even the earlient orthodox writers give currency 20 many misconceptions and calumnies. (4) The later lises of heretics, and the casual notices of Church fathers from the 3rd to the 5 th century, though not containing much that is of value, yet contain a little.
${ }^{2}$ It is evident that Montanimm was by mo mcens homogeneous Too of ten the primitive " beresy of the Phrygians" has been studicd in the light of the matured system of Tertulian. One great divergence is manifest: Tertullian never himself deviated from orthodoxy and vehemently asserts the orthodoxy of all Montanists, but both Montanus ("I am the Father and the Son and the Holy. Ghost 'n and Maximilla (". 1 am Word and Spirit and Power '") used language which has a distinctly "monarchian "flavour. There were really divided views on the question of the Divine Monarchy among ibe Montanists as a mong the Catholica. The orthodox party were known as the Cataproclans, the beterodox as Cataeschinites, and both appealed to the oracles of their prophets. Orher influences tonding to diversity were the rise of later prophets and visionarics, the personality of prominent members of the sect (like Tertullian himself. who gave to Montanism much more than he received from it), and the powes of local environment. An examination of Phrygian as dis tinct from African Montanism leads to the following conclusions: (1) The Phrygians claimed to have received the prophecic gift by way of succession just as the bishops traced their office back to the aposiles: Tercullian geems to ignore the intermediate steps between the aposiles and Montanus: (2) the "ecatasy "of the Arrican ection was much more restrained than the ravings of the Phrygians; (3) the original Montanists followed the example of the Phrygian native cults in assigning a prominent place to women, Tcrtultian on the other hand (De virg. od. 9) says, "It is not permitted to a woman to speak in church, nor yet to teach, nor to baptise, nor to offer, not to assume any office which belongs to a man, least of all the pricathood; " (4) while both sections gave to prophets the power of absolution, the Phrygians extended it to martyrs also-at Carthage the Catholics did this contrary to the views of Tertultian. There is also good reason to douht whether the Phrygian Montanises were anything like so ascetic and desimus of maryyrdom as has been generally considered. Apollonius (Eusebius, Hist. Ecd. v. 16) accuses them of covetousness and telis us that Themiso purchased his freedom from imprisonment by a conslderable payment. Sir William Rameay has also shown that martyrdoma in Phrygle were rare during the end of the 3 nd and the whole of the 3 rd cencure, a apirit of religious compromise prevailing between the Christian and pakan populations (sec a paper by H. J. Lawlor in the Journal of Theological Studies for July, 1908, vol. ix. 481).
${ }^{2}$ Collected by Munter and by Bonwetsch, Gesulichte des Monterismus, P. 197.
'OA the sources see Bonwetach، pp. 16-55-

MONTARGIS—MONTAUSIER

LITERATCRE.-Rítschl'sinvespigations, referred toabove, su;prlede the older works of Tillemont, Wernsdon, Mosheim, Walch, Nistater, Baur and A. Schwegler (Der Montanismus und die chrislliche Kuche des zten Jahohunderts, Tubingen, 1841). The later works, of which the best and most exhaustive is that of N. Bonwetech, Die Geschtchte des Montenismus (1881), all follow the lines laid down by Ritsihl. See also Gotiwald, De monionismo Teriullani (1862): Réville,
Tertullien et le monsanisme " in the Rerue des deux mondes (Nov. 1, 1864): Stroclin, Essai sur le montanisme (1870): De Soyres, Montanism and the Primitive Church (London, 1878); W. Cunningham, The Churches of Asia (London, 1880); Renan, "Les Crises du Catholicisme Naissant" in Rev. d. deux mondes (Feb. 15, 188ı): H. Weincl. Die Wirkungen des Geistes und der Geister in nachapostol. Zeilatter (Ereiburg, 18ç)); G. G. Selwyn, The Christian Prophets (London, 1900): Bonwetsch, art. "Montanismus" in Hauck-Herzog's Realencytlopodie. Special poir:s of importance in the history of Montanism have been investegited by Lipsius, Overbeck, Weizsacker (Theol. Lil. Zcitumg. Nov. 4, 1812), Harnack, Das Monchlhum, seine Ideale und seine Geschicin:, tnd
 and H. J. Lawlor. Weizsicker's short essays are exaremely valuable, and have elucidated several important points previnusly overlooked.

MONTARGIs, a town of central France, capital of an arrondissement in the department of Loiret, 47 m . E.N.E. of Orléans by rail. Pop. (1906), 11,038 . The town is traversed by the Vernisson, by numerous arms of the Loing, and by the Briare canal, which unites with the canal of Orléans a little below it. It has a church (Ste Madeleine), dating in part from the 12 th century and including a fine choir of Renaissance architecture, and still preserves portions of its once magnificent castle (12 th to 1 sth centuries), which, previous to the erection of Fontainebleau, was a favourite residence of the royal family. A handsome modern building contains the town-hall, public library, and museum; in the courtyard is a bronze group, "The Dog of Montargis "; the town has a statue of Mirabeau, born in the neighbourhood. Montargis is the seat of a sub-prefecture, and has tribunals of first instance and of commerce and colleges for both sexes. It manufacturcs paper, gold chains, rubber, tar, asphalt, chemical manures, woodwork and leather. The town is an agricultural market, and its port has trade in coal, timber, sheep and farm produce.

Montargis was formerly the capital of the Gatinais. Having passed in 1188 from the Courtenay family to Philip Augustus, it long formed part of the royal domain. In 1528 Francis I. gave it as dowry to Renee d'Este, daughter of Louis XII., the famous Huguenot princess; from her it passed to her daughter Anne, and through her to the dukes of Guise; it was repurchased for the Crown in 16ia. From 1626 till the Revoiution the territory was the property of the house of Oritans. Montargis was several times taken or attacked by the Englisb in the 1 gth century, and is particulariy noted for its successful defence in 1427. Both Charles VII. and Charles VIII. held court in the town; it was the latter who set the famous Dog of Montargis to fight a duel with his master's murderer whom he had tracked and captured.
montauban, arthur dE (d. i479), French magistrate and prelate, belonged to one of the great families of Brittany. To satisfy a private grudge against Gilles, brother of Duke Francis 11. of Brittany, he intrigued to such good parpose that Gilles was arraigned for treason, and finally assassinated in prison in 1450 . When Montauban's duplicity was discovered he was deprived of his office of bailli of Cotentin and banished. He then turned monk, and through the support of his brother, John de Montauban (1412-1466), Louis XI.'s favourite, ohtained the archbishopric of Bordeaux in 1468 . He died in Paris on the gth of March 1479.

MONTAUBAN, a town of south-mestern France, capital of Tarn-et-Garonne, $3^{1} \mathrm{~m}$. N. of Toulouse by the Southern railway. Pop. (1906), town, 56,813 ; commune, 28,688 . The town, built mainly of a reddish brick, stands on the rigbt bank of the Tarn at its confluence with the Tescou. Its fortifications have been replaced by boulevards beyond which extend numerous suburbs, while on the left bank of the Tarn is the suburb of Villebourbon, which is connected with the town by a remarkable bridge of the early 14th century. It is a brick structure over 200 yds. in length, and though its fortified towers have disappeared it is
otherwise in good preservation. The hotel de ville, on the site of a castle of the counts of Toulouse and once the residence of the bishops of Montauban, stands at the east end of the bridge. It belongs chiefly to the ifth century, but some portions are much odder, notably an underground chamber known as the fiall of the Black Prince. Besides the municipal offices it contains a valuable library, and a museum with collections of antiquities and pictures. The latter comprise most of the work (including his "Jesus among the Doctors") of Jean Ingres, the celebraced painter, whose birth in Montauban is commemorated by an elaborate monument. The Place Nationale is a square of the 17th century, entered at each corner by gatoways giving accesa to a large open upace surrounded by houses carried on double rows of arcades. The prefecture, the law-courts and the remaining public buildings are modern. The chief churches of Montauban are the cathedral, remarkable only for the possespion of the "Vow of Louis XIII.," one of the masterpieces of Ingres, and the church of St Jacques (14 th and $\mathbf{2 5 t h}$ centuries), the facade of which is surmounted by a bandsome octagonal tower. Montauban is the seat of a bishop, a prefect and a court of assise. It has tribunals of first instance and of commerce, a chamber of commerce and a board of trade arbitration, lycees and a training college, schools of commerce and viticulture, a brapch of the Bank of France, and a faculty of Protestant theology. The commercial importance of Montauban is due.rather to its trede in agricultural produce, horses, game and poultry, than to its industrics, which include nursery-gardening, cloth-weaving, cloth-dressing, four-milling, wood-sawing, and the manufacture of furniture, silk-gauze and straw hats. The town is a junction of the railways of the Soythern and Orleans companies, and communicates with the Garonne by tbe Canal of Montech.

With the exception of Mont-de-Marsan, Montauban is the oldest of the bastides of soutbern France. Its foundation dates from 1144 when Alphonse Jourdain, count of Toulouse, granted it a liberal charter. The inhabitants were drawn chiefly from Montauriol, a village which had grown up around the neighbouring monastery of St Theodard. In the 13th century the town suffered much from the ravages of the Albigensians and from the Inquisition, but by 1317 it had recovered sufficiently to be chosen by John XXII. as the bead of a diocese of which the basilica of St Théodard became the cathedral. By the treaty of Bretigny (1360) it was ceded to the English; hut in 1414 they were expelled by the inhabitants. In 1560 the bishops and magistrates embraced Protestantism, expelled the monks, and demolished the cathedral. About ten years later it became one of the Huguenot strongholds, and formed a small independent republic. It was the headquarters of the Huguenot rebellion of 1621 , and was vainly besieged by Louis XIII. for eighty-six days; nor did it submit until after the fall of La Rochelle ia 1629, when its fortifications were destroyed by Richeliel. In the same year the plague cut off over 6000 of its inhabitants. The Protestants again suffered persecution after the repeal of the Edict of Nantes.

MOMTAUSIER, CHARLES DE BAIMTE-當AURE DEC DE ($1610-1690$), French soldier, was bort on the oth of October 1610, being the second son of Leon de Sainte-Mance, baron de Montausier. His parents were Hiuguenots, and he was educated at the Protestant College of Sedan under Pierre du Moulin. He served brilliantly at the siege of Casale in 1630. Becorning marquis de Montausier by the death of his edder brother in $\mathbf{1 6 3 5}$, he was the recognized aspirant for the hand of Mme de Rambouillet's daughter Julie Lacine d'Angennes (1607-1671). Having served under Bernard of Saxe-Weimar in Cermany in 1634 he returned to the French service in 1636, and fought in the Rhenish campaigns of the following years. He whas taken prisoner at Rantzau in November 1643, and only ransomed after ten months' captivity. On his return to France he became a lieutenant-general. On the 1 sth of July 1645 he married "the incomparable Julie," thus terminating a courtihip famous in the ennals of French literature because of the Gwirlonde de Julis, a garland of verse consisting of madrigits by Montausler, Jean Chapelain, Guillaume Colletet, Clande de

Malleville, Georges de Scudery, Pierre Corneille (if M Uzanne is correct in the attribution of the poems signed M.C.), Philippe Hubert, Simon Arnauld de Pomponne, Jean Desmarests de Saint Sorlin, Aatone Gombaud (ea nain de la Princasse Julue) and othera. It was copied by the famous calligraphist N . Jarry in a magnuficent MS, on each page of which was painted a flower, and was presented to Julie on her fete day in 164 r . The MS. is now in possession of the Uzes family, to whom it passed by the marriage of Julie's daughter to Emmanuel de Crussol, duc d'Uzes.
Montausier had bought the governorship of Saintonge and Angoumois, and became a Koman Catholic before his marriage. During the Fronde he remained, in spite of personal grievances against Mazarin, faithful to the Crown. On the conclusion of peace in 1653 the marquis, who had been severely wounded in 1652, obtained high favour at court in spite of the roughness of his manners and the general austerity which made the Parisian public recognize him as the original of Alceste in the Misanthrope. Montausier recelved from Louis XIV. the order of the Saint Esprit, the government of Normandy, a dukedom, and in 1668 the office of governor of the dauphin, Louis. He initiated the series of classics $A d$ usum Delphini, directed by the learned Huet, and gave the closest attention to the education of his charge, who was only moved by his iron discipline to a hatred of learning. Court gossip assigned some part of Montausier's favour to the complaisance of his wife, who, appointed lady-in-waiting to the queen in 1664, favoured Louis XIV.'s passion for Louise de la Vallière, and subsequently protected Mme de Montespan, who found a refuge from her husband with her. He died on the 17th of November 1690.
See Père Nicolas Petit, Vie du duc de Monlnusier (1729) : Puget de Saint Pierre, Histoire du duc de Montausier (1784); Arnedée Roux. Un Misanthrope d la cour de Louis XIV. Mondaysier (1860); O. Uzanne, La Guitlonde de Julie (1875); E. Fléchier, Oraisons funtbres du duc el de la duchesse do Moniausier (Paris, 1691); and contemporary memoirs.

MONTBELIARD, a town of eastern France, capital of an arrondissement in the department of Doubs, 49 m . N.E. of Besancon on the Paris-Lyon line between that town and Belfort. Yop. (1906), town, 8723 ; commune, to,455. Montbéliard is situated co50 ft. above sea-level on the right bank of the Allaine at its junction with the Luzine (Lizaine or Lisaine). It is an important point in the frontier defences of France since 1871 . Forts on outlying hils connect it with Belfort on the one side and (through Blamont and the Lomont fortifications) with Besancon on the other. The odd castle of the counts of Montbeliard is now used as barracks; its most conspicuous features, the Tour Borsue and the Tour Neuve, date respectively from 1425 and 1594. Most of the inhabitants are Protestint, and the church of St Martin, built carly in the 17th century, now serves as a Protestant place of worship. The old market-hall and some old houses of the $\mathbf{1 6 t h}$ century also remain. A bronze statue oi George Cuvier, the most illustrious native of Montbéliard, and several fountains adom the town. Montbeliard is the seat of a sub-prefert and has a tribunal of first instance, a board of trade-arbitrators, a communal college, a practical school of industry, a chamber of arts and manufactures and a museum of natural hietory. Since 1870 a considerable impetus mas been given to its prosperity by the Alsatian immigrants. Its industries include watch and clock making and dependent trades, cotton spinning and weaving, the manofacture of hosiery, textile machinery, tools, nails and wire, and brewing. There is commerce in wine, cheese, wood and Montbeliard cattle.

After belonging to the Burguadians and Franks, Montbeliard (Moxs Peligardi) was, by the treaty of Verdun (843), added to Lorraine. In the ith contury it became the capital of a countship, which formed part of the second kingctom of Burgundy and latterly of the German Empure. Ils German name is Moxmpelgard. In 1397 it passed by merriage to the house of Wertemberg, to whom it belonged till 1793. It resisted the attacks of Charles the Bold (1473), and Henry 1. of Lorraine,
${ }^{1}$ (16:8-1699), a son of Amauld d'Andelly and minister of foreignt aftitirs in tuccemion to Lionne.
(r 587 and I 588), duke of Guise, but was taken in x 676 by Marshal Laxemburg, who razed its fortifications. The tolerance of the princes of Wurttemberg attracted to the town at the end of the 16th century a colony of Anabaptists from Frisia, and their descendants still form a separate community in the neighbourhood In 1793 the inhabitants voluntarily submitted to annexation by France. In 1871 the batile of the Lisaine bet ween the French and Germans was fought in the neighbourbood and partly within its walls.

MOATBRISON, a town of east-central France, capital of an arrondissement in the department of Loire, France, $21 \mathrm{~m} . \mathrm{N} . \mathrm{W}$. of St Etienne, on the railway from Clermont to St Etienne. Pop. (rgo6), 6564. It is situated on a volcanic bill overlooking the Yizezy, a right-hand affluent of the Lignon du Nord. The principal buildings are the once collegiate church of NotreDame d'Espérance, founded about 1220 but not finished till the 1 gth century, and the rith-century edifice known as the Salle de la Diana (Decana), which was restored by Viollet-le-Due:- There is a statue of the poet Victor de Laprade (d. 1883), a native of the town. Montbrison is the seat of a sub-prefect, of a court of assize and of a tribunal of first instance. Thero are liqueur-distilleries and flour-mills, and silk ribbons are manufactured; there is considerable commerce in grain.
Mantbrison belonged to the counts of Forez during the middle ages. In 1801 it berame the capital of its department in place of Feurs, but in 1856 the more important town of St. Etienpe was substituted for it.
mOATBRDN, LOULS PIERRE, COUNT ($\mathrm{r}_{770-1812 \text {), French }}$ cavalry general, served with great distinction in the cavalry arm throughout the wars of the Revolution and the Consulate, and in 1800 was appointed to command his regiment, having served therein from trooper upwards. At Austerlite (Dec. 2, 1805) he was promoted general of brigade. He carned further distinction in Germany and Poland as a dashing leader of horsc, and in 1808 he was sent into Spain. Here occurred an incident which unfavourably influenced his whcle carcec. He found himself obliged to overstay his leave of absence in order to protect the lady who afterwards hecame his wife. Napoleon was furious, and deprlved him of his command, and Montbran was awaiting his master's decision when an opportunity came to retrieve his repatation. Some doubt exists as to the events of the famous cavalry charge at the Somosierra, but Montbrun's share in it was most conspicuous. Soon alterwards he was promoted to be general of division, and in 1809 his cavalry took no inconsiderable part in the victories of Erkmihl and Raab. He was employed in the Peninsula, $1810-$ 1811. He was killed, when commanding a cavalry corps, at the beginning of the battle of Borodino (Sept. 7, 1812). Montbrun was considered, as a leader of heavy cavalry, second only to Ketlermann of all the gencrals of the First Empire.
monticalm de baint vían, LOUIS JOSRPh, Marquis DE (1712-1759), French soldier, was born at Condiac near Nimes on the 28th of February $1752,^{2}$ and entered the army in 1721, becoming captain in 1727 . He saw active service under Berwick on the Rhine in 1733, and in 1743, having become a colonel of infantry, he served in Bohemia under Mailyebois, Broglie and Belleisle. He became intimate with François de Chevert ($1695+1769$), the gallant defender of Prague, and in Italy repeatedly distinguished himself, being promoted brigadier in 2747, shortly before the disastrous action of Exilles, in which he was severely wounded. In 1749 he received the coloneley of a cavalky regiment, and in 1756, with the rank of marbchal de camp, he was sent to command the Freneh troops in Cenade. In the third year of his command, baving been meanwhile prometed lieutenant-general, he defended Quebec (q, v.) against General Wolfe. The celobrated siege ended with the battle
1.A younger brother, Jeas Louis Pierre (or Philippe) Elizabeth Montcalm de Condiac (1719-1726), was a child of astontishing pre:cocity. At the age of fon he read Latin; at six he underatood Greek and Hebrew. It was for his benefit that the burcau typo-graphigue-a mechanism for teaching chadren reading, writing and arithmetic at the same time that it ampsed them-was contrived by thotr tutor Louis Durnas (1676-1744).
of the Heights of Abraham (Sept. 14, 1759), in which Wolfe was killed and Montcalm mortally wounded. The French commander died two days later, while the place, with which his mame and Wolle's are for ever associated, was still in the hands of the garrison.

Birliography.-See Canada: History; and Seven Years' War, also Parkman's Montcolm and Wolfe. The chief French authorities are Pinard, Chronologic militasre, V. 616 (1762), Monicalme et le Canada francais. by F. Joublcau (Paris, 1874) and C. de Bonnechone (Paris, 1877); Le Moine, La Mémoire de Montcalm vengle (Montreal, 1889).

MONTCEAD-LES-MINES, a town of east-central France, in the department of Saone-el-Loire, 14 m. S. by W. of Le Creusot on the Paris-Lyon railway. Pop. (1906), town, 9701 ; commune, $\mathbf{3 6 , 3 0 5}$. Its importance is due chiefly to its position as the centre of the Blanzy coal basin, on the Canal du Centre, which, is connected with the coalficld by numerous lines of railway. Its manufacturing establishments include weaving and spinning factories, iron and copper foundries, and engineering workshops.

HONT CENIS, a pass (6803 ft .) in Savoy (France) which forms the limit between the Cottian and Graian Alps. A carriage road was built across it between 1803 and 1810 by Napoleon, while a light railway (named after its inventor, Mr. Fell, and worked by English engine-drivers) was opened alongside the road in 1868, but was destroyed in 187 T , on the opening of the tunnet. This tunnel (highest point 4249 (t.) is really 17 m . west of the pass, below the Col de Frtjus. From Chambery the line runs up the Isère valley, but soon bears through that of the Arc or the Maurienne past St Jean de Maurienne to Modane (61 m . from Chambéry). The tunnel is 8 m . in length, and leads to Bardonnèche, some way below which, at Oulx (18 m . from Modane) the line joins the roed from the Mont Genèvre. Thence the valley of the Dora Riparia is followed to Turin ($64 \frac{1}{\mathrm{~m}}$. from Modane). The carriage road mounts the Are valley for 16 m . from Modane to Lanslebourg, whence it is 8 m . to the hospice, a little way beyond the summit of the pass. The descent lies through the Cenis valicy to Susa $\mathbf{~} 37 \mathrm{~m}$. from Madane) where the road joins the railway. Tc the south.west of the Mont Cenis is the Little Mont Cenis (7166 ft .) which leads from the summit plateau (in Italy) of the main pass to the Etache valley on the French stope and so to Bramans in the Arc valley (7 m . above Modane). This pass was crossed in 1689 by the Vaudois, and by some authors is believed to have been "Hannibal's Pass."
(W. A. B. C.)
montchrétien, antoine de (is75 or 9576 -1621), French dramatist and economist, son of an apothecary at Falaise named Mauchrestien, was born about 1576 . In one of his numerous duels he had the misfortune to kill his opponent. He consequently took refuge in England, but through the influence of James I., to whom he dedicated his tragedy, L'ticossaise, he was allowed to return to France, and estnblished himself at Auxonne-sur-Loire, where ho set up a steel foundry. In $16 a 1$ be abandoned this enterprise to serve on the Huguenot side in the civil wars. He raised troops in Maine and Lower Normandy, but was killed in a skirmish near Tourailies on the Bth of October 1635. There is no evidence that he shared the religious opinions of the party for which he fought, and in any case he belonged to the moderate party rallied round Henry IV. In 1615 he published a valuable Traite de l'ecomomie politigue, based chiefly on the works of Jean Bodin. He had the good fortune to write before the pruning processes of Vaugelas and Balzac had been applied to the language, and M. Lanson praises him as one of the best prose-writers of bis time.

His dramas are Sophonsibe (1506), afterwards remodelied as La Carlaginoiser L'Ecossaise, Les Lacines, Davd, Aman (in 1601); li iector (1604). As plays they have little technical merit, but they contain passages of great lyrical beauty. In L'Eeossoisy Elizabeth first pardons Mary Queen of Scots, and no explandtion is given of the change that leads to her execution. Aman has been compared not too unfavourably with Esther, and the hatred of Haman for Mordecai is expressed with more
vigour than in Racine's play. All Montchretlea's heroes face death without fear. M. Petit de Julleville fiads the characteristic note of his plays in the aame cult of beroism which was later to inspire the plays of Corneille. Poet, economist, ironmaster, and soldier, Montchretien represents the many-sided activity of a time before literature had become a profession, and before its province had been rostricted in France to polite topics.

The trapedies were edited in rgor by M. Petit de Jullevilie with nolice and commentary; the Trauld de l'Economie politrque in 2889 by Th. Funck Brentano, whose estimate of Montchndien is severcly criticixed by W. I. Ashley in the Eng. Hist. Rev. (Oct. 1891). See also Emile Faguet, La Tragedie au XVI=0 sitcte, ch. xi. (1883); G. Lanson, Reoue des deux mondes (Sept. 1891).

MONTCLAIR, a town of Esscx county, New Jersey, U.S.A., 5 m . N.N.W. of Newark. Pop. (rgio census) 21,550. It is served by the Erie and the Delaware, Lackawanna \& Western railways, and by electric lines to Caldwell and Newark. It is situated at the base and on the slopes of the Orange Mountains (its altitude above the sea varying from 217 to about 66 s (t.), has an irregular street plan, and is a residential suburb of New York and other neighbouring citics. Montchair has excellent public schools. Among the town's institutions are the Mountainside hospital, a state normal school (1908), Montclair academy (1887), a public library, and two orphan asylums. An annual Bach festival was first held here in June 1g05. The lower part of Montclair was settled about 1675 and gradually became known as Cranctown, which name it retained until 1812. In that year Bloomficld, including Cranctown, was organized as a separate township. In 1868 Cranetown, then popularly known as West Bloomfield, with the addition of the Dutch-selted Speertown, was incorporated as Montcigir. Montclair became a town in 1894.
See Henry Whittemore, History of Moniclair (New York, 1894).
MONT-DE-MARSAN, a town of south west France, capital of the department of Landes at the confuence of the Midou and the Douze, 92 m . S. of Bordeaux on the Southern railway bet ween Morcenx and Tarbes. Pop. (1906), 0050 . Most of the buildings are in the older quarter, on the peninsula betwoen the two rivers forming the Midouze. La Pépinière, a beautiful public garden, extends along the right bank of the Douze. A keep of the 14th century, now used for milfary purposes, was buitt by Gaston Phoebus, coant of Foix, to overave the inhabitants, and goes by the name of Nou-li-Bos (in modern French "Tu ne l'y veax pas'). The finest of the modern buildings is an officers' cluh, which contains a small musem. A court of assizes sits in the town, the local institutions comprise a tribunat of first unstance, a branch of the Bank of France, and a lycée. The induseries inclade distillation of turpentine and resinous oils, tanning, the founding and forging of metal, wood-sawing, and manufactures of machinety and straw envelopes for botules. There is trade in resin, winc, brandy, timber, cattic, horses and other live stock.

Mont-de-Marsan, the first of the Bastides (q.v.) of the middle ages, dates from 114 r , when it was lounded by Pierre, vicomte de Marsan, as the capital of his territory. In the izth century it passed to the viscounts of Bearn, but the harsh rule of Gaston Phoebus and some of his successors induced the people to favour the English. The terrtory was united to the French Crown on the accession of flenry IV.

MONTDIDIER, a town of northern France, capital of an arrondissement in the department of Somme, 23 m . S.E. of Amiens by raid. Pop. (1906), 4159 . The town, situated on an eminence on the right bank of the Don, dates from the Merovingian period, and perhaps owes its name to the imprisonment of the Lomband king Didier in the 8th century. The church of St Pierre, dating chiefly from the rsth century, has a beautifut portal of the 16th century and contains the tomb of Raoul ML, cournt of Crepy (izth century), fonts of the fith century and other works of art. The church of St Stepuicre belongs, with the exception of the modern portal, to the isth and itth centuries. In the interior there is a weil-known "Holy Sepulchre" of the

Latter period. The law-court, once the castle, partly dating from the 12th century, possesses fine tapestries of the i7th century. A statue commemorates the birth at Montdidier of Antolne Parmentier ($5737-18 \mathrm{r} 3$), with whose name are connected the beginnings of potato-culture in France. The town has a sub-prefecture and a trihunal of first instance; its industries include tanning and the manufacture of zinc-white.

Held first by its own lords, afterwards by the counts of Crepy and Valois, Montdidier passed to the Crown in the 1 ath century, at the end of which it was granted a charter of liberties. The town offered a brave and successful resistance to the Sparish troops in 1636 .

MONT-DORELES-BAINS, a watering-place of central France in the department of Puy-de-Dome, situated at height of 3440 ft ., on the right bank of the Dordogne not far from its source, and 31 m . by road S.W. of Clermont-Ferrand. Pop. (1906), 1677. The Monts Dore close the valley towards the south. The thermal springs of Mont Dore, now numbering twelve, were known to the Romans. Bicarbonate of soda, iron and arsenic are the principal ingredients of the waters, which are used both for drinking and hathing, baths of high temperature being characteristic of the treatment; they are efficacious in cases of pulmonary consumption, bronchitis, asthma, and nervous and rheumatic paralysis. From the clevation and exposure of the valley, the chmate of Mont-Dore-les-Bains is severe, and the season only lasts from the 1 gth of June to the 15 th of September. The hath-house was rebuilt in 1891-1894. In the "park," along the Dordogne, relics from the old Roman haths have been collected. The surrounding country, with its fr woods, pastures, waterfalls and mountains, is very attractive. To the south is the Puy de Sancy (6 r 88 ft .), the lofticst peak of central France.
MONTEAGLE, THOMAS SPRING-RICE, Ist BARON ($1790-$ 1866), English statesman, son of S. E. Rice and Catherine Spring, came of a Limerick family, whose ancestor was Sir Stephen Rice ($1637-1715$), chief baron of the Irish exchequer and a leading Jacobite. In 1820 he hecame Whig member for Limerick (from 1832 member for Cambridge); and after holding minor offices became secretary for war and the colonics in 1834 and in 1835-1839 chancellor of the exchequer. He was disappointed in not obtaining the speakership, but in 1839 was created Baron Monteagle of Brandon (a title intended earlier for his ancestor Sir Stephen Rice), and made controller of the exchequer. He differed from the government as regards the exchequer control over the treasury, and the abolition of the old exchequer (q v.) was already determined upon when he died on the 2 th of February 1866. His eldest son, Stephen Edmund Spring-Rice ($18 \mathrm{~B}_{4}-1865$), deputy chairman of the board of customs. having predeceased him, he was succeeded in the title by his grandson, Thomas, and haron (b. 1849). Another son was father of S. E. Spring-Rice ($1856-1902$), of the treasury. and of Sir Cecil A. Spring-Rice (b. 1859), the diplomatist.
monteagle, william Parker, 4 ti Baron, and itith Baron Morley (1575-1632), was the eldest son of Edward Parker, 1oth Baron Morky (d. 1618), and of Elizabeth, daughter and heiress of William Stanley, 3 rd Baron Monteagle (d. 1581). When quite a youth he married Elizabeth, daughter of Sir Thomas Tresham, and was styled Lord Montcagle in right of his mother. He was allied with many Roman Calholic families, and during the reign of Elizabeth was in sympathy with their cause. Ile received knighthood when with Essex in Ireland in 1509 , and in 1601 took part in the latter's rebellion in London, when he was punished by imprisonment and a fine of $\{8000$. He subsequently in 1602 joined in sending the mission to Spain inviting Philip IH. to invade England. He was intimate with Catesby and others, and according to Father Garnet expressed an opinion some few months before gunpowder plot that the Romanists had a good opportunity of making good their claims by taking up arms against the king. It is certain that he was one of thooe who acquiaced in James I.'s accession and assisted Southampton in securing the Tower for the ling. He was taten into favour, and recelved a summons to ettend the paplisa
ment of the sth of November 1605 as Lord Monteagie. On the 26 th of October 1605 , while sitting at supper at Hoxton, he received the celebrated letter giving warning of the gunpowder plot, probably written by Francis Tresham. After having caused it to be read aloud by Ward, a gentleman in his servioe and an intimate Iriend of Winter, one of the chief conspirators, he took it to Whitehall and showed it to Lord Salisbury and other ministers. On the $4^{\text {th }}$ of November he accompanied Lord Suffolk, the lord chamberlain, in his visit to the vault under the parliament house, where Guy Fawkes was found. Monteagle received §700 a 2 year for his services in averting the disaster. In 1609 he was chosen a member of the council of the Virginia Company and subscribed to its funds. The same year "disorders in his house" are reported, probably referting to his harbouring of Roman Catholic students from St Omer (Cal of St Pap: Dom; 1603-1610, p. 533). In 1618, on the death of his father, he was summoned to parliament as Baron Morley and Monteagle. He died on the $15 t$ of July 1622 at Great Hallingbury, Essex where he was buried. By his marriage with Elizabeth Tresham he had, besides daughters, three sons, the eldest of whom, Henry, (d. 165s) succeeded him as 12 th Baron Morley and sth Baron Monteagle. These haronies fell into abeyance when Henry's son Thomas died about 1686.

MONTE CASSINO, an isolated hill overhanging the town of Cassinum, about midway between Rome and Naples. Hither St Benedict migrated from Subiaco in the eariy years of the 6th century, and established the monastery that became the metropolis of Western monachism. A bout 580-590 it was sacked by the Lombards, and the monks fled to Rome, where they were established at the Lateran hasilica. The monastery was rebuilt in 720 , again destroyed by the Saracens in 884, and restored seventy years later. It reached its highest point of prosperity and influence from 1059 to 1105 , under Desiderius (who became Pope Victor III. in 1087) and Oderisius. The abbot became overlord of an extensive territory and hishop of several dioceses: now, though not a hishop, he is ordinary of seven diocescs. At the dissolution of monasteries in $\mathbf{1 8 6 6}$ Monte Cassino was spared, owing mainly to a remonstrance by English well-wishers of United Italy. The monastery became a national monument and the monks were recognized as custodians. There is a large secondary school with aso boys, and rich archives.
Sce L. Tosti, Sloria della badia di M.C. (1811; and ed., 1888); Wetzer u. Wclie, Kirchenlexicon (2nd ed.) and Herzog, Realencyklo. pädic (3rd cd.).
(E. C. B.)

MONTECATMI, two much-frequented mineral baths of Tuscany, Italy. (1) Montecatini in Val di Cecina, in the province of Pisa, 5 m . W. of Volterra. Pop. (1901), 5009 . The water is saline, with a temperature of $78.8^{\circ} \mathrm{F}$. There are copper mines, which have been worked since the Igth century, 1358 ft . above sea-level. (2) Montecatini in Val di Nievole, in the province of Lucca, 7 m . W. by S. of Pistoja, 105 ft . above sealevel. Pop. (1901), 3048 (Bagni di Montecatini); 2856 (Montecatini). The springs, which number ten, are saline, and range in temperature from 82.4° to $86^{\circ} \mathrm{F}$. The water is both drunk and used for bathing by some 40,000 visitors annually, and is exported in bothes. There is also a natural vapour bath $\left(80^{\circ}-95^{\circ} \mathrm{F}\right.$.) in the Grotta Giusti (so-called from-the satirist Giuscppe Ginsti, a native of the place), at Monsummeno near by, discovered in 1849. Another attraction of the place is the gardens of Collodi. At the town of Montecatini, on the hil above (051 ft .), the Florentines were defeated by Uguccione della Faggiuole of Pise in 1315 .

RONTR CORVINO, GLOVANDI DI (c. 1247-1328), Franciocan missionary, traveller and statesman, founder of the earliest Roman Catholic missions in India and China, and archbiahop of Peking. In 1272 he was commissioned by the emperor Michacl Polaeologus, to Pope Gregory X., 10 negotiate for the rounion of Greek and Latin churches. From 1275 to 1289 he laboured incessantly as a missionary in the Nearer and Middle Bast. In 1289 he revisited the Papal Court, and was eent out as Roman fegate to the Great Khan, tbe Ilkhan of Porsia, and other heading personages of the Mongol world, as well as to tho
"emperor of Ethiopia" or Abyssinian Negus. Arriving at Tabriz, then the chief city of Mongol Persia, and indeed of all Western Asia, Monte Corvino moved down to India to the Madras region or "Country of St Thomas. " from which he wrote home, in December 1291 (or 1292), the earliest noteworthy account of the Coromendel coast furnished by any Western European. He next appears in "Cambaliech" or Peking, and wrote letters (of Jan. 8, 1305, and Feb. 13, 1306), describing the progress of the Roman mission in the Far East, in spite of Nestorian opposition; alluding to the Roman Catbolic community he had founded in India, and to an appeal he had received to preach in "Ethiopia" and dealing with overiand and oversea routes to "Cathay," from the Black Sea and the Persian Gulf respectively. In 1303 he received his first colleague, the Franciscan Arnold of Cologne; in 1307 Pope Clement V. created him archbishop of Peking, and despatched seven bishops to consecrate and assist him; three only of these arrived (1308). Three more suffragans were sent out in 1312, of whom one at least reached East Asia. A Franciscan tradition maintains that about 1310 Monte Corvino converted the Great Khan (i.e. Khaishan Kuluk, third of the Yuen dynasty, 1307-1311) : this has been disputed, but he unquestionably won remarkable successes in North and East China. Besides three mission stations in Peking, he established one near the present Amoy harbour, opposite Formosa. At bis death, about 1328, heathen vied with Christian in honouring him. He was apparently the only effective European hishop in the Peking of the middle ages.
The MSS, of Monte Corvino's Letters exist in the Laurenian Library, Florence (for the Indian Epistle) and in the National Library, Paris, 5006 Lat,-viz. the Liber de aelalibus. fols. $1^{\circ}{ }^{\circ}$, v.-172, r. (for the Chinese). They are printed in Wadding, Anrales minorum (A.D. 1305 and 1306) vi. 69-72,91-92 (ed. of 1733, \&c.), and in the Munchner gelehrte Ansesgen (1855), No. 22, part ifi. pp. 171175 . English translations, with valuable comments, are in Sir H. Yule's Calhay, i. 197-z21. See also Wadding, Annales, v. 195-198, 199-203, vi. 93. \&c., 147, \&c., 176, \&e., 467, \&c.; C. R. Beaziey, Dawn of Modern Geography, iii. 162-178, 206-210; Sir H. Yula, Calhay, i. 165-173. (C. R. B.)

TONTECRISTO, (anc. Oglasa), an island of Italy, belonging to the province of Leghorn, 25 m . S. of Elba. Its highest point is 2126 ft . above sea-level, and its area about $6 \mathrm{sq} . \mathrm{m}$. It contains the ruins of a Camaldulensian monastery, founded in the 13 th century and destroyed in the 16 th, and is the private property of the king of Italy, who has a shooting-lodge there. The fame of the island is due to the novel, Le Comte de Montecristo, by the elder Dumas.

MONTECUCCULI (MONTBCUCCOLI), RAMOMDO, Count of (1600 -1680), prince of the holy Roman Empire and Neapolitan duke of Melfi, Austrian general, was born on the 218t of Fehruary 1608/9, at the castle of Montecucculo in Modena. His family was of Burgundian origin and had settied in north Italy in the roth century. At the age of sixteen Montecucculi began as a private soldier under his uncle, Count Ernest Montecuccali, a distinguished Austrian general (d. 1633). Four years later, after much active setvice in Germany and the Low Countries, he became a captain of infantry. He was severely wounded at the storming of New Brandenburg, and again in the same year (16 gi) at the first battle of Breitenfeld, where he fell into the hands of the Swedes. He was again wounded at Lützen in 1632, and on his recovery was made a major in his uncle's regiment. Shortly afterwards be became a lieutenant-colonel of cavalry. He did good service at the first battle of Nordlingen (1634), and at the storming of Kaiserslautern in the following year won his colonelcy by a feat of arms of unusual brilliance, a.charge through the breach at the head of his heavy cavalry. He fought in Pomerania, Bohemia and Saxony (surprise of Wolmarstadt, battles of Wittstock and Chemnita), and in 1639 he was taken prisoner at Melnik and detained for two and a half years in Stettin and Weimar. In captivity he studied, not only military science, but also geometry in Euclid, history in Tacitus, and architecture in Vitruvius, and planned his great work on wer. On his relcase he distinguished himself again in Silesta. In 1643 he went to Italy, by the emperor's request, and made a sucesaful eampaign in Lombardy. On his relurn io Germany
he was promoted lieutenant-field-marshal and obtgined a seat in the council of war. In 1645-46 he served in Hungary against Prince Rakoczy of Transylvania, on the Danube and Neckar against the French, and in Silesia and Bohemia against the Siwedes. The victory of Triebel in Silesia won him the rank of general of cavairy, and at the battle of Zusmarshausen in 16.48 his stubborn rearguard fighting rescued the imperialists from annihilation. For some years after the peace of Westphatia Montecucculi was chiefly concerned with the business of the council of war, though he went to Flanders and England as the representative of the emperor, and to Sweden as the envoy of the pope to Qucen Christina, and at Modena his lance was victorious in a great tourney. In 1657, soon after his marriage with Countess Margarethe Dietrichstein, he took part in, and after a time commanded, an expedition against Rakoczy and the Swedes who had attacked the king of Poland. He became fieldmarshal in the imperial army, and with the Great Elector of Brandenburg completely defeated Rakoczy and his allies (peace of Oliva, 1660). From 1661 to 1664 Montecucculi with inferior numbers defended Austria against the Turks; but at St Gotthard Abbey, on the Raab, he defeated the Turks so completely that they made a truce for twenty years (Aug. 1, 1664). He was given the Golden Flecee, and became president of the council of war and director of artillery. He also devoted much time to the compilation of his various works on military history and science. He opposed the progress of the French arms under Louis XIV., and when the inevitable war broke out received command of the imperial forces. In the campaign of 1673 he completely out-manocuvred hisgreat rival Turenne on the Neckar and the Rhine, and secured the capture of Bonn and the junction of his own army with that of the prince of Orange on the lower Rhine. He retired from the army when, in 1674, the Great Elector was appointed to command in chief, but the brilliant successes of Turenne in the winter of 1674 and 1675 brought him back. For months the two famous commanders manceuved against each other in the Rhine valley, but on the eve of a decisive battle Turenne was killed and Montecucculiprompty invaded Alsace, where he engaged in a war of mancuvre with the great Conde. The siege of Philipsburg was Montecucculi's tast achievement in war. The rest of his life was spent in military administration and literary and scientific work at Vienna. In 1679 the emperor made him a prince of the empire, and shortly afterwards he received the dutiedom of Melf from the king of Naples. Montecuccufi died at Linz on the 16th of October 1680, as the result of an accident. With the death of his only son in 1698 the principality became extinct, but the title of count descended through his daughters to two branches, Austrian and Modenese. As a general, Montecucculi shared with Turenne and Conde the first place amongst European soldiers of his time. llis Memorse della guerpa profoundly mfluenced the age which followed his own, nor have modern conditions rendered the advice of Montecucculi wholly valueless.
Authorities. - The Memoric della guerra, \&e., was published at Venice in 1703 and at cologne in the following ycar. A Latin edition appeared in 1718 at Vienna, a French version at Paris in 1-12, and the German Kriegsmachrichten des Fursten Raymandi Monlecuctoli at Leipziz in 1736 . Of this work there are MSS. in various librariss, and many memoirs on military history, tactics. fortification, \&ic., written in Itatian, Latin and German, remain still unedited in the archives of Vienna. The collected Opere di Roimondo Monleckecoli wcre published at Mitan (1807). Turin (1821) and Venice (88.40), and include political essays and poctry
See Campori, Raımondo Morteczceds (Flurence, 1876): Spenholiz. A ureum vellus seu colena, \&ic. (Vienna, 1668); menoir prefaced to the Memorte (Cologne edition); this appears also in v. der Groeben's Never Kriczsbibirothek, vi. 230 (Breslau, 1777), Morgenstern, Oester. ratrks Helden (St Polen. 1782): Schweigerd, Oesierreichs Hedden (Vienna, 1853), Paradisi، Elogro storico del conte Raimnndo AOomec:ucculi (Mrdena, 1776); Schels, Oesterycuchische milithrische Zent-. Montecue cults (Vienna, 1792); Hormayr, Oesterrevchuscher Plusarch. XIll (Vienna, 1808): Reilly, Brographe der bernhmusten Feldherrm: Ocslerretchs (Vienna, 1813). Würzbach, Brographosches Lexikon des Faiserlhums, isc.. Di. 19 (Vienna, 1868): Teuficnbach, Voterland prasidenten (Vienna. 1874): Weingariner, Heldenbuck (Teocheo, 1882); Grossmann, Archio fup ost. Geschichle (Vienna, 1878); also'
woplement to Mindit. Wochenblati (Berlin, 1878); Organ des wihilhr. wissemschafly. Vereins (Vienna, 1881): Recle instituto veneto di wienre, vili. 5. 6 (Venice, 1881); Rivista militare Italiana (March and April 1882): Alfemeime dewishe Biographic, vol. xxii. (Leipzig. 1885). Important controversial works are those of Turpin and Warnery, two distinguished soldiers of the 18 th century (Commendaires sur les mémoires, \&c. (Paris), 1769, and Commentaires sur les comm. . . . du comic Turpin, Breslau, 1777). A critical estimate of Montecucculi's works will be found in Jahns Geseh. der Kriegsvissenschafler, ii. 1162-1178 (Leipzig. 18go).

MONTBPALCO, a town of the province of Perugia, Italy, 6 m. S.W. of Foligno, situated on a hill, 1550 ft . above sea-level. Pop. (1901), 3397 (town); 5726 (commuse). Its churches contain a number of pictures of the Umbrian school; S. Francesco has good frescoes (scenes from the life of S. Francis) of 1452 , by Benozzo Cozzoli, in the choir. There is also a communal picture-gallery in the picturesque Palezzo Comunale.

MONTEFIASCONE, a town and episcopal see of the province of Rome, Italy, huilt on a hill (2077 ft .) on the S.E. side of the Lake of Bolsena, 70 m . by rail N.W. of Rome. Pop. (1gon), 3041 (town); 9731 (commune). The cathedral (1519) is one of the earliest structures hy Sammicheli, S. Maria della Grazie is also by him. The town has in San Flaviano (hullt in ro32, repaired and enlarged in the Gothic style late in the 14 th century), a curious double church of importance in the history of architecture (cf. G. T. Rivoira, Origini dell' archilettwa Lombarda, i. 326 eqq.); in its interior some 14th-century frescoes were discovered in 1896. In the crypt is the grave of a traveller, who succumbed to excessive drinking of the local wine known as Est, eat, est. The story is that his valet who preceded him wrote "est" on the doors of all the inns where good wine was to be had, and that here the inscription was thrice repeated. It is possible that Montefiascone orcupias the site of the Fanum Voltumnae, at which the representatives of the twelve chief cities of Etruria met in the days of thelr independence; while under the Empire the festival was held near Volsinii.

MONTEFIORB, SIR MOSES HAIM (1784-1885), Jewish philanthropist, eldest son of Joseph Elias Montefiore, a London merchant, and of Rachel, daughter of Abraham Lumbroso de Mattos Mocalta, was born at Leghorn, on the 24th of October 1784. His paternal ancestors were Jewish merchants who settied at Ancona and Leghorn in the 17 th century, whilst his grandfather, Moses Haim Montefiore, emigrated from the latter town to London in 1758. Montefiore entered the Stock Exchange, his uncle purchasing for him at a cost of $£ 1200$ the right to practise as one of the twelve Jewish brokers licensed by the city of London. Although belonging to the Scphardic or "Spanish" congregation of Jews, he married in 1812 Judith, a daughter of Levi Barent Cohen, of the "German" Jews, another of whose daughters was the wife of Nathan Mayer Rothschild, the head of the great banking firm; this relationship led to a close connexion in business between Montefiore and that bouse, and his brother Abraham married Henrietta Rothschild, a sister of the financier. In 1824 Montefiore, having amassed a fortunc, retired from the Stock Exchangc. From his forty-third year Montefiore devoted all his energies to ameliorating the lot of his co-religionists. His first pilgrimage to Palestine was undertaken in 1827, and resulted in a friendship with Mehemet Ali which was to lead to much practical good. Immediately on his return, Montefiore began to take an active part in the struggle which British Jews were then earrying on to obtain full political and civic rights. In 1837 he became the city of London's second Jcwish sheriff, and was knighted. In 1838, accompanied hy Lady Montefiore, he started on a second voyage to Palestine, in order to submit to Mehemel Ali a scheme for Jewish colonization in Syria. Though political disturbances rendered his efforts again unsuccessful, the year 1840 brought Montefiore once more before Mehemet, this time to plead the cause of some Jews imprisoned at Damascus on a charge of ritual murder. He obtained their release, and on his way hack wrung from the Porte a decree giving Jews througbout Turkey the utmost priviteges accorded to aliens. In 1846 the threatened re-issuc in Russia of an Imperial ukase (first promulgated in 1844) ordering the withdrawal of all Jews from within 50 .rersts of the

German and Austrian frontiers, caused Montefiore to proceed to St Petersburg, where in an interview with the taar he succeeded in getting the ukase rescinded. On his return, Queen Victoria, on the recommendation of Sir Rohert Peel, made him a baronet. In 1859 a case of injustice which attracted the attention of all Europe brought Sir Moses to the gates of the Vatican. A Jewish child named Mortara had been secretly baptized hy its nurse and stolen from its mot her, who died of grief. Cardinal Antonelli, in the name of the pope, refused to give up the boy, who became a priest. In 1863 we find Monlefiore on a mission in Constantinople to obtain from the Sultan, Abdul Aziz, the confirmation of his predecessor's decrees in favour of the Jews; in 1864 in Morotco to combat an outbreak of anti-Semitism; in x866 in Syria, relieving the distress resulting from a plague of locusts and an epidemic of cholera; and in 1867 in Rumania, once more pleading the cause of the oppressed Jews with Prince Charles. In 1872 Montefiore was deputed by the British Jews to present to Alexander II. their congratulations on the bicentenary of the birth of Peter the Great, and was recelved by the tsar with great honour at the Winter Palace. His sevemth and last pilgrimage to the Holy Land was made in 1875 , of which he wrote an account in his Narradinc of a Forly Days' Sojourn in the Holy Land, published in that year. The last decade of his life was passed in comparative quiet upon his estate near Ramsgate, in Kent; and there, after having received general congratulations on the completion of his hundredth year, he passed peacefully away on the 28 th of July 1885 . Sir Moses Montefiore was a strictly orthodox Jew, scrupulously observant of both the spirit and the letter of the Scriptures; in his grounds he had a synagoguo built where scrvices are still held twice a day, a college where ten rabbis live and expound the Jewish law; and a mausoleum that contains the remains of himself and of Lady Montefiore, who died in 1862.

MONTEFRIO, a town of southern Spain, in the province of Granada, on the river Bilano. Pop. (1900), ro,725. Montefrio is largely Moorish in character, and dominated by a Moorish castle Being built midway between the Sierra de Priego and Sierra, Parapanda, and commanding the open valley between these ranges, it became one of the chief frontier fortresses of the Moors in the 1 th century. Its industries inclade manufactures of cotton stufis, alcohol and soap.
mONTEGUT, JEAN BAPTISTB JOSEPH GMILE (1825-1895), French critic, was born at Limoges on the 14th of Jure 1825. He began to write for the Revue dos doux mondes in 1847 , contributing between 1851 and 1857 a series of articles on the English and American novel, and in $\mathbf{3 5 7}$ he became chief literary critic of the review. Emile. Montegut translated Essais do philosophie americoine (1850) from Emerson; Reoolution de 1688 (2 vols. 1853) from Macaulay's Hislory; and also produced the (Ewares complides (10 vols. 1868-1873) of Shakespeare. Among his numerous critical works are Ecrivoins modernes d'Angleteres (3rd scrics, 1885-1892) and Heures de lecture d'un critique (1891), studies of John Aubrey, Pope, Wilkic Collins and Sir John Mandeville. Montegut died in'Paris on the 11th of December 1895.

HONTEIL, AMANS ALEXIS (1769-1850), French historian, was born at Rodez in-1769, and died at Cely (Seine-et-Marne) in 1850. His tastes were historical, and he taught history at Roder, at Fontainehleau and at St Cyr. He held that a disproportionate importance had been given to kings, their ministers and generals, and that it was necessary rather to study the people. In his Histoire des francais des dingrs thats, on histoire de France awx ciry dorniers siedes (10 vols., 1828-1844) he undertook to describe the different ctasses and occupations of the community. For this he made a collection of manuscripts, which he sold in 1835 (many of them passed into the library of Sir Thomas Philipps), drawing up a catalogue under the singular title of Traite de malteriawx manuscrits de divers genres d'histode. He boasted of having been the first to write really " national" history, and he wished further to show this in a memoir entitiod L'Inflaence de i'kisioire des divers tats, ou commont fat alles la France si clle efll en cothe bistoirs (I 840 ; reprinted in 1841 under
the title: Les Prampais powr le pramitre fois dans l'histoire de France, as pottique de l'hishoire des divers thads). Monteil did not invent the history of civilization, but he was one of the first in France, and perhaps in Europe, to point out its extreme importance. He revised the third edition of his history himself (5 vols., 1848); a fourth appeared after his death with a preface by Jules Janin (5 vols., 1853).

MONTEITH, the name given to a large bowl, often made of silver, with a movable rim and scalloped edges, from which wine glasses, punch ladle, \&c., could be hung, so that they might be cooled in the water with which it was filled. According to Anthony Wood (Lije and Times, iii. 84, quoted in the New Englisk Dictionery) the name was given to the bowl from a "fantastical Scot . . . Monsieur Monteigh who . . . wore the bottome of his cloake or coate so notched," i.e. scalloped.

MONTEIEONE CALABBO, a city of Calabria, Italy, in the province of Catanzaro, beautifully situated on an eminence gently sloping towards the Gulf of Sta Eufemia, 1575 ft . above sea-level, 70 m . N.N.E. of Reggio di Calabria by rail. Pop. (1901), 10,066 (lown); 13,481 (commune). It was almost totally destroyed by earthquake in 1783 , but under the French occupation it was rehuilt and made the capital of a province. It suffered, however, considerably in the earthquake of 1905. The castle was built by Frederick II. The principal church - contains some sculptures by the Gagini of Palermo.

Monteleone is identical with the ancient Hipponium, said to be a Locrian colony and first meationed in 388 b.c., when its inhabitants were removed to Syracuse by Dionyaius. Restored by the Carthaginians (379), occupied by the Bruttii (356), held for a time by Agathocles of Syracuse (294), and afterwards again occupied by the Bruttii, Hipponlum ultimately became as Vibo Valentia a fourishing Roman colony, founded in 239 or 192 B.c. It was important as the point where a branch from Scolacium (Squillace) on the east coast road joined the Via Popillia. The harbour established by Agathocles proved of great service as a naval station to Caesar and Octavian in their wars with Pompeius Magnus and Sextus Pompeius, and remains of its massive masonry still exist at the village of Bivona on the coast, while the fort occupies the site of a temple. Its tunny-fish were famous. In the town itself there are remains of a theatre, of Roman baths (?), a mosaic pavement in the church of St Leoluca (patron saint of Monteleone), and some Latin inscriptions. The town walls too of the Greek city can be traced for their whole extent, about 4 m . They are well constructed of regular parallelograms of a sandy tufa، laid in headers and stretchers. The Roman town occupied only a part of the Greek site, the portion occupied by the modern town, the streets of which still preserve the Roman arrangement. It was supplied with water by an aqueduct, the rescrvoir of which is situated at the village of Papaglionti. The Capialbi and Cordopatri families have private collections of antiquitics.

See V. Capialbi in Mcm. Inst. (Rome, 1832), pp. I59 sqq.: F. Lenormant, La Grande-Grbec (Paris, 1882), iii. 155 sq9. (T. As.)

MONTALIMAR, a town of south-eastern France, capital of an artondissement in the department of Drome, near the left bank of the Rhone، 93 m . S. of Lyons on the railway to Marscilles. Pop. (1906), town, g162; commune, 13.554. The ancient castle is now used as a prison. Remains of the ramparts and four old gates are also preserved. The chief public institutions are the sub-prefecture, the tribunal of first instance and thecommunal college. The industries include flour-milling, silk-throwing and - apinning, and the manufacture of hats, lime, farming impiements, preserved foods and nougat.

Montelimar was called by the Romans Acwnem. At a later period it belonged to the family of Adhemar and received the name Monteil d'Adhemar, whence the present name. Towards the middle of the 14 th century it was sold by them partly to the dauphins of Viennois and partly to the pope, and in the next century it came into the possession of the Crown. During the religious wars it valiantly resisted Gaspard de Coligey in as80, búl was takton by the Huguenotation ager:
 Spanish novelist and poet, of Portuguese descent, was born about 1520 at Montemor o Velho (near Coimbra), whence he derived his name, the Spanish form of which is Montemayor. He seems to have studied music in his youth, and to have gone to Spain in 1543 as chorister in the suite of the Portuguese Infanta Maria, first wife of Pbilip II. In 1552 he went back to Portugal in the suite of the Infanta Juana, wife of D. Jodo, and on the death of this prince in 1554 returned to Spain. He is said to have served in the army, to have accompanied Philip II. to England in 1555 , and to have travelled in Italy and the Low Countries; but it is certain that his poetical works were publishod at Antwerp in 1554, and again in 1558. His reputation is based on a prose work, the Diava, a pastoral romance published about 1559. Shortly afterwards Montemayor was killed in Piedmont, apparently in a love affair; a late edition of the Diana gives the exact date of his death as the 26th of February 156r. The Diana is generally stated to have been printed at Valenciain 1542 ; but. as the Canto de Orfeo refers to the widowhood of the Infanta Juana in 1554, the book must be of later date. It is important as the first pastoral novel published in Spain; as the startiospoint of a universal literary fashion; and as the indirect source, through the translation included in Googe's Eglegs, epytaphes and sommets (1563), of an episode in the Two Geullemen of Verona. Though Portuguese was Montemayor's native language, he only used it for two songs and a short prose passage in the slxth book of the Diana. His mastery of Spanish is amazing, and even Cervantes, who judges the verses in the Diana with unaccustomed severity, recognizes the remarkable merit of Montemayor's prose style. That he pleased his own generation is proved by the seventeen editions and two continuations of the Diana publisbed in the 16 th century, by parodics, imitations and renderings in French and English.

Bibliography-G. Schönherr, Jorge de Montemayor, scin Leben und sein Schdfroman (Halle, 1886): D. Garcla Peres, Caldlogo ratonado biogrdfico y bibliogrd́fico de los autores portuguescs que escribieroz en castellano (Madrid, 1890) : Hugo A. Rennert. The Spanish Pastoral Novet (Baltimore, 1892): J. Fitzmaurice-Kelly, "The Bibliography of the Diana " in the Rcwe hisfanique (1895); R. Tobler. "Shakespeare's Sommernachtstraum und Montemayor's Diana "in the Jahibuch der deutschen Shakespeare-Gescllschaft (1898); M. Menẽndet y Pelayo, Origenes de la novela (Madrid, 1905).

MONTENEGRO, a country of south-eastern Europe, forming an independent kingdom situated upon the western side of the Balkan Peninsula, and possessing a small coast-line on the Adriatic Sca. The name is the Venetian variant of the Italian Monte Nero, and together with the Albanian Mal Esiyd, the Turkish Kara-dagh, and the Greek Mavro Vouno, reproduces the native, or Serb, Tzrndgora, "the Black Mountain"; it is derived from the dark appearance of Mount Lovchen, the culminating summit of Montenegro proper, of which the northern and eastern declivitics, those which are viewed from the country itself, are in shadow for the greater part of the day. ${ }^{1}$ The dusky pine forests, which once clothed the mountaln and of which remnants exist on its northern slope, contributed to its sombre aspect. Up to the end of the 15 th century, when its territory became restricted to the mountainous districts immediately north and east of Mount Lovchen, the kingdom was known as the Zenta or Zeta, but the name Tzrnagora was probably used locally in this region from the time of the earliest Slavonic settlements.

Montenegro extends between $41^{\circ} 55^{\prime}$ and 43° 21 $1^{\prime} \mathrm{N}$., and between $18^{\circ} 30^{\prime}$ and 20° E.; its greatest length from north to south is about 100 m .; its greatest breadth from cast to west about 80 m . It is bounded by the Adriatic Arom egt on the S., the scaboard extending for 28 m ; by the Primore, a strip of the Dalmatian littoral, on the S.W. and W.; by the Austrian (formerly Turkish) provinces
${ }^{1} \mathrm{Cf}$. the similarly-named Terma Plomina in eastera Montemegron Tckerni Vrkh, the culminating summit of Mount Vitosh in Butgaria. and Mabro Vouno in the island of Salamis. Various other explamations of the name Montenegro, mostly of a fanciful character, fave been put forward: gee Kurt Hamert, "D Der Name Montemerio is

of Bosnia and Ferzegovina on the NW. and N_{-}; by the Ottoman empire both in the sanjak of Novibazar, on the N. and N.E., and also in the vilayets of Kossovo and Scutari on the N.E., E. and S.E. Its area, as officially estimated after the treaty of Berlin had been enforced in 1880, amounts to $3255 \mathrm{sq} . \mathrm{m}$., or considerably less than balf the size of Wales. The present fronticr, which was not finally delimited till $\mathbf{1 8 8}$ r, ascends the Boyana river from its mouth as far as Lake Sass (Shas), then follows the river Megured to the summit of Mount Bratovitza, reaching Lake Scutari at a spot opposite the island of Goritza Topal. Crossing the lake northeast to a point a little south east of Plavnitza, and leaving the territory of the Hoti and Klementl tribes to the south, and the districts of Kutchka Kraina to the north, it passes north of the districts of Plava and Gusinye and reaches the western end of the Mokra Planina, where it turns to the north-west. After crossing the Lim at its junction with the Skula, it coincides with the old frontier for some distance; then reaching tbe Tara at Maikovatz, it follows the course of that river to its junction with the Piva: turning southwards, it reaches the ofd frontier once more at Klubuk, and, passing belween the district of Grahovo and the Krivoshian Mountalns, approaches to within a few miles of the Bocche di Cattaro: then, following the maritime mountain ridges for a considerable distance, it rejoins the coast a little south of Spizza.

Physical Fealures.-Montenerro, which forms the meeting.point of the Datmatian. Bosnian and Albanian ranges, seems at first a mere chaos of mountains. It is, however, naturally divided into three parts. each with its own character. (1) Fertile and well. watered plains, not unlike those of Lombardy, bordes the river Zeta, and after its junction with the Moratcha extend along the course of that river to Lake Scutari. A fringe of similar lowland forms the maritime plain extending between the Sutorman range and the mouth of the Boyana. (2) Westward, under the shadow of Lovchen, is the Katunska, or "Shepherds" Huts." the cradle of Montenegrin liberty. This region presents a surface of hard crystalline rock, bare and calcined, with strata sinking to the south-west at an angle often of 70°. The rocks have been split by atmospheric agencies into huge prismatie blocks, and the cracke have been gradually worn into fissures several fathoms decp. In some places the interior of the stony mass is hollowed out into galleries and caves. some of great length; during the rainy season subterrancan landslips Irequently produce local earthquakes, extending over an area of 10 or 12 m . The small basins of Cettigne and Nicgush are practically the only cultivable districts in this region. (3) Over the entire morth stretch the massive mountain chains which link the Herzegovinian Alps to those of Albania, the scenery recalling that of Switzerland or the Tirol. In the north-west there are Eincly wooded tracts extending north of Nikshitch to the Dormitor mountain group. The Dormitor district contains rich grassy uplands dotted with numerous small lakes, from which it derives its name of Yezera (the lakes) ; the rivers Tara and Yiva flow through magnificent gorges clothed with rich forests, and unite near the extreme north of the fronticr. On the north-east are the high but rounded Brda Mountains, oovered with virgin forest or Alpine pastures, and broken here and there by jagged dolomitie praks. In the district of the Vasoyevitchi, which surrounds the little town of Andriyevitza, is the fine double peak of Kom, and, a little to the couth-west, the summit of Maglitch, commanding a magnificent view over the wooded valley of Gusinye to the great Prokletta range in Albania.' The contrast between the rich undulating landscape of the northern regions and the sterile cadcined rocks of Montenegro proper is very remarkable.
The Montenegrin mountain system is divided into four mates: © the group enclosed by the Tara and Piva rivers with Dormitor, one of Meaffate the highest mountains in the peninsula (9146 ft.). Yabliosostomend fiov ; (2) the group be ween the Zeta and the Muratcha Ooologtel with Ostri-Kuk (7546 fi.). Vlasulya (7533 ft). Brnik Pormathao. (6860 ft .) and Maganih (6621 (te.): (3) the ranges between the Moratcha and Tara with Sto (. 323 ft .) and Gradisfite (7156 ft). and (4) those between the upper Tira and the upper Lim with Kom. the second highest mountain in th country (Kom Kutchki, 8032 ft.. Kom Vasoyevitchki, 7946 ft.), sep anating the dispricts of the Vasoyevitchi on me north-cast from that of the Kutchi on thas simh west, and Visi tor (6936 ft .) on the frontier. In Montenegro proper the only prominent summit is Lovclien (5653 ft .), between Cettigne and the western frontier. Between Lake Scutari and the sea is the Sutorman range with the fine pyramidal summit of Rumiva (5148 (t .)
${ }^{1}$ This mountain must be distinguinhed from the higher Magliteh (7699 (t.). on the northern frontier, near the junction of the rivers fare and Pive.
oveshanging Antivari. The prevailing formations of the north and cant are Palaenzoic sandstones and schiste, with underlying trap Throughout Montenegro the following have been identified ((1) Palacozoic schists. (2) Wirfen strata of Lower Trias, (3) Trap of Ile Paheozoic and Wirfen strata, (4) Triassic limestone. (5) Jurassic limestane, (6) Cretaccous limestone. (7) Flysch, in part certainly Eocene. (8) Neogenic or younger Tertiary formations.

The watershed between the Adriatic and the Black Sea crosees the country from west to east in a very irregular line, the southern districts being drained by the Zeta-Moratcha river system. which finds its way to the Adriatic by Lake Rtvers and Scutari and the Boyana, while the streams from the Lakes. northern districts form tho headwaters of the Drina, which reaches the Danube by way of the Save. The Zcta, rising in Lake Slano, near Nikshitch, is remaricable for its subterrancan passage beneath a mountain ratige 1000 ft . high. At Ponor, not far from that

town, the water vanishes in a deep chasm, reappearing at a distance of several miles on the other side of the mountains. Its whole course to its junction with the Moratcha is about 30 m . Rising in the Yavorye Planina, the Moratcha sweeps through mountain gorges till it reaches the plain of Podgoritra: then for a space it almost disappears among the pebbles and other alluvial deposits, nor does it again ahow a current of any considerable volume till it approaches Labe Scutari. In the neighbourhood of Dukle' ${ }^{2}$ and Leskopolye it flows through a precipitous ravine from 5020100 ft . hifh. In the dry scason if is navigable from the lake to Zhabliak. The whole course is about 60 m . Of the left-hand tributaries of the Moratcha the Sem or Teem deserves to be mentioned for the magnificent cafion through which it flowe between Most Tamarui and Dinosha. On the one side rise the mountains of the Kutchi tertitory on the of her the immense fanks of the Prokletia range- the walls of the gorge varying from 2000 to 4000 ft . of vertical height. Lower down the stream the rocky banks approach so close that it is possible to leap across without trouble. The Sem rises in northern Albania, and has a length of 70 m . The Rieka isaues full-formed from an immense cave south-east of Cetrigne and falls into Lake Scutari. The three tributaries of the Drina which belong in part to Montenegro are the Piva, the Tara, and the Lim. respectively 55,95 and 140 m . in length. The Tara forms the northern boundary of the kingdom for more than 50 m ., but the Lim flow's beyond the border alter the first 30 m . of its course. The western hall of Lake Scutari, or Skodra, belongs to Montenegro;

[^52]the eastern, with Scutari itself, to Albania. It is a magnificent thet of water, measuring about 135 sq. m., with an average depth of ewo to three fathoms. The northern end is studded with picturescue islands. The level of Lake Scutari underwent several changer in the 19th century; notably when the Drin, an Albanian river, which before 1830 entered the Adriatic near San Giovanni di Medua, changed its course so as to join the Boyana just below its exit from the lake. This raised the level of the lake, fooding the lower valleys of its tributary streains and permanently enlarging its area. A few small lakes are scattered among the mountains, and it is evident that their number was formerly much greater. Montenegro proper (i.e. the departments of Katunska, Rietchka and Licshanska) is almost absolutely waterless, the only stream being the Ricka, which probably drains the Cettigne basin by an underground outlet. Its lower course is practically an inlet from Lake Scutari, and is navigable up to the town of Ricka. The upland plain of Cettigne, now waterless, was doubtless the bed of a lake at no very distant (geological) period; it is still sometimes fooded after heavy rains. The scarcity of water largely contributed to the successful defence of the country against Turkish invasion: the lew springs are hidden in deep crannice among the rocks, and the inhabitants are accustomed to preserve melted snow for use during the summer. On the other hand, the Brdal and north-castern districts are abundantly watered. The maritime district posseades two amall streams.

Climate-The climate fenerally resembles that of northern Albania; it is severe in the higher resions, and comparatively mild in the valleys, while in the meritime districts of Antivari and Dukigno it may be compared with that of central Italy. The mean annual temperature is-about $58^{\circ} \mathrm{F}$. Snow lies for most of the year on many heights, and in some of the darker gorges it is never thawed. The high basin of Cettigne (2093 ft .) is deeply covered with anow during the winter months, a nd the capital is sometimes almont inaccessible: in summer the days are hot, but the nighte are cool and frequently chilly. The climate is generally healthy except in a few maraby districta.

Flora and Fauna.-The Alpine vegetation of the summita gives way to pinc forests in the sub-Alpine zone (about 6000 ft); below these the beech, and then the oak, the walnut, the wild pear, and wild plum make their appearance; the fig-tree, the mulberry, and the vine grow in the middle Zeta and Moratcha valleys, the myrtle, orange, laurel and olive in the lower Moratcha region, and more abundantly in the Tzrmnitus and maritime districts. In the forest districts the beech is the prevailing tree up to a height of about 5000 ft . The chestnut forms little groves in the country between the sea and Lake Scutari but never ascends more than io00 ft. Pomegranate bushes grow wild, and in many parts of the south cover the foot of the hills with dense thickets, the crimson blossoms of which are one of the special charms of the spring landscapes. The leaves of the sumach (R hys colinus), which fourishes in the warmer districts, are exporied for use in dye-works; the Pyradhrum cimerariaefolium supplies material for the manufacture of insectpowder; the fruit of the wild plum (Cornus maseula), as well as the grape, is employed for the production of raki or rakiyd, a mild spirit, which is a favourite beverage with the people. Bears are still found in the higher foresta; wolves, and especially foxes, over a much wider area. A few chamois still roam on the loftiest summits, the roebuck js not infrequent in the backwoods, the wild boar may be met with in the amme district, and the hare is abundant wherever the ground is covered with herbage. There are one or two spectes of snakes in the country. including the poisonous Illyrian viper (Vipera ammodytes). Eeculent frogs, tree Irogn, the common tor: toite, and various kinds of hivards are all common. Scorpione and numerous reptiles iafest the arid rocke of the Katunaka. The liat of birds includes golden eagles and vultures, twelve opecies of falcons, eeveral species of owls, nightingales, larks bumtirgs, boopoes, partridges, herons, pelicans, ducks (ten epecies), nightjarts, \&c. Immense flocles of water-fowl haunt the upper raches of Lake Scutari. The rivers abound with trout, tench, carp and eels; the trout of the Moratcha are eapecially fine. More important from an economic point of view is the scorame (Lewciscus alburrms: Servian whitiea), a kind of sardine, which supplies an article of food and merchandise to a considerable portion of the population. The finh, which enter the Rieka inlet of Lake Scutari during the winter, are taken with nets during a few weelcs in the apring, when the fishing season is jnaugurated with a religious etrvice; they are galted and exported in large quantities to Trieste and the Dalmatian coast. The annual take is valued at 44000 . The ses-fisheries are of less value. As regards mineral resources, traces of iron, copper and coal are said to exist; there is a natural petroleum apring in the neighbourhood of Virbazar.

Xfricullure and Storkfarming-Except in the lowlands, which serve as the granary of Montenegro, furnishing wheat, maixe, barley,
rye, potatoes and capaicums, there is little tillage. Methods and rye, potatoes and capaicums, there is little tillage. Methods and implement are alike primitive. In the Katunska the peasants are glad to enclose the smallest spaces of the fertile red soil which is
1The name Brda (literally " mountains ") signifies in ordinary
opeech the mountan eroup east of the Zeta which was incorporated epeech the mountanngroup east of the Zeta which was incorporated otherwise used in official documenta.
left after rain in the crevices of the rocles, and one may mee harverth only a few yards square. The vineyards produce excellent grapes, but wine production, which might become an Important industry, is at present limited to bome conmumption. Tobacco is largely cultivited, eapecially in the neighbourhood of Podgoritza; the anmual produce amounte to 550,000 lo. Stock-raising is more largely carried on than agriculture- In the north droves of swine fatten on the mast of the beech woods; goate and targe flocks of sheep, celebrated for their thici flecces, thrive on the high pastures, end the lower slopes afford excellent grasing for larger stock. The native breed of cattle is amall, but among other eforts made to improve it a stock.farm is maintained by Prince Nicholas near Nitanitch. The horses, as elsewhere in the Balkan Peninsula, are diminutive wiry and intelfigent. Bee-keeping is practised in the Kutchi districta, and mubberies are grown for ailicworms.

Commerce and Industries.-The exports, valued at $f 80,265$ in 1906, include cattle (targe and srall), smoked and salted meat known as castrodina, cheese, undressed hides, scoramae, sumach. pyrethrum, tobacco and wool. The imports, valued in the same year at $\mathrm{f} 239,505$, consist mainly of manufactured articles, such as iron utensils and weapons, soap, candles, \&c., and colonial products. In 1904, when Montenegro renounced its commercial treaties, the old 8% od valorem duty levied on imports was in many cases raised to 35% This caused much discontent among che people, who had been growing steadily poorer since 1900; and many farnilies emigrated. The exportation of cattle is greatly hindered by the high tariff imposed on the Austrian frontier, which is productive of much illicit trading. There are practically no manufactures: the men disdain industrial employment, while the women are occupied by household duties or work in the fields. A brewery and a cloth factory. however, exist at Nilsshitch, a soda-water lactory at Cettigne, and an olive-oil refinery at Antivari. The coarser clath worn by the peasants is home-made; the finer kind worn by the wealthier class is imported.

Communications.- The progress of trade and the development of the natural resources of the country must largely depend on improved means of communication. In this direction considerable progress has already been achieved. Montenegro possessed in 190% 228 m . nf excellent carriage roads, admirably engineered and main. tained. The remarkable zigzag road from Cattaro to Niegush and Cettigne was completed in 1881 ; it was alterwards prolonged to Ricka, Podgoritza, Danilovgrad (where a fine bridge across the Zeta Whis erected in 1870), and Nikshitch. Another road connects Podgoritza with its port, Plavnitza, nil Lake Scutari; a third runs from Antivari to Rieka, and unites the sca-coasts with the richest districts of the interior. The ports of Antivari and Dulcigno are insufficiently sheltered, but are capable of considerable improvement ; both are places of call for the Austriaa Lloyd steamers, and a, regular service betwcen Antivari and Bari on the ltalian coast is maintaincd by the "Puglia" Steamship Company. The Boyans is navigable by sea-going vessels as far as Oboti ($12 \frac{1}{2} \mathrm{~m}$. From its mouth), wherc cargoes from Scutari must be translerred to small river cralt. Important harbour works were inaugurated in 1905 at Antivari by the Italo-Montenegtin Compagnia d'Antivari, which in the same year began the construction of a railway from that port to Virbazar on Lake Scutari. Four steamers belonging to the same company ply on the lake. Postal and telegraphic communication is fairly complete. There were, in 1906. 16 post offices and 20 telegraph stations, with 412 miles of wire. The number of letters posted in that year was 91.250 . The telegraph is much used by the people: the number of telegrams eent in 1906 was 54.750 ,

Population.-In 1882 the popalation of Montenegro wes eathmated as low as 160,000 by Schwartz. A more usual estimate is 230,000. According, however, to information officially furnished at Cettigne, the total number of inhabitants in 1900 was 3I1.564, of whom 293.527 belonged to tbe Orthodox Church; 12,493 were Moslems and 5544 were Roman Catholics; 7x,528, or 23%, were literate and 240,036 , or 77%, were illiterate. The total number in 1907 was officially given as 282,000 . The population is densest in the fertile eastern districts, Montenegro proper is sparsely inhabited. Emigration is greatly mcreasing especially to America, the number of emigrants is given as 6674 in r905 and 4346 in 1906. The bulk of the inhabitants belongs to the Serbo-Croatian branch of the Slavonic race. There were about 5000 Albanians resident in the country in 1900 , besides a smail colony of gipsies, numbering about 800 , a few of whom have abandoned their nomadic life and settled on the soil. The Moslems, whose thrift and industry have won encouragement from the Crown, greatly decreased for some years after 1880 owing to emigration. The capital of Montenegro is Cettigne (3200 inhabitants in 1900, 5138 in 1907) The chitef commercal centres are Podgoritza (12.347) and Nikshitch (6872), with the ports of Antivari (2717) and Dulcigno (5166) These towns are described under separate teadings. Danilovgrad (1226) an the

2ata was founded in 5871 by Prince Nicholas and named after his predecessor, Danilo II. In the vicinity is Orialuka, the prince's palace, with its mulberry nurseries. Spuzh (1000), a Jittle lower on the east bank of the Zeta, possesses a fortified acropolis. Niegush or Ny yegosh (1893), on the road from Cettigne to Cattaro, is the ancestral abode of the ruling family, which originally game from Niegush in Herzegovina. Zhabliak (5200), near Lake Sche $^{\text {Scuta, was the capital until lete in the igth century. }}$ It was a Venetian strongbold. Rieka (1768), near the northern and of Lake Scutari, derives some commercial importance from its position. Grahovo (1000), in the extreme west, is famous for the Turkish defeats of 1851 and 1876. Other amall towns art Kolashin, Virbazar and Andriyevitza.
The Montenegrins present all the characteristics of a primitive race as yet but little affected by modern civilization. Society Nedoad is still in that early stage at which personal valour cbaractom-is regarded as the highest virtue, and warlike prowess mulcs. constitutes the principal, if net the only, claim to pre-eminence. The chiefs are distinguished by the splendour of their arms and the richness of their costume; women occupy a subject position; the physically infirm often adopt the profession of minatrels and sing the exploits of their countrymen like the bards of the Homeric age. A race of warriors, the Montenegrins are brave, proud, chivalrous and patriotic; on the other hand, they are vain, lazy, crual and revengeful. They possess the domestic virtues of sobriety, chastity and frugality, and are well-mannered, afiable and hospitable, though somewhat contemptuous of strangers. They are endowed in no small degree with the high-flown poetic temperament of the Serb race, and delight is interminable recitations of their martial deeds, which are sung to the strains of the gisla, a rudimentary one-stringed fiddle. Dancing is a favourite pastime. Two characteristic forms are the slow and stately ring-dance (kolo), ${ }^{1}$ in which women sometimes participate, though it is usually performed by a circle of men; and the livelier measure for both seres (oro), in which the couples face one another, leaping high into the air, while each man encourages his partner by rapid revolver-firing. The oro is the traditional dance in the Katunska district. Women chant wild dirges, generally improvised, over the dcad; mourners try to excel one another in demonstrations of grief; and funerals are celebrated by an orgy very like an Irish "wake." Like most imaginative peoples, the Montenegrins are extremely superstitious, and belief in the vampire, demons and fairics is almost universal. Among the mountains they can converse fluontly at astonishing distances. The physical type contrasts with that of the northern Serbs: the features are more pronounced, the hair is darker, and the stature is greater. The men are tall, often exceeding 6 ft . in height, muscular, and wonderfully active, displaying a cat-like elasticity of movement wben scaling their native rocks; their bearing is soldier-like and manly, though somewhat theatrical. The women, though frequently beautiful in youth, age rapidly, and are short and stunted, though strong, owing to the drudgery imposed on them from childhood; they work in the fields, carry heavy burdens, and are generally treated as inferior beings. Like the Albanians, the Mfontenegrins take great pride in personal adornment. The men wear a red waistcoat, embsoidered with gold or black braid, over which a long plaid is sometimes thrown in cold weather; a red girdle, in the folds of which pistols and yataghans are placed; loose dark-blue breeches and white stockings, which are generally covered with gaiters. The opanke, a rew-hide sandal, is worn instead of boots; patent leather long boots are sometimes worn by military officers and a few of the wealthier class. The headdress is a small cap (kapa), black at the sides, in mourning for Kossovo; red at the top, it is said, in token of the blood shed then and afterwards. On the top near the side, five semleircular bars of gold braid, enclosing the king's initials, are supposed to represent the five centuries of Montenegrin liberty. There ${ }^{1}$ The ring-dance, known as the koto (literally, " wheel") in all Serb countries, corresponds with the Bulgarian horo (to be distinguished from the Montenegrin oro), and is almost universal throughout the Balkan Peninsula; it is seldom, however, danced in throughout the Balkan Peninsula: it is seldom, however,
the rocky Katunska district, where level apaces are rare.
is. Fittle authority, bowever, for this and other fancfirs interpretations of the pattern, which was adopted in the reign of Peter I.; the red fez, from which the kapa probably derives its colour, was previously worn. A blue or green mantle is cometimes worn in addition by the chiefs. The poorer mountaincers are often dressod in coarse sacking, but all without exception carry arms. The women, as befita their servile condition, are generally clothed in black, and wear a black head-dress or veil; on Sundays and holidays, however, a white embroidered bodice, silver girdle, and bright silk akirt are worn beneath an open coat. Over this is placed a short, aleeveless jacket of red, blue, or violet velvet, according to the wearer's age. Unmarried girls are allowed to wear the red kapa, but without the embroidered badge. The Vasoyevitch tribe retain the Albanian costume, in which white predominates. Turkish dress is often seen at Antivari, Dulcigrio and Podgoritza. The dwelling-houses are invariably of stone, except in the eastern districts, whore wooden huts are found. As a rule, only the mansions of cattle-owners have a second storey: the ground floor, which is dark and unventilated, is occupied by the animals; the upper chambers, in which the family reside, are reached by a ladder or stone staircase. Chim* neys are rare, and the smoke of the fireplace escapes throngh the vindows (if any exist) or the open doorway. The princtpal food of the people is rye or maize cake, cheese, potatoes and sahed scoronse; their drink is water or sour mitik; meat is seldom tasted, except on festive occasions, when raki and red wine are also enjoyed. The Montenegrins are great smokers, especiatly of cigarettes; in the districts which formerly belonged to Tarkey the men, whose dignity never permita them to carry burdens, may be seen going to market with the chlbok, or long pipe, slung across their backs. The mothar possesses lintia influence over her sons, who are trained from their earliest infancy to cultivate warlike pursuite and to despise the weaker sex. Betrothals often take place in early childhood. Young men who are attached to each other are eaccustioned to sweat eternal brother: hood (pebrationstion); the bond, which recelves the sanction of the Church, is never dissolved. Marriages between Montenegrins and converted Turkish girls are a common source of blood-feads. The tadraga, or house-comnounity, wider the rule of a staresinina, or house-father, is found in Montenegro as in other Slavonic lands (see SEzvin). The tribal system still exists, but possesses less significance than in Albania, owing to the centralization of authority at Cettigne. The tribe (plame, pl. plementa) is subdivided into clans (bradstoc).

Constitution and Government-Notwithstanding the creation of an elective senate in 1831, the grant of a so-called constitution in $\mathbf{1 8 6 8}$, and the establishment of a pesponsible ministry in $\mathbf{1 8 7 4}$, the government remained autocratic till.igo5, the whole power, even the control of religion and finance, which the constitution of 1868 had conceded to the senate, being centred in the hands of the prince, who in rgro assumed the title of king. The senate, inatituted by Peter II. with the object of limiting the power of the tribal chieftains, was in $\mathbf{8 8 9}$ r merged in a council of state, the members of which, six in number, were nominated and dismissed by the paince. The council supervises meaiures to be laid before the Shupsktino, or nationsl assembly, and exercises a disciplisary control over officials. The ministry comprises six departments: (x) the interior, with separate sections for public works, posts and telegraphs, commerce and industry, shipping, sanitary service and agriculture; (2) foreign affalrs; (3) war; (4) finance; (5) justice; and (6) education. On the 1gth of December 1905 a new constitution was proclaimed by Prince Nicholas. A Skupshtina was instituted, consisting of 62 elected deputics, 9 ex ofrio members (the higher ecclesiastical and civil dignitaries), and 3 generals nominated by the prince. The Skupshtina is elected by manhood suffrage for a period of four years, and is summoned annually on the 3 rst of October. In conjunction with the Crown it exercises the legislative power; the ministers are responsible to it as well as to the Crown. The constitution affords financial supervision to the Skupshtina, which elects a board of control and votes an annual budget; It guarantees liberty of the person, of religous belief, and of the
press, together with the right of public meeting, and abolinhes the death penalty for political offences.

Administration and Justice.-For purpones of local administration the country is divided into 5 departments (oblasi), each governed by a prefect (wpravicte), and 56 districts (kapectanati), each under an official styied kapetan. The prefects and kapetans are nominated by the king on the recommendation of the minister of the interior. Rural commumen, each under an elected kmet, ar mayor, exist in Montenogro as in all Slavonic countries. The kmets act as justices of the peace, and there is an appeal from their decisiona to the courts of first instance (kapelanski sudowe), of which there is one in each district, the kapetan acting as judge. In each of the five departments there is a superior court (oblassi sud), with 4 preaident and two judges; at Cettigne there is a high court of justice (radiki suc), which is the final court of appeal. The ultimate appeal to the prince was abolished in r903, when Prince Nicholas laid aside his judicial functiona, retaining only the prerogative of pardon. The judges, who are removable, are nominated by the king on the recommendation of the minister of justice. With a single exception there are no professional advocates in Montenegro; each man is his own counsel, bringing his own witnesses. The local gendarmerie, numbering 150 men, is distributed in the five departoments. The kopetomoti bave replaced the former local divisions according to plemena; in each of the communes there is one or more of the bralstov. The codification of the law, which had previously beon administered according to unwritten custom, was first undertaken by Peter I. in 1796 . An improved code, issued by Danilo II. in 1855. still contained many quaint enactments. The extellent code drawn up by Professor Bogishitch, a native of Ragusa, in 1888, was revised and enlarged in 1890 . It contains clernents from various foreign sytcems scientifcally adaptod to national wages and requirements. A large number of judicial reforms were carried out by Count Voinovitch, who surceeded Professor Bogishitch in 1899; in 1905 a new code of civil procedure was promulgated, and a criminal code in the following year. The only prison is at Podgoritza. In the old prisan at Cettigne, closed after 1902, many of the inmates were free to walk in and out at picasure. Some were burdened with fettera, rather as a punishment than for restraint. Until the completion of an asylum in s903, dangerous lunatics were confined in prison. The commonest offences are murdes and robbery; despite vigorous measures taken by the king and his predecessors, the hlood-feud, or vendetta, cannot be stamped out, being approvod, and oven enforced, by public sentiment. Only women are hetd exampt from the duty of avenging their next-of-kin; they have been known, however, to undertake it, disguising themselves in male attire. A man who kills his slanderer, or otherwise avenges his honour, often receives a nominal term of imprisonment. Robbery, if practised hy means of raids across the frontier, is populariy regarded as a venal offence. Other forms of crime are rare, and foreigners may traverse all parts of the kingdom, except the neighbourbood of the Albanien border, in perfect saieity. The death penalty was first introduced by Peter I. Executions are carried out by a firing party selected from the various tribes, in order to prevent the relatives of the criminal from exacting vengeance. Exceptional severity is shown in the treatment of political offenders, who in some instances have been subjected to wolitary confinement for years without trial.
Finance.-Financial statistics are not published. The total reeceipts were estimated in 1907 at 2,773.690 Austrian krone. ${ }^{\text {i }}$ the principal soorces of income being the taxes on land, houses and cattic. the monopolies of tobacco., salt. petroleum and alcohol, and the customs dues. The total expenditure was estimated at $2,730,994$ krone, the principal items being: civil list, \&c., 189,586 krone ; ministry of interior, 574.822 krone; of foreign affarrs. 144.547 krone: of justice, 232,770 krane: of finance, $592,56 \mathrm{r}$ krone: of war, 133.696 krone: of worship and education, 269.208 krone: service of national debt, 244.500 krone. The public debt is under ${ }^{2} 300.000$. The contribution of Montenegro to the Ottoman debt has not been fixed. From time to time considerable subventions have been

[^53]received from Russia and Austria. The annual Russian subasdy. mainly for military and educational purposes, is stated to be about 4.40,000. Montenegro has no mins; Austrian paper money and coins are generally employed together with Montenegrin nickel and bronze coins struck in Austria. Turkish gold and silver are also in circulation. The former Turkish and Venctian weights and measures have been superseded by the French.
Defence. - The Montencgrin is a born warrior; his weapons, which he never lays aside, are his most precious possession, a nd distinction in battle is the sole object of his ambition. Persons of all classes. wear a revolver in the kolan or waistband. "You might as well take from me my brother as my rifle," says a native proverb; and rifles are almost universally carried near the Albanian frontier. Where the rribesmen on cither side are in a state of chronic hostility. Brave to a fault. an uncring marksman, hardy, agile, crafty and enduring, the Montencgrin has few rivals in the practice of guerrila Narfare. The raditional method of fighting is by ambuecade; the enemy is enticed into some intricate defle, surrounded, and harassed by rife-fire; then the mountaincers, throwing aside their fircarms, deliver a swift attack with the hanjor, or yataghan. which they wield with terrific effect. A number of heads cut off in battle adorned the parapet of a small tower outside Cettigne, called the "Turks' Tower," as late as 1850 . When reduced to extremity the Montenegrins often commited suicide rather than fall into the hande of the encmy, the last cartridge being reserved for this purpose: dissbled comrades who could not be removed used to be beheaded, in 1876 a Montenegrin offered to pertorm this kindly service for a Russian officer who was wounded at Klobuk. Savage mechods of Narfare, however, have been strongly discountenanced by King Nicholas and his predecessor. Till the middle of the toth century the forces of the principality consisted of undisciplined bands of tribesmen under local chiefs, whose rivalries often proved injurioun Io the national cause. The supreme command, however, always rested with the prince. The nuclcus of a permanent corps was creared by Peter II., who formed a bodyguard of picked men known is persaniki, from the feathers (pera) which adorned their caps. The name is still borne by a small corps. (20 men in 1907) which guards the residences of the king and his sons, but the feathers are no longer worn. In 1853 Danilo 11. ordered the enrolment of alt persons capable of bearing arms, and instituted a military hierarchy of voievodes (generals), sirdars (colonels) and Eapelons; the organization, which was based on the tribal system, was remodelled by Servian officers in 1870 , when the chicl's were brought to Cettigne to receive military instruction. In the same year arms of precision were introduced: the cost and complex structure of the new weapons thrcatened to cause serious difficulty, but Russian aid was soon lorthcoming. Since $18 ; 0$, though arms and ammunition are manufactured on a small scale within the kingdom, the chicf supplies have come from Russia. In 1895 the tsar presented Prince Nicholas with 30,000 Berdan rifes, besides ordnance and other war material. and in 1898 sent a further gift of 35,000 Moskovska rifes. Every able-bodicd citizen must serve in the army, except Moslems, who are exempt on payment of a capitation tax. The military organization has undergone a gradual transformation under Prince Nicholas in conformity with the changed circumstances of the country and the requirements of modern warfare. The militia system on the Tribal basis is maintained, but in 1896 a permanent battalion of 500 men was established at Cettigne, and two years later' another it Podgorizza, each under a komandir, or major, 4 captains and 15 lieutenants. A permanent brigade of artillery was formed at Nikshitch in 1807. In 1905 these were abolished through motives of conomy. There is a standing corps of officers, but no slanding army. All young men of military age go through an obligatory period of twelve days' service at the various local military centres. Candidates for a commission afterwards procced to a military thool at Podgoritza for one year; the best and most promising then receive commissions as pod-ofitieri or sous-offciers, and are sent for a further course of instruction of two yeare to military echools cither at Cettigne for the infantry, or at Nikshitch for the artillery. They then receve fuft commissions and are sent to the local centres to superintend the training of the militia, thus gradually superseding the old militia officers, and replenishing the standing corps of officers of the regular army. Officers who have completed a cqurse of study abroad are allowed to wear a distinctive emblem on the kapa. The war strength is estimated at from 38,000 to $+2,000$ men, the infantry being composed of a bout 32,000 men of the first ban and of 5000 or 6000 of the second or reserve (which, however. would karcely be employed in the field), the artillery of about (500 . Conriderable deduction must be made from these numbers in view of the cmigration of reent years; according to some authorities between 20,000 and 22,000 men of military age are absent in Arnerica and tisewhere. it is expected, however, that many of these would return should the country become involved in war. The infantry is divided into II brigades, each containing from +106 battalions;
the total number of battalions is 56 . Th bastalion is composed of a varying number of tchele, or companies, each of which belonga to a separate dan and has its own boirakear, or standard.bearer. neighbourbood of their homes on Sundaye and holidaye. They are armed with the Moskovska (repeating) rifte, bat i Eterdas rifte in
aleo leppt in each household. The artillery was composed in 1910 of 18 siege, 25 feld and 38 mountain guns, with 4 howitzers, 15 mortars and 18 machine-guns (6 Gathing and 12 Maxim-Nordenfeldt): the principal arscnal is at Spuzh, where the heavier guns are kept, the others are distributed among 8 of the II local brigades. The prianiki, whose numbers were increased by Prince Danilo, were diabanded in 18, 5, when steps were taken to form a bodyguard of 3000 picked men under Prince Mirko, King Nicholas's second eon, but the project was abandoned in view of the jealousies to which the selection gave risc. Owing to the lack of open country thre is no caval-y. In 1894 the sulzan presented Prince Nicholas with equipment lur a small mounted body-guard (32 men), and offered the services of threc instructors. This corps, however, ceased to exist in 1898. About 20,000 men can concentrate at a given spot within 48 hours. The signal for mobilization is mainly
given by telegra
aloy employed.
torian coursers, from lormerly summoned by stenambulance corpt has been formed. Transport is deficient, all draught animals. however, in the country have been registered and \AA few carto have been provided. The wives and daughters of the troops provide the commissariat, and carry the ammunition. Rehigion--The Montenegrin Church is an autocephalous branch of the Eastern Orthodox communion. In 1894 it formally vindicated its independence against the claims of the Russian synod. The aladikas, or prince-bishops, formerly depended on the patriarchate of Ipelk. The theocratic system of government which existed from 1516 to 1851 tended to unite the patriotic and the religious instincts
of the people. Since the separation of the spiritual and temporal powers in 1851, the see of Cettigne, in which the diocese of Ostrog bs included, has been occupicd by a metropolitan (metropolit), who posenges a nominal jurisdiction over Scutari and the Primore. On judgments relative to divorce his verdicts may be reversed are 159 parishes of the Orthodox Church, io Roman Catholic parishes under the archbishop of Antivari and 10 Mahommedan parishes under mutti. The churches are small unpretending tructures, almott all exactly alike; a handsome cathedral, however. has been erected at vilishitch. The principal monasteries, in addition to the convent at Ccttigne, are those of St Nicholas, on the Moratcha, and of St Basil at Ostrog. The monastic order is almost extinct; the parochial clergy, who numbered about 400 in 1900 , are only diatinguishable from the laity by their beards; they wear the national cossume, carry weapons, take part in warfare, and follow the ordinary avocations of the peasantry. Even the old vladikas discarded the episcopal robe, except when engaged in sacerdotal duties. The clergy are still for the most part extremely ignorsnt.

Education.-The Bogoslopia, a seminary for the instruction of the young priests and schoolmasters, was established at Cettigne in 1869. It is maintanned by a subvention from the emperor of Rumia, while the empress supports the Zhenski Tzrnogorskl Institut, an excallently managed school for girls (98 pupils in 1g07). Government lecturers go on circuit to instruet the okder men. They may be seen on Sundays, not only diseributing general information, but teaching the shephords how to safeguard their flocks from diseate, and the lowland cultivators how to tend their vines and tobacco crops. An agricultural college at Podgoritza supplements their work. Primary education is compulsory. In the rural districts it is free: in the towns a small fee is charged. In 1906 there were 112 primary schools in the principality with 150 tcachers and 9756 pupils; and two secondary schools (at Cettigne and Podgoritza) with $2 t$ prolessors and about 1000 pupils; the Moslems and Roman -mnasia or hir gymnasia, or high schools, at Cettigne and Podgoritza, with about
700 pupils, Students desirous of higher education proceed abroad, for the most part to the university in Belgrade. The progress of educłtion under Prince Nicholas was very remarkable. In the time of his predecetan, Danilo 11., who taught the sons of his chicttains in the palace, there were only three schools in the principality, In 1876, at the besinning of the war, there were 52 schools, with 62 teachers and 3154, pupils. The schools were closed daring the war, and at lts conclu-ion only 22 could be reopened, awing so want of Iunda. Elementary education was reorganized in 1878 .
Language and L identical with th variations, and h Italian. Exintint and gospels, bear Obod. This was up his first press in 1566, after te: countries. The fo ande in thengs, however, of which the first collection was pade in the reigl of Peter II., constitute the bulk of the national Diterature. The perns of that ruler are accounted among the classics of the Servian lan aage, esprially his Gorshi Vienatz, or "Mountain Wreath." a dran a describing the maswacre of the Montenegrin Moskems by thei! Christian kinsmen in; 1202, The reigming family
the father of Prince Nicholas, and the lyrics and dramas of Prince Nicholas bimself enjoy great celcbrity. The Gritze, or "Turtedoves," a kind of almanac published at Cettigne by Milakovitch between 1835 and 1839, contained poems, tales, statistics and an abridgment of the Montenegrin annals down to 1830 ; it was succeeded in the time of Danilo II. by the Orlish, or "Eaglet." The first Montenegrin newspaper, the Tarmogoralz, or "Montenegrin," founded in 1870, was prohibited on the Austrian frontier, and soon disappeared; it was replaced by the Glas Tzrmogortza, or "Voice of the Montenegrin," a semi-official publication. There were in tgio three other journals in the kingdom.
Artiquities.-In Montencgro, as in Albania, the monuments of early civilization bear witness to Roman rather than to Greek influence. Roman remains occur in many parts of the country cast of the Zeta, and early Latin churches exist at Dulcigno (Ulcinium) and other places. "The organization and forms of the churches, the architecture and ornamentation, point to the West and not to the East." It is evident that Latin civilization was firmly planted in Illyria before the barbarian incursions of the 6th century. Latin sepulchral inscriptions and some finely cut marble blocks have been found at Berane, a little beyond the eastern frontier, and at Budimlye in its neighbourhood. Especially interesting and inportant are the extensive ruins of Doclea, now know'n as Duklé, the birthplace of the Emperor Diocletian. The city, which received the franchise under the Flavian emperors, occupied a remarkable site at the junction of the rivers Zeta and Moratcha. The outer walls are standing in many places, and excavations carried out in 1893 by M. Rovinski and AIessrs J. A. R. Munro, Milne and Anderson revealed a considerable portion of the groundplan, including several streets and a forum. Among the buildings are a finc civil basilica, with a great inscription on the architrave, two small temples, an early Cbristian basilica, and a later church; several inscriptions, columns, richly worked capitals and tracery, and mosaic pavements have been brought to light. At Medun there are remnants of polygonal masonry. Illyrian forts are found in many parts of the country. The ravages of the Turks obliterated almost every trace of medicval culture. The fortress of Obod, the site of the famous printing-press, is a heap of ruins; a fragment of one of the first missals printed here is shown at Cettigne; it bears the date 1494. Other editions are preserved at the monastery of Tzainizza, on the Bosnian side of the fronticr, and at Moscow. The precious books and relics stored in the monastery of Ivan the Black at Cettisne perished with the destruction of the monastery in 1687. The building, the home of the reigning vladikas, had been previously sacked by the Turkis in 1623, and was again destroyed by them in 1714. In the fortress-monastery of St Nicholas (founded in 1252), which overlooks the headwaters of the Moratcha, are some interesting and well-prescrved frescoes which date from the 13th century. The monastery of Ostrog, about twelve miles from Nikshitch, is a comparatively recent foundation, dating. from the 18 th century. It has been styled "the Lourdes of the Balkans," owing to its reputa. tion for miraculous cures, and is visited annually by thousands of Orthodox pilgrims, and even by Roman Catholics and Moslems. The upper portion, situated in the cleft of a precipitous rock, was in 1768 and again in 1862 suecessfully deferded by a handful of men against the Turks.

History, - The history of Montenegro 25 an independent state begins with the battle of Kossovo (1390), but the country had enjoyed periods of independence or semi-independence at various epochs before that event. It formed a portion of the district of Pracvalitana in the Roman province of Illyria, and, lying on the borderland of the cmpires of the West and East, it alternately shared the Iortunes of either till the close of the 5 th century. It was then conquered by the Ostrogoths (A.D. 493), but half a century Later definicely passed under Byzantine rule, having already acknowledged the ecclesiastical authority of Constantinople, a circumstance which decermined the course of its subsequent history. Illyria and Dalmatia suecumbed 10 the great SerboCroat invasion of the 6th and 7th centuries; the Scrb race by which Montencgro is now inhabited occupied the country about the middle of the 7 th century. A confederacy of Serb states was formed under $2 h u p a n s$, or feudal princes, dependent on the grand zhupan, who was nominally the vassal of the Greek emperor. The Serb principality of the Zcta, or Zenta, originally included the Herzegovina, Cattaro and Scutari, as well as the Montenegro of to-day; and was ruled by a zhupan resident at Doclea. The principality, though rctaining its zhupans, was practically united with the Servian kingdom between 1159 and 1356 under the Nemanya dyasesy, which sprang from Doclea. After the death of the greal Servian tsar Dushan in 1356 the icudatory princes of his cmpire became more or less independent. and the powerful famity of Balsha cstablished a dynasty in the Zeta, eventually transferring its capital from Doclea to Scutari.

After the fatal defeat of Kowovo, which extinguished the independence of Serviafor more than four centuries (see Servin), George Balsha, the ruling prince of the Zeta, withdrew to the mountainous portion of his realm, which became an asylum for many of the Servian nobles and for others who had been outlawed or persecuted by the Turkish conqueror. The principality now owned no suzerain, and the history of its heroic struggle with the Turks began. The long record of warfare is varied by conflicts with the Venetians, who at times allied themselves with the mountaineers, but usually deserted them in tho bour of need. The Balsha family became extlnct in 1421, and a new dynasty was founded by Stephan Tzernoyevitch, or Tzernovitch. wbo fixed his capital at Zhabliak on the north-east side of Lake Scutari, and joined with his relative, the famous Scanderbeg (q.v.) in many campaigns against the Turks. After the Turkish conquest of Bosnia in 1463, of the Herzegovina in 1476 and of Albania in 1478, and the surrender of Scutari by the Venetians - in 1479, the Momenegrins found themselves surrounded on all sides by the Ottoman power, and the struggle was henceforth for existence. Abandoned by Venice and unable to obtain succour from any Christian state, Ivan the Black, the son and successor of Stephan, set fire to Zhabliak in 1484, and withdrew with his people to the mountain village of Tretinye (Cettigne) which has ever since been the capital of the little principality. Here be founded the famous monastery and created a bishopric in order to establish the spiritual power at the seat of government. Ivan was one of the greatest heroes of Montenegrin history: according to the national iegend, he still sleepe in a cave near his fortress of Obod-to awale when the hour arrives for the expulsion of the Turks from Europe.

The Trernoyevitch dynasty came to an end in 1516 , and from this date till 1696 the mountaineers were ruled by the oladikas or bishops of Cettigne, elected by assemblies of the The Ethoth chiefs and people, and consecrated by the patriarch of Ipek. The elective vadikas were aided in matters relating to national defence by a civil governor. The institution of a theocratic sovereignty probably saved the country from absorption in the Turkish Empire, the supteme power being vested in a sacrosanct person, whose position was unat tainable by ambitious chieftains, and whose holy office precluded the possibility of his defection to Islam. The earlier vladikas were left comparatively unmolested by the Turks, and were enabled to devote their attention to the issue of numerous psalters, missals and gospels from the printing-press at Obod. But the beginning of the ifth century was marked by renewed Turkish aggresslon. Cettigne was taken in 1623 and again in 1687, when the monastery of Ivan the Black was blown up by the monks; a tribute was for a time imposed on the motantaineers, but the bolder spirits maintained their resistance in the heights, and the invading armies found it impossible to prolong their stay in these inhospitable regions.
In 1696 it was decided to continue the hereditary principle with the theocratic system, and Danilo Petrovitch of Niegush, the first ruler of the present reigning family, was
Tho Howse of Petrevitch. nominated vladika with power to seiect his successor from among bis relatives. The succession was benceforth regularly from uncle to nephew, owing to the rule of celibacy imposed on the monastic order. The reign of Danilo I. was memorable for the massacre of the Moslems settled in the principality (the "Montenegrin vespers") on Christmas Eve 1702, the great defeat of the Turkish invaders 2t Tzarevlatz (1712), the capture of Cettigne by the Turks and the destruction for the third time of its monastery (1714), and the inauguration of the intimate relations which have ever since existed with Russia by the visit of the vladika to Peter the Oreat in 1715 . Witb Russian ald Danilo was enabled in some degree to repair the ruin which had overtaken his hitle realm. In the time of his successor Sava (1737-1782) an impostor named Stephan Mali, who represented himself as the Russian emperor Peter III., won the confidence of the Montenegrins, and governed the country with ability for several years (1768-1773), the mountaineers defeating the combined efforts of the Turks and

Venctians to remove bim. He was eventually ascascinated by a Greek suborned by the pasha of Scutari. Peter I. ($1782-1830$), the greatest of the vladikas, took part in the war of Austrla and Russie against Turkey ($1788-93$), but was abandoned by his allies in the treaties of Sistova and Jassy. He nevertheless completely routed the Turks in the battle of Krussa (r796), annexed the Brda region to the principality, and obtained a formal recognition of Montenegrin independence from the sultan in 1799. In concert with the Russians he besieged the French in Ragusa (1806), and in 1813-14 expelled them from the Bocche di Cattaro with the aid of a British flect under Admiral Fremantle. The much-coveted seaport, however, was almost immediately orcupied by an Austrian force. Peter I. reorganized the internal administration and promulgated the first Montenegrin code of laws. After his death he was canonized as a saint by the people. His successor Peter II. (1830-1851), a poet, statesman and reformer, as well as a capable military chief, instituted a senate (1831), abolished the office of civil governor (1832), revived the national printing-press, and did much to educate and civilize his people. He was buried by his desire on the summit of Mount Lovchen that his spirit might survey his beloved land. He was the last of the vladikas; his nephew Danilo II. ($1851-1860$) at once declined the ecclesiastical dignity, and assuming the tille of gospodar, or prince, settled the succession on his direct male descendants. He defeated the Turks near Ostrog in 1853, but refrained from attacking them during the Crimean War. His pacific policy produced much discontent among the warlike mountaineers, which culminated in an open revolt. His demand for the recognition of Montenegrin independence and other claims were set aside by the Congress of Paris. In 1858 his brother Mirko, "the Sword of Montenegro," routed the Turks with great slaughter at Grahovo. In 1855 Danilo II. promulgated a new code, assuring civil and religious liberty to his subjects. On the Inth of August r 860 he was shot at Persano on the Booche di Cattaro by a Montenegrin whom he had exiled after the revolt, and died two days afterwards. He left no male offspring, and was succeeded by Nicholas, the son of his brother Mirka.
Shortly after the accession of Prince Nicholas (Aug. 13, 1860), an insurrection broke out in Herzegovina, and the sympathy which the mountaineers displayed with their Christian kinsmen led to a rupture with Turkey (1862). Notwithstanding the heroic defence of Ostrog by the prince's father, Mirko, the war proved disastrous, owing to the superior armament and discipline of the Turkish troops, and sovere terms were imposed on the principality by the convention of Scutari (Aug. 3r). During the fourteen years of peace which followed, the country suffered greatly from pestilence and famine. Within this period a series of reforms were carried out by the prince: the army was rearmed and reorganized, an educational aystem was initiated, and a constitution under which the prince surrendered various prerogatives to the Senate was granted. In 1869 the Krivoshians, or Serb inhabitants of the northern shores of the Bocche di Cattaro, rose against the Austrian government; the excitement in Montenegro was intense, but the prince succeeded in checking the warlike ardour of his suhjects. The revolt in Bosnia and Herzegovina in 1875 had more important consequences for the principality. On the and of July 1876 Prince Nicholas, in alliance with Prince Milan of Servia, declared war against Turkey and invaded Herzegovina. A victory was gained at Vuchidol (July 28), and Medun was captured; but the Serviaz army suffered reverses, and an armistice was arranged in November. In the following spring the determination of Russia to take the field against Turkey encouraged the Miontenegrins to renew the war. The Turks succeeded in occupying Ostrog, but were subsequently repulsed; the greater part of their forces was soon withdrawn to Bulgaria, and Prince Nicholas captured successively Nikshitch, Antivari and Dulcigno. The recovery of the seaboard, which had belonged to Montenegro in the middle ages, was perhaps the principal achievement of the war. The enlargement of territory stipulated for by Ruscia under the treaty

MONTE OLIVETO MAGGIORE-MONTEREY

of Sen Stefano (March 3, 1878) would have brought Montenegro into close contiguity with Servia, thus facilitating the eventual union of the Serb race and closing the path of Austria towards the Aegean. The Berlin Treaty (article xxviii.) gave to Monte negro Nikshitch, Spuzh, Podgoritza, Plava, Gusinye and Antivari, but restored Dulcigno to Turkey. The resistance of the Moslem Inhabitants of Plava and Gusinye to annezation led to long negotiations, and eventually the "Corti Compromise" was agreod to by a conference of the Powers at Constantinople (April 18, 1880). Plava and Gusinye were to be reatored to Turkey, while the Montenegrin frontier was extended so as 10 inclade the Hoti and the greater part of the Klementi tribes. This arrangement, which coukd hardly have proved succesoful, was not carried out by Turkey, and the Powers subsequently decided to anner Dulcigno to Montenegro in exchange for Plava and Gusinye. The Porte interposed delays, though comsenting in priaciple, and the Albanian League (see Albanin) assumed a menacing altitude. On the 28 th of September the fleets of the Powers under Admiral Seymour appeared off Dulcigno, and the British government shortly afterwands proposed to occupy Smyrna. On the rith of November the Porte yielded; on the and the Turkish troops defeated the Albanians, and on the 25 th Montenegro obtained possession of Dulcigno. The present frontier, as already described, was shortly afterwatds delimited by an international commission. With the exception of some frontier troubles, the years since 1880 have been spent in peace, and the country has advanced in prosperity under the autocratic but enlightened rule of Prince Nicholas. The relations with Turkey, the traditional foe, have improved, while those with Austria have become less friendly. In July 1893 the four-hundredth anniversary of the foundation of the printing-press at Obod was celebrated at Cettigne, several forcign universities and learned bodies being represented at the festivities. In September 1896 the bi-centenary of the Petrovitch dynasty was commemorated. The marriage in the same year of Princess Helen, fourth daughter of Prince Nicholas, with the crown prince of Italy, subsequently King Victor Emmanuel III. led to an increase of ILalian influence in the principality. In December 1900 Prince Nicholas assumed the title "Royal Highness." In October rgo6 the first Montenegrin parliament assembled at Cettigne; and on the 28th of August 1910, Prince Nicholas (q.v.) assumed the title of king.
 (St Petersburg, 1835) ; Wilkinson, Dalmalai and Montenggro (London, 18ұ8); Vuk Karajich, Montencgro und dic Mfontemegriner (Stuttgart, 1857); Kallay, Geschiche der Serben won den allesten Zeilen bis $\$ 815$ (trang, from the Hulgarian by J. H. Schwicker; Budapest, I885), Servian transi, Ishoria Srpskoga naroda, (Belgride, 1876) ; Frilley and Whahowitj. Le Afonténegro contemporain (Parin, 1876); Rash, Monlenegro (Leipzig, 1877); Milakovitch, Sloria de Montenegra (Ragus.. 1877); Gopehevitch, Montenegro und die Montemegriner (Leipzig, 1877); Yriarte, Les Bords de l'Adriatique et le Monténégro (Paris, 18;8); Stefanovich yon Vilovo, Wonderungen durch Montencgro (Vienna, 1880); Chiudina. Storia del Montregra (Spalato, 1882); Tietze. Cealogische Liebersicht von Montenctro (Vienna, 1884); Rovinsky, Tcherngago (in Russian; St Petersburg, 1888); Duchitch. Tvernagora (in Servian; Belgrade, 1891): Mrelakowitch, Pietro II. Petrowic Niegus (Neusatz, 189z); Hassert. Reise durch Montenegro (Vienna, 1893); Coquelle, Hisfozre du Month. pro at de la Bosnie (Paris, 1895); Miller. The Bolkons. pp. 35: 68 (London, 1896); Mantegazza, Al Montenegro (Florence, Tomanovitch, Pelar Drugi Pelrovich Niegosh (Cettigne, Antonio Martini, Il Monleneqro (Turin, 1897): Bourchier, " 1) negro and her Prince," in Forinighly Review (Decenber, isis); Rouvaratz, Montencgrina (in Servian: Semlin, 1899): Gelchich. La Zedda e la dinastia dei Balsidi (Spalarn. 1899): R. Wyon and G. l'rancc. The Land of the Bluck Mounlain (London, 1903). The licat map is that of the Austrian staff.

MONTE OLIVETO MAGGORE, a monastery of Tuscany, Italy, 6 m . S. of Asciano. It was founded in $\mathbf{1 3 2 0}$, and is mainly eelebrated for the beautiful frescoca in the monastery court, which are by Luca Signorelli ($1497-1498$) and Antonio Bazzi, called Sodoma (igos), representing scenes from the legend of St Benedict. The church and hibrary contain fine inlaid woodwork by Fra Giovanni da Verona.

MONTEPULCIARO, a town and episcopal see of the province of Siena, Tuscany, Italy, 44 m. S.E. of Siena by rail. Pop. (1got), 6288 (town); 25,384 (commune). The town, 6 m . W. of
the station, crowns the summit of a hill (1084 ft.), and is surrounded by medieval walls. It is not traceable in history befort a.d. 715 . It was under the protection of Siena till 1202 , when it declared for Florence and thenceforward passed from one mistress to the other, until early in the 16 th century when it finally became Florentine. In 1561 it became an episcopal see. Most of the buildings belong to the Renaissance, except the caste, the 14 th-century Palazzo Pubblico, and the portals of two or three churches, especially that of S. Maria (13th century). There are a number of fine private houses, some built by Antonio da Sangallo the elder (1455?-1534) and Baldassare Peruzzi (148i-1536) and others by Vignola (15071573). The beautiful charch of the Madonna di S. Biagioprobably Sangallo's masterpiece-was built in 1518-1537. The cathedral built by Bartolommeo Ammanatl (1570), modified by Ippolito Scalza, and completed in 1680 (with the exception of the facade, which is still unfinished) contains a large altar-piece by Taddeo di Bartolo of Siena, and the fragments of an imposing monument erected in $1427-1436$ by the Florentine architect Michelozzo in honour of Bartolommeo Aragazzi, secretary of Pope Martin V., which was taken down in the 18 th century. The facade of S . Agostino is probably also Michelozzo's work. Montepulciano is famous for its wine, and was the birthplace of the scholar and poet Angelo Anbrogini ($1454-1494$), generally known as Poliziano (Politian) and of Cardinal Bellarmine (1542-1621).

See F. Bargagli-Petrucci, Montepulciano, Chiusi, Ec. (Bergamo, 1907).

MONTBRRAD, a town of northem France, in the department of Seine-et-Marne at the confluence of the Yonne with the Seine, ${ }_{21} \mathrm{~m}$. S.E. of Melun by rail. Pop. (1906), 7870. The church dates from the 13 th century, with a facade of the Renaissance period. The industries include the manufacture of porcelain, fire-proof and decorative bricks, boots and shoes and agricultural machines and colours, varnish, \&c. Among the institutions are a tribunal of commerce and a chamber of arts and manufactures.

Monterean was in the beginning of the 15 th century a place of some importance. Here, on the bridge over the Yonne, Jean Sans-Peur, duke of Burgundy was assassinated In the presence of the Dauphin, afterwards Charles VII., in 1419. In 143^{8} the town was captured by Charics VII., and during the wars of relligion it was several times taken and retaken. In 1814 Napoleon gained a victory at Montcreau over the Wartemberg troops under Schwarzenberg, and in memory of this his statue has been erected on the bridge.

MOMYEREY, a city of Monterey county, California, U.S.A., on the Pacific coast, about 90 m . in a straight line S . by E. from San Francisco, at the S.E. extremity of the Gulf of Monterey, a great open bay 22 m . wide from headland to headland and facing S.W. The harbour is protected by a peninsula extending N.W. Pop. (1g00), 1748, largely of Spanish descent; (igio) 4923. It is served by the Sout hern Pacific railroad, and for freight by the Pacific Coast Steamship Co. It is built in an amphitheatre formed by gently sloping pine-clad hills. In 1881 the Southern Pacific Company erected the Del Monte hotel, with beautiful grounds several miles in extent, and since then the city has come to be one of the favourite resorts of the Pacific coast. The difference between the mean temperatures of the coldest and warmest months of the year (rarcly below 47° or above $66^{\circ} \mathrm{F}$. respectively) is from 10° to 20°; white the thermometer rarely registers below freezing or above $50^{\circ} \mathrm{F}$. Within the city limits there is a United States Army post, the Presidio of Monterey, with a musketry school. There are sardine canneries here and good salmon and other fishing; some salmon are shipped to Germany to be smoked. In 1907 the south side of the Gull of Monterey was made by the state legislature into a prescrve for squid and other food for salmon. To San Francisco, Hawaii, Alaska, and elsewhere, Monterey ships annually about 60,000 tons of crude oil, piped here into great steel tanks from the Coalinga oil fields 112 m . away. Sand lime brick is manulactured here.

Before the coming of the Americans, Monterey was the gayest and most ambitious city of California. It was discovered by Sebastian Vizcaino in December 1602, and was named in honour of the then viceroy of New Spain. For a time all trace was lost of Monterey, but in May 1770 the bay was found again by Junipero Serra and Captain Gaspar de Portolí. The San Carlos mission of the Franciscans was founded on the 3rd of June 1770, and a presidio was completed in 1778 . Near Monterey, in Carmel Valley, whither the mission was almost immediately removed, Father Junfero built a church, in which his remains now rest. In 1891 a statue, representing Junipero stepping from a boat, was erected on the site of the old Mexican fort, on a hill near the landing-place of both Vizcaino and Junipero. Monterey necessarily played a prominent part in the jealousies that divided the north and south; the rivalry of Los Angeles for the dignity of capital being a powerful influence In politics from 1827-1846. In 1845 Los Angeles gained the prize, but in 1847 the American authorities again made Monterey the capital. Even in these years the treasury, custom-house and military headquarters had remained at Monterey. In 1818 it was captured and momentarily held by a Buenos Aires privateer. Here, in 1842, Commodore T. ap C. Jones raised the flag of the United States for a day, and here on the 7th of July 1846, Commodore J. D. Sloat again raised the same flag. which this time was not to come down again. The first American newspaper on the Pacific coast was published at Monterey; and the convention that framed the first constitution of the state met here in September 1849 in Colton Hall, still standing and originally huilt for a schoolhouse by Walter D. Colton, the first alcalde under American rule. Monterey was never the capital of the new state, and its importance declined after the discovery of gold near Sacramento, San Francisco becoming the leading city. In 1872 the county-seat was removed from Monterey to Salinas. For many years Monterey remained one of the most Spanish towns of California, and though tourists have somewhat disturbed its peace and checked its decay, it still retains much of the quaint aspect and the drowsy contentment of spirit of Mexican days. Since 1900 the population has considerahly increased.

MONTERREY (usually spelled Monterey in English), a city of Mexico and capital of the state of Nuevo León, 606 m . by the old wagon road, and 671 m . by the Mexican National railway N. by W. of the city of Mexico, in lat. $25^{\circ} 40^{\prime}$ N., long. $100^{\circ} 25^{\prime}$ W. Pop. (1900), 62,266. Railway communications are provided hy the Mcxican National with the United States, with the national capital and southern Mexico, and with Matamoros, and by the Belgian line with Tampico on the Gulf coast, and with Treviño, or Venadito, on the Mexican International line, which gives access to the iron deposits of Durango The city stands $\mathbf{1 6 2 4} \mathrm{ft}$. above sea-level, between two spurs of one of tbe Sierra Madre ranges-the Cerro de la Silla (4149 ft) on the east, and the Cerro de las Mitras (3618 ft.) on the west. The Santa Catarina river furnishes water-power for some of its industries. The surrounding district is fertile, and the rainfall about 22 in . The climate is dry and mild, and the city is frequented in winter by invalids from the United States. Monterrey is laid out with broad, straight streets crossing each other at right angles, and spreads over a large area. It is the see of the bishop of Linares, and has a large cathedral, a hishop's palace and numerous churches. Among the public edifices are the government palace, municipal hall, national college, girls' college, medical school, puhlic hospital, theatre and penitentiary. Its public works include an interesting ald reservoir, called the "Ojo de Agua," and the "Puente Nuevo" (new bridge). Monterrey is the most important centre of northern Mexico, and large sums of foreign capital have been invested in its industries. Among its manufactories are woollep mills, smelting works, brass and iron foundries, a steel producing plant, sawmills, flour-mills, breweries, and a carriage and wagon factory.

Monterrey was founded in 1500 under the name of Santa Lucia de León; and in 1596, as Monterrey, was raised to the dignity of a city. In 1777 it became the see of a bishop, now
suffragan to the archbishop of Guadalajara. During the war between Mexico and the United States General Zachary Taylor arrived before the city on the 19th of September 1846, with about 6600 men. Monterrey was delended by a Mexican force of about 10,000 under General Pedro de Ampudia. On the roth Colonel John Garland (179a-1861) assaulted the lower (north-eastern) part of the city, he was driven back, but captured one of the forta. The attacks on the other forts on the east were unsuccessful. On the arst and and General W. J Worth carried the forts west of Monterrey, and on the azrd attacted the western part of the city, the troops slowhy working their way toward the central plaza. On the same day American troops again advanced from the east, and were again forced back. On the morning of the 24th the terms of a capitulation were agreed upon-the Mexicans were permitted to retire, retaining their amall arms and one field battery of sir pieces with twenty-one rounds of ammunition, and an armistice of cight weeks was arranged. A disastrous flood, caused by heavy rains and the sudden overflow of the Santa Catarina river on the 28th of August 1900_{5} swept away about one-fourth of the city, drowning $1200-1400$ persons, and destroying about $\$ 12,000,000$ (Mex.) worth of property.

MONTE SAN GIULIANO, a town and episcopal see of Sicily, in the province of Trapani, a m, E.N.E. of Trapani, on the summit of an isolated bare hill, 2465 ft . above the sea. Pop. of commune (1901), 28,939; of town, cbout 3000 . The town occupies the site of the ancient Eryx, a city of the Elymi, a people who claimed to be sprung from a mixed settlement of Trojans and Phociams after the fall of Troy (E. A. Freeman, History of Sicily, i. 195, 542), but regarded as β appapoc by the Greeks. The city was famous for tbe temple of Venus Erycina, to the foundations of which a wall of 19 courses of masonry in the castle probably belongs. The worship was a relic of the Phoenician cult of Astarte. In 415 8.c. the Athenian envoys were shown the treasure of the temple at Eryx as available for the expenses of the war, which treasure turned out to be only silver-gilt and not of solid gold (Thucydides vi. 46). The town must have become a part of the-Carthagininn dominion in 405 B.c. It was seized by Pyrchus in 178 s.c., and was ceded to Rome at the end of the First Punic War. In Roman times the temple (like that of Diana Tifatana, near Capua) possessed territory of its own, being dependent neither on the state nor on any neighbouring town, and a considerable number of fernale slaves. The place was the residence of the quaestor in charge of the western half of the island, and Verres, as practor, seems to have spent a good deal of time here. Considerable portions of the city wall are preserved on the north-west, on the east and south the precipitous cliffs formed a sufficient defence. The remains date from a reconstruction of Roman times, ${ }^{1}$ in which the material of two earlier periods has been used: the large blocks belonging to the original fortificatlons bear Phoenician masons' marks; but the long line of towers at reguiar intervals is a thoroughly Roman characteristic. The castle, dating from the middle ages, with three lofty towers guarding the entrance, occupies the south-easterm extremity of the town. The cathedral, founded in 1314, has a fine porch and Gothle facade.

MONTE SAN SAVIMO, a town of Tuscany, Italy, in the province of Arezzo, from which it is 12 m. S.W. by road, 1083 ft . above sea-level. Pop. (1901), 48_{10} (town); 8408 (commune). It was the birthplace of the sculptor and architect Andrea Contucci, generally known as Sansovino ($1460-1529$), and there are various works in the town by him, a loggin opposite the Palazzo Municipale (itself by Antonio da Sangalio the eldar and one of his best works), the monastery courts of S. Agostino and S. Giovanni Battista, and some sculptures.

MONTE SANT ANGELO, a town of Apulia, Italy, in the province of Foggia, 10 m . N. of Manfredonia by road, 2765 fL above sea-level, on the southern slopes of Monte Gargano. Pop. (1goi), 17,369 (town), 21,997 (commune). It has a castle and a famons
${ }^{1}$ This has been demonstrated by O. Richter, Ober andith Sleimmetweichen (Berlin, 1885), pp- 43-51.
sanctuary of S. Michele, founded in 49r over a cave in which the archangel is said to have appeared to S . Laurentius, archbishop of Sipontum; the bronze doors, made in Constantinople, bear the date 1076. The octagonal campanile dates from 1373. The portal of S. Maria Maggiore is noteworthy. The Tomba di Rotari is a domed building of the Norman period. To the north lies the highest point of the Monte Gargano (3460 ft .) Strabo speaks of an oracte of Calchas on the top of the mountain, and a healing spring at Podallius at the bottom, 12 m . from the sea.
See S. Beltrameli, 11 Gargano (Bergamo, 1907).
momtespan, prancoise-athenals dr pardaillan, Marquise de ($\mathbf{6} 64 \mathrm{I}-1707$), mistress of Louis XIV., was born at the chateau of Tonnay-Charente (Charent--Inferieure), the daughter of Gabriel de Rochechouart, duc de Mortemart. She was educated at the Convent of St Mary at Saintes, and when shè was twenty she became maid-of-honour to Queen Maria Theresa. She married in January 1063 L. H. de Pardaillan de Gondrin, marquis de Montespan, who was a year younger than herself. By him she had two children, L. H. Pardaillan de Gondrin, duc d'Antin, born in 160 g , and a daugher. Her brilliant and haughty beauty was only one of the Montespan's charms, she was a cultivated and amusing talker who won the admiration of such competent fudges as Saint-Simon and Mme de Sévigne. Nevertheless she was a profound believer im witcheraft, and La Reynie, the chief fudge of the court before which the famous poisoning cases were brought, places her first visits to La Voisin ($q 0$.) in 1665 . She received from the sorceress love powders concocted of abominahle ingriedients for Louis XIV., and in 1666 the " black mass " was said by the pricst Etienne Guibourg over her with the usual horrible ceremonial. In 1667 she gained her end, becoming Louis XIV.'s mistress in July. Montespan astounded the court by openly resenting his wife's position. He made a acandal by accusing Mme de Montausier of acting as go-between in order to secure the governorship of the dauphin for her husband. He even wore mourning for his wife. Montespan was arrested, but released after a few days' imprisonment. The first of the seven children whom Mme de Montespan bore to the king was born in March 1669, and was entrusted to Mme Scarron, the future Mme de Maintenon, who acted as companion to Mme de Montespan while the king was away at the wass. Her children were legitimatized in 1673 without mention of the mother's name for fear that Montespan might claim them. The eldest, Louis Auguste, became duc de Maine, the econd, Louis Cesar, comte de Vexin, and the third, Lotise Francoise, demoiselle de Nantes (afterwards duchess of Bourbon). Mean: while Montespan had been compeiled to retire to Spain, and in 1674 an official separation was declared by the procureur-gentral Achille de Harlay, assisted by six judges at the Chateiet. When Louis's affections showed signs of cooling, Mme de Montespan had recourse to magic. In 1675 absolution was refused to the king, with the result that his mistress was driven from the court for a short time It has been thought that she had conceived the intention of poisoning even as early as 1676, but in 16;9 Louns's intrigue with Angelique de Fontanges and her own relegation to the position of superintendent of the queen's houschold brought matters to a crisis. Mile de Fontanges died a natural death in 1681, though poisoning was suspected Mcanwhile suspicion was thrown on Mme de Montespan's connexion with La Voisin and her crew by the frequent recur. rence of her maid's name, Mlle Desoeiliets, in the ovidence hrought before the Chambre Ardente. From the end of r680 onwards Louvois, Colbert and Mme de Maintenon all belped to hush up the affair and to prevent further scandal about the mother of the king's legitrmatized children. Louis XIV continued to spend some time daily in her apartments, and apparently her brilliance and charm in conversation mritigated to some extent her position of discarded mistress. In 1801 she retired to the Convent of St Joseph with a pension of half a million francs. Her father was governor of Paris, her brother, the duc de Vivonne, a marahal of France, and one of ber sisters,

Gabrielle, whose wows were but four years ofd, became abbess of the wealthy community of Fontevrault. Besides the expenses of her houses and equipage Mme de Montespan spent vast cums on hospitals and charities. She was also a generous patron of letters, and befriended Corneille, Racine and La Fontaine. The last years of her life were given up to penance. When she died at Bourbon I'Archambault on the 27th of May 3707 the king forbade her children to wear mouming for her. Real regret was felt for her by the duchess of Bourbon and by her younger children-Francoise Marie, Mile de Blois (r677-1749), married in $\mathbf{3 6 9 2}$ to the future regent Orleans, then duc de Chartres, and Louis Ahexandre, comte de Toulouse (10 O-S-175).
See P. Crément, Madanse de Montespan et Lomis XIV (Paris, 1869), monographs by Arsène Houssaye (1865) and by H. Williams ($\mathbf{I} 903$) i also J. Jair, Lowise de la Valliere (Eng. trans, 1908). F. Funck-Brentano, Le Drame des poisons (1899); A. Durand, "Un episode du grand regne" in Reu. des questions hist. (Parls, 1868): the contemporary memoirs of M me de Sevigne, of Saint-Simon, of Bussy-Rabutin and others; also the proceedings of the Chambre Ardente preserved in the Archives de la Basiille (Arsenal Library) and the notes of La Reynie prescreed in the Bibliotheque Nationale. She figured in V Sardou's play, L'Afare des poisons (1907).

MONTESQUIEU, CHARLES LOUIS DE SECONDAT, BARON DE LA BRiDR ET DE (1689-2755), French philosophical historian, was born at the chateau of La Brède, about 10 m . south-east of Bordesux, in January 1689, and was baptized on the . 88th of that month. His mother was Marie Francoise de Penel, the heiress of a Gasson-English family. She had brought La Brede an a dowry to his father, Jacques da Secondat, a member of a good if not extremely ancient housc, which scemts first to have risen to importance in the eariy days of the r6th century. The tille of Montesquieu came from his uncle, Jean Baptiste de Secondat, "president ì mortuer" in the parliament of Bordeaux-an important office, which, as well as his title, he left to his nephew. Montesquieu was in his youth known as M. de la Brede. His mother died when he was seven years old, and when he was eleven he was sent to the Oratorian achool of Juilly, near Mcaux, where he stayed exactly five years, and where, as well as afterwards at Bordeaux, he was thoroughly edicated. The family had long been connected with the law, and Montesquieu was dostined for that profession. His father died in 1713, and a year later Montesquieu was admitted counscllor of the pariament. In little more than another twelvemonth he married Jeanne Lartigue, an heiress and the daughter of a knight of the order of St Louis, hut plain, somewhat ill-educated, and a Protestant. Montesquieu does not seem to have made the slightest pretence of affection or fidelity towards his wife, but there is every reason to believe that they lived on periectly good terms. In 1716 his uncle died, leaving him his name, his important judicial office and his whole fortune.
He continued to hold his presidency for twelve years, and took part in the proceedings of the Bordoaux Academy, to which he contributed papers on philosophy, politics and natural science. He also wrote much less serious things, and it was during the earlier years of his presidency that he finished, if he did not begin, the Lettres persanes. They were completed before 1721, and appeared in that year anonymously, with Cologne on the title-page, but they were rally printed and published at Amsterdiam. In the guise of letters written by and to two Persians of distinction travelling in Europe, Montesquieu not only satirizod unmercifully the social, political, ecclesiastical and literary follies of his day in France, but indulged in a great deal of the free wnting which was characteristic of the tale-tellers of the time. But what scandalized grave and precise readers naturaliy attracted the majority, and the Letires persanes were very popular, passing, it is said, through four editions willain the ycar, besides piracies. Then the voguc suddenly ceased, or at least editions ceased for neariy nine years to appear. It is said that a formal ministerial prohibition was the cruse of this, and it is not improbable, for, though the regent and Guillaume Dubois must have enjoyed the book thoroughly, they were both shrewd enough to percelve that underneath its playful exterior there lay a spirit of
very inconvenient criticism of abuses in church and state. The fact is that the Letlres persanes is the first book of what is called the Philosophe movement. It is amusing to find Voltaire describing the Lellres as a "trumpery book," a " book whicb anybody might have written easily." It is not certain that, in its peculiar mixture of light badinage with not merely serious purpose but gentlemanlike moderation, Voltaire could have written it himself, and it is certain that no one else at that time could.

The reputation acquired by this book brought Montesquieu much into the literary society of the capital, and he composed for, or at any rate contributed to, one of the coteries of the day the clever but rather rhetorical Dialogue de Sylla et d'Eucrate, in which the dictator gives an apology for his conduct. For Mile de Clermont, a lady of royal hlood, a great beauty and a favourite queen of society, he wrote the curious prosepoem of the Temple de Gnide. This is half a narrative, half an allegory, in the semi-classical or mather pseudo-classical taste of the time, decidedly frivolous and dubiously moral, but of no small elegance in its peculiar style. A later jeu d'esprit of the same kind, which is abmost but not qulte certainly Montesquicu's, is the Voyage d Paphos, in which his warmest admirers have found little to praise. In 1725 Montesquieu was elected a member of the Academy, hut an almost obsolete rule requiring residence in Paris was appealed to, and tbe election was annulled. It is doubtful whether a hankering after Parisian society, or an ambition to belong to the Academy, or a desire to de vote himsell to literary pursuits of greater importance, or simple weariness of not wholly congenial work determined him to give up his Bordeaux office. In 1726 he sold the life-tenure of his office, reserving the reversion fer his son, and went to hive in the capital, returning, however, for half of each year to La Brède. Tbere was now no further formal obstacle to his reception in the Académie Frangaise, but a new one arose. Il-wishers had brought the Lettres persances specially under the minister André Hercule de Fleury's attention, and Fleury, a precisian in many ways, was shocked by them. There are various accounts of the way in which the difficulty was got over, but all seem to agree that Montesquieu made concessions whlch were more effectual than dignified. He was elected and received in January 1728.
Almost immediately afterwards he started on a tour through Europe to observe men, things and constitutions. He travelled through Austria to Hungary, hut was unable to visit Turkey as he had proposed. Then he made for Italy, where he met Chesterficld. At Venice, and elsewhere in Italy, he remained nearly a year, and then journeyed hy way of Piedmont and the Rhine to England. Here he stayed for some eighteen months, and acquired an admiration for English character and polity which never afterwards deserted him. He returned, not to Paris, but to La Brede, and to outward appearance might have seemed to be settling down as a squire. He altered his park in the English fashion, made sedulous inquiries into his own genealogy, arranged an entail, asserted, though not harshly, his scignorial rights, kept poachers in awe and so forth. But these matters by no means engrossed his thoughts. In his great study at La Brede (a hall rather than a study, some 60 ft . long by 40 wide) he was constantly dictating, making abstracts, revising essays, and in other ways preparing his main book, He may have thought it wise $t 0$ soften the transition from the Letfres persanes to the Esprit des Lois, by interposing a publication graver than the former and less claborate than the latter. The Considerations sur les causes de la grandeur et de la decadence des Romains appeared in 1734 at Amsterdam, without the author's name. This, however, was perfectly well known; indeed, Montesquieu formally presented a copy to the French Academy. But the author's reputation as a jester stuck to him, and the salons affected to consider the Letires persanes and the new book respectively as the "grandeur" and the "dtcadence de "M. de Montesquieu; but mere serfous readers at once perceived its extraordinary merit, and it was eagerly read ahroad. A copy of it exists or existed which had the singular misfortune to be annotated by Frederick the Great, and to be'abatracted from
the Potsdem library by Nepoleon. It is said, mereover, by competent authorities to have been the most enduringly popular and the most widely read of all its author's works in his own country, and it was oectainly been the most frequently and carefully edited. Merely acholastic criticism may of course object to it, as to every other book of the time, the absence of the exactness of modern critical inquiry into the facts of history; but the virtue of Montesquieu's books is in its views, not in its facts. It is (putting Bossuet and Giovanni Vico aside) almost the first important cssay in the philosophy of history. The point of view is entirely different from that of Bossuet, and it seoms entirely improhahle that Montesquien knew anything of Vico. In the Grandeur af decadence the characteristics of the Esprit des lois appear with the necessary subordination to a narrower subject. Two things are especially noticeable in it: a peculiarity of style, and a peculiarity of thought. The style bas a superficial defect. The page is broken up into short paragraphs of but a few lises each, which look very ugly, which irritate the reader by breaking the sense, and which prepare bim to expect an undue and osteatatious sententiousness. On the other hand, the merits of the expression are very great. It is grave and destitute of ormament, but extraordinarily luminous and full of what yould be called epigram, if the word epigram had not a certain connotation of flippancy about it. It is a very short book; for, printed in large type witb tolerably abundant notes, it fills but 1 wo hundred pages in the standard edition of Montesquieu's works.. But no work of the century, except Turgot's second Sorbonne Discourse, coatains, in proportion to its size, more weighty and original thought on historical subjects, while Montesquieu has over Turgot the immense advantage of style.

Although, however, this bollowd'ersai, in the style of his great work, may be said to have been successful, and though much of that wark was, as we have seen, in all probability already composed, Montesquieu was in ne hurry to publish it. He went on "cultivating the garden" diligently both as a student, and as an improving landowner. He wrote the aketcb of Lysimaque for Stanislaus Leczinski; he puhlished now and final editions of the Tenplo de Gnide, of the Lettres persanes, of Sylla at Eucrale (which indeed had never been published, properly speaking). After allowing the Grandcur af dtcadence to be reprinted without alterations some half-dozen times, he revised and corrected it. He also took great pains with the education of his son Charlea and his daughter Dcnise, of whom he was extremely fond. He frequently visited Paris, where his favourite resorts were the salons of Mme de Tencin and Mme d'Aiguillon. Yet it geems that he did not begin the final task of composition till 1743. Two years of uninterrupted work at La Brede finished the greater part of it, and two more the rest. It was finally published at Geneva in the autumn of 1748, in two volumes quarto. The publication was, however, preceded by one of those odd incidents which in literature illustrate Clive's well-known saying about courts-martial in war. Montesquieu summoned a committee of friends, according to a very common practice, to hear and give an opinton on his work. It was an imposing and certainly not an unfricndly one, consisting of Charles Jcan Francois Henault, Helvétius, the financier Etienne de Silhouette, the dramatist Joseph Saurin, Crebillon the younger, and, lastly, Fontenelle-in fact, all sorts and conditions of literary men. They unanimoubly advised the author not to publish a book which has been described as "one of the mose important books ever written," and which may be almost certainly ranked as the greatest book of the French 1 gih century.
Montesquieu, of course, did not take his friends' advice. In such cases no man ever does, and in this case it was certainly fortunate. The Esprit des lois represents the reflections of a singularly clear, original, and comprehensive mind, corrected by forty years' study of men and books, arranged in accordance with a long deliberated plan, and couched in language of remarkable freshness and idiosyncrasy. In the original editions the full title runs L'Esprif des lois: on du rapport que les lois
divent eootr asec le constifution de chatue gowernemend, les manes, le climat, la redigion, to cammarce, Erc. It consists of thirty-one books, which in some editions are grouped in six parts. Speaking summarily, the first part, containing eight books, deals with law in general and with forms of goverament; the second, containing five, with military arrangements, with taration, fec.; the third, containing six, with manness and cnatoms, and their depondence on climatic conditions; the fourth, containing four, with coomomic matters; and the fifth, comtaining three, with religion. The last fivo books, forming a kind of supplement, deal spocially with Roman, Fronch, and feudia law. The most noteworthy peculiarity of the book to a cursary reader lies in the section dealing with effects of climate, and this indoed was almoet the only charecteristic which the vulgar took in, probably becamse it was ousily ausoeptible of parody and raductio ad abourduss. The singular spirit of moderation which distingulishes its views on politics and meligion was indeed rather agoinst it. than in its favour in France, and Helvetius, who was as outspeiken as he was good-natured, had definitely assigned this as the resson of his unfavourable Judgmeat. On the ocher hand, if not destructive it wras sufficiently critical, and it thus raised enemies on more than one side. It was long suspected, but is now positively bwown, that the book (not altogether with the goodwill of the pope) was put on the Index, and the Sorbome projected, though it did not carry out, a regular cenoure. To all tbese objectors the author replied in a masierly difense; and there seems to be moundation for the late and scandaloum stories which represent him as having used Mone de Pompadour's influence to suppress criticisan. The fact was that, after the first snarlings of envy and incompetence had died awray, he had tittle occasion to compkain. Even Voltaire, who was his decided enemy, was forced at length to speak in public, if not in private, com* plimentarily of the Espris, and from all parts of Europe the peus of sucecess arrived.
Montesquicu enjoyed his triumph rather at La Brede than at Paris.' He was becoming an old man, and, unlike Fontenelle. be docs not scem to have preserved in old aga the passion for society which had marked his youth. He certainly spent much of his later years in the conatry, theugh be sometimes visited Paris, and on one visit procured the release of his admirer Lavent Angliviel de -La Beaumelle from an imprisonment which La Beaumelle had suffered at the instance of Voltuire. He is said also to have been instrumental in obtaining a pension for Alexis Piron. Nor did be by any means neglect literary composition. The curious little nomance of Arsace et Ismewie, a short and unfinished treatise on Taste, many of his published Pandier, and much unpublished matter date from the period subsequent to the Esprid' dos lois. He did not, however, live many years after the appearance of his great work. At the end of 1754 he visited Paris, with the intention of getting rid of the lease of his house there and finally retling to La Brede. Ho was shordy after taken ill with an attack oi fever, which soems to have affected the lungs, and in less than a fortnight be died, on the 10th of February r755, aged sixty-six. He was burled in the church of St Sulpice with litale pomp, and the Revolution obliterated all trace of his remains.

The literary and philocophical merits of Montesquicu and his poation, actual end historical, in tho Itterture of France and of Europe, are of unusual interest. At the beginning of the next century the vicomte de Bonald classed him with Racine and Poseuet, as the object of a "religious veperation" among Frenchmen. But Bonald was not quite a suitable spokesman for France, and it may be doubted whether the author of the Esporit dos lois has ever roally occupied any such position in his own country. For a generation after his death be remained indeed the idol and the great anthority of tha moderate reforming party in Franoe. Montesquiou is not often quotable, or quoted at the prosent day, and the oxact critictom of our time challenges the sccuracy of his facts. Although he was really the founder, or at least one of the founders, of the sciences of comperative pulitits and of the philosophy' of history, ble descendants and
followers in these sciences think they have outgrown him. In France his popularity has always been dubious and contested. It is a singular thing that for more than a century there was no properly edited edition of his works, and nothing even approaching a complete biography of him, the place of the latter being occupied by the meagre and rhetorical Eloges of the last century. According to his chicf admirers, he is hardly read at all in France to-day, and they attempt to explain the fact by confessing that Montesquieu, great as he is, is not altogether great according to French principles. It is not only that he is an Anglo-maniac, but that he is rather English than French in style and thought. He is almost entirely dispassionate in politics, but he lacks the unswerving deductive consistency which Frenchmen love in that science. His wit, it is said, is quaint and a little provincial, his style irregular and in no definite genre.
Some of these things may be allowed to exist and to be defects in Montesquicu, but they are balanced by merits which render them almost insignificant. It is on his three principal works that his fame does and must rest. Each one of these is a masterpiece in its kind. It is doubtful whether the Lellres persames yield at their best either in wit or in giving lively pictures of the time to the best of Voltaire's similar work, though they are more unequal. There is, moreover, the great difference between Montesquieu and Voltaire that the former is a rational reformer, and not a mere persificur or frondexr, to whom faultfinding is more convenient than acquiescence for showing ofl his wit. Of course this last description does not fully or always describe Valtaire, but it often does. It is seldom or never applicable to Montesguicu. Only one of Voltaire's own charges against the book and its author must be fully allowed. He is said to have replied to a friend who urged him to give up his habit of sneering at Montesquieu, "Il est coupable de lese-poesic," and this is true. Not only are Montesquieu's remarks on poetry childish (he himself occasionally wrote verses, and very bad ones), but he is never happy in purely literary appreciation. The Considerations are noteworthy, not only for the complete change of style (which from the light and mocking tone of the Lettres becomes grave, weighty and sustained, with abundance of striking expression), but for the profundity and originality of the views, and for the completeness with which the author carries out his plan. These words-except, perhaps the last clauseapply with increasing force to the Esprit des lois. The book has been accused of desultoriness, but this arises, in part at least, from a misapprehension of the author's design. At the same time, it is impossible to deny that the equivocal meaning of the word " law," which has misled so many reasoners, has sometimes misled Montesquicu himself. For the most part, however, he kecps the promise of his sub-title (given above) with fidelity, and applics it with exhaustive carc. It is only in the last few books, which have been said to be a kind of appendix, that something of irrelevancy suggests itself. The real importance of the Esprit des lois, however, is not that of a formal treatise on law, or even on polity. It is that of an assemblage of the most fertile, original and Inspiriting views on legal and political subjects, put in language of singular sugreativeness and vigour, illustrated by examples which are always apt and luminous, permeated by the spirit of temperate and tolerant desire for human improvement and happiress, and almont unique in its entire freedom at once from doctrinairism, from visionary enthusiasm, from egotism, and from an undue spirit of system. As for the style, no oae who does not mistake the definition of that much used and much misused word cal deny it to Montesquieu. He has in the Espril little omament, bat his composition is wholly admirable. Yet another great peculiarity of this book, as well as of the Considerotiows, has to be noticed. The genius of tbe author for generalization is so great, his instinct in political science so sure, that even the falsity of his premises frequently fails to vitiate his conclusions. He has known wrong, but he has thought right.
The best edition of Montesquicu Is that of Edouard Laboulaye (7 vols, Paris, 875-1879), the best biography that of Lovis Vian
(Paris, and ed., t879). The bibliography of Monteaquien wes dealt with by L. Dangcau in 1874. There is known to exist at La Brede a great mass of MS. materials for the Esprit des lois, additional Leltres persones, essays. and fragments of all kinds, diaries, letters, notebooks and so forth. The present possessors, however, who represent Montesquieu, long refused permission to examine these to all editors and critics, and they were chicfly known by a paper contributed in 1834 to the Transactions of the Academy of Agen. At last in 1891 Baron Charles de Montesquieu published Deux opuscules of his ancestors, and in 1899 Baron Gaston de Montesquieu added Pensés, \&ec. Nothing, however, of much interest has yet appeared. For a thorough student L'Esprit de Mantesquzeu by A. Charaux (1885) has value, for it is written, with some ability, from a point of view now very uncommon, that of a convinced Roman Catholic, anti-parliamentarian and anglophobe critic; who regards Montesquicu as an " evangelist of social atheism" and the like. The view is quite untenable but useful as a corrective An article by Churton Collins on "Montesquieu in England" (Quarterly Revicw, No. 394, April 1903) may be also consulted.
(G. SA.)
montrsquiou-fizensac, ante fierre; Marquis de (1739-1798), French general and writer, was born in Paris on the 17th of October 1739, of an ancient family of Armagnac. He was brought up with the children of the king of France, and showed some taste for letters. He entered the army in 1754, was successively colonel of the Grenadiers and the RoyalVaissaux regiment, and in 1780 was made martchal-de-camp. Some pieces of verse and several comedies gained him admission to the French Academy in 1784. He was eleeted deputy to the states general of 1789 by the nobles of Paris, and, animated by Liberal ideas, he soon joined the Third Estate, and scconded Necker's financial schemes. He served on the committee cbarged with the issue of assignots, and was mamed president of the Constituent Assembly on the 14th of March 1791. In May 1791 he was promoted lieutenant-general, served under Lafayette, and in February 1792 was given the command of the Army of the South. In September of the same year he completed the conquest of Savoy, but in November 1792 he was accused of royalist leanings, and had to take refuge in Switzerland. In 7795 his name was erased from the list of emigres and he returned to Paris, where he died on the zoth of December 1798.
See P. L. Roederer, Eloge de Montesquiou, reprinted in Roederer's Works (1853-1859).
mONTESSON, CHARLOTTE JEANNE BERAUD DE LA haye de riou, Marqutse de ($1737-1805$), was born in Paris of an old Breton family. About 1754 she married Jean Baptiste, marquis de Montesson, who died in 1769 . Her beauty and intelligence attracted the attention of Louis Philippe, duke of Orleans, whom she secretly married in $\mathbf{7 7 3}$ with the authorization of the king. For her husband's amuscment she set up a litue theatre and wrote several plays, in the acting of which she herself took part. She was imprisoned for some time during the Terror, but was released after the fail of Robespierre, became the friend of the empress Josephine, and was a prominent figure at the beginning of the empire.

The best edition of her works appeared under the title of ©erveres anowymes in ${ }^{1782-178}$. Sce Charles Colle, Journal (1868); the Memoirs of St Simon, Madame de Genlis, the duchesse d'Abrantes and Mme de Levis; G. Serenger, "La Socíté de la marquise de Montesson," in the Nowvelle revue (1902); J. Turquan, Madame de Montesson douairiere d'Ortemis (Paris, 1904); and G. Capon and R. (ve-Plessis, Les Thétres clundestins du xutio sicde (1904).

MONTEVERDE, CLAUDIO (1567-1643), Italian priest and musician, was born at Cremona in May r567; he was engaged at an early age as vlolist to the duke of Mantua, and studied composition under Iagegneri, the duke's meestro di capella. His boid experiments, whilo bringing upon him the attacks of Artusi and Banchieri (q.v.), led to discoverics which exercised a lasting influence upon the progress of musical art. He was the first to make deliberate use of unprepered dissonances, or what are now known as fundamental discords. These discords constituted a revolution against the laws of 16 th century music. He employed them first in his madrigals, where they are a sign of decadence, but afterwards introduced them into music of another kind with such excellent effect that their
value was universally recognised. Before 1595 Monteverds was married to the singer Claudia Cattaneo, who died in $\mathbf{1 6 0 \%}$. In i002 be succeeded Ingegneri as maestro di capella; and in 1007 he produced, for the marriago of Francesco Gonzaga, his first opera, Ariang, in which he employed the newly-discovered discords with irreaistible effect. Though the did not invent the lyric drama-Peri's Euridice having been produced at Florence in 1600 - he raised it to a level which distanced all contemporary competition. His second operta, Orfeo, composed in 1608, was even more succesaful than Ariand. In 1613 Monteverde was invited to Vcnice, as maestro di capelfa at St Mark's, with a stipend of 300 ducats, which in 1656 was raised to 400 . Here he composed much sacred music, the greater part of which is lost. In 1630 he wrote another grand opera, Proserpine ropita. He did not become a priest until 1632. In 1639 he produced L'Adone, and in 1641 Le Nosse di Emea and II Ritorno d'Ulisse. He died in Venice on the 2gth of November 1643. Monteverde's harmonic inmovations and power of musical rhetoric seemed to put an end to the achool of Palcatrina, and led the way to modern music. (Soe MLusic.)

MONTEVIDEO, SAN PELIPB Y GANTIAOO DB, capital and chief port of Uruguay, and capital of the department of Moatovideo, on the northern shore of the Rio de la Plata eatuary, 120 ma . E.S.E. of Buenos Ayres, in lat. $34^{\circ} 54^{*} 33^{\circ}$ S., Jong$56^{\circ} 12^{\prime} .18^{\prime \prime} \mathrm{W}$. Pop. (1908, estimate), 312,946 . The old city (cixded vigia) occupies a low rocky headland that projecte westward between the estuary and an alnost circular bay which forms the harbonar; it was once enctosed with walls and defended by small forts, all of which have been removed. The new city (ciudad rueva and ciudad nowsima) extends ematward over a beautiful tract of rolling country and is extending northward acound the eastern shore of the bay. The site of the old city resembles a whale's back in shape; it slopes gently to its western extremity at Punta Sarandi and to the water's odge on either side. The general plan is that of rectangular squarea, except at the western extremity of the old city and its union with the newer or extra-mural city, on the line of the old ramparts, known as Calle de la Ciudadeta. The streets are well paved and have sufficient slope at all pointa to give easy surface drainage; Montevideo has the repmation of being one of the cleanest cities of the world. The rainfall is ample (about 44 in . a year), and the prevailing winda help to clean the streets. The westerly winds, however, sometimas bring across the bay the offonsive smells of the great abattoirs and meat-curing establishments (saladeres) at the foot of the Cerro. The mean annual temperature is about 62° F. An aboandant water aupply is brought from the Santa Lucia River, 32 m . ditant, with a receiving reservoir at Piedras, 100 ft . above the level of the Plaza de la Independencia. The ciudad vieja is targely deveted to come mercial, shipping and financial interesta. The government odifices, large retail shops and most of the fine urban residences are in the ciudad nueva, while most of the urban industrics, the railway stations and the dwellings of the poorer classes are in the ciudad novisima. Beyond these is fringe of suburtt (Lan Union and Paso Molino), and on the western side of the bay is the straggling suburb of Cerro, largety industrial in character. In 1908 eight tramway lines (all electric but one) extended out to these suburbs, some of the lines extending to the bething resorts of Ramirez and Pocitos and the Buceo cemeteries on the eastern conast.
The principal street, which is considered one of the finent boulevards in South America, is the Calle 18 de Julio, extending eastward from the Plaza de la Independencla to the suburb of Cordon; one of its features is its Suaday moming market. occupying the whole street from the Plaze de la Independencia to the Plaza Libertad, a distance of half a mile-a survival of the old market that existed here at the fortified entrasce to the walled town in the earlier years of its history. There are seven plazas, or squares, within the urban lisits: Zabalk or Rinoon, Constitucion or Matriz, Independencia, Liberted or Cagencha, Treinte y Tres, Flores and Frutos; and two suburbes parks or public gardens: the Paseo del Prado and Parge

Urbano. The Plaza de la Independencia stands at the junction of the old and new towns and is the centre of the city's political and social life. This square is distinguished for a uniform and mearly completed line of colonnades in front of the buildings surrounding it. The Paseo del Prado, which ranks high among the public gardens of South America, is beautifully situated beyond the suburb of Paso Molino, 3 m . from the city. The Paseo was originally the quink of a German of cultivated tastes mamed Joseph Buschenthal, who spent a fortune in its adornment. The Parque Urbano, at the Playa Ramirez bathing resort, is a modern creation. The buildings of Montevideo are chiefly of brick and broken stone, covered outside with plaster and stucco, of one to three storeys, with flat roofs, msually surmounted by a square tower, or mirador. The roofs, or asoleas, are largely used for domestic purposes, or roof gardens. The city contains a large number of handsome edifices, both public and private, among which are the Bolsa, Government House, municipal hall, cathedral, Cabildo, Hospital de Caridad, insane asylum, Italian hospital, Teatro Solis, Athenacum, and the Club Uruguayo. The Bolsa (exchange), custom-house, cathedral, and Cabildo are in the old town; the Bolsa is a copy of the Bordeaux exchange. The cathedral faces on the Plasa de la Constitucion. Its two square towers rise 133 ft . above the pavement, and these, with the large dome behind, rise far above the surrounding buildings and make a very conspicuous landmark. The church was consecrated in 1804, and in 1869 was raised to the dignity of a cathedral. Montevideo is now the seat of a small archiepiscopal see with only two suffragan dioceses. Directly across the plaza is the old Cabildo, a plain, heavy-looking two-storeyed edifice of the colonial period, the eeat of municipal administrotion during Spanish rule, but now occupied by the two chambers of the Uruguayan Congress and by the bigher police authorities of the city.

The people of Montevideo maintain more than fort y charitable associations, including the Caridad (charity) hospital on Calle 25 de Mayo, and the insane asylum in the suburb of La Union, both builh and largely supported from the proceeds of frequent lottery drawings. They also maintain a beggars' asylum and a foundllngs' asylum. The national museum (founded in 1830) and public library (foumded r833) are in one wing of the Solis theatre. There are a British hospital (founded $\mathbf{1 8 5 7}$, the present edfifice dating from 1867) chiefly for the use of sailors, an Anglican church in Calle Santa Terese dating from 1847, and a handsome Italian hospital of modern construction. The university, in Calle Uruguay, has faculties of law, medicine, letters, mathematics, engineering, and some minor groups of studies, including agriculture and veterinary science. The govermment maintains two normal schools, a school of arts and trades (artes y oficios), and a military school.
The harbour of Montevideo consists of a shallow bay, circular in shape and about $2 \frac{\mathrm{~m}}{\mathrm{~m}}$. from shore to shore, and an outer roadsteed exposed to the violent winds of this latitude, where the larger ocean-going steamers were compelled to anchor before the construction of the new port works. In 1899 the Uruguayan government entered into a contract for the dredging of the bay, the construction of two long breakwaters, the dredging of a channel to deep water, and the construction of a great basin and docks in front of the city. Surtaxes were imposed on imports and exports to meet the expenditure, and work was begun in 1001 . In 1908 the breakwaters and the greater part of the dredging had been completed, and the entrance channel, with a minimum depth of $24 \frac{1}{\mathrm{f}} \mathrm{f}$., permitted the admission of large stcamers. Another important improvement, for which a concession was given to an Engish syndicate and work was begun in $\mathbf{2 g o g}$, is the construction of an embankment and new shore line on the south side of the city, to be finished in five years at a cost of $\mathbf{\$ 7 , 2 1 1 , 1 1 6}$. There are three large dry docks connected with the port, known as the Maua (275 ft . long, inside) and the Gounouilhou (300 ft .) on the east side of the bay, and Jackson \& Cibils (450 ft .) on the west side at the foot of the Cerro. Four railways terminate at Montevideo,

frontier. In 1908 so lines of ocean-going steamers made regular calls at the port and several lines of river steamers ran to Buenos Aires and the ports of the Parana, Paraguay and Uruguay rivers. The exports consist chiefly of livestock, jerked beef, hides, wool, and other animal products, wheat, four, carn, linseed, barley, hay, tobacco, sealskins, fruit, vegetables, and some minor products. Manafactures exist anly to a limited extent and chiefly for domestic consumption.

The suburbs of Montevideo include the fashionable bathing resorts of Pbaya Ramirez and Pocitos on the coast east of the city, the indand suburbs of Paso Molioo and La. Union, and the industrial town of Cerro, across the bay. The Flores Island quarantine station is 12 m . east of the city. The station was formerly on Rat Island (within the bay), which is now used as a public deposit for inflammables. The chief point of interest in this suburb is the conical hill known as the Ccrro, or "mount," from which the city takes its name, on which stands an old Spanish fort, sometimes garrisoned and sometimes used for the incarceration of political prisoners. Its elevation is 480 ft . (Reclus), and a lighthouse rises from within the fort carrying a

Montevideo was founded in 1720 through the efforts of Don Mauricio Zabala, governor of Buenos Aires, who wished to check the advance of the Portuguese on this side of the La Plata. A small military post had existed there since 1717 , but efforts to create a town had been fruitless until Zabala offered to make hidalgos of the first settlers and to give them cattle and sheep. The first families to accept this offer came from the Canary Islands in 1726 under the direction of Don Francisco Alzeibar; they were followed by others from Andahusia and some of the Spanish-American settlements. Its growth at first was slow, but on the abolition of the Cadiz monopoly in $\mathbf{1 7 7 8}$ it became a free port and its frade increased so capidly that it soon became one of the chief commercial centres of South America. The city was captured in 1807 by a British expedition under Sia Samuel Aucbmuty, but was abandoned when the expedition against Buenos Aires undér General Whitelocke was defeated. In 1808 the governor of Montevideo established an independent junta, but after the Buenos Aires declaration of independence in 1810 the Spanish forces were concentrated in Montevideo and held it until expelled in 1814 by the Argentine land and sea forces under General Alvear and Admiral Brown. The dissensions following the expulsion of the Spanish and the rivalries of Argentina and Brazil over the possession of Uruguay, then commonly termed the "Banda Oriental," greatly reduced the population of the city and partially destroyed its trade. It was made the capital of the republic in 1828 and had partially recovered its population and trade when the disasIrous struggle with Rosas, dictator of Buenos Aires, broke out and the city was subjected to a nine years' siege (1843-52), the investment being conducted by Gencral Oribe, and the defence by General Paz. In 1864-186s Brazil intervened in the effairs of the republic, blockaded the port, and reinstated ex-president Flores. The war with Paraguay that followed, which lasted until 1870 , made Montevideo the base of supplies for the Brazilian army and navy and added largely 10 its trade and wealth. The valuation of the city and suburbs, which was $\$ 14,156,000$ in 1860 . was $\$ 74,000,000$ in 1872 . In addition to the reckless speculation of this period, there were continued political dissensions, repeated dictatorships and financial mismanagement on the part of the government. Not the least of these burdens were the personal and irregular drafts of some of the executives upon the treasury and revenue officers, particularly the custom-house of this port, upon which the republic depended for the major part of its revenue. The commercial and financial collapse that followed lasted through the greater part of the last three decades of the century; but settled government and improved finances subsequently contributed to a slow but steady recovery in the trade and industrial activities of the city.

MONTE VULTURE (anc. Vultur), a mountain of Basilicata, F年dy, in the provthet of Potenza, the summit of Whith is atbout

5 m . S. of Melfi. It is an extinct volcano rising to 4365 ft . above sea-level, belonging in Roman times to Apulia, and lying on the boundary between it and Lucania. The crater is densely overgrown with oaks and beeches which harbour wild boars and wolves. There are two small lakes. On the banks of the upper lake stand the Capuchin monastery of San Michele and the picturesque ruined church of Sant' Ippolito. The city of Rionero in Volture is pleasantly situated 27 m . by rail N. of Potenza, at the foot of Monte Vulture. Pop. (1901), 11,834. It does not seem to be older than the first half of the 17th century. In 1851 it suffered severely from an earthquake.
Sce G. de Lorenzo, Venosa e la regione ded Vuliste (Bergamo, 1906).

MONTFAUCON, BERNARD DE (1655-1741), French scholar and critic, was born at the cháteau of Soulage (now Soulatge, in the department of Aube, France), on the 13 th of January 1655. Belonging to a noble and ancient line, and destined for the army, he passed most of his time in the library of the family castle of Roquetaillade, devouring books in different languages and on almost every variety of subject. In 1672 he entered the army, and in the two following years served in Germany under Turenne. But ill-health and the death of his parents brought him back to his studious life, and in 1675 he entered the cloister of the Congregation of St Maur at La Daurade, Toulouse, taking the vows there on the 13th of May 1676. He lived successively at various abbeys-at Sorèze, where he specially studied Greek and examined the numerous MSS. of the convent library, at La Grasse, and at Bordeaux; and in 1687 he was called to Paris, to collaborate in an edition of Athanasius and Chrysostom, contemplated by the Congregation. From 1698 to 1701 he lived in Italy, chiefly in Rome in order to consult certain manuscripts, those available in Paris being insufficient for the edition of Chrysostom. After a stay of three ycars he returned to Paris, and retired to the abbey of St-Ger-main-des-Pres, devoting himself to the study of Greek and Latin MSS. and to the great works by which he established his reputation. He died suddenly on the 21st of Decemher 1741 . His first publication, in which he was assisted by Jacques Loppin and Antoine Pouget, was the first volume of a nevercompleted series of previously unpublished Analecta graeca (1689). In 1690 appeared La VGrite de l'histoire de Judilh. Alfanasii opcra omuia, still the best edition of that Father, was issued with a biography and critical notes in 16g8. In connexion with this may be mentioned Collectio nova polrum el scriplorum graccorum (1700), containing some newly discovered works of Athanasius, Eusebius of Caesarea, and the Topographia christicna of Cosmas Indicopleustes. His copious Diarium italicum (1702) gives an account of the principal libraries of Italy and their contents; this work has been translated into English by J. Henley (r725). The Palacigraphia graeca (1708), illustrating the whole history of Greek writing and the variations of the characters, has not yet been superseded; in its own field it is as original as the De re diplomatica of Mabillon. In 1713 Mont faucon edited Hexaplorwm origenis quace supersment, not superseded till the work of Field (1875); and between 1718 and 1738 he completed his edition of Joonnis Chrysostomi opera omnia. His L'Antiquite expliquée el represextec en figures (1719) taid the foundation of archeeological knowledge. It was continued by him in Les Monumens de la monarchia francoise, 1729-1733. Both these works have been translated into English. Montfaucon's Bibliotheca bibliotkecarum manuscriptorum (1739) is a list of the works in MS. in the lihraries with which he was acquainted.
A list of his works will be found in Bibliothlque des fcrioains de la congrigation de Saint-Mfaur, by C. de Lame (1882), and in the article in the Nousplle brographic gendrate, which gives an account of their scope and chasarier: ace also Emmanuel de Broglic, La Sacilit de labboye de SI-Germain-des-Prés au 18 stictle: Bernard de Mfontfancon et les bremardins (2 vols., Paris, 1891).
MONTPERRAT, COUNT OF, a title derived from a territory south of the Po and east of Turin, and held hy a family who were in the 3 th century one of the most considerable in Lombardy.

In 1147 a count of Montierrat took part in the Second Crusade; but the connexion with the Holy Land begins to be intimate in 1176 . In that year William Longsword, eldest of the five sons of Count William III., came to the kingdom of Jerusalem, on the invitation of Baldwin IV. and the baronage, and martied the heiress of the kingdom, Sibylla. He died within a few months; but his wife bore a posthumous son, who became Baldwin V. Count William IIL. himself (uncle to Philip of France and brother-in-law to Conrad III.) afterwards came to the Holy Land to watch over the interests of his grandsong and he was among the prisoners taken by Saladin at Hittin in 1187. Sbortly after the battle of Hiuin there appeared in Palestine the ablest and most famous of the fantily, Count. William's second son, Conrad. Conrad, following the family tradition, and invited by the emperor Isaac Angelus, had gone to serve at the court of Constantinople. He soon became a considerable person; married Isaac's sister, and deleated and killed a usurper; but he was repaid by ingratitude and suspicion, and fled from Constantinople to Palestine in 1187. Putting into Tyre he was able to save tbe city from the deluge of Mahommedan conquest which followed Saladin's victory at Hittin. He established himself firmly in Tyre (refusing admission to Guy, the king of Jerusalem); and from it he both sent appeals for aid to Europe-which largely contributed to cause the Third Crusade-and despatched reinforcements to the crusaders, who, from 1188 onwards, were engaged in the siege of Acre. His older brother had been the husband of the heiress Sihyllez and on the death of Sibylla, who had carried the crown to Guy de Lusignan by her second marriage, Conrad married ber younger sister, Isabella, now the heiress of the kingdom, and claimed the crown (1190). The struggle between Conrad and Guy paralysed the energies of the Christians in 119i. While Richard I. of England espoused the clause of Guy, who came from his own county of Poitou, Phiiip Augustus eapsused that of Conrad. After the departure of Philip, Conrad fomented the opposition of the French to Richard, and even intrigubd with Saladin against him. But he was the one man of ebllity who could hope to rule the debris of the kingdom of Jerusalem with success; he was the master of an Italian statecraft which gave him the advantage over his ingenuous rival; and Richard was finally forced to recognize him as king (April ispa). In the very hour of success, however, Conrad was struck down by tha emissaries of the Old Man of the Mountain (the chiel of tho Assassins).

Still another son of Count William III. achieved distlnction. This was Boniface of Montierrat, the younger brother of Comrad, who was chosen leader of the Fourtb Crusade in 1201, on the death of Theobald of Champagne. In the winter of 1201-1 202 he went to Germany to visit Philip of Swabia; and there it has been suggested, he arranged the diversion of the Fourth Crusade to Constamtinople (see Crusades). Yet in the course of the crusade be showed himself not ansubmissive to Innocent III., who was entively opposed to such a diversion. After the capture of Zara, however, he joined the crusaders, and played a.great part in all the events which followed till the capt ure of Constantinople by the Latins in 1204. But Baldwin of Flanders was elected emperor over his head; and his irritation was not wholly allayed by the grant of Macedonia, the north of Thessaly, and Crete (which he afterwerds eold to Venice). In 1207 he died, killed in battle with the Bulgarians. He left a son Dometrius, who assumed the tille of kint of Thessaionica, which the father had never borne (cr. Luchaire, Inmoactul III.: La question d'Orieni, p. 190). In 1212 Demelrius bost his kingdom to Theodore Angelus, and the heuse of Montierrat its connexion with the East.

See Savio, Studi storiai mul marchese Gugliolmo III. di Monfarrato (Turin, 1885) I llgen, Marhgra/ Komrad won Moniferrat (1880); and also the works of Cerraio (Turin, 1884) and Desimoni (Genoa, 1886).
MOMTFLEURY (d. 1667), French actor, whose real name was Zachario Jacob, was born in Anjou during the last years of the 16th century. He was enrolled as one of the pages to the duc de Ohise, but he ran amay to join some atralling players,
assuming the name of Montscury. About 1635 he was a valued member of the company at the Hotel de Bourgogne, and he was in the original cast of the Cid (1636) and of Horace (1640). Richelieu thought highly of him, and when in 1638 Monifleury married the actress Jeanne de la Chalpe (d. 1683), the cardinal desired the ceremony to take place at his own country house at Rueil. Montfeury died in Paris from the rupture of a bloodvessel, while playing the part of Orestes in Andromaque, in December 1667. He was the author of a tragedy, Le Mort d'Asdrebal, periformed in 1647.

MONTPORT, the name of a famous French family long seated at Montiort l'Amauri, near Paris, descended from a sertain William, a descendant of the counts of Flanders, who fourished during the iatter part of the roth century, and who huilt a castle at Montfort l'Amauri. Until 1209, when Simon IV. took the title of count, William and his successors were-known as barons de Montfort. This Simon IV. de Montfort (c. $1160-$ 1218), a son of Simon III. (d. rIBr), is chiefly known for the very active part which he took in the crusade against the Albigenses. Twice he went to Palestine as a crusader, and in r209, answering the call of Pope Innocent III., he joined the host which marched against the enemies of the Church in Languedoc. He became vicomte of Beziers and of Carcassonne, and was soon the Icader of the crusaders. He took place after place, defeated Raymond VI., count of Toulouse, at Casteinaudary, and about a year later (September 1213) gained a victory over Raymond's ally, Peter II., king of Aragon, under the walls of Muret. Simon then turned his attention to administering and organizing Languedoc. After a lively discussion in the Lateran Council of 1215 , the pope, somewhat reluctantly, confirmed him in the possession of the greater part of the lands of the count of Toulouse, and after two more years of warfare he was killed whilst besieging the city of Toulouse on the 25th of June 1218. The count's eldest son, Amauri de Montfort (1192-1241); was unahle to hold his own, although Philip Augustus sent some troops to his assistance im 1222 . He abandoned his interests in the south of France in favour of the new king Louis VIII., and in 1239 he went on crusade to the Holy Land, dying soon afterwards at Otranto. In 1230 Amauri was made constable of France. Simon IV. had a hrother, Guy de Montfort (d. 1228), who shared his military exploits both in Asia and in Europe, and who was afterwards employed by Louis VIII. to negotiate with the pope at Rome. He was killed before Vareilles on the 3ist of January 1228. In 1294 Yolande (d. 1322), the heiress of the Montforts, married Arthor II., duke of Brittany, and the county of Montfort became part of this duchy. Their son, John, count of Montfort, claimed Brittany in opposition to Charles, count of Blois, and at length secured the duchy. Except for one interval his descendants held it until it was united with the French crown at the end of the isth century.
Sce A. Molinier, Catalogue des acles de Simon ei c'Amaury de Monfort (1873); and C. Bouais, La Soumission de da micomis de Carcassonme par Simon de dionifort et la croisade conire Raimomd VI. (884).
montport, simon DE, earl of Letctster (d. 1265), English statesman and soldier, was born in France about the year 1200 . He was the fourth and youngest son of Simon IV. de Montfort (see above), the leader of the Albigensian crusade, hy Alicia de Montmorenci. Simin IV., whose mother was an beiress of the Beaumont family, claimed in her right, and received from King John, the carldom of Leicester (1207), only to lose it again through espousing the French side in the wars hetween that sovereign and Philip Augustus. The young Simon, of whose youth and education nothing is recorded, came to England in 1230 and attached himsclf to Henry III., obtaining with the consent of his sole surviving brother Amauri a re-grant of the family earldom. Simon was for a time unpopular. with the English and glosely attached to the royal party. He gave, however, an early proof of religious fervour, and of an unbending harshness, by the expulsion of all the Jews who had setuled in his borough of Leicester to practise usury. In 1238 he obtained the hand of the king's sister Eleanor, the widow
of the younger William Marshal. The king approved of the match, but it was resented by his brother Richard of Cornwall and the baronage, and objections were raised on the ground that Eleanor had previously taken vows of chastity. With some difficulty Eari Richard was pacified; and Montfort obtained the pope's confirmation of the marriage by a personal visit to Rome. In 1239, however, the influence of detractors and a quarrel over some obscare financial transactions in which he appears to have used Henry's name without a formal warrant led to a breach between himself and the king. The earl and his wife went for a time to France; and, though a nominal reconciliation with the king was soon effected, both departed on crusade with Richard of Cornwall in 1240 . Eleanor was left behind in Apulia while her husband proceeded to the Holy Land. He acquitted himself with distinction, and there was some thought among the Frankish barons of appointing him to act as regent of the Latin kingdom of Jerssalem. But be returned in 1241, took part in Henry's disastrous French expedition of 1242, and was readmitted to full favour. Between 1243 and 1248 he received many gifts from the king; he stood forward in partiament as a mediator between the court party and the opposition; it is only from the correspondence of his friends Grosseteste and Adam de Marsh that we learn of his dissatisfaction with the condition of church and state. He was keenly interested in Grosseteste's proposals for ecclesiastical reformation, and was considered the mainstay of the reforming party. In 1248 he again took the cross, with the idea of following Louis IX. to Egypt. But, at the repeated requests of the king and council, he gave up this project in order to act as governor in the unsettled and disaffected duchy of Gascony. Bitter complaints were excited by the rigour with which the earl suppressed the excesses of the seigneurs and of contending factions in the great communes. Henry yielded to the outcry and instituted a formal inquiry into the carl's administration. Montiort was formally acquitted on the charges of oppression, but his accounts were disputed hy the king, and he retired in disgust to France ($\mathbf{x} 252$). The nohles of France offered him the regency of the kingdom, vacant by the death of the Queen-mother Blanche of Castile, but he preferred to make his peace with Henry (1253), in obedience to the exhortations of the dying Grosseteste. He helped the king in dealing with the disaffection of Gascony; but their reconciliation was a hollow one, and in the parliament of 1254 the earl led the opposition in resisting a demand for a subsidy. In 1256 and 1257, when the discontent of all classes was coming toa head, Montfort nominally adhered to the royal cause. He undertook, with Peter of Savoy, the queen's uncle, the difficult task of extricating the kIng from the pledges which be had given to the pope with reference to the crown of Sicily; and Henry's writs of this date mention the earl in friendly terms. But at the "Mad Parliament " of Oxford (1258) Montfort appeared side by side with the earl of Gloucester at the head of the opposition. It is said that Montfort was reluctant to approve the oligarchical constitution created hy the Provisions of Oxford, hut his name appears in the list of the Fifteen who were to constitute the supreme board of control over the administration. There is better ground for believing that he disliked the narrow class-spirit in which the victorious barons used their victory; and that he would gledly bave made a compromise with the moderate royalists whose policy was guided hy the Lord Edward, Henry's eldest son. But the king's success in dividing the harons and in rostering a reaction rendered sucb projects hopeless. In 2261 Henty revoked his assent to the Provisions, and Montfort left the country in despair.

He returned in i263, at the invitation of the barons, who were now convinced of the king's hostility to all reform; and raised a rebellion with the avowed object of restoring the form of government which the Provisions had ordained. For a few weeks it seemed as though the royalists were at his mercy; but he made the mistake of accepting Henry's offer to abide by the arbitration of Louls IX. of France. At Amiens, in January 1264, the French king decided that the Provisions were unlawful and
invalid. Montfort, who had remained in England to prepary for the worst, at once resumed the war, and thus exposed himseli to accusations of perjury, from which he can only be defendet on the bypothesis that he had been led to hope for a genuine compromise. Though mercly supported by the towns and a fcw of the younger barons, he triumphed by superior generalshi at Lewes (May 14 1264), where the king, the Lord Edward, an:t Richard of Cornwall fell into his hands. Montfort used his victory to set up the government by which his reputation as a statesman stands or falls. The weak point in bis scheme was the establishment of a triumvirate (consisting of himself, the young earl of Gloucester, and the bishop of Chichester) in: which his colleagues were obviously figurehcads. This flaw: however, is mitugated by a scheme, which he simultaneousty promulgated, for establishing a thorough parliamentary contres over the exceutive, bot excepting the triumvirs. The parliamen: which he summoned in 1265 was, it is true, a packed assembly; but it can hardly be supposed that the representation which he granted to the towns (sce Parliament and Representation) was intended to be a temporary expedient. The reaction against his government was baronial rather than popular; anid the Welsh Marchers particularly resented Montfort's alliance with Llewellyn of North Walcs. Litue consideration for English: interests is shown in the treaty of Pipton which sealed that alliance (June 22, 1265). It was by the forces of the Marcher: and the strategy of Edward that Montort was defeated at Evesham (Aug. 4). Divided from the main body of his supporters, whose strength lay in the east and south, the carl was outnumbered and surrounded before reinforcements could reach, him For years after his death he was revered by the common: as a martyr, and the government had no little difficulty in. reducing the remnants of his baronial supporters. His character has suffered in the past from indiscriminate eulogy as much as from detractors. He was undoubtedly harsh, masterfu], impatient and ambitious. But no merc adventurer could have won the friendship of such men as Marsh and Grossetestc; their verdict of approval may be the more unhesitatingly* admitted since it is not untempered with criticism.
The original authorities are those for the reign of Henry III. The best biographics are those by R. Pauli (trans. C. M. Goodwin, London, 1876); G. W. Prothero (London, 1877); C. Bémont (Paris, 1884). Sce also the letters of Adam de Marsh in J. S. Brewer's Monumenta francistara, vol. i (Rolls serics, 1858); H. R. Luard, Epistohe Roberli Grosseleste (Rolls, series, 1861) ; F. S. Stevenson, Robert Grosseteste (London, 1899): W. H. Blanuw, The Barons' War (Cambridge, 1871).
(H. W. C. D.)
montgaillard, jean gabriel maurice roques, Coume de ($1761-1841$), French political agent, was born at Montgaillard, near Villefranche (Haute Garonne), on the 16th of November 176r. His parents belonged to the minor nohility, and he was educated at the military school of Sorèze, where he attracted the notice of the comte de Provence (afterwards Louis XVII.). After serving for some years in the West Indies Maurice de Roques returned to France. In 1789 be was established in Paris as a secret diplomatic agent, and though he emigrated to England after the 10th of August 1792, he returned six weeks hater to Paris, where his security was most probably purchased by services to the revolutionary government. Ho was again serving the Bourbon princes when he met Francis II. of Austria at Ypres in 1794 and saw Pitt in London, where he published his Elat de la France au mois de mai 4 í94, predicting the fall of Rubespierre. He was employed by Louis XVIII. to secure Austrian intervention on behalf of Mme Royale (afterwards duchess of Angouleme), still a prisoner in the Temple, and he drew up the proposition made by the prince to Charles Pichegru, the details of which appear in his "Mémoire sur la trahison de Pichegru" (Mooniteur, April 18, 1804). In June 3706 be made a journey to Italy in the hope of opening direct relations with Bonapatte. On his return to the princes at Blankenburg he was regarded with suspicion, and he departed for Paris to await cvents. He is thought to have indicated the possession by the comte d'Abtraigues, agent of the princes, of documents compromising fichegru. Io April :1708 bit
surrendered to Claude Roberjot, the Hamburg minister of the Directory, further papers relating to the matter. He followed Roberjot to Holland, and there wrote a mermorandum to prove that the only hope for Frumce lay in the immediate return of Bonaparte from Egypt, followed by assumption of the supreme power. This note reached Alexandria by way of Berlin and Constantimople. When be ventured to return to Paris in the hope of recogaition from the First Consul bo was imprisoned, and on his relcase he was kept under police mupervision. Napoleon, who appreciated his real insight-inio European politics and his extreordinary knowledge of European courts, attacted hlm to his secret cabinet in spite of his intriguing and meadacious character. He received a salary of 14,000 francs, reduced later to 6000 , for reports on political questions for Napoleon's use, and for pamphlets writen to belp the imperial policy. He tried to dissuade Napoleon from the Austrian marriage and the Russian campaign, and counselled the limitation of the empire within the Rhine, the Alps and the Pyrenees. The Bourbon restoration made no change in his position; he was maintained as confideatial adviser on foreiga and home politics, and gave shrewd advice to the new government. His career ended with the old monarchy, and he died in obscurity at Chaillot on the 8th of Fehruary ${ }^{1841}$.

His Sourcenirs, which must be read with the utmost caution, were edited by Clemeat de Lacroix (3rd ed., 1895); his 4 femoirg diplomatiomes ($1805^{-1819 \text {) were published by the same editor in }}$ 1896. His Elat de La France was translated into English by Edmund Burke. His other writings include Ma conduite pendanite cours de la ntoolution francaise (London, 1795): Histoire secrite de Coblenfe dans la reolution des francais (London, 1795); De La France ad do ${ }^{\prime}$ 'Europe sous te gonsurnement de Bonosêtle (Lyons, 1994); Sisuation del'Angleterre en 18 II (Paris, 1811): De la resta uration de la monarch ie des Boubbons et du recour \& Fordre (Paris, 1814); and Histoire de France depuis 1825 jusqu't 1830 (Patis, 1839).

MONTOLLAS, MAXIMILIAN JOSEF GABNERIN, COUNT voN ($1750-1838$), Bavarian statesman, came of a noble family in Savoy. His father Jolkn Sigmund Garnerin, Baron Montgelos, entered the military service of Maximilian Joseph 11L., elector of Bavaria, and married the countess Unsula von Trauner. Maximilian Joucf, their eldest son, was born on the roth of September 1759. He was educated successiycly at Nancy, Strassburg and Ingolstadt. Being a Savoyard on his father's side, he naturall felt the French influence, which was then strong in Germany, with peculiar force. To the end of his life he spoke and wrote French more correctly and with more ease than German. In 1779 he entered the public service in the department of the censorship of books. The elector Charles Theodore, who had at first favoured him, became offended on clscovering that he was associeped with the Illuminati, the supports of the anti-clerical movement called the Aufklirkng. Monıgelas therefore went to Zweibruicken, where he was helped hy his brother Illuminati to find employment at the court of the duke, the head of a hianch of the Wittelsbach family. From this refuge also he was driven by orthodox encmies of the Illuminati. The hrother of the duke of 2 weibrucken-Maximilian Josephtook him into his service as private secretary. When his employer succeeded to the duchy Montgelas was named minister, and in that capacity he attended the conference of Rastadt in 1798, where the reconstruction of Germany, which was the consequence of the French Revolution, was in full swing. In 1799 the duke of Zweibricken succeeded to the electorate of Bavaria, and he kept Montgelas as his most trusted adviser. Montgelas was the inspirer and director of the policy hy which the electorate of Bavaria, was turned into a kingdom, and was very much increased in size by the annexation of church lands, free towns and small lordships. As this end was achieved by undeviating servility to Napoleon, and the most synical disregard of the rights of Bavaria's German neighbours, Montgelas became the type of an unpatriotic politician in the eyes of all Germans who revolted against the supremacy of France. From his own conduct and his written defence of his policy it is clear that such sentiments as theirs appeared to be merely chirdish to Montgelas. . He was a thorough polititian of the
stibi-century type, whos and antiempted to see nothing except that Bavaria had always been threatened by the house of Mabsburg, had been supported by Prussis for purely aelgah reasons, and could look for useful support against these two only from France, who had selfish reasons of her own for wishing to councerbalance the power both of Austria and Prussia in Germany. As late as IBI_{3}, when Napoleon's power was visibly breaking down, and Montgelas knew the internal weakaess of his empire woll from visits to Paris, he still continued to maintain that France wis necessary to Bavarta. The decision of the king to turn against Napoleot in 8814 was taken under the influence of his son and of Marshal Wrede rether than of Montgelas, though the minister would not have been inferenced by any feeling of sentimentality to adhere to an ally' who had ceased to be useful. In internal affairs Montgelas carried out a poficy of secularization and of administrative centralization often by brutal means, which showed that he had never wholly renounced his opinions of the time of the Endightenment movemert. His enemies perseaded the king to dismiss him in r8ry, and he spent the remainder of his llfo in retfrement till his death in 1838 . He had married the coantess von Arco in 1803, and had elght children; in $180 g$ he was made a cotant.

See Denkwirdigkeiten des bayr. Slaatsministers Maximilian Graf von Montgelas, a Corman verion of the French original, ed. by loudwig Graf, v_{0} Moneqgias (Stuttgart, 1887); Bricfe des Stadesministars Grafen Monigelos, ed. by Juiic von Zerzog (Regensburg, ${ }^{4853}$); Dumoulin Eckart، Bayern unter dem Ministerium Monigelas (Munich, 1894).

MONT GENĖVRE, a very easy and remarkable pass (6083 ft .) between France and Italy, which is now considered by bigh authorities to have been crossed by Hannibal, as it certainly was by Julius Caesar, Charles VIII., and in the war of 1859. An excellent carriage-road mounts in 7 m . from Briangon, at the very head of the Durance valley, to the pass. On tbe French side of the divide is the village of Bourg Mont Genèvre, and on the Italian side that of Clavières, botb inhabited all the year round, as the pass runs east and west, and is thus sheltered from the north wind. A descent of 5 m . leads down to Cesanne in the Doria Riparia valley, which is followed for 5 m . more to Oulx (17 m . from Briangon), on the Mont Cenis railway.
MONTGOMERIE, ALEXANDER (c. 1550-c. 16rc), Scottish poet, was the second son of Hugh Montgomerie of Hessilhead, Ayrshire, and was born about the middle of the 16th ceniury. He spent sompe part of his youth in Argyleshire and afterwards lived for a time at Compston Castle, in Galloway. He was in the service of the regent Morton; thereaiter, on the regent's denassion of office in 1578, in that of the king, James VI. In 1583 the grant by the Crown of a pension of 500 marks was confirmed; and three years later the set out on a tour through France, Flanders and ather countries. He appears to have got into trouble, to have heen imprisoned abroad, and to have loot favour at the Scottish court, and (for a time) his pension. We have no record of bis closing years.
Montgomerie's chief poem is the Cherry and the Sloc, first printed in 1597 (two impressions). It was frequently reprinted is the 17th and 18th centuries, and appeared twice in Latin grise is 1631, in Dempeter's Cerasum af sylvestre prunum, opus pormaticum. It is included in the collected edition of Montgomerie's Poems, by Devid Irving (1821), and by James Cranstoun, for the Scottish Text Society (1887). The text in the latter is a composite of 930 lines fram the second impression of 3597 ($\mathbf{x} . \mathrm{s}$.) and 666 lines from the vasxion in Allan Ramsay'\$ (g.9.) Ever Grotn (1724); but a better text, from a MS. in tha Laing collection in the university of Edinburgh, has been prepared (1907) for the Scotlish Text Society by Mr George Stevenson. The poem, written in the complicated alliterative fourteen-lined stanza, is a confused allegary-the confusion
${ }^{1}$ Alexander's brother, Robert Montgomerie (d .1609), was made bithop or archbishop, of Glasgow. in 1581 an appointment which was etmonyly objected to by the General Assembly. The long atruggle which ensued was only terminated by Montgomeries recignation of the see in 1587 .
being duc to tho fact that sections of the poem were written at different times-on Youth's choice between a richly laden cherry-tree on a high crag and a sloe "bush" at his feet. His other poems are: The Flyting betwith Mondgomery and Pohwart (1629; rst ed., 162x), which reproduces the literary habit of the Flyting of Dunbar and Kennedie; a serics of 70 sonnets; a large number of miscellaneous poems, amatory and devotional; and The Mindes. Malodie, Conlayning cerlayne Psalmer of whe Kinglie Prophede Dogod, applyed ta a neve pleasam tume (Ddinburgh, 3605). The formai value of Montgomerie's verse wes fittingly acknowledged by-Fames VI. in his carly critical ensy Are Schart Troatise combixing some reulis and cautdis to be obrovent and aschowit in Scoltis Poesia, where the author makes three quotations from Moatgomerie's poems, then in circulation in manuecript. Montgomerie had written a sontet to bis majesty, which is prefuxed to the Erseyty of a Prentise.

Montgomerio stands apart from the courtier-poets Ayton, Stirting, and others, wha write in the literary English of the South. He carries on the Middle Scots tradition, and was net without inftuence in the vernacular revival, in Alin Ramsay and Mis nuectsors.
(G. G. S.)

MOMTGOMERY, CABRDE ERIGMRUR DE LOROES,

 Concre de (c. 1530-1574), French soldier, became a bieatenant in the king of France's Scottish guards, of which his father was captain, and engeged in police operations against the Protestants. Having Inadvertently caused the death of King Henry II. in a toornament (June 30 , 1559) he was digrraced and retired to his entates in Normandy. He studied theological questions and espoused the cause of the Reformers. In 1562 be allied himseff with the prince of Condt, took Boorgcs, and defended Rouen from September to October isfa against the royal army. In the third War of Religion be occupied Bearn and Bigbrre ($\mathbf{5} 56$). Escaping from the massacre of St Bartholomew, he went to England and returned with a fleet for the relief of La Rochelle (1573), but scon hid to withdraw to Cornwell. Returning to Normandy in 1574, he defended Domfront, which was being besieged by Marshal de Matignom, but was forced to capitulate on the agth of May. He was sentenced to death by the parkmert, and baheaded in Parts on the 26th of June 1574 .See L. Marlet, Le Combe de Montgomery (Paris, 1890).
MONTGOMERY, JAMES ($\mathbf{x 7 7 1 - 1 8 5 4 \text {), British poet and }}$ jourmist, sou of a Mocavian minister, was born on the 4 th of November 1771, at Irvine in Ayrshire, Scolland. Part of bis boyhood wes spent in Itcland, but he receivod his education in Yorkshire, at the Moravian school of Fulneck near Leeds. He edited the Skefficld fris for more than thisly years. When he began his career the position of 2 journalist who bedd promounced veres on reform wes a difficull one, and be twice suffered imprisonment (In 1795 and 1796). His Wandercr of $5 w i n e r l a n d(1806)$, describing the French occupation, attracted considorable attention. The author was described by Lord Bytow in a fopentres to Engliah Bards and Scolch Reviawers, as "a man of considerable genius," whose Wanderar of Swiseerland wes worth a thousand "Lyrical Behads." The book had been mercilestly zidiculed by Jefirey in the Edimburgh Review (r8*T), bat hn spite of this Mbstgomery achieved a mide popularity whit his leter votumes of verse: The Wast Indies (1810); The World Before the Flood (1812); Geeciland (1819); Songs of Ziow (18z2); The Pelicar Istard (1826). On account of the religious churacter of hile poetry, he is sonetimes confounded with Robert Montgomery, very moch to the injustioe of his reputation. His verses wese diktsted by the inspining force of huinaritarian senciment, and he was especially eloquent in his denutriation of the slave trade. The influence of Campbell is apparent in ints carlier pooms, but in the Pelicast Island, his last and best work as a poet, he ovidenthy took Shelley as his model. His reputation now reats ohiefly on his hymas, aboul a hundred of whith are stin in current use. His Leciaves on Poeny one Gemeral Lilurasure ($\left(8_{33}\right.$) show constderable breadth of sympathy and powerof expretsion. A pension of
 at Sheffield on the 3oth of April 1854.
His poems were collected and edited by himself in 1841. The voluminous Mamoiss, published in seven volumes (1856 -1858) by John Holland and James Everett, contain valuable informatioa on English provincial politics.

MOMTGOMRRY, RICHARD (1736-1775), Americen soldier, was born in Co. Dublin, Ireland, in 1736. Educated at St Andrew's and at Trinity College, Dublin, he entered the British army in 1756, becoming captain six years hater. He saw war service at Louisbourg in 1757 and in the Lake Champlain expedition of 1759, and as adjutant of his regiment (the 17th foot) he shared in the final threefold advance upon. Montreal. Later he was present at Martimique and Havana. In 1772 he left the army, settled in Now York, and married a daughter of Robert R. Livingston. Three years later he was a delegate to the first provincial congress of New York, and became beigadier-general in the Continental army. He was sent with Schuyler on the Canadian expedition, and, on Schuyler's falling ill, the command devolved upon hini. Hampered by the incleinency of the season and the gross indiscipline of the troops he weat forward, gaining iz few minor successes and capturing the colours of the 7th (Royal) Fusiliers, and met Benedict Arnold's contingent at Point aux Tremhles. They pushed on to Quebec barcly 800 strong, hut an assault was made on the 31st of December 1775, and almost at the first discharge Montgomery was killed. The body of the American general was honourably interred by the Quebec garrison. Congtess caused a memorial to be erected in St Paul's church, New York, and in 1818 his remains were conveyed thither from Quebec.

MOWTGOMEAY, BODERT (1807-1855), English pott, natural son of Robert Gömery, was born at Bath in 180%. He was educated at a private school in Bath, and founded an unsuccessful weekly paper in that city. In 1828 he publisped $T h e 0 \mathrm{mmi}$ eresence of the Deily, which hit popular religious sentiment so exactly that it ran through eight editions in as many months. In i8jofollowed The Puffiad (a setire), and Satam. An exhaustive review in Blackwood hy John Wilson, followed in the thirty-first number by a burlesque of Satan, and twe articles In the first volume of Fraser, ridiculed Montgomery's pretensions and the excesses of his admirers. But his name was immortalized by Macaulay's famous onslaught in the Edinburgh Review for April 1830. As a poet, he deserved every word of Macaulay's severe censure, though the brutality of the attack cannot be defended. This exposure did not, however, diminish the sale of his poems; The Omnipresence of the Defity reached its 28 th edition in 3858 . In 1830 Montgomery entered Lincoln College, Oxford, graduating B.A. in 1833 and M.A. in 1838 . Taking holy orders in 1835 be obcsined a curacy at Whittington, Shropshire, which hei enchanged in 1836 for the charge of the church of St Jude, OHagow. In 1843 he rerooved to the parish of St Pancras, Landon, when he was minister of Percy Chapel. He died at Brighton in 1855. He also wrote The Messioh (1832), Woman, the Angel of Lifo (1833), Oxford (1831), and many devotional and theological worts.

MONTGOMERY, a city of Alabams, U.S.A., the capital of the state and the county-seat of Montgomery county, situated (ahout 16玉 ft. above the sea) S.E. of the centre of the state, on the left bank of the Alabama river, which is here pavigable. Pop. (1900), 30,346 , of whom 17,229 were of negro descent and 666 were foreign-born; (1910, consus), 38,536, Montgomery is served by the Louisville \& Nambville, the Mobile \& Ohio, the Atlantic Coast Line, the Seabeard Air Line, the Central of Ceongia, and the Western of Alathane riilways, and hy freight stcamers plying between Monagomery and Mobile. Among the paincipal buildings are the state capitol, near which is a Confederate soldiers' monument (erected by the women of Alabama), the coumy court-house, the Federal buiding, the Carnegie library, themasonie temple and the First National Bank and Bell buildiags. Tbe public institations include the city infirmary and St Margaret's bospital, the latter under the direction of the Sisters of Charity. The city has about 100 acres
of parks, Oak Park being the moet important. Situated in the "Cotton Belt" of Alabama, Montgomery handles $160,000-$ 200,000 bales annually. Truck-gardening is an important industry. The Alabama state fair is held here annually. Among the manufactures are fertilizers, machine-shop products, cotion goods, lumber producte, cigars, harneas, beer, stoneware, and bricks. The value of the factory products in 1905 was $\$ 3,877,653$ (an increase of $31 \cdot 7 \%$ over that in 1900). The leading newspapers are the Monlgomery Addertiser (morning) and the Monigomery fournal (evening).
The site of Montgomery was once occupied by an Indian village known as Ecunchatty. The first permanent white settlement was made in 1814 by Arthur Mioore. In 1817 Semuel Dexter of Massachusetts laid out a town and named it New Philadelphia. In 1819 it was united with East Alabama Towne an adjoining settlement on the river, under the present name (in bonour of General Richard Montgomery), and a third setulement, Alabama Town, later became a part of Montgomery. Montgomery was first incorporated in 18.37. The place soon became the commercial emporium of the Alabama "Colton Belt." In 1847 it becmene the capital of the state instead of Tuscaloosa. On the 7th of January 1861, the State Convention through which Alabama seceded from the Union met in the capitol; at the same place delegates from six states met, on the 4th of February, and organized the Confederate States of America. Montgomery was the capital of the new government (hence the popular name "Cradle of the Confederacy ") until May 186x, when that honour was transferred to Richmond, Virginia. It was the seat of Confederate military factories, and on the 12th of April 1865 it was captured by Federal troops. Montgomery received a new city charter in 1905.
mONTGONERY, a town and district of British India, in the Lahore division of the Punjab. The town has a station on the North-Western railway about half-way between Lahore and Multan. Pop. (1901), 6602. It was founded in 1864 on the opening of the railway, and called after Sir Robert Montgomery, then lieutenant-governor. It is situated in a desolate upland, and though not unhealthy is singularly comfortless..

The District or Montcomery lies in the Bari Doah, or tract between the Sutlej and the Ravi, extending also acress the latter river. Area, 4771 sq. m.. In the former tract a fringe of cultivated lowland skirts the bank of either river, but the whole interior upland consists of a desert platean partialy overgrown with hrushwood and coarse grass, and in places with impenetrable jungle. On the farther side of the Ravi, again, the country at once assumes the same desert aspect. The population in 1901 was 463,586 , showing an apparent decrease of 0.4% in the decade due to emigration to the Chenah Colony. The principal crops are wheat, pulse, cotton and fodder. Camels are bred for export. The leading manufactures are of cotton and silk, and lacquered woodwork, and there are factories for ginning and pressing cotton. The district is traversed by the main line of the North-Western rallway, from Labore to Multan, and is irrigated by the Upper Sutlej imundation canal system, and also from the Rayi.
From time immemorial the Rechna Doab has rormed the horse of a wild race of pastoral Jats, who have constantly maintained a sturdy independence against the successive rulers of northern India. The sites of Kot Kamalia and Harappa contain large mounds of antique bricks and other ruins, while many other remains of ancient cilies or villages lie scattered along the river bank, or dot the now barren stretches of the central waste. The pastoral tribes of this barren expanse do not appear to have paid more than a nominal allegiance to the Moslem rulers, and even in later days, when Renjit Singh extended the Sikh supremacy as far as Maltan, the popalation for the most part temained in a chronic state of rebellion. British influence was first exercised in the district in 1847, when an officer was deputed to effect a summary settlement of the land revenue. Direct British rule was effected on the annexation of the Punjab ln 1849 . There was a general rising of the wild clans during the Mutimy of $\mathbf{2 8 5 7}$, several actions being fought before order was restored.

HOMrGOM ESY (Tre'Faldwyn), a mpnicipal and parliamentary borough, market town, and the county town of Montgomeryshire, Wales, situated on a wooded hill near the east bank of the Severn, 7 m . S. of Welshpool (Cambrian railway). Pop. (1901), to34. The principal feature of the town is the ruined castle. Not far of are the traces of an extensive British fort, and, about a mile east, the line of Offn's Dyke, forming the Shropshire boundary. The borough was incorporated by Henry LII., when the caste was enlarged, and was the scene of frequent contests between that king and Llewelyn the Great. In the 14th century the castle was held by the Mortimers, from whom it passed to the Yorkists. The Crown gave it, in the 15 th century, to the Herberts of Cherbury, one of whomn, in 1644, surrendered it to the Parliamentarians, who dismantled it.
MONTGOMERYSHIRE (Welsh Swydd Tre' Faldrey, Baldwyn's town shire), a county of Wales, bounded N. by Denbigh, N.E. and E. by Shropshire, S. by Radnor and Cardigan, W. and N.W. by Mecioneth. Its length from S.E. to N.W. is about 30 m .; N.E. to S.W. it measures about 35 m . The surface is broken, though the highest hills are only round the county borders-to the north Berwyn (stretching into Denbighshire); to the south-west Plinlimmon (q.v.); east, the Breidden hilis; south, the Kerry hills. The principal rivers and stresms are: the Severn, flowing east and north; the Wye, farther south; the Dyfi, Vyrnvy (Fyrnwy), Clywedog, Tanst and Rhiw. Except the Wye and Dyfi, the principal streams are tributaries of the Severn. Lake Vyrawy, firmed in 1888, in the chief water-supply of Liverpool. The Montgomeryshire canal, some 34 m . long, is connected with the Shropshire Union and Ellesmere canals, The county was formerly a recognized aource of oak timber for the navy.
Geologically the county is occupied almost exclusively by Ordovician and Silurian rocks. The latter, mainly Wenlock beds bordered by a fringe of Llandovery rocks, lie in the form of a complex syncline-down the centre of the county from a few miles north of Lake Vyrnwy through Llangadfan, Llanfyllin, Llanfair, Welshpool, Montgomery and Newtown. The boumdary is very liregular. Bootween Newtown and Kerry hill Ludlow beds come in, and on the edge. of the forest of Clun the Old Red Sandstone just crosses the boundary into this county. North and south of the Silurian tract the Ordovician rocks occupy the remaining area; they contain bands of andesite and felsite in the Berwyn hilif, also east of Criggion and south-west of Corndon. In the last-named hill there is a large laccolitic mass of dolerite and a similar rock occurs at Criggion. At Machynlleth slate is worked in the Ordovician, and numerous metalliferous mines exist in the neighbourhood of Newtown from which lead. silver and zinc are obtained. Glacial deposits are prevalent over much of the county.
The climate is mild, and the soil generally fertile, especially in the Severn valley, though towards Merinnethshire there are heath and moss. Small holdings (under about 50 acres) tend to diminish The hardy, small, mountaim poay is still to be found here. Hunters and oart-horses are bred. Sheepbreeding is practised, and Shropshire downs are superseding the little cluns. Of the relatively few green crops polatoes are the most important; oats are the principal grain. Permanent pasture covers a large area. Hill pasture is also extensive. Woollen cloth and flannel manufacture have revived considerably.
The Cambrian railway, entering Montgomeryshire in the north-east, by Llanymynech, crosses it to the south-weat with branches to Llanfyllin, Westbury and Van. There is also a branch from Caersws to Glandyfi (Glandovey) junction, with the cosstwise branch of the same company.
The area of the ancient and administrative counties if 510,112 acres, or 797 sq. m., with a popnlation of 54,901 in rgo1. Many of the people know no English, and Welsh is everywhere the favourite speceh. The county returns one member to parliament, and includes the Montgomery district of parliementary boroughs: Llanfyllin (pop. 1632), Llanidloes (2790), Montgomery (1034), Machynileth, Newtown and Welshpool (6121). The first three and last of these are municipal boroughs. The urban districts are: Newtown and Llanllwchaiarn (6500), and Machynlleth (2038). The county is in the North Wales and Chester circuit, assizes being held alteriately at Newtown and Welshpool.

Welahpool borough has a separate commission of the peace, but no separate court of quarter sessions. The ancient county (in Bangor, Herciond, and St Asaph dioceses) has 59 ecclesiastical parishes or districts, with parts of It others.
History and Antiquitios.-The Welsh name of Baldwyn's town shire is taken from a Norman who did homage to William the Conqueror for this division of Wales. The English name is from Roger de Montgomery, earl of Shrewsbury (lemp. Willian Rufus). At the coming of the Romans this county was part of the Ordovices' territory (Brilannia secunda), end there are remains of Roman encampments and.fortifications at Caersws, Mathrafal, and near Montgomery. The roads connecting these stations chn often be traced. Veatiges of a Roman camp are visibie near Wolohpool. Machynulleth. wes perhaps the. Roman Magloma. Remains of ald Britigh camps are to be seen at Dolarddyn, on Breidden hill and at Caereinion. There are many cairns and barrows. Crosaing the county was the Via Devama, joined by other roads. From the Roman evacuation under Flavius Honosius (d. A.D. 423) little is known of Montgomery until Wales was subdivided into three districts at the death of Rhodri Fawr, when Montgomery was included in Powys (Powys Gracarywwy, Upper Powys). Powys Castle was founded in ir8. About the end of the rith century, probably, was built Baldwyn's Castle, taken later by the Welah and retaken by Roger de Montgomery. In 1345 Rager Mortimer held it. At Carno, ir m. from Newtown and 17 from Machyalteth, a battle decisive of North Wales sovereigaty was fought in 946, and in ro81 the rightful heir, Gruffydd ab Cynan, together with Rhys ab Tudur, prince of South Wales, here killed in battle Trahsern ab Caradoc, the usurper, and most of his men. At Machyodlet his seen Owen Glendower's senate house (r 402) where he was crowned princo of Wales.

MONTH (a common Teutonic word, cf. Ger. Mond, Du. macnd, Dan. maomed, \&c., and cognate with Lat. menvis, Gr. $\mu \dot{\eta} y$, \&c., in other branches of the Indo-Germanic family; all ultimately from the root seen in the word for the moon in nearly all those languages), originally the period between two returns of the new moon; generally called a hunar and sometimes a synodic or illaminative month. The anomalistic month is the mean time taken by the moon in passing from one perigee to the vext; the sidareal month is the mean time in which the moon makes a circuit among the stars; the iropical monih is the mean time in which the mon traverses 360° of longitude; the nodical or draconic month is the mean time taken by the moon in passing from one rising node to the next; the solar month is one-twelfth inf a tropical year. The lengths of the various months are: synodic $=20.53059$ daya; anomalistic $=27.55460$, sidereal $=$ 27.32166 , tropical $=\mathbf{2 7 . 3 2 1 5 6}$, nodical $=27 \cdot 21212$, solar= 30-43685. (For the calendar mandis see Calendaz.)
In law a month may mean either a lunar mont h, that is, a period of twenty-eight days, or a calendar month. At common law, "month" generally means a lunar month, although in mercantile matters it has been generally understood to mean a calendar month, but there is no general exception giving it that meaning in commercial documents. It can only have that meaning where according to the ordinary rules of construction a aecondary meaning can be admitted (Brurer v. Moora, 1904, 1 Ch. 305). In bills of exchange or promissory notes month means a calendar month (Billa of Exchange Act, 1882, 5. 14 [4]). Where a servant is engaged subject to a month's notice or payment of a month's wages month is interpreted is a calendar month (Gordon v. Potter, I F. \& F. 644). In acts of parliament passed before the year 1850 month, unless otherwise specially lnterpreted, means Junar month, but in all acts passed since that date, month, unless words be added showing that lunar month was intended, means calender month (Interpretation Act 1889, 3. 3). In the rules of the supreme court and in the county court rules month means a calcndar month. In mercantile contracts in computing the period of a month the day from which the time is to begin to run is excluded, but in sentences of imprisonment the day on which the sentence begins is included, so that the numerically corresponding
day in the month in which the sentence explres would be excluded.

MONTHOLON, CHARLES TRISTAN, Marquis de (17821853), was born at Paris. He was trained for a military careax, and in his tent hyear shared in the expedition of Admiral Truguet to the coast of Sardinia. Entering the army in 1798 , he rose with rapidity and avowed himself, when chef d'escodron in Paris at the time of the coup d'dat of Brumaire (November 1799), entireiy devoted to Bonaparte. He served with credit in the ensuing campaigns, and distinguished bimself at the battle of Aspern-Essling (May 1809) where he was wounded. At the end of that campaign on the Danube he received the title of count and remained in close attendance on Napoleon, wbo confided to him several important dutles, emong others, a mission to the Archduke Ferdinand at Wuraburg. At the time of the first abdication of Napoleon at Fontainebleau (April in, 1814), Montholon was one of the few generals who advocated one more attempt to rally the French troops for the overthrow of the allies. After the second abdiantion (June 22, 1815) he with his wife accompanied the emperor to Rochefort, where Napoleon and his friends finally adopted the proposal, which emanated from Count Las Cases (q.v.), that he should throw bimself on the generosity of the British nation and surrender to H.M.S. "Bellerophon." Montholon afterwards, at Plymouth, asserted that the conduct of Caplain Maitland of the "Bellerophon" had been altogether honourable, and that the responsibility for the failure must rest largely with Las Cases. Monthoton and his wife accompanied the ex-emperor to 8t Helena. To Montholon chiefly, Napoleon dictated the notes on his carcer which form so interesting, though far from trustworthy, a commentary on the events of the first part of bis life. Montholon is known to have despised and flouted Las Cases, though in later writings he affected to laud his services to Napoleon. With Gourgaud, who was no less vain and sensitive than himself, there was a standing feud, which would have led to a duel but for the express prohibition of Napoleon. Las Cases left the island in November 1816, and Gourgaud in Jannary 1818; but Montholon, despite the departure of his wife, stayed on at Longwood to the end of the emperor's life (May, 182z). In a letter written to his wife he admitted that Napoleon died of cancer, though he afterwards encouraged the belief that death was due to a liver complaint aggravated by the climate and by the restrictions to which Napoleon was subjected. After that event Montholon and Bertrand became reconciled to Sir Hudson Lowe ($q, 0$.); but this did not prevent him, on his return to France, from vilifying that much abused man. Colonel Basil Jackson found him very frank as to the politique de Lonfwood which aimed at representing Napoleon as a martyr, and Sir Hudson Lowe as his persecutor: Montholon admitted that an "angel from heaven as governor would not have plased them." Montholon had to spend many yeart in Belgium; and in 1840 acted as "chief of staff "in the absurd "expedition" conducted by Louis Napoleon from London to Boulogne. He was condemned to imprisonment at Ham, but was released in 1847; he then retired to England and published the Refits de la captivite de Napoleon a Sla Hullme. In 1849 he became one of the depu:ies for the Legishative Assembly under the Suand Ifrench Republic. He died on the 21 st of August 18 -5.
Sce Recueil de püces authentiques sur le coptif de Sic III 12 no: suivi de letlres do MM... Le Génêral Montholon, \&e. (I) is, 1821): Mémoires pour scroir al thistoire de France sous Napotion (ed. Gourgaud and Montholon, Paris. 1823; Eng. ed., London, 1823; now ed., Paric, 1905): Recits de la captivies, de l'enspernur Napolian d Sie Hellene (2 vols., Paris, 1847). Also the Marquae de Montholon's Souvenirs de Sle Hétere, 1815-16 (Paris, 1901). Of Montholon's own writings the only one of note is De l'Armée francaise (1834). For the conversations of Montholon with Basil Jarkson in 1828, sen Licut.-Coloncl Basil Jackson, Noses and Reminiscences of ory -4 eicer (london, 1903).

MONTH's MIND, in medieval and later England a service and feast held one mont hafter the death of anyone in his or ber mernory. Bede speaks of the day as commenorationis dies. These "Minding dayg" were of great antiquity, and were survivals of the Norie minne or ceremonial drinking to the dend.
"Minnying Days," sayr Blount, " from the Saxon Lemynde, days which our ancestors called their Monthes mind, their Year's mind and the like, being the days whereon their souls (after their deaths) were had in speclal remembrance, and some office or obsequies said for them, as Orbits, Dirges." The phrase is still used in Lancashire. Elaborate instructions for the conduct of the commemorative service were often left in wills. Thus, one Thomas Windsor (who died in 1479) orders that "on my moneth's minde there be a hundred children within the age of sixteen years, to axy for my soul," and candles were to be burned before the rood in the parish church and twenty priests were to be paid by his executors to sing Placebo, Diriga, ac. In the correspondence of Thomas, Lord Cromwell, one in 1536 is mentioned at which a hundred priests took part in the mass. Commemorative sermons were usually preached, the earliest printed example being one delivered by John Fisher, bishop of Rochester, on Margaret. countess of Richmond and Derby, in 1509.
MONTILLA, a town of southern Spain, in the province of Cordova, 32 m . S. of the city of Cordova, by the CordoviBobadile railway. Rop. (1000), 13,603 . The oil of the district is abundant and good; and it is the peculiar flavour of the pale dry light wine of Montila that gives its name to the sherry known as Amontillado. Montilla was the birthplace of "The Great Captain," Goinzalo or Gorisalvo of Cqrdova (r453-r515), and contains the ruined castle of his father, Pedro Fernandez de Cordova.

CONTLOSIER, FRANGOIS DOMIMTQUE DE EETNAUD, Comte de (1755-1838), French publicist, was born at ClermontFerrand (Puy-de-Dome) on the ioth of April i755, the youngest of a large family belonging to the poorer nobility. He was returned in 379 I to the Constituent Assembly, where he sat on the Royalist side, and he emigrated on its dissolution in September 1791. He was received into the emigrant army at Coblenz after some protest against the Liberal leanings he had shown in the Assembly. After the cannonade of Valmy, he withdrew to Hamburg، and thence to London, where he avoided English society, moving exclusively among the French exiles. In his Courrier de Londres, published in London, he advocated moderation and the abandonment by the exiles of any idea of revenge. He was recalled to Paris in 1801, with permission to publish bis paper in Londoh. The Courrier was soon suppressed, nevertheless, its editor being compensated hy a comfortable sinecure in the ministry of foreign affairs. Next year he sold his pen to the government to edit the violent anti-English Bulletis de Paris. At Napoleon's request he undertook an account of the ancient monarchy of France, which should sorve as a justification for the empire. After four years' labour Miontlosier submitted his work to a specially appointed committee; by which it wes rejected becamse of the atress had on the feutal limitations of the royal authority. The wark De la morearchic franfaice ou recherchas sur les anctentes innstitutions frampaises. et swr les caksas qui ont amment la resolution . \therefore. appeared in $18: 4$ in three volumes, 2 fourth and supplementary; volume in the next year containing a preface hoatile to Napoleon. His views were no more acceptable to Louia XVIII. than they had been to the emperor, and he devoted himself to agriculture wintil he wis roused by the decical and reactionary policy. of Charles X. His anti-clerical if amoirs d consulter sur min syshems religisux, potilique . . . (1826) rapidly passed through eight editions He had no part in the revolution of 1830, but supported Louis Philippers governmest and entered the House of Peers in 1832. He died on the 9th of December 1838 at Blois. Ecclesiastical burial was denied him because be had refused to abjure him anti-clerical writings.

Among his wonke choreld be mentioned: Monoires swi ie rforiution franpoice, lo eonsindat. l'empire, la pestoration, at las prixcipencr twinements quil'ont suivic (2 vols., 1829).

MONTLUC (or Monlde), DLAISE DE LASBARAN-MASSTMCOME Seicnevr de (c. .i50a-1577), marshal of Frarce, was born about 1502, at the family seat near Condom in the modern department of Cers. He was the eldest son, and his family was I goed one, but, like most gentlemen of Gascony, he had to
temat to his aword. He served first as a private archor and man-at-arms in Lealy, with Bayard for his captain, fougbt all through the wars of Francis.I., and was knighted on the field of Cérisoles ($\mathbf{1 5 4 4}$), to which vittory be had brilliandly contrabuted os adviser to the young duke of Enghien. Having apparently enjoyed no patronage, be was by this time a man of middle age. Thenceforward, however, his merits were recognized. His chief feat was the famous defence of Siena (1555), which he has told so admirably. When the religious wars broke out in France, Moathec, a staunch royalist, held Guyeme for the king. Heary HL. made hina in 1574 marshal of France, an honour which be had earned by peariy balf a century of service and hy numerous wounde. He died at Estillec near Agoan in 1577 . Montluc's eminence above other soddiers of his day is due to his Commenteaves de Mersire Bloise de Monduc (Bordeaux, 1592), in which he described his fifty years of service (1521-1574). This book, the "soldier's Bible" (or " hreviary," according to others), as Henry IV. called it, is one of the most admirable of the many admirable books of memoits produced by the unkearned gentry of France at that time. It is said to have been dictated, which may possibly account in zome degree for the aingular vivacity and picturesqueness of the style.
The Commentaires are to be lound conveniently in the collection of Michaud and Poujoulat, but the seandard edition is that of the Societhe de litistoirs de France, ed. by M. de Ruble (5 vole, 1865) 1872). See Rüstow, Militürische Biographicn, v. i. (ZUlrich, 1858).

MONTLUCON, a town of cemral France, capital of an arrondimement, and the most important industrial centre in the department of Athier. Pop. (1906), 31,888. It is situated on the Cher, 50 m . S.W. of Moulins by the Orleans railway. The upper town, on an eminence on the right bank, consists of steep, narrow, winding streets, and preserves several buildings of the 15th and 16th centuries; the lower town, traversed by the Cher, is the seat of the industries, which embrace the manufacture of gloss, chemicals, mirrors, sewing-machines, and iron and steel production. The Commentry coal-mines and Neris, a town with thermal springs, are a few miles distant to the south-east. Of the churches, Notre-Dame is of the 15 th century, St Pierre partly of the 12th and St Paul modern. The town-ball, with a library, occupies the site of an old Ursuline convent, and two other convents are used as college and hospital. Overlooking the town is the castie rebuilt by Louis 11., duke of Bourbon, and taken by Henry IV. during the retigious wars; it serves as a barracks. Montlugon is the seal of a sub-profect and has tribunals of first mstance and of commerce, a board of trade arbitration, a chamber of commerce and a lyofe. The town, which formed part of the duchy of Bourbon, was taken by the English in 1171, and by Philip Augusius in 118i; the English were beaten under its walls in the ruth centary.
MONTMORENCY, the name of one of the oldest and most distinguished familics in France, derived from Montmorency, now in the department of Seine-ct-Oise, in the immediate neighbourbuod of Enghien and St Denis, and about 9 m . N.N.W. of Paris. The family, stince its first appearance in history in the person of Bouchazd 1., sire de Montmorency in the 1oth century, has furnished six constables and twelve marshals of Prance, several admirals and cardinals, numerous grand officers of the Crown and grand masters of various knighty orders, and was declared by Henry IV. to be, after that of the Bourbons, the first house in Europe. Mattriev I., sire de Montmorency, received in 1138 the post of constable, and died in n160. His first wife was Aline, the natural dxughter of Henry 1 . of England; his second, Adelaide or Alice of Savoy, widow of Louis VI. and mother of Louis VII., and according to Duchesne, he shared the regency of France with Suger, during the absence of the tatter king on the second crusade. Mattirisu II. had an important share in the victory of Bouvines ($\mathbf{1 2 1 4}$), and was made constable in 1218 . During the reign of Louis VIII. he distinguished himself chiefly in the south of France (Niort, La Rochelle, Bordeaux). On the accession of Louis IX. he was one of the chief supports of the queen-regent Blanche of Castile, and was surcecsstul in reducing all the vasuris to dotedienceal He ded in
8230. His younger son, Guy, in right of his mother, became bead of the house of Montmorency-Laval. Anse de Montmorency ((.v.), so namod, it is said, after his godmother Anne of Brittany, was the first to attsin the ducal title (I 551). His eldest son, Francons de Montmorency (1530-1579), was married to Diana, natural daughter of Henry IL.; another son, Henxi I. de Moatmorency (1 534-1614), who became duc de Montmorency on his brothers death in 1579, had been governor of Lapguedoc since r563. As a leader of the party called the Politiques he took a prominent part in the French wars of religion. In is93 he was made conscable, but Henry IV. showed some anxiety to keep him away from Languedoc, which he ruled like a sover. eign prince. Hendy II. (1595-1632), son of duke Henry I, succeeded tothe title in 1614, having previously been made grand admiral. He also was governor of Languedoc. In 1625 be defented the French Protestant fleet under Soubisc, and scized the stands of RE and Oteron, hat the jealousy of Richeliea deprivod him of the means of following up theso advantages In 10 28 -1 6 gh be was allowed to command against the duke of Rohan in Languedoc; in 1630 he defeated the Piedmontcse, and captured Prince Doria, at Avigliena, and took Saluzzo. In the same year he was created marshal. In 163_{3} he joined the perty of Gaston, duke of Orleans, and placed himself at the head of the rebel army, which was defeated by Marshal Schomberg at Castelnamdary (Sept. 1, 1632); sceverely woundod, he fell into the enerny's hands, and, abandoned hy Gaston, was executed as a traitor at Toulouse on the 30 th of October. The title passed to his sister Charlotte-Marguertre, princess of Condé.

Fromi the barons of Fosseux, a branch of the Montmorency family estabished in Brabant in the 15th century, sprang the scigneurs de Boutteville, among whom was the duellist Franccis de Montmorency-Boutteville, who was beheaded in 1627. His son, Frangols Heari, marshal of France, became duke of PineyLuxemhurg by tis marriage with Madeleine Chariote Bonne Therese de Clermont, daughter of Marguerite Charlotte do Luxemburg, duchesse de Pincy. Charies Frangois Frtdéric, the son of the marshal, was created duke of Benufort in 1688 and duke of Montmorency in $\mathbf{r 6 8 9}$. In 1767 the title of duke of Beaufort-Montmorency passed hy marriage to another branch of the Montmorency-Fosseux. This branch becoming extinct in 1862, the title was taken by the duc de Valencay, who belonged to the Talleyrand-Ptrigord family and married one of the two heiresees of this branch (1864). There were many other branches of the Montmorency family, among others that of the seigneurs of Laval (q.v.), a tadet hranch of which recceived the title of duke of Laval and sectiled on the estate of Magnac in 1758. It is to this branch that Mathieu, duc de Mont morency ($\mathbf{r 7 6 7 - 5 8 2 6 \text {), dlplomatist and writer، and tutor of Charies X.'s }}$ grandson, Henri, duke of Bordeaux, belonged.
MONTMORENCY, ANNE, DuC dE ($\mathbf{1 4 9 3 - 1 5 6 7 \text {), constable of }}$ France, was born at Chantilly, and was brought up with the future King Francis I., whom he followed into Italy in 1515 , distinguishing himself espectally at Marigrano. In 1516 he became governor of Novara; in 1520 he was present at the Fietd of Cloth of Gold, and afterwards had charge of important negotiattons in Enghand. Suecessful in the defence of Merières (1521), and as commander of the Swiss troops in the Italian campaign of the same yeur, he was made marshab of France in 1522, accompanied Francis into Italy in 1524, and was taken prisoner at Pavia in 1525 . Released soon afterwards, be was ode of the negotintors of the treaty of Madrid, and in 1530 reconducted the king's sons into France. On the renewal of the wat by Charles V.'s invasion of France in 1536 , Montmorency compellod the emperor to raise the siege of Marseilles; be aiterwards accompanied the king of France into Picardy, and on the termination of the Netherbends carmpaign marched to the relief of Turin. In 1538, on the ratification of the ten years' truce, he was rewarded with the office of constable, but in is4I be fell into diggrate, and did not return to public life until the accession of Henry II. in $\mathbf{5 4 7}$. In 1548 he repressed the insurrections in the corthmerty perticulminy at Borterux, with great sevariky.
and in 1549-50 conducted the war in the Boulonnais, negotiating the treaty for the surrender of Boulogne on the 24 th of March 1550. In is5i his barony was erected into a duchy. Soon afterwards his armies found employment in the north-east in connexion with the scizure of Meta, Toul and Verdun by the French king. His attempt to relieve St Quentin resulted in his defeat and captivity (Aug. 10, 1557), and he did not regain his liberty nntil the peace of Cateau-Cambresis in 1559 . Supplanted in the interval by the Guises, he was treated with coldness by the new king, Francis II., and compelled to give up his mastership of the royal household-his son, however, being appointed marshal by way of indemnity. On the accession of Charles IX. in 1560 he resumed his offices and dignities, and, uniting with his former enemies, the Guises, played an important part in the Huguenot war of 1562. Though the arms of his party were victortous at Dreux, he himself fell into the hands of the enemy, and was not liberated until the treaty of Amboise (March 19, 1563). In 1567 he again triumphed at St Denis, but received the death-blow of which be died at Paris, on the rsth of March, 1567.
See F. Decrue, Anne de Montonorency (Paris, 1885), and Anme, duo de Monimorency (Paris, 1889).

MONTMORENCY, MATHIEU JBAN FRLCITA DE MONT-MORENCY-LAYAL DUC DE (1766 -1826), French politician, was born in Paris on the 10th of July 1766. He served with his father, the vicomte de Laval, in America, and returned to France imbued with democratic opinions. Mathieu de Montmorency was governor of Compiégne when he was returned as deputy to the states-general in 1789 , where he joined the Third Estate and sat on the left of the Assembly. He moved the abolition of armorial bearings on the rgth of June 1790 . The dissolution of the Constituent Asscmbly in September 1791 set him free to join Lackner's army on the fronticr early in the next year. After the revolution of the roth of August he abandoned his revolutionary principles; and he took no part in politics under the empire. At the Restoration he was promoted maréchal de camp, and accompanied Louis XVIII. to Ghent during the Hundred Days. At the scoond restoration he was made a peer of France, and two years later received the title of viscount. He adopted strong reactionary and ultramontane views, and became minister of foreign affairs under Villele in 1821 . He recommended armed intervention in Spain at the Congress of Verona in October 1822, but he resigned in December, being compensated by the title of duke and the cross of the Legion of Honour in the next ycar. He was elected to the French Academy in 1825, though he appears to have had small qualifications for the honour, and in the next year became tutor to the six-year-old Henri, duke of Bordeaux (afterwards known as the comte de Chambord). He died two months after recelving this last appointment, on the 24th of March 1826 .

See Vetillard, Notice sur la vie de M. le duc Mathien de Montmorency (Le Mans, 1826), and, for his curious relations with Mime de Staél, P. Gautier, Mathicu de Montmorency et Mme de Siad, d'apres les leltres imedites de M. de Monimorency da Mme Necher de Saussurt (1908).
MOMTM ORENCY, a town of northern France in the department of Seine-et-Oise, $2 \frac{1}{\mathrm{l}} \mathrm{m}$. from the rigbt bank of the Seine and 11 m . N. of Paris by rail. Pop. (1906), 5723. In the middle ages it was the seat of the family of Montmorency. There is a church
1 built for the most part in the 16 th century by Anne de Montmorency. The town is a well-known resort of Parisians. To the north-east lies the fine forest of Montthorency. Bleaching and dyeing and the manulacture of lime plaster, bricks and tiles are carried on. About a mile south-west lies Enghien-lea-Bains (pop. 4925), the waters of which are used in cases of catarrh and skin disease.
rentMORILLON, a town of western France, capital of an arrondissement in the department of Vienne, on the Gartempe, 34 m. E.S.E. of Poitiers by rail. Pop. (1906), 3924. The ecclesinstical seminary orcupics a building of the 12 th century, formerly an Augustinian convent. The convent church is Romanesque in style and there is a curious two-storiod chapel
of octagonal form, of the same period. The church of NotroDame is a combination of Romanesque and Gothic, dating from the 12 th and 13 th centuries.

MOMTMORIM DE BAINT HKAEM, ARMAND MARC, COMTR DE ($1745^{-1} 792$), French statesman, belonged to a cadet branch of a noble family of Auvergne. He was gentleman-in-waiting to Louis XVI. when dauphin, and was subsequently appointed ambassadoc at Madrid. From Madrid be was suddenly sammoned to the governorship of Brittany, and in 1787 was appointed by the king to succeed Vergennes in the ministry of foreign affairs. Montmorin was a devoted admirer of Necker, whose influence at the court he was mainly instrumental in maintaiming. He retired when Necker was dismissed on the 12th of July 1789, hut on Necker's recall after the taking of the Bastille again resumed his office, which he continued to hold till October 1791. Mirabeau (q.o.) had spproached him so early as December 1988, with a plan for the policy to be pursued hy the court towards the new states general; hut Montmorim, offended by Mirabeau's attacks on Necker and by his Histoirs secrite de la comer de Berlin, refused to see him. With the progress of the Revolution, however, this attitude was changed. The comte de la Marck was exerting himself to bring Mirabeau into touch witb the court (see Mreabeau), and for this purpose it was important to secure the assistance of Montmorin. The convenience of an understanding between the two men was obvious; and they were soon on the closest ternis. While Montmorin continued minister in name, Mirabeau became so in fact. Montmorin did not dare to come to a decision without consulting his masterful friend, but on the other hand neither Mirabeau nor La Marck were under any illusions as to the broken character of the reed on whicb they had perforce to lean. Mirabeau complained bitterly that Montmorin was " slack " (Aasque) and a "poleroon" (gapocke). On the other hand, La Marck thought that Montmorin's feebleness was occasionally useful in restraining Mirabeau's impetuosity. The death of Mirabeau in April 1791 was a severe hlow to Montmorin, the difficulty of whose position was enormously increased after the fight of the royal family to Varennes, to which he was not privy. He was forced to resign office, but atill continued to advise Louis, and was one of the inner circle of the king's friends, called by the revolutionists "the Austrian Committee." In June 1792 his papers were seized at the foreign office, without anything incriminating being discovered; in July he was denounced, and after the roth of August was proscribed. He took refuge in the house of a washerwoman, but was discovered, haled before the Legislative Assembly, and imprisoned in the Abbaye, where he perished in-the September massacres. His relative, Louis Victor Henri, marquis de Montmorin de Saint Hetrem, head of the elder branch, also perished in the massacre.

See A. Bardoux Pauline de Montmorix, combesse de Becemont: Eludes sur la fin du XVII $1^{\text {Dom }}$ stècle (Paris, 1884), for a defence of Montmorin's policy; F. Mtaseon. Le Département des affaives Itrangères pendant le révoludion, 1787-1804، ch. ii. (Paris, 1877): A. de Bacourt, Correspondance entre Mirabeau at te comic de Lo Marck: $1780-1791$ (3 vols, Paris, 1851), contains many letters of Montmorin; "Correspondence of the Comte de Moustier with the Comte de Montmorin," in the Amer. Hist Rev., vol viii. ($5902-1903$).

MOMTORO, a town of southern Spain, in the province of Cordova, 27 m . E. hy N. of the city of Cordova, on the MadridCordova railway. Pop. (1900), 14,581. Montoro was the Epora of the Romans, and became an important Moorish fortress in the middle ages, but it has been largely modernized. It stands on a rocky peninsula on the south bank of the Guadalquivir, here crossed by a fine bridge of four arches dating from the $16 \mathrm{th}^{\mathrm{h}}$ century. Oil is largely manufactured, and there is considerable trade in timber, agricultural produce and livestock.

MOMTPELIER, a city, the capital of Vermont, U.S.A., and the county-seat of Washington county, on the Winooski river, 40 m . (hy rail) E.S.E. of Burlington. Pop. (1900), 6266 (952 foreign-born), (1910), $\mathbf{7 8}_{56}$. Montpelier is served by the Central Vermont and the Montpelier \& Wells River railways. Barre granite is mined extensively in the vicinity, and the city manufactures marble and granite products, four, lumber, saddlery
hardware and wood-working machinery. The peincipal building is the state house, crowned by a statue of Agriculture by Lark in G. Mead. The state house was first occupied in 1836. It was almost completely destroyed by fire in 1857; and was subsequently rebuilt and enlarged. Other prominent features of the city are the United Statea governmont building, the county court hoase, the Montpelier seminary and the Wood art gallery, a collection consisting principally of paintings by Thomas Waterman Wood (1823-r903), a native of Montpelier. The township of Montpelier, named from the city in France, was granted to a company of sixty proprietom in 1780. The first permanent settlement was made in 1787 ; and the township was organized in 1791 under a charter of 1781 , replaced by another in 1804. In 1805 it was selected as the capital of the state, and in 1808 the legislature met here for the first time. At first the township was a part of Orange county, but in 1810 Washington county was created, and in 18 I y Montpelier becainc the seat of government of the new county. In 1849 East Montpelier was set apart as a separate township, and in 5894 the township of Montpelier was chartered as a city.

MONTPELLERA. a town of southern France, capital of the department of Hérault, about 7 m . from the Mediterrancan, and $31 \mathrm{~m} . \mathrm{S} . \mathrm{W}$. of Nlmaes on the Paris-Lyon railway between that town and Cette. Pop. (1906), 65,983 . Montpellier, the seat of a university and the principal place of lower Languedoc, is sitnated in a fruifful plain lese tban a mile from the right bank of the small river Lex. Composed for the most part of narrow winding streets, the town has at the same time several spacious thoroughfares and some fine squares and promenades, notably the muchfrequented Place de la Comedie, the Esplanade and the Peyrou. The last terminates in a terrace commanding a magnificent view of the coasts of the Mediterranean, and of the Pyrences and Alps. On the terrace is situated the reservoir of the town, the water bcing brought from a distance of about 8 m . by an aqueduct. In the centre of the square is an equestrian statue of Louis XIV., while opposite the entrance is the Porte de Poyrou, a triumphal arch erected at the end of the 17 th century to commemorate the achievements of Louis XIV. The Boulevard Henri IV. to the notth leads past the botanical garden, founded in 1593 and thus the oldest in France, the medical college, and the cathedral; to the east the Rue Nationale leads to the palace of justice, the prefecture, and the citadel. The cathedral (14 th century), which until 1536 was the church of a Benedictine monastery, suffered severely during the religious wars, and about the middle of the igth century the choir and one of the four towers at the angles of the nave were rebuilt in the style of the isth century. The monastery, after heing converted into the bishop's palace, has since 1795 been occupied by the famous medical school. A gallery devoted to the portraits of professors since 1239 contains one of Rabelais. Close to the medical school is the Tour des Pins, the chief relic of the medieval fortifications. The museum (Musfo Fabre) contains rich collections of Italian, Flemish, Dutch and modern French paintings and of French sculptures. Its nucleus was the collection given to it by the painter F. X. P: Fahre ($1766-1837$), born at Montpellier. The principal public huildings are the palace of justicea modern structure, the theatre and the prefecture, also modern. Montpelliar possesses old houses of the \mathbf{r} gth and 16 th centuries. The Lez is canalized $\mathbf{s o}$ as to connect Montpellier with the canal du Midi and with the sea at Palavas. The town has a considerable trade in wine, brandy, fruit and silk. The principal industrial establishment is a manufactory for candles and soap. There are also tanneries, distilleries and manufactories of cot ton and woollen goods, chemicals, casks, hosicry and chooolate. The town is the centre of an acadomic (educational division) and has long been renowned as a geat of learalng. Montpeliier university comprises faculties of medicine, law, science and letters, and a higher school of pharmacy. Montpellier is also the seat of a bishop and a prefect, of courts of appeal and assizes, tribunaks of first instance and of commerce, a chamber of commerce, a board of trade arbitration, and headquarters of the XVI. army corps.

Montpellier first rose into importance after the destruction of Maguelonne by Charies Martel in 737. In the roth century it consisted of two portions, Montpellier and Montpellieret, held from the bishops of Maguelonne by the family of Guilhem. The Guilhems were succeeded, through marriage, by the house of Aragon, a member of which in 1349 sold his rights to Philip of Valois, Montpellieret having already in 1292 been ceded to the Crown by the bishops. In 1141 Montpelijer acquired a charter afterwards materially exteaded, and the same century saw the rise of its school of medicine. Several of the ablest teachers of that school were members of an important Jewish colony established in the town. It had a school of law in ir6o, and a university was founded by Pope Nicholas IV. towards the close of the 13th century. Louis IX. granted to Montpellier the right of free trade with the whole of the kingdom, a privilege which greatly increased its prosperity. The importance of the town was enhanced when the bishopric of Maguelonne was transferred thither in 1536 . During the wars of rehion the town was a atronghold of the Protestants, who captured it in 1567 . It strenuously supported the duke of Rohan in his revolts and in 1622 only succumbed to Louis XIII, after a siege of eight months. In 1628 the duke was defeated there and the walls of the town razed, the royal citadel built in $\mathbf{6 2 4}$ being, however, spared. Louis XIII. made Montpellier the seat of one of the gentralilds of Languedoc, and the states of that province met there during the r 7 th and r 8 th centuries.

See A. C. Germain, Fistoire du commerce de Montpellier antfrieure. ment d l'ouserture du' port de Celte (2 vols., Montpellier, 186 t), and Histoire de la communt de Montpellicr (3 vols., Montpellier, 1851): Aigrefeuille, Histoise de la ville de Momepellier (4 vole., Montpeliier, 1875-1882).

MONTPENEIER, COUNTS AND DUKES OF. The French lordship of Moatpensier (department of Puy-de-Dbme), which became a countahip in the rath centary, was sold in 1384 by Bernard and Robert de Ventadour to John, duke of Berry, whose daughter Marie brought the countship to her husband, John I., duke of Bourbon, in 1400 . The countship was subsequently held by Louis de Bourbon, younger son of Duke John, and by his descendants up to Charlea de Bourbon-Montpensier, the famous constable, who became duke of Bourbon by his marriage with his cousin, Suzanne de Bourbon, in 1505 . Confiscated by King Francis I., the countship was restored in 1538 to Louise de Bourbon, sister of the constable, and widow of the prince de La Roche-sur-Yon, and to her son Louis ($1513-\mathrm{r} 582$), aad was erected into a duchy in the peerage of France (duchd-pairic) in 1539 . Marie, daughter and heiress of Henri de Bourbon, duke of Montpensier, brought the duchy to her husband Gaston, duke of Orleans, brother of Lovis XIII., whom she married in 1626, and their daughter and heiress (see below), known as " La Grande Mademoiselle," was duchess of Montpensier. The title subsequently remained in the Ortcans family, and was borne in particular by Antoine Philippe (1775-1807), son of Philippe "Egalite," and Antoine Marie Philippe Louis (r8241890), son of King Louis Philippe and father-in-law of King Alphonso XII. of Spain.

MOMTPENSIER, ANNE MARIE LOUISE D'ORLEANE, Duchesse de (1627-1693), French memoir-writer, was born at the Louvre on the 2gth of May 1627. Her father was Gaston of Orleans, "Monsieur," the brother of Louis XIII. Her mother was Marie de Bourbon, heiress of the Montpensier family. Being thus of the blood-royal of France on both sides, and heiress to immense property, she appeared to be very early destined to a splendid marriage. It was perhaps the greatest misfortune of her life that " la grande mademoiselle" was encouraged to look forward to the throne of France as the result of a marriage with Louis XIV., who was, however, eleven years her junior. Illluck, or her own wilfulness, frustrated numerous plans for marrying her to persons of exalted station, including even Charies II. of England, then prince of Wales. She was just of age when the Fronde broke out, and, att ributing as she did her disappoint ments to Mazarin, she sympathized with it not a little. In the new or second Fronde she not enly took nominal command of one of the
armies on the princes' side, but she literally and in her own person took Orleans by escalade. However, she had to retreat to Paris, where she practically commanded the Bastille and the adjoining part of the walls. On the and of July 1652, the day of the battle of the Faubourg Saint Antoine, between the Frondeurs under Condé and the royal troops under Turenne, Mademoisclie saved Condé and his beaten troops by giving orders for the gates under her control to be opened and for the cannon of the Bastille to fire on the royalists. In the heat of the emeute which followed she installed herself in the Hotel de Ville, and played the part of mediatrix between the opposed parties. Her political importance lasted exactly six months, and did her little good, for it created a lifelong prejudice against her in the mind of her cousin, Louis XIV. She was for some years in disgrace, and resided on her estates. It was not till 1657 that she reappeared at court, but, though projects for marrying her were once more set on foot, she was now past her first youth. She was nearly forty, and had already corresponded seriously with Mme de Motteville on the project of establishing a ladies' society " sans mariage et sans amour," when a young Gascon gentleman named Puyguilhem, afterwards celebrated as M. de Lauzun (q.v.), attracted her attention. It was some years before the affair came to a crisis, but at last, in 1670 , Mademoisclle solemnly demanded the king's permission to marry Lauzun. Louis, who liked Lauzun, and who had been educated by Mazarin in the idea that Mademoiselle ought not to be allowed to carry her vast estates and royal blood to anyone who was himself of the bloodroyal, or even to any foreign priace, gave his consent, but it was not immediately acted on, as the other members of the royal family prevailed with Louis to rescind his permission. Not long after wards Lauzun, for another cause, was imprisoned in Pignerol, and it was ycars befort Mademoiselle was able to buy his release from the king by settling no small portion of her estates on Louis's bastards. The elderly lovers (for in 1681 , when Lauzun was released, he was nearly fifty, and Mademoiselle was fifty-four) were then secretly married, if indeed they had not gone through the ceremony ten years previously. But Lauzun tyrannized over his wife, and it is said that on one occasion he addressed her thus, "Louise d'OrlGans, tire-moi mes bottes," and that she at once and finally separated from him. She lived for some years afterwards, gave berself to religious duties, and finished her Mimoires, which extend to within seven years of her death (April 9, 1693), and which she had begun when she was in disgrace thirty years earlier. These Memoires (Amsterdam, 1729) are of very considerabie merit and interest, though, or perhaps because, they are extremely egotistical and often extremely desultory. They are to be found in the great collection of Michaud and Poujoulat, and have been frequently edited apart. Her Eight Beatiludes has been edited by E. Rodocanachi as Un Outrage de pille inconnи (1908).

See the series of studies on La Grande Mademoiselle, by " Arvide Barine" (1902, 1905).
(G. Sa.)
montreal, a city of the Dominion of Canada, its leading seat of commerce and principal port of entry, as well as the centre of many of its important industries. It is situated on the southeast of the island of Montreal, at the couffuence of the Ortawa and St Lawrence rivers, in the county of Hochelaga and province of Quebec. The observatory in the grounds of McGill University, in the city, has been determined to be in $45^{\circ} 30^{\prime} 17^{\circ} \mathrm{N}$. lat., and $73^{\circ} 34^{\prime} 40^{\circ} 05^{\prime \prime} \mathrm{W}$. long. The city holds a fise posilion at the head of ocean navigation, nearly a thousand miles inland, and at the foot of the great system of rivers, lakes and canals upon which the commerce of the interior is carried to the Allantic scaboard. The ship channel below Montreal permits the pasage of occan vessels drawing 30 ft . at low water. The deepening of the channel, largely duc to the initiative of Montreal merchants, was begun in 1844 by the government of Canada! The work was transferred to the Harbour Commissiosers of Montreal ia 1850 . The depth of the channel was then iI ft . Fifteen years later it had gradually been incronsed to 20 ft .; and in 1888, when the work was taken over by the Dominion government, the depth was if ne 6 init The Latthite cenals
with the chain of artificial waterways that succeeded it, opened the way for the shipping of the Great Lakes. The first sod in the digging of the Lachine canal was turned in July 182 t by John Richardson of Montreal. The same public-spirited merchant presided in April of the following year at the preliminary meeting which led to the formation of the committee of trade, itself the forerunner of Montreal's indispensable board of trade. Even before the close of the French regime in Canada efforts had been made to cut a canal across the island of Montreal, and M.de Catalogne succeeded in building a waterway practicable for the canoes of the fur-traders. The more ambitious canal commenced in 1821 was completed four years later, at a cost of $\$ 440,000$. Before its completion, howrever, the increasing draught of inland shipping made it practically useless, and in 1843 work was begun on an enlargement. Since then the canal has been repeatedly deepened, to keep pace with the requirements of lake shipping, until to-day a $14-\mathrm{ft}$. channel is availahle. In the meantime the rival method of rail transportation was taking shape, and in 1836 the first Canadian railway was opened, bet ween Laprairie, opposite Montreal and St Johns, in the eastern townships. In 1848 a second railway, from Longueuil to St Hyacinthe, was opened; both these projects owing their existence to the enterprise of Montreal ditizens. The broad St Lawrence, however, still lay between the city and the outside world. In 1854 work was commenced upon the famous Victoria tuhular hridge, designed by Robert Stephenson and A. M. Ross. The hridge was opened by King Edward VII., tben prince of Wales, in 1860 . In 1898 it was replaced by the Victoria Jubilee bridge, huilt on the piers of the old bridge. At the foot of Lake St Louls, some distance above the Victoria Jubilce bridge, the Canadian Pacific railway crosses the river on a graceful cantilever bridge with two central spans each 408 ft . long. Montreal is on the Canadian Pacific, Grand Trunk, Intercolonial, Canadian Nortbern, New York Central, Rutland, Central Vermont and Delaware \& Hudson railways. During the season of navigation several lines of well-appointed steamers maintain communication with Liverpool, London, Glasgow, Bristol and other British and European ports, as well as the principal ports on the river and gulf of St Lawrence and the Great Lakes. A system of electric railways covers every section of the city and affords easy communication with the suburbs and nelghbouring towas.

Built originally along the water-front, Montreal has in the course of years swept back over a series of terraces-former levels of the river or of a more ancient sea-to the foot of Mount Royal. Held there, it has been foroed around the mountain on either side. Mount Royal, from which the city derives its name and so much of its natural beauty, is a mass of trap-rock thrown up through the surrounding limestone strata 10 a height of 753 ft . above the level of the sea. Under the direction of Frederick Law Olmsted, it was converted into a magnificent park. Between mountain and river the Lachine canal winds through the plain. In the middle of the river lies the beautifully wooded St Helen's island, rising to a height of $\mathbf{r} 50 \mathrm{ft}$. above the water, and itself commanding an excellent view of the city. The island, named after Helen Boulle, wife of Champlain, belonged ano time to the berons of Longueuil. The British government purchased it for military purposes, and it still contains a battery of guns and barracks, the latter tenantless, since the island has been loaned to the city for use as a public park.

The city is substantially built, grey limestone, quarried from the mountain, predominating in the public and many of the private edifices. On the soath of the Place d'Armes, a smaH enclosure covering the site of an ancient burying-ground, stands the parish church of Notre Dame, whose Cot hic outlines form one of the striking features of the city. Designed by James O'Donnell, the church was built in $\mathrm{IB24}^{4}$ to take the place of an earlier structure dating back to $\mathbf{8 6 7 2}$. The existing church is 255 ft . loag and 134 ft . wide, and accommodates 10,000 worshippers. Its I win towers (227 ft .) contain ten bells, one of which, knowa as "Le Gros Bourdon," weighs $\mathbf{2 4 , 7 8 0} \mathrm{th}$, the largest in America. Two others weigh respectively $604 t$ and 3633 ith. Beside the

few remaining relics of the days of Prench rule. Thia ancient building is now used for the offices of the Order of Sulpicians, founded by the Abbe Olier in the early half of the 17th centary. This zealous enthusiask had sent out Paul de Chomedy, sieur de Maisonneuve, in 1641 to establish the missionary enterprise which afterwards developed ince the city of Montreal, and six years later the Abbe de Quehus, with three devoted companions, landed at Ville-Marie de Montreal and laid the foundations of the future powerful Order of Sulpiciana. The seigneory of Montreal, acquired by Olier in 1640, is still held by the Sulpicians, and as they have retained large blocks of land in the heart of the city as well as elsewhere on tho islend, these "Gentlemen of the Seminary," as they were locally called, rank among the wealthiest societies in America. The head offices of the Bank of Montreal face Notre Dame church, on the north of the Place d'Armes, and several other of the leading banking institutions of the city have their quarters in the immediate neighbourbood. In the Place d'Armes ioself stands atriking figure in bronze erectod to the memory of the founder of Montreal, Maisonnerva. At the base are a series of bas-reliefa sotting forth historicad becidents connected with the cady history of the town. The monument is the work of a Canadian sculptor, Louis Phllippe Hebert, C.M.G. The Roman Cathoifc cathedral of St James stands upon Dominion Square. It is an almost exact reproduction, redaced to one-hall the scale, of St Peter's at Rome. The building, projected by the late Archbishop Bourget to replace the old church on St Donis street destroyed in the great fire of $\mathbf{3 8 5 2}$, was begun in $\mathbf{3 6 5 8}$. On the west of the square stand the Windsor Street atation of the Canadian Pacific railway; St George's (Anglioan) church, which possesses a fine chime of bells; and the Windsor Hotel. A statue of Sir John Macdonald occupies the centre of the equare. Cloee to the historic Bonsecours Market stawds the church of Notre Dame de Bonsecours, forunded, by Sister Marguerite Bourgeois in 1673 as a sanctuary for a míraculous sonkue of the Virgin. The original church was burned in 1754, and the present building, erected in 1771, an example of Norman architecture transplanted to the New World, narrowly escaped destruction to make room for a railway station. Curiously enough, it remained for number of English Protestants to secure the preservation of this relic of the French period. Jacques Cartier Square, adjoining Bonsecours Market, is notable for its column and statue of Nelson, erected In 1808. As the Roman Catholic cathedral owes its existence to the energy and emthusiasm of ArcMbishop Bourget, so Christ Church cathedral must aiways be associated with the name of the first resident Anglican hishop of Montreal, Dr Fulford. The church ita fine example of the Early English style of architecture. Beside it stands a memorial of Bishop Fulford, modelled after the famous Martyp's Memorial at Oxford.

The mixture of races and creeds, which is so striking a charac teristic of Montreal life, has not only endowed the city with many beautiful charches, but alse with varieties of philanthropic institutions. Each of the severval national societies-St George's, St Andrew's, St Patrick's, and that of the French-Canadian patron saint, St Jean Baptiste, to mention no others-looks after the welfare of its own adherents. Of the several hospitals, the most venerable is the Hotel Dieu, founded in 1644 by Mme de Boxilkon, a French lady of high rank. The original building, in the early days of Vilie Marie, stood without the fort, and was fertified to withstand the attacks of the Iroquois. The site is now covered by a block of warehouses on St Paul Street. The present buildings, completed in 1861, contain both a hospital andnumnery: The Order of the Grey Nuns, founded by a Canadian lady, Mme d'Youville, in 1737, cares for hundreds of foundlings and aged and infirm people in the great hospitad in Guy Street. The Montreal General hospital was founded in t819 by public subscriptions, and the Royal Victoria hospital Is a monument to the generosity of Lord Strathcona and Lord Mount-Stephen. Besides these should be mentioned the Notre Dame, the Western and the Children's Memorial hospitals. Separate hospitals for contagious diseases are maintained both by the Roman Cacholice and Protestants.

Moncreal grovidet for the ectucation of ths yormg people through two distinct systems of public schools, one for Roman Catholics, the other for Protestants, each governed by a boerd of commissioners. The schools are maintained by an annual tax based upars the assessment, two-fiths of 3% being levied upon the Protestant section of the community for the support of the Protestant schools, and onequarter of 1% upon the Catholics for their schools. Unfike the neighbouring provinces of Ontario, Quebec makes no provision for a state university. But Jamen McGill (1744-1813) left property, valued at the time of his death at $\{30,009$, for the foundation of a university, one college of which was to bear his name. A royal charter conferring univertity powers was obtained in $\mathbf{1 8 2 1}$. During early years slow progreas was taade, bat with the appointment of Sir William Dawson as principal, in 1855, the institution entered on a career of piospority. It now embraces five faculties: arts, applied sciance, kaw, medicine, agriculture, and comprises the following: MeGGill Collage, Montreal, the original foundation; the Royal Victoria Coltege for Women, Montreal, built and endowed by Lord Strathcona; four affiliated theological colleges in Montreal; the Macdonald College, erected and endowed by Sir William C. Macdonald, at Ste Anne de Bellevue, 20 m . From the city; the McGiH University College of British Columhia, Vancouver, B.C.; and three affiliated colleges: Stanstead Wesleyan College, Stanstead, P.Q.; Victoria College, Victoria, B.C.; Alberta College, Edmonton. The finely-equipped Macdonald scientific laboratories, with the Redpath Museum and University Library (1 ra,000 vols, in 1907), form part of a noble group of buildings on the campus in Montroal. Disastrous fires in April 1907 wiped out two buildings and destroyed the splendid medical museum, but the plans for rebuilding provided for further extension and improvement. Previous to the fires the property of the university in bulldings in Montreal, inchuding equipment and endowment, was valued at $\$ 6,000,000$

The French university of Laval, the chief seat of which is in the city of Quebec, also maintains a branch at Montreal, established in 1877. It embraces the faculties of arts, law, medicine and theology, the hutter conducted through the Seminary of St Sulpice. The college library has been enriched by a rare collection of Canadian books and manuscripts, bequeathed by Judge Louis Françis Georges Baby (1834-1906), of Montreal. The medical school, which now occupies a portion of the university building, formerly held its scessions in the historic Chateau de Ramesay, built by the Chevalict de Ramesay, governor of Montreal, in 1704 and obcupied after the conquest by the British governors of Canada, until the stoning of Lord Elgin and the burning of the Parliamemt Buildings in 1849 brought about the remoxal of the seat of govermment from Montreal. The Chateau de Ramesay is now the fitting bome of a public collection of historic reliss. Of other educational institutions in the city the most importamt is St Mary's College, founded in $\mathbf{1 8 4 8}$ by the Jesuits, and removed to the present building in 1855 . The archives boast a notable collection of early Canadian manuscripts, upon which Francis Parkman drew in preparing his histories of New France.

Montreal's position as the chief doorway of the outgoing and incoming trade of the Dominion Is largely due to the foresight of her great merchants. With the gradual opening up of means of communication by land and water, and the development of her facilities for handliag the exports and imports of the country, the city has increased rapidly in importance, until to day onethird of the imports of the Dominion come through Montreal, and nearly 30% of the exports. In shipments of grain Montreal has outstripped all her rivals on the continent except New York and New Orleans, and the building of the Georgian Bay canal will, by materially shortening the distance between the western grainfirlds and European markets, give her a very considerable advantage over both these ports. In dairy produce she is already the chief export centre of the continerit. Montreal is also the financial centre of Canada, and in it are to be found the head offices of more than 25 important banks, of the leading insurance companies, and of the two greatest railways of the country.

Montreal is governed by a mayor and 36 aldermen, clected every two years. The city returns 5 members to the Dominion Housc of Commons and 6 to the Provincial Legislature of Quebec.

The population of Montreal, according to the census of 1901, was 266,826 . With the auburbs, it was estimated in 1907 at over 405,000, about three-fifiths French.
The history of the town is steeped in romance. From that first remarkable scenc, wo graphically described by Francis Parkman, when, on the 18th of May 1642, Maiconneuve and his little band of religious enibusiasts landed upon the spot where the Montreal Custom House now stands, and planted, in the words of the saintly Dumont, a grwin of mustard seed destined to overshadow the land, the history of the town was to be intimately ascocisted with missionary enterprise and such missionary beroinem as the world has rarely seen. Montreal began as a religious colony, but its very situation, on the outer confines of civilization and at the door of the Iroquois country, forced it to become a military settlement, a fortified town with a military garrison. Similarly its position, even then an ideal one from a commercial point of view, made it the dominating centre of the fur-trade. For a hundred years after its foundation these three infuences beld sway, more or less mulually antagonistic, the streets of Montreal presenting an animated picture of sombre priests and jovial soldiers, savage hunters in their native finery 'and more than half-savage fur traders. Within another hundred years, although both priests and soldiers were still to be seen on her streets, they had become but atoms in a larger and more varied population. The fur trader of New France, merged after the conquest in the fur trader of the North West Companywhich had its origin in Montreal-remained for a time the one picturesque surviyal of earlier and more romantic days. Finally, he too disappeared in the multiform and sirenuous life of the modern city.

Biblography,-Francis Parkman, Jesuils in North Americe and The Old Régime in Canada (Boston, new ed., 1goz); Newton Bosworth, Hochelaga depicta (Montreal, 1846 . repr. Toronto. 1901) A. Sandham, Montreal Pasi and Present (Montreal, 1870), W. D. Lighthall', Montreal affer Two Hundred and Feffy Years (Monereal), ${ }^{1892)}$) N. M. Hinshelwood, Moontreal and Vicinily (Montreal, 190.4); S. E. Dawson, Handbook for the City of Montreal (Montreal.
1888); A. Leblond de Brumath Hisboire po pulaire of Mont 1888); A. Leblond de Brumath, Histoire populaire de Mont
 rcal. i868); J. D. Borthwick, Montreal, us history, \&C. (Montreal) 1875). (L. J. B.)

MONTRESOR, CLAUDE DE BOURDRILLE, COMTE DE (c. 1606 1663), French intiguer and memoir-writer, was the grandnephew of Pierre de Brantome. He was the second favourite of Gaston, duke of Orleans, the weak brother of Louis XIII.; socceeding Antoine de Laage, duc de Puylaurens, in this position in 1635 . He planned the assassination of Cardinal Richeliou at the camp of Amiens in 1636, a plan which failed through the cowardice of Orieans. Montresor was obliged to spend the next six years on his estate, bat in 1642 he entered into the plot of Cinq Mars against Richelieu. On its failure he escaped to England, but his estates were confiscated. Returning alter Richelieu's death, he entered into the incrigues of the period just preceding the Fronde, and was imprisoned in the Bastille, then in Vincennes, having risked his safet y by coming back from exile in Holland to aid the duchess of Chevreuse. Mazarin attempted to win him over in vain, but in 1653 he made his submission to the victorious minister, and from that time on played no part in public life. He had three children by mlle de Guise, with whom be had a lasting liaison.
His Memoires have preserved his name from the oblivlon otherwise awaiing such intriguers; they are written with nalve franknese and are extremely interesting. They are, printed by A. Petitot and Monmerque in Collection des memoires relatifs a thistozre de France (Paris, 1876).

MONTREUIL GEREERT DE (A. ${ }^{13}$ th century), French trousire, author of the Romans de la viodelle. He dedicated his pocm (c. 1221) to the Countess Marie of Ponthicu, wife of Simon, count of Dammartin and a niece of Philip Augustus. The count

Gerard de Nevers of the story stakes his domains on the fidelicy of his wife Euriant. Lisiard by celumniating Euriant wins the wager, but in the end the tritior is exposed, and, after many adventures, Euriant is reinstated. Another version of the story is given in the Roman du combe de Poitiers and in the rale in the Decameron (ii. 9) cn which Sbakespeare founded Cymbeline. Lyrics are inserted in the narrative of the Roman de la siddete. at they had been in the Conte de la rose (1200), known abo as Guilloume do Dole. A prose version, dating from the early isth century, provided Wilhelmine de Chezy with the material for hex libretto of Weber's opera, Earyamehc (${ }^{2} 823$).
See Hist, lim. de ta France, xxii. $\mathbf{7}^{82}$, xviii. 760, xxil. 826; L_{e} comice de Poitiors (ed. F. Michel, 2831); Le Reman de le volelli' (ed. F. Michel, 1834); Le Conte de la ruse (ed. Servois, 1893); F. Krame Ober Gerbert de Montruil (Erlangen, ${ }^{1897}$) : Rudoll Ohle. Shake: spoares Cymbeline und seine romanischen Vorliufer (Berlin, 1890).

MONTREUII-SOUS-BOIS, a LOwn of Dorthern France in the department of Seine, 5 m . E. of Paris, on the alope aad summit of a hill, about 1 m. N. of Vincennes. Pop. (1906), 35, izi. Montreull is specially noted for its extensive peach orchards. The manufactures include paint, ails and varnish; gless and chemical products.

MONTREUILSUR-MER, a town of northern France, capital of an arrondiscement in the department of Pea-de-Caliis, 14 m . S. by E. of Boulogne by rail. Pop. (1900), 2883. The town with its odd citadel and ramparts, duc largely to Vauben, is pretily situated on an eminence on the keft bank of the Canche 50 m . from the English Channel. The chief buiddings are the church of St Saulve (12 th, 13 th and 16 th centarien), and a hospital founded in 1200 and rebuilt in the 192 h century, with a fine chapel in the Flamboyant style. The buildings of the old abbey of Ste Austreberthe, founded originally in the inth cemury, stit remain. Montreuil is the seat of a sub-prefect and has a tribumal of first instance and a preparatory infantry sehool. The towe owes its origin to a monastery established in the 7 th century by St Saulve, bishop of Amiens.

MOATREUX, the general name applied to the villages situated along the shore at the east of the lake of Geneve in Switzerland, from Clarens to Veytaux: sometimes the mane is specially given to Vernex only. These villages form part of 3 communes, those of Le Chatelard (including Clarens and Vermex) and of Lee Planches (including Territet), while a bit (not Chillon) of that of Veytaux is alone included. The total population of this "agglomeration" was 14.144 in 1900 , mosely French-apeaking, while there were 9730 Protestants to 4301 Romanimts and 55 Jewr. There are railway stations at Clarens (15 m . south-east of Lawsanne), at Vernex ($\frac{1}{2}$. on), and Territes (im . on, or $\frac{i}{z} \mathrm{~m}$. from Veytaux, which is if m . north of Villemenve), ts well as an elect ric tramway along the shore of the lake, and frequent communication over the lake by steamer. From Territet there if a mountain railway past Glion and Caux nearly to the top of the Rochers de Naye (6710 it.), while from Vernex the Montreus-Bernese-Oberland railway mounts past Les Avantes, pierces the ridge of the Col de Jaman by n tunnel, and so reaches (14 m) Montbovon in the Gruyère portion of the upper Sarine valley. At first foreigners were attracted by the cheapness and good air of the region, added to the grape cure. As the delights of clear, cold weat her in winter and of tobogganing (here called " luging") and skiing became appreciated, the bigher hotels (such as Les Avants, Caux, Glion) wene frequented at that season, as well as at other times. It is stated that in 190231,473 foreigners (in 1903, 39,493) visited Montreux, 7634 being Germans, 7327 English, and 5651 French. Montrcux was not a Roman settlement, but otherwise its history is aimilar to that of Vevey.

MONTROND, CASIMIR, COwTE OE (1768-1843), French diplomatic agent, was the son of a military officer; his mother, Angelique Marie d'Arlus, comtesse de Montrond (d. 1827), was a royalist writer, said to be the author of the Troubadour bearmoit, a song which has the refrain "Lowis, le fils de Henri, Esf prisonnie" dans Paris." Casimir was imprisoned in 1794 in St Lezare, where be met the divorced duchesse de Fleury (nfe Franguetot de

Coigny), the "jevore tapites" of Andre ChGader's famous verses. He bought her freedom and his own with roo louis. They married and crossod to London, hut the union proved unhappy, and they were divorced on their return to Paris.

Turning to the fashiomable world, Casmir de Montrond became famous for his successes. He was the confidant and political agent of Talleyrand, and his Inside knowledge of politics enabled him to make a large fortune on the Bourse. In 1809 he was disgraced for some improdent comments on the imperial system, and exiled from Paris. After spending some time at Antworp he removed to Spa , where he was on intimate terms with Pautine Borghtse, and in i8ir he returned to Antwerp; here he was arrested hy Napoieon's orders and sent to the fortress of Ham. After a month's imprisonment he received permission to reside, under police supervision, at Chatition-sur-Seine, whence he presently escaped to England. He returned to France at the first Bourbon restoration, and during the Hundred Days was ontrusted with a mission to Viemna to convert Talleyrand to Napoleon's interests, to see Matternich and Nesselrode, and to bring back II possible Marie Loaise and the king of Rome: The second restoration rostored him to his social triumphs, though he was always under police superviston, and on Talleyrand's fall be acrompanied him to Valengay and contlnued to help with his intrigues. He followed Tallegrand to London in 1832. Montrond returned to Paris some time before his death in 1843.

See H. Welsehinger, "I'Ami de M. de Talleyrand," in the Reoue de Paris (Feb. 1895); Lanzac de Laboric, La Domination francaise m Betgigue (1895); and Amedte Pichot, Souvenirs sur M. de Talleyrand (1870).
momfrose, marquesses and dukes OF. David Lindsay, sth earl of Crawford (c. 1440-1495), was created duke of Montrose in 1488 (the first dukedom conferred in Scotland on a person not of royal blood), as a reward for remaining loyal to James III. during the rebelion of Angas and Prince James. Montrose was deprived of his dukedom by James IV., but it was restored in $\mathbf{1 4 8 9}$ for life only. ©n his death in 1495 the title thetefore became extinct.
In 1505, William, 4th Lord Graham, whose wife Annabella Drummond was the duke's niece, was created eari of Montrose; and this title was held by his descendants till 1644, when James Graham, sth earl, was created marquess of Montrose and earl of Kincardine. This was the celchrated marquess of Montrose (q v) of the Civil War, whose son and successor, James (c. 1631+1669), was known an" the Good Marquess." The latter refused to vote at the trial of his hereditary enemy the marquess of Argyll in 1661, admitting that he could not act impartially in such a metter; and the two noblemen afterwards became firm friends The good marquess died in r669, and was succeeded hy his son James, 3 rd marquess of Montrose (d. 1684). The 4 th marquess, son of the last mentioned, who was also named James (d. 1742), was lord high admiral of Scotland in 1705, and lord president of the council in 1706 . He was an ardent supportar of the Hanoverian succession; he also favoured the union of Scotland with England, for his services in regard to which he was created duke of Mortrose and marquess of Graham in 1707, becoming in the same year one of the first representative peers of Scotland in the perliament of Great Britain He was one ol the regents of the kingdom on the death of Queen Anne, and was appointed a secretary of st ate by George I. He took an uctive part in suppressIng the Jacobite rising in 1715 , after which he was made keeper of the great seal in Scotland. He dled in 1742. During his lifetime his son David was raised to the peerage of Great Britain with the title of Earl Graham; and on David's death without issue in 1731 this earldom passed under a special remainder to his brother William (c. 1710-1 790), who on his father's death in 1742 succeeded to the dukedom also. William's son James, 3rd duke of Montrose ($1755-1836$), held office in Pitt's administrations in 1783 and 1804 , and in that ol the duke of Portland in 1807 . He ohtained the annulment of the law prohibiting Highlanders from wearing the kilı. He was succeeded by his son James (1799-18;4), who held office under the earl of Derby in 1852, and again in 18s8
and 1866, and was father of Douglas Beresford Malise Ronald, 5th duke (b. 1852). In 1853 James Lindsay, 24th earl of Crawford, claimed the title of duke of Montrose on the ground that the patent granted to his ancestor David Lindsay in 1488 (see above) had not been effectively rescinded, but his petition was dismissed by the House of Lords.
MONTROAB, JAMES GRAHAM, MARQUESS or (1612-1650), was born in 1612, and became sth earl of Montrose (see above) by his father's death in 1636. He was educated at St. Andrews, and at the age of seventeen married Magdalene Carnegie, daughter of Lord Carnegie (afterwards earl of Southesk). Not long after the outbreak of the Scottish troubles in 1637 he joined the party of resistance, and was for some time one of its most energetic champions. He had nothing puritanical in his nature, but he shared in the ill-feeling aroused in the Scottish nobility by the political authority given by Charles to the bishops, and by Hamiton's influence with the king, and also in the general indignation at the scheme of imposing upon Scotland a Luturgy which had been drawn up at the instigation of the English court and corrected by Archbishop Laud. He signed the Covenant, and was told off to suppress the opposition to the popular cause which arose around A berdeen and in the country of the Gordons. Three times, in July 1638, and in March and June 1639, Montrose entered Aherdeen, where he succeeded in effecting his object, on the second oceasion carrying off the head of the Gordons, the marquess of Huntly, as a prisoner to Edinburgh, though in so doing. for the first and last time in his life, he violated a safeconduct.

In July 1639 , after the signature of the treaty of Berwick, Montrose was one of the Covenanting leaders who visited Charles. This change of policy on his part, frequently ascribed to the fascination of the king's conversation, arose in reality from the nature of his own convictions. He wished to get rid of the bishops without making presbyters masters of the state. His was essentially a layman's view of the situation. Taking no account of the real forces of the time, he armed at an ideal form of society in which the clergy should confine themselves to their spiritual duties, and the king, after being enlightened by open communication with the Scottish nation, should maintain law and order without respect of persons. In the Scotish parliament which met in September, Montrose found himseff in opposition to Argyll, who had made himself the representative of the Presbyterian and national party, and of the middle classes. Montrose, on the other hand, wished to bring the king's authority to bear upon parliament to defeat this object, and offered him the support of a great number of nobles. He failed, because Charles could not even then consent to abandon the bishops, and because no Scottish party of any weight could be formed unless Presbyterianism were established ecclesiastically.
Rather than give way, Charles prepared in 1640 to invade Scotland. Montrose was of necessity driven to play something of a double part. In August 1640 he signed the Bond of Cumbernauld as a protest against the "particular and direct practising of a few," in other words, against the ambition of Argyll. But be took his place amongst the defenders of his country, and in the same month he displayed his gallantry in action at the forcing of the Tyne at Newburn. After the invasion had been crowned with success, Montrose still continued to cherish his now hopeless policy. On the 27th of May 1641 he was summoned before the Committee of Estates charged with intrigues against Argyll, and on the rith of June he was imprisoned in Edinburgh Castle. When Charles visited Scotland to give his formal assent to the abolition of Episcopacy, Montrose communicated to him his belief that Hamilton was a traitor. It had indeed been alleged, on Clarendon's authority, that he proposed to murder Hamilton and Argyll, but this is in all probability only one of Clarendon's many blunders (See S. R. Gardiner, Hist. of England, 1603-1642, x. 26). Upon the king's return to England Montrose shared in the amnesty which was tacitly accorded to all Charles's partisans.

For a time Montrose retired, perforce, from public life. After the Civil War began in England (see Great Rebellion) he
constantly pressed Charies to allow him to make a diversion in Scotland. Hamilton's impracticable policy of keeping Scolland neutral for long stood in tbe way of Charles's consent. But in 16.44, when a Scottish army entered England to take part against the king, Montrose, now created a marquess, was at last allowed to try what he could do. He set out to invade Scotland with about 1000 men. But his followers deserted, and his condition appeared hopeless. Disguised as a groom, he started on the 18 th of August with only two gentlemen to make his way to the Highlands. Highlanders had never before been known to comhine together, but Montrose knew that most of the clans detested Argyll, and the clans rallied to his summons. About 2000 disciplined Irish soldiers had crossed the sea to assist him. In two campaigns, distinguished by capidity of movement, he met and defeated his opponents in six battles. At Tippermuir and Aberdeen he routed Covenanting levies; at Inveriochy he crushed the Campbellis, at Auldearn, Alford and Kilsyth his victories were obtained over well-led and disciplined armies. At Dundee he extricated his army from the greatest peril, and actually called his men off from the sack that had begun-a feat heyond the power of any other general in Europe. The fiery ent husiasm of the Gordons and other clans often carried the day, but Montrose relicd more upon the disciplined infantry which had followed Alastair Macdonald from Ireland. His surategy at Dundce and Inverlochy, his tactics at Aberdeen, Auldearn and Kilsyth furnished models of the military art, but above all his daring and constancy marked him out as the greatest soldier of the war. Cromwell alone excepted. His carcer of victory was crowned by the great battle of Kilsyth (Aug. 15, 1645). Now Montrose found himself apparently master of Scotland. In the name of the king, who now appointed him lord-lieutenamt and captain-general of Scotland, he summoned a parliament to meet at Glasgow on the 20th of October, in which he no doubt hoped to reconcile loyal obedience to the king with the establish ment of a non-political Presbyterian clergy. That parliament never met. Charles had been defeated at Naseby on tho 14th of June, and Montrose must come to his help if there was to be still a king to proclaim. David Leslie, the best of the Scottish generals, was promptly despatched against Montrose to anticipate the invasion. On the $12 t h$ of Sepiember he came upon Montrose, deserted by his Highlanders and guarded only by a littie group of followers. at Philiphaugh. He won an easy victory. Montrose cut his way through to the Highlands, but he failed to organize an army. In September 1646 he embarked for Norway.

Montrose was to appear once more on the stage of Scoltush history. In June 16\$9, burning to revenge the death of the king. he was restored by the exile Charles II. to the now nominal lieutenancy of Scotland. Cbarles however did not scruple shortly afterwards to disa vow his noblest supporter in order to become a king on terms dictated by Argyll and Argyll's adherents. In March 1650 Montrose landed in the Orkneys to take the command of a small force which he had sent on before him. Crossing to the mainland, he tried in vain to raise the clans, and on the 27th of April he was surprised and routed at Carbiesdale in Ross-shire. After wandering for some time he was surrendered by Macleod of Assynt, to whose protection, in ignorance of Macleod's political enmity, he had entrusted himself. He was brought a prisoner to Edinburgh, and on the 20th of May sentenced to death by the parliament. He was hanged on the 2ist, with Wishart's laudatory biography of him put round his neck. To the last he protested that he was a real Covenanter and a loyal subject.

The principal authorities for Montrose"s career are Wishart's Res gestac. EcC. (Amsterdam, 1647): Patrick Gordon's Short Abridgment of Britane's Distemper (Spalding Club): and the comprehensive work of Napier, Mremorials of Montrose, is abundantly documented. containing Montrose's poctry, in which is included his celebrated lyric "My dear and only love."

MONTROSE, a soyal, municipal, and police hurgh and seaport of Forfarshire, Scotland. It is situated 301 m . N.E. of Dundee by the North British railway and is also connected with the Catedonian railway company's system by a branch to Dubton, Pop. (1901), 12,427. Tbe town occupics a considerable area on a
sandy peninsula, and is bounded on the E. by the North Sea, on the N. by the North Esk, on the S. by the South Esk, and on the W. by Montrose Basin, a large depresaion, about 7 m . in circuit. The reclamation of the Basin has been attempted, but an embankment constructed by Dutch dikers for this parpose was demolished in a few hours by a storm. In the mouth of the channel of the South Esk lies the island of Rossie, or Inchbrayock (pop. 160), which in 1829 was connected with the burgh by means of a suspension bridge 432 ft . long and by 2 drawbridge with the south bank near the fishing village of Ferryden (pop. 1330). The harbour lies between the suspension bridge and the sea, and is provided with a wet dock. The linke form one of the best golf-coursea in Scouland and are played over hy several clubs. Besides the staple industry of fiax-spinning. there are manufactures of linen, canvas, sheetings, starch, soap. chemicals, rope and manures, while iron-founding. tenning and brewing are also carried on. The fisheries are of very considerable importance and the shipping is usually brisk. There is a large trade, especially in timber (the chief import), maialy with Baltic ports and Caneda. The perish church is a plain structure, but has a handsome steeple 800 ft . high. The principal buildiags include the town-hall, the academy on the liaks, dating from 1820, though its predeceseor belonged to the 16th century; the museum, Dorward's house of refuge, erected in 1839; the infirmary and the royel ssylum at Sunnyside on the outskirts te the north-west. Panmure barracks are not far from the wet dock. In High Street are statues to Sir Robert Peel and Joseph Hume. Montrose is governed by a provost, bailies and council. and unites with Arbroath, Brechin, Foriar and Inverbervie (the Montrose burghs) in returning one member to parliament, a district group that was represented for many years by John Morley. Montrose received its charter from David I., and was made a royal burgh in 1352. It was destroyed by fire in 1244 Here Edward I. accepted John Baliol's surrender of the kingdom on the roth of July 1206 . Sir James Douglas sailed from the port in 1330 bound for the Holy Land winh the heart of Robert Bruce, and here, too, the Old Pretender embarked in 1716 for France after the failure of his cause. In 1745 the town threw in its lot with the Hanoverians, a fact which lent zest to the daring capture of the " Hazard" sloop of war of Ferryden, hy Captain Da vid Ferrier of Brechin, a ihorough-going Jacobite.

MONT ST MICHEL, a rocky islet of western France, off the coast of the department of Manche, some 6 m . N. of Pontonson Pop (1906), 238 It forms a towering nass of gramite about 3000 it in circumfereace and 165 ft . in height, rising near the mouth of the Couesnon nearly a mile from the shore, to which it is unted by a causeway. The fortress-abbey to which Mont St Michel owes its fame stands apon the more precipitous side of the islet towards the north and west, the slopias portion towards the cast and south heing occupied by houses. A strong machicolated and turreted wall surrounds the rock, running along its base on the south, ascending halfway up the cliff on the north, on which side it stands close to the abbey wall, and again descending on the west. The northern and oldest portion of the ramparis dates from the 13th century; the single gateway by which they are pierced is on the south and is a good example of the miliary archizec. ture of the inth $^{\text {century. The single street of the island }}$ curves from the gateway up to the abbey, ending in flights of steps leading to the donjon or chatelet. It is bordered by old houses, among which is one built by Bertrand du Guesclin in 1366, and contains a parish church ol the 15 th century. The abbey itscif consists of an assemblage of buildings in three storeys upon massive foundations around the church, the most important portion, the Merveille, extending to the north. The floor of the church, huilt partly on the rock, partly upon founda. tions, and, at the east end, over a crypt, is on a level with the uppermost storey of the monastic huildings. To the north of and below the apse lies the group of buildings known an the BelloChaise. It comprises the chatelet (igth century), a square entrance structure strengthened by flanking turrets and machico lation, the adjuining guard room (2jth century) with the salle
des officiers above it, and behind all the Toar Perrine. The Merveille ($\mathrm{r}_{2} 03-1264$) consists of two continuous buildings of three storeys, that on the east costaining, one above the other, the hospitium (aumoneric), refoctory and dormitory, that on the west the cellar, knights' hall (selle des chevaliers) and cloister. Of the apartments, all of the fincst Cothic architecture, the chief are the refectory, divided down the centre by columns and lighted by large embrasured windows, and the knights' hall, a superb chamber, the vaulting of which is supported on three rows of cylindrical pillars. The cloister, one of the purest and most graceful works of the 1 th century, is surrounded by double lines of slender columns carrying pointed arcades, bei ween which delicate floral designs are carved. The exterior wall of the Mervellie is of remarkable boldness; reaching a height of 108 ft ., it is supported by twenty butresses and pierced with a variety of opening. The church, which rises high above the buildings clustering round it, consists of transepts and four bays of the nave of Romanesque architecture and of a fine choir ($1450-1$ 1521) in the Flamboyant Gothic style with a triforium surmounted by lofty windows. This choir replaced one which collapsed in 1431 In 1776 three of the seven bays of the nave were pulled down, and soon after the incongruous western fiont was added. The finest part of the exterior is the choir, which is ornamented with a profusion of carved pinnacles and balustrading. The central tower terminates in a Gothic spire surmounted by a gilded bronate statue of St Michael.

Mont St Michel was a sacred place from the earliest tianes. In the 8th century an oratory was established there by St Aubert, bishop of Avranches, in obedience to the commands of an apparition of St Michael. The place soon became a noted resort of pilgrims, not only from all parts of Frence, but also from Great Britain, I reland and Italy. In 966 Richard I., duke of Normandy, founded in place of the oratory a Benedictine monastery, which in the succeeding century recelved a considerable share of the spoils of the conquest of England. In 1203 the monastery was burnt by the 1roops of Phltip Augustus, who afterwards furnished large sums for its restoration (La Merveille). St Louis made a pilgrimage to Mont St Michel, and afterwards supplied funds which were spent on the fortifications. A garrison and military governor subordinate to the abbot were also installed. During the last thirty years of the Hundred Years' War the abbey offered 2 persistent resistance to the English. In 1469 Louid XI. instituted the Order of St Michel, which held its meetings in the salle des chevaliers. During the Wars of Religion, the Huguenots repeatedly made unsuccessiul attempts to seize the fortress, which opened its gates to Henry IV. in 1595 after his abjuration. In 1622 the Beredictine monks of Mont St Michel ware replaced by monks of the Congregatlon of St Maur. In the i 8th and rith centuries the abbey was used as a prison for political offenders, serving this purpose until 1863, when an extensive restoration, begun in 1838, was resumed. The building is the property of the Commission of Historical Monuments, which has carried on the work of restoration with greal architectural and antiquarian ability.

HONTSERRAT, or Monserrat, a remarkable mountain and mona'stery in north-east Spain, 30 m . N.W. of Barcelona. The mountain is of grey conglomerate; its main axis trends from W.N.W. to E.S.E., and its circumference is about 18 m . The loftiest point is the Turb de San Jeronimo, also called Mirador and La Miranda (4070 ft .), which commands a view of the Pyrentes, and the Mediterranean Sea as far as the Balearic Islands. On the east the base of the Montserrat is washed by the river Llobregat. The Montserrat consists of jagged pinnacles and spires (peaoscos) rising abruptly from the base of the mass, which is cloven by many ravines, and abounds with steep precipices. It is the mons serratus of the Romans, the monte serrodo of the Spaniards, and is thas named either in ahusion to its jagged appearance, IIke the teeth of a saw, or because it is spllt, as if sawn by the vast fissure of the Valle Mato, which extends from north-west to east. This occurred, say the Spanish legends, at the time of the Crucifixion, when the rocks were rent. In medieval German legends, which located here the castic of the Holy Grait, the
mountain is called Monsahoolsch a name analogous to the modern Catalan form Montsagrat "sacred mountain." From Monistrol, a village on the north-east, with a station on the Barcelona-Lérida railway, the monastery can be reached either by the carriage road built in 1857 , or by the mountain railway opened in 1892 . The ascent is also frequently made by a bridle path from the village of Collbato, on the south-west, where there are some interesting caverns.
The monastery stands 2910 ft . above sea-level upon a narrow platform on the edge of the Valle Malo. It owes its existence $t 0$ an image of the Virgin, said to have been carved by St Luke, and brought to Barcelona by St Peter in A.D. 30. When the Moors invaded the province in 717 the image was taken to Montserrat, where a Benedictine convent appears to have already existed, and hidden in a cave. In 880 Gondemar, bishop of Vich, was attracted to the cave by sweet sounds and smells, and there lound the image, which he determined to take to Manresa. But at a certain spot on the mountain the image refused to proceed farther; there it was consequently deposited, and a chapel was erected to contain it. Round the chapel a nunnery was built, and in 976 this was enlarged and converted into a second Benedictine convent. The old monastery (monosterio antiguo) is chiefly in ruins. The cloisters, beliry and part of the church were Gothic of the 1 sth century. The church of the new monastery (monasterio actual) was built in Renaissance style under Philip 11. ($1560-1$ 592); in 1811 it was partially burned, and in 1880 a Romanesque apse was added. New buildings for the monks were erected under Ferdinand VII. $(1784-1833)$, but left partly unfinished. During the Napoleonic wars ($1808-14$) it was despoiled of the vast treasures which had accumulated during the middie ages. In 1835. as a result of the Carlist insurrection, the convent was deprived of its estates and the number of monks reduced to about twenty. The monks are largely occupied by the management of a school of sacred music. In 1874 the convent, which by a grant of Pope Benedict XiIL. had been an independent abbey since 1410 , was made subject to the bishops of Barcelona.
Nuestrí Señora de Montserrat, Patrona de Cataluña ("Our Lady of Monserral, Patron Saint of Catalonia "). is one of the most celebrated images in Spain, and her church is visired annually by more than 60,000 pilgrims. The image ls small, black, and carved of wood, but poscesses magnificent robes and jewels. in September 1881 it was solemnly crowned by Leo Xlll., who sent a crown from Rome for that purpose. As the celebrity and sanctiay of Moniserrat increased, so did the number of devotees. Ignitius Loyola (1491-1556) laid his sword upon the altar of the Virgin and. placing himself under ber protection, started from Montserrat to begin his new life. Many eminent Spaniards, weary of the world. have retired to this monastery to end their days. Some preferred solitary hermitages perched among the rocks. Of these there were fifteen, eleven of which once formed a via sacre, ending at the summit of San Jeronimo. They were destroyed by the French, but the ruins of some semain. There are also caves in the mountain, some of which were formerly occupicd by monks. The most celebrated of these are the cave of the Jirgin, in which the santa imogen remained hidden until found by Gondemar, and the cave of Fray Juan Garin. a notorious sinner, who ended his days in the practice of revolting penances at Montrerrat.
montserrat, an island in the British West Indies, one of the five presidencies in the colony of the Leeward Ialands Pop. mostly negroes (1901), $12,21 \mathrm{~g}$. It lies 27 m . S.W. of Antigue, in $16^{\circ} 45^{\prime} \mathrm{N}$, and $62^{\circ} 7^{\prime} \mathrm{W}$.; is in m . long and 7 m . broad, and has a total area of $32 \frac{1}{9} 9 . \mathrm{m}$. Tbe island is a cluster of rugged volcanic peaks rising from the Caribbean Sea, their summits clothed with forests; the still active Soufrière (3000 ft .) in the south being the highest point. The average temperature is 81° F., the hottest weather being usually tempered by cool sea breezes; the ralnfall averages 94 in. per annum. There is a plentiful supply of water, and the roads are macadamized and well drained. The principal products are sugar and raw and concentrated lime-juice. Minerals ase also found Montserrat has a local legislature of six members, nominated by the Crown. and sends representatives to the geatal legislative council of the colony. Education is compulsory, and the majority of the echools are managed by the Church of Engiand, to which moat of the islanders belong; but the Wesleyans and the Roman

Catholics also support schools. Plymouth (pop. 146r), the chief town, stands on an open roadstead on the southwest coast.

The island was discovered by Columbus in 1493, who mamed It after Monserrado, a mountain in Spain. It was colonized by the British under Sir Thomas Warner in 1632, and was taken by the French in 1664. Restored to the British in 1668, it capitulated to the French in 1782, hut was again restored in 1784.
MOATT, MANUEL ($1809-1880$), Chilean statesman, was horn on the sth of September 1809. He had a distinguished career as a scholar, and was introduced into public life during the presidency ($1831-1841$) of Arieto by Diego Portales. Montt distinguished himself hy his courage in the crisis that followed upon Portales' assassination in $\mathbf{2 8 3 7}$, though only holding a subordinate post in the government, and afterwards he held several ministerial offices, and during the presidency ($1841-1851$) of Bulnes he became minister of justice and public instruction, and later of the interior. He was elected president in 1851 and again in 1856, and though the Liberals chafed under his rule, and two revolutions, in 1851 and 1859 ; took place during his administration, he governed Chile with an energy and wisdom that laid the foundation of her material prosperity. He was ably assisted by his minister of the interior Antonio Varas, and it was from the union of the two statesmen that the well-known ultra-conservative faction, the Montt-Varistas, took their name. His presidency was marked by the establishment of railways, telegraphs, banks, schools and training-colleges. On giving up his post in 1861 he became president of the Supreme Court of Justice, a position which he held up to his death on the zoth of September 1880. His son Jorje (b. 1846) was president of Chile in 18911896, and a younger son, Pedro (d. 1910), in 1906-1910.
See P. B. Figueroa, Diccionario biografico de Chile, 1550-1887 (Santiago, 1888): and J. B. Suarez, Rasgos biograficos de hombres notables de Chile (Valparaiso, 1886).

MONTUCLA, JEAN ETIENNE (1725-1799), French mathematician, was born at Lyons on the sth of September 1725 . In 1754 he published an anonymous treatise entitled \boldsymbol{H} isloire des recherches sur in quadraiure du cercle, and in 175^{8} the first part of his great work, Histoire des madkemadiques, the first history of mathematics worthy of the name. He was appointed intendantsecretary of Grenoble in 1758 , secretary to the expedition for colonizing Cayennein 1764, and "premier commis des batiments" and censor-royal for mathematical books in 1765. The Revolution deprived him of his income and left him in great destitution. The offer in 1795 of a mathematical chair in one of the schools of Paris was declined on account of his infirm health, and he was still in straitened cirumstances in 1798, when he published a second edition of the first part of his Histoire. In 177^{8} he rc-edited Jacques Ozanam's Recreations malhematiques, afterwards published in English by Charles Hutton (4 vols., London, 1803). He died on the 18th of December 1799. His Histoire was completed by J. J. Le F. de Lalande, and published at Paris in 1799-1802 (4 vols.).
MONTYON, ANTOINE JEAN BAPTISTE ROBERT AUGET, Baron de (1733-1820), French philanthropist, was born in Parls on the 23 rd of December 1733 . His father was a motlre des comples; he was educated for the law, and became advocate at the Chitelet in 1755, master of requests to the council of state in 1760, and intendant successively of Auvergne, Provence and La Rochello. He had repeatedly shown great independence of character, protesting against the accusation of Caradeuc de La Chalotais in 1766, and refusing in 1771 to suppress the local courts of justice in obedience to Maupeou. He was made a councillor of state in 1775 by the influence of Louis de Bourbon. duke of Penthièvre, and in 1780 he was attuched to the court in the honorary office of chancellor to the comte d'Artois (afterrards Charles X.). He followed the princes into exile, and lived for some years in London. During the emigration period he spent large sums on the alleviation of the poverty of his fellow immigrants, returning to France only at the second restoration. Between 1780 and 1787 he had founded a series of prizes, the awards to be made hy the French academy and the academics of science and medicinr. These prizes fell lnto abeyance during
the revolutionary period, but were se-established in 18×5. Montyon died on the 2oth of December 1820, bequeathing 10,000 francs for the perpetual endowment of each of the following prizes: for the discovery of the means of rendering some mechanical process less dangerous to the workman; for the perfecting of any technical improvernent in a mechanical process; for the book which during the year rendered the greatest service to humanity; the "prix de vertu" for the most courageous act on the part of a poor Frenchman-the awards being left as before to the learned academies. He also left 10,000 francs to each of the Parisian hospitals.
Montyon wrote a series of works, chiefly on politicaleconomy : Elage de A/chel de l'kopilal (Paris. 1777): Recherches ef considirofions sur la population de la France (1778), a share of which is altributed to his secretary, Moheau; Rapporif foit a Louts XVIII. (Constance. 1796), in which he maintained in opposition to Calonne's Tableas de l.Europe that France had always possessed a conetitution. which had, however, been violated by the kinge of France; L'itat statistıque dx Tunkin (18It); and Partacularitts . . . sup les ministres des finanres en France (1812).
See Lacretelle, "Discours sur M. Montyon." in the Recweil de l'académe (1820-1899), Quérard, La France litteraire, vol. vi. (1834); and. further, F. Labour, M. de Montyon d'apris des documents inedits (Paris. 1880); G. Dumoulin, Afontyon (Paris, 1884); and especially L. Guimbaud, Auget de Montyon (1909).

MONUMENT (Lat. monamentum or monimentum; from monere, to advise, bring to mind, remind; the German equivalent is Denkmal), literally that which serves to keep alive the mennory of a person, an event, or a period. The word is thus applied to a column, statue, or building erected for that particular purpose, as "The Monument " (i.e. of the Great Fire) in London; to all the various memorials which man throughout the ages has raised over the buried dead, the barrows and cairns of prehistoric times, the representation of the living figure of the dead, brasses, busts, \&c., or the varying forms, allegarical or otherwise, taken by the tombstones of the modern cemetery. In a wider sense "monument" is used of all survivals of a past age, in which sense it may include all the vestigen of prehistoric man, dolmens, menhirs, remains of lake-dwellings, stone-circles, and the bike, buildings large and smail, cities, castles, palaces, and examples of domestic architecture, which have any interest, historic or artistic, as well as movable artistic or archaeological treasures, which exist in private or public collections, or which are discovered by excavation, \&ec. In a more restricted sense the word "monument" is also applied to a comprehensive treatise on any particular subject-such as the Mommmenta typagraphica, or an historical collection such as the Monumenta Germanioe historica. In the English law of conveyancing a "monument" is an object fixed in the soil, whether natural or artificial, and referred to in a document, and used as evidence for the delineation of boundaries or the situation of a particular plat of land, sec.

For a description of various kinds of monuments see such articles as Archasology; Stone Monuments; Effigits, Monumental: Brasaes; Sculpture; many particular monuments, such as Stonchenge, are treated under their respective names, or in the articles on the towns, \&e., in which theystend.

The present article deals with the preservation, by government action, local or central, of the evidences and remains of past history and civilization, and, incidentally, with similar action extended to sites and places of natural beauty and interest, which the Germans call Naturdenkmdler, natural monuments. The important work of G. Baldwin Brown, The Care of Ancient Morwments, published in 1905. is practically the only book in English on this subject. It contains a most ampie bibliography for each country and gives many references to various periodicals in different languages. In 1897 was issued a report (C. 8443. Miscell. Reports, 2) from British representatives abroad as to " the statutory provisions existing in foreign countries for the preservation of historical buildings." Reference also should be made to The Care of Natwral Monumenis (1909), by H. Conwentr. Prussian State Commissioner for the Care of Natural Monuments.

The chief question at issue is, how far does the national
artistic or historic intereat of a monument, in the widest sense of the word, justify the interference of the state with the right of a private owner, whether corporate body or individual, to do what be likes with his own? Nearly every European country other than the United Kingdom bas given a decided answer to this question. It may be noticed, as showing the extreme reluctance to state interference in the United Kingdom, that a dause, laying on an owner of a monument, scheduled under the Monumacnt Act 1882, the obligation of offering it for purchase to the state if he wished to destroy it, was struck out of that act.
The main lines followed by legislation or regulation for the preservation of monuments may be briefly indicated. Central organizations of commissions and conservators, with a staff of architect, inspectors, and archaeological or artistic experts for consultation, are established. These may have large legal powers of enforcing their decisions, or may act chiefly by advice or persuasion. The national treasures are catalogued and scheduied, and the value estimated in an exhaustive inventory, in many cases supplemented by local inventories. In many cases, unfortunately, a valuable monument has been destroyed through ignorance of its value. A special form of inventory, carrying with it legal consequencos, is that known as the classement system; of this form the French is the typical exampie. In this only the outstanding monuments find a place, and such either become national property altogether, or the protection and preservation is undertaken by the state, or may be left in the hands of the private owner; but in any case the monument cannot be destroyed, restored or repaired without the consent of the central authority. The classement system has been criticized as tending to depreciate the consideraton paid to such monuments as do not appear in the list-monuments non-classts. The British Monument Acts adopt a natrow kind of classement in the achedule attached to the 1881 act. Most states have powers of expropriation or compulsory purchase of private property on grounds of public utility, and English law is no exception-as in the case of the compulsory purchase of land for railway. The majority of states have made the protection of monuments such a matter of puhlic utility. Further, the exportation of artistic or historic treasures, i.e. movable monuments, has been controlled by the state, notably in the case of Italy and Greece, Turkey and Egypt. Connected with this side of the question is the control by the state of excavations undertaken by private persons, even on their own property. In Germany considerable protection is effected by the powers given to manicipalities to make by-laws, respecting not only the preservation of the monuments, but also the erection of new huildings that may interfere with the monuments or with the general characteristic appearance (Sladibild) of the town. This is also the case in Italy, where there are frequent regulations as to town-planning (piano regola mento).
The following is a brief account of the measures adopted in the principal coumtries of the world for the preservation and protection of their artistic and historic treasures.

United Kingdom.-There are four acts: the Ancient Monuments Protection Acts of 1882, 1900 and 1910, and the Anclent Monuments Protection (Ireland) Act 1892 . The act of $\mathbf{8 8 2 2}$, due primarily to Lord Avebury, then Sir John Lubbock, provided that a list of monuments' in Great Britain and Ireland should be made to which the act was to apply; the number of these monuments was sixty-eight, all being of the kind known as prehistoric (barrows, slone-circles, dolmens, \&c). An owner of one of these scheduled monuments may by deed place it in the guardianship of the commissioners of works, who are then responsible for its preservation and can protect it even against the owner. The commissioners may purchase any of the scheduled monuments, but only by agreement, the compulsory clauses of the Lands Clauses Consolidation Acts being expressly excluded, though any purchase is to be made under those acts. An owner of any monument other
${ }^{1}$ The names of the monuments so scheduled are given in an appendix to Sir R. Hunter's Leclure on the Preservation of Places of Interest and Beauly (1907).
than those scheduled may place it in the care of the commissioners. The funds for the working of the act are to be provided by parliament, and an inspector of ancient monuments was appointed. General Pitt-Rivers, the first inspector appointed, found that without compulsory powers the act was useless, and for many ycars did not draw his official salary. A fter his death in tgoo the office was left unfilled untll rgio. The act of 1892 applied to 1 reland only, and is supplementary to that of 1882 , which applied to the whole of the United Kingdom. The Irish act gave to the commissioners of public works in Ireland powers-only to be exercised with the consent of the owner-of applying the act of 1882 to any monument possessing such public interest as might render it worthy of preservation. It is to be noticed that after the disestablishment of the Irish Church certain unused churches of artistic or historic interest were placed in the charge of the commissioners as national monuments, with 2 sum of $£ 50,000$ to defray expenses. The Irish commissioners have therefore monuments in their care other than those scheduled in the acts, and may apply towards the expenses of the preservation of the scheduled monuments any surplus over from the fund above mentioned. The act of 1900 applied the Irish act to Great Britain, but the powers have not been exercised by the first commissioner of works. The act also gave the powers of the act of 1892 to county councils, allowed the authorities, local or central, to make arrangements for the preservation of monuments with owners or others, including societies, and to receive subscriptions for the same object; and also provided for public access to such monuments as are in the guardianship of the commissioners under the act. The acts of 1892 and 1900 , tbough allowing buildings of historic or other interest to be placed under the care of the commissioners, exclude buildings occupied as a dwelling.place by any person other than a caretaker and his family. The act of 1910 gives to the commissioners of works power to acquire by bequest buildings of historic or architectural interest. The act of 1900 had given power to acquire such by gift or purchase, and the act of 1882 had given power by bequest also, but only referred to prehistoric remains. The London County Council possesses powers of purchasing by agreement any building of historic or ot her interest under a General Powers Act of 1898, and exercised these in 1000 by purchasing a 17 th century house in Fleet Street (known as Cardinal Wolsey's palace). It will be seen that the United Kingdom possesses no official commission, no conservators, no consultatlve official body, and no compulsory powers of expropriation. The acts dealing with the subject are entirely permissive. Towards the making of a national inventory the frst step taken was the appointment in 1908 of threc royal commissions, for England, Scotland and Wales respectively, "to make an inventory of the ancient and historical monuments and constructions connected with or illustrative of the contemporary culture, civilization and conditions of life of the people from the carliest times ": to the year 1700 in the case of England; 1707 in that of Scotland; for Wales no date is specified; and " to specify those which seem worthy of preservation." The Housing, Town Planning. \&c. Act 1909.845 , and the Development and Road Improvement Funds Act, 1909 , excepts the sites of ancient monuments or of other objects of historical interest from compulsory acqulsition for the purposes of those acts. The Finance Act 1896, 820 , granted a qualified exemption from estate duty to pictures, prints, books, MSS., works of art, scientific cullections and other things not yielding income, as appear to the Treasury to be of national, scientific or historic interest; this exemption only extends where such property is settled to be enjoyed in kind in succession by different persons; if the property is soid or is in the possession of a person competent to dispose of it, it becomes liable to estate duty. The Finance Act 1909 extends the exemption to legacy and succession duty, removes the restriction to scttled property, and adds "artistic" to " national and historic interest."

The Committee for the Survey of the Memorials of Greater London, supported by the London Counly Council, has begun a complete register and survey of the historic buildings of London. Apart from the numerous national and archaeological
societies, whose proceedings contain invaluable accounts of practically every monument of interest throughout the kingdom, there are two societies directly formed with the object of monument preservation in its widest sense, the Society for the Protection of Ancient Buildings, founded in 1877, and the National Trust for Places of Historic Interest and Natural Beauty, constituted in $\mathbf{8 9 4}$ under the Joint Stock Companies Acts for the purchase and preservation of sites and buildings, which it can hold in perpetuity for the benefit of the public. In 1907 the latter was dissolved and re-incorporated as a statutory body by the National Trust Act 1907. It possesses twentyeight properties, amounting to 2000 acres, and twelve interesting buildings.
India.-The Archaeological Survey of Upper India was established in 1862, with a director-general at its head; and surveys for other parts of India were also begun later. The chief object of these was the making of an inventory, and the preservation of the monuments was neglected. In 1878 a curator of ancient monuments was appointed. A period of activity with regard to monument preservation set in during the vlecroyalty of Lond Curzon; this cuiminated in the Ancient Monuments Preservation Act of tyo4. The main provisions are as follows: The local government of any province may declare any monument to be a " protected monument within the meaning of the act," and when so declared no one may injure, remove or alter it under penalty of a fine or imprisonment. This, however, does not apply to the owner, except when the government has, by purchase or gift, or by taking over the guardianship of the monument, assumed the duty of preserving it. This assumption of guardianship is by agreement with the owner. Power of expropriation under the Land Acquisition Act 1894 is given if a monument protected under the act is threatened witb destruction or injury, or if an owner refuse to come to an agreement with the authority for its guandianship. The act includes movable antiquities, and the governor-general in council can prohibit their exportation. Control over excavations is also given.

Egypl.-A Commission of Egyptology (Comitf parmanewt d'tgyptologie) has the care of the monuments of early Egyptian civilization. The monuments of the Arab occupation are in the charge of a scparate commission (Comill de conservation des monsuments do l'art arabe). The Commission of Egyptology acts under khedival decrees of 1883 , 1897 and 1891 . By the first the state claims control over all antiquities and declares the contents of the Giza (Gizeh). Museum, nuw the National Museum of Egyptian Antiquities, and of any future cullection, to be the property of the state and inalienable. The second decree penalizes eny injury to monuments or attempt to appropriate a monument belonging to the state. The chird deals with escavations; permission must be granted by the director-general of museums; objects discovered belong to the state and must go so the museum, but a part of the objects will be granted to the discoverer under special regulations, the government reserving the right to special objects with compensation for the expense of excavation.

France.-The Commission des monumems historiques was established in $\mathbf{7 8 3 7}$. It is attached to and acts through the department of the minister of public instruction and of the fine arts, who is the president of the commission. There are thirty members, partly nominated by the minister out of names selected by the commission, partly ex officio, such as the directors of civil buildings and national palaces and of public worship. Tbe buildings which these officials control are, however, not directly ,under the commission. The presence of a certain number of depulies on the commission secures its representation in the legistature. Upon the commission fall the following duties: (a) The slassement or sclection of the monuments of national intercst, antistic, historic, or both, for the schedule of protected inonuments. A particular portion of a buidding, such as a door, window, \&c., may be alone protected. . (b) The restoration and repair of the nonuments so classed. (c) A general power of giving advice and watching the monuments of the country as a whole. The commission has the charge of the Musec Cluny, and
is also the centre for all inquiries, reports, \&c. The officiat staff of the commission consists of four general inspectors, one of whom, since tbe Monument Act of $\mathbf{1 8 8 7}$, has charge of the movable monuments, and of forty architects, who have a subordinate staff of inspectors of works. Since 1830 a sum has been voted yearly for the finances of the commission. The largest sum (f r 20,000) that has appeared in the budget was voted in 1896 ; there are, however, other sources of revenue avaitable.

The Monument Act of 1887 .-This, together whth certain administrative decrees, gave legal powers to the commission, which it had hitherto lacked, or had only been able to enforce by a difficult process of expropriation if owners, whether private or public, of monuments classes objected to the work of the commission. If a monument classe belong to the state or is under the administration of a minister ot her than the minister of public instruction and fine erts, or if it belong to any public body, sach as a depart ment or commune in whose hands the churches mainly lie, the consent of these controlling bodies must be'given, otherwise the decision is left to the conscil d'clat. If the owner be a private person, his consent is also necessary to the clessemexar. If he refuses, the minister may expropriate the momument by compulsory purchase, which must have the consent of the conseil d'etat. Once a monument has been classe, it cannot be destroyed even partially, and no repairs or olher work can be effected upon it without the consent of the minister. An action, for damages only, lies against a person infringing the law in this respect. The act deals also with the elassement and protection of movable objocts of national interest, historic or artistic, but only if they belong to the state, when tbey cannot be alienated, or to public bodies, when the consent of the minister is required for repairs or alienation. The act does not affect movables belonging to private persons. Owing to the numerous thefts from churches, museums, and other places, which attracted particular attention in 1907, proposals have been made for the better protection of sach objects, as well as of those in private collections, hy gathering together the objects at present scattered in churches, \&ce., into provincial and local museums, and also by charging an entrance fee for museums, \&ce. With regard to the disoovery of monuments by excavation works or aocident, the minister must receive immediate notice from the mayor of the commune through tbe prefect of the department, and will decide what is to be done. If such discovery is on private property he may proceed to expropriation. The act applies to Algeria. Hereall objects of archatological or artistic interest are reaerved to the state, if on ground belonging to the government or granted by it to public bodies or private persona or in mititary occapation. The act is similarly extended to all French protectorates. Tunis has more stringent regulations; for by a decree of the bey, 1886, the consent of the owner to the classement of a monument is not required, and penalties under the French penal code attach ta inftiagements.
There is a strong feeling in Framce as to the protection and preservation of sites of natural beanty. A Sasielt pour la profaction des paysages was founded in 190s, and in igos the minister of public works isoued a circular to the government engineers emphasizing the obligation of preserving and, if poasible, enhancing the natural beauties of any locality in which public works were being carried out. An act (Loi organisant la protection des sites ed monuments naturcts de caractire artistique) was adopted in 1006, extending a protection to such sites enalogous to that under the Momment Act (Appendix B in Sir R. Hunter'a Lecture, already cited, gives the regulations under this measure).

A law of 1910 prohibits the affixing of bills or advertisement on monuments and sites officially recognized as historical and in sites recognized as picturesque by the law of rgo6. The prefect also fixes a zone near sacb sites or monuments within which advertisement is prohibited.
Socielies, both national and local, are numerous and active in France, but the centralizing policy does not favour any close working with the commission. The most important are the Sociele nationale des antiquaircs de Prance, founded in 1804, and the Sacitue frangaise d'archeologic pour la consersation a
deacriftion des manuments historiques, founded in 1834, by the archmeologist Arcisse de Caumont ($\mathrm{I} 8 \mathrm{Oz}-1873$) Its puhlieation, the Bulledir monnmental, is extremely valuable. In 8887 was founded the Comilf des monuments fransais, which confines itself more particularly to the practical side of monument preservation and protection, and publishes an illustrated periodical, L'Ami des monuments. Of the numerous local societies the semi-official Commission $d u$ vieur Paris and the private Sociefd des amis des monumenls parisiens and the Commission manicipale du visus Lyon may be mentioned.

Germany,-Legislation and administration with regard to monuments and theit protection are not imperial, but are matters for the various states. Of these Hesse-Darmstact alone has a Monument Act (5902), but in nearly all the states the system adopted for monument preservation and protection has been the appointment of conservators (Denkmalpfieger), with commissions attached, and a careful system of inventory. There are also in many of the states decrees and administrative orders. In Prussia provincial conservators and commissions, appointed in s891, assist the central conservator. The general absence of special legislation leaves private owners of monuments amenable only to advice and persuasion and to the pressure of public opinion. The official and legal control exercised by the conservators and commissions is restricted to those monuments which belong to the state. The wide powers, however, given to local and municipal authorities in Germany, enable much to be done without state legislation. Many towns have powers to make by-laws regulating building and street-planning with a view not only of the preservation of the actual monuments but also of what is known as Stadibild, the characteristic appearance given to a town by its ancient buildings, walls, gateways, \&ec. The regulations of many of the Bavarian towns are excellent examples of what can be done in this way.

The final control of the monuments of Hesse-Darmstadt is in the hands of the minister of the interior, who presides over a Denkmalraf, or council on monuments, consisting of owners of bistorical monuments, members of socicties interested in such objects, and representatives of the Catholic and Protestant Cburches. There is also a general conservator. The act protects Noturdenkmoler, such as water-courses, rocks, and even trees. No excavations can be carried on without permission, and all finds must be reported to the local authority.

The principal German society is the Cesamtvercin der devischen Geschichls- und Allertumsvercin, founded in 1852. This is a gencral association of all the various societies throughout Germany. There are also many societies in the various towns, as well as Iocal associations more directly concerned with the practical protection and preservation of monuments. The chief periodical-perhaps the most important of any dealing with the subject in Europe-is Dic Denkmalpflege, published first in 1809 . It is connected with the society known as Heimalschulv, the " defence of home."
[Italy.-There is a long history of monument regulation, dating back to a provision against the destruction of monuments in the statutes of the city of Rome of the 14th century and to the appointment of Raphael by Leo X. as controller of the city's monuments. Throughout the various states of Italy during the 17th, 18th and roth centuries till the unification of the lingdom, stringent regulations by decree or statute were in force to preserve the relics of the past in which the country is so peculiarly rich. Matiotti (La Legislasione delle belle arti, 1892) gives a full account of many of these regulations. It must suffice here to mention the Doria Pamphili Edict of 1802 and the Pacca Edict of $\mathbf{1 8 2 0}$, named after the two Cardinal-Camerienghi subscribing the same. It was not until 1902 that an act was passed for the whole of Italy. This act, with a sapplementary act of 1903 , and the code of regulatlons (Regolamento) of 1go4, has been superseded by the acts of 1907 and 1909 and the Regolamento of 1910 , which constitute the whole body of the provisions in force for the protection of monuments. The minister of public instraction the final authority, and under him the director-general of antiquities and finc arts.

The Superior Council of Antiquities and Fine Arts, created by the law of 1907, consists of 21 members; it is divided into three sections of 7 members each for antiquities, medieval and modern art, and contemporary art respectively. All the membere of each are nominated by royal decree, and so are three members of the third, being elected, one hy the architects, one by the sculptors, and one hy the painters of Italy. This is an advisory body. The minister presides, and the director-general can be present and has a vote. The administrative organization under the director-general consists of the divisional superintendencies (each having a group of provinces under it) divided into three categorics: (a) i 8 superintendencies of monuments (preservation, administration, and surveillance of monuments even in private hands); (b) 14 superintendencies of archacological excavations and museums (with control of objects in private hands and of the offices for exportation); (c) 15 superintendencies of galleries, medieval and modern museums and objects of art. Under each superintendent is a staff of directors of monuments, museums and galleries, of inspectors, architects, secretarios, custodians, \&c. The nominations to the superior grades are by competition. There are offices for the examination of objects before exportawion in those towns in which there reside a superintendent of monuments or a director of a gallery or a museum in whichit is necessary. The official organizations are assisted by (a) honorary inspectors, nominated hy royal decree in any commone or circondario where it may seema advisable; (b) provincial commissions, meeting in the chief town of each province, composed of not less than 7 members, nominated hy royal decree, and including of right the superintendents, and meeting normally twice a year.

The monuments within the purview of the act of 1909 and its administration comprise all movable (including MSS., incunabula, rare engravings and coins) and immovahle objects of historical, archaeological, palaeo-ethnological or artistic value and interest, so long as they are not less than fifty years old nor the work of living persons. Such objects, if they belong to the state, a province, a commune, a religious corporation or any recognized corporation (ente morale), cannot be parted with at all, except as from one such body to another, and this only with the leave of the ministry; and the authorities of such badies must present to the ministry an inventory of such ohjects. Nor may repairs or alterations be made to them without the consent of the ministry, which has the right to interfere by regulations (such as, e.g., the prohibition of the use of tapers, \&c., which are liable to damage a picture) for the preservation and restoration (and in extreme cases even the removal) of such objects, if necessary, the latter being at the expense of the body to which they belong in so far as it can afford it. Any private person owning or possessing any object falling under the law, the importance and interest of which has been notified to him as the regulations provide, cannot transfer his property in or abandon his possession of it without informing the ministry, which has the right of pre-emption within two months (or four in case of financial pressure owing to many simultaneous offers) at the price for wich he has contracted to sell it; and, if it is subject to damage and the proprietor will not provide for its repair, it may be expropriated by the state, by a province or commune-or even hy bodies which have legal personality and aim at the preservation of such objects for the public enjoyment. It has not yet been possible, however, to secure the right of search nor of public access; so long as an object is well kept up by the owner, he may refuse the right of access except to the officials.

The exportation of ohjects of importance is forbidden, even if their importance has not been notified to the owner, who is under the obligation to advise the government of his intention to export, it having the right of pre-emption within two or four months, as the case may be; and even if the government does not purchase the ohject, it may still retum it to the proprictor, forbidding him to export it. The objects exported are subject to a progressive tax, with a maximun of 20%. Objects temporarily imported from foreign countrics, and re-exported within five years, are not subject to tax. Temporary exportation, if
permitted, is allowed on deposit of the tax; and if objects of importance are allowed to be sent from one part of Italy to another (especially to the islands), this is done by the government at tbe owner's expense.
As to excavations, in every case application to excavate must be made to tbe minister, who bas a general supervision over the work and may stop it temporarily or assume the conduct of it. The state can excavate on private ground, but pays compensation; and can expropriate ground on which it wishes to excavate or on which discoveries have been made, the "archacological value" not being reckoned. As to finds, if the state conducts the excavation, the owner retains one-fourt h of the value or of the objects discovered at the choice of the state, the rest belongs to the state. In other cases, and in the case of chance discoveries (notice of which must be given immediately), the state takes one-half, but if the excavation is conducted by foreign institutions or persons, then the discoveries must be given to a public museum, or if part is handed over to the finder, it must be kept in such a way as to be accessible to the Italian public. The ministry gives periodical reports of all work carried out by the authorities in the Notizie degli Scavi and the Bollellino d'arte, both of which appear every month. The funds at the disposal of the ministry for purchases include (a) a sum of $\{40,000$ already invested, (b) the interest upon $£_{1} 60,000$ rentes regularly paid in, (c) other sums Itom sales of publications, fines, \&c.; (d) an annual credit voted in the budget ($\boldsymbol{C}_{12,000}$ in 1909-2910), forming an account called the monte di belle arti.

The regulations issucd in r910 for the execution of the new law consist of some 200 articles in three divisions-one dealing with the artistic and historical patrimony of Italy and its internal administration, a second with tbe question of exportation, and the third witb financial matters.
(T. As.)]

Greece.-The earliest regulations are those contained in the law of 1837, promulgated by royal decree. This has been replaced by the Monument Act of 1899 , but the principles of the earlier law remain, and the later act still lays down " the most extensive claim tbat any state has ever put forward in the matter of monuments," viz. that "all objects of antiquity in Greece, as the productions of the ancestors of the Hellenic people, are regarded as the common national possession of all Hellenes." The department in charge of the administration of the att is that of the minister of religion and public instruction. There is a central commission working with local commissions and a body of conservators. The centrol of this executive is in the hands of the ephor-general of antiquities. The act protects medieval monuments as well as those of classical Greece. All immovabie monuments are public property, but compensation is to be paid to private owners if such monuments are to be preserved. Movable antiquities, if worthy of preservation by the state, must be placed in public muscums. If discovered on private property the owner receives half the value, and may keep those not removed to a museum; all, however, must be registered. Excavations can be made anywhere by the state, and permission for private work must be first obtained. Expropriation is allowed. The export of antiquities is strictly forbidden under severe penalties, and the infringement of the various provisions of tbe act can he punished by heavy fines or imprisonment.

Austria-Hungary.-There is no legislation for tbe empire as a whole. In Austria there is a central commission, established 1850, whose authority is regulated by rescripts of 1873 and 1899 of the minister of religion and education. It consists of twenty members selected from experts in history, art and archacology; there is also a numerous body of conservators who have districts covering the country assigned to them. They have no executive powers, but report on all new works likely to injure monuments, make inventories, influence public opinion, and work with archacological societics for the general protection of ancient momuments. Hungary, on the other hand, has a Monument Act of 2881 . With regard to any existing monument, the minister of religion and education decides whether it is worth preserving. Then the owner, whether
public or private, must preserve it at his own cost. If that is impossible the minister may expropriate it. Compulsory purchase may also be resorted to for the purpose of excavation.

Belgism.-There is no monument legislation, bat there is a royal commission, resembling that of Austria, founded in 2835, and a royal decree of 1824 prevents alienation of objects of interest contained in eburches or alienation or reconstruction of churches without state permission. An inventory has been in progress since 1861 , and the commission publishes a Bulletin. By a communal law of 1836 local administrations have to submit proposals for the destruction or repair of monuments to the committee of the provincial councll, and must obtain royal approval. Expropriation on the ground of public utility may be resorted to for the protection of a threatened monument in the hands of a private owner.

Holland.-A state commission (Rijkscommiasie) was established in 1903, and began an inventory of all monuments, movable and immovable. Any proposed alteration or demolition of buildings of interest in a town must be reported by the burgomaster to the minister of the interior. The annual budget of the minister of the interior contains sums to be allotted for the repair of specified monuments

Swiluerland.-Legisiation is in the bands of the cantoins; Vaud, Neuchâtel and Bern have passed Monuments Acts, modelled on that of France. The federal government may allot an annual grant for the acquisition and upkeep of national monuments and for excavations. There is a federal commission, established in 1886, whose functions, mainly those of other countries, are exercised by the Swiss Society for tbe Preservation of Monurnents of Hlstorical Art.

The preservation of scenery and of natural monuments is considered a matter of great importance, and in 1905 was founded a Swiss socicty whicb has a branch in the United Kingdom, La Ligue powe la conserralion de la Sxistse pillaresqua -Die schwetiserische Vereinigung für Heimatschuts. The special object of the society is the prevention of the defacement of Alpine scenery by funicular and other railways, mountaln-lifts, power-stations, \&c. It was successful in protecting the falls of the Rbine at Schafihausen from a Zurich electric-power scbeme.

Denmark.-The means adopted are an excellent example of what can be done without legislation by appeals made by a central authority working with expert knowledge to an enlightened public opinion and to national sentiment. The autbority consists of an inspector of ancient monuments and the directorate of the Museum of Northern Antiquities at Copenhagen, exercising the functions of a royal commission that was established in 1807 and dissolved in $\mathbf{5} 849$. The successful preservation of antiquities is also due to an old law, modified by royal decrees of 1737 and 1752, by which all finds of gold, silver and precious objects belong to the state, and to a declaration of 1848 that all monuments on the Crown domains are national property and are to be specially reserved in case of sale. Many private owners have followed the example of the Crown. G. Baldwin Brown (op. cil. p. 188 seq.) gives some interesting cxamples of the success of the directorate of the museum in preserving monuments by appeals to ecelesiastical owners, projectors of railways and other works, and companies engaged in reclaiming land.

Sweden.-There is a state antiquary (Riksantikvar), appointed first by Gustavus Adolphus; the functions of a commission are exercised by the Royal Academy of Science, History and Antiquities, founded in 1786. There is an claborate and stringent code of regulations protecting monuments, contained in royal decrees of 1867,1873 and 1886 . These are based on the edict of Charles XI. (1666), decharing all ancient monuments under royal protection. Sweden possesses one of the fullest inventories contained in the antiquarian topographical archives.
Norway.-Here there is also a state antiquary, and a statesubsidized society, Foreningen til norske Fortidsmindesmaekers Bcoaring, founded in 1844, wbich acts much as a commission, and advises the state official.

Russia.-The care of ancient monuments is in the charge

The Moon (Age r4d. ih.), r8go, October 27.
By permission of Lick Observatory.

Maria or Seas.
A. Mare Crisium.
B. "Foecunditatis.
C. " Nectaris.
D. " Tranquillitatis.
E. " Serenitatis.
F. Lacus Somniorum.
G. " Mortis.
H. Mare Frigoris.
J. Sinus Roris.
K. Mare Imbrium.
L. Oceanus Procellarum.
M. Mare Vaporum.
N. " Humorum.
O. " Nubium.

Mountains.
(a) Caucasus.
(b) Apennines.
(c) Alps.
(d) Carpathians.

Volcanoes.

1. Apollonius.
2. Firmicus.
3. Taruntius.
4. Secchi.
5. Macrobius.
6. Vitruvius.
7. Posidonius.
8. Plato.

E 9. Aristillus.
10. Autolycus.
II. Archimedes.
12. Julius Caesar.
13. Boscovich.
14. Copernicus.
15. Herodotus.
16. Kepler.
17. Borda.
18. Bohnenberger.
19. Tycho.

This diagram is a key to some of the features reproduced in the photograph.

I. Tycho, Theophilus, 1900, October 12.

3. Mare Serenitatis, 1901, August 3.

2. Mare Nubium, \&c., 1901, November 2r.

4. Bullialdus, Copernicus, 1gor, November 20.

By permission of Yerkes Observatory.
of the ministry of the imperial court, of which the Imperial Archacological Commission, founded in 1859, is a department. The Inperial Academy of the Fine Arts is joined in this charge with the commission, whose duties resemble in the main those of the commissions of other conntries. By a circular of 1901 a complete inventory of the monuments of the country was ordered to be made by the local authorities.
Spain.-A monument commission was established in 1844 ; it works under regulations issued in 1865 . It is composed of the Royal Academiesol Fine Arts and of History, corresponding members of which form commissions for the provinces of the kingdom. A complete inventory of all monuments is being made. The minister in charge is that of public instraction and of the fine arts.

Portugal.-A decree of John V. (1721) protected the monuments of ancient times; in 1840 this protection was extended to medieval monuments. An inventory was begun in 184 r . A council of national monuments was established in 1901 hy a roytat decree, with a code of regulations. The French system of classement is adopted, and the regulations under the Frencb act of 1887 are generally followed. The minister responsible is that of public works, commerce and industry.
Twrkey.-The regulations, as embodied in an irade of $\mathbf{1 8 8 4}$, are very stringent, and the principle adopted is that of Greece, that all objects of antiquity belong to the state. The private owner of such has no power of disposition, and must not injure nor destroy them. All excavations are under the control of the government, and permission must be first obtained. The exportation of finds is forbidden, and all movables discovered belong to the Imperial Museum. If these finds are the result of ercavations, one-twentiet of the value goes to the discoverer; if of accidental discovery, the owner of the soil and the state divide.

United Stales.-With regard to the remains of prehistoric man, earthworks, harrows, \&ec., some of those states, such as Ohio, whicb are specially rich in such monuments, have partheular laws protecting individual remains, e.g. the earthworks in Warren county. The state exercises control over other remains of interest, e.g. the Eagle earthworks in Licking county. There is also an archaeological and historical society, partly maintained by the state, with the object of the better preservation of the evidences of the prehistoric occupation. In North Dakota a state historical commission was created in 1895 'to collect and preserve the records and relics pertaining to the early history, settlement and development of North Dakota." The sites of the battle-fields, and statues, \&c., erected in commemoration of the War of Independence or the Civil War, are preserved by various methods-by state or municipal reguiations, by the action of incorporated bodies or trustees, ece. Most of the states rely on statutory prohihitions of malicious damage to protect their monuments and oid buildings, \&c.
(C. We.)

MONVEL ($1745-18: 2$), French actor and dramatic writer, Whose real name was Jacques Marie Boutet, was born in Lunevile on the 25th of March 1745 . He was a small, thin man without good looks or voice, and yet he hecame one of the greatest comedians of his time. After some years of apprenticeship in the provinces, he made his début in 1770 at the Comédie Franşaise in Merope and Zenaide; he was received socillaire in 1772 . For some reason anknown Monvel secretly left Paris for Sweden ahout 1781 , and became reader to the king, a post which he held for several years. At the Revolution he returned to Paris, emhraced its principles with ardour, and in 1791 joined the theatre in the rue Richelieu(the rival of the Comedile Francaise), which, under Talma, with Dugazon, his sister Mme Vestris, Grandmesnil (1737-1816) and Mme Desgarcins, was soon to become the Theatre de la Répuhlique. After the Revolution Monvel seturned to the reconstituted Comedie Française with all his oid companlons, but retired in 1807 . Monvel was made a member of the Institute in 1795. He wrote six plays (four of them performed at the Comédie Francsaise), two comedies, and fifteen comic operas, seven with music by N. Dezêde (17401792), eight by Nicolas d'Alayrac (1753-1809. He also
published an historical novel, Fredegonde et Brunchau! (1776). He was professor of elocution at the Conservatoire. Monvel's two daughters, Mlles Mars ainde and cadette, were well-known actresses.

MONZA (locally Monscia), a city of Lombardy, Italy, in the province of Milan, 8 m . by rail N.N.E. of that city, with which it is also connected by both steam and clectric trams. It lies on the Lamhro, a tributary of the Po, 532 ft . above sea-level. Pop. (1906), $3^{2,000 \text { (town); 53,330(commune). Of the medieval }}$ fortifications little remains save the Porta d'Agrate. Near it is the nunnery in which the nun of Monza (see Manzoni's Promessi sposi) was enclosed. The cathedral of St John Baptist is the principal object of interest; Theodelinda's basilica of 590 was enlarged at tbe close of the $13^{\text {th }}$ century by throwing the atrium into the main building, and the present fine black-and-white marble facade was erected about the middle of the 14th by Matteo da Campione, and restored in 1890-1901. On the left-hand side of the front rises an incongruous brick-buik tower, 278 ft . high, erected by Pellegrini in 1592-1606. Within the ehurch are the iron crown of Lombardy, supposed to have been beaten out of one of the nails used at the Crucifixion, and the treasury containing the relics of Theodelinda, comprising her crown, fan and comb of gold, and the golden hen and seven chickens, representing Lomhardy and ber seven provinces, and crosses, reliquaries, \&c., of the Lombard and Gothic periods. The interior has been modernized; there is a fine relief by Matteo da Campione in the organ-loft, representing the coronation of a king, and some 1 sth-century frescoes with scenes from the life of Theodelinda. Next to the cathedral in artistic importance come the church of Santa Maria in Istrada, and the broletto or old palace of the commune, usually styted the Arengario; the former (founded in 1357) has a rich terra-cotta fagade of 1393, and the latter is raised on a system of pointed arches, and has a tall square tower terminating in machicolations surrounding a sharp central conc. The royal palace of Monza (built in 1777 for the archduke Ferdinand) lies not far from the town on the banks of the Lamhro. Cotton goods and felt hats are the staple products of the flourishing Monza industry; then dyeing, organ-huilding, and a puhlishing trade.

Monza (anc. Modicia) was not a place ol consequence till it attracted the eye of Theodoric; and its first important associations are with Theodelinda. During the period of the republics Monza was sometimes independent, sometimes subject to Milan. The Visconti, who ultimately became masters of the city, built a castle in 1325 on the site now occupied by the Palazzo Durini. In the course of its history Monza stood thirty-two sieges, and was repeatedly plundered-notably by the forces of Charles V. The countship (1499-1796) was purchased in 1546 by the wealthy banker Durini, and remained in his family till the Revolution. At Monza King Humbert was assassinated on the 29th of July 1900 .
MONZONITE, the group-name of a type of rocks which have acquired it from their most celebrated occurrence, that of Monzoni in Tirol. The rocks are of granitic appearance, usually rather dark grey in colour and fine to moderately coarse grained. The special characteristic which distinguishes them from granites and ordinary syenites is the presence of plagioclase and orthoclase felspars in nearly equal amounts. Labradorite, andesine and oligoclase are present, usually in weil-shaped crystals, often zoned; orthoclase forms large irregular plates in which the other minerals are embedded. There is rarely any considerable amount of quartz, though in a few of these rocks this mineral occurs (the quartz-monzonites). Other features are the abundance of augite, pale green or brownish green, and of large bronze-coloured plates of biotite which are of quite irregular shapes and full of enclosures. Hypersthene or hronzite is less common, but dark brown and greeti homblende are sometimes abundant. Olivine also may be present; when the rock contains this in notable quantity it may be called an olivine monzonite. Numerous large prisms of apatite often characterize micro-sections of monzonites, and zircon, iron ores and pyrites are frequent accessory minerais.

The monzonites of Tirol show a great variability in appearance, structure, and the relative proportions of their minerals. They tend to pass into rocks which have been called diabases and gabbros, and near the margins of the outcrop facies very rich in pyroxene (pyroxenites) occur. Many authors believe that this variety of types is associated with the fact that the monzonites occupy a middle place as regards their chemical composition between the acid and the basic igneous rocks, and that such a magma is naturally somewhat unstable, and likely to split up or differentiate into partial magmas of more siliceous and less siliceous character. The monzonites in fact approach rather closely to the calculated mean composition of the outer portion of the earth's crust and from a molten magma of this nature it is natural to suppose that all kinds of igneous rocks have been derived.

Rocks of monzonitic facies occur also in Norway, where they have been described as àkerites. They contain quartz, orthoclase and plagioclase, augite and dark brown biolite; hornblende and hypersthene also may be present. Some of them have porphyritic rather than granitic texture, especially near the margins of the laccolites. From a study of these and other occurrences Brogger proposed to define the monzonites as orthoclase-plagioclase rocks in which the two chief classes of felspar occur in nearly equal quantities (as distinguished from the orthoclase rocks or granites and syenites and the plagioc lase rocks or diorites and gabbros).
At Yogo Peak and Beaver Creek in Montana, U.S.A., there are masses of granitoid rock which bear a close resemblance to the monzonites of Tirol. Two main types occur: (a) yogoite, which differs liztle from monzonite, and (6) shonkinite, which is a more basic rock richer in plagioclase and augite; this rock contains olivine and in places passes into dark pyroxcnites. In shonkinite also a little nepheline may be present. In several places in the west of Scotland (Argyllshire) Intrusive bosses are known which consist of an olivine-bearing rock closely related to monzonite. It has been called kentallenite because it is quarried at Kentallen in Argyllshire. Large crystals of pale green augite and irregular plates of biotite which enclose idiomorphic plagioclase felspar are conspicuous in micro-sections of this rock. and the abundance of otivine is rather greater than is usual in the monzonites; it is oijvine
associated rather greater than is usual in the monzonites; it it pyroxenites and peridotites.
The following a nalyses show the chemical peculiarlties of the principal rocks of the monzonite group:-
$\mathrm{SiO}_{3} \mathrm{Al}_{2} \mathrm{O}_{3} \mathrm{Fe}_{2} \mathrm{O}_{3} \mathrm{FeO} \mathrm{MgO} \mathrm{CaO} \mathrm{K} \mathrm{K}_{2} \mathrm{Na} \mathrm{O}$
Monzonite, Monzoni . $54 \cdot 20 \quad 15 \cdot 73 \quad 3.67 \quad 5 \cdot 40 \quad 3.408 .504 .42 \quad 3.07$ $\begin{array}{llllllllll}\text { Yogoite, Yogo Prak } & 5+42 & 14 \cdot 28 & 3.32 & 4.13 & 6.12 & 7 \cdot 7^{2} & 4 \cdot 22 & 3.44\end{array}$
 (J.S.F.)
mo0D. (1) (O. Eng. mod, a word common to Teutonic languages; cf. Ger. Mul; Du. mord, mind, courage), a particular state of mind or fecling. (2) (Adapted from Lat. modus, measure), a grammatical term for one of the various forms into which the conjugation is grouped, showing whether the verb is used as a predicate, a wish, a command, \&ic. In syllogistic logic the term is used of the various classes into which the "figures" of valid syllogisms are divided. (See Syllogism,)

MOODKEE, or MUDKI, a town in the Ferozepore district of the Punjab, India. Pop. (1901), 2977. It is situated 26 m . S. of the Sutlej, on the old road from Ferozepore to Karnal, and is notable as the scene of the first battle (Dec. 18, 1845) in the first Sikh war. (See Sikh Wars.)

MOODY, DWIGHT LYMAN (RYTHER) (1837-1809), American evangelist, was born in the village of East Northficld (Northfield township), Massachusetts, on the 5 th of February 1837. His father died in 184 I , and young Dwight, a mischievous independent boy, got a scanty schooling. In 1854 he became a salesman in a shoc-store in Boston; in 1855 he was "converted "; and in 1856 he went to Chicago and started husiness there. Beginning with a class gathered from the streets, he opened (1858) a Sunday school in North Markel Hall, which was organized in 1863 as the Illinois Street Church, and afterwards became the Chicago Avenue Church, of whicb he was layman pastor. In 1860 he gave up business and devoted himself to city missionary work. He was prominent in raising money for Farwell Hall in Chicago (1867), and in 1865-1869 was president of the Chicago Young Men's Christian Association. Ira David Sankey (1840-1908) joined him in Chicago in 1870 and helped him greatly by the singing of hymns; and in a scries
of notable revival meetings in England (1873-1875, 1881-1884, 1891-189z) and America they carried on their gospel campaign, and became famous for the Moody and Sankey Gosped Hymms In 1879 Moody opened the Northfield seminary for young women, at Northield, Mass., and in 1881 the adjacent Mount Hermon school for boys; in each a liberal practical education centres about Bible training; the boys do farm-work and the gits house-work. In 1889 he opened in Chicago the Bible Institute, and there trained Cbristian workers in Bible study and in practical methods of social reform; at Northfield in 1890 be opened a Training School in domestic science in the Northfield Hotel, formerly used only in summer for visitors at the annual conferences, of which the best known are the Bible (or Christian Workers') Conference, first held at Northfield in 1880, and the Students' (or College Men's) Conierence, first held in 1887.
Moody died at Northicld on the 22 nd of December 1899. His sermons were colloquial, simple, full of conviction and point. In his theology he laid stress on the Gospel and on no sectarian opinions-he was, bowever, a pre-millenarianite-and be worked with men as much more "advanced "than himself as Henry Drummond, whom he eagerly defended against orthodox attack, and George Adam Smith. Moody's sermons were sold widely in English, and in German, Danish and Swedish versions.
See the (official) Life of Dwight L. Moody (New.York, 1900). by his son, W. R. Moody (b. 1869), and the estimate in Henry Drummond's Dwight I. Moody: Impressions and Facts (New York, 1900), with an introduction by George Adam Smith.

MOOLVIE (an Urdü variant of Arabic maulapi, a derivative of mullah, a man learned in the law), the name used in India of a man learned in Mabommedan law, and hence used generally of a teacher or as a complimentary tide of one learned in any branch of knowledge.

MOON, SIR RICHARD, ist Baronet (1814-1899), English railway administrator, was the son of a Liverpool merchant, and was born on the 23rd of September 1814. The history of his life is practically the history of the London \& NarthWestern railway for the period in which he lived. When he first became a member of the board in 1847 , the company had just come into existence by the amalgamation of the London \& Birmingham, the Manchester \& Birmingham, and the Grand Junction lines, and it was during his long connexion with it-first as director and then (from 1862 to 1891) as chair-man-that its system was developed substantially into what it is now. The Chester \& Holyhend, the Lancaster \& Carlisle, and many smaller lines were gradually added to it, either by leasing or by complete absorption, and finally in 1877 an act was obtained consolidating all into one homogeneous whole. Throughout his career, Sir Richard Moon's powers of organization and his genius for what may be called railway diplomacy were of the greatest advantage to the company, and to him it owed in very large measure lis commanding position. An extremely hard worker himself, he expected equal diligence of his subordinates; but energy and capacity did not go unrewarded, for be made promotions, not by standing or seniority, but by merit. Sir Richard Moon, who was created a baronet in $\mathbf{1 8 8 7}$, died at Coventry on the $\mathbf{1 7}$ th of November 1899.
MOON (a common Tcutonic word, cf. Ger. Mond, Du. maan, Dan. maane, \&c., and cognate with such Indo-Germanic forms as Gr. $\mu \dot{\eta} \nu$. Sans. mds, Irish mi, \&sc.; Lat. uses luno, i.e. Iucna, the shining one, lucere, to shine, for the moon, but preserves the word in mensis, month; the ultimate root for "moon" and "month" is usually taken to be me-, to measure, the moon being a measurer of time), in astronomy, the name given to the satellite of any planet, specifically to the only satellite of the earth.

The subject of the moon may be treated as twofold, one branch being concerned with the aspects, phases and constitution of the moon; the other with the mathematical theory of its motion. As the varying phenomena presented by the moon grow out of its orbital motion, the general character of the latter will be set forth in advance.
A luminous idea of the geometrical relationa of the moon.
earth and sun will be gained from the Gigure, by imagining the amn to be moved towards the left, and placed at a distance of 20 fl . from the position of the earth, as represented at the right-hand end of the figure. We have here eight positions of the moon, $\mathbf{M}_{1}, \mathbf{M}_{2}$, acc., as $^{\text {a }}$ it moves round the earth \mathbf{E}. The general average distance of the sun is somewhat less than four bundred times that of the moon. We have next to conceive that, as the earth performs its annnal revolution round the sun in an orbit whoee diameter, as represented on the diagram, is nearly 40 It., it carries the orhit of the moon with it. Conceiving the plane of the earth's motion, whlch is that of the ecliptic, to be represented by the surface of the paper, the orbit of the moon makes a small angle of a little more than 5° with this plane. Conceiving the line NN' to be that of the nodes at any time, and the earth and lunar orbit to be moving in the direction of the straight arrows, the earth wifl be on one side of the ecliptic from M_{2} to M_{b} and on the other side from M_{8} to M_{2}, intersecting it at the nodes. The abeolute direction of the line of nodes changes but slowly as the oarth and moon revolve; consequently, in the case shown in the figure, the line

of nodes will pass through the sun after the earth has passed through an are nearly equal to the angle $\mathrm{M}_{1} \mathrm{~N}$. Six months hater the direction of the opposite node will pass through the sun. Actually, the line of nodes is in mation in a retrograde direction, the opposite of that of the arrows, by 19.3° per year, thus making a revolution in 18.6 years, or $6,793 \cdot 39$ days. (See Ectipse.)

The varying phases of the moon, due to the different aspects presented by an opaque giobe illuminated by the sun, arc to0 familiar to require explanation. We shall merely note some points which are frequently overiooked: (1) the crescent phase of the moon is shown only when the moon is less than 90° from the sun; (2) the bright convex outline of the crescent is then on the side toward the sun, and that the moon is seen full only when in opposition to the sun, and therefore rising about the time of sunset. In consequence of the orbital motion the moon rises, crosses the meridian, a nd sets, about 48 m . hater every successive day. This excess is, however, subject 10 wide variation, owing to the obliquity of the ecciptic and of the lunar orbil to the equator, and therefore to the horizon. The smaller the angle which the orbil of the moon, when near the point of rising, makes with the horizon the less will be the retardation. Near the autumnal equinox this angle is at a minimum; hence the phenomenon of the "harvest moon," when for several successive days the difference of times of rising on one day and the next may be only from 15 to 20 minutes. Near the vernal equinox the case is reversed, the interval between two risings of the nearly full moon being at its maximum, and bet ween two settings at its minimum. Generally, when the rising is accelerated the setting is retarded, and vice versa.
The moon always presents nearly the same face to the carth, from which it foliows that, when referred to a fixed direction in space, it revolves on its axis in the same time in which it performs its revoiution. Relatively to the direction of the earth there is reaily no rotation. The rate of actual rotation is substantially uniform, while the are through which the moon moves from day to day varies. Consequently, the face which the moon presents to the carth is subject to a corresponding variation, the globe as we see it slightly oscillating in a period nearly that of revolution. This apparent occillation is called libration, and its amount on each side of the mean is commonly between 6° and 7°. There is also a libration in latitude, arising from the lact that the axis of rotation of the moon ts not
precisely perpendicular to the plane of her orbit. This libration is more regular than that in longitude, its amount being about $6^{\circ} 44^{\prime}$ on each aide of the mean. The otber side of the moon is therefore invisible from the earth, but in consequence of the Bbration about six-tenths of the lunar surface may be seen at one time or another, while the remaining four-tenths are for ever hidden from our vicw.
It is found that the direction of the moon's equator remains nearly invariable with respect to the plane of the orbit, and therefore revolves with that plane in a nodal period of 18.6 years. This shows that the side of the moon presented to us is held in position ass it were by the earth, from which it also follows that the lunar globe is more or less elliptical, the longer axis being directed toward the earth. The amount of the ellipticity is, bowever, very small.
Two phenomena presented by the moon are plain to the naked eye. One is the exiatence of dark and bright regions, irregular in lorm, on its surface; the other is the complete illumination of the lunar disk when seen as a crescent, a faint light revealing the dark bemisphere. This is due to the light falling from the sun on tbe earth and being reflected back to the moon. To an observer on the moon our earth would present a surface more than ten times as large as the moon presents to us, consequently this earth-light is more than ten times brighter than our moonlight, thus enabling the lunar surface to be seen by us.
The surface of the moon has been a subject of careful teloscopic study from the time of Galieo. The early observers seem to bave been under the impression that the dark regions might be oceans; but this impression must bave been corrected as soon as the telescope began to be improved, when the whole visible surface was found to be rough and mountainous. The work of drawing up a detailed description of the lunar surlace, and laying its leatures down on maps, has from time to time occupied telescople observers. The earliest work of this kind, and one of the most elaborate, is the Sdenographia of Hevelius, a magnificent folio volume. This contains the first complete map of the moon. Names borrowed from geography and classical mythology are assigned to the regions and features. A system was introduced by Riccioli in his Almagestum notum of designating the more conspicuous smaller fealures by the names of eminent astronomers and philosophers, while the great dart regions were designated as occenns, with quite fanciful names: Mare imbrixm, Oceanus procllaram, \&c. More than a century elapsed from the time of Hevelius and Riccioli when J. H. Schroter of Lilienthal produced another profusely illustrated description of lunar topography.
The standard work on this subject during the 19, century was long the well-execcuted description and map of W. Beer and J. H, Mader. published in 1836 . It was the result of several years careful study and micromeric measuremeat of the features shown by the moon. The volume of text gives descriptive details and measurement of the spots and heights of the mountaias.
In recent times photography has been so successfully applied to the mapping of our satellites as nearly to supersede visual observation. The first photograph of the moon was a daguerreotype, made by Dr J. W. Draper of New York in 1840; but it was not possible to do much in this direction until the more sensitive process of photographing on glass was introduced instrad of the daguerreotype. The taking of photographs of the moon then excited much interest among astronomical observers of various countrics. Bond at the Harvard observatory, De la Ruc in England, and Rutherford in New York, produced lunar photographs of remarkable accuracy and beauty. The fine atmoxphere of the Lick observatory was well adapted to this work, and a complete photographic map of the moon on a iarge scale was prepared which excecded in precision of detail any before produced. The most extended and elaborate work of this sort yet undertaken is that of Maurice Loewy ($1_{33}{ }^{3}-1907$) and Pierre Puiscux at the Paris observatory, of which the first part was publishcd in 1805 .

The broken and irreguiar character of the surface is most evident near the boundary between the dark and flluminnted portions, about the time of first quarter. The most remarkable
feature of the surface comprises the craters, which are scattered everywhere, and generally surrounded by an approximately circular elevated ring. Yel abother remarkable feature comprises bright streaks, brancbing out in various directions and through long distances from a few central points, especially that known as Tycho.

The height of the lunar mountains is a subject of interest. It cannot be stated with the same definiteness that we ean assign beights to our terrestrial mountains, because there is no fixed sea-level on the moon to which clevations can be referred. The only determination that can be made on the moon is that of the beight above some neighbouring bollow, crater or plain. The most detailed measures of this sort were made by Beer and Midier, who give a great number of such beights. These, gencrally range between 500 and 3000 toises, or 3000 and 20,000 English feet. The highest which they measured was Newton, 3727 toises, or 24,000 ft.

The general trend of lunar Investigation has been against the view that there is any resemhlance between the surfaces of the moon and of the earth, except in the general features already mentloned. No evidence has yet been found that the moon has either water or air. The former, if it existed at all, could be found only in the more depressed portions; and even here it would evaporate under the influence of the sun's rays, forming a vapour which, if it existed in considerable quantity, would in some way make itscif known to our scrutiny. The most delicate indication of an atmosphere would be through the refraction of the light of a star whed seen coincident with the limb of the moon. Not the slightest change in the direction of such a star when in this position has ever been detected, and it is certain that if any occurs it can be but a minute fraction of a second of arc. As an atmosphere equal to ours in density would produce a deviation of an important fraction of a degree, it may be said that the moon can have no atmospbere exceeding in density the sotor that of the earth.

Devoid of air and atmosphere, the causes of metcorological phenomens on the earth are non-existent on the moon. The only active cause of such changes is the varying temperature prodaced by the presence or ahsence of the sun's rays. The range of temperature must be vastly wider than on the earth, owing to the absence of an atmosphere to make it equable. Elaborate observations of the heat coming from the moon at its various phases were made and discussed in 1871-1872 by Lord Rosse. Among his results was that during the progressive phases from before the first quarter till the full moon the heat received increases in a much greater proportion than the light, from which it followed that the former was composed mainly of heat radiated from the moon itself in consequence of the temperature which it assumed under the sun's rays. So far as could be determined, 86% of the heat radinted was by the moon itself, and 14% reflected solar heat. But it seems probable that this disproportion may be somewhat too great. Rosse's determinations, like those of his predecessors, were made with the thermopile. After S. P. Langley devised his bolometer, which was a much more sensitive instrument than the thermopile, he, in conjunction with F. W. Very, applied it to determine the moon's radiation at the Allegheny observatory. His results for the ratio of the total radiation of the full moon to that of the sun ranged from 1:70,000 to $1: 110,000$, which were in substantial agreement with those of Rosse, who found $1: 82,000$. When Langley published his work the law of radiation as a function of the temperature was not yet established. He therefore wrongly concluded that the highest temperature reached by the moon approximated to the freezingpoint of water. Stefan's law of radiation, on the other hand, shows that the temperature must have been about the boiling. point in order that the observed amount of heat might be radiated. This is in fair agreement with the computed temperature due to the sun's radiation upon a perpendicular absorbing surface when no temperature is lost through corduction to the interior. The agreement thus brought about between the results deduced from the law of radiation and the most delicate observa-
tions of the quantity of heat radiated is of great interest, as showing that the theory of cosmical temperature now rests upon a sound basis. There is however, still room for improved determinations of the mnon's heat by the usc of the bolometer in its lacest form.

Possibility of Changes on the Moon.-No evidence of life on the moon has ever been brought out by the minutest telescopic scrutiny, nor does life seem possible in the absence of air and water. Some bright spots are visible by the earth-light when the moon is a thin crescent, which were supposed by Herschet to be volcanoes in eruption. But these are now known to be nothing more than spots of unusual whiteness, and if any active volcano exists it is yet to be discovered. Still, the question whet her everything on the moon's surface is absolutely unchangeable is as yet an open one, with the general trend of opinion toward the affirmative, so far as any actual proof from observation is concerned. The spot which has most frequently exhibited changes in appearance is near the centre of the visible disk, marked on Beer and Mudler's map as Linne. This hes been found to present an aspect quite difierent from that depicted on the map, and one which varies at different times. But the question still remains open whether these variations may not be due wholly to the different phases of illumination by the sundight as the latter strikes the region from various directions.
Intensity of Moonlight.-An interesting and important quantity is the ratio of moonlight to sunlight. This has been measured for the full moon by various investigators, but the results are not as accordant as could be desired. The most reliable determinations were made by G. P. Bond at Harvard and F. Zollner at Leipzig, in 1860 and 1864. The mean result of these two determinations is the ratio $1: 570,000$. We may therefore say that the intensity of sunlight is somewhat more than half a milion times that of full moonlight. A remarkahle feature of the reflecting power of the moon, which was made known by Zollner's observations, is that the proportion of light reflected by a region on the moon is much greater when the light falls perpendicularly, which is the case near the time of full moon, and rapidly becomes less as the light is more oblique. This result was traced by 201 liner to the general irregularity of the lunar surface, and the infercnce was drawn that the average slope of the lunar elevation amounts to 47°.

Motion of the Moon.- The orbit of the moon around the earth, though not a fixed curve of any class, is elliptical in form, and may be represented by an ellipse which is constantly changing its form and position, and has the earth in one of its foci. The eccentricity of the ellipse is in the general average about 0.055 , whence the moon is commonly more than I^{2} further from the earth at apoget than at perigee. The line of apsides is in continual motion, gencrally direct, and performs a revolution in about 12 years. The inclination to the ecliptic is a little more than 5°, and the line of nodes performs a revolution in the retrograde direction in $\mathbf{8 . 6}$ years. The parallar of the moon is determined by observation from two widely separated points; the most accurate measures are those made at Greenwich and at the Cape of Good Hope. The distance of the moon can also be computed from the law of gravity, the prohlem being to determine the distance at which a body having the moon's mass would revolve around the parth in the observed period. The measures of parallax agree perfectly with the computed distance in showing a mean parallax of $57^{\prime} 2.8^{\prime \prime}$, and a mean distance of 238,800 miles. The period of revolution, or the lunar month, depends upon the point to which the revolution is referred. Any one of five such directions may be chosen, that of the sun, the fixed stars, the equipox, the perigee, or the node. The terms synodical, sidereal, tropical, anomalistic, nodical, are applied respectively to these months, of which the lengths are as follow:-

Other numerical particulars relating to the moon are:-
Mena distance from the earth (earth's radius as :)
Mean apparent diameter
Diameter in miles
Moon's surface in square miles
Diameter (earth's equatorial diameter as i)
Surface (earth's ast
Volume (earth's as I)
Ratio of mase to carth's mase ${ }^{1}$
Density (earth's as 1)
Density (water's as 1 , and earth's assumed as 5).
Ratio of gravity to gravity at the earth's suriace
Inclination of axis of rotation to ecliptic

The Lumar Theory.

The mathematical theory of the moon's motion does not yet form a well-defined body of reasoning and doctrine, like other branches of mathematical science, but consists of a series of researches, extending through twenty centuries or more, and not easily welded into a unified whole. Before Newton the problem was that of devising empirical curves to formally represent the observed inequalities in the motion of the moon around the earth. After the establishment of universal gravitation as the primary law of the celeatial motions, the problem was reduced to that of integrating the differential equations of the moon's motion, and testing the completeness of the results by comparison with observation. Although the precision of the mathematical solution has been placed beyond serious doubt, the problem of completely reconciling this solution with the observed motions of the moon is not yet completely solved. Under these circumatances the historical treatment is that best adopted to give a clear idea of the progress and results of rescarch in this field. Modern researches were developed so naturally from the results of the ancients that we shall begin with a brief mention of the work of the latter.
It is in the invectigation of the moon's motion that the merits of the ancient astronomy are seen to the best advantage. In the mande of Hipparchus the theory was brought to a degree of precision which is really marvellous whea we compare it either with other branches of phymical science in that age or with the views of contamporary non-acientific writera. Tbe discoveries of Hipparch us were:-

1. The Eccentricity of the Moon's Orbit-He found that the moon moved mont rapidly near a certain point of its orbit, and most alowly gear the oppoaite point. The law of this motion was auch that the phenomena could be represented by supposing the motion to be pctually circular and uniform, the apparent variations being explained by the hypothesis that the earth was not situated in the oentre of the orbit, but was displaced by an amount about equal to one-twentieth of the radius of the orbit. Then, by an obvious how of cinematics, the angular motion round the earth would be most rapid at the point nearest the earth, that is at perigee, and slowest at the point moot distant from the eerth. that is at apogee. Thu: the apogee and perigee became two definite points of the orbit, indicated by the variations in the angular motion of the moon.
These points are at the ends of that diameter of the orbit which paseen through the eccentrically situated earth, or, in other words, they are on that line which paspes through the centre of the earth and the centre of the orbit. This line was called the lime of opsides. On comparing observations made at different times it was found thant the line of aptides was not fixed, but made a complete revolution in the heavens, in the order of the aigns of the zodiac, in about mine years.
2. The N wnerical Delermination of the Elements of the Moon's Motion- - In order that the two capital discoveries just mentioned should have the higheat scientific value, it was essential that the numerical values of the elements involved in these complicated motions should be fixed with precision. This Hipparchus was enabled to do by lunar eclipoes. Each eclipse gave a moment at which the iongitude of the moon was 180° different from that of the sun. The latter admitted of ready calculation. Assuming the mean motion of the moon to be known and the perigee to be fixed, three eclipecs, observed in different points of the orbit, would give an many true longitudea of the moon, which longitudes could be employed to deternaine three unknown quantities-the mean longitude at a given epoch, the eatantricity, and the position of the perigee. By taking three eclpows separated at short intervalis, both the mean motion and the astion of the perigee would be known beforehand. from ocher dais, with sufficient ancuracy to reduce ali the obecrvations to the same epoch, and thus to leave only the three elements alraedy mentioned unknown. The same throe elements being again determined from a mecond triplet of eclipses at as remote an epoch as possible, the difference in the
${ }^{1}$ A. R. Hinke "" Mass of the Moon, from Observations of Eros 2900-1901," M. N. Roy.Asi Soc., 1909, Nov., p. 73.

Icargitude of the perigee at the two epoche gave the anaual motion of that element, and the difference of mean longitudes gave the mean motion.

The eocentricity detersaised in this way ms more than a degree in error, owing to the effect of the erection, which wha unknown to Hipparctius Tbe resule of the latter inequality is brought out When it in sought to determine the eccentricity of the orbit from the observations near the time of the firet and last quarter. It was thus found by Ptolemy that an additional inequality existed in the motion, which is now koown as the evection. The relationa of the quantities involved may be ahown by simple trigonometric formulao. If we put I for the moonis anomaly or ditanoe from the periget, and D for its elongation from the sun, the inequalities in question as now known are-

$$
\begin{aligned}
& 6 \cdot 29^{\circ} \sin \\
&+1 \cdot 27^{\circ} \sin (2 \mathrm{D}-\mathrm{g}) \quad \text { (equation of centra) } \\
& \text { (evection). }
\end{aligned}
$$

During a lunar eclipese we always have $D=180^{\circ}$, very nearty, and 2D $=360^{\circ}$. Hence the evection is then - 1.2 sin 8 , and consequently has the same argument is as the equation of centre, so that it is confounded with it. The value of the equation of centre derived from eclipeas is thus-

```
6.29* sin g-1.27* sin g=5.02* slng.
```

Therefore the eocentricity found by Hipparchus was only 5°, and was more than a degree loses than its true value. At first quarter we have $D=90^{\circ}$ and 2D $=180^{\circ}$. Substituting this value of 2D in the last term of the above squation, we see that the combined equation of the centre and evection are, at quadrature-

$$
6 \cdot 29^{\circ} \sin g+1 \cdot 27^{\circ} \text { in } g=7 \cdot 56^{\circ} \sin g .
$$

Thus, inc consequence of the evection, the equation of the centre comes out 2° 隹官 larger from obecrvations at the moon's quarters than during eclipeea.
The next forward step was due to Tycho Brahe. He fouind that, although the two inorualities found by Hipparchus and Ptolemy correctly represented the moon's longitude near conjunction and opposition, and also at the quadratures, it left a large Outstanding error at the octants, that is when the moon was 45° or 135° on either side of the sun. This inequality, which reaches the magnitude of nearly 1°, is known as the variation. Although Tycho Brabe was an onginal discoverer of this inequality, through Whom it became known, Joneph Bertrand of Paris claimed the di covery for Abu '1-Wefa an Arabian astronomer, and mede ft af wear that the latter really detected inequalities in the moon's mition which we now know to have been the variation. But be hats not shown, on the part of the Arabian, sny such exact description of the inequality as is necemary to make clear his claim to the discovery. We may conclude the ancient history of the lunar theory by saying that the only real progress from Hipparchus to Newton conssisted in the more cract determination of the mean motions of the moon, its perigee and its line of nodes, and in the discovety of three inequalitien, the representation of which requirtd geometrical constructions increasing in complexity with every step.
The modern lunar theory began with Newton, and consista in determining the motion of the moon deductively from the theory of gravitation. But the great founder of celeatial mechanics empployed a geometrical method, ill-adapted to lead to the desired result: and hence his efforts to construct a lunar theory are of more intertes as illustrations of his wonderful power and correctnes in mathematical reasoning than as germs of new methods of rewarch The analytic method sought to expreas the moon's motion by integ. rating the differeatial equations of the dynamical theory. The methods may be divided into three clames:-

1. Laplace and his lmmediate succeswors, especially G. A. A. Plana (1781-1864), effected the integration by expreasing the time in terms of the moon's true longitude. Then, by inverting the teries, the lonsitude wac expremed in torms of the time.
2. By the eecond general method the moon's co-ordinates are obsained in terms of the time by the direct integration of the differential equations of motion, retainlog as algebraic symbols the velues of the vations elements. Moot of the eletrente are mail numerical fractions: a, the eccentricity of the moon's orbit. about 0.055; 'f the eccentricity of the earth', orbit, about 0.017; r, the sine of half the inclination of the mooa's orbit, about o-046: m, the ratio of the mean motions of the moon and earth, about $0-075$. The expresions for the longitede, latitude and paraliax appear as as infinite trigonometric series, In which the coefficients of the sines and cosincs are themselves infinite eeries proceeding according to the powers of the above small numbers. This method was applied with succoss by Pontecoulant and Sir John W. Lubbock, and afterwards by Delaunay. By these methods the seriee converge ∞ slowly, and the final expresaions for the moon's longitude are ∞ long and complicated, that the series hat never been carried far enough to ensure the accuracy of all the terms. This is eapecially the case with the developmemt in powers of m, the colavergence of which has often been questioned.
3. The third method seeks to avold the difficulty by using the numerical values of the elements instead of their algebraic symbote. This method has the advantage of leading to a more rapld and certain
determination of the numerical quantities required. It has the disadvantage of giving the solution of the problem only for a particular case, and of being inapplicable in researches in which the general equations of dynamics have to be applied. It has been employed by Danoiseau, Hansen and Airy.

The methools of the second gencrai class are those moet worthy of study. Among these we must assign the first rank to the methot of C. E. Delaunay, developed in his Théorie du mowerment de la lune (2 vols., 1860, 1867), becauge it contains a germ which may yet develop into the great desideratum of a gencral method in celestial mechanics.

Among applications of the third or numerical method, the most successful yet completed is that of P. A. Hansen. Itis frst work, Fundomenta nova, appeared in 1838, and contained an exposition of his ingenious and peculiar methods of computation. During the twenty ycars following the devoted a large part of his energies to the aumerical computation of the lunar inequalitics, the redetermination of the elements of motion, and the preparation of new tables for computing the moon's position. In the latter branch of the work he received matcrial aid from the British government, which published his tables on their completion in 1857 . Tire compurations of Hansen were published some seven years later by the Royal Saxon Societ y of Sciences.

It was found on comparing the results of Hansen and Delaunay that there are some outstanding discrepancies which are of sufficient magnitude to demand the attention of those interested in the mathematical theory of the subject. It was therefore necessary that the numerical inequalitics should be again determined by an entirely different method.

This has been done by Ernest W. Brown, whose work may be regarded not only as the last word on the subject, but as embody. ing a seemingly compicte and satisfactory solution of a problem which has absorbed an important part of the energics of mathematical astronomers since the time of Hipparchus. We shall try to convey an idea of this solution. We have just mentioned the four small quantitics e, f, γ and m, in terms of the powers and products of which the moon's co-ordinates have to be expressed. Euier conceived the idea of starting with a preliminary solution of the problem in which the orbit of the moon sliould be supposed to lie in the eclipric, and to have no eccentricity, while that of the sun was circular. This solution being reached, the additional terms were found, which were multiplied by the first power of the several eccentricities and of the inclination. Then the terms of the second order were fouml, and 60 on to any extent. In a serics of remark. able papers published in 1877-t886 Hili improved Euler's method, and worked it out with much more rigour and fullness than Euler had been able to do. His most important contribution to the subject consisted in working out by extremely elegant mathcmatical procesers the method of determining the motion of the perigee. John Couch Adams afterwards determined the motion of the node in a similar way. The numerical computations were worked out by Hill only for the first approximation. The subject was then taken up by Brown, who in a scrics of researches published in the Memoirs of the Royal Astronomical Society and in the Transactions of the American Mathematical Society. extended Hill's method so as to form a practically complete solution of the entire problem. The principal feature of his work was that the quantity m, which ia regarded as constant, appears only in a numerical form, so that the uncertainties arising from development in a $e r r i e s$ accruing to its powers is done away with.

The solution of the main mathematical problem thus reached is that of the motion of three bodies only-the sun, earth and moon. The mean motion of the moon round the carth is then invariable, the longitude containing no inequalities of longer period than that of the moon's node, 18.6 y . But Edmund llalley found, by a comparison of ancient eclipees with modern observations, that the mean motion had been accelerated. This was confirmed by Richard Dunthorne ($171 \mathrm{t}-1775$). Correxponding to this obwerved fact was the inference that the action of the planets might in some way influence the moon's motion. Thus a new branch of the lunar theory was suggested-the determination by theory of the effect of planctary action.

The first step in constructing this theory was taken by Laplacc, who showed that the mecular acceleration was produced by the eecular diminution of the earth's orbit. He computed the amount as about 10° per century, which agreed with the results derived by Dunthorne from ancient eclipses. Laplace's immediate successors, among whom were. Hansen, Plana and Pontécoulant, lound a larger value, Hansen increacing it to 12.5°, which be introduced into his tables. This value was found by limself and Airy to represent fairly well several ancient eclipses of the sum, note bly the supposed one of Thales. But Adams in $1853^{\text {t }}$ showed that the previous computations of the acceleration were only a rude first approximation, and that a more rigorous computation reduced the result to about one-half. This diminution was soon fully confirmed by others, crpecially Delaunay, although for some time Pontecoulant stoutly maintained the correctnces of the older reault. But the demonstration of Adam's result was scon made

1 Penthoophica Tronsautions, 1883 .
conclusive, and a value which may be regarded as defininive lat been derived by Brown. With the latest accepted dimanution af the eccentricity. the coefficient is $5.9:^{\circ}$.

The quettion now arose of the origin of the discrepancy between the smalier values by theory, and the supponed values of 12^{*} derived from ancient eclipses. In a 856 William Ferrel showed that the action of the moon on the ocean tidal waves would result in a retardation of the carth's rotation, a result, at first unnoticed, which was independentiy reached a few years later by Delaunay. The amount of retardation docs not admit of accurate computation, owing to the uncertainty both as to the amount of the oceanic friction from which it arises and of the exact height and form of the tidal wave, the action of the moon on which produces the effect. But any rough estimate that can be made shows that it might well be supposed much larger than is necessary to produce the observed differences of $6^{\prime \prime}$ per century. It was therefore surprising when, in 1877 , Simon Newcomb found, by a study of the lumar eclipeea hanoded down by Prolemy and those observed by the Arabians-daca much more reliable than the vague accounts of ancient solar eclipses -that the actual apparent acceleration was only about $8 \cdot 3^{\prime \prime}$. This is only $2 \cdot 4^{\circ}$ larger than the theoretical value, and it ecems dificult to suppose that the effect of the tidal retardation can be as small as this. This suggests that the retardation may be in great part compeneated by some accelerating cause, the existence of which is not yet well established. The following is a summary of the present state of the question:-
The theoretical value of the acceleration, assuming
the day to be constant is
Hansen's valuc in his Tables de la iunce is
Hansen's revised, but still theoretically erroncous,

The value which best represents the supposed eclipees -(1) of Tholes, (2) at Larista, (3) at Stikbelstad -is about
The result from purely astronomical observation is 8.3
Inequalities of Long Periad-Combined with the question of secular acceleration is another which is still not entirely settled that of inequalitics of long period in the tncan motion of the moon round the carth. Laplace first showed that modern obscrvations of the moon indicated that its mean motion was really less during the second half of the i8th cemtury than during the first half, and hence inferred the existence of an inequality baving a period of more than a century.

The existence of one or more such inequalities has been fulty confirmed by all the observations, both early and recent, that have become a vaitable since the time of Laplace. It is also found by computation from theory that the planets do produce several appreciable inequalitics of long period, as weil as a great number of short period, in the motion of the moon. But the former do not correspond to the observed inequalitics, and the explanation of the outstanding difierences may be regarded to-day as the mont perplexing enigma in astronomy. The most plausible explamation is that, like the discrepancy in the eecular acoeleration, the observed deviation is only apparent. a nd arises from slow fuctuations in the carth's rotation, and therefore in our measure of time produced by the motion of great masees of polar lice and the variability of the amount of snowfall on the great continents. Were this the case a similar inequality should be found In the observed times of the transits of Mercury. But the latter do not certainly show any deviation in the measure of time, and scem to predude a deviation so large as that derived from observations of the moon. This suggests that inequalitics in the action of the planets may have been still overlooked, the subject being the most iatricate with which celestial mechanics has to deal. But this action has been recently worked up with such'completences of detaii by Radau, Newcomb and Brown, that the possibility of any unknown tern seems out of the quistion. The enigma therefore still defies solution.

Bibliogkaphy.-Wiorks on selenography: Ilevelius, Selenographia sive lunoo descriptio (Danzig, 1647); Riccioli, Almopests: notum (Bologna, I651): J. H. Schrocter, Selenotopogrophische Pragmente zer genauern Kennuniss der Mondfache (Lilienthal. 1791): W. Beer an 1. H. Mädler, Der Mond narh seinent komischat
 graphie (Bertin, t,-): Richard A. Proctor. The Moon (London 1873; the first ediann contains excellent geometrical demonstra tions of the inequalitics produced by the sun in the moon's motiou. which were partly omitted in the second edition); J. Nasmyth and J. Carpenter. Th Aoon, Considered as a Planei, a World avd E Satellite (London, 1903: finc illustrations) : E. Neison (now Nieville) The Moon and the Conditions and Configurations of its Surfaed (London, 1876): M. Locwy and P. Puiseux. Allas photographiqne de la lume (Imprimeric Royale, Paris, 1896-1908); W. H. 1'ickering. The Moon, from photographs (N'ew York, 1904): G. P. Serviss, The Mfan (London, 1908). popular account illustrated by fine photograpte

On the suhject nf lunar geology, sec N. S. Shaler in Smithsoniat Contributions to Knowledge, vol xxiv. No. 1438 a and P. Puiscux "Recherches sur l'origine probable des formations lunaires." in A moder de Fobsevatotre de Paris, Memoins, tome xxh.

The following are among the works relating to the motion of the moon, which are of historic importance or present interest to the student: Cliiraut, Theorie de la lure (2nd ed., Paris, 1765); L. Euler. Theoris molisum Lunae nova methodo pertroctata (Petropotis, 1772); G. Plana, Théorse du mouvemert de ba lune (3 vols., Turin, 1832); P. A. Hansen. Fundamenta nore investigation is orbilse verge quam lung perlustatat (Gotha, 1838) : Darlegung der theoretischen Berecinung der in den Mondafeln angerandien Störungen (Leipzig, 1862); C. Delaunay. Theorie dy motrement de la lune (2 vols., Paris, 1860^{-} 1867): F. T. Tisscrand, Traite de meconique coleste, tome iii., Expost de bensemble des theories relatives an mouvement de la bume (Paris, 1894) : E. W. Brown, "Theory of the Motion of the Moon," Memoirs of the Royal Astronomical Society, various vols.; also Trawsections of the American Mathematical Society, vols. iv. and vi. i E. W. Brown, Introduclory Treatise on the Lunct Theory (Cambridge University Press, 1896); Hansen. Tables de la lune (London, 1857) (Admiralty publication!: W. Ferrel, "On the Effect of the Sun and Moon on the Rotary Motion of the Earth." Astron. Jout.. vol. iii. (185 4); S. Newcomb, "Researches on the Motion of clie Moon" (Apsendix to Washington Observations ior 1875, discussion of the moon's mean motion): S . Newcomb, "Transformation of Hansen's Lunar Theory," Ast. Papers of the Amer. Ephemeris, vol. i.; R. Radau, "Inégalités planéáaires du mouvement de la luna" (Annales. Paris Observatory. vol. xxi.): S. Newcomb, "Action of the Planeta on the Monn." Ast. Popers of the Amer. Ephemeris, vol. v., pt. 3 (I896). Also, Publication 72 of the Carnegie Institution of Washington (1907): E. W. Brown. Inequatities in the Moon's Mation prodiced by the Action of the Planels (the Adams prize essay for 1907).
(S. N.)

MOONSEED, in botany, a common name for Mexispermume, a genus of climbing deciduous shrubs, containing one species in North Americs and another in Eastern Asia. The former, M. canadense, is a handsome plant, suited to damp and shady walls, with large reniform peltate leaves and yellowish flowers borne in profuston on long pendulous racemes.

MOONSTONE, a variety of felspar, showing in certain directions a bluish opalescence, whence its value as an ornamental stone. When cut with a convex surface it displays a soft milky refection, forming a luminous band, but not sharply defined as in cat's-eye. The ordinary moonstone ia a translucent variety of orthoclase known as adularia (sce Oxtroclask),
 whence the peculiar shees has, been called "adularescence." The effect is probably caused by interierence from twin lameliae, or by mumerous enclosures of microscopic laminae, definitely orientated, and it has been suggested that these may often be fakes of kaolin due to incipient decomposition of the felspar. Practically all the moonstone of commorce comes from Ceylon, principally from the Dumbara district of the Central Province. It occurs as pebbles and irregular masees in the gem-gravels and clay-deposits, and is also obtained by quarrying an adularía leptynite; as described by Dr. A. K. Coomaraswemy. Very similar in some respects to moonstope is tho chatoyant soda-felspar which was called by T. Sterry Hunt peristerite, Irom Gr. repuoreph, a dove, is allusion to the resemblance of its lustre to that of the bind's neck. The original peristerite was from Bathurst, near Perth, Lanark county, Ontario, but it occurs also at Macomb, St Lawrence county, New York.

MOONWORT, or MOON-FERN, in botany, the popular name of a small fern (Botrychium Lasnaria), belonging to the order Ophioglossaceae (see Ferns). It has a tuberous root-stock and a stout fleshy glabrous frond 3 to 6 in. long, with a sterile and fertile portion; the former bears several pairs

Truen Skrethurgery Lewhech da Bodavit, by
Botrychium Lunaria.
is pionately branched and covered, on the face opposed to the sterile portion, with small globose spore-cases which burst transversely. It is a widely distributed plant in the north and south temperate and cold zones, and is found in pastures and grassy banks in Britain.

MOOR. (1) A heath, an unenclosed stretch of waste or uncultivated land, covered with heather; also such a heath preserved for game-shooting, particularly for the shooting of grouse. Tbe \mathbf{O}. Eng. mbr, bog, moor, is represented in other Teutonic haguages; cf. Dan. mor, Ger. Mcor, O. Dus. moer, \&c.i from an O. Du. adjectival form moerasch comes Eng. morass, a bog. Probably mare, marsh, are not to be connected with these words (a) The verb "to moor," to fasten a ship or boat to the shore, to another vessel, or to an anchor or buoy, by cables, \&c., is probably from the root seen in mod. Du. meren, which also gives the English asulical term "marline," small strands of rope used for lashings or seizings, and "marline-spike," a small iron tool for separating the strands of rope, stc.

MOORCROFT, WILLIAM (6. 1770-1825), English traveller, was born in Lencashire, about 1770 . He was educated as a suggeon in Liverpoal; but on completing his course he resolved to devote himself to veterinary surgery, and, after studying the sübject in France, began practice in London. In 1795 he published a pamphlet of directions for the medical treatment of horses, with special reference to India, and in 1800 a Cursory Account of the Mfothods of Shoeing Horses. Having been offered by the East India Company the inspectorship of their Bengal stud. Moorcroit left England for India in 1808 . Under his care the stud rapidly improved; in order to periect the breed he resolved to undertake a journey into Central Asia to obtain a stock of Turkoman horses. In company with Captain William Hearsey, and encumbered with a stock of merchandise for the purpose of establishing trade relations between India and Central Asia, Moorcroft left Josimath, well within the mountains, on the 26th of May 1812. Proceeding along the valley of the Dauli, they reached the summit of the frontier pass of Niti on the iat of July. Desoending by the towns of Darba and Gartok, Moorcroft struck the main upper branch of the Indut near its source, and on the sth of August arnived at the sacred lake of Manasasowar. Recuraing hy Bhutan, he was detained some time by the Ghurkas, and reached Calcutta in November. This journey only served to whet Moorcroft's appetite for moro extensive travel, for which he prepared the way by sending out a young Hindu, who succeeded in making extensive explora. tions. In company with hisn and Ceorge Trebeck, Moorcroft set out on his second journey in October 1819. On the tath of August the source of the Beas (Hyphasis) was discovered, and subsoquently that of the Chemabs. Leh, the capital of Ladakh; was reached on the 24th of September, and here several months were spent in exploring the surrounding country. A commercial tresty was concluded with the government of Ladakh, by which the whole of Central Asie was virtually opeded to British trade. Kashmir was reached on the 3rd of November 1822, Julalabad on the 4th of June 1824, Kabul on the 20 h of June, and Bokhara on the 25 th of February 1825. At Andkhui, in Aighan Turkeatan, Moorcroft was seized with fever, of which he died on the 27th of August 1825, Trebeck surviving him only a few days. But according to the Abbe Huc, Moorcroft reached Lhasa in 1826, and Hived there twelve years, being assassinated on his way back to India in 1838. In 1841 Moorcroft's papers were obtained by the Asiatic Society, and published, under the editorship of H. H. Wison, under the title of Trovels in the Himalayan Prosincus of Hindustan and the Punjab, in Ladakk and Kashmir, in Pashavim, Kabul, Kumdat and Bohhara, from 1810 to 1825.
See Graham Sandberg, The Exploration of Tibet (1904).
MOORE, ALBERT JOSEPR (1841 - 8803), English decortive painter, was born at York on the 4 th of September 1841. Ho was the youngest of the fourteen children of the artist. William Moore, of York who to the first half of the roth century enjoyed a considerable reputation in the North of England as a painter of portraits and lendecape In bis childhood Albert Moore showed
an extraordinary love of art, and as he was encouraged in his tastes by his father and brothers, two of whom afterwards became famous as artists-John Collingham Moore, and Henry Moore, R.A.-he was able to begin the active exercise of his profession at an unusually early age. His first exhibited works were two drawings which he sent to the Royal Academy in 1857. A year later he became a student in the Royal Academy schools; but after working in them for a few months anly he decided that he would be more proftably occupiod in independeat practice. During the period that extended from 1858 to $\mathbf{1 8 7 0}$, though he produced and exhibited many pictures and drawings, he gave up much of his time to decorative work of various kinds, and painted, in 1863 , a series of wall decorations at Coombe Abbey, the seat of the earl of Craven; in 1865 and 1866 some elaborate compositions: "The Last Supper " and "The Feeding of the Five Thousend "on the chancel walls of the church of St Alban's, Rochdale; and in 1808 "A Greek Play," an important panel in tempera for the proscenium of the Queen's Theatre in Long Acre. His first large canvas, "Elijah's Sacrifice," was completed during a stay of some five months in Rome at the beginning of 1863, and appeared at the Academy in 1865. A still larger picture, "The Shunamite relating the Glories of King Solomon to her Maidens," was exhibited in 1866, and with it two smaller works, "Apricots" and " Pomegranates." In these Albert Moore asserted plainly the particular technical conviction which for the rest of his life governed the whole of his practice, and with them he first took his place definitely among the most original of British painters. Of his subsequent works the most notable are "The Quartette " (i869), " Sea Gulls" (187t), "Follow-my-Leader " (1873), "Shells" (1874), "Topaz" (1879), "Rose Leaves" (1880), "Yellow Marguerites" (1881), "Blossoms" (1881), " Dreamers" (1882), "Reading Aloud" (i884), "Silver" (I886), " Midsummer " (1887), "A River Side" (1888), "A Summer Night " (1890), "Light ming and Light " (1892), "An Idyll " (2893), and "The Loves of the Winds and the Seasons," a large picture which was finished only a few days before his death. He died on the 25 th of September 1893, at his studio In Spenser Street, Westminster. Several of his pictures are now in public collections; among the chief are "Blossoms." in the National Gallery of British Art; "A Summer Night" in the Liverpool Corporation Gallery; "Dreamers" in the Birmingham Corporation Gallery; and a water-colour, "The Open Book," in the Victoria and Albert Museum, South Kenaington. In all his pictures, save two or three produced in his later boyhood, he avoided any approach to story-telling, and occupied himself exclusively with decorative arrangements of lines and colour masses. The spirit of his art is essentially classic, and his work shows plainly that be was deeply influenced by study of antique sculpture; but he was not in any sense an archaeological painter, nor did he attempt reconstructions of the Life of past centuries. Artistically he lived in a world of his own creation, a place peopled with robust types of humanity of Greek mould, and gay with bright-coloured draperics and hrilliant-hued flowers. As an executant he was careful and ortain; he drew finely, and his colour-sense was remarkiable for its refinement and subtle appreciation. Few men have equalled him as a painter of draperies, and still fewer have approached his ability in the application of decorative principles to pictorial art.
MOORE, EDWARD (1712-1757), English dramatist and miscellaneous writer, the son of a dissenting minister, was born at Abingdon, Berkshire, on the 22ad of March 1712 . He was the author of the domestic tragedy of The Gamester, originally produced in 1753 with Garrick in the leadfing character of Beverley the gambler. As a poet he produced clever imitations of Gay and Gray, and with the assistance of George, ist Lord Lyitelton. Lord Cbesterfiedd and Horace Walpole, conducted The World (1753-1757), a weekly periodical on the moded of the Rambler. Moote collected his pocins under the tive of Poems, Fables and Plays in 1756. He died in Lambeth on the 1st of March 1757. His Dramatic Works were published in 1788.

MOORE, GEOROE (1853 -), Irish novelist and poet, was born in Ireland, son of George Henry Moore, M.P., a wellknown orator and politician. He studied art in London and finished his education in Paris. He was a regular contributor to various London magazines when he published his first volume, in verse, The Floucrs of Passion (1877). A second, Pagan Pocms, appeared in 1881. As a novelist he followed the French school of Flaubert and Zola, and became prominent for deliberate reallsm. His powerful Mummer's Wife (1885) had decidedly repulsive ciemeats. But Zolaism meanwhiie was a thing to which the reading public was gradually becoming acclimatized. George Moore's Esther Waters (1894), a strong story with an anti-gambling motive, had a more general success, and was followed by Exelyn Innes (1898), a novel of musical life, and its sequel، Sisicr Teresa (1901). He interested himself in the Irish Gaclic revival, and was one of the founders of the Irish Literary Theatre. His play, The Strike at Arlingford (three acts, in prose, 1803)، was written for the Independent Theatre, and his satirical comedy, The Bending of the Bough (1900), dealing with Irish local affairs, was played by the Irish Literary Theatre in Dublin. His Diarmuid and Grania, written with Mr. W. B. Yeats, was produced by Mr. F. R Benson's company at the same theatre in 1901. The Untilled Fidd (1903) and The Lake (1905) are romantic pictures of Irish life. Moore had originally come to the front In London about 1883 as an art critic, and his published work in that line includes Impressions and Opinions (18gn) and Modern Painting (1893, and ed., 1897). Among his other books are A Drama in Mmsin, (1886), A Mere Accident (1887)، Parnell and His Island (1887), Mike Fleicher (1887), Spring Days (1888), Vaim Forlune (1890), Cclibales (1895). Confessious of a Young Man (i888), and Monvirs of My Dead Lifc (1906).

MOORE GEORGE POOT (18gi-), American Biblical scholar, was born ia West Chester, Pennsylvanla, on the I gth of October 1851, the son of William Eves Moore (1823-1899), a prominent Presbyterian minister, long the permanent clerk of the Preshyterian General Assembly. The son graduated at Yale in 1872 and at Union Theological Scminary in 1877, was ondained in 2878, and from 1878 to 1883 was pastor of the Putnam Presbyterian Church, Zanesville, Ohio. He was Hitchcock professor of the Hebrev language and literature in Andover Theological Serninary in 1883-1902, and was president of its feculty in 1899-1901; in 1902 he became professor of theofogy and in 1904 professor of the history of religion at Harvard University. His chief eritical work dealt with the Hexatcuch, and more particularly the Book of Judges (Commentary, 1895; text, translation and notes, 1898; text with critical notes, 1900).

MOORE, HENRY ($1831-1895$), English painter, the ninth son of William Moore, of York, and brother of Albert Joseph Moore, was born in that city on the 7 th of March 1831. His artistic education was chiefly supervised by his father, bat he also attended the York School of Design, and worked for a short time in the Royal Academy Schools. He first exhibited at the Academy in 1853, and was a constant contributor to its exhibitions till his death. At the oulset of his career he occupied himself mostly with landscapes and paintings of animals, executed with extraordinary detail in imitation of the prevailing taste of the Pre-Raphaelite Brotherhood; but in 1857 , while oa a visit to the West of Engiand, he made his first attempls as a sea-painter. His success was immediate, and it had the effect of diverting him almost entirely from landscapes. Among his most important canvases must be reckoned "The Pilot Cuiter" in 1866, "The Salmon Poachers" in 1869," The Lifeboat" in 1876, "Highland Pastures" in 1878." The Beachod Margent of the Sea "in $\mathbf{8 8 0 _ { 4 }}$ "The Newhaven Parket" (bought by the Birmingham Corporation), and "Calspaws of the land" (bought by the Chantrey Fund Irustees); in 1885 . "Mount's Bay" (bought hy the Manchester Corporation) in 1886, "Nearing the Needles" in 1888, "Machrihanish Bay, Cantyre." in 1893, "Hove-to for a Pilot "in 1893, and "Glea Orchy," a landacape, in 1895 . He wes elected an aseociate
df the Royal Society of Painters in Water Colours in 1876, and a ioh member in 1880; an associate of the Royal Academy in 1885, and an academician in 1893; and at Paris, in 1887, where he exhibited "The Newhaven Packet" and "The Clearness after Rain," ho received a grand prix and was made a knight of the Legion of Honour. He died at Margate on the annd of June 1895. His works are marked by admirable appreciation of nature, a nd by a rare understanding of wave-form and colour and of the subtleties of atmospheric effect; and as a sea-painter he may fairly be regarded as almost without a rival.

MOORE, JOHN (1729-1802), Scottish physician and writer, was bora at Stirling in 1729, the son of a clergyman. After taking his medical degree at Glasgom, he served with the army in Flanders, then proceeded to London to continue his studies, and eventwally to Paris, where he was attached to tbe homehold of the British ambasador. His novel Zoimce (1789), a close analysis of the motives of a selfish profligate, produced a great impression at the time, and indirectly, through the poetry of Byron, has left an abiding mark on literature. Byron said that he intended Childe Harold to bo "a poetical Zeluco," and the most striking features of the portrait were undoubtedly taken from that character. Mcore's other works have a less marked individuality, but his aketches of society and manners in France, Germany, Switzeriand, Italy and England furnish valuable materials for the social historian. In 1792 he accompaniod Lord Lauderdate to Paris, and witnessed some of the principal scenes of the Revolution. His Journal dwring a Residence in France (1793) is the careful record of an aye-witness, and is frequently referred to by Cariyle. He died in London on the 21st of January 1802 , leaving five sons, the eldest of whom was Goneral Sir John Moore. James Moore ($1766_{3}-1834$), who wrote Sir John's Life, was also the author of some important medical works, and Sir Graham Moore (1764-1843), sew much active naval service and became an admiral.

MOORE, SIR JOHN ($1761-1809$), British general, the son of John Moore, was born at Glasgow on the 13 th of November 176r. From his early years he intended to become a soldier, learned the Prussian firing exercise, and was " always operating in the field and showing how Geneva could be taken." By the duke of Hamilton's influence he obtained an ensigncy in the 51st foot (1776), learned his drill at Mlnorch, and in 1778 was appointed captain-lieutenant in a new regiment raised by Hamilton for service in the American War. Moore remained in America to the peace of 1783 , after which the Hamilton regiment was disbanded. In 1784 he was returned by the Hamilton interest as member of parliament for the united boroughs of Lanark, Selkirk, Peebles and Linlithgow. In parliament, though he never spoke, he scems to have taken bis duties very seriously, and to have preserved an independent position, in which he won the friendship of Pitt and the respect of Burke, and (more important still) the friendship of the duke of York. In 1787 he became major in the ooth (now King's Royal Rifics), but in the following year he was transferred to his old corps, the 51st. In 1792 Meore sailed with his corps to the Mediterranean. He was too late to assist at Toulon, but was engaged throughout the operations in Corsica, and won particular distinction at the taking of Calvi, where he was wounded. Soon after this he became adjutant-general to Sir Charles Stuart, with whom he formed a close friendship. After the expulsion of the French Moore became very intimate with many of the leading Corsican patriots, which intimacy was so obnoxious to Sir Gilbert Elitot (later Lord Minto) that Moore was eventually ordered to leave the island in forty-eight hours, though Eliot wrote in warm terms of his ability. Pitt and the duke of York thought still more highly of Colonel Moore, who was soon sent out to the West Indies in the local rank of brigadier-general. Here he came under the command of Sir Ralph Abercromby, whose most valued adviser and subordinate Moore soon became. In the Santa Lucia expedition he won further distinction by his conduct at the capture of the Vigie and Morne Fort uné. and when Sir Ralph left the island he appointed Moore governor and military commander. In 1798 he accompanied Abercromby
to Ireland as a major-general, and during the rebellion was actively engaged in command of a corps in the south, defeating a large force of the Irish, and saving Wexford from destruction after the battle of Vinegar Hill (June 21). His services were in universal request, and Abercromby had him appointed to the command of a brigade destined for the expedition to Holland. At the action of Egmont-op-Zee, on the and of October 1799, his brigade lost very heavily, and he himself was wounded for the fourth time, on this occasion severely. On his return from Holland he was made colonel of the 52nd regiment, with which he was connected for the rest of his career, and which under his supervision became one of the finest regiments in Europe.

Throughout the Egyptian expedition he commanded the reserve. The 28th and 42 nd regiments in this corps gained great distinction at the battie ol Alexandria, where Moore himself was again wounded. He returned to duty, however, before the surrender of the French forces to General Hutchinson, and added so mueh to his reputation by his conduct in this brilliant campaign that after the short peace came 10 an end he was appointed to command the force assemhled at Shorncliffe camp (1803) as a part of the army intended to meet the projected Invasion of Napoleon. Here were trained some of the best regiments of the service, amongst others the 43rd, $52 n d$ and 95th Rifies, the regiments which afterwards formed the famous "Light Division" and won in the Peninsula an unsurpassed reputation, not only for the skilful performance of the dutics of light troops, but also for invincible steadiness in the line of battle. These corps (now represented in the army by the ist and and battalions of the Oxfordshire Light Infantry and the Rifle Brigade) bore the impress of Moore's training for thirty years and more, and as early as 1804 , on account of the "superior state" of the sand, the king granted the officers exceptional promotion (August 29, 1804). The system of light infantry tactics taught at Shornclifie was not invented by Moore; but he had always advocated the creation of these troops, and he supervised the training which produced such great results. While at Sbornclifie he renewed his intimacy with Pitt, who was then residing at Walmer Castle, and his close friendship with Lady Hester Stanhope led to the erroneous belief that he was betrothed to her. On his return to office Pitt caused Moore to be made a Knight of the Bath, and about the same titne came his promotion to the rank of lieutenant-general. Fox, when he succeeded to office, showed the same appreciation of Moore, and in 1806 sent him to the Mediterranean as seciond-in-command to his brother, General H. E. Fox. In the various minor expeditions of the time Moore had a share, at first as a subordinate, but soon, when Fox went home on account of illhealth, as commander-in-chief of the British army employed in the Mediterranean. About this time he formed an attachment for Caroline Fox (afterwards the wife of Sir William Napier), to whom, however, he did not offer marriage, fearing to "influence her," by his high position and intimacy with her father, "to an irretrievable error for her own future contentment " (Life of Sir C. Napier, i. 39). In 1808 Moore was ordered to the Baltic, to assist Gusta vus IV., king of Swedon, against Russia, France and Denmark. The conduct of the ling, who went so far as to place Sir John Moore under arrest when he refused to acquicsce in his plans, ruined any chance of successful co-operation, and the English general returned home, making his escape in disguise. He was at once ordered to proceed with his division to Portugal, where be was to be under the command of Sir Hew Dalrymple and Sir Harry Burrard. To Moore, as a general of European reputation, who had held a chief command, the appointment of two senior officers to be over him appeared as a bitter insult, though bis resentment did not divert him from his duty. He met his reward, for when, in the excitement caused by the conpention of Cintra, Dairymple and Burrard were ordered home, Moore was left in command of the largest British army that had been employed since the commencement of the war. Weliesiey, who returned home with the other generals. showed his appreciation of Moore, and in an interesting letter (Wellingion Despatches, Oct. 8, 1808) expressed his desire to use his own
great political influence to effect a reconciliation between Moore and the ministers.

It was not long before the Spaniards summoned Sir John Moore's army to assist them against the advance of Napoleon, and the troops were marched into Spain, Salamanca being their rendezvous. There Moore remained for a month, calling up Sir David Baird's corps from Corunna to assist him. Soon, however, the overwhelming success of the emperor's attack threatened to isolate Moore, and it was then that he formed the magnificent resolution of marching northwards against the French line of retreat. The bold and skilful operations which followed this step will be found outlined in the article Peninsulare War. Moore's advance paralysed the Emperor's victorious armies. Napoleon himself turned against the British army, which was soon in grave danger, but Spain was saved. Under these circumstances took place the famous retreat on Corunna. The indiscipline of a large proportion of the troops made it painful and almost disastrous, but the reserve under Edward Paget, in which scrved Moore's old Shorncliffe regiments, covered itself with giory in the ceaseless rearguard fighting which marked every step of the retreat. The march ended with the glorious battle of Corunna (Jan. 16, 1809), where, early in the day, Sir John Moore received his death wound. He would not sufter his sword to be unbuckbed, though the hilt galled his woand, and so he was borne from the ficld. His last hours were cheered by the knowledge of victory, and his only care was to recommend his friends, and those who had distinguished thenselves, to the notice of the government. He died with the name of Lady Hester Stanhope on his lips. By his own wish he was buried, before dawn on the 17 th, in the ramparts of Corunna. Marshal Soult designed that a monument should be erected, with an inscription framed by himself, and the Spanish general La Romana afterwards carried out Soult's wishes. The temporary monument thus erected was made permanent in 1811 by Sir Howard Douglas, acting for the prince regent. The duke of York issued to the army on the ist of February a noble order in which reference was made to the services of the general, and, above all, to the fact that "the life of Sir John Moore was spent among the troops." A memorinl was erected in St Paul's Cathedral hy order of parliament early in 1809, and his native city of Glasgow erected in George Square a bronze statue by Flaxman. The poem by the Rev. Charles Wolfe, "The Burial of Sir John Moore," became one of the most popular in the language. The best-known portrait of Sir John Moore is that by Sir Thomas Lawrence, P.R.A.

For many years controversy, largely political, raged over the events of the Corunna campaign, and only at a later period has any examination of Sir John Moore's merits and services been made in a dispassionate spirit. Mistakos were doubsless made in the retreat, hut it is sufficient to accept Napoloon's view that they were probably inseparable from the difficulties with which Moore was surrounded. His greatest claim to renown is, however, independent of his conduct of armies in the field. He was the finest trainer of men that the British army has ever known. He had the true gift of the great man, judgment of character. While Wellington, whose work would have been vain but for Moore's achievements, perpetually complained of his officers and formed no school, Moore's name is associated with the career of all who made their mark. The history of the Light Division is sufficient in itself to indicate the resules of Moore's training on the rank and file. In opposition to the majority, who regarded the lash and the gallows as the source of discipline, he sought always and by every means to develop the moral qualities no less than the physical. Of the senior officers Hope, Graham, Eidward Paget, H1ill and Craufurd all felt and submitted to his ascendancy. The flower of the younger gencration, Colborne, Hardinge and the Napicrs, even though they gained their taurels under Wellington and in chief command, were ever proud to call themselves "Sir John Moore's men.'

See, begidice the works mentioned in the articie Peninsular War, J. C. Aloore, Liyt \& Su Jalin Moore (1833): Sir J. F. Mlaurice,

Sir John Moore's Jourmal (1904); and the Records of the sond (Oxfordshire Light Infanery). A shorter memoir will be found in Twelve British Soldiers (London, 1899).

MOORE, THOMAS (1779-1852), Irish poet, was born in Dublin on the 28th of May 1779 . His father was John Moore, a prosperous grocer and wine merchant, and his mother's maiden name was Anastasia Codd. In 1793 Tom Moore's name first appeared in print, as a comstributor of some verses "To Zelia." to a Dublin periodical, the Anthologia Hibersica. In the same year Roman Catholic students began to be admitted to Trinity College, Dublin, and in 1794 Moore's name was entered on the books, curiously enough, as a Protestant. At Trinity he made friends with Robert Emmet, and was nearly draggod into the plots of the United Irishmen. The events of 1798 and the execution of Emmet in 1803 made a deep impression on him. The words of Emmet's address to his judges, asking the charity of silence-" Let no man write my epitaph "-are enshrined by Moore in one of his lyrics, "Oh, breathe not his namel" (Irisk Melodies, 1808). The next song in the same collection-"' When be who adores thee "-ako owes its inspiration to Emmen's fate, and the conscientious Oricntalism of Lalla Rookh docs not conceal the pre-cccupation of the writer with the United Irishmen when he writes of "The Firc Worshippers," and with Emmet and Sarah Curran when be describes the toves of Hafed and Hinda, especially in the well-known song, "She is far from the Land where her young Hero sleeps." In 1798 Moore graduated, and in the next year left for England to kecp his terms at the Middle Temple.

He rapidly became a social success in London. Joseph Atkinson, secretary in Ireland to the ordnance board, had beca attracted to Moore in Dublin at first by his gifts as a singer. He now gave him an introduction to Francis Rawdon-Hastings, 2nd earl of Moira, who in vited him to his counlry seat at Donington Park, Leicestershire. Here Moore became a Irequent guest. He had brought with him from Ireland a translation of the Odes of Aracreon, and the prince of Wales consented to have the volume dedicated to him. It was issued in 1800 with notes and a list of distinguished subscribers. His social succeases involved him in expenses far beyond his means. His publisher had advanced him money, and he resolved to pay his debt by the anonymous publication of his juvenile poems, The Portical Works of the Late Thomas Litlle, Esq. (180:), a collection of Jove poems which Mcore afterwands regretted. Through Lord Moira's influence be was, in 1803, appoined registrar of the admiralty prize-court at Bermuda. He went there to take possession of the poet, but soon tired of the monotonous life. and in 1804 , after appointing a deputy, returned to England by way of the United Slates and Canada. In 1806 be published Epistles, Odes and other Pocms, chicfly dealing with his impressions of travel. The volume conalined the "Canadian Boat Song" ("Faintly as tolls the evening chime "), and some love poems of the same kind as those connected whith the name of "Mr Little." Jeffrey made an unjustifiahle onslaught on this collection in the Edisburgh Resicap for July 1806. Moore was in his view " the most licentious of modern versigers, and the most poetical of those who, in our time, have devoted their talents to the propagation of immorality," and the book was a "public nuisance." Moore challenged Jefirey, and a duel wes arranged at Chalk Farm. The police interrupted the proceedings. Jeffrey's pistol was found to be unloaded, and the ludicrous affair ended in a fast friendship between thern.

The success of the satirical epistles in the 1806 volurue encouraged Moore to produce further work of a similar kind, Corrmplion nad Intolerance, Two Pocms (1808), and The Sceplic: a Philosoptical Satire (1800), but the heroic couplet and the manner of Pope did not suit bis tatents. At the end of 1806 he went to Dublin, and, with the exception of about six months in 1807 spent at Donington Park, the next three years were spent in lreland. Here he met Miss Elizabeth Dyke, an actress, who-beeame his wife in March 18in. They lived at first in London, but soan removed into the country, to Kegworth, ncar Lord Maira's seat, and then to Maybeld Collage, near

Achbourne, Derbyshire. Moore had to spend much of his time in London, for the popularity of his songs led to an agreement with his publisher to increase the success of these by singing them himself at great houses. The inception of his /rish Moladies dates Irom 1807, and many of the best were written during the three years of his Irish visit. He had already published separate songs, some of them set to music of his own, when William Power suggested to him in 1807 the task of fitting words to a series of Irish airs supplied by Sir John Stevenson. He could not have lound a task more exactly suited to his powers, and for a quarter of a century he enjoyed a regular income of C 500 a year from Power for writing words to music. The first number of the /rish Melodies appeared in 1808, and contained some of his best and most popular work. The rest appeared bet ween $\mathbf{8 0 8}$ and $\mathbf{1 8 3 4}$. In 18 if 6 Stevenson and Moore published Sacred Sorgs, followed by a second number in 1824. In 1818 they began 10 adapt melodies from other nations. The first number of National Airs appeared in 1818, and was followed by others in $1820,1822,1826$, and 1827 .

After 1812 he broke ground in a new field-political squibwriting. His first butt was the prince regent, once his friend and patron, whose foibles, latness, love for cutlets and curacos, for aged mistresses and practical jokes, were ridiculed with the lightest of clever hands. His earlier political peems appeared in the Morning Chronicle, but in 1813 he published a thin volume of Intercepted Leticrs: The Twopenny Post Bag. Other volumes of squibs, most of which passed through several editions, followed: The World al Westminster (1816), The Fudge Famtly in Paris (8818), The Journal of a Member of the Pococurante Society (1880), Fables for the Holy Alliance (1823), Odes on Cash, Corn, Catholics, and other Matters (1828), The Fudge Family in England (1835). The only failure among his satirical writings was Tom Crib's Mcmorial to Congress (1819) for which he had made an claborate study of thieves' argot.

In 1814 he contracted with the firm of Longmans to supply a metrical romance on an Eastern subject, which should contain at least as many lines as Scolt's Rokeby, the publishers binding themselves to pay 3000 guincas on delivery. Moore had begun Lalla Rookh two years before. He was a careful and laborious writer, and retired to a cottage in the neighbourhood of Donington Park, where with the help of Lord Moira's library he read himself slowly Into familiarity with Eastern scenery and manners. He was already far advanced in his work when Byron in The Ciaour and again in The Bride of Abydos largely forestalied him. The depression following on the peace of 1815 deferred the publication of Lalla Rookh until 1817. It was an immediate success. The Eastern local colouring which dazzled Moore's contemporaries has, however, faded. end the interest still existing in the poem is chiefy due to the uoderctarrent of Irish patriotism which he cleverly worked into it. Iminediately after the completion of Lalla Rookh, Moore removed with his family to Slopetton Cottage, Wilshire, where he was close to Bowood, Lord Lansdowne's country seat. Moore's plans were interrupted by the embezslement of some 86000 by the deputy he had left in Bermuda, for whose default he was fully liable. To avoid a debtors' prison Moore retlred to the Continent. He visited Byron in Italy, and in October 18 r 9 received from him the first part of the Menoirs. The continuation was sent to Moore in Poris the next year, with Byron's suggestion that the reversion of the MS. should be sold. Moore did not remain long in Italy, but made his home in Paris, where he was joined by his wife and children. He was rot able to return to England until 1822, when the Bermuda aflair was compromised by a payment through Longmans of froco. Moore had had many offers of help, but preferred to be indebied to his publishers only. During his exile he had written anot her Oriental poem, The Loves of the Angcls (1822), which was hardiy less popular than Lalla Rookh. He now became a contrihutor of satirical verse to The Times, the connexion Pasting until 1827. He now wrote his Memoirs of the Life of Shcridan. Girst contemplated in 1814 , which appeared, after some delay, in 1825 . The Memoirs of Caplain Rock (1824), in which be gives a
humorous but convincing account of English misgdvernment in Ireland. was the result of a tour with Lord Lansdowne in western Ireland. His prose tale, The Epicurean, appeared in 1827, and the Legendary Ballads in 1830. In 1831 he completed his Life and Death of Lord Edraard Fiagerald, probably his best piece of prose work.

The death of Byren in 8894 rised the question of the publication of his Memoirs. Moore had parted with them in 1821 to John Murray for £2000. After they had come into Murray's possession, Moore began to have doubts about the propriety of publishing them, and an arrangement was therefore made that the $\{2000$ should be'regarded as a loan, to be repaid during Byron's lifetime, and that the MS, should be retained as a security. When Byron died the Memoirs were still unredeemed, and the right of publieation therefore rested witb Murray. Moore now borrowed the money from Longmans and induced Murray to give up his chaim. The money was paid, and, after a heated discussion with Byron's exectrors, the MS. was barnt. It was partly the pressure of the debt thus contracted, and partly the expressed wish of Byron, that induced Moore to undertake for Murray The Letters and Jownals of Lard Byron, vith Notices of his Life (1830). The dificult task was executed with great skill and tact, and it remains, with all its defects and omissions, a valuable record.

Moore's countrymen desired him to accept a seat in partian ment for Limerick. The offer was accompanied by a scheme to present Moore with an estate in the county worth $\{300$ a year. It was made through the poet Gerald Grifin, who has left on record an account of the interview. Moore declined the honour. In 1830 he allowed himself to be drawn into a project for writing a History of Ireland (4 vols., 1835, 1837, 1840 and 1846) lor Landner's Cydopaedia. He hoped that by writing the history of Ireland he might arouse in his own countrymen an interest in their past, and open the eyes of Englishmen to the misgovernment of the country. He had neither the historical training nor the despatch in writing which enabled Scott to scribble of the companion volumes on Scotland, and the history sat llike a nightmare on him, and was left unfinished on the melancholy collapse of his powers in 1845 . He had, however, the temper of the student, and was always a voracious reader.

Moore's last years were harassed by pecuniary difficulties, and by the weakness and misconduct of bis sons, the ekder of whom retired from the English army to enter the foreign legion of France. After the death of his last child in 1845, Moore became a total wreck, but he lived until the 25 th of February 1852. He left sufficient provision for his wife in the Diary which he kept chiefly on her behall.
His other works are, A Letler to the Romon Catholics of Dwdin (1hso): A Malologue Jpon Nalional Music (18Il): an operetta, MP. or The Blue Slocking (1811): A Sel of Gices (1827); The Summer File (1831): Evcaings in Grecce (1826-1832): Travels of an Jrish Gentleman in Scarch of a Religion: Alciphron, a Poem (1839).
Sce Memoirs. Journal and Correspondence of Thomas Moors (8 vols., 1853-1856), ed. by Lord John Kussell, which ru, tains an immense quantity of biographical matcrial; The Pocticat Vorks of Thomas Moore. Collerled by /limself (10 vols., 18.40-18. 2) : also Noles from the Letters of Thomas Moore to his Music mbisher, James Poncer (1854); and Prose and Verse. LIumovows, Snitical and Sentimental, by Thonas Moore, with suppressed passages from the Memoirs of Lond Byron . . (1878), which includes Mons's contribuilions to the Eulinbuegh Revicw (1814-1834). Among modern editions of Moore's Poelical Works may, be mentioned that by Charles Kent (the Centenary ed. 1879), and that by W. M. Rossetti (1880). Memoirs of Moore are prefixed to these editions. There art many coniemporary references to him, especially in the journals and leners of Byrun There is an excellene life, by Siephen Ciwynn: Th.mas.Moore (1go5), wrilien for the"English Men of Levturn Series." Ser also monographs on Moore, by (2. Vallat (1886 and 1 b95), an cemy on himias the poet " of Irish opposition and revoll " n (icong Brandes Man Currents in Namekenh Centwry Liberalure vol. iv., 6875; Eng. trans., 1905).

MOORHRAD, a cily and the county-deat of Clay county, Minnesota, U.S.A., opposite Fargo, North Dakota, on the E. bank of the Red River ahd about 215 m . N.W. of Minneapolis. Pop. (1890), 2088; (1900), 3730; (1905), 4794; (1910),
4840. Moorhead is served by the Great Northern and the Northern Pacific railways. The city is the seat of one of the sate normal schools (1888) and of Concordia College (Norwegian Lutheran; 1891), which in 1907-1908 had 500 students. Moorhead, named in honour of James K. Moorhead (1806 1884), a Republican representative in Congress from Penasylvania in 1859-1869, was setted in 1871, was Incorporated as a village in 1875, and was chartered as a city in 188r.

MOOR-HEN,' the name by which a bird, often called waterben and sometimes gallinule, is most commonly known in England. An earlier name was moat-hen, which was appropriate in the days when a moat was the ordinary adjunct of most considerable houses in the country. It is the Gallinula chloropus of ornithologists, about the sire of a small bantam-hen, but with the body much compressed (as is usual whth members of the family Rallidac, to which it belongs), its plumage above is of a deep olive-brown, so dark as to appear black at a short distance, and beneath iron-grey, relieved by some white stripes on the flanks, with the lower tail-coverts of pure white-these last being very conspicuous as the bird swims. A scarlet frontlet, especially bright in the spring of the year, and a red garter on the tibia render it very showy. Though often frequenting the neighbourhood of man, the moor-hen seems unable to overcome the inherent stealthy habits of the Rallidae, and hastens to hide itself on the least alarm; but under exceptional circumstances it may be induced to feed, yet always suspiciously, with tame ducks and poulery. It appears to take wing with difficulty, and may be often caught by an active dog; but, in reality, it is capable of sustained flight, its longer excursions being chiefly performed by night, when the peculiar call-note it utters is frequently heard as the bird, itself invisible in the darkness, passes overhead. The nest is a mass of flags, reeds, or other aquatic plants, often arranged with much neatness, almost always near the water's edge, where a clump of rushes is generally chosen; but should a mill-dam, sluice-gate, or boat-house afford a favourable site, advantage will be taken of it, and not unirequently the bough of a tree at some height from the ground will furnish the place for a cradle. The eggs, from seven to eleven in number, resemble those of the coot but are amaller, lighter, and brighter in colour, with spots or blotches of reddish-brown. The common moor-hen is extensively spread throughout the Old World, being found also at the Cape of Good Hope, in India and in Japan. In America it is represented by a very closely allied form, G. galcata, so called from its rather Jarger frontal helm, and in Australia by another, G. tenebrosa, which generally wants the white flank-markings. Both closely resemble G. chloropus in general habits, as does also the G. pyrrhorrhoo of Madagascar, which has the lower tail-coverts buff instead of white. Celebes and Amboyna possess a smaller cognate species, G. hoematopus, with red legs; tropical Africa has the smallest of all, G. angulata. One of the most remarkable varieties is the G. nesiofis of Tristan da Cunba, ${ }^{2}$ which has wholly lost the power of flight. ${ }^{3}$ Among other forms are the common Gallinula (Erythra) phocnicwfa, and Gallicrex cristata of India, as well as the South American species classed in the genus Porphyriops, and the remarkable Australian genus Tribonyx contains three species, ${ }^{4}$ wbich seem to be more terrestrial than aquatic in their haunts and habits.

Allied to all these is the genus Porphyrio, including the bind so named by classical writers, and perhaps a dozen other species often called sultanas and purple water-hens, for they all have a plumage of deep blue-some becoming violet, green, or black in parts, but preserving the white lower tail-coverts, so generally characteristic of the group; and their beauty is enhanced by their scarlet bill and legs. Two, P. alleni of the Ethiopian region and the South American P. parac, are of small size.

I Not to be confounded with "Moor-cock" or "Moor-fowl," names formerly in gencral use for the red grouse.

P Proc. Zool. Soc. (1861), p. 260, pl. xxes.
${ }^{2}$ A somewhat intermediate forma seems to be presented by the mobrtien of 1 he island of St Denis, to the north of Madagascar (Proc. Zool. Soc. 1867, p. 1036).

- Amn. Nat. History, अrd series, xoc. 123.

Of the larger species, P. caerulaus is the "Porphyrio" of the ancients, and inhabits certain localitics on both sides of the Mediterranean, while the rest are widely dispersed within the tropics, and even beyond them, as in Australia and New Zealand. But this last country has produced a more exaggerated form Notornis, which has an intercsting and perhaps unique history. First described from a fossil skull by Sir R. Owen, ${ }^{\text {, }}$ and then tbought to be extinct, an example was soon after taken alive, the skin of which (with that of another procured like the first by Walter Mantell) may be seen in the British Museum. Other fossil remains were from time to time noted by Sir R. Owen '; but it began to be feared that the bird had ceased to exist, ${ }^{3}$ unill a third example was taken about the year 1879, the skin and most of the boncs af which, after undergoing examination in New Zealand by Sir W. Buller and T. J. Parker,' found tbeir way to the museum of Dresden, where A. B. Meyer discovered the recent remains to be specifically distinct from the fossil, and while keeping for the latter the name N. mantelli gives the former that of N. hochstelleri. What seems to have been a third species of Notornis formerly inhabited Lord Howe's Island, but is now extinct. Whether the genus Aptornis, of which Owen described the remains from New Zealand, was most nearly aliied to Notornis and Porphyrio cannot here be decided. T.J. Parker considers it a "development by degeneration of an ocydromine type." (See OcyDrome.)
(A. N.)

MOORS (Lat. Mauri; Gr. Maypol, dark men), the name which, as at present used, is loosely applied to any native of Morocco, but in its stricter sense only to the townsmen of mixed descent. In this sense it is also used of the Mahommedan townsmen in the other Barbary states. It has been by some connected with the Hebrew and Phoenician makno, western. Wetzstein derives it from makir, a corruption of Amdsir with its plurals Imdzir and Masir, archaic forms of the Berber native name Amasigh, the free. From Mauri, the classic name for the north-western African tribes, the northwestern districts of that continent came to be called by the Romans Mauretania. The term "Moors" has no real ethnological value. The tribes known to the Romans by that name were undoubtedly of Berber stock (see Berbers). They first appear in history at the time of the Jugurthine War (110-106 b.c.), when Mauretania west of the Mulucha was under the government of a king called Bocchus, and appears to have constituted a regular and organized state. It retained its independence till the time of Augustus, who $\ln 25$ B.c. bestowed the sovercignty of the previously existing kingdom upon Juba II., king of Numidia, at the same time uniting it with the western portion of Numidia, from the Mulucha to the Ampsaga, which received the name of Mauretania Caesariensis, while the province that had previously constituted the kingdom, or Mauretanja proper, came to be known as Maurctania Tingitana (see Mauretania). With the rest of North Alrica Mauretania was overrun by the Arabs in the 7 th century. The subsequent conquest of Spain was effected chiefly by Berber tribes, but the Moulems in the peninsula-known to the Christian nations as Moors-always had a strong strain of Arab blood and in most respects became Arabized. The race was also influenced considerably by intermarriage with the natives of Spain, and when tbe Meors were finally expelled from that country they had become almost entirely distinct from their Berber kinsfolk, to whom they were known as Andalusians. While the mountainous parts of Morocco continued to be occupied by pure Berber people, the Shluh or Shilluh, the Andalusian Moors flocked to

- Proc. Zool. Soc., 1848, p. 7: Trans. fï. 336, pl. Ivi.
${ }^{4}$ Prac. 1850, pp. 209-214, pl. xxi. ; Trans. iv. 69-74. pl. xxv.
${ }^{7}$ Thus the leg bones and what appeared to him the sternum were described and figured (Trans. iv. pp. 12, 17, pls ii. iv.), and the -pclvis and another (emur (vii. pp. 369, 373, pis. xlii., xilii.) : but the supposed sternum afterwards proved not to be that of Notorwis, and Owen (Proc. 1882. p. 689) rectified the error, to which his attention had been drawn, and which he had already suspected (Trant. viii. 120).
- Notwilhstanding the evidence. which presented some incomgruities, offered by Mr Markay (Ibis. 1867, p. 1+4).
${ }^{1}$ Trams. N. Zeal. Iasl. xiv. 238-258.
the coast towns and the plains of Monocco, occupied largely by Arabs. The name Moor is however still applied to the populations speaking Arabic who inhahit the country extending from Morocco to the Senegal, and to the Niger as far east as Timbuktu, i.c. the western Sahara. In this vast region and in all the towns of Barbary many of the Andalusians settled.
The Moors are ethnically a very hybrid race with more Arab than Berber blood. A compon mistake is to regard them as a hlack race, as indicated hy the old English phrase "Black-aMoor," i.e. black as a Moor. They are a wbite race, though often sunburnt and bronzed for generations, and both their children and those who bave lived in the cities might pass anywhere as Europeans.

The typical Moors of Morocco are a handsome race, with skin the coovur of coffee-and-milk, with black eyes and black silky hair, and the features of Europeans. They wear a full beard, and are characterized by a marked dignity of demeanour. There is a general tendency to obesity, which is much admired by the Moors in their women, young girls being stuffed like chickens, with paste-balls mixed with honey, or with spoonfuls of olive oil and sesame, to give them the necessary corpulence. The Moors are an intellectual people, courtcous in manner and not altogether unlettered; but they are cruel, revengeful and bloodthirsty. Among the pirates who infested the Mediterraneap none were worse than the Moors.

They are fanatical Mahommedans, regarding their places of worship as 60 sacred that the mere approach of a Jew or a Christian is forbidden. The Moors are temperste in their diet and simple in their dress, though among the richer classes of the towns the women cover themselves with silks, gold and jewels, while the men indulge to excess their love of fine horses and splendid arms. The national fault is gross sensuality. The position of women is little better than a pampered slaveryThey are uneducated, indolent and vicious. Such education as the children receive is of a superficlal kind. Slavery flourishes, and slave auctions, conducted like those of cows and mules, take place on the afternoons of stated days, affording a lounge for the rich Moors, who discuss the "goods" offered and seek for bargains. This public sale of slaves was prohibited in the coast towns, c. 1850 , under pressure from European powers, but means are found to evade the prohibition.

Of games the young Moors play a great number; the principal one is a kind of football, more like that of Siam and Burma than that of England; wrestling and fencing are popular, but the chief amusement of the adult Moors is the "powder-play" (la'ab al bdrüd), which consists of a type of military tournament, the horsemen going through lance and musket exercises or charging in review fashion, firing volleys as they gallop. Other recreations much in favour throughout Morocco are music, singing, jugglery, snate-charming and acrobatic performances. As professional story-tellers many Moors are remarkable, but the national music is monotonous and not very harmonious.
Sce Dr Arthur Leared. Mondeco and the Moors (r891); Budgett Meakin, The Moorish Empire (1899); and The Moors (1902); Frances Macnab, A Ride in Morocco (1902); and see under Morocco; Mauketania; Berbers, \&c.

MOOSE, the Nortb American Indian (Algonquian) name of the Nortb American representative of the European elk (p.v.). The word is said to mean "cropper" or "trimmer," from the animal's babit of feeding on the branches of trees.

MOOT, a meeting or assembly, in O. Eng. mbt, gembt, a word of which " to meet" is a derivative. "Moot "or its alternative form " mote" is the common term for the assemblies of the people of the bundred, burgh, \&c., in the history of early English institutions, and especially for the national assembly or council, the Witenagemol. The name survives in " moot hall," the term still given to town-halls and council buildings in some towns in England, as at Aldeburgh. From its meaning of assembly, the word was applied to a debate or discussion, especially of the discussion of a bypotbetical case by law students at the Inns of Court. These moots are still carried on at Gray's Inn. As an adjective. " moot " means doubtful, undecided.

MOP, a bunch of cloth, rags or coarse yarn, fastened to a pole and serving as a broom or brush for swabbing up wet floors or other surfaces and for cleaning generally. The word is usually taken to be an adaptation of Lat. mappo, cloth, napkin, cf. "map." A particular application of the term in provincial English is to an annual hiring or statute-fair, a " mop-fair," at which domestic and agricultural servants out of places attended, carrying a broom, a mop or other implement indicative of their calling.

MOPLAH (Malayalam mappila), a fanatical Mahommedan sect lound in Malabar. The Moplahs, who number upwards of a million, are believed to be descended from Arab immigrants, who landed on the western coast of India in the 3rd century after the Hegira. They are remarkable for the fanaticism displayed in successive attacks upon the Hindus, and they have several times resisted British troops. A regiment of the Indian army was recruited among them, but the experiment proved a failure, and the Moptah Rifles were disbanded in April 1907.

MOPSUS, in Greek legend, the name of two seers. (1) Son of Ampyx (or Ampycus) and the nymph Chloris, a Lapith of Oechalia in Thessaly. He took part in the Calydonian boal hunt and accompanied the Argonauts as their prophet. He died from the bite of a serpent whicb sprang from the blood of the Gorgon Medusa. He is represented on the chest of Cypselus as boxing with Admetus. He was afterwards worshipped as a hero and an oracle was consecrated to him. (2) Son of Rhacius (or Apollo) and Manto, daughter of Teiresias. The rival seet Calchas is said to have died of chagrin because the predictions of Mopsus were fulfilled, while his own proved incorrect. Together with another seer, Amphilochus, Mopsus founded Mallus in Cilicia after the return from Troy; and in a quarrel for its possession both lost their lives. According to Pausanias (vii. 3, 2) Mopsus expelled the native inhabitants of Caria, and built the town of Colophon. Mopsus was worshipped as a god by the Cilicians, and had two famous oracles at Colophon and Mallus. His name survives in the town of Mopsuestia (M8\&or 'Ervia) and the spring of Mopsucrene. Mopsus appears to be the incarnation of Apollo of Claros.

MOQUEGUA, a maritime province of southern Peru, bounded N. by the departments of Arequipa and Puno, and S. by the republic of Chile. Area, 5550 sq. m.; pop. (1906 estimate), 31,920. The province extends from the Pacific coast castward to the Cordillera Occidental, which forms the boundary line with Puno and, the republic of Bolivia. Eastern Moquegua is volcanic, and is broken by the high range that forms the western rim of the Titicaca basin. Among the volcanoes in the province arc Tutupacu, the last eruption of which occurred in 1802, Ifuaynaputina and Hachalayhua, which were in violent eruption in 1606, Coropuna, Omate, Ubinas and Candarave-the last three still showing signs of activity. This region is also subject to scvere earthquake shocks. On the lower slopes of the Cordillera there are fertile irrigated valleys which produce grapes and olives for commercial purposes, and a considerable variety of fruits, cercals and vegetables for local consumption. The best-known grape-producing districts are Moquegua (capital) and Locumbathe product being converted into wine and brandy for export. The capital is Moquegua (pop. about 5000 in 1906), in the upper valley of the Il_{0} River, 4500 ft . above sea-level, and 65 m . by rail from the small port of Ilo on the Pacific coast.

Moquegua was formerly one of the three provinces forming a department of the same name. The other two provinces (Tacna and Arica) were held for indemnity by Chile after the war of $1879-1883$ with the understanding (treaty of Ancon, March 8, 1884) that at the expiration of ten years a plebiscile should be taken in the two provinces to determine whether they should remain with Chile, or return to Peru-the country to which they should be annexed to pay the other $10,000,000$ pesos. Chile did not comply with this treaty agreement, and in 1910 still held both provinces.

MORA, JOSB ($1638-1725$), Spanish sculptor, was a pupil of Alonzo Cano. He died in Granada in 1725 and was buried in
the Albaicin church. His work can be usefully studied in the eight statues in the Capella del Cardenal in the Cordova Cathedral and in the figures of St Bruno and St Joseph in the Cartuja near Granada.

Sce B. Haendeke, Sludien awr Geschichie der spenischen Plastik (St rassburg, 1900).
MORA. or Moran (Ital. delay), a geme, universally popular in Italy, in which one player endeavours to guess instantly the number of fingers held up by the other. Ancient Egyptian sculptors represent a game of this kind, and it was played by the Romans, who called it micare digitis, or finger-lashing. It is known to the Chinese and to certain tribes of the Pacific Islands. There are several metbods of playing mora, but in the one most common in Italy the two players, placed face to face, throw out at the same instant one or more fingers of one hand, each crying out simultaneously a number guessed to be that of his adversary's exposed fingers. A correct guess counts one; if botl: guess correctly or wrongly there is no scare. The game, which is generally five or nine points, is played for stakes, and with extraordinary swiftness.

MORACEAE in botany, an order of dicotyledons, belonging to the series Urticiforae, to which belongs also the nettle family (Urticaccae, q.j). It contains about 60 genera with about 1000 species, mostly trces or shruhs, widely distributed in the

Fig (Ficus carica), Shoot bearing Leaves and Fruit.
1, Inflorescence cut lengthwise to show the numerous flowers crowded on the inner surface.
2, A female fower, enlarged. 3, Fruit cut lengthwise.
warmer parts of the earth. The largest genus, Ficus (the fig. q.v.), contains 600 species spread tbrougb tropical and sub-tropical regions, and includes the common fig of the Mediterranean region (Ficus carica), the banyan (F. bengalensis), and tbe indiarubber plant (F. elastica); many of tbe species are epiphytic, sometimes clinging so tightly round the host-plant with their roots as to strangle it. Morus (mulberry, q.v.) contains ten species of trees or bushes in north tempcrate regions and in the mountains of the tropics. Artocarpus, including A. incisa (bread-fruit, q.v.), and A. integrifolia (jack-(rec), has forty species, chiefly natives in the Indian Archipelago. The plants are rich in latex which may be very poisonous as in Antiaris loxicaria, the Upastree ($q .8$.) of Jaya, or sweet and nutritious as in Brosimum galactodendron, the cow-tree ($q . v$.) of Venezuela. The latex
often yields caoutchouc as in species of Ficus (e.g. P. destica), Cecropia (q.s.), a tropical American genus with chirty to forty species, and others.

End of Shoot showing Stipule, s, of India-rubber Plant (Ficus edastica).
The leaves, which are entire or more or less divided, are stipulate. the atipules being omall and lateral as in Morws and allied gencral or intrapetiolar, each pair uniting to forra a cap round the younger leaves, as in Ficus and allied genera, and very well ahown in F. elastica, the common india-rubber plant of greenhouces. The plants are monoecious or dioecious, and the small unisexual flowern are borne in cymose inflorescences which are condensed into apparent racemes, spikes or heads. In the fig they coalesoe to form a fleshy hollow axis on the inner face of which the flowers are situated, while in Dorstenia they form a flat, often lobed, expension with the flowers sunk on the upper face. The fower resembles

Mulberry (Morus wigra), Shoot bearing Leaves and Fruit.
5. Catkin of male fiowers.

2, One male flower.

3, Spike of female flowers. 4, Sungle fernale flowers.
that of Urticaceac: there are generally four free or more or less united perianth leaves, with, In the male fower, a stamen opposite cach perianth leaf; the filaments are incurved in the mulberry and allied genera and straight in the fig and its allies. Arlocarpus has only one stamen. The female flower contains two carpels in the median plame, the posterior one of which is often more or lemaborted, Each developed ovary ctamber contains a solitary pendulous more or less curved ovule. The fruit is an achene or drupe, often surrounded by the feshy perianth and still further complicated by the union of fruits of different fowers as in mulberry, the development of a feshy receptacle as in lig, or as in Artocarpus (bread(ruit), by the union of fruits, perianth and axis into a solid Beaky mass. The embryo is generally curved and surrounded by a flesty endosperm.

From the evidence of leaf-Iossils it is probable that the genus Ficus existed as far north is Groenland in the Cretacecus era and was generally distributed in North America and Europe in the Tertiary period up to miocene times.
moradabad, a city and district of British Indis, in the Bareilly division of the United Provinces. The city is on the
right bank of the river Ramganga, 655 ft . above sea-level, and bas a station on the Oudh \& Rohilkhand railway, 868 miles from Calcutta. Pop. (190r), 75,128. It was lounded in 1625 by Rustam Khan, who buik the fort which overhangs the river bank, and the fine Jama Masjid or great mosque (r63t). The town forms a large centre of trade in country produce. It has a special industry in ornamental brassware, sometimes plated wth lac or tin, which is then engraved. Cotton weeving and printing is also cartied on.
The Distitict or Morndayad lies east of the Ganges and west of the native state of Rampur. Area, $2285 \mathrm{sq} . \mathrm{m}$. It lies within the great Gangetic plain, and is demarcated into three subdiviaions by the rivers Ramganga and Sot. The eastern tract consista of a submontane country, with an elevation slightly greater than the plain below, and is traversed by numerous streams descending from the Himalayas. The central portion consists of a level central phain descending at each end into the valleys of the Ramganga and Sot. The western section has a gentle slope towards the Ganges, with a rapid dip into the lowhands a few miles from the bank of the great river. In addition to Moradabad the principal towns are Amroha ($q . v$.), Sambhal ($39,7 \mathrm{r} 5$) and Chaudansi (25,711).

For the early history of Moradabad see Bareilly. It passed finto the possession of the British in 1801. The population in 1901 was $1,19 \mathrm{r}, 993$, showing an increase of $\mathrm{I} \cdot \mathrm{I} \%$ in the decade. Mahommedans are more numerous than in any pther district of the province, forming more than one-third of the total. The principal crops are wheat, rice, millet, pulse, sugar-cane and cotton. The main line of the Oudh \& Rohilkhand railway traverses the district from south to north, with branches towards Aligarh and Rampur. A third branch from Moradahad city towards Delhi crosses the Ganges at Garhmulhteshwar by a bridge of eleven spans of 200 ft . each.

HORARS, PRANCISCO DE (c. $1500-1572$), Portuguese romance writer, was probably born at the close of the r th century. We know very little of his life, except tbat he was treasurer of the household to King John III., and be is first found in Paris in the suite of the Portuguese ambassador, D. Francisco de Noronha, who had gone there in 1540 . He was a commander of the Order of Christ, and was called O Palmeirim on account of his authorship of the famous romance of chivalry Palmeirim de Inglaterra; in 1572 he was assassinated at Evora. He appears to have waitten his book in France (perhaps in Paris) in 1544 , dedicating it to the Infanta D. Maria, daughter of King Manoel, bet the first extant Portuguese edition only came out $\ln 1567$. A Spanish version was published as early as 1548 , and on the atrength of this many critics have contended that the book was originally written in that language and that Moraes only translated it into Protuguese. Both tradition and a critical examination of the Portuguese and Spanish texts, however, tell overwhelmingly in favour of the first being the original with Moraes is its author. The episode of the four French ladies shows an intimate acquaintance with the court of Francis 1 ., where Moraes spent some years, and one of these ladies named Torsi is the one he loved and to whom he addressed some verses entitled "Desculpa de huns a mores." The Palmeirim de Inglaterra belongs to another branch of the same cycle as the Amadis de Goula; the two romances are the best representatives of their class, and for their merits were spared from the auto da ft to which Cervantes condemned other romances of chivalry in D. Quixote. It has a well-marked plot, clearly drawn characters, and an admirable style, and has been reckoned a Portuguese classic from the time of its fssue.

Biblography.-The Palmerin of England, by W. E. Purser (Dublin, 1904). contains an exhaustive otudy of the romance and the controversy conoerning its sutborship, with a sketch of the plot. The oxisting Portuguese editions bear the dates 1567, 1592. 1786 and 1852, while translations exist in Spanish, Italian and French. An English version Irom the French by A. Munday was first published in 1609 . In 1807 Robert Southey issued in 4 vols. 4 to an incomplece tranalation from the Portuguese which is really a revision of Mundey. In addition Moraes wrote some Dialogues, which were published at Evora in 1624 and are incorporated in the last two editions of Palmeirsm de Inglaterra.

Monalise, a term adopted from the French for the rocky material carried downwards on the outside of a glacier, and deposited at its sides and foot. The position of the moraine with regard to the glacier is indicated by the names applied to it. The lateval moraine is the fringe of rock fragments at the glacier side. The glacier is always slowly moving down the valley. There are always points in the valley where rock falls are more frequent than in other places. The glacier as it moves forward catches this material and carries it onward in a long heaped line distributing it evenly all down the valley sides. When two glacial valleys converge into one valley two lateral moraines unite at the point of function and form a median moraine in the resultant broader glacier, which now has two lateral moraines and one median. All this material carried by the glacier is deposited where the glacier ends, and farms the terminal moraine, frequently in the form of a crescentic dam across the valley. This material is carried farther downwards by stream action and distributed; otherwise the end of all glacier valleys would be blocked with débris against which the ice would be piled to a great height, and the glacier would finally become stationary. The material pushed forward beneath the glacier is sometimes called the bround moraine, the part left bencath the ice the lodge moraine, that carried to the edge and dropped the dump moraine, and that carricd forward the push moraine. (Sce Glacier.)

MORAN, EDWARD (1829-1goi), American artist, was born at Bolton, Lancashire, England, on the 19th of August 1829. He emigrated with his family to America at the age of fiftecn, and subsequently settled in Philadelphia, where after having followed his father's trade of weaver, he became a pupil of James Hamilton and Paul Weber. In 1862 he became a pupil of the Royal Academy in London; he established a studio in New York in 1872, and for many ycars after 1877 lived in Paris. He was a painter of marine subjects and examples of his work are in many prominent collections. Among his canvases are thirteen historical paintings, intended to illustrate the marine history of America from the time of Leif Ericsson to the return of Admiral Dewey's flect from tbe Philippines in 1899. He died in New York City on the gth of June 1901. His sons (Edward) Percy Moran (b. 1862) and Leon Moran (b. 1864), and his hrothers Peter Moran (b. 1842) and Thomas Moran (q.0.), also became prominent American artists.

MORAN, THOMAS (i837-), American artist, was born at Bolton, Lancashire, England, on the 12th of January 1837, and emigrated with his parents to America in 1844, the family settling in Philadelphia. After having been apprenticed for some years to a wood-engraver, he studied under his brother Edward and under James Hamilton, in Philadelphia, and later studied in London, Paris and Italy. In 1871 he accompanied Professor F. V. Hayden's exploring expedition to the Yellowstone, and in 1873 he went down the Colorado with Major J. W. Powell's famous exploring party; and on these two trips he made sketches for two large pictures, "The Grand Cañon of the Yellow-stone" and "Chasm of the Colorado River," both of which were bought by the United States government and are now in the Capitol at Washington. He became a member of the National Academy of Design in 1884 and of the American Water Color Society. His wife, Mary Nimmo Moran (1842-1899), who was born in Strathaven, Scotland, and emigrated to America in 18 52, was also an artist, and was particularly prominent as an et cher.

MORAR, a town of Central India, in the native state of G walior, 3 m . E. of Grialior city. Pop. (1001), 19.179. It was formerly a British military cantonment and residence of a political agent, but in $\mathbf{1 8 8 6}$, when the fortress of Gwalior was restored to Sindhia, the troops at Mforar were withdrawn to Jhansi, and the extensive barracks were likewise made over to Sindhia. In the Mutiny of 1857 Morar was the scene of the most scrious uprising in Central India. It is a centre for local trade, and has an imporiant tanning industry.

MORAT (Ger. Murten), a small town on the east shore of the Lake of Morat, in the Swiss canton of Fribourg, and by rail

14 m. N. of Fribourg or ${ }^{28 t} \mathrm{~m}$. W. of Bern, In 1900 its populacion was 2363, of whom 1840 were German-speaking and 1969 were Protestants. It is a most picturesque little cown, overtooked by the a3th-century castle and the quaint tower of the Rachkaws, while it is still surrounded by its isth century walls that are studded at intervals with watch towers. In 1264 it exchanged its position as a free imperial city (enjoyed since 1218) for the rule of the count of Savoy. In 1475 it was taken by the Swiss at the commencement of their war with Charles the Bold, duke of Burgundy, whose ally. was the duchess of Savoy. But in 1476 it was besieged hy Charles, though it held out till the Swiss army arrived in haste and utteriy defeated (a2nd June) the Burgundians. An obeligk a little way southwest of the town stands on the site of the bone-bouse (destroyed by the French in 1798, wherein the remains of many victims had been collected. Morat was ruled in common from 1475 to 1798 by Bern and Fribourg, being finally ammexed to Fribourg in 1814. The Lake of Morat bas an area of $104 \mathrm{sq} . \mathrm{m}$., and is connected with that of Neuchatel hy way of the Broye canal. On its shores many lake dwellings have been found.
See F. L. Engelhard, Der Stadt Murten Chrowik (Bera, 1828); G. F. Ochsenbein, Die Urkuxden der Belagerung M. Schiocht pon Murten (Freiburg, 1876); H. Wattelet, Dic Sihtach bei Murten (Fribourg, 1894).
(W. A. B. C.)
morata, olfipla fulvia ($\mathrm{r} 526-\mathrm{I} 555$), Italian classical scholar, was born at Ferrara. Her father, who had been tutor to the young princes of the ducal house of Este, was on intimate terms with the most learned men of Italy, and the daughter grew up in an atmosphere of classical learning. At the age of twelve she was able to converse fluently in Greck and Latin. About this time she was summoned to the palace as companion and instructress of the younger hut equally gifted Anne, daughter of Renée, duchess of Ferrara. Olympia's father having died a convert to Protestantism, she met with a cold reception at the palace, and withdrew to her mother's house. Olympia now embraced the doctrines of Luther and Calvin. About the end of 1550 she married a young student of medicine and philosophy, Andrew Grunthler of Schweinfurt in Bavaria. In 1554 she accompanied Grunthler to his native place, where he bad been appointed physician to the garrison of Spanish troops. In 1553 the margrave Albert of Brandenburg on one of his plundering expeditions took possession of Schweinfurt, and was in turn besieged by the Protestants. At length Albert evacuated the place, and Olympia and her husband made their escape. They finally succeeded in reaching Heidelberg (I 554), where a medical lectureship had been obtained for Grunthler through the influence of the Erbach family, by whom they had been hospitably entertained during their flight. Here she died on the $25^{\text {th }}$ of October in the following year.

Bibliography.-The scanty remains of her works-letters, dialogues, Greek verses-were collected and published by Celio Secundo Curione (1558). Monographs by Caroline Bowles, wife of Robert Southey the poet (1834), 1 . Bonnet (I850; Eng. trans., Edinburgh, 1854), and R. Turnbulf'(Boston, 1846); see aliso Caroline Gearcy, Daughers of ILaly (1886).

MORATALLA, a town of eastern Spain, in the province of Murcia, 40 m . W.N.W. of the city of Murcia. Pop. (1900), 12,689. Moratalla is built on a mountainous peninsula, almost surrounded by the Grande and Benamor, small rivers which meet and flow eastward to join the Segura. The town is a labyrinth of narrow, crooked streets, and some of its houses are Moorish in character. Its chief buildings are the modern hospital and theatre, and the ifth-century church. It has manufactures of coarse cloth, spirits and soap. The nearest railway station is Calasparra, 6 m . east, on the Murcia-Albacete railway.
mORATIN, LRANDRO ANTONIO EULOGIO JUBLITON EERNANDEZ DE ($1760-1828$), Spanish dramatist and poet, the son of N. F. de Moratin, was born at Madrid on the roth of March 1760. Though his poetical tastes were carly developed, his father apprenticed him to a jeweller. At the age of eighteen Moratín won the second prize of the Academy for a heroic poem on the conquest of Granada, and two years afterwards he attracted more ganeral attention with his Leccion pottica, a satire upon
the popular poets of the day. He was appoinsed secrotary to Cabarrús on a special mission to France in 1987. On his return to Spain, Moratin was tonsured and presented to a sinecure benefice in the diocese of Burgos, and in 1786 his first play, El Viejo y le winha, was produced at the Teatro del Principe. Owing to the opposition of the elerical party, it was speedily withdrawn. The prose comedy, Et Caft δ la comedia nueas, given at the same theatre six years afterwards, at once became popular. On the fall of Florida Blanca, Morailin found another patroa is Godoy. who provided him with a pension and the means for foreign travel; he accordingly visited England, where he began a prose translation of Hamiet, printed in 1798 but never performed. From England he passed to the Low Counuries, Germany. Switzerland and Iualy, and on his return to the Peninsula in 1796 was appointed official translator to the foreign office. In 1803 he produced El Baron in its present form: originally written (1791) as a zarnuch, it was shamelesely plagiarised by Andres de Mendoza, but the recast, a far more brilliant work, still keept the stage. It was followed in 1804 by La Mogiecta, written between 1797 and 1803 . This piece was favourably received, and an attempt to suppress it on religious grounds failed. Morafin's crowning triumph in original comedy was El Si de las Ninas (1806), which was performed night after night to crowded houses, ran through several Spanish editions in a year, and was soon translated into a number of foreign languages. In 1808 Moratin was involved in the fall of Godoy, but in 18 is accepted the office of royal librarien under Joseph Bonaperte-a false step, which alienated from him all sympathy and compelled him to spend his last years in exile. In $18 \mathrm{r}_{2}$ his Escuda de los maridos, a translation of Molière's Ecole des máris, was produced at Madrid, and in 1813 El Medico 4 Polos (a translation of L M (decin malgre lwi) at Barcelona. From 1854 to 1828 Moratin lived in Italy and France, compiling a work on the early Spanish drama (Origenes del tecalro espetid). He died at Paris on the anst of June 1828 .

The most convenient edition of his works is that given in vol. ii, of the Biblioteca de aubores espanioles; this is supplemented by the Obras poslumas (3 vols., Madrid, 1867-1868).
MORATIN, NICOLSS FERNANDRE DE (1737-1780), Spanish poet and dramatist, was born at Madrid in 1737. He was educated at the Jesuit College in Calatayud and afterwards studied law at the university of Valladolid. In 1772 he was called to the bar; four years afterwards he was nominated to the chair of poetry at the imperial college. He died on the sith of May 1780. A partisan of Freach methods, Moratin published in 1762 his Desengaño al Leatro español, a severe criticism of the national drama, particularly of the asto sacramental; and his protests were partly responsible for the prohibition of autas three years afterwards (June 1^{765}). In 1762 he also published a play entitied La Pelimelra. Neither the Pctimetra nor the Lucracia (1763), an originial tragedy still more striculy in accordance with French conventions, was represented on the stage, and two subsequent tragedies, Hormesinda (1770) and Guamde at Buano (1777), were played with no great success. In 1764 Mioratín published a collection of pieces, chiefly lyrical, under the title of EL Pocta, and in 1765 a short didactic poem on the chase (Diane 6 arte de la casa). His "epic canto" on the destruction of his ships by Cortés (Las Naves de Cortes desiruidas) failed to win a prite offered by the Academy in 1777, and was published posthumously (1785). But a better idea of Moratin's talent is afforded by his anacreontic verses and by his Carla historica sobre al origen y progresos de las fiestas de toros en Espaina.
His worke are included in the Biblioteca do autores esparider, vol. ii

MORATORIDI (from Lat. morari, to delay), a term used to express a legal authorization postponing for a specified time the payment of debts or obligations. The term is also sometimes used to mean the period over which the indulgence or period of grace stretches, the authorization itself being called a moratory law. A moratory law is usually passed in some special period of political or commercial stress; for instance, on several oceasions during the Franco-German War the French government passed
moratory laws. Their international vilidity was discoussed at length and upheld in Rouquelle V. Overmam, 1875, L. R. 10 Q. B. 525.

MORAVIA (Ger., Muhren; Czech, Morapa), a margraviate and crownland of Austria, bounded E. by Hungary, S. by Lower Austria, W. by Bohemia and N. by Prussian and Austrian Silesia. Area, $8583 \mathrm{sq} . \mathrm{m}$. Physically Moravia may be described as a meuntainous plateau sloping from porth to south, just in the opposite direction of the adjoining Bohemia platean, which descends from south to north, and bordered on three sides by mountain ranges. On the north are the Sudetes, namely the Alt vater Gebirge, with the highest peaks the Grosser Schitoeberg (4064 ft) and the Altvater (4887 ft .), which sink gradually towards the west, where the valley of the Oder forms a break between the German mountains and the Carpathians. The latter separate Mornvia from Hungary. Parallel to the Carpathians are the Marsgebirge (1915 ft .) and its continuation, the Steinitzer Wald (1450 ft .). On the weat are the so-called Bohemian-Moravian Mountalns, forming the elevated east margin of Bohemia. The principal passes are those at Iglau and Zwittau to Bohemia and the Wlara Pase to Hungery. Almost the whole of Moravia belongs to the basin of the March or Morava, from which it derives its name and which rises within its territory in the Sudetes. It traverses the whole country in a course of 140 m ., and enters the Danube near Pressburg. Its principal tributaries are the Thaya, the Hanna, the Iglawa with the Zwit tawa and the Schwarzawa, \&c. The Oder also rises among the mountains in the north-east of Moravia, but scon turns to the north and quits the country. With the exception of a stretch of the March, none of the rivers are navigable. Amongst the mineral springs worth mentioning are the sulphur springs at Ullersdorf, the saline ones at Luhatschowitz and the alkaline springs at Toplitz.

Owing to the configuration of the soil, the climate of Mortvia varies more than might be expected in so small an area, so that, while the vine and maive are cultivated successfully in the southern plains, the weather in the mountainous districts is somewhat rigorous. The mean annual temperature at Brana is $48^{\circ} \mathrm{F}$. Of the total area 54.8% is occupied by arable land, 7% by meadows, $5 \cdot 7 \%$ by pasturages, $1 \cdot 2 \%$ by gardens, 0.5% by vincyards, while 27.4% are forests. The principal products are com, pats, barley, potatoes, rye, beetroot, hemp, flaz, hay and other fodder. Forestry is greatly deveioped; the hreed of sheep in the Carpathians is of an improved qualit y, and the horses bred in the plain of the Hanna are highly eateemed. The mineral wealth of Moravia, consisting chiefly of coal and iron, is very considerable. Coals are extracted at Neudorf, Lesitz, Ratisko witz and Céić; ligniteat Rossitz, Oslavan and Mahrisch-Ostrau. Iron-ore is found at Zoptau, Blansko, Adamsthal, Witkowitc, Rossitz and Stefanau. Other minerals found here are graphite, alum, potter's clay and roofing-slate, and, besides, famous silvermines were worked at Iglau during the middle ages. From an industrial point of view Moravia betongs to the foremost provinces of the Auatrian Empire. The priacipal manufactures are woollen, linen, cotton, cast-iron goods, beet-sugar, leather and brandy. The cloth induatry was int roduced in the $14 t$ h century at Iglau, wherefitsoon oblained a great reputation; it developed afterwards at Olmaltit and since the middle of the 18 th century it has its prineipal centre at Brün. The linet industry is concentrated at Schönberg, Mistek, Wiesenberg and Heidenpiltsch; while the cotton industry has its principal seat at Sternberg. The chief iron-foundries are to be found at Witkowits, Stefanau, Zoptau and Rossitz; while industrial machines ane manufactured at Brian, Blansko and Adamsthal. Large works of earthenware are eatablished at Zaxim and Frain.

Moravia had in 1900 a population of $2,435,081$ inhabitants, which is equivalent to 284 inhabitants per sq. m. It belongs to the group of old Slavonic states which have preserved their nationality while losing their political independence. Of the total population $71-36 \%$ mere Slavs. who were scarcely distinguishable from their Bohemian neighbours. The name of Cuech, however, is usually reserved for the Bohemians, while
X Vill 14
the Slave of Moravia and Weat Hungary are called Moravians and Slovacs. The Germans form 27.9% of the population, and are found mostly in the towns and in the border districts. Fully $\mathbf{9 5 \%}$ of the inhabitants are Romman Catholica, under the ecclesiastical jurisdiction of the archbishop of Olmatz and the bishop of Brimn; $\mathbf{2 . 7 \%}$ Protestants and 2% Jews. In educational mattera Moravia compares favourably vith moet of the Austrian provinces. It is well provided with schools of every description, and the number of illiterates is steadily decreasing. The local diet is composed of 100 members, of which the archhishop of Olmuitz and the bishop of Brinn are members ex officio. To the Reichsrat at Vieana Moravia sends 36 members. For administrative purposes Moravia is divided into 34 districts and 6 towns, with autonomous muncipalities: Brann (pop., 108,944), the capital, Iglau (24,387), Olmiltz (21.933), Znaim (16,261), Kremsier (13,991) and Ungarisch-Hradisch (5137). Other principal towns are Kbnigsfeld ($\mathrm{I}, \mathbf{0 2 2}$), G6ding (ro,23i), Mahrisch. Ostrau (30,125), Witkawitz (19,128), Mährisch-Schönberg (11,636), Z wittau (9063), Neutitschein (11,891), Prerau (16,738), Prossnitz $(24,054)$, Sternberg (15,195) and Trebitach $(10,597)$.
History.-At the earliest pericd of which we have any record Moravia was occupied hy the Boii, the Celtic race which has perpetuated its name in Bohemia. Afterwards it was inhabited by the Germanic Quadi, who accompanied the Vandals in their weatward migration; and they were replaced in the sth century by the Rugii and Heruli. The latter tribes were succeeded about the year 550 A.D. by the Lombards; and these in their turn were soon forced to retire before an overwhelming invasion of Slavs, who on their sectitement there took the name of Moravians (German, Mehranen or Mohren) from the river Morava. These new colonists became the permanent inhahitants of this district, and in spite of the hostility of the Avars on the east founded tho kingdom of Great Moravia, which was considerably more extensive than the province now bearing the name. Towards the end of the 8ih century they aided Charlemagne in putting an end to the Avar kingdom, and were rewarded by receiving part of it, corresponding to North Hungary, as a fief of the German emperor, whose supremacy they abso acknowledged mora or less for their other possessions. After the death of Charlemagne the Moravian princes took advantage of the dissensions of his succeasors to enlarge their territories and assert their independence, and Rastislaus (c. 850) even formed an alliance with the Butgarians and the Byzantine emperor. The chief result of the alliance with the latter was the conversion of the Moravians to Christianity by two Greek monks, Cyril and Methodius, despatched from Constantinople (863). Rastislaus finally fell into the hands of Louis the German, who blinded him, and forced him to end his days as a monk; but his successor, Svetopluk (d. 894), was equally vigorous, and extended the kingdom of Great Moravia to the Oder on the west and the Gran on the east. At this period there seemed a strong probability of the junction of the north.western and routheastern Slavs, and the formation of a great Shavonic power to enst of the German empire. This prospect, however, was dissipated by the invasions of the Magyar hordes in the toth century, the brunt of which was bornc by Moravia. The invaders were encouraged by the German monarchs and aided hy the dis. sensions and mismaaagement of the successors of Svatopluk, and in a short time completely subdued the eastern part of Great Moravia. The name of Morzvia was henceforth confined to the district to which it now applies. For about a century the possession of this marchland was disputed by Hungary, Poland and Bohemia, but in 1029 it was finally incorporated with Bohemia, and so became an integral part of the German empire. Towards tbe close of the 12 th century Moravia was raised to the dignity of a margraviate, but with the proviso that it should be held as a fiel of the crown of Bohemia. It benceforth shared the Cortunes of this country, and was usually assigned as an apanage to younger memhers of the Bohemian royal house. In 1410 Jobst, margrave of Moravia, was made emperor of Germany, but died a few months after his election. In 1526, on the death of Louis 11. of Hungary Moravia came with the rest
of that prince's possessions into the hands of the Austrian house. During the Thirty Years' War the depopulation of Moravia was 50 great that after the peace of Westphalia the states-general published an edict giving every man permission to take two wives, in order to "repeople the country." Alter the Seven Years' War Moravia was united in one province with the remnent of Silesia. but In IB_{49} it was made a separate and independent crownlend. The most noticeable feature of recent Moravian history has been the active sympathy of its inhabitants with the anti-Teutonic home-rule agitation of the Bohemian Czechs.
See Die Lander Oesterreich. Ungarns in Wort wnd Bild. vol. 8 (Vienna, 1881-1889, IS vols): Die osterreichisch-ungarische Monarchie ix Wort und Bild, vol 17 (Vienna. 1886-1902, 24 vols.) B. Bretholz, Geschichte Mährexs (Brunn, $\mathbf{1 8 9 3}, \& \mathrm{cc}$.).
moravian brethren, or Moravian Church, a Christian communion founded in the east of Bohemia. For some years after the death of John Huss (1415), the majority of his followers were split into two contending factions: the Hussite Wars began; and the net result of the conflict seemed to be that while the Utraquists, content with the grant of the cup to the laity, were recognized by the pope as the national Church of Bohemia (1433), the more radical Taborites were defeated at the battle of Lipan (1434) and ceased to exist. But with this result some of Huss's followers, who wished to preserve his spiritual teaching, were not content. They laid great stress on purity of morals; and convinced that the Utraquist Church was morally corrupt, they founded a number of independent societies, first at Kremsir and Meseritsch in Moravia, and then at Wilenow, Divischau and Chelcic in Bohemia. At this crisis Peter of Chelcic became the leader of the advanced reforming party. In ethics he anticipated much of the teaching of Tolstoy; in doctrine he often appeated to the authority of Wyclife; and in some of his views it is possible to trace the influence of the Waldenses. He interpreted the Sormon on the Mount literally, denounced way and oaths, opposed the union of Church and State, and declared that the duty of all true Christians was to break away from the national Church and return to the simple teaching of Christ and His apostles. His followers were known as the Brethren of Chelcic, and wore a distinctive dress. His most noted supporter was John Rockycana, archbishop-elect of Prague. He was pastor of the Thein Church (1444), preached Peter's doctrines, recommended his works to his hearers, and finaliy, when thesc hearers asked him to lead them, he laid their case before King George Podicbrad, and obtained permission for them to setile in the descrted village of Kunwald, in the barony of Senftenberg. It was here that the new commanity was founded (1457 or 2458). At their head was Gregory, the patriarch; a layman, said later to be Rockycana's nephew; in Michat Bradacius, the priest of Senftenberg, they found a spiritual teacher; and fresh recruits came streaming in, not only from the other little societies at Kremsir, Meseritsch, Chelcic, Wilenow and Diwischau, but also from the Waldenses, the Adamines, the Utraquist Church at Koniggratz, and the university of Prague They called themselves Jednota Bratrska, i.e. the Church or Communion of Brethren; and this is really the correct tramslation of their lator term, Unitas frotrkm. At the Synod of Lhola (1267), they broke away entircly from the papacy, elected ministers of their own, and had Michael Bradacius consecrated a bishop by Stephan, a bishop of the Waldenses. At the syriod of Reichenau (1495), they rejected the authority of Peter of Chelcic, and accepted the Bible as their only standard of faith and practice. In doctrine they weve generally broad and radical. They tanght the Apostles' Creed, rejected Purgatory, the worship of saints and the authority of the Catholic Cburch, practised infant baptism and confirmation, held a view on the Saerament similar to that of Zwingli, and, differizg somewhat from Luther it their doctrine of justification by faith, declared that true faith was "to know God, to love Him, to do His commandments, and to submit to His will." With the Brethron, however, the chief stress was laid, not on doctrine, but on conduct. For this purpose they instituted a severe system of discipline,' divided their members into three alasoes-the Periest,
the Proficient, and the Beginners, and appointed over each congregation a body of lay elders. For the same purpose they made great use of the press. In igoi Bishop Luke of Prague edited the first Protestant hymn-book; in 1502 he issued a catechism, which circulated in Switzerland and Germany and fired the catechetical zeal of Luther; in 1565 John Blahoslaw translated the New Testament into Bohemian; in $1579^{-1} 593$ the Old Testament was added; and the whole, known as the Kralitz Bible, is used in Bohemia still. The constitution was practically Presbyterian. At the head of the Charch was a body of ten elders, elected by the synod; this synod consisted of all the ministers, and acted as the supreme legislative authority; and the bishops ruled in their respective dioceses, and had a share in the gencral oversight. The growth of the Brethren was rapid. In 1549 they spread into Great Poland; in the latter half of the century they opened many voluntary schools, and were joined by many of the nobility; and the result was that by 1609, when Rudolph II. granted the Lefter of Majesty, they were half the Protestants in Bohemia and more than half in Moravia.

At the very height of their power, however, they were almost crushed out of existence. The cause was the outbreak of the Thirty Years' War (1618). At the batile of the White Hill (1620) the Bohemian Protestants were routed; the Brethren were driven from their homes, the Polish branch was absorbed in the Reformed Church of Poland; and then many fied, some to England, some to Saxony, and some even to Texas. For a hundsed years the Brethren were almost extinct. But their bishop, Jolin Amos Comenius (1502-1672), held them together. With an eye to the future, he published their Ratio disciplinae, collected money for the "Hidden Seed" still worshipping in secret in Moravia, and had his son-in-law, Peter Jablonsky, consecrated a bishop, and Peter passed on the succession to his son Daniel Ernest Jablonsky.

The revival of the Moravian Brethren was German in origin. Of the "Hidden Seed ' the greater number were Germans; they were probably descended from a colony of German Waldenses, who had come to Moravia in 1480 and joined the Cliurch of the Brethren, and, therefore, when persecution broke out afresh they naturally fied to the nearest German refuge. With Christian David, a carpenter, at their head, they crossed the border into Saxony, sectled down ncar Connt Zinzendori's estate at Bertheisdorf, and, with his permission, built the town of Hermhut (1722-172;). But under Zinzendort the history of the Moravians took an entirely new turn. He was a fervent Lutheran of the Pietist type; he lelieved in Spener's "ecclesiole "conception; and now he tried to apply the conception to the Moravian refugees. For some years he had a measure of success. Instead of reviving Moravian orders at once, the sectlers attended the Berthelsdorf parish church, regarded themselves as Lutherans, agreed to a code of " statutes "drawn up by the count, aceepted the Augsburg Confession as their standard of faith, and, joining whit some Lutheran setulers in a special Communion service in Berthelsdorf (Aug. 13, 1727), had such a powerful unifying experience that modern Moravians regard that day as the burthday of the renewed Moravian Church. From that period two conflicting ldeals were at work among the Moravians. In form the Moravian Church was soon restored. Before long persecution broke out against Herrahut; the count sent a band of emigrants to Georgia; and as these emigrants would require their own ministers, he had David Nitschmann consectated a bishop by Jablonsky (1735). In this way the Moravian orders were malntained; the "ecclesiola " lecame an independent body, and the British parliament recognized the Brethren as "an ancient Protenant Episcopal Church" (1749, 22 Geo. II. cap. 120). And yet, on the other hand, Zinzendorf's conception continued long in force. In hampered the Brethren's progress in Germany, and explains the smallness of their numbers there. Instead of aiming at Church extension, they built setticments on the estates of friendly noblemen, erected Brethren's and Sisters' houses, and culivated a quiet type of spiritual bife. It is troe that they evangelized all over Germany; but this part of their work was known as the. Diaspora (\& Pet. i. 1); and the ides
underlying this word is that the Brethren minister to the "scattered" in other Churches wit hout drawing them into the Moravian Church. In Germany, therefore, the importance of the Moravians must be measured, not by their numbers, but by their influence upon other Christian bodies. It was from the Moravians that Schieiermacher learnt his religion, and they even made a passing impression on Goethe; but both these men were repelled by their doctrine of the substitutionary sufferings of Christ.

In reply to the very natural question why the Moravians began their work in England, the answer given by history is that John Wesley, on his voyage to Georgia (1735) met some Moravian emigrants; that on his return he met Peter Boehler, who was on his way to North Carolina; that through Boehier's influence both John and Charles Wesley were "converted" (1738). For a few years they tock an active share in the Evangelical Revival (17381755); but Zinzendorf's "ecclesiola" policy prevented their growth, and not till 1853 did the English Mornvians resolve to aim at " the extension of the Brethren's Church." In foreign missions the distinctive feature about the Moravians is, not that they were so early in the field (1732), but that they were the first Protestants to declare that the evangelization of the heathen was the duty of the Church as such. Hitherto it had been a part of colonial policy. It was this that made their missions $s 0$ influential.
Present Condition-I. Enterprises: (1) Fercign missions in Labrador, Alaska, Canada, California, West Indies, Nicaragua, Demerara, Surinam, Cape Colony, Kaffraria, German East Arrica, North Queensiand, West Himalaya. (2) Leper Home near jerusalem (1867). (3) Diaspora in Germany, Switzerland, France, Denmark, Norway. Russia. Poland. (4) Church extension in Germany, Great Britain, North America. (5) Boarding Schools. German Groat Britain, North America. (5) Boarding Schooss German Bohemia and Moravia, begun in 1869, and sanctioned by the Austrian government (1880).
11. Orders and Conslitution.-The orders of the ministry are bishops. presbyters, deacons. But the lishops have no dioceses, Their chicf function is to ordain, and to act as " intercescors." The supreme legislative board is the General Synod. It consists of delegates elected by each province, certain ex officio members, and representatives from the mission field. At present the Moravian Church is divided into four provinces, German, British, American North and American South (North Carolina). In provincial natters fach province is independent, holds its own synods, makes its own laws, and elects its own governing board; but the Gencral Synod mects, on the average, every ten years at Herrnhut, and its regulations are binding in all the provinces. The forcign missions are managed by a mission board, elected by the Gencral Synod. Thire is also a standing court of appeal, known as Unity's Flicre Conference, and consist ing of the Mission Board and four provincial boards. It is the Church's representative in the eyes of the hw. In Germany the official title of the Church is Etengelische Brider. Unidet; in Austria, Evangelische Brüder-Kirche: in England and America. Moravion Church.
111. Doctrine.-At the last General Synod ($\mathbf{1} 909$) they repeated their old fundamental principle that" "the Huly Scriptures are our only rule of faith and practice"; but at the same time they declared that their interpretation of Scripture agreed substantially with the Nicene Creed, the Weseminster and Augsburg Confessions, and the Thirty-nine Articles. Since 1879 sincir leading doctrines have be en fumulaied as fulluws: (1) the cotal depravity of man; (2) the real Godhead and reai humanity of Christ ; (3) ,ustification and redemption through the sacrifice of Christ: (4). Work of the Holy Spirit: (5) good works as fruits of the Spirit: (6) Iellowship of believers; (7) cecond coming of Christ: (8) resurrection of the dead to life or judgment.
IV. Ceremonies.-At morning worship the service consists of a Stany, scripture lessons. sermon, singing, extempore prayer. At the evening service a litany is rarely used. The Communion is celebrated once a month. Infant Baptism is practised. There are three niodes of admission to membership: in the case of the unbaptized. adule baptism (not immersion): in ol her cases confirmation or reception. Members (rom other Churches are generaily admitted by reception.
V. Church Policy.-It is now held by some Moravians that their Church offers a ria media between Anglicanism and Dissent. At the last meeting of the Lambeth Conference (1907) some overtures, on certain conditions. werc made for (a) joint consecration of bishops. (b) joint ordination of ministers. (c) irterchange of pulpita. In response the Moravians, at the General Sy nod (1909), welcomed the offer, but also declared their wish (a) to preserve their independence as a "Protestant Episcopal Church"; (b) to coonperate freety as hetetofore with other Evangelical Churches. On this quetion ncgotiztions are till in progress.
VI. Slatistics roog.
\quad Province.
German $:$
British
American (N.)
American (S.)
Bohemia
Foreign Ficld

Congregations.	Communicands.
23	6.213
42	3.782
96	13.932
26	4.019
12	684
245	33.466
444	62,096

Literature.-Gindely. Ceschichle der Böhmischen-Brider (1858): G. ll, Quclien u. Untersuchungen zur Gesch. d. B bhm. Bruder (i882): Miller. Das Bischofstum der Bruder-Kirche (1888): Zinzendorf als Eneucrer dep allen Bruder-Kirche (1000): Die deutschen Kateckismen d. Bobm.-Bruder (1887): Becker, Zinzendorf und sein Christentum im Verhalunis zum kirchlichen u. religgösen Leben seiner Zeif (1900): Schutze, Abrisz einer Geschichie der Brüder- Mis sion (1go1); Seifferth. Church Constitution of the Bohemian and Morasian Brethen (1866); De Schweinizz, History of the Unites Fratrum (1889); Wauer, Beginnimgs of the Brethren's Church in Ergland (1001); II amiltoo, Hislory of the Moravion Church in the s Shth und 10ih Centuress (1900); Hutton, History of the Moravion Church (1909) : Moravian Church Book (19022 ; Aforavian Almanac (annual). For oflicr sources see articles "Bohmische-Bruder" and "Zinzendors" in Hauck" Realencyklopoedie; and for latest resulis of historical research, Ztiuschrift fur Bridergeschichte (half-ycarly).
(J. E. H.)
moray, thomas randolph, ist Earl of (d. 1332), Scottish warrior and statesman, was the only son of Thomas Randolph of Nithsdale, who had been chamberlain of Scotland, and through his mother Lady Isabe! Bruce he was nephew to King Robert the Bruce. Randolph joined Bruce after the murder of the Red Comyn, and was present at his coronation in 1306. In June of that year he was captured by Aymer de Valence in a fight at Methven, and saved his life by becoming Edward's man. He joined in the hunt for Bruce, but in 1308 he was captured by Sir James Douglas and imprisoned. He began by defying his uncle, but presently made his submission, becoming the friendly rival of the exploits of Sir James Douglas and the confidant of Bruce's plans. In 1312 or 1314 the Scottish king made him carl of Moray and lord of Man and Annandale, white the estates held from Edward I. were confiscated. By a brilliant feat of arms he captured and destroyed Edinburgh Castle early in 1314, scaling the rock by a path pointed out by a certain William François who had made use of it in a love intrigue. On the eve of Bannockburn Randolph was posted in a wood in charge of the van with orders to prevent the English from throwing cavalry into Slifing. On the approach of a body of three hundred English horse under Sir Robert Clifiord, Sir Henry de Beaumont and Sir Thomas Gray, Randolph came out of cover, and his spearmen, drawn up in a square, were vainly altacked on all sides by the English, who were driven to retreat on the appearance of Sir James Douglas with reinforcements; these, howcver, took no share in the action, the site of which is still known as Randolph's Field. The next day found Randolph in command of the centre of the Scottish battle. He shared in Edward Bruce's expedition to Ireland in 1315, and returned to Scotland in 1357 with Robert Broce. With Sir James Douglas Randolph was closely allied and the wo were associated in a series of brilliant exploits. In 1318 they seized the town of Berwick by escalade; being aided by the treachery of one of the burgesses, Simon of Spalding, and reinlorced by Bruce they became masters of the castle some months later. In the next spring they made a raid on the northern English countics, laying waste the country as far as York, where they hoped to seize the English queen. They routed the militia hastily raised by William de Melton, archbishop of York, in a fight known' as the "Chapter of Myton" because of the ntmber of clerics who lell in the battie. Edward 11., who was laying siege to Berwick, sought in vain to intercept them on their return journey. Later in the year the t wo Scoltish nobles again raided England, and at length Edsvard II. signed a Iruce for two years. In 1332 Moray shared in Douglas's exploit at Byland Abbey. In the next year he was one of the Scottish ambassadors charged to conclude a truce with England, and was further sent to Avignon to persuade the pope to acknowledge ' In general. for "Moray " ace Murray. ihe spelling having bren constantly laterchangeable. The preseas earic keep the epolisag Morav.

Bruce's claims by addressing him as king of Scotland. In the spring of 1326 he was again in France, when he concluded an offensive and defensive alliance between France and Scolland. The death of Bruce in 1329 made Moray regent of Scolland and guardian of the young king David II. in accordance with enactments made hy the Scotish parliaments of 1315 and 1318 . He died at Musselburgh on the 20th of July 1332, while preparing to resist an invasion by the English barons. Allegations of poisoning are made both by Barbour and Wyntoun, but without substantial grounds.

Moray married Isabel, daughter of Sir John Stewart of Bonkyll. His son Thomas, the and earl, was killed at the hattle of Dupplin In 1332; his second son John, the 3rd carl, was killed at Neville's Cross in 1346. The earldom then became extinct and the estates passed to their sister Agnes (c. 1312-1369), countess of Dunbar and March, known as "Black Agnes," and celcbrated for her gallant defence of Dunbar Castle in 1337 and 1338 . (See March, Earls of.)

MORBHANJ, or Mayurbhanj, a native state of India, in the Orissa division of Bengal. Area 4243 sq. m.; pop. (1901), 610,383 , showing an increase of 14.7% in the preceding decado, revenue, 684,00 . It contains a large proporticn of mountain and forest, where wild elephants are numerous, and also some of the richest iron ores in India. The capital is Baripada (pop5613), which is connected by a narrow-gauge line with the Bengal-Nagpur railway.
morbihan, a department of western France on the Atlantic seaboard, formed of part of Lower Brittany, and bounded S.E. hy the department of Loire-Inferieure, E. by that of Hle-etVilaine, N. hy Cotes-du-Nord, and W. by Firistère. Arca, 2738 sq. m. Pop. (1906), 573,152. From the Montagnes Noires on the northern Irontier the western portion of Morbihan slopes southward towards the Allantic, being watered by the Elle, the Blavet with its affluent the Scorff, and the Auray; the eastern portion, on the other hand, dips towards the south-cast in the direction of the course of the Oust and its feeders, which fall into the Vilaine. Though the Montagnes Noires contain the highest point (974 ft .) in the department, the most striking orographic feature of Morbihan is the dreary, treeless, streamless tract of moorland and marsh known as the Landes of Lanvaux, which extends (W.N.W. to E.S.E.) with a width of from J to 3 mules for a distance of 31 miles between the valley of the Claie and that of the Arz (affuents of the Oust). A striking contrast to this district is aflorded by the various inlets of the sea, whose shores are clothed with vegetation of exceptional richness, large fig-trees, rose-laurels, and aloes growing as if in Algeria. The coast-line is exceedingly irregular: the mouth of the Vilaine, the peninsular of Ruis, the great gulf of Morbihan (Inner Sea), from which the department takes its name, and the mouth of the Auray, the long Quiberon peninsula attached to the mainland by the narrow isthmus of Fort Penthievre, the decpbranching estuary of Etel, the mouths of the Blavet and the Scorff uniting to form the port of Lorient, and, finally, on the borders of Finistere the mouth of the Laita, follow each other in rapid succession. Off the coast lie the islands of Groix, Belle-fle ($q . v$.), Houat and Hoedik. Vessels drawing 13 ft . can ascend the Viluine as far as Redon; the Blavet is canalized throughout its course through the department; and the Oust, as part of the canal from Nantes to Brest, forms a great waterway by Redon, Josselin, Rohan and Pontivy: The climate of Morbihan is characterized by great moisture and mildness. Unproductive heath occupies more than a quarter of the department, about a third of which is arable land. Ryc, buckwheal and wheat, potatoes and mangels are the chicf crops; hemp and flax are also grown. Horned cattle are the chief livestock and beeteeping is extensively practised. The sca-ware gathered along the coast helps greatly to improve the soil of the region bordering thereon. Outside of Lorient (q 占), a centre for naval construction, there ls little industrial activity in Morbihan. The catching and curing of sardines and the breeding of oysters (Auray, St Armel, \&c.) form the businest of many of the inhabitants of the coast, who also fish for anchovies, lobsters, sec, for tinning.

The forges of Hennebont are of some importance for the production of sheel-tin.

The department is served by the Oricans rallway. It is divided into four arrondissements-Vannes, Lorient, Ploermel and Pontivy-with 37 cantons and 256 communes. The capital Vannes is the seat of 2 hishopric of the provincc of Rennes. The department belongs to the region of the Xlith army corps and to the académie (edurational division) of Rennes, where also is its court of appeal. The principal places are Vannes, Lorient, Ploermel, Pontivy, Auray, Hennebont, Carnac and Locmariaquer, the last two famous for the megalithic monuments in their vicinity. Other places of interest are Erdeven and Plouharnel, also well known for their megalithic remains; Elven, with two towers of the 1 th century, remains of an old stronghold, Josselin which has the fine chateau of the Rohan family and a church containing the tomb (ast h cent ury) of Olivier de Clisson and his wife; Guern with a chapel of the 1 gth and $16 \mathrm{th}^{\mathrm{h}}$ centuries and le Faouet with a chapcl of the 1 sth century; Quiberon, which is associated with the disaster of the French dwigrts in 1795 , Sarzeau, near which is the fortress of Sucinio (13th and 15 th centuries); Ste Barbe with a chapel, dating from about the end of the 1 gth century, finely situated, overlooking the Elle; St Gildas-de-Ruis, with a ruined Romanesque church and other remains of a Benedictine abbey of which Abelard was for a time abbot. The principal pardons (religious festivals) of the department are those of Ste Anne-d ${ }^{+}$Auray and St Nicolas-des-Eaux.

MORCAR, EARL (f. 1066), son of Earl Elfgar, brother of Edwin, earl of the Mercians. They assisted the Northumbrians to expel Tostig, of the house of Godwin, in 1065 and Morcar was chosen earl by the rebels. Harold, Tostig's brother, consented to this extension of the power of the Mercian housc. In spite of this concession, and the help which he gave them against Tostig and Harold Hardrada, the two brothers left him to fight alone at Hastings. After trying to secure the crown for their own house, they submitted to William, but lost their earldoms. They attempted to raise the North in 1068, and failed ignominiously. They were pardoned, but Morcar afterwards joined Hereward in the Isle of Ely (10 II), while Edwin perished in attempting to raise a Welsh rebellion. Morcar died in prison; at what date is unknown.

See E. A. Freeman, Norman Conquest and William Rufus, vol. i.
MORDECAI BEN HILLEL, a German rabbi, who died as a martyr at Nuremberg in 1298. His great legal (Halachic) work is usually cited as "the Mordecai," and its value consists in its thorough use of the medieval authorities. It acquired wide authority, and was one of the sources of the Code of Joseph Caro. Mordecai was also the author of Responsa.

See L. Ginzberg in Jew. Ency. ix. 10-13.

MORDVINIANS, otherwise called Moxdva, Morovs, or Mordvins, a pcople numbering about one million, belodging to the Ural-Altaic family, who inhabit the middle Volga provinces of Russia and spread in small detached communities to the south and east of these. Their settlement in the basin of the Volga is of high antiquity. One of the two great branches into which they are divided, the Erzya, is perhaps the same as the Aorses mentioned by Piolemy as dwelling between the Baltic Sea and the Ural Mountains. Strabo mentions also the Aorses as inhabitants of the country between the Don, the Caspian Sea and the Caucasus. The Russians made raids on the Mordvins in the 12th century, and after the fall of Kazan rapidly invaded and colonized their country.

The Mordvins are now found in the governments of Simbirsk, Penza, Samara and Nizhniy-Novgorod, as well as Saratov and Tambov. But their villages are dispersed among those of the Russians, and they constitute only 10 to 12% of the population in the four first-named governments, and from 5 to 6% in the last two. They are unequally distributed over this area in ethnographical islands, and constitute as much as 23 to 44% of the population of several districts of the governments of Tambov, Simbirsk, Samara and Saratov, and only 2 or 3% in other districts of the same provinces. They are divided into two great
branches, the Erzya (Erza, or Ersa) and the Moksha, differing somewhat in their physical features and laaguage. The southern branch, or the Moksha, have a darker skin and darker eyes and hair than the northern. A third branch, the Karatays, found in Kazan, appears to be mixed with Tatars. The language is a branch of the Western Finnisb family, and most nearly allied to the Cheremissian, though presenting many peculiarities (see Finno-Ugric). The Mordvins have largely abandoned their own language for Russian; but they have maintained a good deal of their old national dress, especially the women, whose profusely embroidered skirts, original hair-dress large ear-rings which sometimes are merely hare-tails, and numerous necklaces covering all the chest and consisting of all possible ornaments, easily distinguish them from Russian women. They have mostly dark hair, but blue eyes, generally small and rather narrow. Their cephalic index is very near to that of the Finns. They are brachycephalous or sub-brachycephalous, and a few are mesaticephalous. They are fimely built, rather tall and strong, and broad-chested. Their chief occupation is agriculture; they work harder and (in the besin of the Moksha) are more prosperous than their Russian neighbours. Their capacities as carpenters were well kaown in Old Russia, and Ivan the Terrible used them to build bridges and clear lorests during his advance on Kazan. They now manufacture wooden ware of various sorts. They are also masters of apiculture, and the commonwealth of bees often appears in their poetry and religious bellefs. They have a considerable literature of popular songs and legends, some of them recounting the doings of a king Tushtyan who lived in the time of Ivan the Terrible. Nearly all are Christians; they received baptism in the relgn of Elizabeth, and the Nonconformists have made many proselytes among them. But they still preserve much of their own mythology, which they have adapted to the Christian religion. According to some authorities, they have preserved also, especially the less russified Moksha, the practice of kidnapping brides, with the usual battles between the party of the bridegroom and that of the family of the bride. The worship of trees, water (cspecially of the water-divinity which lavours marriage), the sun or Shkay, who is the chief divinity, the moon, the thunder and the frost, and of the home-divinity Kardazcerko still exists among them; and a small stone altar or fiat stone covering a small pit to receive the blood of slaughtered animals ean be found in many houses. Their burial customs seem founded on ancestor-worship. On the forticth day after the death of a kinsman the dead is not only supposed to ret urn home but a member of his household represents him, and, coming from the grave, speaks in his name.

The language is treated of in Ahlquist's Versuch einer Mokschamordzoinischen Grammatik nebst Texten und Worter.Verzeichniss (Sc Petersburg, 1861), and their history, custorns and religion by, Smirnov (trans. by Boyer), "Les Populations finnoises de la Volga", (in Publications de I'école des langues oriontales, vipantes, 1898). Much valuable information respecting eustoms, religion, language and folk-lore will be found in papers by Paasonen, Heikel, Ahlquist. Mainof and others printod in the Journat de is Saciste FinmoOugrienno and the Finnisch-ugrische Forschungen.
(C. EL.)

MORE, HANMAH ($\mathbf{7 7 4 5 - 1 8 3 3 \text {), English religious writer, was }}$ born at Stapleton, near Bristol, on the and of February 1745. She may be said to bave mede three reputations in the course of her long life: first, as a clever verse-writer and witty talker in the circle of Johnson, Reynolds and Garrick; next, as a writer on-moral and religious subjects on the Puritanic side; and lastly, es a practical philanthropiat. She was the youngest but one of the five daughters of Jacob More, who, though a member of a Presbyterian famrily in Norfolk, had become a member of the English Church and a strong Tory. He taught a school at Stapleton in Gloucestershire. The elder sisters established a boarding-school at Bristol, and Hannah became one of their pupils when she was twelve years old. Her first biterary efforts were pastoral plays, suitable for young ladies to act, the first being written in 1762 under the title of A Search afler Happiness (2nd ed. 1773). Metastasio was one of her literary models; on his opera of Attilio regulo she based drama, The Infexible Coptiec, publighed in 1774 . She gave up her share in the school
in view of an engagement of marriage she had contracted with a Mr Turner. The wedding never took place, and, after much reluctance, Hannah More was induced to accept from Mr Turner an annuity which had been settled on her without her knowledge. This set her frce lor literary pursuits, and in 1772 or 1773 she went to Londoa. Some verses on Garrick's Lear led to an acquaintance with the actor-playwright; Miss More was taken up by Elizabeth Montague; and her unaffected enthusiasm,simplicity, vivacity, and wit won the hearts of the whole Jobnson set, the lexicographer himself included, although he is said to have told ber that she should "consider what ber flattery was worth before she choked him with it." Garrick wrote the prologue and epilogue for her tragedy Percy, which was acted with great success at Covent Garden in December 1777. Another drama, The Fatal Falsehood, produced in 1779 after Garrick's dcath, was less successful. The Garricks had induced her to live with them; and after Garrick's death she remained with his wife, first at Hampton Court, and then in the Adelphi. In 1781 she made the acquaintance of Horace Walpole, and corresponded with him from that time. At Bristol she discovered a poetess in Mrs Anne Yearsley (1756-1806), a milkwoman, and raised a considerable sum of moncy for her benefit. "Lactilla," as Mrs Yearsley yas called, wished to receive the capital, and made insinuations against Miss More, who desired to hold it in trust. The trust was handed over to a Bristol merchant and eventually to the poetess.
Hannah More published Sacred Dramas in 1782, and it rapidly ran through nineteen editions. These and the poems Bas-Blew and Florio (1786) mark her gradual transition to more serious views of life, which were fully expressed in prose in her Thoughts on the Importance of the Manners of the Great to General Society (1788), and An Estimate of the Religion of the Fashionable World (1790). She was intimate with Wilberforce and Zachary Macaulay, with whose evangelical views she was in entire sympathy. She pubiished a poem on Slavery in 1788 . In 1785 she bought a house, at Cowslip Green, near Wrington, near Bristol, where she settled down to country life with her sister Martha, and wrote many ethical books and tracts: Striclures on Female Educadion (1799), Hixis towards forming the Character of a Young Princess (1805), Coelebs in Search of a Wife (only nominally a story, 1809), Practical Piety (1811), Chris(ian Morals (18x3), Character of St Poul (a815), Moral Sketches (1810). The tone is uniformly animated; the writing fresh and vivacious; her favourite subjects the minor self-indulgences and infirmitics. She was a rapid writer, and her work is consequently discursive and formless; but there was an originality and force in her way of putting commonplace sober sense and piety that fully accounts for her extraordinary popularity. The most famous of her books was Coelcbs, in Scarch of o Wife, which had an enormous circulation among pious people. Sydney Smith attacked it with violence in the Edin burgh Revicw for its general priggishness. It is interesting to note that the model Stanley chiidren have been said to be drawn from T. B. Macaulay and his sister, She also wrote many spirited rhymes and prose tales, the earliest of which was Villoge Politics (1792), by "Will Chip," to countcract the doctrines of Tom Paine and the induence of the French Revoiution. The success of Village Politics induced her to begin the series of "Cheap Repository Tracts," which were for three years produced by Hannah and her sisters at the rate of three a month. Perhaps the most lamous of these is The Shepherd of Salisbury Plain, describing a family of phenomenal frugality and contentment. This was translated into several languages Two million copies of these rapid and telling sketches were circulated in one year, teaching the poor in shetoric of most ingenions homeliness to rely upon the virtues of content, sobriet y, humility, industry, reverence for the British Constitution, hatred of the French, trust in God and in the kindness of the gentry.

Perhaps the best proof of Hannah More's sterling worth was her indefatigable philanthropic work-her long-continued exertions to improve the condition of the cbildren in the mining districts of the Mendip Hills near her home at Cowslip Green and Barley Wood. The More sisters met with a good deal of
opposition in their good worts. The farmers thought that education, even to the limited extent of learning to read, would be latal to agriculture, and the clergy, whose neglect she was making good, accused ber of Methodist tendencies. In her old age, philanthropists from all parts made pilgrimages to see the bright and amiable old lady, and she retainod all her faculties till within twe years of ber death, dying at Clifton, where the last five years of ber lite were spent, on the 7 th of September 1833 .
See The Life of Hannah More with Notices of Her Sisters (1838), by the Rev. Henry Thompoon. The article in the Dict. Nat. Biog. Is by Sir Leslie Stephen. Some letters of Hannah More, with a very slight connecling narrative, were publiahod in 1872 by William Roberts as The Life of Hannah CAore. See also Hannah More (1888), by Charlotte M. Yonge, in the :Eminent Women." serice, and Hannak More (New York and London, 1900). by .. Marion Harland." Lethers of Hamnat More Lo Zachary Macounlay were edited (1860) by Arthur Roberta. The contemporary opposition to her may be seen in an abusive Life of Hannah More, weith a Critical Rcvices of her Writings (1802), by the "Rev. Aichibald Macsarcasm" (William Shaw, rector of Chelvey, Somerner).

MORE, HENRY (1614-1687), English philosopher of the Cambridge Platonist school, was born at Grantham in 1614. Both his father and his mother, he tells us, were "earnest followers of Calvin," but he himself "could aever swallow that hard doctrine." In 1631 be was admitted at Christ's Collcge, Cambridge, about the time Milton was leaving It. He immersed himself "over head and ears in the study of philosophy," and fell for a time into a scepticism, from which he was delivered by a study of the "Platonic writers." He was fascinated especially by Neoplatonism, and this lascination never left him. The Theologia germanica also exerted a permanent influence over him. He took his bachelor's degree in 1635 , his master's degree in 1639, and immediately afterwards was chosen fellow of his college. All other preferment he refused with one exception. Fiftecn years after the Restoration he accepted a prebend in Gloucester Cathedral, but only to resign it in favour of his friend Dr Edward Fowler, afterwards bishop of Gloucester. He wouid not accept the mastership of his college, to which, it is understood, he would have been preferred in 1654, when Cudworth was appointed. He drew around him many young men of a refined and thoughtful turn of mind, hut among all his pupils the most interesting was a young lady of noble family. This lady, probably a sister ol Lord Finch, subsequently carl of Nottingham, a well-known statesman of the Restoration, afterwards became Lady Conway, and at her country seat at Ragley in Warwick. shire More continued at intervals to spend "a considerable part ol his time." She and her hushand both appreciated him, and a midst the woods of this retreat he composed several of his books. The spiritual enthusiasm of Lady Conway was a considerable factor in some of More's speculations, none the less that she at length joined the Quakers. She became the friend not only of More and Penn, but of Baron van Helmont and Valentine Creatrakes, mystical thaumaturgists of the 17 th century. Ragley became a centre not only of devotion bul of wonderworking spiritualism.! From this, his genius suffered, and the rationality which distinguishes his earlier is much less conspicuous in his later works. He was a voluminous writer both in verse and in prose, hut his works, except the Divinc Dialognes (1688), are now of little interest. This treatisc, animated and sometimes brillinnt, is valuable for modern readers in that it condenses his general vicw of philosophy and religion.
Henry More represents the mystical and theosophic side of the Cambridgo movement. The Neoplatonic extravagances which lay hidden in the school from the first came in his writings to a head, and merged in pure phantasy. He can never be spoken of, however, save as a spiritual genius and a significant figure in British philosophy, hess robust and in some respects less learned than Cudworth, but more interesting and fertile in thought, and more genial in character. From youth to age he describes himsolf as gifted with a buoyant temper. His own thoughts were to him a never-ending source of pleasurable excitement. This mystical elevation was the chief feature of his character, a certain
${ }^{1}$ The place and its religious marvels are glanced at in the romance of John Jrglesant (ch. xv.).
radiancy of thought which carried him beyond the common life without raising him to any artificial height, for his humility and charity were not less conspicuous than his piety. The last ten years of his life were uneventful. He died on the ast of September 1687, and was buried in the chapel of the college he loved.
Before his death More issued complete editions of his works, his Opera theologica in 1675 , and his Opera philosophica in $16,8$. The chief authoritics for his life are Ward's Life (1710): the prefatio generalisaima prefixed to his Opera omsise (1679): and also general actount of the nuanner and scope of his writings in an Apology published in 1664. The collection of his Philosophical Poems ($\mathbf{2 6 4 7}$), in, which he has "compared his chiel speculations and experiences," should also be consulted. An elaboraie analysis of his hife and works is given in Tulloch's Rational Theology, vol. ii (1874); see also R. Zimmermann. Henry More mad die vierle Dimen. sion des Raums (Vicnna, 1881). (For his ethical theory, as contained in the Enchiridion Elhicum, see Etuics.)

MORE, SIR THOMAS (1478-1535), English lord chancellor, and author of Utopia, was born in Milk Street in the city of London, on the 7th of February 1478. He received the rudiments of education at St Anthony's School in Threadnecdle Street, at that time under Nicolas Holt, held to be the best in the city. He was carly placed in the housebold of Cardinal Morton, archbishop of Canterbury. Admission to the cardinal's family was esteemed a high privilege, and was sought as a school of manners and as an introduction to the world by the sons of the best families in the kingdom. Young Thomas More obtained admission through the influence of his father, Sir Thomas, then a rising barrister and afterwards a justice of the court of king's bench. The usual prognostication of future distinction is attributed in the case of More to Cardinal Morton, "who would often tell the nobles sitting at table with him, where young Thomas waited on him, whosoever liveth to trie it shall see this child prove a notable and rare man."' At the proper age young More was sent to Oxford, where he is said vaguely to have had Colet, Grocyn and Linacre for his tutors. ${ }^{2}$ All More himself says is that he had Linacre for his master in Greek. Learning Greek was not the matter of course which it has since become. Greek was not as yet part of the arts curriculum, and to learn it voluntarily was ill looked upon by the authorities. Those who did so were suspected of an inclination towards novel and dangerous modes of thinking, then rife on the Continent and slowly finding their way to England. More's father, who intended his son to make a carecr in his own profession, took tbe alarm; he removed him from the university without a degree, and entered him at Now Inn to commence at once the study of the law. After completing a two-years' course in New Inn, an inn of chancery, More was admitted in February 1496 at Lincoln's Inn, an inn of court. "At that time the Inns of Court and Chancery prescnted the discipline of a well-constituted university, and, through professors under the name of readers and exercises under the name of mootings, law was systematically taught " (Campbell). In his professional studies More early distinguished bimself, so tbat he was appointed reader-in-law in Furnival's Inn; but he would not relinquish the studies which had attracted him in Oxford. We find him delivering a lecture to audiences of "all the chief learned of the city of London." ${ }^{\text {The subject he chose }}$ was a compromise between theology and the humanities, being St Augustine's De civilute. In this lecture More sought less to expound the theology of his author than to set forth the philosophical and historical contents of the treatise. The lecture-room was a church, St Lawrence Jewry, placed at his disposal by Grocyn, the rector.

Somewhere about this period of More's life two things happened which gave in opposite directions the determining impulse to his future career. More's was one of those highly susceptible natures which take more readily and more eagerly than common minds the impress of that which they encounter on their first contact with men. Two priscipal forms of thought and feeling were at this date in conflict, rather unconscious tban dectared, on English soil. Under the denomination of the " old learning." the sentiment of the middle ages and the idea of Church authority was

[^54]entablished and in full possession of the religious houses, the universities, and the learned professions. The foe that was advancing in the epposite direction, though without the conscience of a hostile purpose, was the new power of human reason animated with the revived sentiment of classicism. In More's mind both these hostile influences found a congenial bome. Each had its turn of supremacy, and in his early years it seemed as if the humanistic influence would gain the final victory. About the age of twenty he was seized wilh a violent access of devotional rapture. He took a disgust to the world and its occupations, and experienced a longing to give himself over to an ascetic life. He took a lodging near the Charterhouse, and subjected himself to the discipline of a Carthusian monk. He wore a sharp shirt of hair next his skin, scourged himself every Friday and other fasting days, lay upon the bare ground with a log under his head, and allowed himself but four or five hours' sleep. This access of the ascetic malady lasted but a short time, and More recovered to all out ward appearance his balance of mind. For the moment the balance of his faculties seemed to be restored by a revival of the antagonistic sontiment of humanism which he had imbibed from the Oxford circie of friends, and specially from Erasmus. The dates as regards More's carly life are uncertain, and we can only say that it is possible that the acquaintance with Erasmus might have begun during Erasmus's first visit to England in 1499. Tradition has dramatized their first meeting into the story given by Cresacre More'-that the two happened to sit opposite each other at the lord mayor's table, that they got into an argument during dinner, and that, in mutual astonishment at each other's wit and readiness, Erasmus exclaimed, "Aut tu es Morus, aut nullus, "and the other replied,"Aut tuea Erasmus, aut diabolus]" Rejecting this legend, which bears the stamp of fiction upon its face, wo have certain evidenco of acquaintance between the two men in a letter of Erasmus, with the date " Oxford, 29th October 1499." If we must admit the correctness of the date of Ep. 14 in the collection of Erasmus's Epistolac, we should have to assume that their acquaintance had begun as early as 1497. It rapidly ripened into warm attachment. This contact with the prince of let ters revived in More the spirit of the " new learning," and he returaed with ardour to the study of Greck, which had been begun at Oxford. The humanistic influence was sufficiently strong to save him from wrecking his life in monkish mortification, and even to keep him for a time on the side of the party of progress. He acquired no inconsiderable facility in the Greck language, from which he made and published some translations. His Latin style, though wanting the inimitabie ease of Erasmus and often offending against idiom, is yet in copiousness and propriety much above the ardinary Latin of the English acholars of bis time.
More's attention to the new studies was always subordinate to his resolution to rise in his profession, in which he was stimu. lated by his father's example. As early as 1502 he was appointed under-कheriff of the city of London, an office then judicial and of considerable dignity. He first attracted public attention by his conduct in the partinment of 1 504, by his daring opposition to the king's demand for money. Henry VII, was entitled, according to feudal lawe, to a grant on occasion of his daughter's marriage. But he came to the House of Commons for a much larger sum than he intended to give with his daughter. The anembers, unwillitg as they were to vote the money, were afraid to offend the king, till the silence was broken by More, whose speech is said to have moved the house to reduce the subsidy of threefifteenths which the Government had demanded to $\{30,000$. One of the chamberlains went and told his master that he had been thwarted by a beardless boy. Henry never forgave the audacity; bot, for the moment, the only revenge he could take was upon More's father, whom upon some pretext he threw into the Tower, and be only released him upon payment of a finc of troo. Thomas More even found it advisable to withdraw from public life into obscurity. During this period of retirement the old dilemma recurred. One while be devoted himself to the sciences, "perfecting himself in music arithmetic, geometry and
${ }^{1}$ Life, p. 93 -
astronomy, learning the French tongue, and recreating his tired spirits on the viol," ${ }^{2}$ or translating epigrams frorn the Greek anthology; another while resolving to take priest's orders.

From dreams of clerical celibacy he was roused by making. acquaintance with the family of John Colt of New Hall, ia Essex. The "honest and sweet conversation" of the three daughters attracted him, and though his inclination led him to prefer the second he married the eldest, Jane, in 1505 , not liking to put the affront upon her of pessing her over in lavour of her younger sister. The death of the old king in 1509 restored him to the practice of his profession, and to that public career for which bis abilitics specially fitted him. From this time there was scarce a cause of importance in which be was not engaged. His professional income amounted $10 f_{4} \infty$ a year; equal to 4000 in present money, and, "considering the relative profits of the law and the value of money, probablyindicated as high a station as $\{10,000$ at the present diy " (Caypbell). It was not long before he attracted the attention of the young king and of Wolsey. The spirit with which he pleaded before the Star Chamber in a case of The Crown v. The Pope recommended him to the royal favour, and marked him out for employment. More obtained in this case judgment against the Crown. Henry, who was present in person at the trial, had the good sense not to rescent the defeat, but took the counsel to whose advocacy it was due into his service. In 1514 More was made master of the requests, knighted, and sworn a member of the privy council. He was repeatedly employed on embassics to the Low Countries, and was for a long time stationed at Calais as agent in the shifty negotiations carried on by Wolsey with the court of France. In 1519 he was compelled to resign bis post of under-sheriff to the city and bis private practice at the bar. In 152x he was appointed treasurer of the exchequer, and in the parliament of 1523 he was elected Speaker. The choice of this officer rested nominally with the house itself, but in practice was always dictated by the court. Sir Thomas More was pitched upon by the court on this occasion in order that his popularity with the Commons might be employed to carry the money grant for which Wolsey asked. To the great disappointment of the court More remained firm to the popular cause, and it was greatly oxing to his influence that its demands were resisted. From this occurrence may be dated the jealousy which the cardinal began to exhibit towards More. Wolsey made an attempt to get him out of the way by sending bim as ambassador to Spain. More defeated the desiga hy a personal appeal to the king, alleging that the climate would be fatal to his health. Henry, who saw through the artifice, and was already looking round for a more popular successor to Wolsey, made the gracious answer that he would employ More otherwise. In 1525 More was appointed chancellor of the duchy of Lancaster, and no pains were spared to attach him to the court. The king frequently sent for him into bis closet, and discoursed with him on astronomy, geometry and points of divinity. This growing favour, by which many men would have been carried away, did not impose upon More. He discouraged the king's advances, showed reluctance to go to the palace, and seemed constrained when there. Then the king began to come himself to More's house at Cbelsea, and would dine with him without previous notice. William Roper, busband of More's eldest daughter, mentions one of these visits, when the king after dinner walked in the garden by the space of an hour holding his arm round More's neck. Roper afterwards congratulated his father-in-law on the distinguished honour which had been shown him. "I thank our Lord," was the reply, "I find his grace my very grod lord indeed; and I believe be doth as singularly favour me as any subject within this realm. Howbeit, son Roper, I may tell thee I have no cause to be proud thereof, for if my head would win him a castle in France it should not fail to go." As a last resource More tried the expedient of silence, dissembling his wit and affecting to be dull. This had the desired effect so far that he was less often sent for. But it did not alter the royal policy, and in 1529, when a successor had to be
${ }^{2}$ Roper.Lift.
found for Wolsey, More was raised to the chancellorship. The selection was justified by More's high reputation, hut it was also signifieant of the modification which the policy of the court was then undergoing. It was a concession to the rising popular perty, to which it was supposed that More's politics inclined him. The public favour with which his appointment had been received was justified by his conduct as judge in the court of chancery. Having heard causes in the forenoon between eight and eleven, after dinner be sat again to receive petitions. The meaner the suppliant was the more affiahiy be would speak to bim and the more speedily he wouid despatch his case. In this respect he formed a great contrast to his predecessor, whose arrears he soon cleared off. One morning being told hy the officer that there was not another cause before the court, he ordered the fact to be entered on record, as it had never happened before. He not only refused all gits-such as had been usual-bimself, but took measures to prevent any of bis connexions from interfering with the course of justice. One of his sons-in-law, Heron, having a suit in the chancellor's court, and refusing to agree to any reasonable accommodation, because the judge ${ }^{4}$ was the most affectionate father to bis children that ever was in the world," More thereupon made a decree against him.
Unfortunately for Sir Thomas More; a lord chancellor is not merely a judge, but has high political functions to perform. In raising More to that eminent position, the king had not merely considered bis professional distinction but had counted upon his avowed liberal and reforming tendencies. In the Utopia, which, though written earlier، More had allowed to be printed as late as 1516 , he had spoken against the vices of power, and declared for indifference of religious creed with a breadth of philosophical view of which there is no other example in any Englishman of that age. At the same time, as he could not be suspected of any sympathy with Lutheran or Wicklifite beretics, he might fairly be regarded as qualified to lead the party which aimed at reform in State and Church witbin the limits of Catholic orthodoxy. But in the king's mind the public questions of reform were entirely sunk in the personal one of the divorce. The divorce was a point upon which Sir Thomas would not yield. And, as he saw that the marriage with Anne Boleyn was determined upon, he petitioned the king to be allowed to resign the Great Seal, alliging failing health. With much reluctance the royal permission was given and the reslgnation accepted, on the ioth of May 1532, with many gracious expressions of goodwill on the part of the king. The promise beld out of future bounty was never fulifled, and More left office, as be had entered il, a poor man. His necessitous condition was so notorious that the clergy in convocation voted hinn a present of 55000 . This he peremptorily refused, cither for himself or for his family, declaring that he "had rather see it all cast into the Thames." Yet the whole of his income after resigning office did not exceed $\ell 100$ a year.

Hitherto he had maintained a large establishment, not on the princely scale of Wolsey, but in the patriarcbal fashion of having all his sons-in-law, with their families, ander his roof. When he resigned the chancellorship he called his children and grandchildren together to explain his reduced circumstances. "II we wish to live together," said he, "you must be content to be contributories together. But my counsel is that we fall not to the lowest fare first: we will not, therefore, descend to Oxford fare, nor to the fare of New Inn, bnt we will begin with Lincoln's Inn diet, where many right worshipful men of great account and good years do live full weli; which if we find ourselves the first year not able to maintain, then we will in the next year come down to Dxford fare, where many great learned and ancient fathers and doctors are continually conversant; while if our purses stretch not to maintain neither, then may we after, with bag and wallet, go a-begging together, hoping that for pity some good folks will give us their charity."

More was now ahle, as he writes to Erasmus, to return to the life which had always been his ambllon, when, free from husiness and public affairs, he might give himself up to his favourite
studies and to the practices of his devotion. Of the Chelsea interior Erasmus has drawn a charming picture, which may vie with Holbein's celebrated canvas, "The Houschold of Sis Thomas More."
" More has built, near London, upon the Thames, a modest yef commodious mantion. There be lives murrounded by his numerour farnily, including his wife, his son, and his son's wife, his three daughters and their husbands, with eleven grandehildren. There is not any man living so affectionate to his children as he, and he loveth his old wile as it she were a girl of fifteen. Such is the excellence of his disposition that whatsoever mappeneth that could not be helped, he is as cheeriul and as well pleased as though the best thing possible had been done. In More's house you would see that Phato's Academy was revived again, only, whereas in the Academy the discussions turned upon geometry and the power of numbers, the house at Chemen is a veritable sehool of Christian religion. In it is none, man or woman, hut readeth or studieth the liberal arts, yet is their chiel care of piety. There is never any seed idle; the head of the house governs it not by a lofty carriage and oft rebukes, but by gentleneas and amiable manners. Every member is busy in his place, performing his dnty with alacrity; nop is sober mirth wanting.' 1
But More was too conspicuous to be long allowed to enjoy the happiness of a retired life. A special invitation was sent him by the king to attend the coronation of Anne Boleyn, accompanied with the gracious offer of $£ 20$ to buy a new suit for the occasion I More refused to attend, and from that moment was marked out for vengeance. A first attempt made to being him within the meshes of the law only recoiled with shame upon the head of the accusers. They were maladroit enough to attack him on his least vulnerable side, summoning him before the privy council to answer to a charge of receiving bribes in the administration of justice. One Parnell was put forward to complain of a decrec pronounced against him in favour of the contending party Vaughan, who he said had presented a glt cup to the chancellor. More stated that he had received a cup as a Now Year's gift. Lord Wiltshire, the queen's father, exultingly cried out, "So, did I not tell you, my lords, that you would find this matter true?" "But, my lords," continued More, "having pledged Mrs Vaughan in the wine wherewith my hatler had filied the cup, I restored the cup to ber." Two other charges of a like nature were refuted as triumphantly. But the very futility of the accusations must have betrayed to More the bitter determination of his enemies to compass his destruction. Foiled in their first ill-directed attempt, they were compelled to have recourse to that tremendous engine of regal tyranny, the law of treason. A bill was brought into parliament to attaint Elizabeth Barton, a nun, who was said to have beld treasonable language. Barton turned out afterwands to have been an impostor, hut she had duped More, who now lived in a superstitious atmosphere of convents and churches, and he had given his countenance to her supernatural pretensions. His name, with that of Fisher, was accordingly included in the bill as an accomplice. When he came before the council it was at once apparent that the charge of treason could not he sustained, and the efforts of the court agents were directed to draw from More some approbation of the king's marriage. But to this neither cajolery nor threats could move him. The preposterous charge was urged that it was by his advice that the king bad committed himself in his book against Luther to an assertion of the pope's authority, whereby the titie of "Defender of the Faith" had been gained, but in reality a sword put into the pope's band to fight against him. More was ahle to reply that he had warned the king that this very thing might happen, that upon some breach of amity between the crown of England and the pope Henry's too pronounced assertion of the papal authority might be tumed against himself, " therefore it were best that place be amended, and his authority more slender's touched." "Nay," replied the king, "that it shall mot; we are so much bound to the see of Rome that we cannot do tos much honour unto it. Whatsoever impediment be to the contrary, we will set forth that authority to the utmost; for we have received from that see our crown imperial," "which." added More, "till his grace with his own mouth to.told me
${ }^{1}$ Ep, 426, Appendix.

I never beard before." Anything more defiant and exasperating than this could not well have been said. But it could not be laid hold of, and the charge of treason being too ridiculous to be proceeded with, More's name was struck out of the bill. When bis daughter brought him the news, More calmly said, "I' faith, Meg, quod differtur, non aufertur: that which is postponed is not dropt." At another time, having asked his deughter how the court went and how Queen Anne did, be received for answer, "Never better; there is nothing else but dancing and sporting." To this More answered, "Alas, Meg, it pitieth me to remember unto what misery, poor soul, she will shortly come; these dances of hers will prove such dances that she will spurn our heads of like footballs; but it will not be long ere her head will dance the like dance." ${ }^{1}$ So the speech runs in the Life by More's great-grandson; but in the only trustworthy record, the life hy bis son-in-law Roper, More's reply ends with the words, "she will shortly come." In thia as in other instances, the later statement has the appearance of having been an imaginative extension of the carlier.
In 1534 the Act of Supremacy was passed and the oath ordered to be tendered. More was sent for to Lambeth, where he offered to swear to the succession, but steadily refused the oath of supremacy as against bis conscience. Thereupon be was given in charge to the abbot of Westminster, and, persisting in his refuasl, was fout days afterwards commilted to the Tower. After a close and even cruel confinement (he was denied the use of pen and ink) of more than a year, he was brought to trial before a special commission and a pecked jury. Even so More would bave been acquitted, when at the last moment Rich, the solicitorgeneral, quitted the bar and prescoted bionself as a withess for the Crown. Being sworn, be detailed a confidential convernation he had had with the prisoner in the Tover. He affirmed that, having himself admitted in the course of this conversation "that there were things which no parliament could do-e.e. no parlisment could make a law that God should not be God," Sir Thomas had replied, "No more could the pariament make the king supreme head of the Church." By this act of perjury a verdict of "guilty" was procured from the jury. The execution of the sentence followed within the week, on the 7th of July 1535. The head was fixed upon London Bridge. The vengeance of Heary was not satisfied by this judicial murder of his friend and servant; he enforced the confiscation of what small property More had left, expelied Lady More from the house at Chelsen, and even set aside assignments which had been legally executed hy More, who foresaw what would happen before the commission of the alleged treason. More's property was scttled on Pincess Elizabeth, afterwards queen, who kept possession of it till her death.

- Sir Thomas More was twice married, hit had children only by his first wife, who died about 1511. His only son, John, married an heiress, Ann Cresacre, and was the grandfather of Cresacre More, Sir Thomas More's biographer. His eldest daughter, Margaret (1505-1544), married to William Roper ($1496-1578$), an official of the court of king's bench and a member of parliament under Henry VIII., Edward VI. and Mary, E one of the foremost women in the annals of the country for her virtues, high intelligence and various accomplishments. She read Latin and Greek, was a proficent in music, and in the sciences sofar as they were then accessible. Her devotion to her father is historical; she gave him not only the tender affection of a daugbter but the high-minded sympathy of a soul great as his own.

More was not only a lawyer, a wit, a acholar, and a man of wide general reading; be was also a man of cultivnted taste, who telighted in music and painting. He was an intimate triend of Holbein, whose firat introduction to Engtand was as - vistor to More in his house at Chelsea, where the painter ts said to have remained for three years, and where he probably first met Henry VIII. Holbein painted portraits of Sir Thomas and hls familly. More was beatified by Leo XIII. In 1886.

The Efintide od Dorpiam exibitits More emphatically on the ${ }^{1}$ Creacre More, p. 23x.
side of the new learning. It contains a vindication of the study of Greek, and of the desirability of printing the text of the Greek Testament-views which at that date required an enlightened understanding to enter into, and wbich were condemned by the party to which More afterwards attached himself. On the other hand, he can at the most be doubtfully exculpated from the charge of having tortured men and children for heresy. It is admitted by himself that he inficted punishment for religious opinion. Erasmus only ventures to say in his friend's defence " that while he was chancellor no man was put to death for these pestilent opinions, while so many suffered death in France and the Low Countries." His views and feelings contracted under the combined influences of his professional practice and of public employment. In the Utopia, published in Latin in 1516 (1st English transation, 155), he not only denounced the ordinary vices of power, but evinced an enlightenment of sentiment which went far beyond the most statesmanlike ideas to be found among his contemporaries, pronouncing not merely for toleration, but rising even to the philosophical conception of the indificrence of religious creed. It was to this superiority of view, and not merely to the satire on the administration of Henry VII., that we must ascribe the popularity of the work in the 16th century. For as a romance tbe Utopic has little interest cither of incident or of character. It docs not, as has been said, anticipate the economical doctrines of Adam Smith, and much of it is fanciful without being either willy or ingenious. The idea of putting forward political and philosophical principles under the fiction of an ideal state was doubtless taken from Plato's Republic. The Utopia in turn suggested the literary form adopted by Bacon, Hobbes, Filmer, and other later writers; and the name of the book has passed into the language as signifying optimistic but impracticable ideals of reform.
For a bibliography of More's numerous works see the article in the Dich. Nat. Biog. and the Catalogue of the Alfred Cocla collection of books and portraits of or relating to Sir Thomas More which is preserved in the Guildhall Library. London. The more important of his works and their editions are here given. Luciani dialogi
compluria opuscula ab Erasmo Rotcradamo et Thoma Moro . . . traducta (Paris. 1506 and 1514; Venice, Aldus, 1516. \&c.) was accomplished by Erasmus and More in 1505 . The Lyfe of John Picus, earle of Mirandula ...printed by Wynkyn de Worde in 1510, translated by More from the Venice ed. of 1498, was edited by J. M. Rigg for the Tudor Library in 1890 . Historte of the pittifut Life and unfortumate Death of Edward the Fith and the then Duke of Yort wilh in 1513 . and first printed in a corrupt version in Girafton's continua. tion of Harding in 1543: it is included by Rastell in his 1557 edition of More's Workes, but it has been suggested that the Latin orisina! was by Cardinal Morton; as the History of King Richard III, it was edited by J. R. Lumby for the Pitt Press in 1883 . The Libellus rere aurews. . better known as Utopia, was printed at Louvain in 1516, under the superintendence of Erasmus, and appeared in many subsequent editions, many of them of great biblographical yalue, the finest being the Basel edition of 1518 . It was translated into the chief languages of Europe, and into English by Ralph Robinson as A fruteful and Plcasouni Workr of the best Slate of a Publyque Weale, and of the newe V'e colled Utopia (Abraham Nell, 1551): modern edinions are by J. Dibdin (2 vols., 1808). Professor E. Arber (F.nglish Reprints, 1869), by J. R. Lumby for the Pitt Iress (1879). Gy William Morris at the Kelmscott Press (1893), by J. Churton Collins for the Clarendon Press (tgo4), by R. Steele for the King's Classics (1908), \&c. Other (ranslations of Ulopia are by Gilbert Burnet (1684) and by A. Cayley (Memoirs of More. 2 vols., 8808). Against Luther and Tyndale Sir T. More wrote A Dyaloge of Syy Thomas More, Kni., written in 1528 and printed by John Rastell in 1529: Sir Thomos Morc's Awswerc to the fyrste parle of the Poyson'd book. . . The Souper of the Lorde (William Rastell, ${ }^{1532)}$ with a "Second Parte" in 1533. The Apologye of Syr Thomas More, written in 1533, is a defence of his own polemical style and of the treatment of herctics by the clengy. A Dyaloge of Comfort against Tribulacion, pristed by Rastell in 1533 , was destiped primarily for More's family

More's English works were collected by William Rastell and published as The Worke of Sir Thamas More Knyght by Cawood, Waly and Tottet in 1557: his Latin works Thomae Mori Lucubrationes were partially collected at Basel 1563 and in 1566 (ownia opera) at Louvain: a fuller edition drawn chicefy from theme t wo a ppeared at Frankfort and Lcipzig in 1689. Modern selections were edited by W. J. Walter (Baltimore, 18\&t), by T. E. Bridgett (Wisdom and W'if of Blessed Thomas More, London, 1801). His
oonrespondenoe with Erasmus is partly included in the editions of the Letters of Erasmus, and much of his correspondence is calendared in Gairdner's Lelfers and Popers of Henry VIII., the letters written to his family in bis last days being found in vol. viii.

The Mirror of Vertue in Worldly Greatmess; ar; ahe Life of Syp Thomas More wat written by bis ton-in-law William Roper aboue the end of Mary's reign. It was preserved in MS. during the reign of Elizabeth, and banded down in copies, many of which were carelessly made. It was not given to the press till 1626, with the date of Paris Reprints were made by Hearne (Oxford, 1716) by Lewis (1729. 1731), who added an appendix of documents, and by Singer (1817, 1822) and for the King's Library (1902). Roper's Life is the source of all the many subsequent biographics. More's Life in MS. (Harleian 6253 and elsewhere), anonymous, but by Nicolas Harpefield, was also written in Mary's reign. Al! that is materiai in this MS. is taken from Roper. Another anonymous Life, written in 1599, printed in. Wordsworth's Ecelesiastical Biography, ii. 43-185, is chiefly compiled from Roper and Harpsfield. The preface is signed Ro. Ba. (Robert Barnstaple ?). William Rastell's Life of More, of which fragments are preserved in the Arundel Coll.(Brit. Mus.), is, unhappily, lost. Thomas Stapleton (Tres Thomoe, S. res gestae S. Thomes aposloli,S. Thamae archicpiscopi Cantuariensis, Thomae Mori (Douay, 1588; Cologne, 1612) a nd the Vía Thomae Mori (scparately). (Gratz, 1689) translates Roper, interweaving what material he could find scattered through More's works and letters and the notices of him in the writings of his contemporaries. Cresacre More, great-grand. son of Sir Thomas, compiled a new life about the year 1627 . It was printed at Paris without date, but, according to the editor, $\}$. Hunter, in 1631. The title of this edition is. The Life and Death of Sir Thos. More. Lord High Chencellour of England, and with new titie-page, 1642, 1726, 1828. This biography is cited by the subeequent biographers as an independent authority. But it is almost entirely borrowed from Roper and Stapleton. The additions made have soinetimes the appearance of rhetorical amplifications of Roper't simple statements. At other times they are decorative miracles. The whole is couched in that strain of devotional exaggeration in which the lives of the saints are usually composed. The author seems to imply that he had received supernatural communications from the spirit of his ancestor. Already, only eighty years after More's execution, hagiography had taken possession of the facta and was transmuting them into anedifying legend. Cresacte More's Life cannot be alleged as evidence for any facts which are not otherwise vouched. It has been remarked by Hunter that More's life and works have been all along manipulated for political purposes, and in the interest of the holy see. In Mary's reign, and in the tide of Catholic reaction, Roper and Harpsficld wrote lives of him; Ellis Heywood dedicated his Il Moro (Florence, 1556) a fanciful account of More's life at Chelsea, to Cardinal Pole, and Tottell reprinted the folio of his English works. Stapleton prepared his Tres Thomate in 1588, when the recovery of England to the see of Rome was looked for by the Spanish invasion. 1a 1599 , when there was a prospect ol a disputed succession, the anonymous Life by Ro. Ba was composed: and soon after Charles had allied himself with a Catholic, the Life by Cresacte More issued from the press. Hunter might have added that Stapleton was being reprinted at Gratz at the time when the conversion of England was expected from James 1I. The later lives of Sir Thomas More bave been numerous the best being thoee by G. T. Rudhart Thomas Morns, aus den Quellen beapocitel (Nuremberg, 1829); by T. E. Bridgett, Life and Writings of. Sir Thomas More (1891) ; and by W. H. Hutton, Life ond Writings of Sir Thomas More (1891). Other lives are by J. Hoddesdon (Londonn, 1652, 1662); by Sir A. Cayley (2 vols., London, 1808) ; by Sir J. Mackintosh, Lardner's Cab. Cyciop. (London, 1831, 1844); and in Mores Wark's (London, 1845) ; by Lord Campbell in Lives of the Chancrllors (vol. i. 1848-1850): by D. Nisard in Renaissance et Reforme (Parts, 1855): hy Baumstark (Freiburg, 1879) ; by F. Socbohm in the Oxford Reformers of 8498 (London, 1867). A biographical study on More's Latin poems is Philomorus, by J. H. Marsden (2nd ed., London, 1878). Cf. John Bruce, "Inedited documents rel. to the imprisonment and condemnation of Sir T. More." in Archaedogia xxvii. $361-374$); Southey, Sir Thomos More, or Colloquies on the Progress and Prospects of Sociely (London, 1829); Anne Manning, The Monschold of Sir Thomas More (1851 , reprinted in King's Novels, 1905): S. Lee, Great Englishmen of the Sixtcenth Century (1904). The tragedy of Sir Thomas Mare, edited by A. Dyce for the Shakespeare Society In 1844 , and connected by some commentators with Shakespeare, was writen about 1590, and therclore gives a nearly contempority view of More, A later playwright, James Hurdis, made More's career the subject of a play in 1792.

MORAB, JBAN (1856-1910), French poet, born at Athems on the 15 th of April 1856 , was the grandson of Papadiomontopoulos, one of the heroes of Missolonghi. He was one of the leaders of the aymbolist movement in French poetry, advocating a relaxation of the stringent rules governing French verse; but his early volumes of poems, Les Syries (1884), Les Cantilknes (1886), and Le Pèlerin passionne (1891) won recognition beyond the limits of this school. In the $X I X^{*}$ sidele (August in,
5885) he formulated the principles of the symbolists, defending them from the appeilation of " decadent," and in the literary supplement of the Figaro (Sep 18, 1886) he published a manifesto justifying tho-innovations of the new school as the natural development of the prosody of Baudelaire, Mallarmé and Verlaine. Le Palerin passionne was sympathetically reviewed by Anztole France. As time went on he repudiated the licence claimed by the symbolists, and became the leader of an offshoot from the main body known as the tcole romane, the chief members of which are Raymond de la Tailhede, Maurice du Plessys, Ernest Raynaud, and the critic Charles Maurras. Morfas and his new followers returned to the traditional severity of French versification, and to the clossical and antique tradition. His later volumes are Podsics, 1880-r896 (1898), and Slarces (6 vols., complete ed. 1905), Histeirs de Jcan de Paris, roi de France (1902), Voyege en Grice en 2897 (1902). Contes de ld vieille France (1903), and a classic drama in verse, Iphigenie d Aulis (1904), in close imitation of Euripides, which was represented on the 24th of August 1003 in the ancient theatre of Orange, and subsequently at the Odion in Paris. He died on the 31st of March 1910.

See Anatole France, La Vie litleraive (4th ser.' 1892): A. ven Bever and P. Leautand, Pottes d'amjoundhwi, $8880-1000$ (ith ed., 1905); P. Berthelot, art. "Symbolisme " in Le Grande encyclopedic: and J. de Gourmont, Jeas Morias, biographie critique (1905).

MOREAD, GUSXAVE (t826-1898), French painter, was borm in Paris on the 6th of April 1826. His father was an architect, who, discerning the lad's promise, sent him to study under Picot, a second-rate artist but clever teacher. The only infuence which really affected Morean's development was that of the painter Chasstriau (1819-1857), with whom he west intimate when they both lived in the Rue Frochot, and of whon we find reminiscences even in his later worts. Moreau's first picture wes a "Picta" (1852), now in the cathedral at Angoullme. In the Salon of 1853 he exhibited a "Scenc from the Song of Songs". (now in the Dijon Museum) and the "Death of Darius" (in the Moreau Gallery, Paris), both conspicuously under the influence of Chasseriau. To the Great Exhibition of 1855 be sent the "Athenians with the Minotaur" (in the Museum at Bourg-en-Bresse) and "Moses putting off his Sandals within Sight of the Promised Land." "Oedipus and the Sphinx," begun in 1862, and exhibited at the Salon of 1864, marked the beginning of his best period, during which be chose his subjectis from history, religion, legend and fancy. In 1865 he exhibited "Meden and Jason" and "The Yoang Man and Death"; in 1866, the "Head of Orpheus" (in the Luxembourg Gallery); " Hesiod nnd the Muse," a drawing; and "The Peri," a draving; "Prometheus" (in the Moreau Gallery); "Jupiter and Europa," a "Pieta," and "The Saint and the Poet." In 1869. After working in obscurity for seven years, he reappesred at the Salon in 1876 with "Hercules and the Hydra," "Saint Sebastian." "Salome Dancing" (presented to the Luxembours by M. Ilayem); and in 1878 with "The Sphinx's Riddle solved." "Jacob," and " Moses on the Nile." Morean exhihited for the last time at the Saion of 1880, when he contributed "Heken" and "Galatca"; to the Great Exhibition of 1889 be again sent the "Galatea " and "The Young Man and Death." He took prize medals at the Salon in 1864. 1865, 1869 and 1878. He was made knight of the Legion of Honour in 1875 and officer in 1883. He succeeded Delaunay as professor the Brole des Beaux Arts, and his teaching was highly popular. When he died, on the 18 th of April 1898 , he bequeathed to the state his house, containing sbout 8000 pictures, water-colours, cartoons and drawings, which form the Mowean Gallery, one of the best organized collections in Paris, arranged by M. Ruph his executor, and, together with Delaunay apd Fromemin, ont of his closest friends.

See Ary Reman, Moroun (Paris, 1900); Paul Fiat, Ls Masp Gustowe Morean (Paris, 1900).

10REMU, MEGPSIPPS (1810-1838), French lyric poet, thas born in Paris os the oth of April 18 io. In his eariy youth his parcnts, who were opor. minated to Provins, where the

MOREAU, J. V. M.-MOREAU DE SAINT MÉRY

mother went into service and the father took the post of usher is a public school. He went to Paris before 1839, and lived Bohemian life. He was habitually houseless, and exposed bimself to the dangers of a cholera hospital in the great epidemic of 1832 simply to obtain shelter and food. Then he revisited Provins and published a kind of satirical serial called Diogerec. Spmo years of this life ontirely ruiped his health, and it was only just before his death that he succeeded in getting his collected poems published, selling the copyright for f_{4} sterling and 80 copies of the book. This volume, M yotolis, was received not unfavourably, but the author's death on the soth of December 1838 , in a refuge of the destitute, created an interest in it which was praportionately excessive. Moreau's work has a strong note of imitation, especially in his carlier songs, distinguished from those of his model, Beranger, chiefly by their eiogiac note. Some of his poems, such as the elegy La V ombia (1837) and the charming romance La Fermidre (1835), have great sweetness and show incontestable poctic power: Moreau wrote some charming prose stories: La Gui de chêne, Le Sownis blanche, \&cc.

MOREAU, JBAN VICTOR MARIE (1763-1813), French general, was born at Morlaix in Brittany on the 14th of February 1763. His father was an arocal in good practice, and instcad of allowing him to enter tbe army, as he attempted to do, insisted on his studying law at the umiversity of Rennes. Young Moreau showed no inclination for law, but revelled in the freedom of a student's life. Instead of taking his degree he continued to live with the students as their hero and leader, formed tbem into a sort of army, which he commanded as their provost, and when 1789 came be commanded the students in the daily affrays which took place at Rennes between the young moblesse and the populace. In 1791 he was elected a lieut.colonel of the volunteers of Ife-et-Vilaine. With them he served under Dumouriez, and in 1793 the good order of his battalion, and his own martial character and repuhlican principles secured his promotion as general of brigade. Carnot, who had an eye for the true qualities of a general, promoted him to be gencral of division early in 1794, and gave him command of the right wing of the army under Pichegru, in Flanders. The battla of Tourcoing established his military fanne, and in 1795 he was given the command of the Army of the Rhine-and-Moselle, with which he crossed the Rhine and advanced into Germany. He was at first completely successiul, won several victories and penctrated to the Isar (see French Revolutionary Wars), but at last had to retreat before the archduke Charles. However, the skill he displayed in conducting his retreat-which was considered a model for such operations-greatly enhanced his own reputation, the more so as he managed to hring back with him more than 5000 prisoners. In 1797 he again, after prolonged difficulties caused by want of funds and material, crossed the Rhine, bat his operations were checked by the conctusion of the preliminaries of Leoben between Bonaparte and the Austrians. It was at this time he found out the traitorous corre. spondence between his old comrade and commander Pichegra and the emlgre prince de Conde. He had already appeared as Pichegru's defender against imputations of disloyalty, and now he foolishly concealed his discovery, with the result that he has ever since been suspected of at least partial complicity. Too Iato to clear bimsclf, he sent the correspondence to Paris and issued a proclamation to the army denouncing Pichegra as a traitor. He was dismbsed, and it was only when in 1799 the absence of Bonaparte and the victorious advance ol Suvtrov made it necessary to have some tried and experienced general in Italy that he was re-omployed. He commanded the Army of Italy, with little success, for a short time before being appointed to the Army of the Rhine, and remalned with Joubert, his successor in Italy, till Novi had been fought and lost. Joubert fell in the battle, and Moreau then conducted the retreat of the armiy to Genoa, where he handed over the command to Championnet. When Bonaparte retarned from Esypt he found Moreau at Paris, greatly dissatisfied with the Directory both as a general and as a republican, and obtained his amiscance in
the coup d'Eat of 18 Brumaire, when Moreau commanded the force which confined two of the directors in the Luxembourg. In reward, the First Consul again gave him command of the Army of the Rhine, with which be forced back the Austrians from the Rhine to the Isar. On his return to Paris he married Mlle Hullot, a Creole of Josephine's circle, an aunbitious woman who gained a complete ascendancy over him, and after spending a few glorious weeks with the army in Germany and wianing the celebrated victory of Hohenilnden (Dec. 3, 1800) he settled doyn to enjoy the fortune he had acquired daring his campaigns. His wife collected around her all who were discontented with the aggrandisement of Napoleon. This "club Moreau". annoyed Napoleon, and encouraged the Royalists, but Moreau, though not unwilling to become a military dictator to restore the republic, would be no party to an intrigue for the restoration of Louis XVIII. All this was well known to Napoleon, who seived the conspirators. Moreau's condemnation was procured only by great pressure heing brought to bear by Bonaparte on the judges; and after it was pronounced the First Consul treated him with a pretence of lenicncy, commuting a sentence of imprisonment to one of banishment. Moreau passed through Spain and embarked for America, where be lived in quiet and obscurity for some years at Morrisville, New Jersey, till news came of the destruction of the grande armbe in Russia. Then, probably at the instigation of his wife, he committed the last and least excusable of the sories of well-meant political errors that marked his career. Negotiations were set on foot with an old friend in the circle of repablican intriguers, Bernadotte, who, being now crown prince of Sweden and at the head of an army opposing Napoleon, introduced Moreau to the tsar Alexander. In the hope of returning to France 10 re-establish the regime of popular government, Moreau gave advice to the allied sovercigns as to the conduct of the war, but fortunately for his fame as a patriot he did not live to invade France. He was mortally wounded while talking to the tsar at the battle of Dresden on the 27th of August 1813, and died on the 2nd of September. He was buried at St Petersburg. His wife received a pension from the tsar, and was given the rank of marechale by Louis XVIII., but his countrymen spoke of bis "defection" and compared him to Dumouriez and Pichegru.

Moreau's fame as a general stands very high, though he was far from possessing Napoleon's transcendent gifts. His comhinations were skilful and elaborate, and his temper always unruffled when most closely pressed. Moreau was a sincere republican, though his own father was guiHotined in the Terror. He was fortunate in the moment of his death, though he would have been more so had he died in America. He seems by his final words,. "Soyez tranquilles, messieurs; c'est mon sort," not to have regretted being removed from his equivocal position as a gencral in arms ageinst his country.
The literature on Moreau is copious, the best book being C. Jochmus, General Mareax-Abriss ciner Geschichte seines Libeess und seiner Feldanige (Berlin, 1814). A more ordinary work is A. de Beauchamp. Vie politique, militaire, el prive du Cenćral Moreau. ranslated by Philippart (London. 1814): and there is a curious trace on his death in Russian, translated into Engliah under the title. Some Decoils Concerninf General Morean and his Last Moments, by Paul Svinia (London, 1814).
 1819), French politician, was born at Fort de France, in the island of Martinique, on the 28th of January 1750 . He came to Paris at the age of nipeteen, and became an arocat at the parkment of Paris. He subsequently returped to Martinique to practise law, and in 1780 was appointed member of the colonial council of San Domingo. Returning to Paris in 1784 , he recelved a commiadion to sludy the legislation of the Fresch colonics, and published Lois et constifations des colonies frangaises de l 'A merique sous le Vent de 1550 d 1785 . In 1789 he was president of the assembly of the electors of Paris, played an active part in the early days of the Revolution, and was designated by Martinique depary to the Constituent Assembly, His moderate ideas were the occasion of his arrest after the ioth of August 2792, but he contrived to escape to the United States, opeped
-bookseller's shop at Philadelphis, and published Description copographique at politique de la partie espagnole ea de la parlie froncaise do rlie de Saint-Domingme (1796 -1798). Ret urning to France in 1799, he became historiographer to the navy and coumeillor of state, and drafted in part the colonial and maritime code. In 1802 he was appointed by the First Consul administrator of the duchies of Parma, Piacenza, and Gusstalla, but was dismissed in 1806 for slackness in repressing insubordination. From that date until his death be lived on a pension paid him by the Empress Josephine, who was a kinswoman of his.
See Fournicr- Tescay. Discours promonct aux obsiques de Moream te 30 Jampier 1819; Silvestre, Noticeswr Morean (Paris, 1819).

MOn\#CAMBE, municipal borough, watering-place and seaport in the Lancaster parliamentary division of Lancashire, England, on Morecambe Bay, 236 m . N.W. by N. from London by the London \& North-Western railway; served also by the Midland railway. Pop. (1901), 11,798. A fine promenade extends along the shore; there are a quay and a pier, a winter garden, and all the appoiatments of a seaside resort. The Midiand railway is the harbour autbority. The town was incorporated in 1902, and the corporation consists of a mayor, 6 aldermen and 16 councillors. The former alternative name was Poulton-le-Sands. Area, 1801 acres.

MOREI, the surname of several French classical scholars and printers in the 16 th and ryth centuries, known for their editions of classical authors and the Fathers. (i) Guillaume Morel ($1505^{-1} 564$) was born at Tilieul in Normandy. After acting as proof-reader in a Paris firm, he set up for himself, and subsequentiy succeeded Turnehus as king's printer in 1555. His most important work was Thesaurus rocum ownium latinarum, containing a number of quotations from Greek authors, taken from hitherto unpublished MSS, in the Paris library. (2) Fépéric (as he always called himself, not Frédéric) Morel, surnamed the Elder ($\mathbf{1 5}^{2} 3^{-1583}$), was born in Champagne. He was of noble family, and was not connected with Guillaume Morel. About 1550 he married the daughter of the famous printer, Michel de Vascosan, in 1557 set up in business in the rue Saint Jean de Beauvais, and in 1571 was appointed printer to the king. His chief publications were the Declamationes of Quintilian and L'Architecture de Philibert Delorme. (3) Foderic Mprel, son of the preceding, surnamed the Younger ($1558-1630$), was one of the greatest Greek scbolars of his time. In addition to the management of his father's business, to which be succeeded, he held the professorship of eloquence at the College de France. The number of his translations and commentaries on the Fathers and classical authors (Aristotle, Dio Chrysostom, Strabo) was very large; special mention may be made of his revised edition of Amyot's translation of Piularch and his Latin translations of some of the dissertations of Maximus of Tyre, of Libanjus, Hierocles and Theodorel. His commentary on the Psalms is still considered valuahle. (4) Craude MOREL (1 574-1626), brother of the preceding, also published editions of many of the Fathers and other authors, with learned prefaces and notes. (5) Charles Mores (1602-1640) was printer and secretary to the king. He followed the cxample of the other members of his family, and issued the works of Clement of Alexandria, Gregory of Nazianzus, Cyril, Synesius and Clyymatom, and the Concilio geserolia a prosincialia of the German theologian Severin Bini. (6) GHles Morel, brother of the preceding (the dates of his birth and death are unknown), was the last representative of this learned farnily. The number of his puhlications was small, but some of them were of great importance, the chief being the Gramds billioulique des prest, in 37 folio vols. (i643).
See M. Maittaire. Historia syecgraphorum aliguot parisicasium (1717), for all the above; Federic Morel the elder is the subject of a monograph by J. Dumoulin (Paris, 1901).

MOBELIA (formerly Valladolid), a city of Mexico and capital of the state of Michoacin, 125 m . direct end 234 m . by rail W. by N. of the city of Mexico, ncar the southern margin of the great Mexican plateau, 6398 fL above sea-level, in lat. $19^{\circ} 42^{\prime}$ N. long., $100^{\circ} 54^{\prime}$ W. Pop. (1900), 37,278, perty Indians
and mestizos. Morelia is served by a branch of the Méricas National railway; its station is outside the city, with which it is connected by a small tramway line. The city is built on a rocky hill rising from the Guaytingareo valley, which gives to it a strikingly picturesque appearance. It has the usual roctangular plan, with several pretty squares and straight, clean, wetl-paved sireets. Facing the plasa mayor, now called the Plaza de los Martires because of the execution there of the patriot Matamoros in 1814, is the cathedral, one of the finest specimens of the old Spanish renaissance church architectare in Mexico. *

Among its interior adornments is an onyx font, some fine wood carving in the choir, and the silver doors to the shrines of its chapels. Opposite the cathedral is the government palace, which also contain the public library. The municipal government is boused in an ancient tohacco factory converted to public uses, and a fine old Capuchin convent now serves as a public hospital. The Paseo, or public park, is distinguished for its fine trees and flowers. The Morelinass are noted for their love of music, and musical competitions are held each year, the best band being sent to the city of Mexico to compete with similar organizations from other states. The public watersupply is brought into the city over a fine old squeduct (3 m . in length, carried on arches), which was built in 1785 by the bishop of the diocese as a fumine relief work. In common with the state of Michoactin, Morclia is a stronghold of clericalism and conservatism. A large number of private schools are maintained through Church infuence in opposition to the public schools. Conspicuous among these is a large girls' school. Another institution is the college of San Nioolas de Hidalgo, which was founded at Patecuaro in 1540 by Bishop Quiroga (who had been sent into Michoactin to redress the wrongs committed by Nuño de Guzman), was removed to Valladolid (Morelia) a few years later to be combined with a local college, and was rebuilt in 8882 . It is the oldest existing collegiate institution in Mexico; in it Hidalgo once taught and Morelos was a student. The city's manufactures inchude cotton, woollen and silk textiles, cigars and cigarettes, and dulces, or sweetmeats, Morelia being noted throughout Mexico for the latter, particularly for a variety called Guayabate.

Morelia, first known as Valladolid, was founded in 1541 by Viceroy Mendoza. In 1582 Valladolid replaced Patzcuaro as the capital of Michoackn. It was the hirthplace of both Morelos and Iturbide, and was captured by Hidalgo at the beginning of the revolutionary outbreak of $1810-11$, and by Iturbide in 1821 when on his march to Mexico City, where be was crowned emperor. Its name was changed to Morelia in 1828, in bonour of the revolutionary leader Jose Maria Morelos y Pavon, and in 1863 it was made the see of an archbishop.

MOREM. JOEN DANIEL (1816-1891), British educatiomalist, was born on the 18 cth of June at Little Baddow, Eisex, where his father was minister of the Congregational church (1790-185a). He proceeded to Homerton College in 1833, where be studied theology under Dr Pye Smith. He then entered Glaspow University, where he took his M.A. degree in 1841. Subeoquently he studied philosophy and theology under Fichte al Boan, and returned to England to undertake the pastorate of the Congregational church at Gosport. After threo years' work, he decided to give up the ministry in favour of philosophical work. As eariy as 1846 be made his mame hy his Historical and Critical View of the Speculative Philosopty of Ewrope in the Niscteenth Century, which brought bim to the notice of Lord Lansdowne, who made him an inspector of schools. From 1848 till 1876 be was active in this capecity. As a result of his experience be published numerous educational works, e.g. The Amalysis of Sentences (185z), The Essentials of English Grammer and Analysis (1855), Handbook of Logic (1855), Grammar of the English Langmage (1857). He also published four lectures on The Philosophical Tondencies of the Age (1848), The Philosophy of Religion (1849), Fiche's Contribudians 10 Maral Philosophy (1360), Philasephical Fragments (1878), An Intreductiun to Mental Philosopky an athe Indective Method (1884). He died on the rst of April 1891.

MORBL-LADEUL, LEOMARD ($1820-1888$), French goldmith and sculptor, was born at Clermont-Ferrand. He was apprenticed first to Morel, a manufacturer of bronzes, under whom he became one of the most expert chasers, or cisdeurs, in France, and then to Antoine Vechte, to acquire the art of repousse (q.v.)-the art in which he was to excel. He studied further under J. J. Feuchere and then attracted the notice of the comte d'Orsay and the dac de Morny, through whose recommendation the French government, desirous of popularizing the idea of the new Imperialism, commissioned him to produce the "Empire Shield." Napoleon III. notified his warm approval, but the trade, annoyed that a craftsman should obtain commissions direct, resented the innovation and thenceforward boycotted the young artist, whose beautiful and poetic vase, "Dance of the Willis" (the spirits dancing round the vase, above the lake represented on a dish below) none would take. He was encouraged nevertheless by a foreign dealer in Paris, Marchi, who employed him on statuettes, mainly religious in character, until 1859, when Messrs Elkington, in view of the great exhibition of 1862, engaged him to work in Birmingham for three years in repoussf, assuring him a free hand. Following his silver "Night" came "Day," and then the "Inventions" vase, which placed him at once at the top of his profession. This was followed hy the beautirul plateau called "Dreams," which was subscribed for ($£ \mathrm{I} 500$) by Birmingham as the town weddinggift to the prince and princess of Wales. Morel-Ladeuil's contract was then renewed for five years, but as a matter of fact he remalned with the firm for twenty-three years at their London house, the first result heing his masterpiece the " Milton Shleld: Paradise Lost " (in repousst steel and silver), which was the sensation of the Paris Exhibition. It was bought by the English government for $£ 3000$, and thousands of copies made hy "galvanoplastie" or electrotype were sold and spread all over the world. Then after "The Months" came another masterpiece, the "Helicon Vase," in steel, silver, and gold, priced at $£ 6000$, which in course of time was presented by the ladies and gentlemen of the royal house to Queen Victoria on her first jubilee. For the Philade!phla Exhibition (1876) MorelLadeuil produced "A Pompeian Lady at her Toilct," following it in 1878 with the "Bunyan Shield," a companion to the Milton. After putting forth his reliefs "The Merry Wives of Windsor," "The Merchant of Venice," and "Much Ado about Nothing," in view of his failing health he retired to Boulogne, where he died of angina pectoris on the 15th of March 1888, and was buried with much ceremony at Clermont-Ferrand. His total work, apart from the productions of his yoath, numbers 35 pieces, which richly reveal his elegant and refined fancy and grace, his feeling for correct and dainty ornament, and his love of pure art marked by an elevated if rather sentimental taste and a noble style.
See L'Euvie 'de Morct-Ladeuri, sculpeerr-ciselewr; by L. Morel (Paris, 1994).
MORELLET, ANDRE ($1727-18 \mathrm{ng}$), French economist and miscellaneous writer, was born at Lyons on the 7th of March 1727. He was one of the last survivors of the philosophes, and in this charecter he figures in many memoirs, such as Mme de Retmusat's. He was educated by the Jesuits in his native town, and at the Sorbonne; he then took holy orders, but his deslgnation of abbe was the chief thing clerical about him. He had a ready and biting wit, and Voltaire called him "L'Abbé Mord-les." His work was chiefly occasional, and the most notable parts of it were a smart pamphlet in answer to Charies Palissot's scurrilous play Les Philosophes (which procured him a short sojourn in the Bustille for an alleged libel on Palissot's patroness, the princesse de Robeck), and a reply to Galiani's Commerce des bles (1770). Later, he made himself aseful in quasi-diplomatic communications with English statesmen, and was pensioned, being, moreover, elected a member of the Academy in 1785. A year before his death in Paris on the 12th of January 1819 he brougbt out four volumes of Melanges de lititrature es de philosophio dx XVIII• sitcle, composed chiefty
of selections from his former publications, and after his death appeared his valuable MGmoires swo le XVIII' sidede et la Revolulion (2 vals., 1821).
A bibliography of his numerous works is given in Qufrard's La Framce tiflifaire, vol. vi.; see aloo Salnte-Beuve, Cawseries de lundi, vol. i.
 critic, was born at Verona on the 16th of February 1816. He was educated first at Bergamo, tbe home of his mother, who had removed thither on the death of her husband; and then at Aarau in Switzerland. At the age of eighteen be commenced his university career at Munich; being debarred as a Protestant from entering any Italian college, and became the pupil of Ignatius Doliinger, the celehreted professor of anatomy and physiology. Natural philosophy and medicine were the studies to which he specially devoted himself, but he was also keenly interested in all scientific and literary pursuits. At Munich, and later at Erlangen, Berlin and Paris, his brilliant gifts and independence of thought and judgment attracted the attention of the most distinguished men of the day. In Paris he became intimate with Otto Mandler, and his intercourse with that eminent art critic was not without its effect in determining the direction of his future studies; and, during a summer spent in Switzerland, he formed a friendship with Louis Agassiz, whose teaching made a deep and lasting impression upon him. On his return to Italy in 1840 he became associated in Florence with that band of patriots who were strenuously labouring for the deliverance of their country from the oppressive Austrian rule. He took an active part in the war of 1848 , and was subsequently chosen by the provisional Lombard government to plead the cause of Italian unity before the German parliament assembled at Frankfort. In` 1860 , in recognition of the great services rendered to his country by Morelli, Victor Emmanuel named him a citizen of the Sardinian kingdom, and in the following year he was elected deputy for Bergamo to the first free Italian parliament. He was a staunch supporter of Cavour, and, though never a leading politician, exercised a considerable influence over the most prominent statesmen of the Right, who valued his sound judgment, integrity, moderation and foresight. Oneof his first acts after his election was to draw the attention of parliament to the urgent need of reform in the administration of matters relating to the fine arts. In consequence of his representations, a commission was appointed with the object of bringing under government control all works of art which could be considered public property. The commission, of which Morelli was named president, began its work in Umbria and the Marches, and he appointed as his secretary G. B. Cavalcaselle, who was tben engaged in collecting materials for a work on Italian art. According to one who knew Morelli well, much that Cavalcaselle then learned from his chief was embodied in the well-known History of Painting, which was published in 1864 in conjunction with Sir Joseph Crowe.

The.immediate result of Morelli's first labours in the Marches was the passing of the law, which bears his name, strictly prohibiting the sale of works of art from public and religious institutions. In 1873 he was named a senator of the kingdona of Italy, having voluntarily resigned his seat in the Lower Housc owing to the increasingly democratic tendencies of the Chamber. In Rome, the seat of the government since $\mathbf{1 8 7 0}$, he spent several months of each year; but his settled bome was Milan, whither he had removed from Bergamo in 1874. Here he published some of his researches into the history of Italian art. In order to be free to speak his mind unreservedly, he determined to adopt a pseudonym and to write in Germen. His first contributions, a series of articles on the Borghese Gallery, were published in Litizow's Zeilschrift fas bildemde Kwast between the years 1874 and 1876 . Poaing as an ant-loving Russian, who puts forth his opinions with the utnost diffidence, he adopted the pseudonym of Ivan Lermolief-an anagram of his own name with a Rustian termination-and described his essays as Ein hritischer Versuch, translated from the Russian by Johnones Schwarse, this time a Germanised form of Morelli.

The originality of the method recommended by the author for studying art, the general soundness of his critical opinions, and the many new (and apparently correct) attributions suggested for pictures in the Borghese Gallery and elsewhere, attracted the attention of all students of art; but failure attended every attempt to discover the identity of the Russian critic. In $\mathbf{8 8 0}$ Morelli published a small book under the same paeudonym, entitled, Die Werks italieniscker Meister in des Galerion non Manchen, Drasden and Berlin. The appearance of this volume, which was cast in so original a form that it was allogether unlike anything which had preceded it in the realm of art echolarship, created an extraordinary sensation. The daring opinions expressed by the author struck at the roots of all existing art criticism, and were often diametrically opposed to the views of the most renowned art historians of the day. The importance of the work could not be denied, and in spite of determined opposition and searching and bitter attacks, it gained general recognition as a standard work which no serious student of art could ignore. It inaugurated a new and more scientific method of criticism, and marks an epoch in the art studies of the rith century. The book was translated into English in 1883, with Morelli's own name upon the title-page, and a few years later into Italian. In the decade between 1880 and 1890 he contributed three articies to German periodicals: Perugino oder Rafgel, Raffads Jugendentwickelung, Nock einmal das perexianische Skizzenbuck. Being addressed to critics who had challenged his opinions, they are somewhat polemical in character, but contain a mass of information, more especially about drawings. He also wrote a skit on art connoisseurship in Europe, intending to puhlish it in English as the reflections of an Americam on the follies of art critics in the Old World; but he never carried out his intention, though some portion of the MS. was embodied in the first part of his Critical Sludies. This volume, the first of a series of three which, under the title of Kunslkritiscke Studien, was to contain all Morelij's contributions to art literature, was published in 1890. The first part, cast in dialogue form, contains a detailed exposition of his method. Then follow The Borghese Gallery, a reissue of his former articles with many important additions, and The Doria Gallery, an entirely new contribution. The second volume deals with the galleries of Munich and Dresden, and is a revised edition of the first two parts of the original book of 1880; but here agaip copious additions rendered it practically a new book. The third volume was to treat of the Berlin Gallery, and was also to contain an exhaustive account of the drawings of Italian masters, but it was destined never to he carried out. Morelli was taken seriously ill towards the middle of February 189 r , and was found to be suffering from heart disease and other 20 m plications; a fortnight later be died at Milan, on the 28th of February. His collection of drawings by the old masters he bequeathed to his pupil, Dr Frizzoni, and his pictures, over 100 in number, to the city of Bergamo, where they are now exhibited as the Galleria Morelli in two rooms of the Accademia Carrara. A striking half-length portrait by Lenbach, who presented it to his friend in 1886 , forms part of the collection. In memory of Morelif a bronze bust of him by a Milanese artist has been placed in the Brera; but his festures are more worthily presented in a second portrait by Lenbach and in a life-like pastel sketch executed by the Empress Frederick in 1884, when be was her guest at Baveno. Aiter the death of Morelli the first two volumes of his Crifical Studies were published in English, Sir Henry Layard, one of his most intimate friends, contributing to the first a biographical sketch of the author; and the fragmentary MS. of the third volume was published in German by Dr Frizzoni, under whose editorship an Italian translation of the first volume has aleo been issuod.

Morelli found art criticism uninspired, unscientific and practically worthices. To be of any real value he beld chat historical, documentary and traditional knowledge reapecting works of art was only of secondary importance as compared with the evidence to be derived from the atudy of the pictures themsalvos. He contended that art criticism muat be conducted
on acientific principles and follow a strict cousse of inductive reasoming. A painting should be subjected to a searching analysis, and its component parts and minutest details submitted to methodical and exact investigation.
The study of the individual parts and forms was, in hia estimation, of the highest importance, for they were not mere incidents, but the out ward and visible seal of an artist's character stamped upon his work, and obvious to all who had eyes to see. By diligent observation of the forms the rudiments of the language of art might he mastered, and the first step taken towards initiating a methodized system of study. The education of a critic consists chiefly in learning to compare, and Morelli soon recognized the value of systematic comparison in the study of art. By the combined methods of critical analysis and comparative observation he found the clue be had so long been seeking. Studying one day in the Uffizi, it suddenly struck bim that in a picture by Botticelli containing several figures the drawing of the hands was remarkably similar in all; that the same characteristic but plebeian type, with bony fingers, broad square nails, and dark outlines, was repeated in every gigure. Turning to the ears, be observed that they also were drawn in an individual manner, and that in the numerous figures in which the ear was visible the same typical form recurred. Having noted these fundamental forms, he proceeded to an examination of other works by this painter, and found that the same forms were exactly repeated, together with other individual traits which seemed distinctive of the master: the characteristic type of head and expression, the drawing of the nostrils, the vitality of movement, the disposition of drapery, harmony of colour (where it had not been tampered with by the restorer), and quality of landscape. In all Botticelli's true works the presence of these and other charscteristics proclaimed their genuineness. In paintings where the forms and types were those of the painter, but where vitality, movement, and all deeper qualities were absent, Morelli recognized works executed from the master's cartoons; while in pictures where neither types nor forms responded to the test, and where only a general family likeness connected them with Botticelli, be discerned the productions of pupils and imitators. After applying his method to the works of Botticelli, he proceeded to examine those of other Florentine masters, and afterwards of pajnters of atber Italian schools, everywhere meeting with results to him not less convincing. If the drawing of the hand and ear were not always conspicuous, there were other peculiarities of this language of form to aid in the identification of a master: the treatment of the hair, as in Piero dei Franceschi; the indication of the sinews, as in Foppa; the drawing of the eyc, as in Liberale da Verona; the modeling of the eyelid and upper lip, as in Ambrogio de Predis; the form of the feet, as in Luini. In short, all apparently insignificant details vere of importance in his plas of study, for to him they were like tbe signature of the master. (C. J. F.*)
MORELO ${ }^{\text {a }}$, an inland state of Mexico on the southern slope of the great Merican plateau, lying S. of the Federal District, with the states of Puebla on the E. and S.E., Gwerrero on the S., and Mexico on the W., N. and N.E. Pop. (1900), 161,697, including a large percentage of Indians and mixed bloods. Area, 2773 sq. m . Its surface is roughly broken by mountain ranges extending southward from the Sierra de Ajusco, forming mumerous valleys opening southward. It is drained by the Amacusac river, a northern tributary of the Mescala, or Balsas. There is a vide variation of climate for so small a territory, the higher elevations of the Sierra de Ajusco being cold and humid (the Mexican Central crosses the range at an clevation of 9974 ft .); the lower spurs mild, temperate and healthy, the lower valleys subtropical, bot and unhealthy. The rainfall is light in the lower regions and irrigation is generally employed. Notwithstanding its mountainous character, Morelos is one of the most flourishing agricultural states of Mexico, producing sugar, rice, Indian corn, coffee, wheat, fruit and vegetables. Alibough the state is supposed to have several of the minerals found in this part of Merico (silver, cinnabar, iron, lead, gold, petroleum and coal), its mining industries caneinue undeveloped
and neglected. Sen Antonio, a subberb of Cuernavaca, is noted for its pottery, which is highly attractive in form and colour, and finds a ready market among the visitors to that city. Morelos is traversed by two railway linet-the Interoceanic from N.E. to S.W., and the Mexican Central almost N. and S., the latter affording direct communication between the national and state capitais.
The capital, Cuernuvica (pop. 9584 in 1900), 47 m. S. of the city of Mexico on the Mexican Central railway, is one of the most pieturesque towns in Mexico. It dates from the time of Cortts, who built for bimself a residence there, and had the town included in the royal grant to himself in 1529 . Maximilian had a villa there, and many of the public men of Merico, natives of the lowlands, have made their homes there rather than in the national capital. The palace of Cortes is now occupied by the state legislature and by various public offices, and Maximilian's villa by a school.
After the capital the largest city in the state is Cuantla Morelos, or Ciudad Morelos (pop. 6269 in 1900)، 27 m . east by south of Cuernavaca, on the Interoceanic railway, and in a rich sugarproducing district. Some of the largest and most modern sugar-mills of Mexico are in the Cunutia district. There are hot sulphur springs bere. The town is celebrated in Miexican history for the intrepid defence of the place by José Maria Morelos ($1765-1815$), the patriot leader, against a grealy superior royalist force, from the soth of February to the and of May 1812, when he cut his way through the attacking army and escaped. Other important towns are Yautepec (6139 in 1900), 16 mm . east of Cuernavaca, on the Interoceanic line; Tetecala, 13 m . south-west of the capital, a characteristic Indian town near the pyramid of Xochicalco, and Jojutla, 21 m . south of the capita, on the Interoceanic railway near the southern boundary of the state. An interesting local phenomenon is that of lake Tequesquiten, which was formed by the subsidence of a large aree of ground about the middle of the ioth century, carrying with it an old town of the same name. The hollow filled with water, and the apire of the old church is still to be seen in the middle of the lake.
MORESNET, a small neutral state lying on the borders of Prussia and Belgium, 4 m. S.W. of Aix-la-Chapelle, and embracing an area of nearly 1400 acres. Its only village is that of Neutral Moresnet, also called Kelmis or Kalmis, with. 2800 inhabitants. Just over the Prussian frontier is Prussian Moresnct, with 650 inhabitants, and in Belgium is Belgian Moresnet, with about 1200 . Moresnet, atrictly MontzenMoresnet. is, as its name implies, a mountain, under which is the extremely valuable zinc mine owned by the "Vieille Montagne Company," which is a Belgian undertaking. The profit of the customs is divided between the two states, but a tendency has been observed to convert it gradually into a German possession. The state of Moresnet owes its origin to the general European settlement of $\mathbf{1 8 1 5}$. No agreement couid be reached about the ownership of this small district, and it was made a neutral state under the joint government of Prussia and Beigium. This arrangement lasted until 884 r , when Moresnet was given an administration of its own, this being composed of a burgomaster and a council of ten members. The inhabitants decide individually whether they will perform military service for Prussia or for Belgium, and also whether they will accept the jurisdiction of the Prussian or of the Belgian courts.
See Hoch, U_{A} Territoire oubit an centre de Γ Europe (Bern, 1881); Schroder, Das grensstreitige Cebiet pon Moresnet (Aix-la-Chapelle, 1go2); and Spandau, $2 \times$ Geschiches som Netural- Lotesmet (ALx-laChapcile, s904).
mORETON BAY CHESTNUT, \& tall tree known botanically as Castanosfermww austrate (natural order Leguminosac), native of Queensland and New South Wales. The pods are almost cylindrical, about 9 in . long and $a \mathrm{in}$. broed, and are divided interioriy by a spongy substance into three to five cells, each of which contains a large chestnut-like seed. The seeds are roasted and eaten by the natives; the timber, which somewhat
resembles wainut, is soft, fne-grained, and takes a good polish, but is not durable.

MORETO I GAVAMA, $\operatorname{COUSTIN}$ ((618-166y), Spanish dramatist and playwright, was beptired at Madrid on the oth of April 1618. He graduated at Alcale in December 1639, and resided in Madrid till 1654, when he removed to Toledo، took orders, and became chaplain to the primate Bahasur de Moscoso y Sandovil. He died at Toledo on the 28 th of October 1661, while engaged on Samea Rasa, a play which was completed by Pedro Francisco Lanini. The first rolume of his dramas was published in 1654; the second and third volumes appeared in 1676. The most celebrated of his pieces is Ed Dasden con al Deslow, initated by Moliere in La Princesse d'Elide, by Gozzi in La Primeipessa jiliosofa, and by Schreyvogel in Donna Diana. It is characteristic that four episodes in El Desiden con al Desdon are taken from four separate plays of Lope de Vega's (La Yengedora de las majeres, Las Milagros del desprecia, De Corsario (carsario, and La Hermasa fea). Moreto borrows from Castro, Tirso de Molina and others to an extent which is indicated at length in Fitzmaurico-Kelley's Lillerature aspagnole (Paris, 1904), but his edaptation shows great dexterity and charra.

MORExTO, IL ("The Blackamoor," a term which has not been particularly accounted for), the name currently bestowed upon Alessandzo Bonvicino ($1498-1554$), a celebrated painter of Brescis, Venetizn school. He was borm at Rovato, in the Brescian territory, in 1408 , and studied, first under Fioravante Ferremola of Brescis, afterwards, still youthful, with Titian in Venice. His own earticr method, speciully distinguished by excellent portrait-painting, was naturally modelled on that of Tyism. Asterwards be conceived a great enthusiasm for Raphael (though be does dot appear to bave ever gone to Rome), and his szyle becume partially Raphaclesque. It was, however, novel in its combination of diverse elements, and highly attractivo-with fine pencilling, a rich yet not lavth use of perspective and decorative effects, and an elegant opposition of light and shade. The muman fgure is somewhat slender in Bonvicino's paintings, the expression' earnestly religious, the flest-lints varied, more so than was common in the Venetian school. The backgrounds are generally laminous, and the draperites well modified in red and yellow tints with littie intefmixture of blue. The depth of Bonvicino's tatent, bowever, was handly in proportion to its vigour and vivacity; and be excelled more in sodate allarpieces than in subjects of action, and more in ofl-painting than in freseo, allthough some fine series of his frescoes remain, especially that in the vill Martinengo at Novarino, near Brescia. Among his celebrated works in the cify are-in the church of S. Clemente, the "Five Virgin Martyrs," and the "Assumption of the Madonna " (this latter may count as his masterpiece); in S. Nazaro e Cetho, the "Coronation of the Madonna"; in S. Meriz della Grazie, "St Joseph "; in S. Marla de' Miracoli, "St Nicholas of Bari." In the Vienna Gallery is a "St Joatina " (once ascribed to Pordenone); in the Stidel Institute. Frankfort, the "Madonna emthroned bet ween Sts Amthony and Sebastian "; in the Bertip Museum, a colossal "Adoration of the Shepherds," and a large votive picture (one of the master's best) of the "Madonna and Child," with infant angels and other figures above the clouds, and below, amid a rich landscape, two priests; in the National Gallery, London, St Bernardin and other saints and two impressive portraits. Il Moretto is stated to have been a man of child-like personal piety. preparing himself by prayer and fasting for any great act of sacred art, such as the painting of the Virgin-mother. His dated works extend from 1524 to 1354, and be was the master of the preeminent portrait-painter Moronl. He died on the 22nd of December 1554.
MORGAGNI, OHVAMNI BATTESTA (668y-1771), Italian anatomist, was born on the 25th of February r68z at Forli.' His parents were in comfortable circumslances, but not of the nobility; it appears from his letters to G. M. Lanciss that Morgagni was ambitious of gaining admisslon into that rank, end it may
${ }^{1}$ His statue was erected at Forfl in 1875. and the town library preserves fourteen manuscript volumes of his writing
be inferred that be succeeded from the fact that be is dessribed on a memorial tablet at Padua as "nobilis forolensis." At the age of sixteen he went to Bologna to study philosophy and medicine, and he graduated with much iclat as doctor in both facculties three years later (170 x). He acted as prosector to A. M. Valselva (one of the distinguished pupils of Malpighi), who held the office of "demonstrator anatomicus" in the Bologna achool, and whom be assisted more particularly in preparing his celebrated work on the Anatomy and Diseases of the Ear, published in 1704 . Many years after (1740) Morgagni edited a collected edition of Valsalva's writings, with important additions to the treatise on the ear, and with a memoir of the author. When Valsalva was transferred to Parme Morgagni succeeded to his anatomical demonstratorship. At this period he enjoyed a high repute in Bologna; he was made president of the Academia Inquietorum when in his twenty-fourth year, and be is said to have signalized bis tenure of the presidential chair by discouraging abstract speculations, and by setting the fashion towards exact anatomical observation and reasoning. He published the substance of his communications to the Academy in 1706 under the title of Adersacria anotomica, the first of a series by which he became favourably known throughout Europe as an accurate anatomist; the book included "Obscrvations on the Lerynx, the Lechrymal Apparatus, and the Pelvic Organs in the Female." After a time he gave up his post at Bologna, and occupied himself for the next two or three years at Padua, where he had a friend in Domenico Guglielmini (t6551710), professor of medicine, hut better known as a writer on physics and mathematics, whose works he afterwards edited (1720) with a biograpby. Guglielmini desired to see him settled as a teacher at Padua, and the unexpected death of Guglielmini himself made the project feasible, Antonio Vallisneri (1661-1730) being transferred to the vacant chair, and Morgagni succeeding to the chair of theoretical medicine. He came to Padua in the spring of 1712, being then in his thirtyfirst year, and he taught medicine there with the most brilliant success until his death on the 6th of December $\times 771$.
When he had been three years in Padua an opportunity occurred for his promotion (by the Venetian senate) to the chair of anatomy, in which he became the successor of an illuatrious line of scholars, including A. Vesalius, G. Fallopius, H. Fabricius, Gasserius, and A. Spigelius, and in which he enjoyed a stipend that was increased from time to time by vote of the senate until it reached twelve hundred gold ducats. Shortly after coming to Padue be married a lady of Forll, of noble parentage, who bore him three sons and twelve daughters. Morgigni enjoyed an unequalled popularity among all classes. He was of tall and dignified figure, with blonde bair and blue eyes, and with a frank and happy expression; his manners were polished, and he was noted for the elegance of his Latin style. He lived in harmony with his colleagues, who are said not even to have envied him his unprecedentedly large stipend; his house and lecture-theatre were frequented "tanquam officina sapientiae" by students of all ages, attracted from all parts of Europe; he enjoyed the friendship and favour of distinguished Venctian senators and of cardinals; and successive popes conferred honours upon him. Before he had been long in Padua the students of the German nation, of all the faculties there, elected him their patron, and he advised and assisted them in the purchase of a house to be a German library and cluh for all time. He was clected into the imperial Cacsareo-Leopoldina Academy in 1708 (originally located at Schweinfurth), and to a higher grade in 1732, Into the Royal Society in 1724, into the Paris Academy or Sciences in 1731, the St Petersburg Academy in 1735, and the Berlin Academy in 1754. Among bis more celebratcd pupils were Antonio Scarpa (who died in 1832 , connectiag the school of Morgagni with the modern era), Domenico Colugno (1736-1822), and L. M. A. Caldani ($1725-1813$), the author of the magnificent atlas of anatomical plates publisbed in 3 vols, at Venice in 1801-1814.
In his earlier years at Padua Morgagni brought out (1717-1719) five more ecries of the Adocrsaria anatomica, by which his reputation was first made; but for more than twenty years after the last of
these his strictly medical publications were few and casual (on gallstones, varices of the vena cava, cases of stone, and several memoranda on medico-legal points, drawn up at the request of the curia). Classical scholarship in those years occupied his pen more than anatomical observation. It was not until 1761, when he was in his eightieth year, that he brought out the great work which, once for all, made pathologicai anatomy a science, and diverted the course of medicine into new channels of exactness or precision-the De Sedibus et causis morborum per anatomem indagatis, which during the succeeding ten years, notwithstanding its bulk, was reprinted several times (thrice in four years) in its original Latin, and was translated into French (1765), English (1769,3 vols 4to), and German (1771). Some account of this remarkable work remains now to be given.
The only special treatisc on pathological anatomy previous to that of Morgagni was the work of Theophile Bonet of Neuchatel, Sepul. chretum: sive anatomia practica ex cadaveribus morbo denatis, first published (Geneva, 2 vols. folio) in 1679, three years before Morgagni was born; it was republished at Geneva (3 vols., folio) in 1700 , and again at Leyden in 5709 . Although the normal anatomy of the body had been comprehensively, and in some parts exhaustively. written by Vesalius and Fallopius, it had not occurred to any one to examine and describe systcmatically the anatomy of diseased organs and parts. Harvey, a century after Vesalius, naively remarks that there is more to be learned from the dissection of one person who had died of consumption or other chronic malady than from the bodies of ten persons who had been hanged. F. Glisson, indeed (1597-1677), shows, in a passage quoted by Bonet in the preface to the Sepulchretum, that he was familiar with the idea, at least, of systematically comparing the state of the organs in a series of cadavera, and of noting those conditions which invariably accompanied a given set of symptoms. The work of Bonet was, however, the first attempt at a system of morbid anatnmy, and. although it dwelt mostly upon curiosities and monstrosities, it enjoyed much repute in its day; Haller speaks of it as "an immortal work, which may in itself serve for a pathological library." Morgagni, in the preface to his own work, discusses the defects and merits of the Sepulchretum: it was largely a compilation of other men's cases, well and ill authenticated; it was prolix, often inaccurate and misleading from ignorance of the normal anatomy, and it was wanting in what would now be called objective impartiality-a quality which was introduced as decisively into morbid anatomy by Morgagnj as it had been introduced two centuries earlier into normal human anatomy by Vesalius. Morgagni has narrated the circumstances under which the De Sedibus took origin. Having finished his edition of Valsalva in 1740 , he was taking a haliday in the country, spending much of his time in the company of a young friend who was curious in many branches of knowledge. The conversation turned upon the Sepulchretum of Bonet, and it was suggested to Morgagni by his dilettante friend that he should put on record his own olservations. It was agreed that letters on the anatomy of diseased organs and parts should be written for the perusal of this favoured youth (whose name is not mentioned); and they were continued from time to time until they numbered seventy. Those scventy letters constitute. the De sedious et causis morborum, which was given to the world as a systematic treatise in 2 vols., folio (Venice, 1761), twenty years after the task of epistolary instruction was begun. The letters are arranged in five books, treating of the morbid conditions of the body a copite ad calcem, and together containing the records of some 640 dissections. Some of these are given at great length, and with a precision of statement and exhaustiveness of detail hardly surpassed in the so-calied "protocols" of the German pathological institutes of the present time: others, again. are fragments brought in to elucidate some question that had arisen. The symptoms during the course of the malady and other antecedent circumstances are always prefixed with more or less fulness, and discussed from the point of view of the conditions found after death. Subjects in all ranks of life, including several cardinals, figure in this remarkable gailery of the dead. Many of the cases are taken from Morgagni's early experiences at Bologna, and from the records of his teachers Valsalva and H. F. Albertini not elscwhere published. They are selected and arranged with method and purpose, and they are often (and somewhat casually) made the ciccasion of a long excursus on general pathology and therapeutics. The range of Morgagni's scholarship, as evidenced by his references to early and contemporary literature, is astonishing. It has been contended that he was himself not free from prolixity, the besetting sin of the learned: and certainly the form and arrangement of his treatise are such as to make it difficult to pse in the present day, notwithstanding that it in well indexed in the original edition, in that of Tissot (3 vols., 4to. Vverdun, 1779), and in more recent editions. It differs from modern treatisce in so far as the symptoms determine the order and manner of presenting the anatomical facts. Alhhough Morgagni was the first to understand and to demonstrate the absolute necessity of basing diagnosis, prognosis and treatment on an exaet and comprehensive knowledge of anatomical conditions, he made no attempt (like that of the Vienna school sixty years later) to exalt pathological anatomy into a

oth the scalpel), his precision, his exhaustivences, and hir froedom from bias. are his esentially modern or scientific qualities; his echolerahip and high consideration for claselcal and foreign work, bis enone of practicai ende (or his common senee), and the breadth of his intelloctual horizon prove him to have livod before medical science had become largely technical or mochanical. His treatise wai the commencement of the era of steady or cumulative progrese in pathology and in practical medicine. Symptoms from that time ceased to be made up into more or less conventional groups, each of which was a discane; on the other hand, they began to be viewed as "the cry of the suffering organs," and it became poosible to develop Thomas Sydenham's grand conception of a natural history of disease in a cat holic or ccientific spinit.
A biography of Morgagni by Mosca was published at Naples in 1768. Fis life may aloob be rend in A. Fabroni's Vitas illustr. Ilator. and a convenient abridgment of Fabronie memoir will be found prefixed to Tiseot's edition of the De sedibus, \&c. A collected edition of bis works was published at Venice in 5 vols folio, in 1765.
(C. C.)

FORGAM. DMMIRL (1736-1802), American soldier, was born in Hanterdon county, New Jersey, in the winter of 1736, of Welsh ancestry. In 1753 he removed to Virginia In June 1775, soon efter the ourbreak of the War of Independence, he was commissianod a captain of Virginia riflemen, and he marched his company to Boston in 2r days. In the winter of 1775 he accompanied General Benedict Arnotd to Canada, and in the assault on Quebec (Doc. 31) he and bis riflemen penetrated well into the city, where he was hemmed in and was forced to surrender. On the 7th of August 1776 he was discharged on parole; on the rath of November be was commissioned colonel of the inth Virginia; and soon afterwards he was released from his parole. In the summer of 1777 he was engaged in minor skirmishes in New Jersey, and early in September joined General Horatio Gates, then engaged in the campaign against Gencral Burgoyne. At the first battle of Saratoga (Sept. 19) be was, until Arnold's arrival late in the day, the ranking officer on the feld; and in the second battle (Oct. 7) also took a prominent part. Morgan rejoined Washington in November near Philadelphia. In March 1779 be was commissioned by Congress colonel of the jth Virginia; but in July, suffering from poor bealth and dissatisfied because Congress did not advance him further ln rank, he resigned from the army and retired to Virginia. After the battle of Camden, however, he joined Gates (then in commend in the Soutb) at Hillsborough, North Carolina, and on the rst of October took command of a corps. On the 13 th of the same month Congress tardily raised him to the rank of brigadier-general. In Janaary 1781 Cornwallis and Tarleton attempted to entrap him, but at the Cowpens (Jan. 17) he deleated Tarketon and (hen escaped trom Cornwallis into North Carolina. Apparently Morgan suggested to Greene (who had superseded Gates) that general's plan of battle at Guitlord Coutt House on the Isth of March. In December $\mathbf{x} 703$ he was commissioned major-general of Virginia militia, and in November $\mathbf{r} 794$ commanded troops sent to suppress the Whisky Insurrection in weaterm Pennsyivania. He was a Federalist representative in Congress in 1797-1799, and ded in Winchester, Virginia, on the 6th of July 1802.
See James Graham. The Life of General Danich Morgan of the Vireinia Line (New York, 1856) ; and Rebecca McConkey, The Hero of Cowpens (rev. ed.. New York, 1885).
MORGAN, EDWIN DENNISON ($18111-1883$), American merchant and pblanthropist, one of the "war governom"" of New York state, was born in Washington, Berkshire county, Massachusetts, on the 8th of February 181I. He was first a clerk and then a partner ia his uncle's store at Hartford, Connecticut, and became head of the New York firm of E. D. Morgan \& Co. (formed in 1847). He engaged in politics, first as a Whig and then as a Republican. In 1849 he was elected president of the Board of Assistant Aldermen of New York City; be was a member of the state senalo in $1850-1853$ and procured the passage of the bill providing for the establishment of Central Park in New York City; in $1855-1858$ he was state commissioner of immigrntion; from 1850 to 1863 he was governor of New York, being the first Republican executive of the state; in 1863-1869 he was United States senator from New York. He died ip New York City on the 14th of February 1883. Morgan
whe one of the founders of the Republican party, and was chairman of the National Repablican Committee in 1856-1864 and in 1872. He whas one of the most efficient and able of the war governors; evem before the outbreak of the Civil War he did much to prepare the state government for it, and from September 186r to January $\mathbf{r 8 6 3}$ he was' in command of the military department of New York, with the rank of majorgeneral of volunteers. He was a liberal donor to Union Theological Seminary, Williams College and other instatutions. His collection of paintings and sculpttre, much of which had long been louned to the Metropolitan Muscum, was sold in Jamuary 1886.

MORGAB, 8 IR HBARY (c. 1635-1688), Welsh buccaneer, and lieutenant-governor of Jamaica, was the eldest son of Robert. Morgan of Llanrhymany in Glamorganstire. He is said to have been kidnapped as a boy at Bristol and sold as a slave at Barbadoes, thence making his way to Jamaica, and is possibly to be identified with the Captain Morgan who accompanied the expedition of John Morris and Jackman when Vildemos, Trujillo and Granada were taken. In 1666 be commanded a ship in Edward Mansfictd's expedition which scized the island of Providence or Sante Catalina, and when Mansficld was captured and killed by the Spaniards shortly afterwards Morgan was chosen hy the buccaneers as their "admiral." In 1668 he was commissioned by Sir Thomas Modyford, the governor of Jamaica, to capture some Spanish prisoners, in order to discover details of the threatened attack on Jamaica; and collecting ten ships with 500 men south of Cuba, he landed and manched to Puerto Principe, which be took and pillaged; and afterwards accomplished the extraordinary feat of taking by starm the fortified and well-garrisoned tewn of Porto Bello on the mainland. The governor of Panama, astonished at this daring adventure, in vain attempted to drive out the invaders, and finally Morgan consented to evacuate the place on the payment of a large ransom. These exploits had considerably axceeded the terms of Morgan's commission and had been accompanied by frightful cruelties and excesses; but the governor endeavqured to cover the whole under the necessity of allowing the English a free hand to attack the Spaniards whenever possible. Morgan was almost immediately entrusted with another expedition by Modyford against the Spaniards, and proceeded to ravage the coast of Cuba. In January 1669 the largest of his chips was blown up accidentally in the course of a canousal on board, Morgan and his officers narrowly escaping destruction. In March be sacked Maracaibo, and afterwards Gihraltar. Returning to Maracaibo, he found three Spanish ships waiting to intercept him; but these he destroyed or captured, recpvered a considerahle amount of treasure from one which had sunk, exacted a hoavy ransom as the price of his evacuating the place, and finally by an ingenious stratagem eluded the onemy's guns altogether and escaped in safety. On his return to Jamaica he was again reproved, but not punished by Modyford. The Spaniands on their side were moreover acting in the same way, and a new commission was given to Morgan, as commander-in-chiel of all the shipa of war in Jamaica, to levy war on the Spaniards and destroy their ships and stores, the booty gained in the expectition being the only pay. Accordingly, after ravaging the coast of Cuba and the mainland, Morgan determined on an expedition to Panama. Ho recaptured the island of Santa Catalina on the 15th of December 1670, and on tho 27th gained possessioth of the castle of Chagres, killing 300 of the garrison. Then with 1400 men he ascended the Chagres river, and after overcoming perils and obstacles of all kinds he appeared before Panama on the 18th of January 1671, defeated a much larger forco than his own, and took the city. The fame of tbis brilliant exploit was, however, again obecured by abominable scenes of cruclty and debauchery, during which a galleon containing a considerable part of the booty escaped. Moreover, on returning to Chagres the members of the expedition found the mselves cheated of their fair share of the spoil, ${ }^{1}$ while Morgan escaped with a
${ }^{2}$ Cal. of St Pap. America \&f Wast Indies 1669-1674. Nos. 380 and 798: Exquermetin (ed. 1898), 237.
few ships to Jamaica, leaving the rest to get home as best they could. On his return he received the thanks of the governor and council; but meanwhile on the Bth of July, 1670, a treaty had been signed hetween Spain and England, and both Modyford and Morgan were ordered home under arreat to answer for their conduct. Morgan, however, soon succeeded in gaining the king's favour, and in the autumn of 1674 he was appointed lieutenant-governor of Jamaica and was knighted, leaving England in December. After such a career as his it is not surprising that Morgan's conduct as a responsible official of the government was not very creditable. He was charged by Lord Vaughan; afterwards earl of. Carbery, the governor, soon after his appointment, of persisting in encouraging privateering; he intrigued against his colleagues and successive governors of Jamaica, with the hope of superseding them; raised factious dissensions; and supported the outrageons conduct of his brother, Captain Charles Morgan, a terrible ruffian, and his kinsman, Colonel Byndios; taking part in their brawls and drunken orgies. He was finally, on the rath of Octoher 1683, suspended in Jamaica from all his employments; a decision which was confirmod by the government at home after hearing Morgan's defence; but he was restored to bis place in the council on the r8th of July 1688, shortly before his death, which took place in August.
See A. O. Exquemelin (one of-Morgan's huccaneers), Buccaneers of America (1684, reprinted in 1891); A. Morgan, History of the Pamily of Morsan (I901).

MORGAR, JOHM HUNT (1825-1864), American Confederate soldier, was born in Huntsville, Alabama, on the rst of June 1825, and was brought up on a farm near Lexington, Kentucky, to which his perents removed in 1830 . In the Merican War be was a first tieutenant of a Kentucky cavalry regiment. On the outbreak of the Civil War he was captain of the Lexington Rifles (organized in 1857); in September 1861 he succeeded in getting out of Lexington the company's arms after the issue of the order for the disarming of the state guard, and late in the same month reached the Confederate camp at Woodsonville on the Green river. He proved himself an able scout, and was made captain of a cavalry company and commander of a cavalry "squadron," including two other companies, which in February 1882, with General A. S. Johnston's other forces, withdrew from Kentucky to Corinth, Mississippi. He was commissioned a colonel after the battie of Shiloh, and in July 1862, starting from eastern Tennessee, made the first of his famous raids. He routed a Federal force at Lebanon, destroyed much rolling stock and other railway property, and threatened Eouisville and Cincinnati. In August and September he took part in General Braxton Bragg's invasion of Kentucky, and again threatened Ohio. In December he defeated the Union garrison at Hartsville, Tennessee, taking prisoners, valuahle stores, and many cattle; was commissioned brigadier-general for this success; and soon afterward again raided Kentucky. To cover Bragg's movement from Tullahoma to Chattanooga Morgan made, in July 2863, his famous raid into Indiana and Ohio. Bragg had instrusted him to confine himself to Kentucky, but Morgan hoped to gaits recruits in Indiana, where opposition to the war was strong. With 2460 men he crossed the Cumberland near Burkesville, Kentucky, on the and of July; on the 5th captured a garrison at Lebanon; and on the i3th entered Ohio near Harrison. The regular cavalry, under Generals E. H. Hobson and James M. Shackelford, was now close behind him, and his way was beset by quickty gathering militia. He marched through the suburbs of Citcinnation the night of the I3th and on the 18th got to Portland, near Buffington Island, where he attempted to cross on the next day; but gunboats and steamers prevented him. In 2 sharp battle he lost 600 or more men. As many more surrendered soon afterwards, and about 300 crossed the river. On the 26th he surrendered to General Shackelford at New Lisbon. He was limprisoned with 70 of his men in the penitentiary at Columbus, from which on the night of the 27th of November be and six of tris companions escaped by a tunnel they had dug. In the spring of 1864 he
was put in virtual command of the Department of South-western Virginia, which included eastern Tennessec, and late in August he took command at Jonesboro, Georgia. On the 4 th of September he was shot in a garden in Greenville, Tennestec, baving been hetrayed, it appears, to the Federals. Morgan had an excellent eye for topographical details, and by the swiftness of his movements and his sudden blows kept Kentucky in continual alarm. His lieutenant, Basil W. Duke, says that bis force at no time reached 4000 , but that it killed and wounded nearly as many of the enemy and captured more than 15,000."
See Basil W. Duke, History of Korgan's Cavalry (Cincinnati, 1867). HORGAN, JOHN PIERPONTT (I837-1913), American financier and banker, was born in Hartiord, Connecticut, on the 17 th of April 1837, a son of Junjus Spencer Morgan (1813-1890), who was a partner of George Peabody and the founder of the bowse of J. S. Morgan \& Co. in London. He was educated at the English High School in Boston and at the University of Gat. tingen. In 1857-1860 be worked in the New. Yark banking house of Duncen, Sherman \& Co.; from 1860 to 1864 was agent and attorney in New Yort for George Peabody \& Co. of London, and afterwards for its successor, J. S. Morgan \& Co., of which he became head; in 1864-x871 wes a memher of the firm of Dabney, Morgan \& Co.; and in 1871 be entered the firm of Drexel, Morgan \& Co., in which he was associated with Anthony J. Drexet, of Philadelphia, upon whose death in 1893 be became senior partner. In 1895 the firm became J. P.' Morgan \& Co. Cloaely associated with Drexel \& Co. of Philadelphia, Morgan, Harjes \& Co. (successors to Drexel, Harjes \& Co.) of Paris, and Morgan, Grenfell \& Co. (before 1910 J. S. Morgan \& Co.) of London, it became, largely owing.to Mr Morgan's ability, one of the most powerful banking houses in the world. It carried through the formation of the United States Stocl Corporation (which took over the business of Andrew Carnegic and others), harmonized the coal and railway interests of Pennsylvania, and purchased the Leyland line of Atiantic steamships and other British lines in rgo2, thus effecting an Atlantic shipping "combine" (See Steanship Lines); and it, or the banking houses which it succeeded, reorganized the following railways: Albany \& Susquehanna (1869); the Chesapeake \& Ohio, and the Cleveland, Cincinnati, Chicago \& St Louis (ı888); the Erie and the Reading (1895); the New York \& New England (1896); the Northem Pacific (1897); the Baltimore \& Ohio (1899). \&cc.; and in 1895 it supplied the United States government with $\$ 02,000,000$ in gold to float a bond issue and restore the treasury surplus of $\$ 100,000,000$. Mr Pierpont Morgan was a prominent member of the Protestant Episcopal Church; an enthusiastic yachesman, whose "Columbia" defeated the "Shamrock" in 1890 and 1901 for the "America's" cup; a notable collector of books, pictures, and other art objects, many loaned or given to the Metropolitan Museum of Art (of which he was president), and many housed in his London house and in his private library on 36th Street, near Madison Avenue, New York City; and a generous bepefactor of the American Muscum of Natural History, the Metropolitan Museum of Art, Harvard University (especiahly its medical schooi), the Lying-in Hospital of the city of New York and the New York trade schools.
MOROAK, LEwis HENRY ($1818-1881$), American ethnologist, was born near Aurora, New York, on the 21st of November 18i8. He graduated in 1840 at Union College, then studied law, was admitted to the bar, and practised his profession with success at Rochester, New York. Soon after leaving college Morgan wenl emong the Iroquois, living as far as he could their life and studying their social organization. In October 1847 he was formally adopted into the Hawk gens of the Seneca tribe, and received the name "Ta-ya-da-wah-kugh." The fruit of bis researches was The League of the Iroquois (1851 ; new ed. 1904), which, says J. W. Powell, "was the first scientific account of an Indian trihe ever given to the world.". The success of the book encouraged him to further researeb, resalting in his Systoms of Consonguinity and Afinity of the Hamar Family (1869). In 1877 he added to his repukation by publishing

Ancient Sacidy, or Researahes in the Lines of Humen Progress from Savagery, througk Barbarism, to Civilization, in which be divided the progress of culture into seven stages-" lower savagery," "middle savagery," "upper savagery," "lower barbarism," " middle barbarism " and "upper barbarism," and "civilization." The book was in four parts, dealing with (1) the growth of intelligence through inventions and discoveries; (2) the growth of the idea of government; (3) the growth of the idea of the family; and (4) the growth of the idea of property. Morgan was a member of the New York assembly in 1801 and of the New York senate in 1868-1869. In 1880 he was president of the American Association for the Advancement of Science. He died in Rochester, New York, on the 17 th of December 1881. In addition to the works above mentioned and many magazine articles, he published The American Beaver and his Works (1868) and Houses and House-life of the Americas Aborigines (1881).

MORGAN, SYDNBY, LADY (c. r783-1850), British authoress, daughter of Robert Owenson, an Irish actor, was born in 1783 in Dublin. She was one of the most vivid and hotly discussed literary figures of her generation. She began her career with a precocious volume of poems. She collected Irish tunes, for which she composed the words, thus selting a fashion adopted with signal success by Tom Moore. Her Si Clair (1804), a novel of ill-judged marriage, ill-starred love, and impassioned natureworship, in which the influence of Goethe and Rousseau was apparent, at once attracted attention. Another novel, The Norice of Si Dominick (1806), was also praised for its qualities of imagination and description. But the book which made her reputation and brought her name into warm controversy was The Wild Irish Girl (1806), in which she appeared as the ardent champion of her native country, a politician rather than a novelist, extoiling the beauty of Irish scenery, the richness of the natural wealth of Ireland, and the noble traditions of its early history. She was known in Catholic and Liberal circles by the name of her heroine "Glorvine." Patriolic Sketches and Metrical Fragnients followed in 1807 . Miss Owenson entered the houschold of the marquess of Abercorn, and in 1812, persuaded by Lady Ahercorn, she married the surgeon to the household, Thomas Charles Morgan, afterwards knighted; but books still continued to flow from her facile pen. In 1814 she produced her best novel, O^{\prime} Donncl. She was at her best in her descriptions of the poorer classes, of whom she had a thorough knowledge. Her elaborate sludy (1817) of France under the Bourbon restoration was attacked with outrageous fury in the Quarterly, the authoress being accused of Jacobinism, falschood, licentiousness and impiety. She took her revenge indirectly in the novel of Florence Macarlhy (1818), in which a Quarlerly reviewer, Con Crawley, is insulted with supreme feminlne ingenuity. Italy, a companion work to her France, was published in 1821 ; Lord Byron bears testimony to the justness of its pictures of life. The results of Italian historical studies were given in her Life and Times of Saloator Rosa (1823). Then she turned again to lrish manners and politics with a matter-of-fact book on Absentecism (1825), and a romantic novel, The O'Briens and the O'Flaherlys (1827). From Lord Melbourne Lady Morgan obtained a pension of f300. During 3 the later years of her long life she puhlished The Book of the Boudoir (1829), Dramalic Scenes from Real Life (1833), The Princess (1835), Woman and her Master (1840), The Book withoud a Name (1841), Passages from my Autobiography (1859). Ste died on the 14 th of April 1859.

Her autobiography and many interesting letters were edited with a memoir by W. Hepworth Dlxon in 1862.
morgan, Thomas (d. ri43), English deist, of Welsh extraction, became an independent minister, but soon after 1720 lost his position owing to the growing unorthodoxy of his views. He took up medicine and became a frecthinker, though he describes himself as a Christian deist. He was an energetic controversialist. Among his works are Philowophical Principles of Medlicine (1975); Collection of Tracts (1726), essays dealing with the Trinitarian controversy; The Moral Philosopher (1737),
a dialogue between a Christian Jew, Theophanus, and a Christian deist, Pmialethes. He died on the 14th of January 1742/3.

HORGANATIC MARRIAGR, form of marriage properly peculiar to the German peoples, but also found in the royat families of other European countries. It is one in which the contracting parties are not by birth of equal status or rank (ebenbirtig), and under which the wife, if not ebenbitrig, does not take the rank of her husband, and the children, whether it be the wife or husband that is of lower rank, have no rigbt of succession to the dignitics, fiefs or entailed property of the parent of higber rank. This equality by birth was formerly throughout Germany the necessary condition to a complete and perfect marriage, but it is now only applicable to members of reigning houses or of the higher nobility (hoker $\langle d e l$), and it is thus of force among the " mediatized" princes of the German Empire. In the constitution of the various states, and in the "house laws" (Hausgesetze) of the reigning families, the ruics are laid down as to what constitutes denbtirtigkeil. Gencraily it may be said that members of a present or former reigning house, either in Germany or Europe, would be recognized as ebenbürtig, but a former morganatic marriage would be taken as destroying the qualification. In Great Britain the regulations as to the marriages of members of the royal family are contained in the Royal Marriage Act 177^{2} (sce Maralace). The term "morganatic marriage" is applied generally to any marriage of a person of royal blood with one of inferior rank. The origin of the term, in medieval Latin matrimonium ad morgancticam, is usually taken to refer to the Morgengabe, i.e. the morning gift, made by a husband to his wife on marriage. The German name is Ehe zur linken Hand (marriage by the left hand, whence the phrase a " left-handed marriage "), the husband of such marriage ceremonics giving the left instead of the rigbt hand to the bride. Such marriages are recognized as fully binding by the Church, and the children are legitimate, and no other marriage can take place during the lifetime of the contracting parties.

MORGANTOWN, a city and the county-seat of Monongalia county, West Virginia, U.S.A., on the Monongahele river, about 50 m. S.E. of Wheeling. Pop. (1890), roir; (1900), 1895 ; (ro10 census), 9150 . The city is served by the Baltimore \& Ohio and the Morgantown \& Kingwood railways, and by several steamboat lines, the Monongahela being navigable to Fairmont, about 25 m . above Morgantown. Morgantown is the seat of the West Virginia University (co-educational), formed from the Monongalia Academy (incorporated, 1814) and the Woodburn Female Seminary (incorporated, 1858), and chartcred in 1867 as the Agricultural Collcge of West Virginia; in 1868 the present name was adopted. In 1908 the university had 80 instructors and 1534 students. Coal, glass-sand and limestone are found in the vicinity of Morgantown. The first settlement here was made about 1768 by the brothers David and Zackwill Morgan, and was named in honour of the latter. It was incorporated as Morgan's Town in 1785; and in 19053 city charter was granted to it after the annexation of Greenmont (pop. 1900, 349), Seneca (pop. 1900, 723), and South Morgantown (pop. 1900, 405).

MORGARTEN, the name of the pasture slopes that descend westwards to the south end of the lake of Aegeri in the Swiss canton of Zug, about 2 m . hy road from the Sattel station on the railway line from Schwyz to Zarich. It was at the foot of these slopes and on the shore of the lake that the small Swiss force defeated the large Austrian army, advancing from Zug on Schwyz, on the $15^{\text {th }}$ of November 13:5, and so laid the foundations of Swiss liberty. As the lake has shrunk, the exact site of the battle has been disputed. It seems most probable that it took place near the Haselmatt Chapel, in the territory of Zug, where is the official monument, but some hold that the real site was in Schwyz territory, near the old tower and battle chapel of Schornen, in the gorge between the lake and Sattel.

The original accounts of the battlearr collected in part iii. (3884) of
the Milleilmang of the Historical Society of Schwyz. See also the careful study in K. Burki's Ein Denkmol am Morgarien too ist sein Plats? (Zug, 1895).
MORGEN, a unit of measurement of land in Holland and the Dutch colonies, and hence still current in South Africa, equivalent 10 about 2 acres. It is also used in Prussia, Norway and Denmark, where it equals about two-thirds of an acre. The word is usually taken to be the same as the German and Dutch word for "morning," the area of a " morgen" being equal to that covered by a morning's ploughing.

MORGHEN, RAPFABLLO SANZIO (1758-1833), Italian engraver, was born at Naples on the 19th of June 1758. He received his earliest instructions from his father, himself an engraver; but, in order to be initiated more fully in the art, he was afterwards placed as a pupil under the celebrated Volpato. He assisted this master in engraving the famous pictures of Raphael in the Vatican, and the print which represents the miracle of Bolsena is inscribed with his name. He married Volpato's daughter, and , being invited to Florence to engrave the masterpieces of the Florentine Gallery, he removed thither with bis wife in 1782 . His reputation now became so great as to induce the artists of Florence to recommend him to the grand duke as a fit person to engrave the ", Last Supper " of Leonardo da Vinci; apart, however, from the dilapidated state of the picture itself, the drawing made for Morghen was unworthy of the original, and the print, in consequence, although an admirable production, fails to convey a correct idea of the style and merit of Leonardo. Morghen's fame, however, soon extended over Europe; and the Institute of France, as a mark of their admiration of his talents, clected him an associate in 1803. In 1812 Napoleon invited him to Paris and paid him the most flattering attentions. He died at Florence on the 8th of April 1833.
A list of the artist's works, published at Florence in 1810 , comprised 200 compositions; the number was afterwards considerably increased. Amongst the most remarkable, besides those already mentioned, may be noticed the Transfiguration from Raphael ${ }^{\text {a }}$ Magdalen from Murillo, a Head of the Saviour from da Vinci, the Car of Aurora from Guido, the Hours and the Repose in Egypt from Poussin, the Prize of Diana from Domenichino, the Monument of Clement XIII. from Canova, Theseus vanquishing the Minotaur, Francesco Moncado after Van Dyck, portraits of Dante. Petrarch, Ariosto. Tasso, and a number of other eminent men. His prints have hardly maintained the reputation which they enjoyed during the artist's lifetime. Though carefully and delicately executed, they are somewhat mechanical and waniing in force and spirit.

IORHIRR, SIMON (d. c. 1450), provost of Paris during the English occupation in the 15 th century, was seigneur of Gilles, near Nogent-le-Roi, in the Chartrain country. Being a member of the duke of Burgundy's party, be was appointed provost at Paris by John, duke of Bedford, on the 1st of December 1422. He was taken prisoner at the siege of Montargis in 1427, and again at the battle of Rouvrai in 1429; but in September of the latter year he repulsed Joan of Arc's attack upon Paris. After a campaign in Cotentin in 1435, he was once more taken prisoner at the hridge of Charenton in 1436. Remaining faithful to the English party, he became captain of Dreux, a councillor of Henry VI., and treasurer of France and Normandy. He assisted in the defence of Meaux (1439), of Creil and of Pontoise (1441), and must have died between 1450 and 1456.
See the Nouvelle biographic generale, vol. xxxvis: and a note on Simon Morhier in the memoirs of ihe Antiquarian Society of France, vol. xxv.

MORHOP, DANIEL GEORG (1639-1691), German man of letters, was horn at Wismar on the 6th of Fchruary 1639. He first studied jurisprudence and then liferae humaniores at the university of Rostock, where his elegant Latin versification procured for him in 1660 the chair of poetry. In 1665 be went to the new university of Kiel as professor of eloquence and poetry; this chair he exchanged for that of history in 1673. He died at Labeck on the zoth of July 169 r . Of his numerous writinge the most important are Unterricht non der deulschen Sprache und Poesie (1682; 3rd ed., 1718), the first actempt in Germany at a systematic survey of European literature, and Polyhistor, sise de auctorum notilia ot rerum commcnlarii (Libeck,

1688, not completed till 1707; 4th ed., 1747), a kind of encyclopaedia of the knowledge and learning of his lime.
See Eymer. Morhof mad seix Polyhistor (in the Xenia Austriaca, Vienna, 1893); and brography by R. v. Liliencron in Allecm. Deulsche Biographic (1885).

MORIAR, an obscure place-rame of ancient Palestine with apparently two distinct connotations. (t) A land entirely unknown, on a mountain in which Ahraham offered Isaec (Gen. xxii. 2). The text is probably corrupt: some have suggested " land of the Amorites," others " land of Midian." The etymology of the word is equally obscure. Traditionally, of course, " the land of Moriah " is identified with the site of the Temple at Jerusalem, ${ }^{1}$ cxcept by the Samaritans and a few western scholars (such as Dean Stanley) who accept their belief that the mountain was Gerizim. (2) The upper part of the bill of Ophel, the threshing floor of Araunah, upon which Solomon erected the Temple, is once called Mount Moriah (2 Chron. iii. 1). Whether this name be derived from the corruption in Genesis or not cannot be definitely decided; it. very likely is. The testimony of Josephus, who often names the temple hill "Moriah," is of course not original, and of no weight.
(R.A.S. M.)

IORIER, JA1ESS ($1780-1849$), English traveller and author, was born in 1780 . Through the influence of his uncle, Admiral William Waldegrave, Baron Radstock, be entered the diplomatic service, and as secretary to Lord Elgin followed the grand vizier in the Egyptian campaign. An account of his Eastern experiences was published in 1812, under the title A Jowrney through Persia, Armenia and Asia Minor to Constantinople in 1808-9. From 18 ro 101816 he was the British representative at the court of Persia, and after his return he published A Second Journey though Persia to Constantinople between the years 1810 and 1816. His knowiedge of Eastern life and manners be also turned to account in the composition of several entertaining romances. The most popular of these were The Advenfures of Hajji Baba of Ispahon (1824), The Adrentures of Hajji Baba of Ispahan in England (1828), Zohrab the Hostage (1832), and Ayeska the Maid of Kars (1834). Morier died at Brighton on the 23rd of March 1849.

MORIER, SIR ROBERT BURNETT DAVID ($1826-1893$), British diplomatist, was born at Paris on the 3 Ist of March 1826. He was descended from a family of diplomatists of Huguenot origin, the best known of whom were his father David, consulgeneral for France and minister at Bern, and his uncle James, the author of The Adventures of Hajji Baba. After a somewhat defective privatc education he came up to Balliol College, Oxford. Here he altracted the notice of Jowett, under whose influence his hrilliant but wayward mind obtained the discipline of which it stood in need. The relation of tutor and pupil developed into a friendship of rare warmth. Writing towards the close of his life, Jowett, who inspired more devoted friend. ships than any man of his time, spoke of Moricr as bis kindest and best friend for forty-five years. On leaving Oxford, Morier at first ohtained an appointment in the Education Department, but resigned in 1852, and in the following year became attache at Vienna. In the succeeding years he was attached in turn to almost every court in Germany. Restless in temperament and unconventional in method, he plunged into the vortex of German politics to a degree that did not always accord with the traditions of diplomacy. The most important years of his career in Germany were from 1866 to 1871, when he was secretary of legation at Darmstadt. Here he became a trusted adviser of the crown princess, and througb her acquired an intimate friendship with the crown prince (afterwards the emperor Frederick III.), whose antagonism to Bismarck's reactionary policy met with cordial support from Morier's sturdy Liberalism. Bismarck, already jealous of British influence at court, honoured Morier with a hatred not lessened by the fact that Morier's knowledge of German politics was unrivalled outside Germany. On leaving Darmstadt, Morier became charge d'affaires, first at Stuttgart

[^55]and then at Munich, and in $\mathbf{x 8 7 6}$ was appointed minister at Lisbon. From 188, to $\mathbf{1 8 8 4}$ be was minister at Madrid. In December 1884 he became ambessendor at St Potersburg, and almost immediately had to face the alarming situation created by the Rusian advance to Penjdeh. Thanks to his efforts, a war that al one moment seemed inevitable was averted. His great popularity at the Russian court contributed towards a marked improvement in the relations between the two countries. Bismarck took alarm at the lessening infuence of Germany over Russia, and tried to procure Morier's downfall. The Külnische Zeilung dectared in December 1888 that Morier had made use of his position at Darmstade during the Franco-German War to betray the movements of the German troops to Marshal Bazaine. The authority for this charge was an alleged declaration made by Bazaine to the German military attaché at Madrid. Bazaine had died in September, hut Morier had heard rumours in July of the charge brought against him, and had procured from Bazaine a written deninl, which he now published in The Times. Apart from this, it was clearly shown that Morier could not bave iransmitted the information by the alleged date, and that Bazaine, according to the testimony of his own books and of other officers, reccived the information in question by reports from the front. As a matter of fact, Morier was an andent cbampion of the German cause. His correspondence with Jowett shows the latter vainly endeavouring to convince his friend that the French were in the right. Public opinion everywhere, except in the German Conservative press, attributed the charge to political motives. Morier's failing health caused him, at his own request, to be appointed Lond Dufferin's successor at Rome in 889 r ; but it was felt that he could not be spared from St Petershurg, and there he remained till forced to find a milder climate. It was then too late, and he died at Montreux in Switzeriand on the 16th of November 1893 .
HORIKE, EDUARD PRIRDAICH (1804-1875), German poet, was born at Ludwigsburg on the 8Lh of September 1804 In 1834 he was appointed pastor of Kleversulzbach near Weinsberg, and in $185 x$ became professor of literature at the Kathatinenstift in Stut gart. This office he held until his retirement in 1866; but he continued to live at Stutigart until his death on the 4th of June 1875. M8rike is the most lyrically gitted of all the poets belonging to the so-called Swabian school which gathered round Uhland. His poems, Cedichte (1838 ; 22 nd ed., roo5), are mostly lyrics, graceful in style, original in conception, often humorous, but expressed in simple and natural language. He also wrote a zomewhat fantastic Idylle vom Bodensee, oder Fischer Marlinund die Clockeudiebe (1846 ; 2nd ed., 1856), and published a collection of hymns, odes, elegies and idyils of the Greeks and Romans, antited Klassische Blumentese (1840), and several novels and natratives, among the former Maler Nollem (1832; 6th ed., rgor), which enjoyed great popularity.

Mörike's Gesammelle Schrifien were first published in 4 vols. (in 1878); the most recent editions are those edited by R. Krauss $(6$ vols., 1905), and the Vothsartsgabe, published by Coschen (4 yols, 1905). Selections from his literary remains were published by R. Krause in Edward Morike als Gelegenhleitsdichler (1895), and his correepondence with Hermann Kurze, Moritz von Schwind, nad Theodor Storm, by J. Bachtold (1885-1891): an edition of Mörike's Ausgeráhlue Briefe, in 2 vols.0 appeared 1903-1904. Sce F. Noter, Eduard Mörike (1875): and H. Fischer. Eduard Mörike (i881): K. Fischer, E. Morike (1por): H. Maync, E. Morike (1902): K. Fischer, Morikes kinnsllerisches seluafon und dichlerische schöpfungen (1903).

MORILLON, a name commonly given by fowlers to the female or immature male of the GOLEEN-EYE (q.v.), the Clangula daucion of modern ornithology, under the belici--which still very generally obtains among them, as it once did a mong naturalists -that they formed a distinct species of duck. The mistake no doubt originated in, and is partly excused by, the facts that the birds called Morillons were often of opposite sexes, and differed greatly from the adult male Golden-Eye, whose full and beautiful plumage is not assumed until the second year. The word is used in French in precisely the same form, but it is in that language applied to the Tufted Duck, Fuligula cristata, and is derived, eccording to Littre, from more, signifying black.
(A. N.)
 French theologian, was born in 1501 at Blois, of Protestant parents. He learned Lalin and Greek at Rochelle, and continued his studies at Leiden, subsequently removing to Paris His conversion to the Roman Church is ascribed to Cardinal du Perron. In 1618 he joined the congregation of the Oratory, and in due course toak priest's orders. In 1625 he visited England in the train of Henrietle Maria; in 1640 he was at Rome, on the invitation of Cardinal Barberini, and was received with special favour by Pope Urban VIIL. He was, however, soon recalled to Paris hy Richelieu, and the rest of his life was spent in incessant literary labour. The Histoire de la delimance de l'fglise ckrdicune par l'emp. Constandin, et de la grandeur et souverainettLemporelle donnes a l'eglise romaine par les rois de France (I 630) gave great offence at Rome, and a Diclaration (I 654), directed against faults in the administration of the Oratory, was strictly suppressed. So, too, his great work on penance gava equal offence to the Jesuits and to Port-Royal, and even after his death, in 1659, the polemical vehemence of his Exarcila. liones biblicae, and the exaggeration of his assertion "apud neotericos Haereticos verba Scripturarum non esse integra, non superficiem, non folia, nedum sensum, medullam et radicem rationis" long led Protestants to treat his valuahle contributions to the history of the Hebrew text as a mere utterance of Popish prejudice.
Morin wha a voluminous and prolix writer on ecclesiastical antiguities. His princlpal worke in this field are Commertarius historicus de disciplina in odmimistratione sacramenti poententioe XIII. primit seculis in ecel. occid. at hucusque in orient. observota (1651). and Comm. de sacris ectessae ordinationibus secuuddum antiowos et recen. i ores Latimos, grocecas, sypos ef babylowias (1655), which expresica those irenical views on the eubject of ordination which recommended Morin to Urban Vill. The literary correspondence of Morin appeared in 1682 under the title of Antiquitales ecclesiace orientalis (edited by R. Simon).

Morin's chief fame, however, resta on his biblical and critical work. By his editio princeps of the Samaritan Pentateuch and Targum in the Paris Poly ylotht, he gave the first impulscin Europe to the study of this dialect, which he acquired without a teacher (rraming a grammar for himself) by the study of MSS. then newly brought to Europe. Not unnaturally he formed a very exaggerated view of the value of the Samaritan tradition of the text (Exercitationes in utrumque Samaricanorum Pentaleuchum. 1631). A similar tone of exaggerated depreciation of the Massoretic Hebrew text. coloured by polemical bias against Protestantism, mars his greatest work. the poosthumous Exerciladiones biblicae de hebracici graecique eextus sinceritate (1660), in which. following in the foostepe of Cappellus, but with incomparably grcater learning, he brings irrefragable argu:ments against the then current theory of the absolute integrity of the Hebrew text and the antiquity of the vowel points.

MORION (the French form of a word occurring in Spanish as morrian. Ital morione, usually connected with the Span. merra, top or crown of the head), a light cound-shaped head-piece or helmet (g.s.). The chief charateristica are a brim, an upright comb running along the crown from back to front, and the absence of guards for the face, ears or neck. The brim was bent sharply upwards at the front and back, and tbe picce was generally worn tilled backward so as to cover the neck. The morion and the cabasset, a pear-shaped headpiece with a flatter brim and no comb, were the typical infantry helmeis of the r6th and early 17 th centuries. It was sometimes worm unaccompanied by any body armour.
MORISCOS (i.e. little Mcors), the name given to the Spanish Mahommedans who accepted baptism and their descendants. Many, if not most, of them were in reality of the same race as the Christians, and were descended from converts to Islam. Those Mahommedans who retained their religion under Christian rulers were known as Mudkjars, a word of Arabic origin which has been incerpreted as meaning "those who remained" or "were left." Until the igth century they were numerous, and enjoyed free exercise of their religion, which was secured to them by capitulationa and trealies. Their number had been considerably diminished by the time of the conquest of Granada in 1402 . By the terms of the capitulation of the city freedom of worship was secured to the Mahommedans. But the policy of the Catholic sovereigns, who desired to exablish unity of faith
among their subjects, and the influence of the Church, soon led to violations of the treaty. The fir* Christian archbishop of Granada, Talavera, made some progress in converting the people peacefully. But at the end of 1499 Cardinal Jimenez insisted on adopting coercive measures. A rebellion ensued, and the Mahommedans were suppressed. Want of power, or other obstacles, delayed the final extinction of tolerated Mahommedanism in all parts of Spain, but by 1525 it was everywhere suppressed. The last remains of it were crushed in Valencin, where the Mahommedans were furlously atlacked by the Christian peasantry during the great agrarian revolt known as the Germania, $1520-152 \mathrm{I}$. As they were dependent on the protection of the landlords, the Mahommedans were docile tenants, and their competition weighed heavily on the Christians. The same quality of industry remained to the Moriscos, and excited the envy of their Christian fellow countrymen. The feelings with which they were regarded are admirahly shown by Cervantes (who shared them to the full) In his "Conversation of the Two Dogs." In 1568 the government of Philip II. issued an edict, wheh ordered them to renounce all their Moorish ways of ife and to give up their children to be educated by Christian priests. The result was a rebellion in Granada, which was put down with great difficulty. The Moriscos were expelled from Granada and scattered over other parts of Spain. Many fied to Africa, where the more spirited among them took to piracy at Algiers and other ports. They still maintained relations with their kinsfolk \ln Spain, and the whole coast suffered from their incursions. The Moriscos entered into relations with other enemies of Spaid, and notably, with France. Henry IV. included a plan for supporting a Morisco rebellion in the great scheme for the destruction of the Spanish monarchy, which be was about to put into execution when he was murdered on the 14 th of May 16 ro . These intrigues were known to the Spanish government and inspired it with terror. The expulsion of the whole body of Moriscos was decided on ia 1608 , and the edict was published on the 22 nd of September 1609. The expulsion was carried out with great cruelty. The number driven out has been variousiy estimated at 120,000 or at $3,000,000$. In some known cases the expelled Moriscos suffered martyrdom in Africa as Christians. A lew were left in Spain as domestic slaves, and some conirived to return in seeret. Cases of crypto-Mahommedanism continued to come before the Inquisition tili the 18 th century.
See The Moriscos of Spain: their Conversion and Expulsion, by H. C. Lea (London, 1901).

MORISON, JAMES AUGUSTUS COTTER (1832-1888), British author, was born in London on the 20th of April 1832. His father, who had made a large forsune as the inventor and proprietor of " Morison's Pills," setted in Paris till his death in $\mathbf{5 8 4 0}$, and Cotter Morison thus acquired not only an acquaintance with the French language, but a profound sympathy with France and French institutions. In later life he resided for some years in Paris, where his house was a meeting-place for eminent men of all shades of opinion. He was educated at Highgate grammar school and Lincoln College, Oxford. Here he fell under the infuence of Mark Pattison, to whom his impressionable nature perhaps owed a certain over-fastidiousness that characterized his whole career. He also made the acquaintance of the leading English Positivists, to whose opinions he became an ardent convert. Yet he retained a strong sympathy with the Roman Cathollc religion, and at one time spent scveral weeks in a Catholic monastery. One other great influence appears in the admirable Lifo of Sl Bernard, which he published in 1863 -that of his friend Carlyle, to whom the work is dedicated, and with whose style it is strongly coloured. Meanwhile he had been a regular contributor, first to the Lilcrary Gazelle, edited by his friend John Morky, and then to the Salurday Reviave at its most brilliant epoch. In 1868 he published a pamphiet entitled Irish Griepantes shardly shated. In 1878 he published a volume on Gibbon in the "Afen of Letters" scries, marked by sound judg. ment and wide reading. This he followed up in 1882 with his Macaulay in the same series._. It exhibits, more clearly perhaps
than any other of Morison's works, both his merits and his defects. Macaulay's bluff and strenuous character, his rhetorical style, his unphilosophical conception of history, were entirety out of harmony with Morison's prepossessions. Yet in his anxicty to do justice to his subject he steeped himself in Macaulay till his style often recalls that which he is censuring. His brief sketch, Mme de Маіиненон: иne ©tude (1885), and some magazine articles, were the only fruits of his labours in French history. Towards the close of his life he meditated a work showing the application of Positivist principles to conduct. Unfortuately, failing health compelled him to ahandon the second or constructive part : the first, a hrilliant piece of writing which attempts to show the ethical inadequacy of revealed religion and is marked in parts by much bitterness, was published in 1887 under the title of The Service of Man. He died in London on the 26th of February 1888.
MORITZ, KARL PHILIPP (1757-1793), German author, was born at Hameln on the Weser on the 15th of September 1757, of humble parentage. After receiving a scanty schooling, he was apprenticed to a hat-maker, hut was later enabled to study philosophy at Erfurt and Wittenberg and in 1771 became teacher in a school at Dessau. While on a tour through Italy in 1786 he became acquainted with Goethe, who interested bimself in him. On his return, he was appointed professor of archaeology and aesthetics, at the academy of art in Berlin, and in this city he died on the 26th of June 1793. Of Aforitz's writings on aesthetic, archaeological and philosophical subjects, the little treatise Uber die bildende Nachahmung des Schénen (1788; reprinted 1888) and Die Goflerlehre (179r; 10th ed., 1855, a reprint in Reclam's Universalbibliohek, 1878) are Important; interesting, 100, are the accounts of his travels, Reisen eines Dextschen ite England (1788; repr. 1903; also trans. into Eng.) and Reisen eines Deutsehen in Italien (3 vols., 1792-1793). As an author he is best known by his two novels, Anton Reiser (1785-1790; new ed. hy L. Geiger, 1886) and Andreas Harknopf (1786), which are mainly autobiographical.

See K. F. Klischnig. Erinnerungen aus den zehn letuen Lebensjahren meines Freundes Anlon Reiser (1794); Varnhagen von Ense, Denkwurdigkeiten, vol. iv. (1838); and M. Dessoir, Karl Philipp Horis als Aesthetiker (1889).

MORLAIX, 2 town of western France, capital of an arrondissement in the department of Finistère, 37 m . E.N.E. of Brest on the railway to Rennes. Pop. (1906), $\mathbf{1 3 , 8 7 5 \text { . Moriaix lies }}$ between 4 and 5 m . from the English Channel in a narrow valley where two small streams unite to form the Dossen, the channel of which forms its port. Below the town the river widens into an estuary, the mouth of which is commanded by an old fortress, the Chateau du Taureau, built in 1542 to protect the town agaimst the English. The railivay from Paris to Brest crosses the valley on a striking two-storeyed viaduct some 200 ft . above the quays. Morlaix contains a considerable number of wooden bouses of the $15 \mathrm{~h}, 16 \mathrm{~h}$ and 17 th centuries. These have large covered courts, with huge open fircpiaces and carved wooden staircases, supported on pillars, leading from the court to the upper storeys.

Morlaix has a sub-prefecture, tsibunals of first instance and of commerce, a chamber of commerce, and colleges for boys and girls. The industries include the manufacture of tobacco occupying about 900 hands, tanning, brewing and the manufacture of casks, wooden shoes and candles; there is an active trade in grain, butter, oil-seeds, vegetables, leather, wax, honey and in horses and other livestock, which are exported by eea. The port, consisting of an outer tidal harbour and an inner basin, admits vessels drawing 17 ft . at spring tides and 12 ft . at neap tides.
Judging by the numerous coins found on the spot, the site of Morlaix was prohahly occupied in the time of the Romans. The counts of Leon held the lordship in the 12 th century, but the dukes of Brittany disputed possession with them, and in 1187 Henry II. of England, guardian of Arthur of Brittany, made himself master of the town afier a siege of several weeks. During the Hundred Years' War Morlaix was held by the French and the English in turn, and pillaged by the latter in 1523 . Qween

Mary of Scots, on ber way to be married to the dauphim, made solemn entry into Morlaix in 1548 . The town having joined the League, the castle was taken by storm in the name of Henry IV. in 1594.
MORLAND, OTARGE ($1763-1804$), English painter of animals and rustic scenes, was borm in London on the $26 t h$ of June 1763 . His granafiather, George H. Morland, was a subject painter, three of whose popular pictures were engraved by Watson and Dawe in r769. The son, H. R. Morland, father of George, was also an artist and engraver, and picture restorer, at one time a rich man, but later in redaced circumstances. His pictures of laundry-maids especially were very popular in their time, and were reproduced in mezzotint. They represented ladies of some importance who desired to be painted, according to the lashion of the day, engaged in domestic work. Morland's mother was a Frenchwoman, who possessed a smah independent property of her own; she is believed to have been the Maria Moriand who exblbited twice at the Royal Academy in 1785 and 1786 , altbough some writers have stated that Maria Morland was not the mother, but one of the sisters of George Morland.
At a very early age Morland produced sketches of remarkable promise, exhibiting some at the Royal Academy in 1773, when he was hut ten years old, and continuing to exhibit at the Frec Society in 1775 and 1776, and at the Society of Artists in 1777, and then sending again to the Royal Academy in 1778, $x 779$ and r780. His very earilest work, however, was produced even before that tender age, as bis father kept a drawing which the boy had executed when be was but four years old, representing a coach and horses and two footmen. He was a student at the Royal Academy in cariy youth, but only for a very short time. From the age of fourtecn he was apprenticed to his father for sevea years, and by means of his talent appears to have kept the family together. He had opportunities at this time of sccing some of the greatest artists of the day, and works hy old masters, hut even then a strange repugnance for educated society showed itself, and no persuasion, for example, could ever allure him within reach of the Angerstein gailery, where he would have been a welcome visitor. Before his apprenticeship came to an end, Romney offered to take Morland into his studio for three years, with a salary of f_{300} a year, but the offer was rejected, and as soon as his freedom came, he left his duli, respectahle home, with its over-strict discipline, and began a career of reckless prodigality which has hardiy a parallel in art biography. In 1785 he was in France, whither his fame had preceded him, and where he had no lack of commissions, and in the following year he married Anne, the sister of William Ward, the engraver, and settled down in High Street, Marylebone.

Mrs Morland was a beautiful and virtuous woman, and throughout the whole of her husband's profligate career was decply attached to him. It was at this time that he painted the six pictures known as the Laetitia series, engraved by J. R. Smith, ead, just preceding his marriage, four other didactic works, "Tbe Idle and the Industrious Mechanic" and "The Idle Laundress and the Industrious Cettager," engraved by Blake, had been produced by him. Shortly after his marriage Morland resided at Pleasant Passage, Hampstead Road, and at that time his repatation was rapidly increasing, while as he was the sole vendor of his own productions, his expenditure, although very extravagant, was not beyond his income. Soon, however, he moved to Warren Piace, and there, although he was making a thousand a ycar by hia pictures, he lived at such an expensive rate that he began the series of financial dificulties which finally ruined him. His wild frolics about town, and the prodigal line of conduct upon which he had entered, resulted in a heavy accumulation of debt, but in 1789 he set himself to clear of his encumbrances, and did so in fifteen months. He then removed to Leicester Square, later to Tavistock Row, then to St Martin's Lane, and finally to Paddington, and was at that time at the very height of his reputation.

After moving to a larger housc in Winchester Row, his financial position became so embarrassed that he had to fiy from his creditors into Leicestershire, where he indulged to the full his
dellght in znimal life. After a year, however, he returned to London and settled in Charlotte Street, when his difficulties increased, and time after time he had to obtain letters of licence, in order to avoid being arrested by his creditors. At last, however, he had to cross the water, and change his place of abode from time to time, keeping it as sccret as possible, and we hear of him at Lambeth, at East Sheen, in the Minories, Kentish Town, Soho, Newington, Kennington Green and Hackney, while he had numerous adventures in eluding the attention of those who desired to capture him.
In 1799 he escaped to the Isle of Wight, and settled down for some time at Yarmouth, but returned to London at the end of the year, was arrested and sent to King's Bench prison, where he lived within the rules, occupying a small furnished house in St George's Fieids, but keeping his exact residence a secret. In 1802 he was liberated, hat in 1803 had to place himself in the custody of the Marshalsea, in order to avoid his creditors. Afterwards he visited Brfghton and other places, and by his riotous living brought himself to such a state of health that fits of an apoplectic nature became frequent, and he was for a time paralysed. On the 19 th of October 1804 be was arrested hy a publican and conveyed to a sponging-house, where, in attempting to make a drawing which could be sold in discharge of the debt, he was seized with a fit which proved the beginning of brain fevcr. He died on the 29 th of the same month. His wife survived him only three days, the news of his death bringing on convulsive fits from which she died on the 2nd of November. Their remains were interred together in the burying-place of St James's Chapel.

The finest of his pictures were executed between 5790 and 1794 , and amongst them his picture of the inside of a stable, in the National Gallery, may be reckoncd as a masterpicce. His works deal with scenes in rustic and homely life, depicted with purity and simplicity, and show much direct and instinctive fecting for nature. His colouring is mellow, rich in tone, and vibrant in quality, hut, with all their charm, his works reveal often signs of the haste with which they were painted and the carelessness with which they were drawn. He had a supreme power of observation and great exccutive skill, and he was able to sclect the vital constituents of a scene and depict even the least interesting of subjects with artistic grace and brilliant representation. His pictures are never crowded; the figures in them remarkably well composed, often so cleveriy grouped as to conceal any inaccuracies of drawing, and to produce the effect of a very successful composition. As a painter of English scenes he takes the very highest position, and his work is marked by a spirit and a dash, always combined with broad, harmonious colouring. Many of his best works have been well rendered in mezzolint by J. R. Smith, W. Ward, P. Dawe, G. Keating, S.W. Reynoids and other engravers. He exhibited regularly at the Royal Academy from 1784 down to 1804, but few of his academy pictures can be identified owing to the inadequate description of them afforded by their titks.

Four biographies of him appeared shortiy after his death, written by W. Collios (1805), F. W. Blagdon (1806), J. Hassell (1806) and George Dawe (1807). Later biographies are those by Ralph Richardson (1895), J. T. Nettleship (1898) and G. C. Wittiamson (1904 and 1907).
(G. C. W.)

MORLANWELZh, a town of Belgium in the provibce of Hainaut, 15 m . E. of Mons. It lies in the centre of the coal-mines district and has extensive foundries and ironworks. Pop. (1904), 8200 .

MORLEY, BARONS AND RARLS OR.-In 1299 William de Mortey of Morley in Norfolk was summoned to partiameot as a beron, and his son Robert (d. 1360) was a celebrated warrior, being largely responsibie for the English victory at Sluys and Gghting at Cregy. His descendant Robert, the 6th baron (d. 1443), had no sons, but he left a daughter Alianore, who married William Lovel (d. 1476), and Lovel was summoned to parliament as Lord Morley, ranking as the 7th holder of the title. He left a son Henry; who was killed in 1489, and Henry's hcir was his sister Alice, the wife of Sir William Parker (d. $5 \$ 10$), hereditary marshal of Ireland. Their son Henry Parker (1476-1556) became the 10th baron, as he was summoned to the House of

Lords as Lond Morley in 1533. He was a man of Literary attainments and translated some of the writings of Plutarch, Boccaccio, Petrarch, Senecs, Cicero and others into English. Most of these are only found in manuscript, but his Tryumphes of Frauscan Patrarche was puhlished a second time in 1887. His eldest son Henry (d. 1553) died during his father's lifetime, leaving a son Henry (d. 1577) wbo became 11th Baron Morley on his grandfather's death. His son Edward (d. 1618), one of the judges of Mary Queen of Scots, succeeded to the barony; and Edward's son and successor was William Parker, 4th Lord Monteagle (g.v.). The barony of Morley remoined united with that of Monteagle until the death of William's grandson Thomas about 1686, when it fell into abeyance.

John Parker, ist earl of Morley (1772-1840), only son of John Parker ($1735-1788$), who was created Baron Boringdon in 1784 . but was no relation of the previous barons Morley, was a prominent supporter of Pitt and of Canning. In 1815 he was created earl of Morlcy. He was a public benefactor to Plymouth and its neighbourhood. He was succeeded by his son Edmund Henry Parker (1810-1864), whose son, Albert Edmund, the 3rd earl (1843-1905), was chairman of committees in the House of Lords from 1889 to 1905 , after having been under-secretary for war and first commissioner of works. In 1905 his son, Edmund Robert (b. 1877), became 4th earl.
MORLEY, GEORGE ($\mathrm{I}_{597-1684 \text {), English bishop, was born }}$ in London and educated at Westminster and Oxford. In 1640 he was presented to the sinecure living of Hartfield, Sussex, and in the following year he was made canon of Christ Church and exchanged to the rectory of Mildenhall, Wiltshire. He preached before the Commons in 1642 , but his sermon gave offence, and when in 1647 he took a prominent part in resisting the parliamentary visitation of Oxford University he was deprived of his canonry and living. Leavlng England he joined the court of Charles II., and became one of the leading clergy at The Hague. Shortly before the Restoration he came to England on a highty successful mission to gain for Charles the support of the Presbyterians. In 1660 he regained hls canonry, and soon became dean of Christ Church. In the same year be was consecrated bishop of Worcester. At the Savoy conference of 1661 he was chief representative of the bishops. He was translated to the sec of Winchester in 1662. His works are few and chiefly polemical, e.g. The Bishop of Worcaster's Letter to a friend for Vindication of himself from the Calumnies of Mr Richard Baxter (London, 1662).

MORLEY, HEARY (1822-1894), British man of letters, was born in London on the 15 th of September 1822. After unhappy experiences at English schools, he was sent to the Moravian school at Neuwied, whose system strongly influcnced his subsequent theories of education. It was intended that he should follow his father's profession of medicine, and in 1844 he bought a share in a practice at Madeley, Shropshire. Plunged into deht by his partner's dishonesty, he set up a small school for young children at Liscard, near Liverpool. His principle was to abolish all punishment, to make his pupils regard their work as interesting instead of repellent, and to form their character by appealing exclusively to higher motives. This scheme, carried out with much ingenuity, proved a complete success. Meanwhile he had devoted his spare time to writing. His contributions to magazines attracted the notice of Charles Dickens, on whose invitation in 1851 he settled in London as a regular contributor to Housekold Words. He was also on the staff of the Examiner, which he edited from 186r to 1867. Meanwhile he had devoted much research to a life of Palissy the Polter (1852), which was at the same time a picture of life in medieval France. Encouraged by its favourable reception, he followed it up with lives of Jerome Cardan (1854) and Corthelius Agrippa (1856), and subsequently of Clemext Maral ($\mathbf{8 7} 70$). His dramatic criticisms were reprinted in 1866 under the tille of The Journal of a Loadon Playgoer, 1851-r806. In 1857 he was appointed evening lecturer in English literature at King's College, and in 1865 became, in succession to David Masson, professor of English literature at Univeraity Collage, London. His First Sketch of English Livera-
(nre (1873), a comprehensive and useful manual, reached its 34th thousand during the author's lifetime. He published in 1864 the first volume of a monumental history of English literature entitled English Writers, which he eventuelly carried in eleven volumes down to the death of Shakespeare. He wes indefatigable as a popularizer of good literature. After editing a standard text of Addison's Spectatar, he brought out a vast number of classics at low prices in Morley's Univensal Library, Cassell's National Library, and the Carisbrooke Library. His ready speech, retentive memory, earnest purpose, and hright style made him perhaps the most popular lecturer of his day. His teaching work at University College was marked by equally extroordinary success. In 1882 he accepted a post that made great calls on his time and energy-the principalship of University Hall. This institution was partly a place of residence for students of University College, and partly the home of Manchester New College. During this time he rendered further services to the cause of education in London not only by his work on the council of University College, but by his advocacy of a teaching university for London. In 1889 he resigned the principalship of University Hall and his professorship at University College, and retired to Carisbrooke, isle of Wight, intending to devote his leisure to the completion of the great task of his life, English Writers. But with his work oniy half achieved be died on the 14th of May 1894.
morley [of Blackburn], johf morley. Viscount (1838-), English statesman and author, was born at Blackburn on the 24 th of December 1838, being the son of Jonatban Moriey, surgeon. He matriculated at Lincoln College, Oxiord, in 1856, and after taking his degree in 1859 came up to London with the determination of seeking distinction hy literature. He almost immediately became editor of the moribund Literary Gaselte, which not all his ability could preserve from extinction. Gradually, however, he became known as a philosopher and a Radical, and as one of the ablest and most incisive contributors to the literary and political press of the day. His sympathies as a thinker seem to have been at this time chicfly with Positivism, though he never embraced Comte's doctrine in its hierarchical aspects; but be acquired a reputation as an agnostic, which became confirmed in the popular mind when be somewhat aggressively spelt God in one of his essays with a small "g." In 1868 he was editor for a short time of the daily \mathcal{M} orning Slor, which came to an end in 1870 . In 1867 he succeeded G. H. Lewes in the editorship of the Fortrighlly Review, which he conducted with hrifliant success until 1883 , when he was elected to parliament; he then assumed in exchange, but not for long, the lighter duties of the editorship of Macmillan's Magazine. He had been connected with Messrs Macmillan since the commencement under his editorship, in 1878, of the "Englisin Men of Letters" series, a collection of biographies of various merit. in which nothing is better than the editor's own contribution in his Life of Edmund Burke, itself an extension of his article in the 9 th edition of this encyclopaedia (1876). Since 1880 he had also been editor of the Pall Mall Gazelle, which had been turned into a Liberal paper (see Newspapers).

In r883 Mr Morley, who had twice unsuccessfully attempted to enter parliament, was returned for Newcastle-upon-Tyne at a by-election. The prestige thus acquired led to his presiding over a great Liberal congress at Leeds in the same year; and, although the platform never seemed his natural element, the literary finish of his style and the transparent honesty of bis reasoning rapidly gained him a prominent position in the House of Commons. When, in February 1886, Mr Gladstone returned to office as a Home Ruler, Mr Morley, who had never before held any public appointment, filled one of the most important posts in the cabinet as secretary for Ireland. He had always expressed his sympathy with the Irish Nationalist movement. He had no opinions to recant, no pledges to explain away. He is credited with an especial influence over Mr Gladstone in the matter of Home Rule, and in particular with having kept him steady in the Bill of 1886 to his original purpose of entirely separating the Irish from the British legistature, a provision which pressure
from their own perty afterwards compelled both of them to abandon. After the severe defeat of the Gladstonian party at the general election of $\mathbf{3 8 8 6}, \mathrm{Mr}$ Morley led a life divided between politics and letters until Mr Gladstone's return to power in 1892, when he resumed his former office. He had been re-elected for Newcastle in circumstances entirely honourable to himself, a determined attempt having been made to exclude him in consequence of his resistance 10 an Eight Hours' Labour Bill, of which be disapproved as an undue interference in principle with the rights of adult labour. His constituents showed their appreciation of his integrity by returning him with a majority of 8739; but the resistance to his views on the labour question went on in his constituency, and was assisted by Joseph Cowen's persistent campaign in the principal Newcastle newspaper against the general lines of Mr Morley's somewhat doctrinaire and antiImperialistic views on politics. The result was that at the election of 1895 he lost his seat, hut soon found another in Scolland, for the Montrose Burghs. He had during the interval taken a leading part in parliament, but his tenure of the chief secretaryship of Ireland was hardly a success. The Irish gentry, of course, made things as difficult for him as possible, and the path of an avowed Home Ruler installed in office at Dublin Castle was beset with pitfalls. In the intestine disputes which agitated the Liberal party during Lord Rosebery's administration, and afterwards, Mr Morley sided with Sir William Harcourt, and was the recipient and practically co-signatory of his letter resigning the Liberal leadership in December 1898.
Mr Morley's activities were now again turned to hiterature, the political views most characteristic of him, on the Boer war in particular, being practically swamped by the overwhelming predominance of Unionism and Imperialism. His occasional specches, however, denouncing the Government policy towards the Boers and towards the war, though not representing the popular side, always elicited a respectful hearing, if only for the eloquence of their language and the undoubted sincerity of the speaker. As a man of ietters his work was practically concluded at this period, and may briefly be characterized. His position as a leading English writer had carly been determined by his monographs on Voltaire (1872), Rousseau (1873), Diderot and the Encyclopaedists (1878), Burke (1879), and Walpole (1889). Burke as the champion of sound policy in America and (as Mr Morley deems) of justice in India, Walpole as the pacific minister understanding the true interests of his country, fired his imagination. His Life of Oliver Cromwell (1900) revises Gardiner as Gardiner revised Carlyle. The Life of Cobden (1881) is an able defence of that statesman's views rather than a critical biography or a real picture of the period. Mr Morley's contributions to political journalism and to literary, ethical and phllosophical criticism were numerous and valuahle. They show great individuality of character, and recall the personality of John Stuart Mill, with whose mode of thought he had many affinities. As in letters, so in politics. A philosophical Radical of a somewhat mid-igthcentury type, and highly suspicious of the later opportunistic reaction (in all its forms) against Cobdenfte principles, he yet retained the respect of the majority whom it was his usual fate to find against bim in English politics by the indomitable consistency of his principles and by sheer force of character and honesty of conviction and utterance.
After the death of Mr Gladstone Mr Morley was principally engaged upon his biography, until it was published in 1903. Representing as it does so competent a writer's sifting of a mass of material, the Life of Gladstone was a masterly account of the career of the great Liberal statesman; traces of Liberal bias were incvitable hut are rarely manifest; and in spite of the a priori unlikelihood of a full appreciation of Mr Cladstone's powerful religious interests from such a quarter, the whole treatment is characterized by sympathy and judgment. Among the coronation honours of 1902, Mr Morlcy was nominated an original member of the new Order of Merit; and in July 1902 he was presented by Mr Carnegic with the late Lord Acton's valuable llbrary, which, on the zoth of October, he in turn gave to the university of Cambridge.

When Sir Heary Campbell-Bannerman formed his cabinet at the end of igos he was made secretary of state for India. In this position be was conspicuous in May 1907 and afterwards for his firmness in sanctioning extreme measures for dealing with the outbreat in India of alarming symptoms of sedition. Though be was bitterly attacked by some of the more extreme members of the Radical party, on the ground of belying his democratic principles in dealing with India, his action was generally recognized as combining statesmanship with patience; and, though uncompromising in his attitude towards revolutionary propagands, be showed his popular sympathies by appointing two distinguished native Indians to the council, and taking steps for a decentralization of the administrative government. When Sit Henry Campbell-Bannerman resigned in 1008 and Mr Asquith became prime minister, Mr Morley retained his post in the new cabinet; but it was thought advisable to relieve him of the burden imposed by a seat in the House of Commons, and he was transferred to the upper house, being created a peer with the title of Viscount Morley of Blackburn. His subsequent carcer at the India office will always be associated with his extensive remodelling (1908-1909) of the system of government in India so as to introduce more fully the representative element (see India). Whatever might be the outcome of this crucial reform, the preparation and execution of Lord Morley's scheme were carried through by him with a statesmanlike and philosophic detachment, and in a spirit of balanced reason, which earned for him the increased respect of all parties in the state.
(H. Cr.)

MORLEY, SAMUEL (1800-1886), English manufacturer and politician, was born at Homerton, not then a part of London, on the 15th of October 1809, the youngest son of a Nottingham hosier. His father, John, and his uncle, Richard, were the founders of the already prosperous Nottingham firm of I. \& R. Morley, dealers in hosiery made in the cottages of the local knitters, and as early as 1797 they had opened a London warebouse, in the counting-room of which Samuel Morlcy began his career at sixteen. On his father's retirement in 1840 he became practical head of the London concern, and when his brothers retired in 1855 sole owner. In 1860 be was sole owner also of the Nottingham business. Under excellent management the husiness grew rapidly into the largest of the kind in the word, with huge mills at Nottingham and in Leicestershire and Derbyshire employing thousands of hands. In 1865 Morley was elected M.P. for Nottingham, and from $1868-1885$ he sat for one of the Bristol divisions. He was a strong Liberal and a whole-hearted supporter of Gladstone, who in 1885 offered him a peerage. He was one of the principal proprictors of the London Daily News, the chjef Liberal organ of the period, and it was owing to him that its price was reduced from 3d. to rd. and its losses turned to great gains. Morley was a deeply religious man. Like his father before him, he was a Dissenter, and for many years be strongly opposed every scheme of state interference with education. He was keenly interested in the temperance movement, and during the closing years of his life his public energies were chieffy confined to its promotion. His philanthropy was active, his charity widespread and munificent, and he was a model employer. He died on the 5 th of September 1886. His son, Arnold Morley (b. 1849), was Liberal M.P. for Nottingham from 1880-1885; and for East Nottingham from 1885-1895. From 1886-1892 he was chief Liberal whip, and from 1892-1895 post master-general.
See Edwin Hodder, Life of Samxed Morley (ı887); Frederic M. Thomas, 1. \& R. Horley: a Record of a Hundred Years (1900).

MORLEY, THOMAS (1557-1603), English musical composer, was born in 1557, as may be gathered from the date of his motet, "Domine non est," composed "aetatis suae 19 anno domini 1576," and preserved in Sadler's Part-Books (Bodieian Library). He was a pupil of William Byrd, hut nothing is known as to his origin and very little as to the incidents of his career. In the account of the entertainments given at Elvetham by the earl of Hertford in 159 i in honour of Queen Elizabeth, it is stated that there was "a notable consort of six Musitions," whose music so Ipleased the queen " that in grace and favour thereof, she gave
a newe name unto one of their Pavans, made long since by Master Thomas Morley, then Organist of Paules Church." This statement, however, lacks corroboration, and if Moriey ever held the post he must have done so for a very short time. On the 5th of July 1588 he was admitted Mus. Bac. at Oxford. Four years later (July 24, 1592) he entered the Chapel Royal. where be successively filled the offices of epistler and gospeller. From the dedication to his first book of canzonets it seems that in t 595 Morley was married. His wife's Christian name was Margaret, and before her marriage she apparently held some post in the household of Lady Periam, wife of the lord chief baron of the exchequer. On the inth of September 1598 Morley received a licence for twenty-one years to print ruled music-paper and song-books in English, Latin, French or Italian. His rights under this grant were assigned by him to various publishers. In Burgon's Life of Gresham it is stated (ii. 465) that the registers of St Helen's, Bishopsgate, show that Morley lived in that parish. This is inaccurate, and there is noproof that the family of the same name residing in St Helen's between 1594 and 1600 was related to the composer. In the preface to his Plaine and Easie Introduction to Practicall Musicke (1597), Morley gives as one of his reasons for undertaking that work that he led a solitary life, "being compellcd to keepe at home," presumably owing to ill health. On the 7 th of October 1602 his place in the Chapel Royal was filled up, and on the 25th of October 1603 administration of his goods was granted to his widow. This document (Acl Book, 1603, fol. 171) describes him as "late parishioner of St Botolph's dear Billingsgate," but the regiaters of that parish contain no entries relating 20 him . Morley was incontestably one of the greatest of the secular Elizabethan composers. His madrigals, canzonets and ballets are as remark. able for their beauty as they are for their admirable workminship, and his Introduction to Practicall Musicke, in spite of its frequent obscurity, is an invaluable source of information as to the state of musical science in England at the end of the 162 h century. His works are: (1) Canzonets to Three Voices (1593 ; and ed., 1608; 3rd ed., 1631 ; Ger. trans. : Cassel, 1612, and Rostock, 1624); (2) Madrigals to Four Voices (1594; and ed., 1600); (3) Firsl Bood of Ballets to Five Voices (1595; an Ital. ed. appeared in London in the same year; and ed., 1600 ; Ger. ed., Nuremberg, 1609); (4) First Book of Canxonets to Two Voices (is95; and ed., 16:9); (5) Canzonets or Short Lillte Songs to Four Voices, selected out of Italian Authors (1597); (6) Cansontets to Five and Six Voices (1597); (7) A Plaine and Easic Introduction to Practicall Musicke (1597; 2nd ed., 1608 ; 3rd ed., 1771); (7) Madrigals to Five Voices, sclected out of Ilalian Authors (5508); (8) The First Book of Consort Lessons, made by divers authors, \&c. (rs99; and ed., rori); (9) The First Book of Airs to Sing and Play to the Lute with the Base Vial (1600); (ro) The Triumphs of Oriana to Five and Six Voices, composed by divers several authors (i6or). Besides the above, services, anthems, motets and virginal pieces by Morley are to be found in various collections, both printed and manuscript.
(W. B. S. ${ }^{*}$)

MORLEY, a municipal borough in the Morley parliamentary division of the West Riding of Yorkshire, England, 4 m . S.S.W. of Leeds, on the Great Northern and London \& North-Western railways. Pop. (igot), 23,636. The town-hall was opened in 1895; and a park, for which the ground was presented by Lord Dartmouth, in 1890 . The chief industries are connected with woollen cloth, machinery for the treatment of wool, coal and stone. The borough, incorporated in 1885 , is under a mayor, 7 aldermen and 21 councillors. Area, 3385 acres. In the neighbourhood are ruins of a mansion, Howley Hall, dating from 1590, which, garrisoned for the partiament, sustained a heavy siege from the royalists during the Civil War.

MORMAOR, or MorvaEr (from (wo Gaelic words mor, great, and maor, a steward or bailif), a title used to designate the rulers of the seven provinces into which Celtic Scolland, i.e. the part of the country north of the Forth and the Clyde, was divided. These seven mormaorships, or original "carldoms" of Scotland, as they were afterwards called, were: Angus, Athole with

Gowry, Caithoess with Sutherland. Fife. Mar with Buchan, Moray with Ross, and Stratherne with Menteith.

MORMONS, the common name given to the Church of Jesus Christ of Latter-Day Saints, a religious sect founded by Joseph Smith, jun., at Manchester, New York, in 1830, and aince 1848 largely concentrated about Salt Lake City, Utah. Smith was born on the 23rd of December 1805° st Sharon, Windsor county, Vermant, from which place in 1815 or 1816 his parents, who like his grandparents were superstitious, neurolic, seers of visions, and believers in miraculous cures and in heavenly voices and direct revelation, removed to New York, where they settled on a small farm near Palmyra, Wayne county (then Ontario). In 18 rg they removed to Manchester, in what is still Oatario county, about 6 m . from Palmyra. In Manchester Joseph, a goodnatured, lazy boy, suffering from a bad heredity phywically and paychically, began to bave visions which seem to have accompanied epileptoid seizures (his mother's father had falling fis), from which he recovered apparently before be became of age. The boy's father was a digger tor hidden treasure and used a divining rod to find proper places to dig wells, and about this time the son became a crystal gazer and by the use of a " peepstone " discovered the whereabouts of pretended hidden treasore. He said (in 1838) that on the night of the 21st of September 1823 the angel Moroni appeared to him three times, and told him that the Bible of the western continent, the supplement to the New Testament, was buried on a hill called Cumorah, now commonly known as Mormon Hill. It seems almost certain that he told other and earlier stories of how he came to find the gold plates, and it is possible that before this time there was a story current in Canada of the recovery of a "Gold Bible." It was not until the a2nd of September 1827 that (as he said) he dug up, on the bill near Manchester, a slone box, in which was a volume, 6 in. thick, made of thin gold plates 8 in . by 7 in ., and lastened together by three gold rings. The plates were covered with small writing in characters which, it was said, Prolessor Charles Anthon ${ }^{1}$ declared were in the "reformed Egyptian tongue "; with the golden book Smith claimed that he found a breastplate of gold and a pair of supernatural spectacles, consisting of two crystals set in a silver bow, and called "Urim and Thummim"; by aid of these the mystic characters could be read. Being himself unable to read or write fluently. Smith employed as amanuenses: first Martin Harris (1793-1875); then his own wife, Emma; after the middle of April 1829, Oliver Cowdery, a blacksmith and school teacher; and David Whitmer (1805-1888); to them, from behind a curtain, he dictated a translation, for the printing and publishing of which Martin Harris paid, in spite of the continued opposition of his wife to the scheme. An edition of 5000 copies of The Book of Mormon ${ }^{2}$ was printed early in 1830 in the printing office of the Woyne Sentinel at Palmyra. It was accompanied by "The Testimony of the Three Witnesses," a sworn statement of Oliver Cowdery, David Whitmer and Martin Harris that an angel of God had shown them the plates of which the book was a translation, and by "The Testimony of the Eight Witnesses." four of them Whitmers and three of them Smiths (Joseph's father and his brothers Hyrum and Samucl). Soon afterwards, according to Smith, the plates disappeared, being taken a way by the angel MIoroni.

The Book of Mormon, in which Joseph Smith was declared to be God's "propbet," with all power and entitled to all obedience,
${ }^{1}$ Martin Harris took a copy in Smith's hand of certain " caractors" (so Smith spelled it) to Dr Anthon, who at first thought it "a hoax upon the learned," hut, after hearing the story of the diamond spectacles and that Harris had been asked to pay for the publication of the book, caid that it was a fraud on Harris. He recognized the miscellaneous and haphazard nature of the "carac tors, of which facsimiles are given by Riley, p. 81, and Linn, p. 40 Riley thinks that the "caractors" were automatic writing. and that "unconscious cerebration played a large part in the evolvias of the sold plate scheme."
"More than a dozen years afterwards Smith, when asked if "Mormon" was not connected with the Greek word for "hobgoblin" ("Mormo" is thus used in t7th-century English), explained that it meant " more good," from the "Egyptian mon," " with the addition of mert, or the contraction mer."
professes to give the history of America from its first settlement by a colony of "Jaredites" from among the crowd dispersed by the confusion of tongues at the Tower of Babel down to the year 5 A.D. These settlers in course of time destroyed one another. In 600 b.c. Lehi, his wife, and four sons, with ten riends, all from Jerusalem, landed on the coast of Chile. Upon the death of Lehi, the divine appointment to the leadership of Nephi, the youngest son, roused the resentment of his elder brothers, who were in consequence condemned to have dark skins and to be an idle, mischievous race, the "Lamanites" or North-American Indians. Between the Nephites and the bad Hebrews a fierce war was maintained for centuries, until finally, in spite of divine intervention in the person of the risen Christ, who here founded a Church with the same organization "as was enjoyed on the Eastern Continent," the Nephites fell away from the true laith, and in 384 A.D. were nearly annihilated in a battle at the hill of Cumorah, in Ontario county, New York. Among the handful that escaped were Mormon and his son Moroni, the former of whom collected the sixteen books of records, kept by successive kings and priests; into one volume, which on his death was supplemented by his son with some personal reminiscences and by him buried in the hill of Cumorah, where be was divinely assured that the book would one day be discovered by God's chosen prophet. This is Smith's account of the book: it was a contention of the early anti-Mormons, now however discredited, that The Book of Mormon as published by Smith was rewritten with few changes from an unpublished romance, The Maxuscriph Found, written before 1812 by Solomon Spaulding ${ }^{1}(1761-1816)$, a minister and iron-founder who had become greatly interested in the prehistoric mounds of Ohio and wrote a romance to explain their origin and the Hebrew origin of the North-American Iadians. The style of the book is poor; the speeches of primitive Indian chiefs are filled with the phraseology of the roth-century campmeeting; there are long extracts from the Westminster Confession, and a speech of Nephi contains a statement of doctrine which corresponds with heretical views held in Smith's own time in the presbytery of Geneva, in which his home lay.

The time was singularly favourable to the founding of a new sect: religious unrest and receptiveness were prevalent; and western New York was the scene of the foundation of various new communities between 1789 , when Jemima Wilkinson founded "Jerusalem" in Yates county, New York, and 1848, when the Fox sisters gave their first spiritualistic manifestations about ten miles from Joseph Smith's home. His book and his claim to divine authority, upheld by frequent revelations, soon drew many followers to Smith. A Church was formally organized on the 6th of April 1830 at Fayette, Seneca county, New York; and in June a conference of about thirty members met at Fayette. Smith and Cowdery had previousiy (May, 1829) baptized each other, in aileged accordance with the instruction of John the Baptist, who had ordained them, conferring "the priesthood of Aaron"; while Peter, James and John afterwards made them priests of "the order of Melchisedec."
${ }^{1}$ It was supposed that Sidney Rigdon had been a compositor in a Pittsburg printing-office, that he had stolen Spaulding's manuscript from this office, or had made a surreptitious copy of it, and that be entered into a plot with Smith to use thls material for a new Bible. In support of this are vague storics of a mysterious visitor to Smith at the time he was making his translation; and the argument that Smith did not, and Rigdon did, know enough to get the book in ahape. But there is no actual proof that Rigdon lived in Pittsburg or wasemployed in a printer's shop there as early as when Spauldings. "copy" must have been left with the printer; and there is no evidence that Rigdon knew anything of Mormonism until after the publication of The Book of Mormon. The discovery by Prolessor f. H. Fairchild, in 1884 , in Honolulu of a manuscript romance by Spaulding (now in the library of Oberlin College, Ohio), which did not agree at all in atyle or matter with The Book of Hormon, does not entirely settle the matter, as this romance is so different in charscter from the story read by Spauiding to some of his friends in 1811-1812, that if it was really Spaulding's. It must have boen a later work than The Mamuscript Found. Even, however, if it be true that Smith used Spaulding's story, his own additions to it must have been barge, for parte of the Bonk seem autobiographlc. and one incident seems to be based on the anti-Masonic exritement prevalent in New York state after the disappearance of William Moryan in $1826-$ ten yeare after the death of Solomon Spaulding.

In October 3830 Smith sent out Pariey Parker Pratt (18071857), Oliver Cowdery, Ziba Peterson, and. Peter Whitmer, jun.; as missionaries. One of their first converts, in Mentor, Lake county, Ohio, was Sidney Rigdon (1 793-1876), whom Pratt had formerly known, who had preached as a Baptist in 1819-1828-a part of this time in Pittsburg-who had then joined Alexander Campbell and Walter Scott in establishing the Disciples of Christ, and who was pastor of a church in Mentor. Rigdon was baptized, became a Mormon leader, and, after a " revelation " of December 1830, made a new translation of the Bible, in which prophecies of the coming of Joseph Smith and the nature of The Book of Mormon are inserted in the soth chapter of Genesis and the 2oth chapter of Isaiah respectively. This translation was not puhlished until 1866 and is not in use in the Mormon churches. In January 1831 Smith, who had been "persecuted" in his New York home, where several lawsuits, all unsuccessful, had been hrought against him, accompanied Rigdon to Ohio, where at Kirtland (a few miles south-west of Mentor), Lake county, Ohio, the preaching of the new sect was very successful, partly because Pralt and Rigdon were so well known to the Disciples in northeastern Ohio. Smith at this time seems to have intended to make the New Jerusalem at Kirtland; there he established a general store, a steam saw-mill and a tannery, bought land, platted a great city, and huilt a stone temple, which was consecrated in 1836 . But the church was "persecuted" again, especially by apostates; on the 25 th of March 1832 Smith and Rigdon were tarred and feathered at Hiram, ${ }^{2}$ Portage county, where they were then living. In Fehruary 1834 the Church was fairly organized; already on the 8th of March 1833 Smith, Rigdnn, and Frederíck G. Williams had been styled the first presidency, and were entrusted with the keys of the last kingdom. About this time the licentiousness of Smith might have ied to the dissolution of the Church but for Brigham Young (1801-1877), a Vermont painter and glazier, who was baptized in 1832 and soon afterwards was ordained elder. Young's indomitable will. persuasive eloquence, executive ability, shrewdness and zeal soon made their influence felt, and, when a further step was taken in 1835 towards the organization of a hierarchy by the institution of the quorum of the "twelve apostles,"3 who were sent out as prosclytizing missionaries among the "gentiles," Young was ordained one of the Twelve and despatched to preach throughout the eastern states. In 8836 the Kirt land Safet y Societ y Bank was organized (in accordance with a "revelation" to Smith); as it was unchartered it issued notes under the name of "The Kirtland Safety Socicty anti-Bank-ing Co.'; but in March 1837 Rigdon and Smith, the secretary and treasurer, were charged with violating the state law against unchartered hanks, and they were convicted in Octoher; the society appealed, claiming that it was not a hank but an association, hut in November the " bank "suspended payments and in Jan. 1838 Smith and Rigdon left the state for Missouri. In 1836-1837 there had been a determined attempt to depose Smith and mahe David Whitmer head of the Church; Rigdon and Young successfully opposed this movement, which was backed by Whit mer, Pratt, Williams and Harris. Probably in June 1837 (or in July 1838) there was organized under the leadership of Captain "Fear Not "(David W. Patten) a band called "The Daughter of Zion" (see Mic. iv. 13), the "Big Fan" (Jer. xv. 7), "Brothers of Gideon," and finally "Sons of Dan," or "Danites" (Gen. xlix. 17), buund to secrecy under penalty of death, and formed to punish all who opposed the Church and its supreme head. Numerous crimes and outrages were attributed to them.4 In the winter

[^56]of $\mathrm{IB}_{30-\mathrm{r} 33 \mathrm{i}}$ Pratt, Cowdery and two others had gone as far west as Jackson county, Missouri; in June 183y Rigdon and Smith joined them there near what is now Independence and (in August) bid corner-stones of Zion and of a Mormon temple; thereafter Mormon immigration to Missouri increased rapidly; and in the early pert of 1838 Smith and Rigdon fed to the new settlement called Far West (now Kerr) in Caldwell county, Missouri, which had been made in 1836-1837. Thither many of the saints had taken refuge, having been forcibly driven ${ }^{1}$ from Independence and Big Blue in November and December 1833 , and having been induced to remove from Clay county after staying there in 1833-1836. In Caldwell and Daviess counties Smith's troubles, bowever, continued to increasc. His profligacy bad repelled many of his leading supporters and hred internal dissensions, while from the outside the brethren were harassed and threatened by the steadily growing hostility of the native Missourians. At Far West on the 4th of July 1838 Rigdon preached his "salt sermon" from Matt. v. 13, urging his hearers to wage "a war of extermination" on thpso who disturbed them. To such a height did the conflicts with the "gentiles" grow that they assumed the proportions of a civil war, and necessitated the calling out of the state militia. A company of Danites from Far West put some Missourian militia to fight but lost their own leader Captain Patten; the gentiles then attacked a Mormon settlement at Hawn's Mill (near Far West) and killed in cold hlood about a score of the Mormons. Late in October Far West surrendered to an overwhelming force of militia. Smith and Rigdon with others were arrested and imprisoned on a charge of treason, murder and fclony, and their followers to the number of 35,000 crossed over into Illinois and settled near Commerce, Hancock county. Smith, who succeeded in escaping from custody, had rejoined the Mormons in Illinois, and there they were cordially welcomed, especially by the politicians of both parties, who hoped to secure the Mormon vote in the presidential campaign of 1840 ; and when they founded (on the site of Commerce) the city of Nauvoo, they readily obtained (Dec. 1840) from the state legislature a charter which made the city practically independent of the state government and gave Smith nearly unlimited civil power. He organized a military body called the Nauvoo Legion (also incorporated by the legislature), of which he was commander, being commissioned "lieutenantgeneral" by the governor of Illinois in 1841; Smith allowed Dr_{r} John C. Bennett, an llinois politician and a new convert, to be the city's first mayor. Foundations of a new temple were laid on the 6th of April 184 r and the temple (83 by 128 ft .) was dedicated on the ist of May 1846. The city grew very rapidly; a university of the city of Nauvoo was established, among its professors being Rigdon and Orson Pratt (18ii-1881), a mathematician, who was called "The Gauge of the Law." In 1842 Smith was charged with instigating an attempt, made by O.P. Rockwell, a Mormon of Nauvoo, to assassinate ex-Governor l. W. Boggs of Missouri; it was impossible to hold either Rockwell or Smith after their indictment and arrest, since the Nauvoo municipal court had the power to determine cases of habeas corpus; the influence of Dr Bennett, who had quarrelled with Smith, was not strong enough to outweigh the power of the Mormon vote with the state authorities, and Smith was not hold when in June $\mathbf{8 8 4 3}$ he was arrested on the old charge of treasonable acts committed in Missouri. His downall was brought about in a very different manner.

The Book of Mormon had forbidden polygamy: "There shal not any man bave save it be one wife, and concubines he shall bave none, for I the Lord God delighteth ${ }^{2}$ in the chastity of women. . . . For if I will, saith the Lord of Hosts, rise up seed
 unto these things." The conditional clanse may indicate that Smich from the first had intended to make polygamy a part of the

[^57]creed of the Church. There is some evidence that even in Ohio polygamy had been secretly practised by Smith and less probably by other elders. In Illinois there seems to have been no secret about Smith's cohabiting with other women. On the 12 th of July 1843 he had a revelation expressly establishing and approving polygamy. This revelation was not published officially until 1852, but its purport immediately became known in Nauvoo and aroused great indignation. Dr R. D. Foster, whose wife Smith seems to have coveted, and whom Smith had accused of theft and immorality, William Law and Wilson Law, wealthy Canadian converts, and Sylvester Emmons, a member of thecouncil, established a newspaper the Expositor, which was to work for the repeal of the city charter, " to correct the abuse of the unit power, to advocate disobedience to political revelations"; the first and only number (June 7, 1844) told of Hyrum Smith's reading to the council the "revelation on the eternity of the marriage covenant, including plurality of wives," of Joseph Smith's methods and success in winning spiritual wives, and of the prophet's political amhitions. The city council tried the editors of the Expositor, the Smiths denying the "revelation" on plural marriage, and on the roth of June the Expositor printing office was razed. Foster and the Laws fled to Carthage. There was a general uprising against the Mormons and Smith put Nauvoo under martial law; but his most able lieutenants were absent ${ }^{2}$ the legion surrendered its arms, and Joseph and Hyrum Smith and others were arrested on the charge of treason (June 25, 1844) and were imprisoned at Carthage. On the night of the 27th a mob, with the collusion of the militia guard, broke into the prison and shot the two brothers dead.

Rigdon, the survivor of the first presidency, and Brigham Young, who were absent from Illinois at the time of Smit h's death, were rivals for Smith's place; Young succeeded in having the Council of Twelve, of which he was head, made the supreme authority, and then had Rigdon' tried for threatening treason and "cut off from the Church." Young had still to meet the opposition of Joseph Smith's family, who claimed for his son, Joseph, the right of succession, and for a time supported the claims of James J. Strang ($1813-1856$) of Wisconsin, who had been baptized in February 1844, who told of revelations he had received, who settled with his followers on Beaver Island, Michigan, in 1847, was crowned " King of Zion " there in July 1850, and was killed by some of his followers there in June 1856, when his kingdom broke up. In January 1845 the Nauvoo city charter was repealed; hostility and suspicion against the Mormons increased; there were "burnings" of Mormon property in the outlying country and retaliation by the Nauvoo Legion under a pro-Mormon sheriff; a commission of four members (including Stephen A. Douglas), appointed by the governor, arranged with the Mormon authorities in October 1845 that they should all leave the state next spring. In May and June 1846 most of the Mormons left Nauvoo; in September the cily was cannonaded and it again surrendered to the gentiles.

Five companies of Mormon volunteers joined the force under Colonel Stephen W. Kearny which marched to California in the winter of $1846-1847$; but this was rather in the nature of assistance from the general government, which provided for their western transportation, than a proof of Mormon patriotism. An exploring party under Brigham Young entered (Uuly 24, 1847) the Great Salt Lake valley and chose it as a place for their new city. Young then returned to Winter Quarters, near what is now Florence, Nebraska, and there on the 5th of Deceraber 1847 was chosen president as Smith's successor. Under his leadership, and in accordance with a scheme "revealed" to him and announced in January 1847, the march was organized in a

[^58]masterly way; the main body, for iostance, in its trip across the prairies made flour in a mill built by Young and reaped grain sowed months before by an advance guard. The first migration arrived in Salt Lake City ln September, and the population of the new settlement before the close of 1848 was about 5000 . The city did not prosper, however, during the first few years of its settlement; but in 1849 and 1850 it became a depot and outfiting place for the immigrants to California in the gold excitement. The great improvement of the country under systematic irrigation (here first used on a large acale in the United States) was another factor in the industrial growth of the settlement. As early as 1837 Mormon missionary work had begun in Great Britain, and many foreign converts had immigrated to Ohio, Missouri and Illinois; in December 1847, in a "general epistle" to the Church, Young urged all Mormons in Europe to emigrate as speedily as possible; 120 British saints immigrated in February 1848; a general "emigrating fund" was estahlished in 1849, and the Perpetual Emigration Fund Company was incorporated in 1850; but in 1855 when there were 4425 emigrants, according to the British agency, as a result of an attempt to cut down expenses, proper provision was not made for their transportation from Iowa City, only hand-carts or push-carts being supplied, and one-sixth of a party of 400 died of starvation or exhaustion in a winter march across the plains.
When the Mormons first went west they thought they would escape from the jurisdiction of the United States, hut the treaty of Guadalupe Hidalgo at the close of the Mexican War transferred the region to the United States. In March 1849 a convention at Salt Lake City organized the "State of Deseret," of कhich Brigham Young was elected governor; a general assembly meeting in July sent a delegate to the Federal Congress and asked through Stephen A. Douglas for admission into the Union as a state or as a Territory; and on the gth of September 1850 Utah was admitted as a Territory, of which Young became governor. He forced three non-Mormon district judges to leave the Territory in $\mathbf{8} 851$, and by his open opposition to Lieut.-Colonel Edward Jenner Steptoe, U.S.A.,who was stationed in Salt Lake City in the winter of $1854-1855$ with about 300 soldiers on the way to California, and who was appointed governor of Utah in December 1854, forced Steptoe to decline the nomination. In 1855-1856 actual violence seems to have been offered to Judges George B. Stiles and W. W. Drummond; and about the same time Federal Indian agents in Utah complained that Mommon misslonaries to the Indians were rousing them to hostilities against the United States. The defiant attitude of the Mormon Church towards the United States was thus being continually brought to the notice of the Federal authoritics hy official reports and by officials fugitive from Utah; and at the same time popular sentiment was stirred against Mormonism by constant rumour of violence in Utah against non-Mormons and apostates and by the official pablication, in August 1852, of the "revelation-on the eternity of the marriage covenant, including plarality of wives." In 1853 Young put down autocratically the "Claddenites," followers of Gladden Bishop, who opposed polygamy. In ${ }^{1856}$ the Mormon "Reformation" had begun: its principal factors were an claborate system of confession to missionarics of the Church; the apparent inspiration by the Church of assassination of any suspected of hostility to the Church, of opposition to the ambition of its leaders, or of an intention to escape from Utah and the control of Young; and the doctrine of "blood atonement," which was introduced by Jedediah Morgan Crant ($1817-1856$) and by which the only remission for certain sins was the shedding of the sinner's blood, so that; according to Brigham Young, "cutting people off from the earth . . . is to save them, not to destroy them." Many outrages were committed by a Mormon band of desperadoes who called themselves "Wolf-hunters." Young'a agents doubtless killed William P. Parish of Springville, Utah, early in $\mathbf{1 8 5 7}$, apparently because he was planning to remove to Callfornia; at about the same time a party of six, including two brothers named Aikin, travelling from San Francisco were arreated as spies, were acguittod, and
then were attacked in their camp and murdered, one at least by an assasain who claimed that Young had given him the order; and at Mountain Meadows in Washington county, in the south-western part of Utah, on the intb of September 1857, about 120 immigrants on their way to southern California, having been attacked four dayz before by Indians and Mormons and having made a bold defence, were tricked by a flag of truce carried by Mormons wbo pretended to be a rescuing party, and were killed by armed Mormon troops, ${ }^{1}$ seventeen of the younger children being spered.

In 1857 President Buchanan ${ }^{2}$ appointed Alired Cumming (Lhen superintendent of Indian afiairs on the Upper Missouri) as governor of the Territory in place of Young, and sent 1500 men to Utah under Colonel Albert Sidney Johnston. On the 15 th of September Young issued a proclamation forbidding all armed forces from entering the Territory, calling to arms all forces in the territory, and declaring martial law. On the 5th and 6th of October a band of mounted Mormons under Major Lot Smith captured and burnt three supply-trains of the Federal troops; soon afterwards 800 oxen were cut out from another supply-train and were driven to Salt Lake City. The main body of the Federal troops under Colonal Johnston went into winter quarters in November at Black's Forks, near Fort Bridger. But in the spring of 1858 , through the intervention of Thomas \mathbf{L}. Kane of Pennsylvania, who had probahly been baptized hy Young in 1847 and seems to have been a Mormon agent in the East, and who now received letters of authority from President Buchnnan, the Mormons were induced to make a merely formal submission to Federal authority. Governor Cumming acquiesced in this settlement of affairs, by which the actual victory was with the Saints. A peace commission sent to Utah in the sumpmer of 1858 carried to the Mormons a presidentlal proclamation by which they received pardon for their treason. Practically all the Federal troops were withdrawn from Utah in the summer of 1860; soon afterwards Governor Cumming left the Territory to join the Confederate army. One of his immediate successors, John W. Dawson of Indiana, late in I86I was forced to leave the territory, having been terribly beaten by several Mormons who professed (with apparent truth) to avenge an insult to a woman. In 1862, because the Mormons were suspected of sympathizing with the Confederate States, Colonel P. E. Connor, in command of the military district of Utah (and Nevada), actually marched United States troops into Salt Lake City. Governor Stephen S. Harding, appointed in 1862, proved lems tractable than previous governors; a mass meeting in March 1863 undertook to secure his removal; and in June be and a Federal judge were displaced, possibly by the influence of Young (whom Harding had arrested for polyganay but who was not indicted), through capitalists interested th western mail-express and telograph projects. The Cburch became less hostile to the Federal government toward the ciose of the Civil War, as it became apparent that the Confederacy was to be defeated.

Young made a successtul effort in r868-1869 to asure the industrial and commercial control of Utah: after Colonel Connor established Camp Dougias in the immediate vicinity of Salt Lake
1 There is no positive proof that this masmecre was ordered by the authorities. John Doyle Lee, who was executed in 1877 . for the maseacre, was a prominent Mormon had been "adopted" as a spiritual con of Brigham Young in Nauvoo, was one of the rounders of Provo and other Mormon settlements in southern Utah. a probate judge, afterwards a member of the Territorial legislature, and his atatement implicates the Church. Loe sid that be was escrificed to justice. The only charge against the immigrants scems to have heen that they were from Arkansas, and that all Arkansans had forfeited their lives because it was in Arkansas (near Van Buren) that Parley Parker Pratt, tho Mormon Isaioh, was killed on the 13 th of May 1857 by Hector H. McClean, with whoee wife Prate had eloped. It seems probsble that sentiment was aroused against the Arkansans by false stories of their poisoning wells, burning fences, \&c.
${ }^{2}$ Buchanan's message (Dec. 8, 1857) stating that Young and his followers apparently intended "to come Into collision with the government of the United States " and his sending troope to Utah were considered by his critics as attempts to create an ienve which would overshadow the slavery quention and to draw away from the army an Important force.

City it became increasingly difficult for the Mormon authorities 10 prevent trade with gentile stores in the city; and in 1869 there was incorporated the Zion Co-operative Mercantile Institution, to which practically all retailers in the territory were forced to sell out. In 1869 the Pacific Railroad reached Salt Lake City and by lessening its isolation, lessened its control by Young. His power was shaken somewhat, and the general tone of Mormonism was improved greatly by the "Godbeite movement," led by W. S. Codbe and E. L. T. Harrison, who with T. B. H. Stenhouse, author of The Rocky Mountain Saimis (1874), Edward W. Tullidge, who wrote an official History of Sall Lake City, and others, had established in 1868 the Ulak Magazine, which attacked Young's despotism. Although Godbe and Harrison were "cut off" from the Church they succeeded in founding the Salf Lake Tribune (1870), the first permanent protest in Utah against Young. At the same time the power of the Latter-Day Saints and Young's autocracy were threatened by the growth of the Reorganized Church of Jesus Christ of Latter-Day Saints, which was formed in 5852 upon the announcement of the doctrine of polygamy, which declared that polygamy had been foisted upon the Church and that Brigham Young was an interloper, and which chose Joseph Smith III. (son of Joseph Smith, jun.; born in 1832) as its head in 1860; in 1863 and in 1869 representatives of the Reorganized Church preached in Salt Lake City.
As early as 1862 Congress had passed the Morrill Act (introduced by Justin S. Morril) "to punish and prevent the practice of polygamy in the Territories," but in 1867 the presiding officers of the Utah legislature, petitioning for the repeal of this act, declared that "the judiciary of this Territory has not, up to the present time, tried any case under said law." Attempts to pass some extreme measures in 1866 and in 1869-1870 failed. In October 1871 a grand jury in Utah indicted Young and others for violating a Territorial statute against improper cohahitation; hut in April $\mathbf{1 8 7 a}$ the Supreme Court of the United States (Chilton v. EngLebrech) practically declared the jury incompetent as it had been impanelled by a Federal (and not by a Territorial) marshal, and in October 1873 the same court (Snow v. The United States) ruled that the attorney-general appointed by the president in a territory could try no cases save those in which the Federal government was a party, thus putting the prosecution of polygamy cases into the hands of the locally elected attorney-general. But on the a3rd of June 1874 President Grant signed the Poland Act, " "in relation to courts and judicial officers in the Territory of Utah," which provided for prosecution by the United States attorney-general (not the locally elected official) in criminal cases in Federal courts in the Territory, for the impaneling of grand and petit jurors by the United States marshal, and for the challenge of any juror practising or believing in polygamy on a trial for adultery or polygamy, and otherwise corrected the defects in the Territorial law as pointed out by the Supreme Court, so that prosecutions for polygamy might no longer be a mere farce. But the law was little more than a dead letter: there were few prosecutions, and the only conviction was that of Young's secretary, George Reynolds, whose case dragged on from 1874 to 1879. In 1873 Ann Eliza Young, called "Wife No. 19," hrought a suit for divorce against Brigham Young; the defendant was at various times imprisoned and fined for failure to pay alimony pendente lite; and in 1877 the judge decided that the marriage was void as polygamous.

Young died in Salt Lake City on the 2gth of August 1877 ; he left an estate of more than $\$ 2,00,000$, and was survived by about 25 wives and more than 40 children. The Church owes much to him, for he was an able leader. It has been said of him that he was "for daring a Cromwell, for intrigue a
${ }^{1}$ This act, introduced by Luke Potter Poland (1815-1887) of Vermont. wat bitterly opposed by the Congressional delegate from Utah, George Q. Cannon ($1827-1901$), an Englishman by birth, a prominent Mormon missionary in Hawaii and Great Britain, and Parley P. Pratt's successor as apostle. He had been elected. in 1872, and there was a long fight to prevent his being seated because be was a polygamist.

Machiavelit, for executive force a Moees, and for utter absence of conscience a Bonaparte." It must be borne in mind that to him, more than to anyone or anything else, was due the long struggle of the Church against the United States. His only doctrinal contribution to the Church was in 1852 when, in a sermon, he said that our Father could be none other than the first Man; that Adam came into the garden of Eden in a celestial body and with one of his wlves; and that "He is our Father and our God, and the only God with whom we have to do."

Young's successor in the presidency-acting president until 1880-was John Taylor (1808-1887), an Englishman by birth, who was tiving at Toronto when P. P. Pratt converted him in 1836; he was a miscionary in England in 1840; then went to Nauvoo and was wounded when Smlth was killed; preached in France and Germany, and translated The Book of Mormon into French. His first counsellor, appointed in 1880, was George Q. Cannon, who was probahly the real administrator. On the 22nd of March 1882 President Arthur approved the Edmunds Act, drafted by George F. Edmunds of Vermont, which disfranchised polygamists in the Territories, made ineligible for jury duty in prosecutions for bigamy, polygamy, or unlawiul cohabitation all who practised polygamy or believed in it, and made polygamy punishable by a maximum fine of $\$ 500$ and imprisonment of not more than five years, and cohabitation with more than one woman punishable by a maximum fine of $\$ 300$, imprisonment for not more than six months, or both. The act was opposed because it was ex post facto. Under the Edmunds Act and the Edmunds-Tucker Act of March 1887 about 1200 persons were convicted of polygamy or unlawful cohabitation in Utah, Idaho and Arizona. The lew was so rigidly enforced that about 12,000 were disfranchised, and the president of the Church had to spend his last years in hiding, and many other prominent Mormons escaped "on the underground." The Edmunds-Tucker Act of 1887 dissolved the Perpetual Emigration Company and the corporation of the Church of Jesus Christ of Latter-Day Saints; and the Supreme Court in May 1890, on the ground that the Church was an organized rebellion, upheld the constitutionality of the confiscation of the Church property. On the $24^{\text {th }}$ of September 1890 Wilford Woodruff ${ }^{2}$ ($1807-1898$), who had been chosen to succeed President Taylor in 1889, and who was himself a polygamist, issued a manifesto declaring "that my advice to Latter-Day Saints is to refrain from contracting any marriage forbidden by the law of the land "; and on the 6th of October the general conference of the Church approved Woodruff's manifesto and accepted "his declaration concerning plural marriages as authoritative and binding." This apparent rescindment of "revelation" was explained by Mormon scholars as Smith had explained the abandonment of the New Jensalem in Missouri-the Saints were prevented from carrying out the commands contained in a revelation, but as they had tried to ohey, they would not be punished for disobedience: On the 4th of January 1893, in reaponse to a petition from the officials of the Church pledging the membership thereof to faithful obedience to the laws against polygamy, \&c., President Harrison issued a general pardon to all liable to the penalties of the Edmunds-Tucker Act, on condition that they had not violated its provisions since the rst of Novemher 1890 and should not violate them in future. On the 4th of January 1896 Utah was admitted to the Union as a state, one of the conditions made hy Congress being that polygany should be prohibited by tbe state constitution, and that this probibition be repealable only with the consent of the United States and of the people of the state; and article iii. of the constitution reads: "The following ordinance shall he irrevocable without the consent of the United States and the people of this state: Perfect
3 Woodruff was born in Connecticut, became a Mormon in 1832. in 1839 was made an apostle. in 1840 and in 1845 was a mlssionary to England. preached throughout the United States; wrote Leaves from my Journal (1881), and was called in the Church "Wifford the Faithful."
${ }^{2}$ In 1831 the Order of Enoch, or United Order. was established, providing for a community of goods; when the people proved unable to keep this law, the "lesser law of tithing "was given to them in 1838.
toleration of religious sentiment is guaranteed. No inhabitent of this state shall ever be molested in person or property on account of his or her mode of religious worship; but polygamous or plural marriages are for ever prohibited." In March 1896 the escheated property of the Church still in possession of the United States goverament was restored, but the Church was not again incorporated, its legal business being transected by its president as trustec-in-trust for the body of religions worshippers known as the Church of Jesus Christ of Latter-Day Saints; each ward of the Church has, however, been incorporated, and its bishop is its executive head. In 1898 President Woodruff died and was succeeded by Lorenzo Snow (814 -1901), a native of Ohio, converted to Mormonism in 1836. In 1898 Brigham Henry Roberts (b. 1857), an Englishman by birth and a Mormon leader, was elected to Congress from Utah; as he had three wives there was objection to his taking his scat in 1899 in the 56 th Congress; and on the 25th of January 1900 by a vote of a68 to so he was excluded from his seat. In 1903 Reed Sinoot (b. 1862), an apostle of the Church, was elected to the United States Senate, whare there was an attempt to exclude him (not on the ground that he was a polygamist, for there was no suspicion of his having violated the law, but because the apostles of the Church still advocated polygamy); the Senate Committee on Privileges and Elections reported in iavour of his exclusion; but on the zoth of February 1907 the Senate voted against his exclusion (42-28). According to Senator Smoot there were in $\mathbf{x 9 0 6}$ not more than 500 householders in Utah who were polygamous; only six of the twelve apostles, and only one chosen since April 1900 , were polygamous; and of the fourteen general authorities chosen between 1890 and 1906 twelve were monogamists, Joseph Fielding Smith (h. 1838), a nephew of the prophet, being a son of Hyrum Smith, succeeded to the presidency in igol; he was a polygamist, and in March 1907, soon after the birth of what was said to be his forty-third child, he pleaded guilty when charged with breaking the law against polygamy and was fined $\$ 300$.
The growth of the Latter-Day Saints has been Iargely in foreign countries. Missionary work in southern Canada was begun in 5833 by Orson Pratt, and in 1836 his brother, Parley P. Psatt, organized a mission in Toronto; in 1837 the work was begun in Liverpool, which is still the headquarters in Great Britain; in Ircland the work met with little success; from Germany missionarics were expelled in 1851 and in 1853; the Book of Mormon was translated into Italian by Lorenzo Snow in 1852; a Hawalian version was made in 1856 by George Q. Cannon; and the missions in Scandinavia were begun about 18jo. In the carlicr years of the Church all converts were urged to migrate to Utah, and the glowing accounts of life there doubtiess increased their number; the later policy of the Church, to which it was forced after 1887, when the Perpetual Emigration Fund was dissolved and assisted immigration was forbidden hy the Federal government, was for converts to remain in their pative countrics. In England (and to a lesser degree on the Continent) the announcement of the doctrine of plural marriage was a disadvantage to the Church, and many converts transferred their allegiance to the Josephites, or Reorganized Church of Jesus Christ of Latter-Day Saints, who always opposed polygamy and attempted to prove that such doctrines had been foisted on the Church by Brigham Young, Who had supplanted Joseph Smith's true successor, Joseph Smith 111.
In 1908 the total number of Latter-Day Saints in the United States (chicfly in Utah and the neighbouring atates) was extimated at 350,000 , and there were besides about 48,000 members of the Reorganized Church. In Utah there are four great Mormon temples-at Salt Lake City (1893), Manti (1888), Logan (1884) and St George (1877). The Rcorganized Chutch has twice been declared by United States Courts the Hegal succestor of the Church founded by Joseph Simith, jun.: it holds that "the doctrines of polygamy human saerifice, or killing men to save them, Adam being God, Utah being Zion or the gathering place of the gaints, are doctrines of devils'; its headquarters are in Lamoni. Iowa. Fhither it was removed from Plano, Illinois, in 1881 ; it has several churehes in Canada, the largest being at London, Ontario, and Toronto, and it la the owner of a Temple lot at Kirtand, Ihinois.

The Temple lot at Independence, Missouri, is owned by the small band of Mormon schismatics (orgauized in Illinois in 1835) who catl themselves "The Church of Jesus Christ," and are known as Hedrickites; the Utah Church considers Independence as the holy city, and made a harge settlement there in 1907.

The general morality of the Mormons scems to have been high for a fronticr community; there was no gambling nor drunkenness. The Saints, notably in the time of Brigham Young, were fond of dancing, and the Deseret Dramatic Association was formed and a theatre was built in the early years of the settlement in Utah.
Government. - The Mormon hicrarchy is highly complicated. At the head of the body is a president, who possesses supreme authority, and is successor to Joseph Smith, jun., "Seer. Translator, Prophet ": the president is supported by two counsellors. These three are supposed to be the successors of Peter, James and John, constitute what is known as the "first presidency" "scem to typify the Trinity. and are the head of the priesthood of Metchisedec. Then comes the "patriarch," whose chief duty is to bless and lay on hands, and after him the "twelve aposiles," forming a travelling high council. Of these the president is ex officio one, and endowed with authority equal to the other eleven. Their dutics are important. They ordain all other officers, elders, priests, teachers and deacons, lead all religious meetings, and administer the rites of baptism and sacrament. The "quorum of the twelve" is second in power to the "quorum of the first presidency," and acts in case the president dies or is disabled. Fourth come the seven presidents of the "seventies" or "seventies" quorums," each body comprising seventy elders; there are about 140 seventies in all, each of which has seven presidents, and every seven one president. These seventies make annual reports, and are the missionaries and propagandists of the body. Fifth come the "high priests," whose chief cluty is to officiate in all the offices of the church in the absence of any higher authorities. The pricsthood of Melchisedec is made up of the officials just named-president, two counsellors, patriarch. sipostles, presidents of seventies, elders and high priests. In the Aaronic priesthood, which is subordinate to the pricsthood of Nechisedec, and is occupied rather with temporal affairs, the highest office is that of the presiding bishop, who superintends the collection of tithes; other Aaronic officials are stylod priests, teachers and tcacons. The Church is made up of about 50 stakes (21 in Utah) each having a presidcncy (a president and two counsellors), and is divided into wards, which are subdivided into districts, each of which has a certain number of teachers, a meeting-house, Sunday school, day school, and dramatic, debating and literary socicties.

Docirine.- A system of polytheism has been grafted on an earlier form of the creed, according to which there are grades a mong the Fods, the place of supreme ruler of all being taken hy the primeval Adam of Gencsis, who is the deity highest in spiritual rank, while Christ, Mahomet. Joseph Smith and Brigham Young also partake of divinity. The business of these deitics is the propagation of souls to people bodies begotten on earth, and the scxual relation jermeates the creed. The saints on leaving shis world are deified, and their glory is in proportion to the number of their wives and - hildren; hence the necessity and justification of polygamy (although its practice is not now authorized by the Church), and the |lactice of having many wives scaled to one saint. Marriage. it accompanied by the ecclesiastical cercmony of "sealing," is for - ternity, and is a necessary pre-requisite to heavenly bliss A man nitay be sealed to any number of women, but no wonian may be tealed to more than one man. Both marringe and sealing by proxy are permitted to assure salvation to women wbo die unsealed. - 1 his system of spiritual wives or celestial marriage is based on the i lea that a woman cannot be saved except through her husband. lolygamous marriage is supposed to make possible the procreation of enough bodies for thousands of spirits which have long awaited lncarnation. Especially in their earlice years the Mormons believed in faith healing. and Joseph Smith bade them "trust in God when zick, and live by faith and not by medicine or poison." Their distinguishing points of faith are: religiously, a belief in a continual elivine revelation through the inspired medium of the prophet at the head of the Church. moraliy, polygamy, though this is con. t'cmned in the Book of Mormon, as has been noticed above; and, anciatly, a complete hierarchical organization. They believe in the Jible as supplemented by the Book of Mormon. the Book of Doetrime. and revelation through the presidens of the Church; in the gift of prophecy, miracles and casting out devils; in the imminent approach if the end of the world; in their own identity with the apocalyptic anints who shall reign with Christ in a temporal kingdom, cither in Nissouri (at Independence) or in Utah; in the resurrection of the loudy: in absolute liberty of private judgment in rcligious matters: and in the salvation of a man only if he believes in Christ's atonement, repents, is baptized by immersion by a Christ-appointed anostle and reccives the laying on of hands for the gift of the Holy Ghost by duly-authorized apostles. Among their minor tiifes as haid down in A Word of Wisdom supposed to bave been 1.vealed to Joseph Smith (Fcb, 27, 1833), are these recommendatiuns: that it is not good to drink wine or strong drink, exeept at the Lord's Supper (and even then it should be home-made grape-
wine), or to use hot drinks or tobacco-the former being meant for the washing of the body and the latter for the healing of bruises and sick cattle; man's proper food is herbs and fruit; that for beasts and fowls, grain; and, except in winter and in casc of famine and severe cold, flesh should not be earen by man. Infant baptism is also condemned, but the children of saints who have reached their eighth year should be baprized. The deceased, also, can be baptized by proxy, and in this way-"baptism for the dead" (I Cor. xv. 29)-Washington, Franklin and others have been vicariously baptized into the Church, since, atcording to the Mormons, there was no valid baptism between the time of the corruption of the primitive Church and the establishment of the Church of Latter-Day Saints.

Bibliography.-The Book of Mormon, first printed in 1830, has been reprinted and translated frequently. Smith also wrote a History of Joseph Smith, being exeracts from his journal, published in 18.42-18.46 in Times and Seasons, a church periodical, and a Book of Commandments, for the Gosernmexs of the Church of Christ (Zion, Jackson county, Missouri, 1833), and "compiled " a Book of Docirine and Cosenants of the Church of the Lather-Day Sainis (Kirtland, Ohio, 8835 , and often reprinted); and The Pearl of Great Price: Being a chove Selection from the Revelations, Translations and Narratives of Joseph Smith, First Prophet, and Revelator to the Charch of Jesus Christ of Latter-Day Sainus (Liverpool, 1851; Salt Lake City, 1891). The best bibliographics are in H. H. Bancroft's History of Utah (San Francisco, 1889), vol. xxi. of the History of the Pacific States of Norti America, in which the effort to avoid bias against the Mormons has made the work biassed in their favour. and in I. Woodbridge Rilcy's The Founder of Mormonism, a Psychological Study of Josepl Smith, Jp. (New York, 1902), the first inquiry by a trained psychologist into Smith's case. More important than either of these works is William Alexander Linn's The Story of the Mormons from the Date of their Origin ta the Year 1001 (New York: 1902): Linn, unlike Riley, thinke it proved that Rigdon used the "Spaulding manuseript" in the preparation of the Book of Aformon. E. W. Tullidge's Hisfory of Sall Lake City (Salt Lake City, 1886) and Orson F. Whitney's IIstory of Ulah (4 vols, Salt Lake City, 1892-1898) are valuable general works by Mormon writers; the leaders of the Reorganized Saints, Joseph Smith III and Herman C. Smith, wrote A Hislory of the Church of Jesus Christ of Laller-Day Saints (Lamoni, lowa, 1901); and Tullidge. a member of the same branch, wrote a Life of Joseph the Prophet (Plano, Illinois, 2nd ed., 1880). Edward H. Andersons Brief Hishory of the Church of Latter-Day Saints (3rd ed., 1905) and I. E. Talmage's Slory of Mormonism (reprinted, 1907) are regarded by Mormons as authentic. Early attacks on Mormonism are E. D. Howe's Mormonism Unoeiled (Painesville, Ohio, 1834) and Pomeroy 'Tucker's Origin and Progress of the Mormans (New York, 1867). And among works descriptive of Mormonism in Utah written by Gentilcs the more important are: Hisfory of the Mormons of Ulah: their Domestic Polity and Theology (Philarlulphia, 1852), by Licut. J. W. Gunnison of the U.S. Tapographical Engincers, who took part in surveys prelimmary to building a transcontinental railway; Uiah and the Mormons (New York, 1854), by B. G. Ferris, secretary of Utah Territory in 1852-1853; Horace Grecley. Overland Journey from Newo York to San francisco in 1850 (New York, 1860); Jules Remy, Journey to Great Salt Lake City (London, 1861); and The City of the Saints, and across the Rocky Mountains to California (London, 1861), by Richard F. Burton, who spent a month in Salt Lake City in $\mathbf{1 8 6 0 \text { . There is much valuable material in the Reports of }}$ the Utah Commission appointed under the Edmunds Act, in Testimony before the Senale Committee in the Smoot case (1903-1905), and in the Report of the Commillee on Privicges and Elections (Senate Report 4253, 59th Congress, 1st Session), also in the Smoot sase.

MORMYR. The mormyrs (Mormyridac) are one of the most remarkable families of the Malacopterygian fishes, confined to the fresh waters of tropical Africa and the Nilc. About 100 species, referred to two sub-families and ten genera, are now known, a great number of new forms having recently been discovered in the Congo. They are curious-looking, lighly aberrant fishes, very variable in the extent of the, vertical fin and in the form of the body, and especially the head, which may be either extremely abbreviated or elongated into a rostram, with ar without a dermal appendage or "fecler." The shape of the head has suggested many of the specific names which have been given to these fish, such as clepkas, lapirus, lamandua, caballus, ovis, ibis, numenius, Acc. Some forms are eel-shaped. The mormyrs are further remarkable for the enormous development of the brain and for the problematic organ which surmounts it; also as being among the few fishes in which an electric organ has been discnvered. This organ, situated on each side of the caudal region, is derived from the muscular system and is of feeble power; it was long considered as " pseudoclectric."

Very little is known of the habits of these Gishes. Profenor G. Fritsch, of Berlin, during his stay in Egypt for the purpose of experimenting on electric fishes, observed that they perish very rapidly when removed from the water, and he had the greatest difficulty in keeping some alive in an aquarium for two or three days. Captain S. Flower has recently been more successful, and the mormyrs have proved a great success in the Gezira aquarium, near Cairo, examples of the species having lived from ten to twenty-six months. The species with comparatively large mouths feed principally on fishes and crustaceans, the others on tiny animals and vegetable and more or less decomposed matter. P. Delhez, on the Congo, found that many are attracted to the borders of the river in the neighbourhood of human dwellings, where they feed on the refuse thrown into the water. It is probable that the species with a rostrum use it to procure small prey hidden bet ween stones or buried in the mud, and that the fleshy mental appendage with which they are provided is a tactile organ compensating the imperfection of the vision in the search for food. Until quite recently absolutely nothing was known of the hreeding-babits and development. To the late J. S. Budgett we owe some very interesting obscrvations made in the Gambia on Gymnarchus niloticus, which makes a nest, and the larvae of which are provided with filamentovs external gills.
Vencrated by the ancient Egyptians, the mormyrs are often represcnted on hieroglyphics and mural paintings as wall as in bronze models. The "Oxyrhynchus," remarkable for ita long curved snout, is the most frequently depicted. A revision of the Mormyridae has been published by G. A. Boulenger in the Proc. Zool. Soc. (1898), with a bibliographical index to the various anatomical and physiological contributions. The skull has been minutely studied by W. G. Ridewood, Journ. Linm. Soc (Zook. xxix., 1904, P. 188). Figures of the most remarkable form will be found in Boulenger's Poissoms nowpaux du Congo, Ann. Mus. Congo (Zool. i. and iil. 1808-1902), and in his Fishes of the Nile (London, $1907,4^{\circ}$). On the breeding habits of Gymnarchus, of. I. S. Budgett, Trans. Zool. Soc. (1901), xvi. 126.
(G. A. B.)

MORNAY, PHILIPPE DE (1 549-1623), seigneur du PlessixMarly, usually known as Du-Plessis-Mornay or Mornay Du Plessis, French Protestant, was born at Buhy in Normandy on the 5 th of November 1549. His mother had Ieanings. toward Protestantism, but his father sought to counteract her influeme by sending him to the College de Lisicur at Paris. On his father's death in 1559 , however, the family formally adopted the reformed faith. Mornay studied law and jurisprudence at Heidelberg in 1565 and the following year Hebrew and German at Padua. On the outhreak of the second religious war in 1567 , he joined the army of Condé, but a fall from his horse prevented him from taking an active part in the campaign. His career as Huguenot apologist began in 1571 with the work Dissertation sur l'gglise visible, and as diplomatist in 1572 when he undertook a confidential mission for Admiral de Coligny to William the Silent, prince of Orange. He escaped the St Bartholomew massacre by the aid of a Catholic friend, and took refuge in England. Returning to France towards the end of 1573, be participated during the next two years with various success in the campaigns of Henry of Navarre. He was taken prisoner by the duke of Guise on the 1oth of October 1575 , but not being recognized was ransomed for a small sum. Shortly afterwards he married Charlotte Arbaleste at Sodan. Mornay was gradually recognized as the right-hand man of the king of Navarre, whom be represented in England from 1577 to 1578 and again in 1580, and in the Low Countries 1581-1582. With the death of the duke of Alençon-Anjou in 1584 , by which Henry of Navarre was brought within sight of the throne of France, the period of Mornay's greatest political activity hegan, and after the death of the prince of Conde in 1588 his influence became so great that he was popularly styled the Huguenot pope. He was present at the sicge of Dieppe, fought at Ivry, and was at the sicge of Rouen in 1591-92, until sent on a mission to the court of Queen Elizabeth. He was bitterly disappointed by Henry IV.'s abjuration of Protestantism in 1593, and thenceforth gradually withdrew from the court and devoted himself to writing. Ale founded in 1.59 .3 the Protestant academy or
university at Saumur, which had a distinguished history until Its suppression by Louis XIV. in 1683 . In 1598 he published a work on which he had long been engaged, entitied De L'imstiuution, usage et doclrine du saini sacrement de l'aucharistie en l'eglise ancienne, containing about 5000 citations from the scriptures, fathers and schooimen. Jacques Davy Du Perron, bishop of Evreux, afterwards cardinal and archbishop of Sens, accused him of misquoting at least 500, and a public disputation was held at Fontainebleau on the 4 th of May 1600. Decision was awarded to Du Perron on nine points presented, when the disputation was interrupted by the illness of Mornay. His last years were saddened by the loss of his only son in 1605 and of his devoted wife In 1606, and were marked only by perfecting the Huguenot organization. He was chosen a deputy in 1618 to represent the French Protestants at the synod of Dort, and though prohibited from attending by Louis XIII., he contributed materially to its deliberations by written communications. He was deprived of tbe governorship of Saumur at the time of the Huguenot insurrection in 2621, and died in retlrement on his cstate of Le Foret-sur-Sèvre on tbe IIth of November 1623.
His principal works, in addition to Da L'institution, wsage a docirine du saint sacrement de l'eucheristio en l'éghsp axcienne (La Rochelle, 1598), mentioned above, are Excelleni duscours de la wie ef de la mori (London, 1577), a bridal present to Chariotte Arbaleste; Traite de l'tglise oul lon traite des principales questions qui ons due mues skr ce point en mostre lomps (London, 1578); Traide de la verite de la religion chrthienma contre les athdes, epicuriens, payens, juifs, mahomelaus at auurcs infrdeles (Antwerp, 1581); Le myslere d'imiquild. c'est à dire, l'hisloire da la papauth (Ceneva, 1611). Two volumes of Memoircs, from 1572 to 1589, appeared at La Foréc (1604-1625), and a continuation in 2 vols. a Amsterdam (1652); a mpre complete but very inaccurate edition (Memoires, correspondancas, of vic) in 12 vols. was published at Paris in 16241625.

See the life of Mornay written by his wife for the instruction of their son, Memoives de Mme Drplessis-Mornay, vol. i. in the ed. of Mémoires af correspondances de Duplessis-Mormay (Paris, 18241825); E. and E. Hang, La France protestante, article "Mornay"; J. Ambert, Du Plesrs. Mornay (Paris, 1847); E. Stahelin. Der Obertritt K. Heinrichs IV. som Franhreich axe koihotischen Xirche (Basel, 1856); Weiss, Du Plassis Mornay comme theologien (Straseburg. 1867). There, is a good article', Du Plessis-Mornay "by T. Schott in Hauck's Realencyklopodie, and another by Grube in Xirchentexikon.

MORMING, properly the dawn of day, surrise, but extended to the whole early part of the day, from the dawn to midday. "Morning " (M. Eng. morvening) was formed on the analogy of "evening," from "morn," in M. Eng. morwen, and originally meant the coming of the sunrise, as "evening," the coming of the close of the day (O. Eng. afnung, from afen, eve). The O. Eng. morgen represents the common Teutonic word for the dawn; the ultimate source has been assigned to the root, seen in " murk," " murky," meaning to be dark, or, with more proba. bility, to the root merght to twinkle, shine (cf. Lith. mirga), and further to the root mar, as in Gr. pappalperv, to shine (cf. Lat. marmor, marble). The M. Eng. morion dropped the n and became mortwe, "morrow," which properly means "morning," but was soon used of the day following the present.

The "morning-star" (Ger. Morgenstern) was a military weapon of the middle ages, consisting of a mace or club witb a ball head studded with spikes; the spiked ball was sometimes swung loose from the head of the mace by a chain. The weapon was also known as a "holy water sprinkler." The "morninggift," earlier "moryete," Ger. Morgengabe, was the present given to a bride by her husband on the morning after the marriage. The custom is probably connected with the origin of the term "morganatic marriage" (see Morcanattc).

DORNY, CHARLE AUGUSTE LOUIS JOSEPH, DUC DE (1811-1865), French statesman, was the natural son of Hortense Beauharnais (wife of Louis Bonaparte, and queen of Holland) and Charles Joseph, comte de Flahaut (q.v.), and therefore halfbrother of Napoleon IIIL. He was born in Paris on the aist of October 1811 , and bis birth was duly registered in a certificate which made bim the legitimate son of Auguste Jean Hyacinthe Demorny, deacribed as a landowner of St. Domingo. M. XVIII 14*

Demorny was in fact an officer in the Prussian army and a native of St Domingo, though he owned no land there or elsowhere. After a brilliant school and college career he received a commission in the army, and next year entered the stafi college and became lieutenant. The comte de Morny, as he was called by a polite fiction, served in Algeria in 1834-35 as aide-de-camp to General Camille Alphonse Trezel, whose life he saved under the walls of Constantine. When be returned to Paris in 1838 he secured a solid position in the business world by the establishment of a great beetroot-sugar industry at Clermont in Auvergne, and by writing a pamphlet Sur la question des sucres in 1838. In these and other lucrative speculations be was helped by the beautiful and wealthy wife of the Belgian ambassador, Charles Joseph, comte Lehon, until tbere were few great commercial enterprises in Paris in which he had not an interest. Although the sat as deputy for Clermont-Ferrand from 1842 onwards he took at first no important part in party politics, but he was heard with respect on industrial and financial questions. He supported the government of Louis Philippe, because revolution threatened his commercial interests, hut before the catastrophe of 1848, by which he was temporarily ruined, he meditated conversion to the legitimist cause represented by the comte de Chambord. His attitude was expressed by tbe mot with which he is said to have replied to a lady who asked what he would do if the Chamber were "swept out." "Range myself on the side of the broom handle," was bis answer. Presently he was admitted to the intimate circle of Louis Napoleon, and he helped to engineer the coup d'elat of the and of December 1851 on the morrow of which he received the ministry of the interior. After six months of office, during which he had shown commendable moderation and tact to his political opponents, he resigned his portfolio, ostensibly because be disapproved of the confiscation of the Orieans property but really because Napoleon, influenced hy Morny's rivals, resented his pretensions to a foremost place in the government and his desire to insist on his claims as a member of the Bonaperte family. He now resumed his financial speculations, and when in 1854 he became president of the Corps Legislatif, a position which he filled with consummate dignity and tact for the rest of his life, he used his official rank to assist his schemes.

Politics and high finance witb Morny went hand in band. In 1856 be was sent as special envoy to the coronation of Alerander II. of Russia; he executed his mission with prodigal splendour, and brought home a wife, Princess Sophie Troubetzkoi, who by her connexions greatly strengthened his social position. In 1862 Morny, whose power was at its culminating point. was created a duke. It is said that he aspired to the throne of Mexico, and that the French expedition sent to place Maximilian on the throne was prompted by Napoleon's desire to thwart this ambition. In any case, in spite of occasional dissensions, Morny's influence with the emperor remained very great, and the liberal traditions which be had retained enabled him to serve the imperial cause by bis influence witb the leaders of the opposition, the most conspicuous of whom, Emile Ollivier, was delached from his colleagues by bis efforts. But while he was laying the foundations of the "Liberal Empire" his health, undermined by a ceascless round of political and financial business, of gaiety and dissipation, was giving way, and was further injured hy indulgence in quack medicines. The emperor and the empress visited him just before his death in Paris on the 10th of March 1865.

Morny's valuable collection of pictures was sold after his death. In spite of his undoubted wit and social gifts Morny failed to secure the distinction be desired as a dramatist, and none of his pieces which appeared under the pseudonym of M . de St Remy-Sur la grande roule ; Monsieur Choufieury restera chas lwi, and the Finesses $d x$ mari among others-met with any considerahle success on the stage.

The figure of the duc de Morny is familiar to the general reader in the due de Mora of Le Nabab of Alphonse Daudet, who bad been one of his secretaries. See F. Loliée, Le Duc de Morny ef la sacietf du second empire (1909). Earlier accounts are by H. Castille. M. de Morny (1859), and Arthur de la Guéronnière, Eludes at portraifs
poliligues (1856). See the literature dealing with Napolean $11 I_{4}$ and the article on Flahaut de la Billarderie; also F. Lolice, Le Due de Morny, adapted by B. O'Donnell. A volume. Exiraits des mimosres de Mormy: Une Ambessade en Russic idso, was publiched in 1892.

MORO, ANTONLO (c. 1512-1575), otherwise known as Sir Anthony More, the eminent portrait-painter, was born at Utrecht in 1512 according to some, but in 1525 according to Karl van Mander in his Hel Leven der Schilders. He studied his art under Jan Schoorel; and after making a professional visit to Italy he commenced to paint portraits in the style of Hans Holbein. His rise to eminence was rapid. In 1552 be was invited to Madrid by the emperor Charles V. to execute a likeness of Prince Philip. Two years afterwards he was in Londun painting the portrait of Qucen Mary. For this picture an annual salary and, as some suppose, the honour of knighthood were conferred upon him. On the death of Mary in 1558 Moro returned to Spain, and lived there for two years in great honout with Philip II., executing, in addition to portraits, several copies after Titian. His death took place at Antwerp about 1575. Among his figure-pictures Van Mander specifies the "Circumcision of Christ," executed for Antwerp Cathedral, as one of the most notable. His portraits are full of individuality, and characterized by firm and solid rendering of flesh. Several admirable examples are preserved in Madrid; among the rest the portrait of Queen Mary of England, which has been excellently etched by Milius (L'Ari, Dec. 8, 1878). "Moro's style," says Stanley in his Dutch and Flemish Painters, "so much rescmbles that of Holbein as to Irequently create a doubt to which of them a portrait is to be attributed; but he is oot so clear and delicate in bis colouring (perhaps from having painted so much in Spain) as that master."
morocco (El Maghrib el Aksa, "The Farthest West," i.e. of the Mahommedan world), an indspendent state of North Africa, bounded on the N. by the Mediterrancan, on the E. by Algeria, on the S. (indefinitely) by the Sahara, and on the W. by the Atlantic as far south as Wad Dra'a. Its landward limits can only be vagucly defined. The eastern frontier towards Algeria. determined by the treaty of 1844, is a purely conventional line starting from the mouth of a small stream called the Skis and running across country in a general S.S.E. direction. In 1900 this was given a westerly trend to the south of the Atlas by the annexation of the Figig, Igli and Tuat oases by France, The southern boundaries expand and contract according to the power and acivity of the central authoricies. Behm and Wagner, who included Figig, Tuat, Kenatsa and other oases, estimated (in 1882) the then area of the sultanate at 305.548 sq. m. The allegiance of many of the tribes within this compess is questionable and intermittent, and the loss of the district from Figig to Taat, which is not accurately defined, has considerably reduced the area. Morocco is still the portlon of Northern Africa about which European information is most delective, and all maps are still to a considerable extent composed of unscientific material eked out by probabilities and conjecture.

The Maditerronean Coast Lands.-The seaward aspect of Morocoo only is known in detail. To the Mediterranean it presents for about 200 m . the rugged profile of the Rif hills (still unexplored), which generally end in lines of cliff broken at intervals by narrow sweeps of sandy beech, but occasionally open up into beautiful and fertilc valleys. About 6 m . West of the Skis lies the mouth of the river Mulwiya; and 10 m . farther on, opposite Cabo del Agua (Res Sidi Bashir). is a group of dry and barren islands, owned by Spain, known as Chaffarinas or Jazair Zafrän (Spanish Las Chafarinas), which protect the best roadstead on the Rif coast. Between Point Quiviana and Melilla runs a law and sandy shore in front of a great salt marsh, the Mar Chica of the Speniards. Melilla (Meliliya) is a fortified rock convice station or presidio, held by the Spaniards since 1497 . Forming a peninsula connected by lines of rampart with Fort Rosario on the heights behind. The fine semicircular bay of Alhucemas is the seaward end of one of the most beautiful valleya in the Rif, clothed with verdure and dotted with hamiets. A Spanish presidio occupies one of the targer of the Alhucemas islands (Al Mazemma), which are identified with the Ad Sex Insulas of the itineraries. Another Spanish presidio crowns the island rock Peiton de Velez: and in the valley off which it lics stood a town known to the Spaniards as Velez de Ciomern, to the Arabs as Bidis,
which continued to be a place of importance in the 16 th century, The so-called Baty of Tetuan (Tertawan)-the tow'n is just visible from the sca-is little more than the straight stretch of coast between Cape Mazari on the south and Cape Negro or Negrete on the north; but the prominence of these two headlands gives it an eppearance of depth. E'rom Cape Negro northwards to Ceuta the most notable object is the sumnit of Jebel Musa. which, though situated on the Strait of Cibraltar, Rowers above the intervening hills. Ceuta (Sibta), the most important of the Spanish settlements in Morocco, occupies a peninsula-the head, Mt Acho, standing about 4 m . ous to sia, and the neck being low and narrow. It marks the eastern end of the strait. Westwards, the first point of interest is again Jebel Müsa, the Elephas of Strabo, and the Apes Hill of English charts. About 20 m . farther along the coast lics the Bay of Tangies (Tanja), one of the finest harbours in Morocco. West from Tangier runs the Jebel Kebir (rising to a litele over 1000 (t.), the scaward extremity of which forms Cape Spartcl, the north-west angle of the Arrican continent, knewn to the ancients es Ampelusia or Coles Promontarium. The lighthouse, 312 it. above sea-level, buils in 1805 al the cost of the sultan of Morocco, and maintained at the joint expense of England, France, Italy and Spain, is the only one on the western coast. It is provided with efixed intermittent white light, visible for 36 mt

The Allantic Coast Line.- The Atlantic coast of Morocco is remarkable for its regularity; it has not a single gulf or noteworthy estuary; the capes are few and for the most part feebly marked. Sonthward from Cape Spartel the shore, sinks rapidly till it is within a few feet of 1 he sca-lcvel. In the low cliff which it forms ebout $4 \frac{1}{1} \mathrm{~m}$. From the lighthouse 1 here is a great guarry, which from remote antiquity has jicleded the hand-mills used in the Tangier districe. A stretch of low marshy ground along the Tahaddairt estuary-W. Muharhar and W. el-Kharrüb-agrees wish Scylax's Gulf of Cotes (Tissol). Eight m. 「arther lies Azila, the ancient Colonia Julia Constantia Zilis, with a Moorish and Jewish poputation of about 1200 . For the next 16 m. , between Azila and Laraists (Laraiche), the coast has a tolerably bold background of hills, Jebel Sarsar forming an important landmark for the later town which, with its Phocnician, Raman and medieval remains, is historically one of the most interesting places in Marocco. A line of reddish cliffs about 300 ft , high runs south for about 10 m . Jrom the W. Lekkus, at whose mouth the sown is built: then the coast sinks till it reaches the shrine of Mülăi Bù Selham on an trsinence 220 ft. high. Between Mülăi Bü Selham (often wrongly (alled "Old Mamora') and a similar height crowned by the comb of Sidi Abd Allish Jelall bies the ounlet of the Blue Lake (Marja Zarka), 10 or 12 m. long. Farther south, and separated from the tea by an unbroken line of rounded hills ($230-260 \mathrm{ft}$), is the much more extensive lagoon of Rass ed-Düra, which in the dry season becomes a scries of marshy meres, but in the rainy season flls up and discharges into the Sebū. Eastward it is connected with the Alarjat el-Charb, fed by the W. Meda. On the south side of the putlet of the Sebü lies Mehediya (otherwise misnamed New Mamora or Mehduma) founded by Bbd el-Mümin, and nismed after the Muwahhadi Mahdi. It was held by Spain from 1614 to 1681 . Twenty miles farther is the mouth of the Bu Ragrag, with Salli (Sla) fin the north side, long famous for its piracies, and still one of the most fanatical places in the empire, and on the south side Rabat, with its conspicuous Hassan tower, and Shella with its interesting tuins. Onward for 100 m . to Point Azammur and the mouth of the Umer-Rabia river a line of hills skirts the sea; the shore is lor the most part low, and, with she exception of capes at Fedala (a fmall village, originally a port, partly rebuilt by Mulai Ismà 'il, and completed by Mahommed XVII., who opened it to Europeans lictween t760 and 1773) and Dar el-Baida or Casablanca, it runs a straight line west-south-west. Azammur (Berber lor "The ild Olives." viz, of the Sheikh Bu Shaib)-once the fronkier town of the kingdom of Fez-stands on an eminence about $1 \frac{1}{2} \mathrm{~m}$. from the sea on the south side of the Umer-Rabi'u, here some iso ft . ide, deep and red, wish an obstructing bar. The bay of Mazagan, I Jew miles to the south, curves westward with a boldness of swrep unusual on this coast. About 8 m . to the south, and less thian I m. inland, lie the extensive ruins of Tit, a cown which proved a thom in the side of the Portuguese of Mazagan till they destroyed

At Cape Blanco (so called from ita white cliffs) the coast, which huged out at Cape Mazagan, again bends south to resome much he same general direction for 55 in . to Cape Cantin. On this sretch the anly point af inverest is the site of the vanished Walidiya, formerly El-Chait, with an excellent harbour, formed by an extensive lagoon, which by a liteic dredging would become the salest sbipping starion on the whole Morocco seaboard. About 18 m . farther lies Saffi ($A s f(\mathrm{f}$), the most picturesque spot on the west coast, With the high walls and quare towers of its Porluguesc fortifications shown to advantage by the ruggedness of the site. Sixty miles larther south lies Magalor, beyond which the coast becomes more and more inaccessible and dangerous in winters being known to navigators as the " Iron Coas (Ras Tagriwalt). 10 m . south of Mogador. the direction is du Alın. R spur of the Atlas. Beyond this headanat dics Aotid
of the Spaniards, formerly known as the Gate of the Sudan. ${ }^{\text {I }}$ It is a little town with white baitlements three-quarters of a mile in circumicrence, on a stecp eminence 600 ft . high. In the 16th century it was geized by the Portuguese; but in ${ }^{1} 536$ it was captured by Mulai Ahmad, one of the founders of the Sa'adi dynasty. Some 60 m . farther south, at the mouth of a river known by the same name, is the rondstead of Massa, with a mosque popularly reputed the scene of Jonah's restoration to terra firma. This port ${ }^{2}$ was regularly visited by the Genocse traders in the i6th century, who exported skins, gum, wax, gold and indigo. Another 50 m . farther south lics Ifni, a landing-place easily recognizable by the shrine of Sidi Worzek, a few miles to the

Character of the Interior. -The backbone of the country is the Great Atlas (Daren of the Berbers), for which see Atlas. The principal rivers take their rise in the Atlas Mountains, and the headwaters of the Mulwiya, the Sebo, the Um er Rabr'a, the Dra"z and the Ziz all rise between $32^{\circ} 20^{\prime}$ and $32^{\circ} 30^{\prime} \mathrm{N}$., and between $3^{\circ} 30^{\prime}$ and $5^{\circ} \mathrm{W}$. The Mulwiya (Mulucha and Malva of Pliny, \&c.) is the river which the French have long wished to make the western boundary of Algeria. Its course is largely unexplored save by native French officials. About 34° 20° N. General Colvile found it some 200 yds. wide but quite

wouth of which is the Cape Non ${ }^{2}$ of the Portuguese. The better known Cape Nün lies 5 or 6 m . north of the W. Non, at the mouth of which is Assilka. a port which the sultan of Morocco opened to foreign trade in 1882, but closed after six months. From Assalka to the mouth of the Dra's the country continues broken and fertile. but larther south it is flaiter and more sandy, so that with the Dra'a the Sahara may be said to begin.
${ }^{2}$ This must not be confoundod with Santa Cnuz de Mar Pequefia, a post established in 1476 somewhere on this coast by Herrera, lord of the Canary lslands. After obtaining permission to reoccupy the post in 1861, the Spanish government was unable 10 idenilify it, though in all probability the original site was the lagoon known as Puetto Cansado, much farther south. But this is now too remote a spot to be worth colonizing, hence the desire to cubatitute some other. Ifni, on ofd maps Gueder, was chower (1878). there being some evidence to thow that it was posibly the true site of the ancient fort.
${ }^{3}$ See Vslentin Ferdinand, Beschreibung West Afrikes (Merm. of the Acad. of Munich, 3rd Class, pe. viii.).
${ }^{3}$ No. Non, Nor, Naum, Nia, are among the various readings. It was a nother Cape Non to the south of Cape Bojador which sepms to have given rise to the proverb, Quem pasar a cabo de Noo ow termara on nat. See Bol. de la Sac. Geogr. (Madrid, 1880). p. 316.
shallow; about 25 m . east of its source, where it is crossed by the route to Ziz, it is already a powerful stream with a deep bed cut in the granite rock, and shortly afterwards it is joined by the W. Sgimmel, a still larger affuent (Rohlfs). Of the lesser streams which flow into the Mediterranean it is enough to mention the W. Martll or Martin (otherwise W. Bu Siba, W. Ras, W. Mejeksa), which falls into the Bay of Tetuan, and is identified with the Tamuda of Pliny and Thaluda of Ptolemy.

On the Atlantic seaboard there are a number of comparatively small streams north of the Scbu, the chief of which is the winding W. Lekkus, with several tributaries. The Seha (the Subur magnificus af navigabilis of Pliny) may be compared to the Thames in length and width, though not in steadiness and depth of current. At Meshra'at el-Ksiri, about 70 m . from its mouth. it is about 10 ft . deep in the month of May and more than 460 ft . wide; and, though its banks are 21 ft . high, extensive Inundations occur. The tide ascends as far as El-Kantara, 15 m . above Maimora, and steam barges with a small draught of water could make their way to the ford just mentioned, and
possibly even as far as Fes. Affuents of the Sebo are W. Mikes and W. Redem (90 m . long). The swilt and muddy current of W, Bebt usually loses itsell in a swamp before it reaches the main stream. The Ba Ragrag, which debouches between Rabat and Salli, is about the same length as the Beht, but of much more importance. It and the Um er-Rabi'a (mother of grass), although their mouths are widely separaled, drain the northern slopes of the central Atlas. The impetuous Um erRabi'a, with a rocky bed and many rapids, is perhaps as large as the Seba. W. el-Abizd, W. Akhdar and W. Tessalt are the principel afluents. This last is ceparated by about 10 m. only from the valley of the Tansift, the river which flows to the north of the city of Marrakesh; and by the W. Nefls, the Asif el-Mal (Asif is Berber for river), the W. Usbi, and other smaller tributaries, receives the waters of about 180 m . of the Atlas range.

The valley between the Atlas and the Anti-Atlas is traversed by the W. Sos, whose ever-lowing stream is sufficient to turn the whole district into a garden. The Massa or W. al-Ghas, though its headwaters drain only one or two of the lesser valleys at the south-west end of the Anti-Atlas, is "about 50 yds . from bank to benk at the mouth, with a depth at high water and in the proper channel of something over a fathom." Farther south is the Assika, known to European geographers as the W. Nan; and finally the W. Dra's is reached, which in length exceeds all the rivers of Morocco, but, except in spring, when the snows are melting in the highlands, remains throughout its lower reaches a dry sandy channel. In the upper valleys however innumerable streams from the south side of the main chain of the Atlas, the W. Dades from the east, and the Asif Marghen, W. el-Molah, or Warzazet from the west, flow through populous and fertile valleys, and uniting to form the Dra'z cut their way southward through a gorge in the Jebel Soghär, which, as the name implies, is a lower range running parallel to the Atlas proper. For the next 130 m . the stream holds S.S.E., drained at every step by the irrigation canals which turn this region into a green oasis, till at last its dwindling current bends westward to the sebkha (salt marsh) of Debiya. For a few weeks once a year the thaw-floods fill this shallow but extensive basin and rush onwards to the Atlantic; hut in summer lt dries up, and, like the bed of the river for some distance below, is covered with flourishing crops. From the south of the Atlas still farther east descend other streams, the W. Ziz (with its tributaries the W. Todgha and W. Gheris), the W. Ghir, the W. Kenatsa, \&c., which, after watering the oases of Medghara, Tafilalt (Sajilmasa), Kenatsa, \&cc, lose themselves in the sands of the Sahara.

GGology.-The Atias Mouatains, which are built up of a series of ridges rining to $12,000 \mathrm{ft}$. to the east of Morocco, form the backbone of the country. The central and bighest portions consist of chates, crystalline limestones and schists of Archean. Pre-Cambrian and possibly of Cambrian ages. They are much folded and broken through by numerous intrusions of basalte and diorites. The mass of Jebel Tczah is composed of mica-schists and porphyries which appear to bear closer resemblances to the motamorphic rocks of Egypt than to the Archean crystalline formation of Central Africa. The strata of the central ridges are succeeded by a great thickness of purple maris, red sandstones, conglomerates and calcareous rocks, occurring in faulted, folded and detached areas and recently considered to range from Silurian to Trias. Later palaeozoic rocks of Devonian and Carboniferous ages also form a broad zone extending into the Sahara on the southern and wouth-eastern flanks. The whole of the Cretaceous system is represented by the shalos and limectones occurriag between the coast and the edge of the plateau above Moroceo, but do not enter into the composition of the High Atlas.
Moraines, made up largely of unstriated blocks of porphyry, have been reported from the Upper Attas. At the foot of the mountians. extensive mounds of boulder beds are developed on an immense acale and were considered by Maw to belong to the Glacial Epoch. Between Damnat and the bea, however, the signs of a former glaciation appear to be insignificant. No moraines occur here, and consoquently the glacial ongin of the boulder beds described by Maw has been disputed. They are probably alluvial cones brought down from the High Atlas and mountainous regions. From Mogador to 60 m . inlend, and over the plains arouad Marrlikesh, a tufaceous deposit forming a hard crust, several feet thick, follows every undulation of the ground. Immense accumulations of tufa are met with in the limestone areas of the mountaina. The chief tectonic atruccwres which tread N. 20° E. belong to the Alpioe and Mediterranean
bystems. The Cretaceous and Tertiary mocks are involved in these movemente, which, however, were moulded on an earlier folding affecting the palacozoic rocks of the Atlas region. The sundering of Africa from Europe at the Straits of Gibraltar took place in late Tertiary times; whik the elevation of the Barbary coast to a beight of 50 to 70 ft . is of Recent date.]

Climate.-The climate is good, and produces a hardy race Shielded by the Atlas from the hot winds of the Sehara, the coast of the Atlantsc offers.great attractions to those suffering from ohest complaints. Tangier is a recognized health resort, and Mogador and Rabet await development as such. Rain falls only between September and April; on the Atlantic coast it is brought by the south-west wind, and on the Mediterranean sometimes aloo by the east wind, or sharkh, ocherwise dry and somewhat trying to invalida The wonderfully temperate climate of Mogador is due in a great measure to trustworthy trade-winds. In Tangier and Mogador the thermometer seldom rises over $80^{\circ} \mathrm{F}$. or sinks below 40°, although inland the extremes are much greater; and while on the plains or in low-lyigh cities the heat grows intense, snow gleams on the Atlas nearly all the year round. The best months for visiting the interior are September (if rain has fallen), October, November and the early part of December, or May and June.

Fasma.-The absence of woodiand keepe wild animals in check. Besidea the lion, which exists in very limited numbers-and, according to local proverbs, with diminished courage-the spoted leopard, panther, hyaena, jackal, lynx, fox, wild boar, porcupine, amtelope and gaxelle are the moat important. The andad or wild sheep is found in the more inacceasible parts of the Atlas. Rabbite swarm in the country to the north of the Ba Ragrag, and since 1870 they have crossed this stream, which used to be their southern limit. Hares are generally common. Rata are from time to time a plague to agriculcurists, and the jerboa is frequently met with. X kiad of ground-squirrel, the sibsib, occurs in the southern provinces Monkeys of the same species as those of Gibraltar frequent the neighbourbood of Jebel Mana or Apes' Hill. The common wild birde include blackbirds, goldfinches, tinnets, greenfinches, robins, wagtails. okylarks and crested larks, ewilts, uragpies, cuckoos, hapwings, rollers. several shrikes, as well as turtle-doves, nightingales, jays and buffbacked egrets. The house-sparrow is not found hetween Marrakesh and Mogador its place is talcen by a beautiful bird (Emberisa striolata). locally called tabib, or "doctor." The birds of prey include eagles, vultures, ospreys, buzzards, falcons, harriers, kestrels, kites, ravens and hawks. Hawking is still indulged in by some of the country governors, and the Moors are very fond of hunting, many keeping greyhounds. The Barbary partridge is the main resource of the sportaman, though he may aleo bag meveral other varieties of partridge, bustards, guinea-fowl. plovers, grouse, snipe, quail, curlew, ducks and other water.fowl. Along the coast there is no lack of gulls, gannets, pelicans, flamingoes, herons, whimbrel, oystercatchers, \&c. Most towns have their colony of storks Several venomous snakes and two vipers are found, but are not common, and the same may he said of scorpions and terantulas, but centipedes are more numerous. Human parasites are, however, most to be guarded against. Moequitos give little trouble save in towns or near water. Invasions of locusts are eerious, but intermittent. Lizards, chameieons, tortoises and froge are familiar objects; it is from Morocco that the small tortoises hawked about the streets of London are usually obtained.
Of domestic animals the mule is the great beast of burden, though camels, mares and asses are also employed. The horre is usually a st urdy little animal, but far helow the ancient reputation of the Barbary steed. Jt is seldom used as a draught animal. Roughly broken when young, his mouth is soon spoiled by barbarous bits, and bis feet by aquare shoes. The finest animals are sid to be bred in Shildoma and Abda. In form and size the mules are much superior and usually fetch two or three times the price of the horse. The horned cattle are not unlike Alderneys; but being practically untended, and the oxen having to do the ploughing, they furnish a very different quality of midk, yielding it only whike the calf looks on: the sheep. for the improvement of which, also, nothing is done, have spirai horns (not infrequently four), rounded forcheads and long. fine wool; the goats, which furnish the famous leather, nceding even lese care are still more abundant. Domestic fowls are kept in great numbers; they are of the Spanish type, emall and prolific.
The bonito and mackerel fishery of the coast of Cesablanca and Tangier attracts fishera from Spaio, Portugal and other parts of Europe. Occasioally a moiall shoal may be found as far mouth as Mogpdor. Soles, turbot, bream, bass, conger eel and mullet are common along the const, and southern Morocco is visited occasionally by shoals of a large fish callod the aslfmank (scicena aquilo), rough scaled and reaembling a ood, and the masargit (Tcmuodor salicior), the "blue fish" of North America. Craytiah, prawns, oysters and mumeles swarm in the rocky pleces, hut the natives have no proper method of catching them, and pdible crabs meern unknown The tunny, pichard and aardine, and a bind of chad frowna as the "Mogador herring," all prove at tirmes of practical importance. The catching of the shahel, a species of shad, mis-called "Barbery calmon "is a great industry on the principal rivers of the coast, and vece numbers of the fish, which are often frock 5 to is is in weight are dried and astred. They ascend from_the mea in spring. Barbels
and a few other amall finh strerm in the atreams, but for the angler there is little real sport.

Flora.-From the presence of a large proportion of plants of contral and northern Europe (none of the northern plants, bowever, being of alpine or arctic type) and the absence of mouthern types characteristic of the sub-tropical wone, Ball concluded that "the Morocco flora is altosether a portion of that great Mediterranean flora which, with local peculiarities, one finds from the Indus to the Atlantic Islands," but that "tbe mountain fora of Moroceo is a southern extension of the European temperate flora, with fittle or no admixture of extrancous elements, but so long isolsted from the neighbouring regions that a considerable number of new specific types have been developed." Of the individuat plants none are more remarkable than the orar and the ägan. The former (Cillitmis quadriaatois, or Thuja articulata of Shaw) is a cypress-like tree that grows on the Ailas borh in Morocco and Algeria. It furnishes gum sandarach; and its beautiful and enduring timber has been identified with the alerce with which the Cordova cathedral (mosque) was roofed, and with the cirrus-wood, arbor vilac, of the ancient Romans. The $\mathbf{a}_{\text {rgann, }}$ Elaeodendron argan (Arganio sideroxylow) is confined to a tract of country extending about 150 m . along the coast, from the river Tansift aimost to the river Sus, and about 30 m . in breadth; and it is found nowhere clse in the world. The fruit, which ripens between May and August, is an olive-looking nut, greedily eaten by camels, mules, goats, sheep and horned catte (but not by horses) for the sake of the teshy pericarp, and crushed by the natives to exteact the oil from the kernel. Though "its strong and fulsome savour "t renders it nauscous to the European palate, this oil is largely used in the cookery of southern Monocco. The "prickly pear and the aloe form part of the fpatures of the landscape from the coast up to the slopes of the mountains, but neither is indigenous. The cork tree has lost ground enormously though it probably forms the staple of the Ma'mora forest, which extends for some 20 m . between the Ba Ragrag and the Seba. The palmetto is often locally very abundant, but the most common wild tree on the plains is the thorny lotus or mimosa: in the monntainous regions it is reduced to a mere scrub. Lentisks, arbutus, oleanders, junipers and broom are also common, but vast stretiches of country are devoid of either trees or shrubs. Citrons, lemons, limes (awcet and sour), apricots, plums, melons, mulberries, walauts and chest. nuts are common in many parts. Tetuan and Laraish are famous for oranges, Mequinez for quinces, Marralkegh for pomer aranates, Fez for figs, Tafililt and Akka for dates, Süs for almonds, Dukalle for melons, Tagodast. Edamn and Rabat for grapes, and Tarudant for olives. The grape is cxtensively cultivated, but principally for ealing; the Jews manufacture crude but palatable winte. Sugar, once grown in Sas, to supply the demands of the whole of Morocco, has disappeared as have also cotton and indigo. Indian bempand tobaceo are cultivated under the restrictions of an imperial monopolyHe former (of prime quality) being largely ued as hashinh, the latter, mough never smoked, as snuff. Barley is the most usual cercal; but excellent crops of whent, maize, millet, rye, beans, peas, chickpeas and canary seed are also obtained. Potatoes, tomatoes, cabanges and beets have been introduced from abroad; otherwise the ordinary vegetables are peas, bcans, turnips, onions, garlic, cappicums, cucumbers, marrows and carrots. Sweet herbe are exteneively grown for use in cooking and in the preparation of tea.

In some of the Aclas valleys there is a wealth of timber, enormoms conifers, 10 to 12 ft . in girth of stem, oaks, \&c., but the greater part of the country has been cloared if fnerst. cxhibiting infly brustiwood, and the lewser fruit-trees. Cowan, writing more immudiately of the country between Morocco and Mogador, speaks of "drifts of asphodel, white lilies, hlue convolvuli, white broom flowers, thyme and tavender, borage, marigold, purple thistles, colowsal daisies and poppics: and Trotter telis how for miles the undulating plateau of Kagar Fara'on was covered with wild Nowers, whose Yaried colours, and the partiality with which cach spccies confined itself to certain ground, gave to the landscape a brilliant and unisue appcarance. Dark blue, yellow and red-iris, marigold and pwopy -occurred in patches an acre in size; farther on whole hills ind valleys were of a delicate blue tint from convolvulus and bor ge. At times the traveller's tent is pitched on a carpet of mignonettis -indigenous to the country-at times on a carpet of purple bugloes. In the country of the Beni Hasan squills are so abundant that the Gibres of the bulbe are used instead of hair in making tent-cloth; and in the north of Al Kasar al-Kebir the moors are covered for miles with a beautiful white heather. From such gorgcous combinations of colour one can well imagine that the Moors drew the inspiration of their chromatic art; But the season of foral splendour is brief, and under the hot sun everything soon sinks into the monotony of etraw. ${ }^{\text {a }}$

Inhabilants. - No well-founded estimate exists as to the number of inhabitants within the Moorish Empire, and the suggestions

1 The botany of Morocco has been explored by Balansa (1867), Hooker, Ball and Maw (1871), Rein and Frituch (1873), Ibrahm Ammeribt (a Berber collector, 1873, 1876), the Rabbi Mardochee Abi Serur (1872-1873); and the results have been systematically arranged in Cosson's Compendinm force athanticet ou Flers des Elats bertarasgmes (Paris, 1881, ste.).
vary between five and ten millions. The majority of the inhabitants are pastoral and agricultural in their pursuits; but while large stretches of country are inhabited sparsely or not at all, othor parts, especially along the Atlas slopes, are closely dotted with considerable villages whose hardy occupants cultivate every foot of level surface which it is poesihle to till and irrigate. Three races inhabit Monoceo, and the members of two others are continually being introduced. The most numerous and important are the aboriginal Berbers (q.v.)known locally also as Amazigh-who inhabit the mountainous districts, and whose blood to a greater or less extent permeates the whole population. These were the people who thrice conquered Spain-once from the Visigoths, and twice from their less stalwart co-religionists. It has been its constant reinforcement by this Berber element that has maintained the independence of Morocco alone among the countries of North Africa. The plains are for the mast part occupied hy Arabs (q.0.), introduced in the irth and r2th centuries, long after the so-called "Arab invasion" of the $\boldsymbol{7 t h}$ century, which would have left few traces but for the Moslem missionaries who came after them. A large number of the plainsmen are, however, composite Arabicized Berbers, known to foreigners as "Moors" (q.v.), to which division also the mixed race of the towns belongs. Arabs are never found in the mountains save as religious teachers or authorities, but only a small proportion of them continue nomadic.

The third race which may be considered native is the Jewish, consisting of two distinct sections: those settled among the Berbers from time immemorial, speaking their language, and in addition a hideously corrupt Arabic; and those expelled from Europe within comparatively modern times, who have got litule farther than the ports, where they speak Spanish with the addition of Arabic. These latter are the most progressive and flourishing of all the inhabitants of Morocco, and in their hands is much of the foreign trade. It is a remarkable fact that several of the so-called Berber tribes are believed to have been of Jewish origin, having embraced Islam on the coming of Mulai Idris. To these white races constant additions of a negro element are being added by the slave-trade with the western Sudan, while inter-marriages between negro and Arab or Berber have produced a proportion of mulattos.

The last class consists of the small colonies of Europeans settled at the ports, for the most part engaged in trade. The largest of these colonies, in this case principally Spanish, is found in Tangier. All such foreigners are under the local jurisdiction of their own consular courts. They possess moreover the right of chiming the protection of their authorities for natives entrusted with their interests, without which, in the absence of justice, commerce with the interior would be impossible.

Lanpuage.-The Innguage of Morocoo is Berber, of which several dialocts are apoken, notably that of the Rif, towards Algeria, and the Shilha of central Morocco and the Sas. Of these very little is known: but they do not enentially differ from one another or from thowe of Algeria, notwithatanding considerable variations of pronuncietion and a verying proportion of Arabic or other admixtures, there being no written standand to maintain. On the plains and coast of central Morocco, however. Aralic has superseded Berber, at the language of creed and court. Since the 15th century, when Ibn Khaldun found the Arrebic of Moroceo very corrupt, it bas made great strides, and having elways been a foreign tongue with the Korin as its model, it has escaped many of the fauts into which Easterm Arabic outside Arabia has fallen. This is especially noticeable in the correct Arab value given to the aiphabet and in the gtrictly classical use of many terme, especially among the litteratd of Fer.

Provinces and Towns.-Political divisions can hardly be anid to cxist in the Moortah Empire to-dyy. lelhough it is formed of what were at one time or other the independent kingdoms of Fen and Marrinesh, and the important provinces of SAs, Tafilitt and the Rif, together with the Saharan oases. As administrative units the various subdivisions change socordins to the relative etrength of tribesmen and government. Central Morveco, between the two spars of the Aclas ending towards Rabar and at Cape Ghir, hat fowever, naturally parcelled out by its rivers lito the districts of Temena, Shawiya, Dukexik, Abda, Shis dhma and Hible, ronning from north to south along the coest, and Sraghnd and Rabimna lying infand from the lat three.

There are only three great inland cities each of which in tura serves as metropolis: Fcz, Mequinez and Marrãkesh. The towns next in importance are the seaports of Tangier, Casablanca (Dar el Baida). Mogador, Mazagan, Saff, Salli-Rabat, Laraish and Tet uan. All these places are separately noticed. The ports of Agadir lghir, Azammun and Azila being closed to tradc, are in a decayed condition. On the Mediterrancan shore, along the coast of Er-Rit, the Spaniards have for centuries possessed Ccuta, Peñon de Velez, Alhucemas and Melilla; in $\mathbf{1 8 4 8}$ they appropriated the Cbaffarinas Islands. Intand, besides the three cities namul, are the sacred towns of Muhai Idris, Zarhön, Sheshāwan and Wazzān (the last-named of which alone is open to Europeans), and the minot towns of Al Kasar, Sifrū, Taza. Dibda and Uida in northern Morocco (once the kingdom of Fez); Damnaht, El Kla, Sidi Ralıal, Zettat and Amzmiz in central Morocco (once the kingdom of Marräkesh); Tarudant, Iligh, Tiznit and Glimin in southern Marocco (once the kingdom of Sus.)

The town of Mulai Idris Zarhon lies to the north of Mequinez. James Jackson, who in r8or managed to pay a hurried visit, is the only European known to have entered its gates. It is a place of apparently 1500 to 2000 inhabitants, compact, and with several large bunldings, the principal of which is the shrine of Mulai Idris, the founder of the Moorish Empire, round which the place has grown. Wazzin is the scat of a sharif or noble descended from Mulai idris, whose family has been greatiy reverenced for over two hundred years. It was built by. Mulai Abd Allah es-Sharif (d. 1675), and is open to European visitors, which Sheshavan (or Sheishôwan), another sacred city of sharifs, founded in 147t, a day"s ride into the mountains south of Tetuan, is not. Sifru is picturesquely situated amidst gardens, a short day's ride from Fez. Tisza is al considerable trading centre on the route between Fez and the Algerian frontict. The population, in Leo's time 20,000, is now 5000, of whom 800 are Jews. Dibdu, to the east of Taza, is a small but important Jewish centre. About 120 m . east of Taza, and only io from the fronticr, is Ujida (Oudjda of the French), In the midst of an orange grove. Marrikesh is the only really large city of central Morocco. Damneit is a walfed town of magnificent situation in the Atlas, cast of Marrankesh, between which and the Um er-Rabi'a anc the less important Sidi 'Rahal and EI Klă. Amzmiz lies in the Atlas, south-west of Marrakesh. Tärudant, the capital of Süs, is situated between the Atlas and the river Sus; it is a place of from 30,000 to 40,000 inhabitants, already a fourishing town in the is th century, rebuilt by the Sa'adi Dynasty early in the I6th, and reforlificd by Ei Hasan IV. in r882. THznlt, which lies to the south, until then but a village, was in 1882 converted into a town by El Hasan. IV., and walled. Iligh ($\mathbf{1} 300 \mathrm{ft}$.) above a stream which joins the Mâssa, is the chicl town of Tazirwalt, the state of Sidi Hishum, an independent principality founded by Sidi Ahmed o Masa; and Glimin or Agelmin, in like manner is the chief town of the Wad Nun district. Tagaost, about 40 m inland from Ifni, was formerly a large city, and in the 16th century the seat of a Spanish factory trading in archil.

Communications.-Regular and fairly (requent steamship services link Morocco with the principal ports of the world, though in some instances traneshipment at Gibraltar is necessary. The tourist traffic has grown greatly since the last quarter of the 19th century. Great Britain, Spain, France and Germany have postal agencies, running competing couricr mails along the coast and to the capitals, while Great Britain, France and Spain have laid telegraphic cables from Gibraltar, Oran and Tarifa respectively to Tangier; but the extension of wires inland, suve for telephoniss and clectric light, was prohibited up to 1909 . A railway about 24 m , long, connecting Casablanca and Ber Reshid, was opened in September 1908. This was the first line huilt in Morocco. There is also a railway from Mclila to some neighbouring mines. In general travelling in the intcrior is what it was a thousand years ago. There being practically no made roads and few bridges, vehicular traffic is out of the question, and even the transport of goods and persons on the backs of animals lacks the facilities provided in some Eastern lands-as Persia; for instance-in regular posting stations and caravanserais, here known as fandoks. Travellers have therefore to carry tents and all conveniencea desired. Throughout the central Moroccan plains it is generally perfectly safe to travel unguarded, but In mountainous districts it is customary to be accompanied by a mounted policeman (makhasui) whose duty is as much to prevent travellers attempting exploration as to afford thern protection.

Resowrces of the Coxntry.- The natural products of the country remain almodet entirely undeveloped. In applications for concessions for mining and other exploitation, the government has seen the possibility of further complications with Europe: so that if, by wholesale bribery, any grant was obtained a nuilifying clause was inserted, or the first occasion seized to raise anew insuperable obstacles. After the conference at Algeciras in 1906, however, the government was obliged tn grant vanious concesisions. The breeding of horses of cattle and the rearing of birds for European markets Increase in spite of reatriction and heavy dues. One of the most promising of recent developments has been the growing supply of chickens, eggs, and fruit to Europe-even to Engtend, The fisheries also are capable of great expanaion, a nd are at present almost entirely in the hands of Portugueee and Speniards.

Agricullure. - It is still true, as in the time of Addison, that the

Moors "seldom reap more than will bring the year about," and the failure of a single harvest causes incvitable dearth. Only a small part of the available land is cultivated; and the cultivated portion possessed by cach tribe is divided into three parts, one only of which is sown each year. With a plough of the most primitive description the Moorish peasant scarccly scratches the surface of the soil; his harrow is a few branclies of trees weighted with heavy stones. The corn is cut close to the ear with short serrated sickles, and the straw is left standing. Underground granaries or maimoras are excavated beneath the tufaceous crust which covers much of the iowlands, sometimes capable of holding 2000 quarters; they preserve their contents in good condition for many years.

Mincral Wealth.-That mineral deposits of great value exist in Morocco there is little doubt. At Jebel Hadid or the Iron Mountain, in Abda, disused mines may still be visited, and in Sus iron has long been worked. In the Beni Madan hills near Tetuan are mines, closed, it is said, by the sultan "Abd cr-Rabman: but whether they furnished copper or lead authorities differ. On the road to Kenatsa, Rohlis saw lead and antimony worked. Antimony especially seens to be abundant to the south of the Atlas; Rohlfs found it in a very pure state near Tesna, and Dr Allen saw splendid veins of it north of the Dråa. That gold existed in Sūs was long suspected; Gatell proved it. Rock-salt occurs in the mountains narth of Fez, in the valley of the W. Martil, and probably in Jebel Zarhōn. In several places, as in the route from Saff to Morocco, are brine lakes, from which the salt is collected and exported as far as Central Alirica.

Manufactures.- The manufactures are few, and the most famous-Icather-is now either exported undressed to Marscilles or Philadelphia, or is counterfeited by machinery in London or Paris. With the exception of slippers and shawls supphed to Moors established in the Levant, manufactured exports consist principally of carpets, rugs, trays, arms and "curios " for decorative purposes. For honse use the Moors do much spinning, weaving, and dyeing, chicfly of wool; hut although it is possible to dress superbiy in native-made articles, every year eces an increasing importation of Manchester and Yorkshirc goods, rivalled by the cheaper products of Barcelona and Austria-in the last case with great success.

Commerce. - The external trade of Morocco is mainly with Great Britain, France, Germany and Spain. The proportion of trade taken by Britain, formerly fuliy 50% of the whole, had decreased in 1905 to 32% in which year France's share was 39%, that of Germany nearly 12% and that of Spain 5%. Statistics as to its value are difficult to obrain, and not altogether trustworthy; the British consul at Tangier, writing in 1906, declared: "No information is to be obtained from the Moorish custom-houscs and no statistics whatever are published by the Moorish government." From such sources as were available the exports in 1873 (a year of phenomenally good crops) were valued at about $£ 1,500,000$ and the imports at $\{934,000$. Twenty years later (1903) the exports were valued at $\{1,601,000$ and the imports at $\{2,656,000$. A British consular return gave the value of the trade in 1906 as: Exports $£ 1,756,109$, imports $\{2,976,900$, According to French official returns the value of trade fell in 1907 to $\{3,200,000$, but had risen in $\$ 908$ to $\{4,400,000$. This includes the trade through the cight open Moroccan ports (Tangier, Tetuan, Laraish, Rabat, Casablanca, Mazagan, Saff and Mogador), the trade through Melilla, and that by the land frontier with Algeria. The trade with Algeria is valued at from 8300,000 to $f(500,000$ a year. Statistics as to the considerable trade done by caravans crossing the Sahara are entircly lacking.

The chief articles of exports are skins and hides, sheep, oxen and goats, wool, barley, eggs, beeswax, almonds and slippers. Maire. peas and chick-peas are also considerable exports in years of good crops. Cotton goods form the chief articles of import (exceeding f800,000 in value in 1906), sugar, tea, flour and semolina coning next. Other imports include cloth, candles, iron and hardware', wines and spirits. Wheat and oxen are imported overland from Algeria.

Finance.-The only part of the revenue which can be estimated with any degree of accuracy are the customs, which during the early years of the 20th century yielded about 5500,000 per annum. Under the provisions of the act of Algeciras the Morocco State Bank was established in 1907. It is a limited liability company and subject to the law of France. The capital of the bank is $£ 800,000$ and the head office is at Tangier. The directors represent the various groups subscribing the capital, French financiers contributing a share twice as large as that of any other group in return for the relinquishment of the right of France to take up all new loans at the rate of the lowest tender. The bank holds a concession from the state for forty years, and acts as its treasurer and financial agent. It alone has the power of issuing notes. A Moorish hish commissioner and fourcensors (representing the Bank of England, the Bank of France, the Bank of Spain and the German Imperial Bank) watch over the working of the bank. In all lcgal disputes in which the bank is concerned the Federal Court at Lausanne is the final authority. There is a Moorish coinage based on that of the Latin Union; Spanish money is also legal tender.

Moorish weights and measures vary from town to town, but in the foreign trade the decimal system has almost entircly superseded the native chaos. Credit is allowed by European houses at their peril, and in some lines profits are cut ruinously fine or done amay
with altogether by diahonest practices, many arising out of the long credit in vogue.

Gosernment.-The Moorish government is a limited autocracy, the theoretically absolute power of the sultan being greatly circumscribed by the religious influences which in a measure support him; and by the official proletariat with which he is surrounded. The central government is known as the mogheen or makhan (an Arabic word primarily meaning storehouse), a term also applied to the whole administrative body and collectively to the privileged tribes from whose ranks the state officials are recruited. At the head of tbe administration are wazirs or ministers of state, who possess no power independent of the sultan's will. The wazirs in generai accompany the court, but the minister for foreign affairs is stationed at Tangier. , Local administration is directed by the governors of provinces and towns, who are nominated by the wasir ced dakhaldni (minister of the interior). The subordinate town officials are appointed by the governor, and sheiks direct the affairs of the villages. All appointments are practically without pay, office holders being expected to obtain remuneration from "presents," i.e. bribes and extortion. Attached to the government service are a number of tribes (called maghzen tribes), who furnish the sultan's body-guard, garrison certain towns, and perform other duties in return for exemption from taxation. There was no regular assessment for taxation, hut such organized spoliation as might be required for public or private ends. That part of the cmpire where the sultan's authority is supreme is known as blad el-maghzen (government country); those regions where the sultan's authority is precarious are called b!ad es-siba (the unsubmissive country).

All the powers are represented in Tangier by diplomatic and consular officials, whose independent jurisdiction over tbeir respective fellow-subjects leads to the frequent confusion of justice. The evidence of non-Mahommedans is not accepted in Moorish courts, where venality reigns, and unprotected Jews suffer constant injustice, besides daily indignities, for which they repay themselves by superior astuteness.
Army.-A half-organized army-service in which is partly heredItary, partly forced-is periodically employed in collecting taxes at sword.point, and in "eating up" the provinces; with it the custom in (or was) for the suitan to go forth to war each summer, speading the winter in one of his captala. The only approach to a reqular army consists of certain hereditary troops furnished by the maghzen tribes, the Bokhars (black), the Udkia (mulatto), the Ashragah and Alhritdah (white), and the Gaish, who form n body of police, Makhhaznia (mixed), ali of whom are horsemen. The inlantry (Askảria) are mostly rough levics; only a small portion being well trained under Europcan officers. No accurate estimate can be formed of the total available forces, and the arms are of every pattern. There is no navy, but thn gevernment poewemes eeveral Emall steamers, one or two mountiag guns.

Religion.- The relgion of Moroccul. Lhain the Moors being among the strictest followers of Mahomet. The divisicns of the East are unknown, and their tenets include the princips, teachings of both Shias and Sunnis, but, as employing the Muitchi ritual, they must be classed with the latter. Recognizing their own sultan as Amir el Mu"minin ("Commander of the Fainhlul") and Khaifía of God oa earth, they acknowledge no other claimant to that position, and have few dealings with the Turks, whom they consider corrupt. They have not yet given way extensively to strons drink.
afissions. -The Franciscans for six and a half centuries did brave work in the country, since the founder of their order offered himself for that task in 1224, and many of them, including several British and lrish missionaries, suffered martyrdom; but they have long abandoned attempts to convert the Mors. The London Jewish Society was established in Mogador in 1975 , and wince 1883 various Protestant agencies aupport a considerable number of miseionaries, men and wamen, including doctors and nurses.

Education.- The level of education could hardfy be lower, alt hough most males have an opportunity of learning to recite or read the Kortan, if not to write. Only traders trouble about arithmetic. Youths who derire to parsue their studies attend colleges in Fex or cisewhere to acquire some knowledge of Mahommedan theology, logic. composition and jurisprudence.

Liserafure and Trapel.- Journalism is entirely foreign, and was introduced in 1883, at the same time as the printing-press. Spanish, Freach and English aewapapers being established in quirk succession. The suitan el Hasan lli. get up a lithographic establishment in Fez. from which a valuable neries of Arabic theological. legal and historical works have been issued, but most noteworthy of all is the publication in Cairo in 1895 of an Arabic history of Morocco, in four volumes, by
a native of Salli, Ahmad bia Khalid en-NIsiri. A most practical step was taken by the French, on the conclusion of the agreement with Great Britaia in 1904, in the establishment of a state-subventioned Mission scienifigue ax Maroc, which, in modition to establishing at Tangier the only public library in the empire, engaged a number of able students in research work, the results of which are embodied in the periodical publications A rchives marocaines (6 vols., 1904-1906) and $L^{\prime} A$ frique frangaise.

Other forward steps have been taken in the production of severai important volumes on the couptry and in serious attempes to explore the Atlas. The vicomte de loucauld attaiaed the first place by his intrepid journcys as a Jew through the forbidden regions a nd by his workman-like geographical records; Joseph Thomsoa did good work in the Great Atlas, though within a limited area; the vicomte de la Martinière excavated some of the Roman remains; Mr Walter \mathbf{B}. Harris made a bold journey to Tafitilt; and the marquis de Segonzac and Louis Gentil added to the knowiedge of the Atlas by interesting expeditions, A hydrographic mission under A. H. Dye also did valuable work (r905-1909). An equally important serviee was rentlered by the compilation ly Sir R. Lambert Playfair and Dr Robert Bruwn of an invalubla Bibliography of Morocce to the ent of 189r (1893), containing over two thousand entries

Eisfory.-The prohistoric antiquitics of Morocco are of considerable interest. In the cave at Cape Spartel Tissol found rogulariy shaped arrowibcads, and in the north of the country he met with dolmens, barrowis and cromiechs, just as in Algeria or Tunisia. The dolmens usually form a trapexium, and the body seems to have been buried with the knees drawn up to the chin. At M'zbrah, a quaint littie village of widelyscattered howes built of rough blocks of yellow soft sandstone, about 8 or 10 m . south-east from Aesfil, stands a group of megar lithic monuments of some interest. They have been visited and described by many travellers, but Watson's account is the most detailed. Round the base of a mound (15 ft . high) of yellow sandstone lies a circle of sixt y-seven large stones, one of which (at the west side) is more than 20 ft . high. In the vicinity are several otber groups, some of still harger blocks. Roman roads (see Apaica, Roman) seem to have run from Tangier southwards to the neighbourhood of Mequinez (Miknassa), and from Arlla to the south of Rabat ; and Roman sltes are In several instances marked by considerable remains of masonry. At Kasar Farion (Pharaoh's Castle), on the western slope of J. Zarhorn, are the ruins of Volubilis. The evecink, consfructed of large stones and flanked by round towers, is $12,000 \mathrm{ft}$. in extert. Four gates are still recognizable, and a triumphal arch erected in a.D. 216 in honour of Caracalia and Julia Domna. The stones of this site have been used for Mequinez Miknts. Banasa (Colonia Aelia, originally Valentia) is identified with the ruins of Sidi Ali Ba Jenun, and Thamusida with those of Sidi All b. Hamed. At Shammish, up the river from Laraish, the city of Lixas (Trinx of Strabo) has splendid specimens of Punic and Roman stonework, and the similar remains on the headtand of Malal Bu Selham probably belong to the Mudelacha of Polybius. Of earty Moorish architecture good examples are comparatively few and badly preserved. Besides those in Fas, Miknts, and Marrakesh, it is sufficient to mention the mausoleum of the Beni-Marin (13 th to 16 th centuries) at Shella, which, witb the adjoinlng mosque, is roofless and ruined, but possesses a number of funeral inscriptions.

The earliest records touching on Morocco are those of Hanno's Periplus, which mentions that Carthaginian colonies were planted along the coast. The savage and inhospitable tribes with whom they came in contact included cave-dwellers; but megaiithic remalns point to a yet earlier race. It is not till the last century b.c. that Moroccan Berbers are found supplying troops to Pompey or Sertorius, and later, under Augustus, becoming themsetves incorporated in the Roman province of Mauretania (q.v., and also Aprica، Royan). But the Roman province reached only to the Bu Ragrag, on which Sala, now Salli, was its outpost; Volubilis, near Mequinez, being its principal, if not its only, inland city. In the fifth century a.d. the country became subject to the Vandals and, about 6r8، to the Goths.

[^59]The coming of the Arabs under' ${ }^{\circ} \mathrm{Oqba}$ (rokba) in 682 was of far greater moment, though it was not till twenty years later

TheArab teraclas 697-724 that his successor, MAss ibn Noaair, undertook a successful erpedition as far as Tafillt and the Dra'e. The force of ten thousand Arabs and Egyptians with whom Tariq (Tarik) ibn Zaid held the Tangier district in 710 was trebled by the enrolment of the Berbers, who enabled him nert year to Invade Spain, burning his boats behind him (see Callebate, f C. Ahhasids). But the Moroccan Berbers chafed beneath the Arab rule, and in 739 successfully revolted, setting up their first independent ruler, Maisara. Their kinsmen in Spain followed suit with equal success, and though subdued for a time, they retained their independence in certain parts till the inth century, when, as masters of Granada, they subjugated their implacable foes, the Arabs; and finally, under the Murahti and Muwahpadi dynasties, conquered all Mahommedan Spain.

The recorded history of the Moorish Empire commences with the settlemont near the Roman ruins of Volubilis in a.D. 788 of Idris the elder (Idris b. Abdallah), one of the fugitive Earts Dyration. descendants of Mahomet during the struggles between rival claimants of the caliphate. Islam had then been established in these parts for eighty years, but Idris and his son, Idris II., the huilder of Fex, extended its influence, uniting the Berbers into a kingdom. Their line controlled a limited portion of northern Morocco for nearly two centuries, in part supplanted by the Miknases in 923, until displaced by the Maghrawd in 988 . These two dynasties were exterminated in I06I hy Yusef I. (bin Tashifn), founder of the Murabti dynasty of Berbers (Almoravides), who added the remainder of Morocco most of Spain and Portugal, and Tlemcen. Their principal existing monument is the city of Marrakesh. In 1149 the Murbbit power was overthrown hy another religious leader, "Abd el Mumin at the head of the Muwahhadi-i.e. "Unitariaa" - horde (Almohades), under whom the Moorish Empire reached its reaith at the close of the rath century. It then included, in addition te the Murahti realm, what now are Algeria, Tunisia and Tripoli, extending to the frontier of Egypt, which they were prevented from occupying by the rise of Saladin. Before the middle of the 13th century they had been driven out of Spain, and had lost all hut what is now known as Morocco, whence, between 1217 and 1269 , they were ousted by the Beni Marin (Marinides). To them we owe the Giralda, Hasan and Rotohiya towers of Seville, Rabat and Marrakesh respectively, the Torre de Oro at Seville, Gibraltar Castle, and the towns of Rabat and Al kasar. It was under their rule that Francis of Assisi despatched to Morocco the first Christian missionaries of modern times. (See Almoravides and Almohades.)

The new dynasty differed from the two which had preceded it in being frankly part of a Berber trihe, the Zenata, who carved out a kingdom for themselves. Having assisted Bowl Marin the Murablis and Muwăhhadis respectively at the Parlod, 212-1024. battles of El Arcos (1195) and Las Navas (1212), the defection of their amir on that occasion offered an opportunity for Abd-el-Hakk, the son of their general, to attempt the overthrow of the reigning house. At first the Beni Marin professed allegiance to Tunis, where the Hafsis, a hranch of the Muwahhadis, had thrown off the Moorish yoke and secured acknowledgement in northern Moracco and parts of Spain. But they were soon in a position to proclaim complete independence, and hy the time that Ahu Bakr, the third son of Abd-el-Hakk to succeed him, died, in 1258, they held sway over all that is now known as Morocco, and r269 saw the duath of the last Muwahhadi prince.

On the death of Ahu Bakr there succeeded Yakuh II., one of the few amirs of Morocco who have left a name for just administration and for philanthropic undertakings. Although of strict religious hahits, he displayed no higotry, studying philosophy, and entering into friendly intercourse with Europeans, whom he encouraged to trade with Salli. In 1261, 1275 and 1277^{-} 1279, he undertook successful expeditions to Spain, and again in 1284, this time, ia alliance with Alphonso of Leon, against his
rebel son Sancho. But Alphonso dying during the struggle, Yakab found himself master of his country, and Sancho had to acknowledge his suzerainty. All Mahommedans within his realm were freed from all taxes, and all the Arahic manuscripts of the country-thirteen loads-were despatched to the college Yakub had built in Fez.
But Yakab did not live to reap the bencfits of his conquest, which were enjoyed hy his son, Yosef IV. (1286), who was courted by his father's old foes, entering into amicahle relations with Tunis, Egypt, Arahia and the neighbouring European states. With the contemporaneous Beni Zeiyan dynasty of Tlemcen, sworn foes of his house, however, be was still at war when stahbed (1307) in the new town of Tlemgen, which be had built while conducting a sicge of the old town. A second siege was begun in 1335, and Tlempen fell in 1337 to the fourth ruler of the dynasty, Ali V., Ahu I Hasan, better known as "The Black Sultan." Unsuccessful in his invasion of Spain and Tunisia, Ali bad eventually to abdicate in 1351 in favour of his rebel son, the famous "Abui Ainan," Faris I., who during a short reign recovered Algeria and Tunisia.
The Beni Marin were soon driven back, till a few years later Tlemsen alone remained to them, and this they held only till 1359 (see Tlemcen). Thereafter their empire became habitually divided between rival claimants, and the Portuguese began to ohtain footholds on the coast, Ceuta being lost to them in 1415 , Al Kasar in 145^{8}, and Azila and Tangier in 1471.
On the failure of the Beni Marin the amirate was seized hy Sa"id III.," El Wattas," head of another branch, founder of the short-lived Wattasi dynasty. His reign is memor- Waffisd able as that in which the "Catholic Princes" Dyoasty, expelled his co-religionists from Spain, the last FPI-LSis amir of Granada and many others taking refuge in Morocco, where in 1492 they huilt for themselves Tetuan. His son, Mahomet VIII., surnamed " the Portuguese," because so long a prisoner of that people, bad to suffer the loss to Portugal of practically all his Atlantic ports hut Salli-Rabat, and of Peñon de Velez to Spain, which had a few years previously captured Melilla. Although two more reigns carried the dynasty down to 1550, it has barely left its mark upon the country. From the heginning of the new century a rising power-had been making itself felt in the south, over which the Wattasis never held sway.

The family of sharifs or "nobles"-that is, descendants of Mahomet-popularly known as the Sa'adi or Hasani (Hosaini), settled in the Dra'a district, hut originally came from Saveds Yanboa, near Medina. Their opportune reljgious Dyaasto, leadership rallied the disjointed members of the $\mathbf{2 5 2 4 - 1 6 6 8}$ empire for a jehäd against the Portuguese, but ultimately, on the death of Mahomet VIII., when in possession of the kingdom of Marrảkesh, the sharifs defeated his successor and arranged a formal division of the country at the Um er-Rahi'a. At the head of the movement were then the two sons of the sharff who had started it, Ahmed III. and Mahomet IX., between whom rivalry broke out, resulting in the success of the latter, who hy 1550 found himself the master of the whole empire on carrying off the last Wattasi amir Mahomet and espousing his daughter.
On the assassination of Mahomet IX. in 1557, the succession passed hy a previous agreement to his hrother's son, 'Abd-Allah IV., who secured himself against the possible rivalry of his hrothers by putting ten of the twelve to death. One of the survivors, however, Abd-el-Malek I., deposed Abd-Allah's son, Mahomet XI., whose appcal to Sebastian of Portugal for assistance, hrought about the celehrated "battle of the three kings," in which they all perished in 1578 near Al Kasar. This opened the way to the most famous of his line, Ahmed IV., Ed-Dhehehi, or "the Golden," who proclained himself caliph, the last (nominal) Abhasid holder of that office having been superseded hy the Turks on their conquest of Egypt in 1517. He entered into friendly relations with Queen Elizabeth and other European potentates, and the oases of Tuat, \&c., were added to his dominjons, which emhraced also Timbuktu, whence came gold and tobacco. Ahmed fell a victim of the plague in 1603 , and the
succession was disputed by three of his sons. In 1608 one of them, Zidan, became supreme and reigned twenty years. To subdue rebellions ZIdan twice obtained the assistance of English troops from Charles I., and, like his father, employed large numbers of European artificers in the various palaces he built or completed. The two sons who succeeded him had both become drunkards from intercourse with these foreigners, but a third, Mahomet XIII., called from prison to reign in 1636 , proved himself a wise and beneficent ruler. But his friendship for Europeans displeased the more fanatical among his subjects, and after a futile attempt on the part of a central Moroccan "saint " of great reputation to oust him, and the "Christians" on the coast as well, another family of sharifs was invited from Tafilalt to undertake the task, and by 1649 they were masters of Fez.

Before tracing the bistory of the Filali dynasty, which still holds its own, it will be convenient to refer briefly to the relations eropeese which subsisted then (17th century) and for many Renoperas - ${ }^{1} 18$ Marocco. years afterwards, apart from wars with Spain and Portugal, hetween the Moors and Europeans. From the early part of the 13 th century there are records of Christian mercenaries and others in the Moorish service, while intermittent trading expeditions had already hrought the principal European ports of the Mediterranean into touch with Moroeco. The settlement of European traders in Moorish ports does not appear to have commenced till later; but it scon became an important factor, for the Moors have always appreciated the advantages of foreign commerce, and thus the way was opened up for diplomatic intercourse and treaty privileges. Even while their rovers were scouring the seas and making slaves of the foreigners captured, foreign merchants were engouraged to trade among them under guarantees and safe-conducts. Thus originated all. the rights enjoyed by foreigners in Morocco to-day, as subsequently confirmed by treaties. France was the first to appoint a consul to Morocco, in 1577, Great Britain only doing so a century later. For centuries the treatment of foreign envoys in Morocco was most humiliating, the presents they brought being regarded in the light of tribute. It was not till the year 1900 that the custom was abolished of mounted sultans under umbrellas receiving ambassadors on foot and bareheaded.

While, from the European point of view, the pirates of the Barbary coast were a bloodthirsty set of rohbers, in no way

70. Sellop

 to be distinguished from the sweepings of Western Rovars. civilization who scoured the seas farther east, from the standpoint of the Moors they were the pious religious warriars for the faith, who had volunteered to punish the Nazarenes for rejecting Mahomet, and it is difficult to realize the honour in which their memory is beld save by comparison with that of the Crusaders, in which the positions were exactly reversed. The Moorish rovers approached as nearly to an organized navy as anything the country ever possessed, and at times they were fitted out by the state, to whom their prizes therefore belonged. They made descents on the opposite coasts, eyen as far as Devon and Cornwall, cartying off the population of whole bamlets.Salli, Ma'mora (Mehediya), Laraish, Tangier, Ceuta, Tetuan, and Badis were their principal rendezvous in Morocco, and their vessels, an assortment of almost every known build and rig of the day, varied greatly in numbers and size. It is probable, however, that contemporary writers greatly over-estimated their importance. They appear to have flourished chicfly throughout the $16 i \mathrm{ib}$, $17^{\text {th }}$ and 18 th centuries, and to have attained the zenith of their power during the latter part of the 17th century. A great impetus was given to their raids by the expulsion of the Moors from Spain in 1610, and their operations were facilitated later by, the recovery of most of the Moorish ports from foreign hands. The varying influence of the different European states could be gauged at first by the prices they were compelled to pay to ransom their captlve subjects, and later by the annual tribute which they were willing to present to protect their vessels. Some countries continued the payment
well into the 19th century, although the slavery of Christians in Morocco had been abolished by treaty in 1814

During the time that piracy flourished hundreds of thousands of foreigners suffered captivity, torture and death in Morocco rather than abjure their laith, the one condition on which a measure of freedom within Morocoo was offered to them. The horrors of that time

Crobetha strives werc keenly felt in Christendom, and collections were constantly made at church doors for the ransom of Moorish captives. Frequent expeditions for that purpose were undertaken by members of religious hrotherhoods, not a few of whom themselves became martyrs. The lot of the European glave was infinitely worse than that of the ncgro who indifferently embraced Islàm, and was at once admitted to equality in all points save freedom. They were principally employed on public works or in galleys under the task-master's lash, both men and women being subjected to every indignity.
The record of the Fitali dynasty may now be considered. The first of this line proclaimed in Fez was Mahomet fyer XIV., but the first of European fame was his brother, Dyasstr, Rashid II., "The Great Tafilitta," as be was styled (Hsab-) by the English, who then occupied Tangier, sultan from 1664 to 1672 . With him opened a terrible epoch of bloodshed and cruclty, only once revived since-during the short reign of El Yazid (1790-1792)-the borrors of which for both natives and Europeans, are often indescribable. It reached its climas under his hrother Isma'Tl. A man of wonderful vitality, his reign lasted 55 years (1672-1727), during which his ferce grasp never relaxed. Many hundreds of sons-and countless daughters were born to him in a harem rivalling that of Solomon, for which he even asked a daughter of Louis XIV. Having, as be supposed, driven the English from Tangier, he laid unsuccessful siege to Ceuta for 26 years, but otherwise his military measures were confined to subduing internal enemies, in which he was supported by his faithful black troops, the Bocharis, and aiso by a foreign legion of renegades.
For 30 years after Isma'Il's death one son after another was set up hy the Bokhāris, seven succeeding-some of them more than nnce-till one, Abd-Allah V., who partook of his father's bloodthirsty nature, ended his sixth turn of power in 1757. Then, at last, this dynasty provided a beneficent sovereign in the person of his son, Mabomet XVI., during whoso reign of 33 years the land prospered. By hirn Mogador was huilt and Mazagan, the last hold of the Portuguese, recovered. He was followed by the wretch Yazid, his son by an English or Irish woman, whose reign was fortunately cut short while contending with four rival brothers, two of whom in turn succeeded him, the second, Sulaiman IL, proving as wise a ruler as his father. Under his seign (1795-1622) piracy was abolished, but the policy, maintained till the end of the century, of having as little as possible to do with foreigners was initiated.
By Sulaiman's direction the imperial umbrella passed to his nephew, Abd-er-Rahman II., on whom he could rely to maintain his policy. Although disposed to promote foreign trade, he made a futile attempt in 1828 to revive piracy, which the Austrians frustrated by reprisals next year. Following this was the war of 1830 with France over the partition of Algeria, as a result of which the Moors renounced all claim to Tlempen and entered into agreements the infraction of which led to a second war between the two in 1844, during which Tangier and Mogador were bombarded. A bombardment of Salli in 1851 secured for the French the settlement of various clains, and when Abd-er-Rabman died, in 1859, the Spaniards were threatening Tetuan.
War being declared, the Spaniards marched on the town, which they captured after two months, and held till peace was signed six months later on their own terms. The vanquished sultan, Mahomet XVIL., reigned till bis dcalb in 1873, when his son, El Hasan III., succeeded, having the usual fight to secure the supremacy. In comparison with his predecessors El Hasan was mild and gente, too much so to maintain continual
peace among the more turbulent of his subjects. From early in the century Ses bad practically maintained independence, but in 1882 was reduced to submission, as also were subsequently the other great Betber centres, one hy one, till the land had rest. Fighting between the Riftans and Spaniards in 1894 having involved the soltan in the payment of some $\{650,000$ indemnity, he was on his way to recover this from the culprits when he died in camp and was interred at Rabat.

El-Hasan's death was kept secret tlll the coffin reached its destination, so that a peaceful proclamation was secured for "Abd-cl-'AzIz IV., his son by a Circassian slave who
The eoter -A ABCHOL -AERETV.
government now complained of being ignored in the AngloFrench artangement and proceeded to extend its patronage to 'Abd-cl-'Aziz. On the $315 t$ of March 1905 the German emperor landed at Tangier and had conferences with the sultan's representatives. The emperor was reported to have declared that he had come to enforce the sovereignty of the sultan, the integrity of Morocco, and the equality of commercial and economic interests. The effect of this intervention was soon apparent. The sultan rejected the scheme of reforms proposed by France, and at the suggestion of Germany issued invitations to the powers to meet his representatives and advise him concerning the reforms needed.

Mostres
Camervece. The French forelgn minister, M. Delcasse, beld that there was no need for a confecence, but Prince Bulow used menacing language and after a period of much stress M. Delcessé resigned (June, 1905), the French government thereupon agreeing to the holding of a conference. So far the German policy had triumphed; the conference met at Algeciras on the 166 h of January 1906 and engaged in the delicate task of reconciling French claims for predominance with the German demand of equality for all. The British delegates gave firm support to their French colleagues, while Austria proved "a brilliant second " to Germany. With great difficulty a scheme of reforms was elaborated, Germany having previously acknowledged the privilcged position of France along the Moroccan-Algerian frontier. The general act embodying the resolutions of the conference was signed on the 7th of April; it was accepted by the sultan on the 18 th of June, and the ratifications of the act by the other powers were deposited at the Spanlsh Foreign Office on the 31st of December 1906. The act provided for a Moorish police force from 2000 to 2500 strong, distributed among the eight open ports of Morocco, to be commanded by Moorish kaids, assisted by French and Spanish instructors and officers, with a Swiss inspector-general-the arrangement to contmue for five years. The act provided also for the institution of a state bank (see supra $\$$ Finance). Other provisions dealt with (a) the acquisition of land round the ports by foreigners, and the consequent payment by them of the regulated or tertib taxes; (b) the more efficient control of the customs administration, first by an annual assessment of the average values of all imports as a basis for the tariff during the following year, and, secondly, by a strict supervision of the administration itself; and (c) the authority of the state over the public services and public works, tenders for which were to be adjudicated impartially without reference to the nationality of the bidder.

Throughout 1906 the country was in a disturbed condition, and while a Franco-Spanish demonstration of Tangier succeeded in obtaining the removal of Raisali from the governorship of the town, various outrages occurred (inicluding the murder of a Frenchman in the suburbs of

Aneas unde.

 Tangier) for which no satisfaction could be obtained. At length the murder of Dr. Emile Mauchamp at Marrakesh on the 19th of March 1907 determined the French to take prompt action, and Ujda was occupied (March 29) by Algerian troops, the French government determining to bold the town until satisfaction had been given to their demands. This satisfaction 'Abd-लl-Aztz promised in May, and some progress was made towards carrying out the Algeciras programme, the state bank being organized in July 1907. Menntime the weakness of the suitan's rule was illustrated in many quarters: dear Tangier by the continued activity of Raisoll; that chieftain securing in June another European captive-Sir Harry Maclean: who after over seven months' detention had to be ransomed by the British govermment for $£ 20,000$:[^60]At Casablanca at this time works were in progress, with the sanction of the sultan, for improving the barbour. The works were beyond the ramparts, close to the Moslem cemetery; and the neighbouring tribesmen (the Shawia) were excited by reports that the cemetery had been desecrated. On the zoth of July they attacked the European labourers and killed nine of them (three French, three Spaniards, and three Ifalians), afterwards entering the town and raiding the Jowish quarter. Refugecs fled by boat to Tangier with news of the massacre. The French government decided to occupy Casablanca, and a strong naval and military force was sent thither. Before the arrival of the troops the commander of the cruiser "Galilee" landed a party (Aug. 5) to guard the French consulate. The passage of the detachment was opposed, whereupon the "Galilee," aided by the "Du Chayla" bombarded the town. Casablanca was at the same time entered by the tribesmen, who began a general csseblases. pillage. On the 7th the French troops arrived and were landed, and further fighting took place. Belore order was restored nearly every inhabitant had been killed or wounded or had fied; the dead alone numbered thousands. The European colony was, however, saved. Though masters of the town, the French found the Shawia tribes still full of fight, and, first under General Drude and afterwards (Jan. rgos) under General Amade, the French proceeded to the reduction of the Shawia country. At one time the expeditionary force numbered 15,000 men. ${ }^{1}$ By June 1008 the district was quiet and thereafter the strength of the force was gradually reduced. ${ }^{2}$

The action of France at Casablanca aroused the fanaticism of the tribes of Tafliflt and those dwelling near the Algerian border. In November 1907 the Beni Snassen crossed the frontier and were not reduced to submission until after hard fighting. Another outbreak occurred in April 1908, when a French column in the Guir district, west of Figig was surprised, and had dlfficulty in beating back the caemy. In that and a sulsequent engagement, which resulted in the dispersal of the foe in May, the French casualties were over 200 . French and Moorish commissioners were then appointed to preserve order along the frontier.
White thus engaged on the eastem fronticr and on the Atlantic coast of Morocco France had given financial and moral support to "Abd-el-Aziz, whose position was threatened
Fall of
Ablot
Acts. by his hrother Mulai Hafid. On the 16th of August 1907, within a fortnight of the bombardment of Casablanca, the ulema of Marrakesh had declared "Abd-el-'Aziz deposed and Hafid sultan; and from September onwards the tribes round Casablanca opposing the French were supported by troops sent from Marrakesh. Aziz having been furnished with money hy the state bank, he was enabled to reach the seapopt of Rabat at the head of his army in Scptember 1007. There he was visited by the French minister and appeared willing to grant all the demands of France in return for help against his brother. A loan was forthcoming but no military assistance save that some of 'Abd-el-'AzIz's troops were taken by a French warship to Mazagan. While desultory fighting between the supporters of the rival brothers was procceding Hafid was proclaimed sultan at Fez on the 4th of January roo8; Hafid now sought support from France, Germany, and other powers, and moving from Marrakesh passed the French

[^61]lines in the Shawis country, entered Mequinez in May and Fez in June 1908. At length 'Abd-el-'Aziz made an effort to reassert his authority and with a force numbering 4000 he ieft Rabat in July for Marrakesh. He reached the neighbourhood of that city on the and of August, having received the adhesion of numerous tribes, including the Shawia. On the 1gth he started for the final march on Marrikesh. He appears to have been betrayed, for hardly had his force started when it was assailed on all sides, whereupon the tribesmen deserted in a body and the "regulars" ran away. The day was irretrievably lost and 'Abd-el-'Azle sought safety in flight. On the 22 nd he arrived at Seltat in the Shawia country, and within the French lines, with only a handful of followers. For a short time he talked of continuing the struggle, but ended by accepting a pension from his brother Hafid and was assigned a residence in Tangier. That town, the last in Morocco to acknowledge Hafid, did so on the 23rd of August; the change of sultans being accomplished without any disturbance of public order.

Germany was anxious for the immediate recognition of Hafid and caused some perturbation in France by a circular to the powers to that effect dated the and of September; the French and Spanish governments replied by Moter Faina proposals for guarantees that Hafid would respect the Act of Algeciras. This course reccived general assent and Hafid having given the guarantecs demanded he was formally recognized as sultan at the beginning of 1909 . His relations Fith Europe were made easier by the conclusion, in February 1909, of a Franco-German agreement designed to avoid all cause of misunderstanding between those powers in Morocco. Germany put on record that her interests in the sultanate were "only economic," and France agrecing to "safeguard coonomic equality" Germany undertook not to impede the political interests of France in the country.
The weakness of the central government was exemplified by the inability of Mulai Hafid to control the Rif tribesmen, who in July 1909 killed a number of European labourers in the neighbourhood of the Spanish fortress of Afeli!la (q.v.). Spain sent an army of 50,000 men to vindicate its authority. After a severe campaign the Riffians were reduced to submission (Nov. 1909). Though powerless in the Rif, Mulai Hafid's army succeeded in defcating Bu Hamåra's force and in capturing (Aug. 1909) that pretender, otherwise known as ef Roghi.' Bu Hamara and many of his followers were taken to Fez. The tortures inflicted upon them evoked strong protests from the European powers. In 1910 Mulai Hafid obtained a loen, chiefly from France, of $\{4,000,000$; the greater part of the loan went to liquidate claims by Europeans against the moghzen.

Amirs and Sultans of Morocco
I.-Idrisi Dynasty (Arab), A.D. (Capilal, Fez.)

788. Idris I.

791. Rashid (remeot),
792. Idris Il.
793. Mahomet I.
794. Ali 1.
795. Yahya 1.
796. Yahya II.
797. Ali II.

Yahyz 111.
904. Yahya IV.
(Interregnum from 917.)
932. Ei Hasan I. "El Hajjim." (Fez lost to the Miknalsa 925.)
935. Ei Kennün (at Hajrat en-Nasr).
948. Abu'1'Aish Ahmed.
954. Ei Hasan 11. (at Basra).
g61. Abd-Allah 1.
97a. Mahomet II. (Subjugared by the Maghriwa 985.) II.-Miknấsa Dynamy (Berber). (Capital, Fez.)
925. Musa I. "Ibn Abdet-Aaria."
938. Madin.

952, Ibrahim I.
973. Eil Büri.
1014. EI KRsem I.
' For an account of Bu Hamara's career see Questions diplomatigues (Oct. I6, 1909).
${ }^{-}$Title of sultan adopted about 1640.

111．－Maghriwa Dynaty（Berber）．（Capital، Fea．）
988．Ziri ibn＂Acia
1000．El Mūảz．
1026．Hammảma．
1039．Dûnas．
1060．El Fatoth and Mjea．
1065．El Moannnaiir．
1067．Tamim．
IV，－Murảbti Dynasty（Berber）．（Capital，Marralkesh．）
1061．Yüsef I．（Bin Takhfin．）
1106．＇ALI III．
1143．Tashfin 1.
i145．Ibrahim II．
1146．lshảk．
V．－Muwhhadi Dynasty（Berber）．（Capitals，Marrikeeh and
1145． \mathbf{A} Abd－el－Mümin．
1163．Ybisef 11．，＂Abu Ya＇kūb．＂
1184．Yt＂kūb İ．＂＂Abu Yüsel el Mansûr．＂
1199．Mahomet 111．＂En－Nāsir．＂
1214．Yísef III．＂AAbu Yâkūb el Mustansir．＂
123．＇Abd•el－WŽhid，＂El Makhlowi．＂
1224．＇Abd－Allah II．＂Abu Mahomet．＂
1226．Yahya V．。＂El Mu＇rasim．＂
1229．Idris III．＂＂El Mâmun．＂
1232．Rashid I．＂＂Abd－el－Wǎhid．＂
1242．＂Ali IV，＂${ }^{15}$ Es－Said el Mu＇tadid．＂（Mequinez lost to Beni Marin 1245．）
1248．＇Omar 1．＂El Mortada．＂（Fez lost＇to Beni Marin．1248．）
1266．Idris $1 \mathrm{IV}_{\text {o，＂}}^{\text {to }}$ Abu Dabbūs el Wathik．＂（Marrakesh lost
VI．－Beni Marin Dynasty（Berber）．（Capitals，Fez，Mequinez and Marrakesh．）
1213．＇Abd－el－Hakk．
1217．＇Dthmān I．＂，Abu Said I．＂
1239．Mabomet IV．＂Abu Marrāf．＂
1244．Alus Bakr．
1258．Yhküb II．，＂bin＂Abdel－Hakk．＂
1286．Yüsef IV．
1307．＂Amr，＂Abu Thäbit．＂
1308．Sulaimãn I．，＂Abu Rebía．＂＂
1310．Dthmãn II．，＂Abu Said II．＂．
1320．＇Omar II．（at Sajilmása）．
1331．＇Ali V．a＂Abu＇l Hasan．＂
1351．Faris 1．，＂Abu＂Ainān．＂
1358．Se＇id 1．（a child）．
1359．Ibrähim I11，＂＂Abu Salem．＂
1361，$\left\{\begin{array}{l}\text { Tashfin III．＂＂Abu＂Omar＂} \\ \text {＇Abd－el－Halim（in Sajilmãsa）．} \\ \text { Mahomet V．}\end{array}\right.$
Alahomet V．
1366．Aud－cl－Aziz I．
1372．Mahomet VI．，＂Es－Said．＂
1374 \｛ Ahmed I．，＂Abu＇l＇Abbas＂（in Fez）．
1384．Musa II．and Ahmed II．，＂Es Mustansir．＂
1386．Mahomet VII．，＂EI Wäthik．＂
1387．Ahmed I．（2nd reign）．
1393：＂Abd－el－Axiz It．＂Abu Făris．＂
1396．Faris II．，＂El Mutawakkil．＂
1408．Abu Sa＇id III．
1416．Sa＇id II．and Yakab IIt．
1425．Abd－Aliah III．（after whom the record of this dynasty ceases）．
VII．－Wattassi Dynasty（Berber）．（Capital，Fex．）
1471．Sa＇id 111．1＂Es－Sheikh el Wattas．＂＇
1500．Mahomet V1II．＂The Portuguese．＂
1530．Ahmed III．（in Fez）．
1548．Mahomet X．（Defeated by the Sharils，1550．）
VIII．－Sa＇adi Dynasty（Arab）．（Capitals，Fex，Mequinez and Marrakesh．）
1524．$\{$ Ahmed III．（in Marrakesh）．
1557．A All
${ }_{1574}$ Mahomet X1．，＂El Mutawakkil．＂
1576．‘Abd－el－Malek I．，＂El Muatásim．＂
1578．Ahmed IV．＂EIMansur＂or＂Dhahebi．＂
1603．Mahomet XII．＂EeSheikh．＂
＇Abd－el－＇Aziz Iíl．，＂Abu Faris．＂
1608．Zidan．
1628．＇Abd－el－Malek II，
1631．El Walid．
1636．Mahomet XIII．，＂E－Sheikh Er－Saghir．＂Fez lost to the Fitalis，1649．）
1654．Ahmed V．＂＂El Abbas．＂
1658．＇Abd－cl－Kárim in Marrakeah．（Overthrown by Filatia，

1X．－Filall Dynasty（Arab）．（Capitals，Fez，Mequines and Marrakesh．）
1649．Mahomet XIV．，＂Es－Sharif．
1664．Rashid 11
1672．Isma＇in，＂The Bloodthirsty．＂
1727．Ahrmed VI．＂Ed－Dhahebi II．＂
1728．＂Abd－cl－Malek III．＂Abu Merwin．＂
1729．＇Abd－Allah V．，＂Ej Mortada．＇
$1734 .{ }^{\text {Ali V1．}}$
1736．Mahomet XV．，＂Uld er－Riba．＂，
1738．El Mustadi．
1745．Zin el Abdin．
1757．Mahomet XVI．，
1790．El Yazid．
1792．EX Hishăm．
1795．Sulaimãn II．
1822．Abd－er－Rahman II．
1859．Mahomet XVII．
1873．El Hasan III．
1894 ＇Abd－l－＇Aziz IV．
1908．Hafid．
Note．－The dates given are those in which the various rulers acquired sovereign power．Many had already secured the allegiznce of certain provinces some time before，and many retained such allegrance long after the greater portion of the empire had aceepted a successful nival．European nations in several inscances treated with men who were not at the time actual sovereigns，and in some cases were never such．

Bibllography．－History：Budgett Meakin，The Moonisk Empire， an historical epitome（London，1899；which contains critical notices of all important books on Morocco to date）；Ernest Mercier， Histoire de l＇Afrique septentrionale（ 3 vols．，Paris，1888－1891）． Principal authorities：Native－lbn＇Abd el Hakim，enbracing the period from A．D． 690 to 750 （trans．Jones；Gottingen，1858）；＇Abd el Wahid el Marrakeshi－（1149－1224），trans．E．Fagnan in the Repue Africuine，pp，202－207（189b），Raöd el Kartas（788－1 326），trans．Bau－ mier（Paris，1860）；El Makkéri（710－1 500）．trans．Gayangoe（London， 1840）；El Uirani（1631－18i2），trans．Houdas（Paris，1889）；Mnd En Nasiri（710－1894：Cairo，1895）．Foreign－Diego de Torres， Relacion del Origen y suceso de los xarifes（Seville，1586）：Faria y Sousa，Africa Porluguesa（Lisbon，1681）；Mouëtte，Hisloite des Conquestes de Mouley Archy，\＆c．（Paris，1683）；De el Puerto，Mission historial de marruccos（Seville，1708）；Busnot．Histoire dy regme de Muley Ismail（Rouen，1714）：Louis S ．de Chénier，Récherches historiques sur les Moures（ 3 vols．，Paris，1787）；Mas Latrie，Traites de paix，\＆c．（3 vols．，Paris，1866－1872），and Relations ef commerce de Fifrique seplentrionale（Paris，1886）．
Geography．－Budgett Meakin．The Land of the Meors（a general description，London，1901）；Cb．De Foucauld，Recennoissance as Maroc，text and maps（Paris，1888；by far the most extensive． detailed and original exploration up to that date undertaken in Morocco，admirably illustrated）；J．D．Hooker and Jobn Bali， Maracco，and the Great Allas（London，1878：the trustworthy record of a serious and well－equipped scientific expedition，valuable chiefly for its botanical information）；Gerhard Rohlfs，A dventures in Morocce （London， 1874 i previous to De Foucauld＇s achievement，the most extensive journey recorded in modern times）；Walter B．Harris， Tafilet（London， 1895 ；recounts a plucky journey acroes the Atlas）； Joseph Thomson，Trasels in the Allas（London， 1889 ；the narrative of a restricted excursion from Marrakesh）：H．de la Martiniere， Journeys in the Kingdom of Fex（London，1889；chief value archaeo－ logical）：Rafael Pezzi，Los presidios menores de Africe（Madrid， t893；an account of the Spanish possestions in Morococ）；Captain Jules Erckmann，Le Maroc moderns（Paris，1885；includea parts not open to Europeans，visited hy the author as an officer in the Moorisk army）：Capt．E．Bonelli，El Imperio de Marruecos（Madrid，1882： a somewhat similar work，by a Spanish officer）；F．de A．de Urre：
 born in the country and travelling as a native）；G．D．Cowan and R．L．．N．Johnston，Moorish LoLos Leaves（London，1883；trust－ worthy papers dealing with south central Morocco）：Emilien Renou，Description giographique de l＇empire du Maroc（Paris， 1846 ； a compendium of information available at that date）：J．Canal． Géographie générale du Maroc（Paris，1goz）；Mission de Segonzac， Voyages au Maroc 3800－100I（Paris，Igo3）and later publications of the Segonzac Mission；Ch．Tissot，Récherches sur Lo géographie comparte de la Maurétanie Tinagilane（Paris，1877；a valuable archaeological survey）：M．Bennier．＂Gtographicancienne du Maroc＂ and＂Recueil des descriptions antiques，＂boih in No．111．of Archives無隹ocaines（Paris，1904）；Leo Africanus，Descriplion of Africa， 1526，trans，Pory，1600；ed．Dr Robert Brown，for Hakluyt Society （3 vols．，London， 1896 ；a wonderful work for its period，always of interest，but the source of many oft－repeated errors in books on Morocoo）．

Geology．－G．Maw，＂N Netes on the Geology of the Plain of Morocco and the Great Atlas．＂Quarl．Journ．Gcol．Soc．（I872），vol．xxviii．； L．Thomson，＂Report of the Committee appointed to investigate the Coography and Geology of the Atlas Range in the Empire of Morocco，＂Rep．Brit．Assoc．1889，Neweastle Meeting：P．Schaell

LAdas martayim (Paris, 18g8); A. Brives, "Contribution al I'éride -dologique de I'Atlas marocain," Bell. Soc. Geol. France (Oct. 11) 5). Efmology.-Budgett Meaking The Moops (London, 190:: a minute account of manners and customs); James C. Jackson, in Account of the Empare of Morocoo (London. 1809; the authoritative description for a century); Georg Hóst, Efterretninger om Marohes pories (a work still of great value; Copenhagen, 1779): Thomms Pellow. Captrivily and ddoentures 1736 (ed. Dr Robert Brown, London, 18go; one of the best and most intimate narratives if the European slaves): Count Sternburg, The Bapbapions of If rave (London. 1908).

Language,-Rev: Joeß Lerchundi, Rudimentos del לrade demarruecos (Tangier, 18q1) and Vocabulario esparial arabigo (Tangier, 1892): Eng. trans. of the iormer by J. Maclver MacLeod (Tangier, 1900; most useful, but dealing chichy with the corrupt colloquial speech of the Tangier-Tetuan district); Budgett Meakin, An Introduction to the A rabic of Morocco (Tangier, 1900; vocabulary, Erammar, notes, phrases, \&e., for pocket use, in Roman characters) ; Niss C. W. Baldwin, Morocco-A rabic Dialogues (Tangier, 1892; uniform with the last-named, but in Arabic charactera).

Maps.-The most trustworthy general maps are R. de Flotte de Roquevaire, Carte du Marac (scale 1: $1,000,000$) 4 theess, ed. 1908 ; the French War Office maps (scale $1: 500,000$, begun 1906, scale 1:100,000, begun 1909), and the British War Oftce map (scale I: $1,000,000$) 4 sheets. 1904 . There aro numerous district maps. The Dyé Mission published fifteen.
(B. M. ${ }^{*}$ K. A. M. ${ }^{*}$)

HOR6N DE LA PRORTERA, or MORON (anc. Arumi), a town of southern Spain, in the province of Seville; 32 m . S.E. of the city of Seville. Pop. (1900) 14,190. Morón occupies an irregular site upon broken chall hillocks near the. right bank of the Guadaira. It is connected by rail with Utrera on the Cadiz \& Seville line. On the highest clevation to the eastward are the ruins of the ancient castle, of considerable importance during the Moorish period, when Moron, as its full name implies, was a fronticr fortress; the castle was afterwards used as a palace by the counts of Urefia. In $1810-1811$ it was fortified by the French, but blown up by them in the following year. The chief public building of Moron is the large parish church, which dates from the 16 th century. Morbn is also famous throughout Spain for its marble and its chalk (cal de Monon), from which the whitewash extensively used in the Peninsuls is derived.

MORONE, GIOVANMI ($1509-1580$), Italian cardinal, was born on the 25 th of January r gog at Milan, where his father, Count Ieronimo Morone (d. 1529), was grand chancellor. His father, who had been imprisoned for opposing encroachments on the liberties of Milan by Charles V. (whom he afterwards cordially supported), removed to Modena, where his youngest son had most of his early education. Proceeding to Padua he studied jurisprudence with distinction. In return for important service rendered by his father, he wras in 1527 nominated by Clement VIII. to the see of Modena, and consecrated in 1533 after a contest. From 1535 he was constantly entrusted by Paul III. with diplomatic missions; be was nuncio (1536) to Ferdinand, king of the Romans, and legate to the diet of Spires (1542) having successfully resisted the transfer of the diet to Hagenau on account of the plague (1540). On the 31 ist of May 1542 he was created cardinal, and was further nominated protector of England, Hungary, Austria, of several religious orders, and of the santa casa at Loreto. With the cardinais Paul Parisio and Reginald Pole he was deputed to open the Council of Trent (Nov. 1, 1542), the place of meeting having been a concession to his diplomacy. The legates arrived on the 22 nd of November, but no council assembled. The death of Paul III. (1549) deprived him of a good friend. The views of the Reformers had spread in his diocese, and he was suspected of temporizing with them. He resigned his see (1550) in favour of the Dominican Egidio Foscherari, reserving to himself an annual pension and the palronage of livings. Julius III., at the instance of the duke of Milan, gave him (1553) the rich see of Novara (which he resigned in 1560 for the see of Albano) and sent him as nuncio to the diet of Augaburg (1555), from which he was immediately recalled by the death of Julins (March 23). In June 1557 Paul IV. imprisoned him in the castle of St Angelo (with others, including Pole, and Foscherari), on suspicion of Lutheran heresy. The prosecution entirely failed, and Morone might have had his liberty, but refused to
leave prison ualesa Paul IV. publicly acknowledged his innocence. He remained incarcernted till the pope's death (Aug. 18, I559), and took part in the election of Pius IV. Ochino, in the twenty eighth of his Diologi XXX., 1563 has a colloquy on the treatment of heretics, between Pius IV. and Morone, in which the latter maintains: "Errantes in viam revocandi, mon occidendi." This really hits the position of Morone, a sincere Catholic, to whom persecution was abhorrent. He presided at the Tridentine Council from the roth of April to the $4^{\text {th }}$ of December 1563 , and endeavoured to exercise a conciliatory iafluence. At the end of 1564 Foscherari died, and Morone was reinstated in the see of Modena. On the death of Pius IV. (1565) he came near to being elected pope. His last days were easy; he died at Rome on the rst of December 1580 , and was buried at S. Maria sopra Minerva. His writings comprise a few letters and orations. His career is that of a good man, struggling for the welfare of his Church against corruptions not essential to the system to which he was devoted.
See J. G. Frick," De Joanne Morono," in J. G. Schelhorn's Amoen ivales literarise, vol. xii. (1730): "G. Moroni," Dizionario di erudizione (1847); N. Bernabei, Vita del cardinale C. Moroni (1885); M. Young, Lifo and Timas of Aomis Paleario (1860); C. Benrath, in Hauck; Realencyhlopddie (1903).
(A. Go.")

MORONI, GIAMBATMISTA (c. 1 sto-1578), Italian portraitpaigter of the Venctian school, was born at Albino near Bergamo about 1510 (or perhaps a few years later), and became a pupil of Bonvicino named II Moretto. Beyond the record of his works very few particulars regarding him have reached us. Titian, under whom also Moroni, while still very young, is said to have studied (but this appears hardly probable), had at any rate a high opinion of his powers; he said that Moroni made his portraits "living" or "actual" (peri). In truthful and animated portraiture Moroni ranks near Titian himself. His portraits do not indeed attain to a majestic monumental character; but they are full of straightforward life and individuality, with genuine unforced choice of attitude, and excellent texture and arrangement of draperies. There is a pertain tendency to a violet-tint in the flesh, and the drawing and action of the hands are not first-rate. The earliest inscribed date discovered for any of his works is 1553 . As leading sampies may be men-tioned-in the Uffixi Gallery, Florence the " Nobleman pointing to a Flame," inscribed "Et quid volo nisi ut ardeat ?"; in the Natlonal Gallery, London, the portraits of a Tailor, a member of the Fenaroli family, Canon Ludovico de' Terai, and others; in the Berlin Gallery, his own portrait; and in Stafford House, the seated half-figure of the Jesuit Ercole Tasso, currently termed "Titian's Schoolmaster"-not as indicating any real connexion between the sitter and Titian, but only the consummate excellence of the work. Besides his portraits, Moroni painted, from youth to his latest days, the ordinary round of sacred compositions; but in these he falls below his master Il Moretto. One of the best is the "Coronation of the Virgin," in S. Alessandro della Croce, Bergamo; also in the cathedral of Verons, "SS Peter and Paul," and in the Brera of Milan, the "Assumption of the Virgin." Moroni was engaged upon a "Last Judgment," in the church of Corlago, when he died on the 5 th of February 1578.
(W. M. R.)

MOROSINI, a noble Venetian family, probably of Hungariat extraction, which gave many doges, statesmen, generals and admirals to the Venetian Republic, and cardinals to the Church. It first became prominent at the lime of the emperor Otho II. owing to its rivalry with the Caloprini family, whom it succeeded in subjugating by the end of the roth century. Domenico Morosini (d. 1156), elected doge in 1148 , waged war with success egainst the Dalmatian corsairs, recapturing Pola and other Istrian towns from them. Marino Morocini (d. 1252) was eiected doge in 1249; Michele was doge from June 1382, until his death in October of the same year.

Andrea Morosinit (1 558-1618) was a famous his torian and wis entrusted by the Venetian senate with the task of continuing Paolo Paruta's Annoli Vometic in Latin. His history of Venice was published by his brother in 1623 (Venice), and tranalated into

Italian by Senator Girolamo Molin (Venice, 1783). Among his other works are: Le Imprese ed espeditioni di terra samta, foc. (Venice, 1627); De iis quas denela respublica ad Istrice oras gessit, Ecc. (in the Corner-Duodo collection of MSS.; De forma reipublicae senelae in MS. in the Bibliothèque Nationale in Paris. His life has been written by Luigi Lollin (1623), by Niccolo Crasso (1621), and hy Antonio Palazzoli (1620).

Francesco Morosint (1618-1694) was one of the greatest captains of his time. As a young man be fought against the Turks and the pirates, and after signally distinguishing himself at the battle of Naxos in 1650 he was appointed commander-inchief of the Venetian navy. He then conducted a series of successiul campaigns against the Turks, but was recalled in consequence of the intrigues of his rival the Provveditore Antonio Barbaro (166I). But when Candia was attacked by a large force, under the terrible vizir Keuprili, Morosini was sent to relieve the fortress in 1667; the siege lasted eighteen months, but Morosini, in spite of his prodigies of valour, was forced to surrender to save the surviving inhabitants. He was tried, but acquitced of all blame, and on the renewal of the war with the Turkish Empire in 1684 be was again appointed commander-in-chief, and after several brilliant victories he reconquered the Peloponnesus and Athens; on his return to Venice he was loaded with honours and given the title of "Peloponnesiaco." In 1688 he was elected doge, and in 1693 he took command of the Venetian forces against the Turks for the fourth time; the enemy which had been cruising in the archipelago withdrew at his approach, so great was the terror inspired by his name. While wintering at Napoli di Romania (Nauplia) he died on the 6th of January 1694.

Bibliography.-Barbaro, Genealogia delle famiglie palrizie venele, MS., clas. vii., cod. 927, in the Marcian Library, Venics; Cappellari, Campidogtio veneto, MS., clas vil., cod. 17, ibid.: Romanin, Storia documentata di Venesia, also other gencral Venetian histories; G. Dalla Santa, Due Letlere di umanisti senesuani a Paolo Morosini (in Nuovo archivio vencto, xix. 92); G. Graziani's life of F. Morosini in Latin (Padua, 1698)i Λ. Arrighi, Vila di F. M. (Padua, 1449). (Sec also Venice.)

MORPETH, a market town and municipal and parliamentary borough of Northumberland, England, situated in a fine valley on the Wansbeck, $17 \frac{1}{2}$. N. of Newcastle by the North Eaptern railway the junction of several branches with the main line. Pop. (1901), 6158 . The Wansbeck winds round the town on the west, south and east, and a rivulet, the Cottingburn, bounds it on the north. The parish church of St Mary, a plain building of the 14th century, is situated on Kirk Hill, a sbort distance from the town. It has a good example of a Jesse window. Nothing remains of the old castle except the gateway.. The valley of the Wansbeck above Morpeth is well wooded and very picturesque $\mathbf{H y}_{\mathrm{y}}$ its side are fragments of Newminster Abbey, a wealthy foundation of the iath century, occupied by monks from Fountains in Yorkshire; and Mitford, with its Norman and Early English church, and ruins of a Norman castle and a manor-house of the 17 th century. To the north of Morpeth a good specimen of the peel tower of the 15 th century is. seen at Cockley Park. Industries of Morpeth include tanning, brewing, malting, iron anl brass founding, and the manufacture of flannels, agricuitural implements, and bricks and tiles. The parlizmentary borough, within the Wansbeck division of the county, returns one member and extends 8 m . eastward to the coast, including the town of Blyth. Morpeth is governed by a mayor, 4 aldermen and 12 councillors. Area, 328 acres.

The manor of Morpeth is said to have been granted to William de Merlay soon after the Conquest and passed with the borough from his family to those of Graystock, Dacre and Howard, earls of Carlisle, with whom it remains. The town is a borough by prescription and grew up round the castle attributed to the above William de Merlay. About the end of the 12th century Roger de Merlay the younger granted the burgesses right to hold of him and his beim " as frecly as the charter of the king purported which he held of the kling by gift." Charles II. incorparated the town in 1662 under the governneat of two bailiffs who were chosen every year in the following manner: the bailifs for the
time being chose two juries from whora the commonaky elected four burgesses, and from these four the steward of the lord of the manor appointed the bailiffs for the ensuing ycar. This was continued until the Municipal Reform Act of 1835 . In 1200 a market on Wednesday and a fair on the Feast of St Mary Magdalene were granted to Roger de Merlay, and in 1885 the fair was extended for two days. The market rights still belong to the lord of the manor.

MORPHEUS, in Roman mythology, one of the sons of Somnus, the god of sleep. He was a personification, apparenuly invented by Ovid (Metam. xi. 635), of the power that calls up human sbapes (μ орфai) of all kinds to the dreamer. His brothers Phobetor and Phantasus assumed the forms of all kinds of anımals and inanimate things.

策ORPHINE, the chief alkaloid of opium (q.0.), to which the medicinal action of the former is mandy due. It is not used itsell in medicine owing to its insolubility in water and ether. The preparations of morphine are incompatible with salts of iron, copper and mercury, also with lime water and alkaline earths and substances containing tannin. With ferric chloride it forms a deep red colour.

The proparatons of morphine in the Eritish Pharmacopocia are as follow: (from Mor phange Hydrochlonium are made five subpreparations: (1) Liguar Mopphunge Mydroctiar:i, sirength i\% or about $4 \frac{1}{1} \mathrm{grs}$. of the hydrochloride to the 9 . GL; (2) Suppositorna Morphinac. made with a basis of oil of theobroma, atrength $\ddagger \mathrm{gr}$. of morphine hydrochloride in each: (3) Tinctura Ckloroformis at Mforphinae, strenget ${ }^{\text {rit }} \mathrm{gr}$. in 10 minims; (H) Trochuscus Aforphinae. \% gr . in cach: (5) Trochuscus Moppherve et Ipecacuandoe, sarengah of gro of morphine hydrochforide and fr. ipecacuanhe in each. From Morphnnae Acetas, a white soluble amorphous powder, is madi. Letwip Mophmade dectalas. stength 1% or 41 grs
 talline powder, are prepared. Injectio Morphınae Hypodermica, containing 5% of morphine tartrate, and. Luguer Mor phinae Tartratts. Morphunae Sulphatis is not official in ihe British Pharmacopeia but is official io the United States, the U.S.P. Trochisci Morphinae at Ipecacuanhac and Pulvis Morphinae Composifus (Tully's powder) being made from it. Hypodermic tabloids of morphine sulphate eithor alone or combined with atropine are much in usc. Various non-official preparations of morphine are ia uee, such as dionin, heroin, glycaphorm and peronin.

Therapeutics.-Morpbine is an analgesic and hypnotic, relieving pain and producing deep slecp. As contrasted with opium it differs in being less astringent and constipating. Morphine is the greatest anodyne we possess, and no drug yet discovered equals it in pain-relieving power. The most frequent mode of administration is the bypodermic method, on account of the extreme rapidity with which it is absorbed. In pain due to violent sciatica relief and even permanent cure has been obtained by the injection of morpbine directly into the muscle of the affected part, and in the treatment of renal and bepatic colic morphine given subcutancously will relieve the acute pain consequent on the passage of biliary and urinary calculi. A violent paroxysm of asthma may be arrested by the administration of morphine subcutaneously, but the practice should not be continued, as there is grcat danger in a chronic disease that the patient may become the victim of morphinism. Morphine is recognized as one of the most useful drugs in the treatment of eclampsia, early injection often arresting the fits In the cough of phihisis minute doses are of service, but in this particular discase morphine is frequently better replaced by codcine or by heroin, which checks irritable coughs without the narcotism following upon the administration of morphine. In bronchitis with profuse expectoration the use of morphine is particularly dangerous, as it is likely to check the cough so necessary for getting rid of the secretion, but in the converse condition it usefully allays the harassing cough by diminishing the excitability of the respiratory centre. In the dyspnoea of advanced valvular disease of the heart morphipe relieves the distress and restlessness, and induces sleep. It should however be withheld if the heart has undergone fatty degeneration. Morphine is a sheet anchor in the later stages of cancer and otber painful diseases, rendering the life of the patient one of comparative comfort. If given in excess the drus is eliminated by way of the intestines and kidneys. It
is also excreted in the milk; hence the danger in the administration of large doses of morphine to nurging mothers.

Morphine-scopolamine anaesthesia was introduced in 1902 by Steinblickel. It has been used by some surgeons for the production of amaesthesia previous to the administration of other or chloroform, but the use of the method is now more usually relegated to obstetric practice.
Morphimism (Morphinomania).-Chronie morphine poisoning is very common, as morphine taken constantly creases a habit. Once acquired the habitue depends on the drug for a comfortable existence, and as the organism becomes quickly tolerant of the alkaioid the original dose no longer suffices. The total amount of morphine indulged in by the habitual morphinist may reach an astonishing figure; 15 gra. a day is mid to be common, and some medical writers record quantities such as 60 to 70 grs . in the 24 hours in extreme cases. The carly atages of morphinism are marked by moral degeneration; the patient seems to lose all sense of right and wrong, and will lie most plausibly and even thieve to obtain the drug: personal disorderliness, disregard of sime, neglect of business and decline of family affection become soon evident. Physical syonptoms atco appear; the lace assumes an earthy coiour, the body wastes, constipation is usually present to an extreme degrec, the secretions become arrested, loss of appetite and indigestion follow and the mouth is parched. The nails become britile and the skin dry, sterility shows iself in women and mexual impotence in men. While not directiy causing deash, morphinism so lowere the bodily powers that the patient is casily, carried of by some intercurrent malady. The sudden withelrawal of the drug from a morphine habitue is followed by a train of alarming symptoms. As the time approaches for the usual dose there is marked resteseness, followed by excitement and later by chills, pallor, sinking, nausea, with perhaps vomiting and diarrhoca. Horribie mental depression and melancholia are present, a nd there may be hallucina. tions of vision and hearing passing into violent delirium. At this stage collapse may act in, the patient become faint, the limbe twiteh, the radical pulao become imperceptible, and unconecioumpese supervene. The condition may even goon to a fatal result should morphitie be continuously withheld, hut injection of even a smail quantity of morphine causes these symptoms to cease abruptly. The sudden withdrawal of morphine should thercfore never be practised with takers of large quantitios of the drug, but gradmally diminishing doses given by the physician should be substituted. For the successfui ereatment of morphinism, complete isolation of the patient is necessary in a place where he is supervised so that he can obtain no morphiae fsoletion in a home is far the best, as friends may pive way to entreatics and servants be bribed. The "tapering of five of the dowe is she best method. Abeence from home aad atrict supervision lasting over a long period, usually a year, are necessary to prevent relapse. The lowered bodily health requires to be built up. and a long sea voyage under adequate eupervision is usually retornmendect.

MORPFHOLOGY, (Gr. jopфh, form), a term introduced hy Goethe to denote in biology the study of the unity of type in organic form (for whth the Linnacan term " Metamorphosis" had formerly been employed). It now usually covers the entire science of organic form. There are numerous restricted senses of the term in various sciences, but here we shall deal with it as a substantive side of zoology and botany.

Hisforical Oufline.-If we disregard such vague likenesses as those expressed in the popular classifications of plants by size into herbs, shrubs and trees, or of terrestrial animals by hablt into beasts and creeping things, the history of morphoiogy begins with Aristotic. Founder of comparative anatomy and taxonomy, he established eight great divisions (to which are appended certain minor groups)-Viviparous Quadrupeds, Birds, Oviparous Quadrupeds and Apoda, Fishes, Malakia, Malacostraca, Entoma, and Ostracodermata-distinguishing the first four groups as Enaima (" with blood ") from the remaining four as A naima (" bloodless "). In these two divisions we recognize the Vertebrata and Invertebrata of J. B. P. A. Lamarck, the first lour groups corresponding with the Mammals, Birds, Reptiles, Fishes, whilst the others agree more looscly with the Cephalopods, Crustacea, Insecta, and Echinoderms with Mollusca other than the Cephalopods. Far from committing the mistake attributed to him of reckoning Bats as Birds, or Cetaccans as Fishes, he discerned the true affinities of both, and erected the latter into a special γ tvos beside the Viviparous Quadrupeds, more on account of their absence of limbs than of their aquatic habit. Not only is his method inductive, and his groups founded on the aggregate of known characters, but he foreshadows such generalizations as those of the correlation of organs, and of
the progress of development from a general to a special form afterwards established by G. L. Cuvier and X. E. von Baer respectively. In the correspondence he suggests between the scales of Fishes and the feathers of Birds, or in that hinted at between the fins of Fishes and the limbs of Quadrupeds, the idea of homology is nascent; and from the compilation of his disciple Nicolaus of Damascus, who regards leaves as imperfectly developed fruits, he seems almost to have anticipated the idea of the metamorphosis of plants. Even after the reappearance of Aristotle's works in the 13th century, little can be recorded hut revivals of his conclusions. Monographs on groups of plants and animals frequently appeared, those of P. Belon on Birds and G. Rondelet on Fishes being among the earliest ; and in the former of these (riss5) we find a comparison of the skeletons of Bird and Man in the same posture and as nearly as possible bone for bone-an idea which, desplte the contemporaneous renaissance of human anatomy initiated by Vesalius, disappeared for centuries, unappreciated save by the surgecn Ambroise Pare. B. Palissy, like Leonardo da Vinci before him, discerned the true nature of fossils; and such flashes of insight continued to appear from time to time during the 17th century. Thus, Joachim Jung recognized "the distinction between root and stem, the difference betwcen leaves and foliaceous branches, the transition from the ordinary leaves to the folic foris," and W. Harvey anticipated the generalizations of modern emhryology by his researches on deveiopment and his theory of epigenesis.
The encyclopaedic period of which Gesner is the highest representative was continued by Aldrovandi and others in the 17th century; but, aided by the Baconian movement, then influencing all scientific minds, it developed into one of genuinely systematic aim. At this stage of progress the most important part was taken by John Ray, whose classificatory labours among plants and animals were crowned with suecess. He first expelled the fabuious monsters and prodigies of which the encyclopaedists had handed on the tradition from medieval times, and succeeded, particularly among plants, in distinguishing many natural groups, for which his own terms sometimes survive-e.g. Dicotyledons and Monocotyledons, Umbellilerae and Leguminosae. The true precursor of Linnaeus, he introduced the idea of species in natural history, and reformed the practice of definition and terminology. Of the works which followed up Ray's systematic lahours, none can be even named until we come to those of his great successor Linnaeus, whose grasp of logical method and lucidity of thought and expression enabled him to reform and reorganize the whole labours of his predecessors into a compact and definite "systema naturae." The very genius of order, he established modern taxonomy, not only hy the introduction of the binomial nomenclature and the renovation of descriptive terminology and method, but by the subordination of the species under the successive higher categories of genus, order and class, so reconciling the analytic and synthetic tendencies of his predecessors. Although the classification of plants by the number of their essential organs is highly artificial, it must be remembered that this artificiality is after all only a question of degrec, and that be not only distinctly recognized its provisional character but collected and extended those fragments of the natural system with which A. de Jussieu soon afterwards began to build. His classification of animals, too, was largely natural, and, though on the whole he lent his authority to maintain the notion of three kingdoms of nature, he at least at one time discerned the fundamental unity of animals and vegetables, and united them in opposition to the non-living world as Organisata. At the same time he was still far more a scholastic naturalist than a modern investigator.
While the artificial system was the zenith of its usefulness, Bernard de Jussieu was arranging his gardens on the lines afiorded by the fragmentary natural system of Linnaeus. His ideas were elaborated by his nephew Antoine de Jussieu, who published diagnoses of the natural orders, so giving the system its modern character. Its subsequent claboration and definite establishment are due mainly to the labours of Pyrame de

Candolle and Robert Brown. The former concentrated his own long life and that of his son upon a dew "systema naturae," the colossal Prodromus systematis noturalis (20 vols., 1818-1873), in which 80,000 species were described and arranged. Meanwhile the penetrative genius of Brown enabled him to unravel such structural complexities as those of Conifers and Cycads, Orchids and Proteaceae, thus demonstrating the possibility of ascertaining the systematic position of even the most highly modified floral types. Both Capdolle and Brown were thus no mere systematists, but genuine morphologists of the modern school.

The labours of Bernard and Antoine de Jussieu initiated a parallel advance in zoology, the joint memoir on the classification of mammals with. which Cuvier and. Geoffroy St-Hilaire almost began their career receiving its dominant impulse from the "genera" of Antoine. Cuvier's works correspond in zoology to those of the whale period from the Jussieus to Brown, and epitomize the results of that line of advance. Although in some respects preceded by A. von Haller and J. Hunter, who compared, though mainly with physiological aim, the same parts in diferent organisms, and much more distinctly by Vicq d' Azyr, the only real comparative anatomist of the 18 th century, be opens the era of detailed anatomical research united with exact comparison and clear geseralization. The Regne animal (1817) and the theory of types (vertebrate, molluscan, articulate, and radiate) are the results of this union of analysis and synthesis and mark the reconstitution of taxonomy on a new basis, henceforth to be no longer a matter of superficial description. and nomenclature but a complete expression of structural resemblances and differences. In Germany, L. H. Bojanus, J. F. Meckel. C. T. E. von Siebold and Johannes Muller, with his many pupils, carried on the work; in France, too, a succession of brilliant anatomists, such es A. De Quatrefages, A. Milne-Edwards and H. de Lacaze-Duthiers, were his intellectual beirs; and in England he has been admirably represented by Sir R. Owen.

It is now necessary to return to Linnaeus, whose more speculative writings contain, though encumbered by fantastic hypotheses, the ides of foral metamorphosis. About the same time, and quite independently, C. F. Wolff, the embryologist, stated the same theory with greater clearness, for the first time distinctly reducing the plant to an axis bearing appendages-the vegetative leaves-which become metamorphosed into bud.scales or floral parts through diminution of vegetative force. Thirty years later the same view was again independently developed by Goethe in his now' well-known pamplet (Versuch dic Melamor phose der Pflansen suerkldren, Gotha, 1790). In this hrilliant essay the doctrine of the fundamental unity of floral and foliar parts is clearly enunciated, and supported by arguments from anatomy, development and teratology. All the organs of a plant are thus modifications of one fundamental organ-the leaf-and all plants are in like manner to be viewed as modifications of a common type-the Urpflanze. Whether, as some historians hold, his "Urpflanze" was a mere ideal archetype, bringing forth as its fruit the innumerable metaphysical abstractions of the Naturphilosophie, and leading his countrymen into all the extravagances of that system; or whether, as E. H. Haeckel maintains, it represented a concrete ancestral form, so anticipating the view of modern evolutionists, it is certain that to him F. W. S. von Schelling was indebted for the foundation upon which he erected his philosophic edifice, as also that Goethe shared the same ideas. It must be remembered that he lived and made progress for forty years after the publication of this essay, that he was familiar with the whole scientific movement, and warmly sympathized with the evolutionary views of Lamarck and Geoffroy St-Hilaire; it is not therefore to be wondered at that his writings should furnish evidence in favour of each and every interpretation of them. His other morphological labours must not be forgotten. Independently of Vicq d'Azyr, he discovered the human premaxillary bone; independently of L. Oken, he proposed the vertebral theory of the skull; and before S. C. Savigny, he discerned that the jaws of insects were the limbs of the head.

In 1813 A. P. de Candolle published his Theoris Ammentaine de le betanique, which he developed into the clavic Organographic edgidele (1827). He established bis theory of symmetry, reducing all flowers to "symmetrical" groupings of appendages on an axis and accounting for their various forms by cohesion and adhesion, by arrested or excessive development. The next advance was the investigation by W. P. Schimper and A. Braun of phyllotaxis-the ascending spiral arrangement of foliar and floral organs-thus further demonstrating their esential unity.

The term morphology was first introduced by Goeche in 1817. in a subsequent essay (Zur Naturwissenschaft aberhaxpt, Besonders swy Morphologie). It did not come into use in botany until its popularization by Auguste de St-Hilaire in his Mor phologie Degelald (1841), and in zoology until later, although De Blainville, who also first employed the term type, had treated the external forms of animals under "morphologie." Though the Naturphilosophic of Schelling and its countless modifications by his followerss its mystic theories of "polarization" and tbe like, its apparatus of assumption and abstraction, hypothesis and metaphor, cannot bere be discussed, its undoubted services must not be forgotten, since it stimulated innumerable reflective minds to the earnest study of natural science, gave a powerful impulse to the study of comparative anatomy and vindicated the claims of philosophic synthesis over those of analytic empiricism. Among its many adherents, some are of more distinctly theological type; others metaphysical, others moystical or poetic, ot hers, again, more especially scientific; but its most typical and picturesque figure is Lorenz Oken, who epitomizes alike the best and the worst features of the school, and among whose innumerable pseudo-morphological dreams there occasionally occurred suggestions of the greatest fruitfuiness-nolably, for instance, the independent statement of the vertebral theory of the skull.

By far the most distinguished anatomist of the tramscendental school is Geoffroy St-Hilaire, who being comparatively free from the extravagances of Oken, and uniting a depth of morphological insight scarcely inferior to that of Goethe with greater knowiedge of facts and far wider influence and reputation in the scientific world, bad greater influence on the progress of science than either. He started from the same studies of anatomical detail as Cuvier, but, influenced by Bufion's view of unity of plan and by the evolutionary doctrines of lamarck, diverged into new lines, and again reached that idee of serial homology of which we have so frequently noted the independent origin. His greatest work, the Philosophie anatomique (18181823), contains his principal doctrines. These are: (1) the theory of unity of organic composition, identical in spirit with that of Goethe; (2) the theory of analogues, according to which the same parts, differing only in form and in degree of development, should occur in all animals; (3) the "principe des connexions," by which similar parts occur everywhere in similar relative positions; and (4) the "principe du balancement des organes," upon which he founded the study of teratology, and according to which the high devclopment of one organ is allied to diminution of another. The advance in morphological theory is here obvious; uniortunately, however, in eager pursuit of often deceptive homologies, he wandered into the transcen. dentalism of the Naturphilosophic, and seems utterly to bave failed to appreciate either the type theory of Cuvier or the discoveries of Von Baer. He defended Buffion's and Bonnet's earlier view of unity of plan in nature; and the controversy reached its climax in 1830 , when he maintained the unity of structure in Cephalopods and Vertebrates against Cuvier before the Academy of Sciences. On the point of fact he was of course utterly defeated; the type theory was thenceforward fully accepted and the Naturphilosophie received its death-blow. Such was the popular view; only a few, like the aged Goethe, whose last literary effort was a masterly critique of the controversy, discerned that the very reverse interpretation was the deeper and essential one, that a veritable "scientific revolution" was in progress, and that the supremacy of homological and synthelic over descriplive and analytic studies was
thenceforward asaured. The irreconcilable feud between the two leaders really involved a reconcliation for their followers; theories of homological anatomy had thencelorward to be strictly subjected to anatomical and embryological verification, while anatomy and emhryology acquired a homological aim. This union of the solid matter and rigorous method of Cuvier with the generalizing spirit and philosophic aims of Geaffroy is well illustrated in the works of Owen.
The further evolution of the idea of homology is sketched below, while the extent and rapidity of the subsequent progress of the knowledge of all the structural aspects of plants and animals alike make a historical survey impossible up to the appearance of the Origin of Species (1859). The needful solution was effected by Darwin. The "Urplianze" of Goethe, the types of Cuvier, and the like, at once became intelligible as schematic representations of ancestral organisms, which in various and varying environmenta, have undergonodifferentiation into the vast multitude of existing forms. Al the enigmes of structure become resolved; "representative" and "aberrant," "progressive" and "degraded," "synthetic" and "isolated," "persidtent" and "prophetic " types no longer baffle comprebension; conformity so type represented by differentiated or rudimentary organs in one organism is no longer contradicted by their entire disappearance in its near allies, while systematist and morphologist hecome related simply as specialist and gencralizer, all throagh this escape from the Linnecan dogma of the fixity of species. The phenomena of individual development receive interprotation in terms of ancestral history; and emhryology thus becomes divided into ontogeny and phylogeny-the latter, too, coming into intimste relation with palaeontology-while clasplication seeks henceforth the reconstruction of the genealogical tree. All these results were clearly developed in Haeckel's G Cnerelle Morphologie (1866), while the valuable contemporaneous Principles of Biology of Herbert Spencer also gave special attention to the relation of morphology to physiology.

Individuality.-Probably no subject in the whole range of biology has been more extensively discussed than that of the nature of organic individuality. The history of the controversy is of intereat, since besides leading up to colid results it serves, perhape better than any other case, to illustrate the dow emergence of the natural sciepces from the influence of scholastic thougbt. Starting from the obvious unity and indivisibleness of Man and other higher animals, and adopting wome definition such as that of C. F. B. Mirbel, "Tout etre organise, complet dans ses parties, distinct et separt des autres ereses ex un individu, "it was attempted times without number to discover the same conception elsewhere in nsture, or rather to impose It upon all other beings, plants and animals alike. The resulte of different inquirers were of course utterly discrepant. It meemed easy and natural to identify a tree or berb corresponding to the individual anlmal, yet difficulties at once arome. Many apparently distinct planta may arise from a common root, or a single plant may be decomposed into branches, twigs, shoots, buds or even leaves, all often capable of separate exietence. These, again, are decompos. able into tissues and cells, the celle into nucleus, \&c., and ultimately into protoplasmic moleculea, these finally into atoms-the inquiry thus passing outside organic nature altogether and meeting the old diapute mas to the uhimate divisibility of matter. In short, as Haeckel remarks, warcely any part of the plant can be named which has not been taken by some one for the individual. It is necessary, therefore, briefly to notice some of the principal works on the subject, and these may conveniently be taleen in deacending order.

While H. Caseini practically agreed with Mirbel in attempting to regard separate plants as individuals, the widest interpretation of the individual is that of G. Gallesio (1816), who propoped to regand as an individual the entire product of a single meed, alike whether this developed into a uni-axial plant extended continuously like a banyan, or multiplied asexually by natural or artificial measas like the weeping-willow or the Canadian pondweed, of each of which, on this view, there is only a single individual in Britain, happily discontinuous.
At once the oldeat and most frequently maintained view is that which regerds the bud or sh yot consiating of a single axis with appendaget as the phant-Individual, of which the tree represents a colony, tike a branched bydroid polyp. This conception, often attributed to Aristotle, but apparently without foundation. appears distinctly in the writings of Hippocrates and Theophrastuspeat latter saying, "The bud grows on the tree like a plant in the ground." The aphorism of Linnaeus, "Gemmae totidem herbae," is well known; and in this vicw C. F. Wolf and Humboldt concurred, while
and development. The most influential advocate of the bud theory during the first half of the 19th century was, however, Du PetitThouars, who, although starting much as usual with a "principe unique d'existence," supported his theory on extensive though largely incorrect observations on stem structure andgrowth. For him the tree is a colony of phylons, each being a bud with its axillant lcaf and fraction of the stem and root. Passing over numerous minor authors, we come to the central work of Alex. Braun (1853), in which, as Sachs has clearly pointed out, the illegitimate combination of Naturphilosophie with inductive morphology reaches its extreme. He reviews, however, all preceding theories, admits the difficulty of fixing upon any as final, since the plant, physiologically considered, is rather a dividuum than an indsuidumm, and proposes as a compromise, or indeed as a partial cutting of the knot, the adoption of the shoot, as the morphological individual, comparable 10 an animal, especially because, unlike the cell, leaf, \&c., it includes all the representative characters of the species. Darwin and Spencer on the whole also accept the bud or shoot as at any rate the most definite individual.

The theory of metamorphosis naturally led Goethe, Oken and others to regard the leaf as the individual, while Johannes Maller, J. J. S. Stcenstrup and others adopted the same view on various physiological grounds. C. Gaudichaud claborated a theory intermediate between this view and that of Du Petit-Thouars, according to which the plant was built up of individuals, each consisting of a leaf with its subjacent internode of stem, which was regarded as the leal-base, and this was supported by Edward Forbes and others, while the nominally converse vicw-that of the leaf as a mere outward expansion of the stem-segment - was proposed by C. F. Hochstetter.

Though sundry attempts at identifying various tissues, such as the fibro-vascular bundles, as the constituent individuals may be passed over, those associated with the cell theory are of great importance. T. Schwann decided in favour of the cell and regarded the plant as a cell-community, in which the separate elements were like the bees of a swarm-a view virtually concurred in in all essential respects hy M. Schleiden, R. Virchow and other founders of tire cell theory. Yet, although the structure and functions of the plant ere uleimately and specially cellular, it is impossible to ignore the fact that, save in the very lowest organisms, these are subordinated and dificerentiated into larger aggregates, and form virtually but the bricks of a building, and bence the later theories oullined above. Of attempts to find the individual in the nucleus or the protoplasm granules it is unnecessary to speak further,

So far the theories of absolute individuality. The conception of relative individuality was first clearly expressed by Alphonse de Candolle and Schleiden, both of whom take the cell, the shoot and the multi-axial plant as forming three successive and subordinated categories. K. W. von Nageli too recognized not only the necessity of establishing such a series (cell, ongan, bud, leafy axis, multi-axial plant) but the distinction between morphological and physiological individualities afterwards enunciated by Haeckel.
Passing over the difficulties which arise even among the Protozoa we find that a similar controversy. (fully chronicled in Haeckel's Kalkschuamme) has raged over the individuality of sponges. While the older observers were content to regard each sponge-mass as an individual, a view in which J. N. Lieberkuhn and other monographers tubstantially concurred, the application of the microscope led to the view suggested by James Clark, and stoutly supported by Saville Kent, that the sponge is a city of amoeboid or infusorian individuals H. J. Carter looked upon the separate ampullaceous sacs as the true individuals, while others, defining the individual by the possession of a single exhalent aperture, distinguish sponges into solitary and social.
For the higher animals the problem, though perbaps really even more difficult, is less prominent. As Hacckel points out, the carlier discussions and even the comparatively late essay of Johannes Maller take an almost purely psychological or at least a physiological point of view; and the morphological aspect of the inquiry only came forward when the study of much lower forms, such as Cestoic worms (see Platyblmia) or Siphonophores (see Hydrozoa), had raised the difficulties with which botanists had so long been familiar. With the rapid progress of embryolory, too, arose new problems; and in 1842 Streenstrup introduced the conception of an P. alternation of generations "as a mode of origin of distinc: individ. uals by two methods, for him fundamentally similar, the sexual from impregnated females and the asexual from unimpregnated "nurses " -a view adopted by Edward Forbes and many other saturalists, but keenly criticized by W. B. Carpenter and T. H. Huxley. In R. Leuckart's remarkable essay on polymorphism (1853) the Siphonophora were analysed into colonies, and their varied organs shown to be morphologically equivalent, whlle the alternate generations of Steenstrup were reduced to a case of polymorphism in development. Leuckart further partly distinguished individuals of different orders, us well as between morphological and physiological individuals.
In 1852 Huxley, starting from such an undoubied homology as that of the egg-producing process of $H y d r a$ with a frce-swinming Medusoid, pointed out that the title of individual, if applied to the lather, mutit logically be due to the forner ako, and avoideg this
animal, as Gallesio had dose the plant, as the entire product of an impregnated ovum - the swarm of Aphides or Itee Medusae which in this way might belong to a single individual being termed Zooids.
In Carus's Syslem of Animal Morphology (1853) another theory was propounded, but the problem then seems to have fallen into abeyance untid 1865, when it formed the subject of a prolonged and fruitful discussion in the Principles of Brology. Adopting the cell (defined as an aggregate of the lowest order, itsell lormed of phytiological units) as the morphological unit, H. Spencer points out that these may cither exist independently, or gradually exhibit unions into aggregates of the second order, like the lower Algae, of which the individuality may be more or less pronounced. The union of euch secondary aggregates or compound units into individuals of a yet higher order is then traced through such intermediate forms as are represented by the bigher seaweeds or the liverworts, from the thallua of which the axes and appendages of Monocotyledons and Dicotyledona are ingeniously dorived. The shoot of a fowering plant is thus an aggregate of the third order: it branches into an aggregate of the fourth or higher order, and finally as a tree "acquires a degrec of composition too complex to be any tonger defined." Proceeding to animals, the bame method is applied. The Protozoa are aggregates of the first order. These, like plants exhibit transitions, of which Radiolarians, Foraminifera and aponges are taken as examples, to such definite compound wholes as H ydra; and such secondary aggregates multiply by gemmation into permanent aggregates of the third order, which may exhibit all degrees of integration up to that of the Siphonophora, where the individualities of the Polyps are almost lout in that of the aggregate form. The whole serien of articulated animals are next interpreted as more or lens integrated aggregates of the third order, of which the lower Annelids are the lens developed forms, the Arthropods the more highly integrated and individualized. Molluscs and vertebrates are regarded as aggregates of the second order.

In 1866 appeared a morphotorical classic, the Cenerells Morphologie of Haeckel. Here pure mephology is distinguished into two sub-sciences-the first purely structural, teciology, which regards the organism as composed of orga aic individuals of different orders; the second essentially stereometric, promorphology. To tectology, defined as the science of organic individuality, a large section of the work is devoted. Dismissing the theory of absolute individuality as a metaphysical figment, and starting from the view of Schleiden, De Candulle and Nagcli of scveral suocessive categories of relative individuals, he distinguishes mare clearly than heretofore the physiological individual (or bion), characterized by definiteness and independence of function, from the morphological individual (or morphen), characterized similarly by definiteness of form: of the latter he establishes six categories, as follows:-

1. Plostides (cytodes and celt:) or elementary organisms.
2. Organs (cell-stocks or cell-ivsions), simple or homoplastic or gans (tissues), or beteroplastic organs. Organ-systems, organ-apparatuses.
3. Antimeres (opposite or synn netrical or homotypic parts), e-s. rays of radiate animals, "halves of bilaterally symmetrical animals.
4. Metameres (successive or homodynamous parts), e.p. stemsegments of Phanerogams, eegments or zoonites of Annelids or vertebrates.
5. Personcte, shoote or buds of plants, polypa of Coelenterates, \&c., " individuals" in the narrowest scnse among the higher animals.
6. Corms (stocks or colonies), e.g. trees, crains of Salpae, polypstocks, ac.
In his subsequent monograph on calcareous sponges, and in a final paper, he somewhat modifies these categorics by substituting one category of extreme comprehensiveness, that of the idorgan, in place of the three separate orders of organs, antimeres and metameres. The idorgan (of course clearly distinguished from the physiological organ or blorgan) is finally defined as a morphological unit consisting of two or more plastids, which does not possess the positive character of the person or atock. These are distinguished into homoplasts or homo-organs and alloplasts or alloe-organs, the former including, as subdivisions, plastid-aggregates and plastidfusions, the latter idomeres, antimeses and metameres. The former definition of the term antimere, as denoting at once each eeparate ray of a radiate, or the right and left halves of a bilaterally symmerrical animal, is corrected by termini each my a paramere, and its symmerrical halves the antimeres. Thus an ordinary Medusoid has four parameres and eight antimeres, a starfish Give and ten. The conception of the persona is largely modified, not only by with. drawing the comparison of the animal with the vegctable shoot and by omitting the antimere sind metamere as necessary constituents, but by taking the central embryonic form of all the Metamoa-the gastrula (fig. I) and its assumed ancestral cepresentative, the ges-traea-as the simplest and oldest form of persona. The different morphological stages to which it may attain arr chassified into three series: (1) Monaxonial inarticulate personae, i.f. uniaxial and unsegmented without antimeres or metamerce, as in aponges or lowest Hydroids; (2) Stauraxonial inarticulate personae with antimeres. but withour metameres, e.p. coral, medusa, turbellarian, trematode bryozoon; (3) Staurakonial arriculate personae with entimeres and
metameres, e.g. annelids, arthropods, vertebrates. The colonite of protozoa ane mere idorgans. True corms, compased of united personae. occur only among sponges, hydroids. iphonophores, corals, bryozoa, tunicates and echinoderms, of which the apparent parameres are regarded. as highly centralized personae of a rudially budded worm colony; and these can beclassified according to the morphological rank of their constituent personac. They usually arise by gemmation from a single per: sona, yet in sponges and corale occasionally, by fusion of several originally distinct persons or corms. The theory of successive subordinate orders of individuality being thus not only derived from bistorical criticism of previous theories but brought into conformity with the actual facts of development and descent-various groups of organisms being referred to their several categories-the remaining peoblem of tectology, that of the relation of the morphological to the physiological individuality, is finally discussed. Of the latter, three categories are proposed: (I) the "' actual bion or cormplete physiological individual," this being the completely developed organic form which has
(witer Haeckel.)
Fig. 1.-Gastrula in cptical section, showing Jrimitive opening and digestive cavity (blasto-I-rre and arch-enteron) \therefore also outer and inner layers, ectoderm and encoderm. of morphological individuality proper to reached the highest grade of its species; (2) the " virtuat bion or potencial physiological individual," including any incompletely developed lorm of the lommer from the ovum upwardsi and (3) the " partial bion or apparent physiological individual," such fragments of the actual or virtual bion as may possess temporary independence without reproducing the species-this latter category having, however, inferior importance.
Hacckel's theory, indeed in its earlice form, has been adopted by C. Gegenbaur and other morphologists, also in its later form by C. Jager, who, however, rejects the category of idorgan on the ground of the gencral morphological principle that every natural body which carries on any chemical changes with its entironment becomes differentiated in to more or Iess concentric layers; but the subject, especially as far as animals are concerncd, was again discussed in a large work by E. Perrier. Starting from the cell or plastid, he terms a permancnt colony a meride, and uhese may mmailn isolated like Sagitla or Rotifer, or may multiply by gemmation to form higher aggregates which he terms zoides. Such zoides may be irregular, radiate or linear aggregates, of which the two former classes especially are termed demes. The organ-Haeckel's idorgan -is excluded, since tissues and organs result from division of labour in the anatomical clements of the merides, and so have only a secondary individuality, "carefully to be distinguished from the individuality of those parts whose direct grouping has lormed the organism, and which live still, or have lived, isolated from one another." Perrier further points out that the undifierentiated colonies are sessile, as sponges and corals, while a free tate of existence is associaled with the conccntration and integration of the colony into an individual of a higher order.
So far the various theorics of the subject; detailed criticism ia impossible, but some synthesis and reconciliation must be astempted. Starting from the cell as the morphological unit, we find these forming homogencous aggregates in some Protozoa and in the eerly development of the ovum. But integration into whote, not merely aggregation into a mass, is essential to the idea of individuality; the earlicst secondary unit, therefore, is the gestrula or méride. This stage is permanently represented by an unbrancbed hydroid or sponge or by a planarian. These secondary units may. however, form aggregates either irregular as in mosti sponges, indefnitely branched as in the hydroids and acsinozoa, or linear as in such planarians as Calenula. Such aggregations colonies or demes, not being aggregated, do not fully reach individuality of the third order. This is attained, however, for the branched eeries by such forms as Siphonophores among Hydrozoa, or Ramilla or Petnafula among Acrinozoa; for linear aggregates again by the higher worms, and still more fully by arthropods and vertebetes. Aggreeates of a yet higher order may accur, though rarty. A longitudinally dividing Nais or laterally branched Syitis are obviousy aggregates of these tertiary units, which, on Haeckel's view, become integrated in the Echinoderm, which would thus read a complete individuality of the fourth order. A chain of Salps or a colony of Pyrosoma exhibits an approximation to the same raik, which is more nearly obtained by a radiate group of Botryllus around their central cloaca, white the entire colony of such an escidian would represent the individual of the fifth order in its incipient and thintegrated state-these and the preceding interntediate forms being, of course, readily intelligible, and indeed, as:Spencer has thown, inevitable on the theory of evolution.

The exclusion of tissues and organs from rank in this eeries is thus seen to nerescarily follaw. Ectodierm and endoderm cannot crite alape; they and the orgens into which they differeatiate
arise merely, as $\}$ Iger expresses it, from that concentric lamination, or, with Perrier, from that polymorphism of the members of the colony, which is associated with organic and social existence. The idea of the antimere is omitted, as being essentially a promorphological conception (for a medusoid or a starfish, though of widely distinct order of individuality, is equally so divisible); that of the metamere is convenient to denote the gecondary units of a linear tertiary individual; the term persona, however, seems unlikely to survive, not only on account of iss inseparable psychological connotations, but because it has been somewhat vaguely applied alike to aggregates of the second and third order; and the term colony, corm or deme may indifferently be applied to those aggregates of primary, secondary, tertiary or quaternary order which are not, however, integrated into a whole, and do not reach the full individuality of the next higher ordor. The term zooid is also objectionable as involving the idca of individualized otgans, a view natural while the medusold gonophores of a hydrozoon were looled at as evolved of its homologue in Hydra, whereas the latter may be a degenerate form of the former. Passing to the vegetable world, here, as before, the cell is the unit of the first order, while aggregates representing almost every stage in the insensible evolution of a secondary unit are far more abundant than among animals. Complete unity of the second order can hardly be allowed to the thallus, which Spencer proposes to compound and insegrate into tertiary aggregates-the higher plants; as in animals, the embryological method is preferable, both as avoiding gratuitous hypothesis and as leading to direct results. Such a unit is clearly presented by the embryo of higher plants in which the cell-aggregate is at once differentiated into parts and integrated into a whole. Such an embryo possesses axis and appendages as when fully developed (fig. 2). The latter, however, being as organs mere lateral expansions of the concentric layers into which the plant embryo. like the animal, is differentiared, and so neither stages of evolution ror capable of separate existence, are not entitled to individual rank. The embryo, the bud, shoor or uniaxial plant, all thus belong to the second order of individuality. like the hydroid they resemble. Like the lower coelenterates, 100 , aggregates of such axes are formed by branching out from their low degree of integration. Such colonies can hardly be termed individuals of the third, much lews of higher, order, at least without somewhat abandoning that unity of treatment of plants and animals without which philosophical biology disappears. Individuality of the second order is most fully reached by the flower-the most highly differentiated and
integrated form of axes and appendages. Such a simple inflorescence as a racene or umbel approximates to unity of the third order, to which a composite flower-head must be admitted to have nttained while a compound inflorescence is on the way to a yet higher stage.

1f, as seems probable, a nomenclature be indispensable for clear expression, it may be simply arranged in conformity with this view. Starting from the unit of the first order. the plastid or monad, and terming any undifferentiated aggregate a derne, we have a monad-dene integrating into a econdary unit or dyod, this rising through dyad-demes, into a biad, this forming triad-demes, and these when differentiated becoming embryonic layers. tetrads, the botryllus-colony with which the evolution of compound individuality terminotes being a tatrod-dems. The separate living form, whether naonad. dyad, triad, or tetrad, requires also some distinguishing mame, for which persons will probably ultimately be found most appropriate, since such usage is most in harmony with tts inevitable physiological and poychological connotations, while the genealogical individual of Gallesio and Huxley, common atso to all the categories, may be designated with Haeckel the ovem-product or ovum-cycle, the complete serice of forms needed to represent the species being the species-cycle (though this coincides with the former save in cases where the sexes are separate, or polymorphism occurs). For such a peculiar case as Diplonoon paradoxum, where two separate forms of the same species coalesce, and still more for such heterogeneous individuality as that of a lichen, where a composite unit arises from the union of two altogether distinet forms-lungus and alga-yet additional categories and terms are required.

Promorphology.-Just as the phyoiologist constantly seeks to interpret the phenomena of function in terms of mechanical. physical. and chemical laws, to the morphologist is tempted to inguire whether organic as well as mineral forms are not alike reducible to simple mathematical law. And just as the crystallographer constructs an ideally perfect mathematical form from an imperfect or fragmentary crystal, so the morphologist has irequently attempted to reduce the complex-curved surfaces of organic beings to definite mathematıcal expression. Canon Moseley (Phil. Trans.. 1838) succeeded in showing, by combination of measurement and mathematical analysis, that the curved surface of any turbinated or diacoid shell might be considered as generated by the revolution. about the axis of the sbell, of a curve, which continually varied its dimensioas
according to the law of the logarithmic apiral. For Goodsir this logarithmic spiral, now carved on his tomb, scemed a fundamental exprestion of organic curvature and the dawn of a new epoch in natural science-that of the mathernatical investigation of organic form-and his own elaborate measurements of the body, its organs, and even its component cells seemed to yield, now the triangle, and again the tetrahedron, as the fundamental form. But such supposed results, savouring more of the Naturphilosophie than of sober mathematics, could only serve to discourage further inquiry and interest in that direction. Thus we find that even the beat treatises on botany and zoology abandon the subject, satisfied with merely contrasting the simple geometrical ground-forms of crystals with the highly curved and hopelessly complicated tines and surfaces of the organism.
But there are other considcrations which lead up to a mathematical conception of organic form, those namely of symmetry and regularity. These, however, are usually but little developed, botanists since Schleiden contenting themselves with throwing organioms iato three groupo-first, absolute or regular: second, regular and radiate; third, symmerrical bilaterally or zygomorphic- the lant being capable of division into two halves only in a single plane, the second in two or more planes, the first in none at all. H. C. C. Burneister, and more full ${ }_{Y} \mathrm{H}$. G. Bronn, introduced the fundamental improvement of defining the mathematical forms they sought not by the surfaces but by axes and their poles; and Haeckel has developed the suhject with an elaborateness of detail and nomenclature which scems unfortunately to have impeded its study and acceptance, but of which the main results may, with slight variations chiefly due to Jager (Lehrb. d. Zood. i. 283), be briefly outlined.
A. ANAXONIA : Forms destitute of axcs, and consequently wholly irregular in form, e.p. Amocbae and many spanges.
B. AXONIA: Forms with definite axca.
I. Homaxonia, all axes equal.
(a) Spheres, where an indefinite number of equal axes can be drawn through the middle point, e.f. Sphacrosoum.
(b) Polyhedra, with a definite number of like axes.

Of these a considerable aumber occur in nature, for example, many radiolarians (fig. 3), pollen-grains, \&c., and they are again classifiabte by the number and regularity of their faces.
II. Protaxonia, where all the parts are arranged round a main axis, and of these we distinguish-

1. Monaxomia, with not more than one definite axis. Here are distinguiahed (a) those with similar poles, spheroid (Coccodiscus) and cylinder (Pyrasoma) and (b) those with dissimilar poles, cane (Comulina).
a. Stauparonio, where, besides the main axes, a definite number of secondary axes are placed at right angles, and the stereometric ground form becomes a pyranid. Here, again, may be dit tinguished (a) those with poles similar, Slampaxonia homopola, where the stercometric lorm is the double pyramid (fig poles dissimilar, Stayraxonia helerofola form is the single pyramid, and where we distinguish a basal, usually oml, pole from an apical, aboral or anal pole. The bases of these may be either regular or inegular polygons, and thus a new classification into Homostaura and Heleraslamia naturally arisea

The simpler group. the Homostaura, may have either an cven or an odd number of sides, and thus among the Homostaura we have even-sided and odd-cided. single and double pyramida. In those Homostaura with an even number of sides, such as medusie, the radial and inter-radial axes have similar poles: but in the serics with an odd aumber of sides, like most echinoderms each of the transverse axes is half radia and half remi-radial (ig. 5). Of the group of regular double pyramids the twelve-sided pollen-grain of Passifione (fig. 4) may be taken as an example. having the ground.form of the hexagonal aystem, the bexagonal dodecahedron. of the equal even-sided single pyramids (Heteropola homostaura) Alcyoniam. Geryonic, Aurolia may be taken ab examples of the eight-sided, six-sided and four-sided. pyramids while thowe with an odd number of siden may be illustrated by Ophiare or Primula with five sides, and the flower of lily or rush with three sides.
In the highest and most complicated group, the Heterontaura,
the basal polygon is no longer regular but amphithect (dupionstso edouble-edged). Such a polygon has an even number of sides, and can be divided into symmetrical halves by each of two planes intersecting at right angles in the middle point, and thus dividing the whole figure into four congruent polygons. The longer of these axes may be termed lateral, the shorter the equatorial or dorsoventral; and these two axes, along with the main axes, always define the three dimensions of space. Ctenophores (fig. 6) furnish examples of eight-sided amphithect pyramids, some Madrepore Corals of six-sided, Crucifers, some Medusae, and Cestodes of four-sided amphithect pyramids.
In these forms the poles of the dorso-

Fig. 5.-Starfish, an example of Heteropola homostaura. Groundform a regular single pyramid of five sides. ventral and lateral axes are similar, and, as in the preceding Monaxonia and Stauraxonia, the centre of the body is defined by a line; and they are therefore termed Centraxonia, while the Pro taxonia which are defined by their central point are called Centrostigma. There are, however, other forms, and these the most complicated, in which the poles of at

Fig. 6.-Ctenophore (Etucharis) Ground-form an eight-sided double amphithect pyramid.

Fig.7.-Spatangus. Ground form a five-sided hall amphitheet pyramid.
teast the dorso-ventral axis are unlike, and in which the body is thus defined not with reference to a line but to a median planc, and these have accordingly received the name of Centropipeda. Their ground-form is a polygon with an even number of sides, which can only, be divided into two symmetrical halves by the one median plane. It can be obtained by halving an amphithect pyramid of double the number of sides, and is consequently termed a half amphithect pyramid (fig, 7). The whole amphithect pyramid may be most conveniently obtained by the reduplication of the ground-form as if in a mirror. Of hall amphithect pyramids there are again two forms, termed by Haeckel Amphipleura and Zygophewra, the former including the "bilaterally symmetrical" or irregularly radiate forms of previous authors, such as Spatangus Viola, Orchis, while the Zygopleura include forms bilaterally symmetrical in the strictest sense, in which not more than two radial planes, and these at right angles to each other, are present, The sterometric ground-form is a half rhombic pyramid. Haeckel again divides these, according to the number of antimeres, into Telraplewra and Dipleura.

Promorphology has thus shown that the reigning dogma of the fundarmental difference of organic and mineral forms is false, and that a crystallography of organic forms is possible-the form of the cell or the cell-aggregate differing from the crystal merely by its more or less viscous state of aggregation, its inherited peculiarities, and its greater adaptability to the environment. The classification into bilateral and radiate forms which usually does duty for more precise promorphological conceptions must be abandoned as hopelessly confusing essentially different forms, or at teast must be rigidly restricted-the term radial to regular and double pyramlds, the term bilateral to the Centropipeda if not indeed to dipleural forms. Similarly the topographical and relative terms, anterior and posterior, upper and under, horizontal and vertical, must be superseded by the terms above applied to the axes and their poies, oral and aboral, dorsal and ventral, right and left.

Nature of Morphological Changes.- The main forms of organic structure being analysed and classified and their stage of individuality being ascertained, the question next arises, by what morphological changes have they arisen, and into what categories can these modes of differentiation be grouped? They at fret sight seem innumerahle, yet in reality are few. Goethe somewhat vaguely generalized them for the flower as ascending and descending metamorphoais, expansion and contraction of organs, Ac.; but the first attempt at careful enumeration seems to be that of Auguste de St Hilaire, who recognized defects of development, adherences. excesses of production or "deddoublements," metarnorphosis and displacement of organs. Subsequent authors have variqutly treated
the subject; thus Asa Gray onumerates as modifications of the
flower-coalencence, adnation, irregularity, abortion, mon-altomnation or anceposition, multiplication, citith, it nusual development of the axis, and other morphological moditictions connected with fertilization. These are obviously 100 nunmerous, as anay be best shown by a single comparison with the virw of an animal morphologist. Thus Huxley, in discussing the arringement of the Vertebrata, recognizes only three processes of modification, not oaly in the ancestral evolution of the Equidae, but in the individual development of animals generally; these are " (1) cseese of development of some parts in relation to others, (2) partial or complete suppression of certain parts, (3) coalescence of parts originally distinct." The particular form of excess of development which results in the repetition of parts, and the morphological changes due to partial or complete fusion of such repeatad parts receive special treatment in the article Metamerism.

Natupe of Morphological Correspondence-Categories of Homelogy. -To indicate all the steps by which the idea of nuorphological resemblance has been distinguished from that of physiological would be to examine the whole history of morphology; it must suffice to discuss the terminology of the subject which has, as ever, ecrved not only as an index but as an engine of progress. For these two distinct forms of resemblance the terms homology and amakogy gradually became specialized, and were finally established and clearly defined by Owen in 1843-" the former as the same organ in diferent animals under every variety of form and function (e.g. fore-limbs of Draco volans and wings of Bird) the gecond as a part or organ in one animal which has the same function ass another part or organ in a different animal (e.g. parachute of Draco and wings of Bird)." He further distinguishes three kinds of homology: (I) special, being " that above defined, namely, the correspondence of a part or organ determined by its relative pecition and connexions with a part or organ in a different animal, the determination of which homology indicates that such animaly are constituted on a common type," e.f. basilar process of human occipital with basi-occipital of fish; (2) genercl, that " higher rel.tion in which a part or series of parts stands to the fundamental or general type, involving a knowledge of the type on which the groap in quetion is constituted," e.g. the same human bone and centrum of the last cranial vertebra; (3) serial homology, "representative or repetitive relation in the gegments of the came skeleton" (demonstrated when general and special homologies have been ditermined): thus usually the basi-occipital and basi-sphenoid are "homotypes." These terms were henceforth accepted by maturalists: but the criterion of analogy and homology became for L. Agastiz and other embryologists developmental as well as comparative, reference to the ideal archetype becoming less and less frequent. Passing over the discussions of L. Agassiz and Bronn, of which the latter is criticized and partly incorporated by Haeckel, we find the last-named (i) placing serial under general homology: (2) erecting categories of homology partially correaponding tothose of individuality - (a) homotypy (of antimeres), hence disfinct from that of Owen, (b) homodymamy (of metameres), (c) homonomy (of parts arranged on transverse axes): (3) defining special homology in terms of identity of enbryomic origin. In 1870 this latter point was more fully insisted upon by Ray Lankester, who, decomposing it into two others, proposed to supersede the term homology by homogeny being the correepondence of common descent, and homoplasy, denoting any superinduced correspondence of posilion and structure in parts embryonically distinct. Thus, the fore-limb of a mammal is homogenous with that of a bird, but the right and left ventricles of the heart in both are only homoplastic, these having arieen independently since the divergence of both groups front a uni-ventriculave ancestor in relation to similarity of physiologistal needs. $\mathbf{S t}_{\text {i }} \mathbf{G}$. Mivart next proposed to retain homology as a generic term, with homogeny and homoplasy as two species under it, and carried the analysis into great detail, distinguishing at first twenty-five, but later fifteen, kinds of correspondence: (i) parts sisilar in function only, eg. legs of lizard and lobster; (2) parts similar both in function and relative position, wings of bat and tird; (3) perts of common descent, fore-limb of horse and rhinoceion: (4) parts of similar embryonic origin, whatever be their racial genetic relations, e.g. occipitals of panther and perch; (5) part of diesimilar embryonic origin, whatever be their racial genetic relations, e.s Iegs of Diptera; $(6,7,8,9,10)$ laterafly, vertically, serially, anteroposteriorly and radially homologous parts: (11) sabordinate serial homologues, e.8- joints of antenna: (12 and 13) sec madary and tertiary subordinate serial homologues; (14 and 15) srsxial and general homologies (in Owen's sense). In his Kalksch; proposed to term komophyly the truly phyloges opposition to homomorphy, to which gencalogic and
view
In this discussion, as in that of Individuality, poond dealing with numerous logical cross-divisinas harely corre ponding, no doubt, to the compiex web of inter-rustions presented by nature, yet remaining in need of disentanglemunt. Though we muel set aside analogies of functional activity, the resemblances in external shape or geometric ground-form which correapond to
theme, eg. Hydronoa and Bryozon, Fiaher and Cetaceans, mimetic
organisms, are nevertheless, as our historic survey showed, the firs which attract attention: and these homoplastic or homomorphic forms, as Hacckel has shown, come as fairly within the provinct of the promorphulogist as do isomorphic erystals within that of his an-organological colleague the crystallographer. Here, too, prould be considered "radial," "vertical," "lateral" homology, " hamotypy of antimeres," and all questions of symmetry, for which Haeckel's numenclature of homaxonial, homopolic, \&c., is distinetly preferable. Entering the field of tectology or morphology in the ordinary sense, we may next consider whether two organisms compared are of the same category of individuality-are homocategorss and under this serial homology, for instance, would come as a minor division, the correspondence between the units or parts o units of a linear dyad-deme or triad. From a third point of view that of the embryologist, we trace the development of each multi cellular organism (1) Trom the embryonic layers and systems int which the secondary unit (gastruła or plant embryo) differentiates, (2) Irom a unit-deme or unit of the infcrior order or orders o individuality. The parts and units thus recognized by ontogenetis rescarch, respectively or successively homodermic, homosystemic and homodemic, may then conveniently be termed (indifterentl) save for considerations of priority) either "specially homologous, "homogenous," "homophylic." or "homogenetic," in the languag of phylogenctic theory. These three great classes of morphologicia correspondence-promorphological, tectological and embryological -may or may not coincide. But the completest homology, in which all forms of resemblance unite and from which they differen tiate, is that expressed in the cell theory, or rather in that ovur theory which underlies it, and which Agassiz therefore not unjustly regarded as " the greatest discovery in the natural sciences of modern. times.

Orientation and Subdivisions of Morphology.- The position of morphology in the classification of the sciences and the proper mode of subdividing it cannot be discussed within these limits, although the latter is especially the subject of much disagreement. The position above assumed, that of including under morphology the whole statical aspects of the organic world, is that of Haeckel, Spencer, Huxley and most recent animal morphologists; botanists frequently, however, still use the term under its earlier and more limited significance (sec Plants: Morphology).
(P. GE. ; P. C. M.)

MORPHY, PAUL CHARLES ($1837-1884$), American chess player, was born in New Orleans, Louisiana, on the 2 2nd of June 1837 , the son of Alonzo Morphy (1708-1856) and his wife, whose maiden name was Le Carpentier. The father, the son of a well-to-do Spanish immigrant, was a prominent jurist and legislator and, like his brother Ernest, passionately fond of chess. Learning the moves from his father at the age of ten, Paul gaveevidence of such extraordinary precocity that in less than two years he was able to defcat all the amateurs of his native city. While still at school he competed successfully with such strong players, as Eugene Rousscau and the Hungarian master J. Lowenthal. He attended the Jesuit college of St Joseph at Spring Hill, Alabama, and applied limself to the study of the law, being admitted to the bar of Louisiana in 1858 . During the autumn of 1857 he took part in the Grst American chess congress at New York, winning the first prize from sixteen competitors, including the well-known L. Paulsen. Morphy went to Europe in the spring of 1858 and entered upon a series of triumphs, both in regular matches and in blindfold play, that proved him 10 bo one of the best players of the time. The winter of $1858-185 \%$ was passed in Paris, where he was destined to gain his greatest triumphs, practically winning the championship of the world by beating Adolf Anderssen, champion of Germany, by a score of 7-2, with two grames drawn. Another feat was his simullaneous blindfold match against cight strong French players. six of whom be defeated. At this time he was in his twentysecond year. Returning to the United States in 1859 , he intended to establish himself in the practice of the law at New Orleans, but the outbreak of the Civil War frustrated thesa plans. His devotion to chess had already begun to affect his health. He spent the year 1863 in Paris, returning to New Orleans in $: 864$, but his health was now permanently impaired. He became insane, and at last he died in New Orleans in 1884.
See Exploils and Triumphs of Paul Morphy, by F. M. Edge (New York, 1859) ; Morphy's Games, edited by J. Lowenthal (New York. 1860); Paul Morphy, by Max Lange (Leipzig, 1881).

MORRILL, JUSTIN SMITH (1810-1898), American politiral

r828, and at Portland, Maine, in 1828-1831, and was a merchant and then a farmer in his native town in $1831-1855$. He was elected to the national house of representatives as an antislavery Whig in 1854 , scon afterwards joining the new Republican party, and served in the house from 1855 until 1867. From 1867 until his death in Washington on the 28 th of December 1898 he represented Vermont in the Senate. In the house he was continuously a member of the ways and means committee (of which he was chairman in 1865^{-1867}), and in the Senate of the finance committee (of which he was chairman in 1877-1879, 1881-1893 and 1893-1898). Soon after entering Congress he became the acknowledged leader of the protectionists, and at the request of John Sherman, then chairman of the ways and means committee, he prepared a new tarifi bill, whith was introduced in the bouse in March 1860. To this relatively conservative bill, which substituted in many instances ad valorem for specific dutics, and was intended by its author to be a revenue as well as a protective measure, were added many amendments which made the bill more strongly protectionist, and in some cases were vigorously opposed by Morrill. The bill was finally passed by the Senate on the 20th of Februery $\mathbf{1 8 6 r}$, and was signed by President Buchanan on the and of March following. Morrill is probably best known as the author of the Land Grant Act of 1862, which led to the development of the highly important system of state educational institutions, sided by the Federal government. On the 14th of December 1857, Morrill introduced in the house a hill " donating public lands to the several states and Territories which may provide colleges for the benefit of agriculture and the mechanic arts." This bill passed both houses, but was vetoed in February 1859 by President Bechanan on the ground that it would cause friction between thestates, that it would be uneconomical, that it might encourage fraudulent speculation, that It would injure existing institutions, and that it was unconstitutional. A similar hill was ineroduced by Morrill on the I6th of December $\mathbf{1 8 6} \mathrm{r}$, and five months afterwards was presented to the Senate by Benjamin Wade of Ohio. The measure had a negative report from committee in the house, and was strongly opposed in the Senate; hut it pessed both branches, and on the and of July 1862 was signed by President Lincoln. This mensure provided for the foundation and maintenance of colleges " where the leading object shall he, without excluding other scientific and classical studies, and inciuding military tactics [which had not been included in the original bill], to teach such branches of learming as are related to agriculture and the mechanic arts. . . in order to promote the liheral and practical education of the industrial clasees in the several pursuits and professions in life." In r890 Morrill introduced in the Senate the so-called "Second Morrill Act," under which \$25,000 is given annually by the Federal government to each of the " lind-grant" collegen.

TOBRIS [MORESON], CHARA (1849-), American actress, was born in Toronto, Ontario, and at the age of seventeen joined a stock company in Cleveland, Ohio. Her first New York appearance (1870) was under Augustin Daly hn an adaptation of Wilkie-Collins's Men and Wife; and she won considerahle succens as Cora in L'Ardicle 47, Camille, Miss Multon andsimilar emotional parts. In 1874 she married Frederick C. Harriott, and soon afterwards began to write novels and to contribute to magazines. She published her Lifo on the Slage in 1901, and Life of a Star in rgo6.

HORRIS, GOUVERNBUR (1752-1816), American statesmana was born in the old Morrisania manor house, in what is now the city of New York, on the 3 rat of January 1752 . He graduated at King'a College (now Columbia University) in 1768 , studied law, and was admitted to the bar in 1771. Nev York, then in the midst of the political disturbances which preceded the outbreat of the War of American Independence, offered a good opportunity for a public career, and Morris had the acistocretic connexions which tradition required. ${ }^{1}$ An extreme aristocrat
${ }_{1}$ His great grandfather, Ricifard Moriss, having fought in Cronnwell's armies, emigrated to America on the restoration of Charles If., and founded the manor of Morrisnia, in what was then New Netherland. His prandiather. Lewis Mongis (1671-1746), inherited this
in his political views, he distrusted the democratic tendencies of the Whigs, but a firm belief in the justice of the American cause led him to join their ranks. His half-brother, Stasts Long Morris (1728-1800), was a Tory, fought in the Bricish army, and became a major-General. Couverneur served in the New York Provincial Congress in 1776-1777, was perhaps the leading advocate in that body of a declaration of independence, and after the Congress had become (July 1776) the "Convention of the Representatives of the state of New York," be served on the committee of that body which prepared the first draft of the state constitution. He served in the Continental Congress in 1777 1779, and was enthusiastic in his support of Washington. In 1778 he was selected chairman of the committee to treat with Lord North's conciliation commissioners, and as such presented the famous report, adopted by a unanimous vote of Congress, which declared that the recognition of independence must precede any negotiations for peace. He settled in Philadelphia as a lawyer, and in February 1780 he published in Philadelphia a series of essays on finance, in which he criticized the issue of legal-tenders, denounced laws passed for the benefit of the debtor class, and urged the people to tax themselves for the common good. From 1781 to 1785 be was assistant to Rohert Morris (q.v.), superintendent of finance. In 1789 he prepared an elaborate report on the coinage, suggesting the use of the decimal system and of the terms dollar and cent. With some modifications introduced by Jefferson, notably the adoption of a higher unit of value (the dollar instead of one-tenth of a cent), this plan constitutes the basis of the present American system. Morris was one of Pennsylvania's representatives in the constritutional convention of 2787 , and took an active part in the debates. His influence was weakened, however, by his cynicism and by his ultra-aristocratic views. He favoured a strong executive holding during good behaviour, an aristocratic senate appointed by the president for life, and the restriction of the suffrage to freeholders. The struggle which the frontier settlers of Pennsylvania had made in the state legislature to secure unlimited issues of paper money and the enactment of laws favourable to the debtor class prejudiced him against the West, and he tried to introduce into the constitution a clause guaranteeing forever the political supremacy of the states east of the Alleghanies. He was instrumental in securing the executive veto and in defeating the proposal that the legislature should elect the president, He also gave able support to the nationalistic and anti-slavery factions in the convention. He was the member of the committee of revision selected to draft the constitution in its final form, and that document is a monument to the vigour and simpliclty of his literary style. In 1787 be bought Morrisania from Staats Long Morris, and returned to New York to live.

He went to France in February $\mathbf{1 7 8 9}$ on private business, and remained ahroad for nine years, passing most of the time in Paris, London, and the German capitals. In 1792 he acted as financial agent in a daring attempt to secure the escape of the king and queen from Paris. He was appointed United States minister to France in 1792, and was the only representative of a foreign country who remained at his post throughout the Reign of Terror; but his ill-concealed attitude of hostility to the Revolu-
manor and also a large estate from his uncle in Monmouth county. East jersey. He was an influential advocate of the surrender of the proprietary government of the Jerseys to the Crown (1702), became a member of the New Jersey Council in 1703, was suspended by Covernor Cornbury in 1704, was elected a member of the Aseembly in 1707 and led that body in opposition to Cornbury, was reappointed to the Council under Governor Lovelace in 1708, was again suspended In 1709 by Licut. Governor Jngoldsby, wat made President of the Council in 1710 ynder Governor Hunter, and in 1711, during Hunter's administration (1710-1719), of which he was a ataunch supporter, was made a justice of the supreme court of New Jersey. He was chief justice of New York from about 1720 until 1733 , was sent to England by the popular party late in 1734 to present their grievances to the king, and was governor of New Jersy from 1738 until his death on the asst of May 1746. Gouverneur Morris's father, Lewis Moaxis (1698-1762), closed a long public career as judge of the vice-admiralty court of New York; his mother was descended from a Freach Protestant relugee, who had come to America to escape the persecution of Louis XIV.
tlon gave offence, and in return for the recall of Genet, at the request of the United States, the Freach government, in 1794, asked for the recall of Morris. Business and pleasure, however, still detained him in Europe for four years longer. He returned to New York in 1798, resumed the practice of his profession, re-entered politics, and sat in the United States Senate as a Federalist from 1800 to 1803 . As early as 1801 Morris became interested in projects for improving the communication hetween the Hudson river and Lake Erie, and from 1810 to 1816 he was chairman of the board of canal commissioners, which after exploring the country prepared plans for the Eric Canal. He was bitterly opposed to the war of 1812 , and openly advocated the formation of a northern confederacy to escape the rule of the "Virginia dynasty." He died at Morrisania on the 6th of November 1816.

His half-brother, Lewis Morais (1726-1798), a signer of the Declaration of Independence, was educated at Yale, served in the Continental Congress from 1775 until early in 1777 , and went on a mission to the western frontier in 1775 to win over the Indians from the British to the American side. He joined the army as brigadier-general of militia in June 1778. and served in the New York Senate $\ln 1777^{-1781}$ and $1784-1790$.

See The Diary and Lethers of Gonvernewr Morris (2 vols., New York, 1888), edited by Anne Cary Morris; Jared Sparks, Life of Gowernewf Morris (3 vols., Boston, 1832). the first volume being a biography and the second and third containing Morris's miscellaneous writings and addresses: and Theodore Roosevelt, Gonverneur Morris (Boston, 8888), in the "American Statesmen "series.

10RRIS, JOHM (1810-1886), English geologist and palseontologist, was born at Homerton, London, on the 19th of February 1810. He was brought up to tbe business of a pharmaceutical chemist. Early in life he published observations on the Tertiary and Post-Tertiary deposits in the Thames valley, and on fossil piants and various invertebrata, in the Magasine of Nafural History, the Annals of Nat. Hist. and other jourmals. In 1845 he issued his Catalogue of Brilish Fossils (2nd ed., 1854), 2 work of essential service to geology. He was also author (with John Lycett) of A Monograph of the Mollusca from the Great Oolite (Palaeontographical Soc., $1850-1853$). In 1855 he became professor of Geology in University College, London, a post which he held until 1877. In 1868-1870 and 1877-1878 he was president of the Geologists' Association. He was awarded the Lyell medal by the Geological Society in 1876, and was made Hon. M.A. of Camhridge in 1878 in acknowledgment of his services as deputy Woodwardian professor during the final illness of Sedgwick. He died in London on the 7 th of January 1886.

MORRI8, SIR LEWIS (1833-1907), British poet, eldest son of Lewis Edward William Morris and Sophia, daughter of John Hughes of Carmarthen, was born at Penhryn in 1833. His great grandfather, Lewis Morris ($1700-1765$), had been a well-k nown Welsh poet and antiquary. He was educated at Sherborne School and Jesus College, Oxford, where be took first classes in classics (1853 and 1855). He won the chancellor's prize for an English essay in 1858, was called to the bar in 1861 , and elected hon. fellow of his old college in 1877. He practised for twenty years as a conveyancing counsel, retiring from active legal work in 1881. He was energetic on behalf of educational movements in Wales, and contested Welsh constituencies in the Liberal interest, but without success. He was knighted in 1896, and became also a Jubilec-medallist and Knight of the Redeemer of Greece. Comparatively late in life Sir Lewis Morris made his appearance as a writer of verse with three series of miscellaneous poems, called Songs of Two Worlds, puhlished respectively in 1872, 1874 and 1875 . These little volumes proved him to have a refined taste and a gentle metrical fluidity, which soon won for bis work considerable popularity. In 1876 and 1877 he made a more important venture with The Epic of Hades, an attempt to re-tell the stories of Hellenic mythology with a certain modern and allegorical setting. This work, though it is somewhat strained in sentiment and is not free from artistic infelicitiea, contains his best verse and has passages of undeniable force and effect. His later work follows too closcly upon the influence of Tennyson, from which he is never allogether free: but his earnest
didacticism, genlal optimism and evident sincerity have given his work a thoroughly wholesome moral influence. Among his other books were Graen (1880), Songs Unsung (1883), Cyria (1886), A Vision of Saints (1890), Idylls and Lyyics (1896) and The New Rambler (rgo6). He died at Carmarthen on the $13^{\text {th }}$ of November 1907.

MORRIS. RICHARD ($1835-1894$), English philologist, was born in London on the 8th of September 1833. In 1871 he was ordained in the Church of England, and from 1875-1888 was head master of the Royal Masonic Institution for Boys, near London. His first published work was The Etymology of Local Names (1857). Bet ween 1863 and 1880 he prepared twelve volumes for the Early English Text Society, edited Chaucer (1866) and Spenser (1869) from the original manuscripts, and published Specimens of Early Erglish (1867). His educational works, Historical Oullines of English Accidence (1878), Elamentary Lessons in Hislorical Englisk Grammar (i874) and English Crammar (1874), had a large sale and exercised a real influence. The rest of his life he devoted to the study of Pali, on which he became a recognized asthority. He died at Harold Wood, Essex, on the 12 th of May 1894 .

TORR1S, ROBRET (1734-1806), American financier, a signer of the Declaration of Independence, was born in Liverpool, England, on the 3 rist of January 1734 . He emigrated to A merica in 1747, entered a mercantile house, and in 1754 became a nember of a prosperous firm, which was known successively as Willing, Mortis \& Co.; Wilting, Morris \& Inglis and Willing, Morris \& Swanwick. In the conflict with the mother country Morris took the side of the colonists, but associated himsclf with the conservative group of Ponnsylvania Whigs who followed the lead of John Dickinson and James Wison, rather than with the more radical faction represented by Thomas Paine. He was vice-president of the Pennsylvania Committee of Safety (1775-1776), and a member of the Contimental Congress ($1775-1778$). At first he disapproved of the Declaration of Independence, but he joined the ot her members in signing it on the and of August. He retired from Congress in 1778, and was at once sent to the legislature, serving in 1778-1779 and in 1980-1781. His greatest public service was the financing of the War of Independence. As chairman or member of various committees he practically controlled the financial operations of Congress from 1776 to 1778, and when the board system was superseded in 1781 by single-headed executive departments he was chosen superintendent of finance. With the able co-operation of his assistant, Gouverneur Morris-who was in no way related to him-he filled this position with great efficiency during the trying years from 1781 to 1984 . For the same period he was also agent of marine, and hence head of the navy department. Through requisitions on the states and loans from the French, and in large measure through money advanced out of his own pocket or borrowed on his private credit, he furnished the means to transfer Washington's army from Dobbs Ferry to Yorktown (1781). In 1781 he established in Philadelphia the Bank of North America, chartered first hy Congress and later by Pennsylvania, the oldest financial institution in the United States, and the first which had even partially a national character. A confusion of public and private accounts, due primarily to the fact that his own credit was superior to that of the United States, gave rise to charges of dishonesty, of which he was acquilted by a vote of Congress. He was a member of the Federal Convention of $\mathbf{5 8 8 7}$, but took little part in its deliberations beyond making the speech which placed Washington in nomination for the presidency of the body. On the formation of the new government he was offered, but declined, the secretaryship of the treasury, and urged Hamilton's appolntment in his stead. As United States senator, 1789-1795. he supported the Federalist policies and gave Hamilton considerable assistance in carrying out his financial plans, taking part, according to tradition, in arranging a bargain by whicb certain Virginia representatives were induced to vote for the funding of the state debts in return for the location of the Federal capital on the Potomac. After the war he gradually disposed of his mercantile and banking
interests and engaged extensively in western land speculation. At one time or another he owned wholly or in major part nearly the entire. western half of New York state, two million acres in Ceorgis and abopt one million each in Penosylvania, Virginia and South Carolina. The slow development of this property, the failure of a London bank in which he had funds invested, the erection of a palatial residence in Philadelphia, and the dishonesty of one of his partners, finally drove himinto bankruptcy, and he was confined in a debtors' prison for more than throe yeats (1798 -1801). He died in Philadelphia on the $7^{\text {th }}$ of May 1806.

The best biography is E. P. Oberholtzer's Robert Morris, Patriol and Financier (New York, 1903), based ypon the Robert Morris papers in the Library of Congress; see alno W. C. Sumner's The Finascier and the Finances of the American Repolution (New York, 1891).

MORRIS, WILLIA $(3834-1896$), English poet and artist, third child and eldest son of William Morris and Emme Shelton, was born at Elm House, Walthamstow, on the 24th of Marcb 1834. His grandfather was a respected tradesman in Worcester, and his father, who was born in that town in 1997, came up to London in 1820 , and entered the office of a firm of discount brokers; in which he afterwards assumed a partnership. As a child the poet was delicate hut studious. He learnt to read very early, and by the time he was four years old was familiar with most of the Waverley novels. When he was six the family moved to Woodford Hall, where new opportunities for an out-of. door life hrought the boy health and vigour. He rode about Epping Forest, sometimes in a toy suit of armour, became a close observer of animal nature, and was able to recognize any bird upon the wing. At the same time he continued to read whatever came in his way, and was perticularly att racted hy the stories in the Arabian Nights and by the designs in Gerard's Herbal. He studied with his sisters' governess untii he was nine, when he was sent to a school at Waithamstow. In his thirteenth year his father-died, leaving the family well-to-do; the bome at Woodford was broken up, as being unnecessarily large; and in 1848 William Morris went to Marlborough, where his father had bought him a nomination. Morris was at the school three years, but got very little good from it heyond a taste for architecture, fostered by the school library, and an attraction towards the Angio-Catholic movement. He made but slow progress in school work, and at Christmas 1851 was removed and sent to a private tutor for a year. In June 1852 he matriculated at Exeter College, Oxford, but, as the college was full, he did not go into residence till January 1853. He at once made friends, who stood him in good stcad all his life, foremost among whom were Edward Burne-Jones, who was a freshman of his year, and a little Birmingham group at Pembroke. They were known among themselves as the " Brotherhood "; they read together theology, ecclesiastical history, medieval poetry, and, among moderns, Tennyson and Ruskin. They studied art, and fostered the study in the long vacations by tours a mong the English churches and the Continental cathedrals. Morcover, Morris began at this time to write poetry, and many of his first pieces, afterwards destroyed, were held by sound judges to be equal to anything he ever did. Both Morris and Burne-Jones had come to Oxford with the intention of taking holy orders, but as they felt their way they both came to the conclusion that there was more to be done in the direction of social reform than of ecclesiastical work, and that their energies would be best employed outside the priesthood. So Morris decided to become an architect, and for the better propagation of the views bf the new brotherhood a magazine was at the same time projected, which was to make a speciality of social articles, besides poems and short stories.

At the beginning of 1856 the two schemes came to a head together. Morris, having passed his finals in the preceding term, was entered as a pupil at the office of George Edmund Street, the well-known architect; and on New Year's Day the first number of The Oxford and Cambridge Magazine appeared. The expenses of this verv interesting venture were borne entirelv
by Morris, but aiter the inoue of No. I he resigned the formal editorship to his friend Fulford. Many distinguished compositions appeared in its pages, but it gradually languished, and was given up after a year's experiment. The chief immediate result was the frienduhip between Morris and Dante Gebriel Rossetti (q.v.), which sprang up from a successful attempt to secure Rossetti as a contributor. In the summer of 1856 Street removed to Landon, and Morris accompanied him, working very hard both in and out of office hours at architecture and painting. But Rossetti persuaded him that he was better suited for a painter, and after a while he devoted himself exclusively to that branch of art. It was in the summer that the two friends visited Oxford, and finding the new Union debating-hall in course of construction, offered to paint the bays. Seven artists volunteered heip, and the work was hastily begun. Morris worked with feverish energy, and on finishing the portion assigned to him proceeded to decorate the roof. The work was done too soon and too fast, the colours began to fade at once, and are now barely decipherable; hut the broken designs, so long as any vestige remains, will always be interesting as a relic of an important aesthetic movement and as the first attempt on Morris's part towards decorative art (see Rosserm). Early in 1858 Morris published The Defence of Gwencere, which was almost unnoticed by contemporary criticism, but is now recognized as one of the pearls of Victorian poetry.

On 26th April 1859 Morris married Jane Burden, a beautiful Oxford girl, who had sat to him as a madel, and settled temporarily at 41 Great Ormond Street, London. Meanwhile he set about building for himself at Upton a house which was to be the embodiment of all his principles of decorative art. Furniture, decorations, houschold utensils and every article of daily use were specially designed, and in the summer of 1860 the house was ready for occupation. The furnishing of it had suggested a fresh activity; Morris now determined to embark upon decoration as a career. A small company was formed, consisting of D. G. Rassetti, Philip Webb, Burne-Jones, Madox Brown, Faulkner and Marshall, and in January 1862 started business under the title of Morris, Marshall, Faulkner \& Co., with offices at 8 Red Lion Square. The prospectus set forth that the firm would undertake church decoration, carving, stained glass, metal-work, paper-hangings, chintzes and carpets. The business, after ipevitable vicissitudes, flourished, but the "house beautiful" at Upton proved to be unhealthily situated. Serious iHness obliged the family to remove to town, and in November 1865 they resettled at 26 Queen Square, Bloomsbury. Morris was now unceasingly busy, but he found time also for literature. In June 1867 he published The Life and Dealh of Jason, which was at once successful; and in April 1868 the first two parts of The Earthly Paradise. The rest of this wonderiul storehouse of poetic romance appeared in two volumes in 1869 and 1870 . In the following year he was again looking for a country house, and lighted upon Kelmscott manor house, in the Upper Thames valley, which he took at first in joint-tenancy with Rosscti and used principally as a holiday home. In 1872 appeared Love is Enough, structurally the most elaborate of his poems for its combination of the epic and dramatic spirits; and in the autumn he began to translate the shorter Icelandic sagas, to which his enthusiasm had been directed by two inspiring journeys to Iceland. Business worries, however, interrupted him; it was found necessary to reconstruct the company owing to its having grown out of proportion with the existing division of profit and labour. Long negotiations ensued, and in March 1875 the old firm was dissolved. Morris now became sole manager and proprietor, although the olher members of the ald firm continued, in varying degrees, to give him the advantage of their assistance and advice.

Meanwhile the epic mood had possessed Morris very strongly, and, ia addition to his work upon the sagas, he had actually finished and (in 1875) published a verse translation of the Aersid, which is interesting rather for its individuality than for any fidelity to the spirit of the original. In the following year appeared Sigurd the Volsung, a version full of heroic vigour,
movement and vitality, but somewhat too lengthy and incoherent in design to preserve the epic interest intact to the British taste. This splendid burst of poetic activity, however, had raised him to a place among the first poets of his time; and in 1877 an attempt was made to induce him to accept the professorship of poetry at Oxford. But he felt himself lacking in the academic spirit, and wisely declined. At this time a fresh outlet for his energy was furnished by his foundation in 1877 of the Society for the Protection of Ancient Buildings, which sprang into being as a practical protest against a scheme for restoring and reviving Tewkesbury Abbey. He began, too, to take an active interest in politics over the Eastern Question, but his enthusiasm was at the moment a flash in the pan. Finding that events were going against his judgment, Morris, as was $s 0$ oiten the case with him, shrugged his shoulders and broke free from the movement.

Still, although he found it hard to sit close to a definite party, Morris continued to be spasmodically interested in poditical movements. During the next few years, indeed, the interest gained ground with him stcadily. He became treasurer of the National Liberal League in 1879, but after the Irish coercive measures of 1881 he finally abandoned the Liberal party, and drifted further and further into Socialism. For ten or twelve years this movement had been gaining ground in England, and the Social Democratic Federation was formed in 1881. In January 1883, within a week of his eleclion to an honorary fellowship at Exeter, Morris was enrolled among its members. Thenceforward for two years his advocacy of the cause of Socialism absorbed not only his spare time, but the thought and energy of all his working hours. For it he even neglected literature and art. In March 1883 he gave an address at Manchester on "Art, Wealth and Riches"; in May he was elected upon the executive of the federation. In Septernber he wrote the first of his Chouft for Socialists. About the same time he shocked the authorities by pleading in University Hall for the wholesale support of Socialism among the undergraduates at Oxford. Neverihelest, the federation began to weaken. At the franchise meeting in Hyde Park in 1884 it was unable to get a hearing. Morris, however, had not yet lost heart. Internal dissensions in 1884 led to the foundation of the Socialist League, and in February 1885 a new organ, Commonueal, began to print Morris's splendid rallying-songs. Still, differences of opinion and degree prevented concerted action; and when, after the Trafalgar Square riots in February 1886, Morris remonstrated with the anarchic section he was denounced by the advanced party and ever afterwards was regarded with suspicion. In 1889 he was deposed from the management of Commonspeat, and gradually lost all canfidence in the movement as an active force.
Long before that time, however, Morris had returned to the paramount interests of his life-to art and literature. When his business was enlarged in 1881 by the establishment of a tapestry industry at Merton, in Surrey, Morris found yet another means for expressing the medievalism that inspired all his work, whether on paper or at the loom. In 1887 he published his translation of the Odyssey, which had many of the qualities and defects of his Acneid, and is much more mleresting as an experiment than valuable as a "Homeric echo." In the Commonzocal appeared News from Nowhere, published in book form in 18gr, describing an England in which the principles of communism have been realized. He then added another to his many activities; he assumed a direct interest in typography. In the early seventics he had devoted much attention to the atts of illumination and calligraphy. He himself wrote several manuscripts, with illuminations of his own devising. From this to attempts to beautify the art of modern printing was but a sbort step. The House of the Wolfings, printed in 1889 at the Chiswick Prese, was the first essay in this direction; and in the same year, in The Roois of the Mountains, he carried his theory a step further. Some fifteen months later he added a private printing-press to his multifarious accupations, and started upon the first volume issued from the Kelmscott Press, his own Glituring Plain. For the last few years of his life this new. interest remained the
absorbing one. A series of exquisite books, which gain in value every year, witnesses to the thorough and whole-bearted fashion in which he invariably threw himself into the exigencies of his Ife-work.

The last years of his Hfe were peacefully occupied. He was sounded as to whether he would accept the laureateship upon the death of Tennyson, but declined, feeling that his tastes and his record were too remote from the requirements of a court appointment. His last piece of work, the crowning glory of his printing-press, was the Kedmscolt Chaxcer, which had taken nearly two years to print, and fully five to plan and mature. It was finished in June 1896, and before it was in his hands he already knew that his working day was over. His vigour had been slowly declining for some time, and he sank gradually during the autumn, dying on the 3rd of October 1896. He was buried in Kelmscott churchyard, followed to the grave by the workmen whorn he had inspired, the members of the league which he had supported, the students of the att gild he bad founded, and the villagers who had learnt to love him.
Essentially the child of the Gothic revival, he had put an ineffaceable stamp on Victorian ornement and design, his place being that of a follower of Ruskin and Pugin, but with a greater practical influepce than either. In house decoration of all kinds -furniture, wall-papers and hangings (which he preferred to paper), carpet-weaving, and the painting of glass and tiles, needlework, tapestry-he formed a school which was dominated by his protest against commercialism and his assertion of the necessity for natural decoration and pure colour, produced by hand work and inspired by a passion for beauty irrespective of cheapness or quickness of manufacture (see Abts and Crafts).
The truest criticism of William Morris is that attributed to his friend, the poet Swinburne, who said that he was alwaysmore truly inspired by literature than by life. His Socialism, though it made a brave show at times, was at heart a passionate enthusiasm for an inacoessible artistic ideal. Morris, indeed, was not primarily interested in men at all, but in objects. His poetry deals, it is true, with the buman passions, but the emotion is always seen as in a picture; he is more concerned with the attitude of the group than with the realisation of a character. He had very little adaptablity in dealing with his fellows; the crowd, is 2 crowd, frred his enthusiasm, but he was unable to cope with the individuals that composed it. Many of his colleagues bear witness to his generosity and magnanimlty, but as a general principle he certainly tacked the wider humanity. This is the one failing of his art: it is also the shortcoming of his poetry. Granted this, thare is ieft an immense amount that will aiways command admiration. The spirit of beauty breathes in every line; a sense of music and of colour is everywhere abundant; the reader moves, as it were, under a canopy of apple-blossom, over a flowerstarred turf, to the faint harmony of virginals. Nor does the poet lack power and vigour when an adventiurous story is to be tokd. The clath of arms breaks upon his pagan paradise with no uncertain sound; he is swift in narrative, breathless in escapede. And over all hangs the faint atmosphere of medievalism, of an England of green gardens and grey towers, of a London "small and white and clean," of chivalry and adventure in every brake. The critic has also to remember the historical value of Morris's literary influence, foilowing upon the prim domesticities of early Victorian verse, and breaking in upon Tennyson's least happy phase of naturat homelines.
See the Life ard Lethers, in a vols. (Eongmanas), by J. W. Marforil. An article on "William Morris and his Decorative Art," by Lewis F. Day, appeared in the Contemporary Review for June 1903. (A. WA.)
MOners, a city and the county-seat of Grundy county, Minois, U.S.A, on the north bank of the Illinois river, about 62 m. S. W. of Chlcago. Pop. (rgoo), 4273 ; (1910) 4563 . Morris is served by the Cbicago, Bock Lsland \& Pacific railway, and by the Iltinois \& Michigan canal. Electric power is derived from the Illinois siver at Marseilles, III. (pop. in 1910, 3291), about 45 m . west. Morris (named in honour of Isaac P. Morris, a commissioner of the Ilinois \& Michigan canal) was setuled in 1834, and was chartered as a city in 1857.

MORBIS-DANGE or Morrice-Dance (Span. Morisco, Moorish), an old English dance, which is said by various authorities to have been introduced by John of Gaunt from Spajn or borrowed from the French or Flemings. That it mes a development of the morisco-dance or Spanish fandango is not invalidated by the fact that the morisco was for one person only, for, although latterly the morris-dance was represented by various characters, uniformity in this respect was not always observed. There are few references to it earlier than the reign of Henry VII., but it would appear that in the reign of Heary VIII. it was an almost essential part of the principal village festivities. In earlier times it was usually danced by five men and a boy dressed in a girl's habit, who was called Maid Marian. There were also two musicians; and, at least sometimes, one of the dancers, more gaily and richly dressed than the others, acted as "foreman of the morris." The garments of the dancers were ornamented with bells tuned to different notes so as to sound in harmony. Robin Hood, Friar Tuck and Little John were characters extraneous to the original dance, and were introduced when it came to be associated with the May-games. At Betley, in Stafiordshire, there is a painted window, of the time of Henry VLII. or earlier, portraying the morris-the characters including Maid Marian, Friar Tuck, the hobhy-horse, the piper, the tabourer, the fool and five other persons apparently representing various ranks or callings. The hohby-horse, which, latterly at least, was one of the principal chamcters of the dance, consisted of a wooden figure attached to the person of the actor, whe was covered with trappings reaching to the ground, so as to conceal his feet. The. morris-dance was abolished along with the May-games and other lestivities by the Puritans, and, although revived at the Restoration, the pageant gradually degenerated in character and declined in importance. Maid Marian latterly was personated by a clown, who was called Malkin or Marykin. The interest of the subject has revived in recent years in connexion with the new movements associated with folk-music generally.
See The Morris Book, by. Cecil J. Sharp and H. C. MacIlwaine. Among older authorities see Douce, "Dissertations on the Ancient Morris Dance," in his Illustnetions of Shakespeare (1839); Siruti. Sports and Pastimes of the Psoplo of England; Brand. Popular Antiquilies (1849).
MORRISOR: ARTHUR (1863-), English novelist, was born in Kent on the ist of November 1863. He was for a short time a clerk in the civil service, and in 1890 took to journafism. He had already pubiished scattered tales and sketches of low life in London when W. E. Henley, with whom be was connected as a contributor to the National Observer, suggested their publication in volume form. Tales of Mean Streets (1894) immediately attracted attention, and this was followed by A Child of the Jago (8896), the scene of which is laid between High Street, Shoreditch, and Bethnal Green Road. Cunning Murrell (1g00), The Hole in the Wall (1902), and the detective stories, Martin Hewilt, Investigator (1894), which had sequeis in 1894 and 1896, and The Green Eye of Gorma, are among his other works.

IMORRISON. RICHARD JAMES ($1795-1874$), English astrologer, commonly known by his pseudonym "Zadkiel," was born on the 1 sth of June r795. He served in the Royai Navy, but resigned with the rank of lieutenant in 182 rg . He then devoted himself to the study of astrology, and in 1831 issued The Herald of Aslrology, subsequently known as Zadkiel's Almanac. In this annual pamphlet Morrison, over the signature "Zadkiel Tao-Sze," published predictions of the chief events of the coming year. In 1863 Morrison brought a libel action against Admiral Sir Edward Belcher, who had accused him of obtaining money by chartatanism in the formo of crystal-gazing. He was a warded twent y shillings damages, but was deprived of his costs. Morrisod died on the sth of April 1874.

HORRISON, ROBERT ($1782-1834$); the first Protestant missionary to China, was born of Soottish parents at Buller's Green, near Morpeth, on the 5 th of Jamuary 1782 . After receiving an elementary education in Newcastle, he was apprenticed to a lastmaker, but his spare hours were given to theology, and in 18os be was received into the Independent Academy at

Hoxton. In the following year he offered his services to the London Missionary Society, and after he had attended David Bogue's college at Gosport and studied Chinese under a native teacher, he was appointed to Canton in 18807. After a year of much hardahip be became translator to the East India Company's factory there in 1800 , and worked at a Chinese Grammor and a translation of the New Testament, both published in 1814. In 1817 he published A View of China for Philological $P_{\text {xrposes, }}$ and his translation of the Old Testament (in which William Milne collaborated) was completed in the foliowing year. His next enterprise was the establishment (1820) of an AngloChinese college at Malacca for "the reciprocal cuitivation of Chinese and European literature." Here too were lrained native Chinese evangelists who could proceed to the mainland and carry on Christian work with comparative immunity. In 1821 Morrisons's Chinese Dictionary, in six 4 to volumes, a monumental work, was published by the East India Company, at a cost of \{12,000. Leaving China at the close of 1823, Morrison spent two years in England, where he was elected a fellow of the Royal Society. Returning to China in 1826, he set himself to promote oducation and to prepare a Chinese commentary on the Bible and other Christian literature. He died at Canton on the ist of August 1834. Morrison was admirably fitted for the pionecring work accomplished by his grammar and dictionary; and his establishment of a dispensary, manned by a native who had learned the main principles of European (reatment, marks him out as the forcrunner of modern medical missions.
His Memoirs, compiled by his widow, were published in 1839 . See also R. Lovest. Hislory of the London Missionary Sockity, vol. ii. ch. xix.: C. S. Horne, The Slory of the L. M. S. ch. v.: Townsend, Robert Xtorrison (1888).

MORRISTOWH, a town and the county-seat of Morris county, New Jersey, U.S.A., on the Whippany river, 31 m. (by rail) W. of New York City. Pop. (1890) 8156; (1900) 11,267; (1910 census) 12,507. It is served by the Delaware, Lackawanna \& Western, the New Jersey \& Pennsylvania and the Morristown \& Erie railways. Morristown is situated on a table-land surrounded by picturesque hills. It is primarily a residential suburb of New York, and has many handsome residences and a number of large estates. Near its centre is a public park, in which is a soldiers' monument (59 ft . in height). At Morris Plains, about 4 m . to the north, is a state hospital for the insane (1876).

Morristown, officially named in 1740 in honour of Lewis Morris (1671-1746), then governor of New Jersey, and grand. father of Gouverneur Morris, was settled about 1710, under the name of West Hanover, by Puritans, who were attracted here by the presence of iron ore. From January to May 1777, and again from December 1779 to June 1780 , Morristown was occupied by the American army under Washington. Behind the court-house is the site of Fort Nonsense, built at Washington's orders, largely to keep his soldiers employed. In December 1779-January 1780 Gencral Benedict Arnold was tried before a court martial presided over by General Robert Howe (1732-1785) in the Dickerson tavern bere, still standing. In Morristown, at the old Speedwell ironworks (almost completely destroyed by fire in 1909), was made a part of the machinery of the "Savannah," the first steamboat that crossed the Atlantic, and here Samuel F. B. Morse and Alfred Vail completed the invention of the electric telegraph. Morristown was incorporated as a town in 1855.
See A. M. Sherman, Hisleric Morristoma, New Jersey; The Stery of its Firsi Century (Morristown, t905) and Julia K. Colles, A whors and Writers A ssociated woilh M(orrislown (Morristown, 1893),
HORSB; 8AMUBL PIMLEY BREESE (1791-1872), American ertist and inventor, vas born at Charlestown, Massachusetts, on the 27th of April 1791, son of Jedidiah Morse (1761-1826), Congregational minister there and a writer on goography, and a grandson of Sammel Finley, president of the college of New Jersey. At the age of fourteen he entered Yale College, where he graduated in 1810 and where under the instruction of Jeremiah Day and Benjamin Silliman he received the first impulse towards electrical studies. In 181 I Morse, whose tastes during his early
years led him more strongly towards art than towards science, became the pupil of Washington Allston, and accompanied his master to England, where he remained four yoars. His success at this period as a painter was considerable. In 1825 he was one of the founders of the National Academy of Design, and was its first president, from 1826 unil 1845-. The year 1827 marks the revival of Morse's interest in elecuricity. It was at that time that he learned from J. F. Dana of Columbia College the elementary facts of eiectromagnetism. As yet, however, he was devoted to his art, and in 1829 he again went to Europe to study the old masters.

The year of his return, 1832, may be said to elose the period of his artistic and to open that of his scientific life. On board the packet-ship "Sully." while discussing one day with his fellowpassengers the properties of the electromagnet, he was led to remark: " If the presence of electricity can be made visible in any part of the circuit, I see no reason why intelligence may not be transmitted by electricity." In a few days he had completed rough drafts of the necessary apparatus, which he displayed to his fellow-passengers. ${ }^{1}$ During the twelve years that followed Morse was engaged in a painful struggle to perfect his invention and secure for it a proper presentation to the public. In poverty the pursued his new enterprise, making his own models, moulds and castings, denying himself the common necesasties of life. It was not until 1836 that he completed any apparstus that would work, and finally, on the and of September 1837, the iastrument was exhibited to a few friends in the building of the university of the City of New York, where a circuit of 1700 it. of copper wire had been set up, with such satisfactory results as to awaken the practical interest of the Messrs Vail, iron and brass workers ia New Jersey, who thenceforth became associated with Morse in his undertaking. Morse's petition for a pateat was soon followed by a petition to Congress for an appropriation to deiray the expense of subjecting the telegraph to actual experiment over a length sufficient to establish its feasibility and demosstrate its value. The committee on commerce, to whom the petition was referred, reported favourably. Congress, however, adjourned without making the appropriation, and meanwhile Morse sailed for Europe to take out patents there. The trip was not a success. In England his application was refused, and, while he obtained a patent in France, it was subsequently appropriated by the French government without compensation to himself. His negotiations also with Russia proved futile, and after a year's absence he returned to New York. In 1843 Congress passed thelong-delayed appropriation, steps were at once taken to construct a telegraph from Baltimore to Washington, and on the 24 th of May 1844 it was used for the first time. In 1897 Morse was compelled to defend his invention in the courts, and successfully vindicated his claim to be called the original inventor of the electromagnetic recording telegraph. In 1858 the representatives of Austria, Belgium, France, the Netherlands, Piedmont, Russia, the Holy See, Sweden, Tuscany and Turkey appropriated the sum of 400,000 francs in recognition of the use of his instruments in those countries. He died on the and of April 1872, $2 t$ New York, where his statue in bronze now stands in the Central Park. (See Telegraph.) He introduced into America Daguerre's process of photography, patented a marble-cutting machine in 1823 , and in 1842 made experiments with telegraphy by a submarine cable.
See S. Irenaeus Prime, Life of S. F. B. Marse iNew York, 1875).
YORAE, the ornamented brooch by which a cope is iastened. The usual form is a large circular clasp made of gofd or silver and studded with jewels. A 14 -century " morse " ornamented with trenslucent enamel is in the British Museum. The word comes through the O. Fr. mors, from the Lat. morsus, the catch of a buckle, from mordere, to bite.
MORSHANSK, a town of Russia, in the government of Tambov, 50 m . N. of the city of Tambov, on the Tsma river. Pop. (1900), ${ }^{25}+913$. The village of Morsha was founded in the middle of
${ }^{1}$ Five years later the eaptain of the ship identified under oath Morse's compteted instrument with that which Morse had explaiiged on board the "Sully " in 1832.
the 27th century, and received municipal institutions in 2779; but within a very few ycars it became a wealthy to wn, owing to itn situation in a very fertile district. Since it was brought into railway communication with Ryazhsk (8 r m . west on the railway between Moscow and Ryazan) it has become the chief centre for the trade in wheat raised in the governments of Tambov, Penza, Saratov and in the eastern districts of the government of Ryazan. There are aiso extensive dealings in flour, hemp-seed, tallow and potash.

MORTAGNE, a town of nort hern France, capital of an arrondissement in the department of Orne, 24 m . E.N.E. of Alençon by rail. Pop. (1006), 3383. A vaulted entrance (isth century), relic of an old stronghold, and the church of Notre-Dame (15th and 16 th centuries) with a fine northern portal are of interest. The town is the seat of a sub-prefecture and of a tribunal of first instance, and is a celebrated market for horses of the Perche brecd. Mortagne, once capital of the Perche, dates from the soth century.
MORTAIN, a small town in the department of La Manche, France, the chicf town of an arrondissement and seat of a sub-prefect. It is beautifully situated on a rocky hill rising above the gorge of the Cance, a tributary of the Selune. The parish church of $\mathrm{St}^{\text {E }}$ Evoult is a magnificent example of the transitlonal style of the carly 13 th eentury, with a massive tower of the 14th and a Norman doorway dating from the original collegiate church (ios8). Close to the town is the AbbayeBlanche, founded as a Benedictine convent in itos and soon afterwiards affiliated to CIteaux. The church is a perfect cxample of a Cistercian monastic church of the late ath century, and portions of the 12 th -century cloisters also survive. The population is bet ween 2000 and 3000 .

Mortain was, in the middle ages, the head of an important comte, reserved for the reigning house of Normandy. In or about to49 Duke William took it from his cousin William, "the warling." and bestowed it on his half-brother, Robert, thenceforth known as "count ol Mortain," whose vast possesshoms in England after the Conquest (ro66) gave name to "the small rees of Mortain," which owed less (knight) service than others. Robert was succeeded as count by his son William, who rebelled against Henry 1., was captured at the batile of Tinchebrai (rIo6) and forfcited his possessions. Some years later, Henry bestowed the comte on his nephew Stephen, who became king in 1135. On Stephen's death (1154) his surviving son Wiliam became count of Mortain, but when he died childless in 1159 the comile was resumed by Henry II. On the accession of Richard I. (1880) he granted it to his brother John, who was thenceforth known as count of Mortain till he asecnded the throne (1,190). With his loss of Normandy the conte was lost, but after the recapture of the province by the House of Lancaster, Edmund Beaufort, a grandson of John of Gaunt, was created count of Mortain and so styled till 1441, when he was made carl of Dorset.

As the counts are often described as "carls" of Mortain (or even of "Moreton") the tille is sometimes mistaken for an English onc. It has also, through erroneous spelling, been sumetimes wrongly derived from Mortagne-en. Perche. (J. H. R.)

MORTAR, the name (1) of a vessel in which any material may be crushed or pounded, and (2) given to various compositions used in building and consisting of lime and cement with sand or other fine aggregate, we!l mixed by manual labour or machinery with a proper quantity of clean water (see below, and also Brickwork). The latin name both for such a vessel and for the material as mixed in $i t$, is mortarium. The earlier English form morter, from Fr. morticr, has been in modern English more closely adapted to the spelling of the Latin original. As applied to a vessel, the name is chicfly used for one employed in the proparation of drugs, which are pounded or triturated in the "mortar" by means of a pestle (Lat. pistillum; pinsere. to pound). The name has also been given, from a resemblance in thape to the vestel, to a short thick piece of ordnance, resting on a " bed " formerly used for high-angle fire. The barrel was always very short, normally cven shorter than it was wide, and
sometimes even resembled a bowl in shape. The place of the mortar in artillery is now taked by the howitzer. In modern times the name " mortar" is occasionally used for a particularly short bowitzer. (See Omonance.)

Buidding Mordar--The sand forming the aggregate is placed on the mixing platform and formed into a ring within which lime in the required proportion is placed; it is then gently but thoroughly sprinkled with clcan water through the rose of a watering-can or homepipe. The lime is covered with the sand and left uncisturbed for a day or two to slake, and the whole mass is then turned over and well mixed with the larry. The mortar is often used immediately the maleriats are thoroughly incorporated, but it should rather be lept covered over with eacks until well tempered. For large works a mortar mill working by hand, steam, or other power cffects a considerable economy. Stone chippinge. clean, hard, broken bricks or furnace clinkers may take the place of and when the mill is employed, as the action of grinding reduces any large pieces to small sandtike particles.

The remarks above apply to ordinary lime mortar. Mortar of by draulic lime, cement mortar, or mortar gauged with cement, must be mixed up in quantities sufficient only for immediate usc. Any material not used at the time, or at least the same day, will be wasted: cement cannot be reworked after it has begun to set as its setting pr:perties are destroyed.

Slaking is a most important part in the process of making mortar. There are three meshods of slaking lump lime-the first by immersion, the second by sprinkling with water, and the third by Stake. exposing the lime to the atmosphere and leaving it to shang
aborb moisture. Different qualities of lime require varying amounti aborb moisture. Difierent qualisies of lime require varying amount evory bushel of lime. If should be all added at one time and the miss then left to slake undisturbed. Hot limes are often used for mortar. These are unsuitable for plastering unless slaked for a long period. It will at once be seen that when mortars composed of these lines are used immediately after mixing, slaking must continue for a long time, drying up the moisture necessary for scting, a nd causing the mortar to crumble to dust in the joints of the brickwork. This fart gives us the reason for the old Roman enactment which set forih thil lime should be slaked for three years before using. In the south of Europe it is the custom to slake lime the season before it is used.

The practical application of mortar to building work, and the methods of printing the joints of brickwork and stonework, are described and fully illustrated in the article on Brackwork.

The results of many careful tests and experiments serve to show that the hardening of mortar is due to several causes acting collectively. With ordinary lime mortars the chicf causes of hardening are the absorplion of carbonic acid from the air Hendemang and the combination of part of the water with the lime. of Mortar. which unites with some of the silica of which the sand is composed and forms silicate of time. The initial sesting is due to the evaporation of the excess of water and to the production of minute crystals of hydrate of lime which slowly absorbs carbonic acid gas from the air. With mertar of rich lime an outer crust is thus formed on the exposed parts which prevents ready access of air to the interior and relards getting. In illusiration of this peculiar property of lime to remain todt, some remarkable cases may be mentioned. One of the bastions erccted by Vauban in 1606 was removed by General Treissart, in 1822, a hundred and fily six years alter erection. The lime in the imerior of the masonry, where it was inaccessible to the action of the atmosphere, was found to be quite soft. Dr John of Berlin mentions that in removing a pillar 9 ft in diameter in the chunch of St Peres. Berlin, cighty years alter erection, the mortar in the interior was lound to leqquite solt. Sir C. W. Pastyy, in removing the old wharf wall at Chatham dockyard in 8834 , found that the work executed in lime mortar wes easily removabie, the mortar being in a stale of pulp. The brickwork, buile with Roman cement, it was found necessary to blagt.
The Romans were convinced that it was owing to prolonged and thotough slaking that iheir works in plaster beca me so hard and were not defaced by cracks. L. B. Alberti mentions in his writings that he once discovered In an old irougb some lime which had been left there five hundred years and that if was quite soft and fit for use.

The sctting and hardening of hydraulic limes and cements are due mainly to crystaltization brought about by the action of water on the silicate of lime, and not by mere absorption of carbonic acid gat from the atmosphere. As a consequence we find that this variety of limes and cements has the valuable property of setting hard while immersed in water and in many cases growing incressingly hard with the lapse of time.

Opinions differ very widety on the question of the cutability for building purposes of fimes or cemenis which contain an appreciable proportion of magnesia, many experts holding the view magenala to that the expansion which often occurs in floors and other magent works of concrete from one to four years after laying may mooter. be justly attributed to the presence of this substance. For mortars, however, it may be assumed that the prencoce of magnesia is nol drtrimental to the value of the matrix, but on the contrary may be a sourec of strength, for experiments show that it reduces the eactigy of
slaking and increascs that of the metting procenses. Cements containing magnesia are pronounced both by Vicat and Chatoney to resist the dissolving action of sea-water better than those in which no magnesia is present, and it is pretty well established by experience that cements derived from argillo-magnesian limestones furnish a durable cement for construction in the sea.

The old mortar of the Romans. which proves its great property of endurance by many of their works still remaining, was in all proba. bility composed of lime mixed with pozzolana or " trass." These materials are similar in character and are obtained from extinet volcanocs-in the case of the Romans from the Italian volcanocs, but also from extinct volcanoes in the valleys of the Rhine and in Holland. Good as these mortars undoubtedly were, it may be salely asserted that no cement or mortar has been discovered to excel in asserted that ind or in durability in all climates, the Portland cement of the present day. The best varietiea of this material are made in England. the country of its origin, much of the continental and American product being deficient in the qualities which combine to make a good cement. (For the properties of Portland cement and the method of its manufacture see CEMENT.)

The comparative strengths under tensile stress of grey-lime mortar, Portland-cement mortar, and Portland-cement mortar with the addition of lime, are given in the following table, which is the result of a series of tests by G. R. Redgrave.

Proportions by Measure.				Breaking Weight per sq. in. in th.
Sand.	Cement:	Lime.	Water.	
2	-	1	1.33	36.89 (average of three tests)
6	I	-	$1 \cdot 25$	103.79 *
10	I	-	2.00	50.16 *
6	I	0.50	1.50	73.47 -
10	t	0.83	2.50	42.34 .

It is a good plan, where the question of cost precludes the use of mortar made entirely of cement, to add to lime mortar mixed in the usual proportions a small quantity of Portland cement. This is termed "gauged " lime mortar. By this addition the strength is greatly increased and the extra cost is but slight.

The following table shows the force required to tear apart common Adfeator stock bricks bedded in mortar, mlxed in proportions of Morter commonly used, and left to set and harden for four of Mortar weels.

Adhesive Strengths of Lime and Cement Mortars.		
	Proportions.	
White chalk, lime and sand .	1 to 3	4) 16. per 8q. in.
Barrow lias do.	1 to 3	$9{ }^{\circ \prime}{ }^{\circ}$
Do. \qquad do.	1 to 4	67"
Portland cement Do.	1 to 4 1 to 6	23 "

These results show clearly that the adhesive strength of mortar varies according to the proportion of sand used, the power of resistance of the mortar to the force brought to bear upon it decreasing as the proportion of sand is increased.

The primary cause of the premature decay which sometimes takes place in mortars and like material ts due to the presence of mud and decayed vegetable and animal matter in the sand, or possibly ia the Docay of to use a perfectly clean as therefore of great importance Dacay to to use a perfectly clean gand for the aggregate, and to cere select a lime or cement of good quality for the matrix. are being taken that no foreign matters detrimental to the mortar be introduced during the procesees of preparation.
The effect of salt in mortars as a preventive of the destructive eflects of frost has not as yet been tioroughly determined, and the Effects of few experiments that have been carried out show varying San and results. In some German experiments, cubes of stone Frost on were joined together with cement mixed with water of Mortar. different characters, ranging from pure rain-water to cement was eet the blocks were exposed in air at a temperature varying from 20° F. to freezing point. after which they were kept for seven days in a warm room. The samples were then examined with these results: The cement mixod winh pure water was quite crumbled, having lost all its tenacity. The cepent made with water containing 2% of sait was in rather better condition. while that containing 8% of salt had not suffered from its ex: posure to frost. The use of sak causes much efforescence on the face of the work, and should therefore not be used where this waid be undesirable. Nor should salt be employed for work that is to be subsequently painted. The mortar for the brick lacing of the Forth Bridge below water was composed of one part of Pordand cement and one part of eand mixed with salt water in a mill. Briqueties made from this compound withstood a tensile stress of an average of 365 lb per square inch when a week old, and of 510 th at five
weeks after mixing- Salt has no effect upon the strength of a mortar, although it retards the setting process somewhat.

Cement mixed with a percentage of sugar (usually 2% and under) has been used with varying success. In India sugar is a irequent ingredient ia mortar, probably because it has the effect of preventing too rapid setting: it also retards the drying of the material. The sugar must be dissolved in the water

Supar is used for gauging, as the results obtained when the sugar is mived with the other ingredients in a dry state are not good. The addition of sugar to water enables it to take up about fourteen times more lime than pure water. It is supposed by many writers who have studied the methods of the ancients that old Roman mortars contained strong ale, wort or other saccharine matter, and it is probable that the use of sugar with lime pasced Irom India to Egypt and Rome. The following is an extract from the Roorkee Trealise on Engineerigg, a work of reference published in India: "It is common in this country to mix a small quantity of the coarsest sugar, "goor ${ }^{\text {* }}$ or " jaghery. as it is termed, with the water used for mixing up mortar. Experiments were made with bricks joined together by mortar consisting of one part of common shell lime to ope and a half parts of sand, one pound of 'jaghery' being mixed with each gallon of water. The bricks were left for thirteen hours and alter that time the average breaking weight of the joints in twenty trials was $6 \frac{1}{}$ th per square inch. In twenty-one specimens joined with the mome mortar without the 'jaghery 'the breaking weight was 4t it per equare inch."

Of the saccharine matters used in mortar treacle seems to give the best results, rough cane sugar being next in effectiveness; beetroot sugar is not a good material to use.

The by-laws made by the London County Council in 189 I under sec. 16 of the Metropolis Management and Buildings Act Amendment Act 1878 require that " the mortar to be used in By-Lown the construction of walls must be coniposed of freshly burned lime and clean, sharp sand or grit without earthy matter, in the proportions of one of lime to three of sand or grit." The cement co be used must be Portland cement or other cement of equal quality to be approved district surveyor, mixed with clean sharp sand or approved by the of one of cement to four of sand or grit. Burnt ballast or broken brick may be substituted for sand or grit, provided such material lx properly mixed with lime in a mortar mill

The varietics of lime and cement chicfly used for mortar in the British lsles are set forth below:-

Pure or fat limes should not be used for mortar. Grey thone lime, feebly hydraulic, makes a good mortar, but should not be employed for work below ground or in other damp situations. It Lames aed is obtamed chiefly at Dorking, Halling, Lewes and coweets ar Merstham. It is used in the proportion of one part to Mertar. two or three parts of sand. An analysis of the lime from Castie Bytham gives the following composition:-

Bhe lias lime is eminently hydraulic and should be used in good class work. Its use is a necessity for foundations and work in damp situations where Portiand cement is not employed. It is used in the proportions of one part to one or two parts of sand. The bestknown varieties are obtaincd from Warchet in Somersetshire, Barrow-on-Soar in Leicestcrshire, Rugby in Warwickshire, and Lyme Regis in Dorsetshire. A typical lias lime shows on analysis the following composition :-

Portland cement is the best matrix known. since it is the most powerful and the most durable. It is used for mortar wherever great strength, hard-wearing propertics, and resistance to damp are raquired. It should weigh 112 ib per striked bushel and be ground finc enough to pass through a aieve having 2500 merhes to the square inch and leave not more than 10% residue. Test briquettes after sctting under water for seven days shouid stand a tensile strain of 350 it on a square inch. It is used in the proportions of one part of cement to from one to five parts of sand.

Portland cement of a similar eharacter to the English cement, but somewhat less powerful, is largely madic in America. The principal seat of manulacture is Coplay, Pa,; where the first

American Portland cement was manufactured in 1874 by Mr. David O. Saylor.

The chief works of reference on this subject are G. R. Burnell. Limes, Cements, Mortars; Rivington, Notas on Buiddine Construction; F. W. Taylor and S. E. Thompeon, A Tradise on Concrela, Plain and Reinforced.
(J. Br.)
mortara, EDCAR, an Italian Jew, of a Bologna family, whose abduction in early childhood (1858) by the Inquisition occupied for several years the attention of European diplomacy. Edgar Mortara, when between five and six years of age, fell ill. His nurse, a Catholic, arranged with her priest for his baptism in that faith, unknown to his parents, on the 24th of June 1858. She had acted in the same way with his elder brother, who had been ill a year or two previously, but on his recovery the boy continued to be educated as a Jew. This time she determined to make sure of her convert. Everything was concerted in advance with the ecclesiastical authorities, and immediately after the baptism both child and nurse disappeared. The siory became public property, and protest was aroused in nearly every European country. The English and French govarmments made representations to the Vatican, bnt Pius IX., through the medium of the Civilld Callolica, maintained that the question at issue was a spiritual one, outside his temporal jurisdiction. He accordingly declined to take any action, meanwhile indicating the direction of his sympathies by maining Mortare his ward. In $\mathbf{1 8 6 1}$ the Mortana family induced the Italian government to demand the prosecution of the nurse. The Vatican replied that she had entered a nunnery, and subsequently, on the threat of intervention by Prussia, induced the Mortara family to withdraw their plaint. After the capture of Rome by the Italian troops in 1870 Edgar Mortara had the opportunity of reverting to Judaism, but he refused to do 20 , and not long afterwards became an Augustinian.

MORTARA, a town of Lombardy, Italy, in the province of Pavia, 354 ft above sea-level, a railway junction situated between the Ticino and the Po, 32 m . by rall S.W. of Milan. Pop. (1901), 7298 (town); 8697 (commune). Lines run to Milan, Pavia, Alessandria, Casale Monierrato and Vercelli. The church of San Lorenzo is in the Gothic style of the 14th century with a brick facade. Outside the town is the Lombard Romanesque church of S. Albino. Mortara has iron-works and manufactures of hats and cheese. Here the Austrians defeated the Piedmontese in 1849.

MORTGAOB (an old French legal word, meaning "dead pledge," translated in medieval Latin morimum radimm), ${ }^{1}$ the securing " money or money's worth" by making it a charge upon property, real or personal, so that if the debt be not paid by a time agreed upon by the parties, the creditor may foreclose or sell the property and pay himself out of the proceeds. In English law this is done by an actual or executory conveyance of the property to the creditor, subject only to its being defeated if the debt should be paid at the time fixed-an arrangement to which the law has attachod peculiar incidenta designed to carry out its real object.

The history of mortgage transactions in Roman law shows three well-marked stages. In the heginning the estate was conveyed absolutely to the creditor, who made a covenant (fiducia) to reconvey it when the debt should be paid. All the interest, however, in the meantime passed from the debtor to the creditor, and should the latter refuse to reconvey there was no remedy to the original owner except a personal action. In the second stage (that of pignus) the property did not pass to the creditor; he merely received possession of the thing pledged, together with certain rights of sale, 8 zc , in the event of payment not being made at the time appointed. Lestly, without parting with the possession even of the pledge the debtor could create a lien or charge ($h y p$ otheca) over it in favour of the creditor, who
${ }^{2}$ Cole on Litticton gives the following exptanation of the meaning: "It seemeth that the cavee why it is called mortgage is, for that if is doubtinal whetber the feofor will pay at the day limited such summe or not, and if be doth not pay, then the land which is put in pledge upon condition for the payment of the money is taken from him for ever, and so dead to him upon condition, ace. And if he doth pay the money, then the pledge is dead as to the tenant, oce."
acquired thereby a right on failure of payment to follow the thing by real action against the possessor, whosoever be might be, and to repay himself from the proceeds of his sale.

The mortgage of English law is the result of two distinct influences. Its origin and form belong to the common law; the restrictions by which it is made to serve the purpose of a security only, and nothing more, belong to the courts of equity. In the eye of the common law the mortgagee was the owner of the estate conveyed in the mortgage; in equity the mortgagor remains the real owner, and the mortgagee is merely an encumbrancer. A, the owner of land in frechold, conveys to B and his heirs, with a proviso that on repeyment of money lent hy B to A , on a future day, with interest until payment, B or his heirs will reconvey the estate to A and his heirs, and that, until default be made in peyment, A and his heirs may hold without interruption from B and his heirs. This is a common mortgage of land, and at law, after failure of payment, the land belonged absolutely to the mortgagee, while in the meantime, before payment, the legal estate was considered to be vested in him, subject only to being defeated by payment at the proper time. The court of chancery first interiered in the reign of James L. to decree a redemption after forfeiture, and a case in the reign of Charles I. decides that payment after forfeiture has the same effect as payment before. The right of the mortgagor to redeem his estate after it has been forfeited, according to the terms of the deed, is called his equity of redemption. No agroement between the parties was suffered to oust the jurisdiction of the court, or to deprive the debtor of his equity of redemption. And this equity, at first regarded as a mere right of the debtor, became established in course of time as an estate in land which descended to the heirs of the mortgagor. On the other hand, the interest of the mortgagee is part of his personal estate, and passes to bis executor and not to his heir. In spite of the terms of the mortgage, the owner of the land is still the owner, and the mortgagee is a creditor for the money he advanced and the interest tbereon. It may be a question whether a given deed is a conveyance or a mortgage, and the court, in deciding, will look at all the circumstances of the case, and will treat lt as a mortgage when it was the real intention of the parties that it should operste as a security only. Thus, if the price was grossly inadequate, if the purchaser was not let into immediato possession, if he accounted for the rents to the grantor, retaining an amount equivalent to interest, if the expense of the deed was borne by the grantor, there would be reason to believe that the conveyance was only meant to be a mortgage. And " once a mortgage, always a mortgage "; no subsequent agreements can change its character.

A mortgagee may, however, on default of payment file a bill of foreclosure requiting the mortgagor to pay the amount of the debt with interests or costs by an appointed day, or submit to be deprived of his equity of redemption. The effect of failure to pay hy the time appointed would be to make the mortgagee absolute owner of the estate; but the court in any foreclosure suit may, at the request of either side, order a sale instend of a foreclosure. And a power of sale is now implied as one of the incidents of the mortgage, unless forbidden or varied by express destination. The mortgagee is entitled to retain out of the proceeds of the sale the amount of his principal, interest and costs, the surplus belonging to the mortgagor. A mortgagor cannot requlre the creditor to receive payment before the time appointed in the deed; and, on default of payment at the appointed time, he must give the creditor six months' notice of his intention to pay off the mortgage, so that the creditor may have time "to look out for a fresh security for his money."

When the same land is succesaively mortgaged to different persons, their rights take priority according to their chronological order. But the operation of equitable doctrines in the formation of the lav of mortgage leads to an important modification of this rule. Of the succesaive mortgagees, the first only takes the legal estate, and this, according to the mexim
of the court of chancery, will turn the scale when there is an equality of equitable rights between two contracting parties. Thus, if the third mortgagee had no notice at the time of making his advance of the existence of the second mortgagee, the equities of the two claimants are supposed to be cqual, and if nothing else intervened priority of time would decide the order of their rights. But if the third mortgagee gets an assignment of the first mortgage, be can tack his third mortgage to the first, and so postpone the second mortgagee. And if the first mortgagee himself makes an additional advance after the date of the sccond mortgage, but without notice of it, his whole debt will take precedence of the second mortgage. A similar result of equitable rules is seen in the consolidation of securities. Two separate estates, mortgaged at different times and for different sums of moncy by the same mortgagor to the same mortgagee, are regarded as consolidated, so that the whole of the land becomes security for the whole of the money, and the owner cannot redeem either mortgage without redeeming the other. If the mortgagor ahould have mortgaged another estate for more than its value, the holder of the deficient security may buy in the first mortgage, consolidate it with his own, and exclude the second mortgagee.

An equitable mortgage is constituted simply by the deposit of title-deeds in security for money advanced. The enactment of the Statute of Frauds that no action shall be brought on "any contract or sale of lands," \&ce., or any interests in or concerning them unless tbe agreement be in writing and signed by the party to be charged, has been cited as incompatible with the recognition of equitable mortgages, but it is argued by Lord Abinger that the act was never meant to affect such a transaction. The deeds which are the evidence of title could not be recovered in an action at law, and, if they were claimed in equity, the court would require the claimant to do equity by repaying the money horrowed on the deposit. Any subsequent legal mortgagee, having notice of the deposit, will be postponed to the equitable mortgagec, and wben the legal mortgagee has not inquired as to the title-deeds the court will impute to him such knowledge as he would have acquired if he had made inquiry. A Welsh mortgage is one in which an estate is conveyed to a creditor, who takes the rents and profits in lieu of interest and without account, the estate being redeemable at any time on payment of the principal. Any form of property, with few exceptions, may be mortgaged.

United States.-In the United States there has heen express legislation dealing with mortgages of land in most of the states. For the most part legislation bas followed the lines of the English law, bat there is a great variation in the extent to which the principles of equity have been substituted for the rules of common law. In some states, the mortgage deed is held to create a seizin of and an estate in the prenises, with all its common law incidents, to be enforced if need be by ejectment. In others, the mortgagee's rights are limited to such as the rules of equity prescribe, and may not be enforced by a suit at law. In yet others, the mortgagee's interest is not deemed an estole at all, hut is here only to he enforced ly the sale of tbe premises as a means of paying the deht.

See Fisher on Mortgages; Coote on Mortgages; Ashburner on Morlgages; L. A. Jones, Treatise on the Law of Corperate Bonds and Morlgages (Indianapolis, 1907).

MORTIER, BDOUABD ADOLPHE CASIALR JOSEPH, DUEE of Treviso ($1768-1835$), mapshal of France, was born at Cateau Cambrtsis on the 13th of February 2768 , and entered the army as a sub-lieutenant in 179x. He served in tbe campaigns of 1793 and 1793 on the north-eastern frontier and in the Netherlands, and subsequently on the Meuse and the Rhine. In the war against the second coalition in 1799 he was promoted euccessively general of brigade and general of division. His conduct of the French occupation of Hanover led Napoteon to include Mortier in the firet list of marshals created in 1804. He commanded a corps of the grawle armbe In the Utan campaign in which be distinguished himself particularly by his brilliant action of Durrenstein; in 1806 he was again in Hanover and
north-western Germany, and In 1807 he served with the grande armbe in the Friedland campaign. In 1808 he was created duke of Treviso, and shortly afterwards he commanded an army corps in Napoleon's campaign for the recapture of Madid. He remained in Spain for two campaigns, winning the victory of Ocania in November 1809 . In $18 \mathrm{I}_{2}$ and 1813 he commanded the Young Guard, and in the "defensive " campaign of 1814 he rendered hrithant services in command of rearguards and covening detachments. In 1815, after the fiight of Louis XVIII., he rejoined Napoleon and was given a high command, but at the opening of the Waterloo campaign be fell ill. Alter the second restoration be was for a time in disgrace, but in 1819 he was readmitted to the Chamber of Peers and in 1825 received the Order of the Saint Esprit. In 1830-183r he was ambessador of France at St Petersburg, and in 1834-1835 minister of war and president of the council of ministers. In 1835, while accompanying Louis Philippe to a review, the marshal with eleven other persons was killed by the bomb aimed at the king by Fieschi (July 28, 1835).
MORTIFICATION, a term used In pathology and surgery, signifying a local death (Lat. mors) in the animal body. A portion of the body may die in consequence of tbe disturbance of its nutrition by inflammation, or of a cutting off of the bloodsupply, as hy pressure upon, or injury to, the blood-vessels. A comparatively sligit injury affecting a portion of the body imperfectly supplied with blood may give rise to an inflammatory condition which in a healthy part might pass unnoticed, hut which, in consequence of imperfect nutrition, may end in mortification. If the flow of arterial blood only is arrested, the part depending upon it for nutrition becomes numb, cold and shrivelled, and the form of mortification known as dry gangreme occurs. This is apt to be met with in oldish persons with diseased vessels and fechle heart-action, especially if the blood is rendered less nutritious by the presence of diabetes or of kidney discase. The rule of treatment im all cases of threatened mortification is to keep the part warm by flannel or cotton-wool, hut to evoid all methods which unduly hurry the returning clrculation. Such increase would give rise to excessive reaction, which, in tissues already weakened, might actually produce mortification. When the part is dead it should be wrapped up in dry antiseptic dressings to prevent putrefaction. The surgeon should then wait until the " line of demarcation," a linear ulceration, between the living and the dead part is evident, and then, if the case permits, should amputate at a higher level. In spreading gangrenc, in which acute sepsis is present, and in which no line of demarcation forms, the best chance for the patient is promptly to amputate bigh up in sound tissues. In these cases the blood is generally poisoned, and if the patieat recovers from the primary strock of the operation, the disease may reappear in the stump, and lead to a fatal result.
Frost-bite. -Under the influence of cold, the blood-vesseln contract, and less blood is conveyed to the tissues. Frost-bite is particulariy apt to attack the feet, the hands, and the tips of the ears. The condition is unassociated with pain, for the reason that the nerves are benumbed. As no blood is passing into the skin, the parts look like tallow, and thus attract the attention of the companions of the frost-bitten man, who perhaps has no thought of there being anything amiss. But because the tissues are frost-bitten it does not follow that they will not recover. The great danger is that, as the blood in tbe vessels becomes thawed, there will be so much reactionary flow througb the tissues that acute infammation will foliow. And this inflammation of the damaged tissues is very likely to cause mortification. The re-establishment of the circulation, therefore, should be undertaken with the greatest possible care. The frost-bitten individual must not be brought near a fire note even into a warm room. Nothing warm should come in cantact with the affected parts. The best thing to do is to rub them with snow or with cold water. The thawing is eseocisted with much pain, and in the case of the band or foot this may be diminished hy raising the part, so as to help the return of the venous blood to the heart If monification follown, the parts
become black, and care should be taken to prevent their beconting invaded by the germs of putrefaction.

MOBTILET, LOUIS LAUBENT GABRIEL DR (1821-1898), French anthropologist, was born at Meylau, Istre, on the goth of August $\mathbf{1 8 2 1}$. He was educated at the Jesuit college of Chambéry and at the Paris Conservatoire. Becoming in 1847 proprietor of La Reve independante, he was implicatod in the Revolution of 1848 and sentenced to two years' imprisonment. He fled the country and during the next fifteen years lived abroad, chielly in Italy. In 1858 he tumed his attention to ethnological research, making a special study of the Swiss lakedwellings. He returned to Paris in 1864, and soon afterwards was appointed curator of the museum at St. Germain. He became mayor of the town, and in 188 y he was elected deputy for Seino-et-Oise. He had meantime founded a review, Maleriaux pour l'histoive positive of philosophique de l'howne, and in conjonction with Broca assisted to found the French School of Anthoopology. He died at St Germain-en-Laye on the 25 th of September 1898 . Of his published works the best known are Le Prdkistorigue (1882); Origines de la chasso, de la pleche et de l'agriculture (1890); Les Negres et la civilisation tgyptienne (1884).
MORTIEER (Family). The Mortimers of Wigmore, earls of March and Ulster, were of a stock akin to the dukes of Normandy and to many great houses of the duchy. Their ancestor Fugh, bishop of Coutances in 990, had at least three sons by a niece of Herfast the Dane, forefather of the Norman caris of Hereford, and brother-in-law of Duke Richard I. The eldest of these sons was Ralph, father of William of Werenne, earl of Surrey.' The socond was Roger of Mortemer-en-Brai, in the Pays de Caux, who, like his elder brother, is called flius epriseopi. If we ascume that Roger was born before his father's consecration, he must have lived to a great aqe. In the battle lought within his own village of Mortemer, Roger was a leader of the force which defeated the French, but, releasing an enemy of bis duke, he was punished by the loss of his castle, which was given to his nephew, William of Warenne. The chronicle of Ordericus Vitalis makes the Conqueror relate in a long death-bed speech how he had thrust Roger out of Normandy, and, though reconciled to him, had not restored the castle "in which he saved my enemy." It is somewhat remarkable that the Mortemers, thus early deprived of the castle at the source of the Eaulne, yet handed down a surname derived from it. Here also it may be noted that although Mortimer and Warenne branch off from their common stock before the beginnings of armorial bearings, the two houses assumed arms, which speak plainly enough of their common origin. The Mortimers' chicf seat in Normandy became St Victor-en-Caux, where in 1074, by the last recorded act of Roger and his wife Hawise, the priory became an abbey. Roger's age would bave forbidden him to be with the duke at Hastings, but, according to Wace, his son Hugh was in the fight, and Ralph the third son was probably among the knights.

By the deaths of his elder brothers, Ralph de Mortemer became heir to his father's lands. He followed his kinsman, William Fitz-Osbern, the earl of Hereford, to the marches of Wales, and the Domesday book for Hereford and Shropshire marks the growth of the Mortimer power in those countrics. He remained loyal during the rising of the and earl of Hereford, and was enriched by grants of many of the earl's forfeited estaten, among them the castle town of Wigmore, which became the chlef seat of Mortimer and Cleobury, thereafter called Cleobury Mortimer. His Domesday lands lie in eleven courties, bat the most iniportant are found in North Hereford and South Shropshirc. Although keeping apart from the treason of Earl Roger, Ralph rose in 1188 with the other barons of the March, but was reconciled to Wiltiam II., whom he afterwards supported in Normandy. He was living in 1104 . a partisan of Henry I., and must have died soon alterwards. Hugh de Mortimer, who is found as his successor, a great Herefordshire baron in 1140, say have been either the son of Ralph's old age, or a grandson, the son of another Ralph. During the reign of Stephen, Hugh
occupied himself with local feuds, hut seized the royal castle of Bridgnorth. So great was his power in the marches, that he alone, desarted by the earl of Hereford, armed and held his three castles against Henry II. Although forced at last to submit, he was allowed to keep Wigmore and the ruins of Cleohury. This proud baron died at Cleobury (c. 1181) in the habit of a canon of the abhey which he had founded at Wigmore.
Ralph de Mortimer, the 5th baron of Wigmore (d. 1246), married Gwladys the Swart, daughter of Llewelyn the Great, prince of Wales, and hy her was father of Roger, whose bride, Maude de Breusc, daughter and co-heir of that William der Breuse whom Llewelyn had hanged, brought in a third of the honour of Breuse of Brocknock, and a share of the honour of the earls mershal. So came the lordship of Radnor with other lands. and, as Eyton justly remarks, the history of the Mortimers ceases to be a provincial record. The last-named Roger stood steadfast for the Crown during Henry ILI.'s struggle with his barons. Ho found the fleet horse that carried Edward from his captivity. He led the rear-guard at Evesham, where his marchers hacked the head from earl Simon, and sent it to their lady at Wignore. "After that victory," says Eyton, "no privilege, reward or honour was too great for Mortimer to ask." Dying in 1282, he was surcceded by Edmund, tbe eldest surviving son (d. 1304), Roger, a third son, founding the line of Mortimer of Chirk.

By Margaret de Fiennes, a kinswoman of Queen Eleanor ol Castile, Edmund Mortimer had, with other issue, a son and hair, Roger (h. 128), whose great inheritance was increased on his marriage with Joan, daughter and heir of Peter de Geneville, her grandmother being a oo-heir of Lacy. The whole of the Geneville lands, with the half of the Lacy fief in England and Ireland, came through her to the Mortimers, who now added the cactle town of Ludlow and half Meath to their estates. As the king's licutenant in Ireland during Edward Bruce's invasion of 1316, Rager Mortimar defeated the Lacys, his wife's jealous kinsfolk, and made her inheritance secure. With the aid of his uncle Roger Mortimer of Chirk; he assured the Mortimet power on the Welsh marches. During the war with the Despensers, the force of the Mortimers was cast against the king and his iavoorites, but after Bridgnorth Castle had been taken and freth, uncle and nephew subwitted and suffered a harsh captivity for two years in the Tower of London. The uncle died in his prison, whence the nephew made a famous escape to France. At the court of Charles IV. the exile met Isabel, the queen of England, and early in 1326 the scandal of her close friendship with the lord of Wigmore had reached England. When the queem and her mercenaries from Germany and Hainaur landed at an English port in September, Mortiner was with ber, and he followed the flight of the king to Wales. He was among the judges of the clder Despenser at Bristol, and of the younger. his chief enemy, at Hereford. After the perliament had deposed Edward II. and made the young Edward king in bis stead, Roger, as the queen's paramour, ruled England. Enriched by the lands of the Despensers, and by those of the earl of Arundel, bebeaded at his command, Mortimer, who was created earl of March in 1338, never ceased to add greedily to his possessions and offices. When be held a Round Table, he summoned to it, with the youat king and the queen-mother, almost all the nobles of the kingdom, and was, says Robert of Aveshory," as it were, ling over them all." But his fate followad suddenly upon these doings Latcaster tarned in vain upon the aggrandizod march-lord, but the young king, impatient of his own puppet-like place in Mortimer's polity, worked secretly and surely for his fall. Momague's men-at-anms entered Notingham Castle by night, and joining the king, seized the favourito. in his chamber next the queen. Mortimer, with the courage of his race, turned to bay and struck dead a knight who was the king's steward. But he was hurried to London and condemened by the peers; his death followed suddenly. Like any foot-ped, he was drawn the thorse-tail to the elms of Tyburn, where his body hung two days upon the common gallows.

The earl's son and heir, Edmund Mortimer, had been married to Elizabeth of Badiesmere, heir of her brother Giles. He died the year after his father's fall, and his young son Roger, as be grew up, was restored to a great part of their forfeited inheritance. This Roger fought at Crecy in "the king's batte." A founder of the Order of the Garter, he was summoned as a baron and obtained a reversal of his grandfather's attuinder. In 1355 he was summoned as earl of March. On the death of his grandmother, Ludlow Castle became the chief seat of his house. But following his king in the invasion of Burgundy, be died suddenly at Rouvray in 1360 . His wife, a grand-daughter of that William Montague, earl of Salisbury, who had captured his grandfather at Nottingham, survived him two-and-twenty years.
His only son, Edmund, a boy nine years old, succeeded him as 3 rd earl of March (1351 -1381). A bride was found for him in the royal house. His marriage with Philippa, daughter of Lionel of Antwerp, duke of Clarence, by Elizabeth de Burgh, the heir of Ulster, added the earidom of Ulster to his style, and brought his issue into the direct succession of the Crown. Like so many of his race, be died young, of a chill caught in fording 2 Munster river on a winter's day, and his countens was dead before him. Elizabeth, their eldest child, became the wifo of the famous Harry Percy, called Hotspur. Their second was Roger, who succeeded to his father's two earddoms as a boy of seven, end was at once appointed lieutenant of Ireland. His marriage was given to the earl of Kent, who married him to his daughter, Eleanor Holand, the niece of King Richard. In the parliament of 1385 the king named him as heir-presumptive to the throne. The panegyrists of his family are loud in their praise of his knighty doings and his great beauty, hut they speak also of his lion-like ferocity, of his lasciviousness, and of his neglect of divine things. When in Ireland he defied the statute of Kilkenny, and ordered his garments and horse-harness after the fashion of an Irish chieftain. He wore the Irish mentle on the day in 1398 when, in one of his petty wars with the Leinster men, he was struck down at Kells as be charged far before his horsemen. The body, mangled by Irish skenes and axes, was brought home to be laid by bis fathers in their abbey of Wigmore.

Once more a child succeeded to the earldoms. Edmund, 4th earl of March, was six years old at his father's death, and was, for the king's party, the heir-presumptive of the kingdom. But in 1399 the boy's fate was changed by the coming to power of the Lancastrian party, and Henry IV.'s first parliament recognized Henry's son as heir-apparent. Although Edmund and his brother Roger were brought up honourably with the new king's younger children, they were in strict custody until the king's death, broken only by the attempt of their uncle, Sir Edmund Mortimer, and his father-in-law, Owen Glyndwyr, to carry them off from Windsor to Wales, where the young eari would have been proclaimed king. Heary V., however, released the cari and restored his lands, and absolved March from any share in the plot of the earl of Cambridge, who had married Anne, sister of the earl. March served the king in his French wars, although a dysentery caught in the camp at Harfeur seems to have kept him from his share in the glory of Agincourt. On the aecession of Henry VI. the earl was appointed to the lieutenancy of Ireland which had been held by his father and grandfather, and in Ircland, on the 19th of January 1425, he died suddenly of the plague. His wife, Anne, daughter of Edmund, cart of Stafford, had borne him no ctrild, and thus, his brother being dead before him, the illustrious housc of the Mortimers, earls of March and Ulster, became extinct. Their lands and earldoms passed to Richard, duke of York, son of Richard of Cambridge, hy the last earl's sister, and the great name of Mortimer disappeared from the English baronage.
Auraoritiss.- Vicloria History of the Cownties of England-Introduction to Domeday book for Hereford and Stropshire: Eyton's Amiomilies of Shropshire; Dictionary of National Biography: Dugdale's Monasticon; Stapleton's Rotuli Scoccarii Normanvicie; G. E. C's Complete Peerage; Rymer's Foodera; Joumal of the British Archoeological Association, vol. xxiv. Inqueste, post mortem, close, patent and charter rolls, icic.
(0. Ba.)

MORT1SS, or Mortice (adapted from the Fr. mortaise; c. Ital. morlise and Spanish morraja; the origin is unknown; Celtic equivalents, such as Gaclic moirveis, are of French origin), a term for a socket or cavity cut in a piece of wood, or other material, into which a corresponding projecting end, a "tenon," fits, the two when fitted togetber forming a "mortise-joint," for lastening two beams or other pieces of timber together.
MORTLAKR, a village in the Kingsion partiamentary division of Surrey, England, on the Thames, $6 \frac{1}{2} \mathrm{~m}$. W. of London. Pop. of parish, which includes East Sheen (1901), 7774. It has been associated with the Oxford and Cambridge boat-race since 8845 , the race finishing here. The village appears in Domesday, and the manor belonged to the Archbishops of Canterhury until the time of Henry VIII., when it passed by exchange to the Crown. From the early part of the 17th century until after the civil wars Mortlake was celebrated for a manufacture of tapestry.

MORTMADA (O. Fr. mortemain; med. Lat. morma manus, dead hand), the state or condition of lands or tenements when held by a corporation in perpetual or inalienable tenure. Alienstion in mortmain having the effect of depriving the lord of the incidents of seignory, which arose through the death or felony of the tenant or failure of his heirs, many English statutes were passed directed against such alienation. The earliest is that of Henry III. 36 (Magna Carta); others being 7 Edward I. 13 (De Viris Religiosis); 13 Edward I. 32; 15 Richard II. 5; and 23 Henry VIII. 70. The present law is regulated by tbe Mortmain and Charitable Uses Act 1888, as amended by the act of 1891 .

MORTOM, JAMES DOUGLAS, 4TB EARL OP (c. $1525-1581$), Soot tish statesman, was the secand son of Sir George Douglas of Pittendriech. Before 1543 he married Elizabeth (d. 1574), daughter of James Douglas, 3rd earl of Morton, a grandson of James Douglas (d. c. 1500), who was created earl of Morton in 1458. The 3rd earl's wife was Catherine, an illegitimate daughter of James IV. In 1553 James Douglas succeeded to the title and estates of his father-in-law, and in 1563 be became lord high chancellor of Scocland. Though his sympathies were with the reformers, he took no part in the combination of Protestant barons in 1565 , hut he headed the armed force which took possession of Holyrood palace in March 1566 to effect the assassination of Rizzio, and it was to his house that the leading conspirators adjourned while a messenger was sent to obtain Mary's signature to the "bond of security." The queen, before complying with the request, escaped to Dunbar, and Morton and the other leaders fled to England. Having been pardoned, Morton returned to Scotland early in 1567, and with 600 men appeared before Borthwick Castle, where the queen after her marriage with Bothwell had taken refuge. He was present at the remarkable conference at Carberry Hill, and he also took an active part in obtaining the consent of the queen at Lochleven to an abdication. He led the army which defeated the queen's forces at Langside in 1568 , and he was the most valued counsellor of the earl of Murray during the later's brief term of office as regent. On the death of the earl of Mar (Oct. 28, 1572), Morton, who had been the most powerful noble during this regency, and also during that of the earl of Lennox, at lost reached the object of his ambition by heing elected regent. In many respects Morton was an energetic and capable ruler. He effected at Perth, in February 1573, with the aid of Elizabeth's envoy, a pacification with Huntly, the Hamiltons, and the Catholic nobles who supported Mary. Only the castle of Edinburgh held out, and this, aided by English artillery, he succeeded in taking after a brave resistance by Kirkcaldy of Grange and Maitland of Lethington.
The ensuing execution of these men, the bravest and the ablest Scotsmen of that age, put an end to the last chance of Mary's restoration by native support. But while all scemed to favour Morton, there were under-currents which combined to procure his fall. The Presbyterian clergy were alienated by his leaning to Episcopacy, and all partics in the divided Church by his seizure of its estates. Andrew Melvilie, who had succeeded to the leadership of Knox, was more decided than Knox against any departure from the Presbyterian model, and refused to be
mon by a place in bis housebold. The powerful earl of Argyll and Atholl, a Stuart and Roman Catholic, united with Alcxander Erskine, governor of Stirling, who now had the cuktody of the young king, and others in a league which received so much support that Morton bent before the storm and offered to resign. He zurrendered the cascle of Edinhurgh, the palace of Holyrood, and the royal treasures, retiring to Lochleven, where he husied bimsell in laying out gardens. But his ambition could not deny itself another stroke for power. Aided by the young carl of Mar, he rot possession of Slirling Castle and the person of the king. Civil war was avoided only hy the influence of Sir Robert Bowes, the English mmbassador. A nominal reconciliation was effected, and a parliament at Stirling introduced a new government. Morton, who secured an indemuity, was president of the council, but Atholl remained a privy councillor in an enlarged council with the representatives of both partics. Shortly afterwards Athoil died of poison, it was said. and suspicion pointed to Morton. His return to power was brief, and the only important event was the prosecution of the two Hamiltons, who still supported Mary and saved their lives by light to Engiand. The final fall of Morton came from an opposice quarter. In September 1579 Esme Stuart, the king's cousin; came to Scotland from France, gained the favour of James by his courtiy manners, and received the lands and eartiom of Lennox, the custody of Dumbarton Castle, and the office of chamberlain. One of his dependants, Captain James Stuart, son of Lord Ochiltree and brother-in-law of Knox, had the daring to accuse Morton at 2 meeting of the council in Holyrood of complicity in the murder of Darnley, and he was at once commited to custody. Some months later Morton was condemned by an assize for having taken part in that crime. and the verdict was justified by his confession that Bothwell had revcaled to him the design, although he denied participation in its execution. He was executed by the maiden-a guillotine he had himself brought from England-on the and of June is 8 i .
The attainted earldom of Morton passed by charter at his death to a grandmon of he 3rd earl, John. 7 th Lord Maxuell (1553-i 593). who had previously claimed ihe titc. in 1586, however, the attainder was eescinded in favour of Archibald Douplas, 8ih cart of Angus ($9 . v$. .), a nephew of the 4 th earl. Various caris of Morton have now to be disting uished.
Sir William Douglas (d. 1606). who ranks as 6th or 7th carl of Morton, was the 4 th earl's near kinsman, bcing the son of Sir Robert Douglas of Lochleven (d. 1547). and was closely associaled with him in his career, the two men being occasionally confused in the historics. He was the custodian at Lochleven Castlc of Quecen Mary. By the 4th earl's will he suceceded in 1388 to the caritlom of Niorton, on the death of Archibald 8th carl of Angus; but Lord Maxwell's tite of Morton, which had been revoked in 1585, was revived in 1587 and 1592, so that both men werc in posscssion, and a confict arope. Sir Tuiliam Douglas was succecded by his grandson William (1582-1649). known as $7^{\text {th }}$ or 8th carl of Alorton, Lord high Ireasurer of Scotland. \& zcalous Royalist, who on the outbrak of the Great Rebellion provided Groo,000 for the cille by selling his Dalkeith estates to the Buccleuch family; and hough John, 8ih Lord Maxwcl1) (c. 1886-1613), also claimed the earldom. he unis attainted in 1609 and his rights then (aiiled, his titles and estales being restored in 1618 to his brocher Robert, with the title of cari of Nithydale (1620) in lieu of Morton Among later carls of Morton mention may be made of James ($1702-1768$). 14th carl for, as sometimes numbered. 16 mh), who became president of the Royal Socicy (1764), and wasa distinguished patron of acience, and particularly ol astronomy. In 1746 he sisited France, and was imprisoncd in she Bastille, probably tas a Jacobite. Tbe present earl of Morton is his descendant.
MORTON, JOEN (c. 1420-1500), archbishop of Canterbury, cardinal and statesman, belonged to a family which had migrated from Nottinghamshire into Dorset, and was borm either at Bere Regis or Millborme St Andrew. Educated at the neighbouring Benedictine abbey of Cerne and at Balliol College, Oxford, be graduated in law, and followed that profession in the ecclestastical courts in London, where he attracted the notice of Archbishop Bourchier. He is sald (Dict. Nat. Biog.) to have been "at once admitted to the privy council"; but prohably this is a mistake for the ordinary council, of which Morton might well have been made a member when he was appointed master in chancery and chanceilor of the duchy of Cornwall. He received a good deal of ecclesiastical preferment
from the Lancastrian party, was prement, if he did not fight on the losing side, at the battle of Towton in 146x, and was subsequencly attainted by the victorious Yorkists, He lived with the exiled court of Margaret of Anjou at Bar until 1470, and took an active part in the diplomacy which lied to the coalition of Warwick and Clarence with the Lancastrians and Louis XI., and indirectly to Edward IV.'s expulsion from the throne. Morton landed with Warwick at Dartmouth on the 13th of September 1470, but the battle of Tewkesbury finally shattered the Lancastrian hopes, and Morton made his peace with Edward IV., probably through the mediation of Archhishop Bourchier.
In March 1473 Morton was made master of the rolls, and Edward found employment for his diplomatic talents; he was sent on a mission to Hungary in 1474, and was one of the negotiators of the Treaty of Pecquigny in 1475. In 1479, after receiving a number of minor ecclesiastical promotions, be was clected bishop of Ely. He was one of the exccutors of Edward IV.'s will in 1483, and the story of the future Richard III., while preparing Morton's arrest, joking with him about the strawberries the bishop grew in his garden at Hoiborn is well known and apparently authentic. Oxford University in vain pectitioned for Morton's reiease, and after some weeks in the Tower he was entrusted to the duke of Buckingham's charge at Brecknock. Here Morton encouraged Buchingham's designs against Richard, and put him into communication with the queen dowager, Elizabetb Woodville, and with Henry Tudor, earl of Richmond. He escaped from Brecknock Castle to Flanders, avoided Buckingham's fate, and devoted his encrgies during the next two years to creating a party in England and abroad in-the interests of the earl of Richmond.
When Richmond secured the crown as Henry VII. Morton became his principal adviser. He succeeded Bourchier as archbishop of Canterbury in 1486 and Aicock as lord chancellor in 1487; and he was responsible for much of the diptomatic, if not also of the financial, work of the reign, though the ingenious method of extortion popularly known as "Morton's fork" secms really to have been the invention of Richard Fox (q.s.), who succeeded to a large part of Morton's influence. Morton no doubt impressed Lancastrian traditions upon Henry VII., but he cannot be credited with any great orginality as a statesman, and Henry's policy was as much Yorkist as Lancastrian. The fact that parliament continued to meel fairly often so long as Miorton lived, and was only summoned once by Henry Vil. after the archbishop's death, may have some sigaificance; but more probably it was simply duc to the circumstance that Morton's dealh synchronized with Henry's achievement of 2 security in which he thougbt he could almost dispense with parliamentary support and supplies. As an ecclesiastic Morton followed orthodox Lancastrian lines: in 1489 he obtained a papal bull enabling him to visit and reform the monasteries, and be proceeded with some vigour against the abuses in the abbey of St Albans. In 1493 he was created a cardinal, and in 1495 was elected chancellor of the university of Oxford. He encouraged learning to the extent of admitting Sir Thomas More into his houschold, and writing a Latin history of Richard III., which More transhated into English. He constructed "Mlorton's Dyke " across the fens from Wisbech to Peterborough, repaired the episcopal palace at Hatficld and the school of canon haw and St Mary's Church at Oxford. He dicd at Kimole on the 12th of October 1500 , and was buried in the crypt of Canterbury Cathedral.
Besides the authoritiez cited in the Dict. Nat. Biogr, see the recently publishicd calendar of Patent Reils, 1461-1485., passim; IV. Busch. England under the Tuders (1892): J. Gairdncr, Henry VII. (1889) and Lollardy and the Reformation (1908), and Political History of England. vots. iv. and v. (Jongmans).
(A. F. P.)

MORTON. JOHM MADDISON (i8il-t89t). English playwright, was born at Pangbourne, on the 3rd of January i81s. He was the author of Box und Cox (184%) and a number of other farces. In later life, however, he failed to maintain his success, and eventually became a Charterbouse pensioner, dying on the 19th of December 1891 .
His father, Thomas Morton (1764 ?-1838), aiso a well-known
dramatient, was the author of Columbous, or a World Discovered (1792); Speed the Plougk (1798); The Schaod of Reform, or How to Rule a Husband (1805); A Roland for an Oliver (1819); and other pieces.

MORTON, LEVI PARSONS (1824-), American banker and politician, was born at Shoreham, Vermont, on the 16th of May 1824. ${ }^{\text {I }}$ He was in business at Hanover, New Hampshire, in 1843-1849 and in Boston in 1849-1854. He then became a partner in a New York dry-goods house. He established in 1863 the banking house of L. P. Morton \& Company (dissolved 1899), with a London branch which had Sir John Rose (18201888) as its principal member. Tbe American firm assisted in funding the national debt at the time of the resumption of specie payments, and the London bouse were fiscal agents of the United States government in 1873-1884, and as such received the $\$ 15,500,000$ awarded by the Gencva Arbitration Court in settlement of the "Alabama Chaims" against Great Britain. In 1899 Morton became president of the Morton Trust Company in New York City. He was a Republican representative in Congress in $\mathbf{1 8 7 9 - 1 8 8 1}$, United States minister to France in $188 \mathrm{t}-\mathrm{i} 885$, vice-president of the United States during the presidency of Benjamin Harrison in 1889-1893, and in 1895-1896 was governor of New York, signing as such the " Greater New York" bill and the liquor-tax measure known as the "Raines law." In $\mathbf{8 g} 6$ he was a candidate for the presidential nomination in the Republican national convention.

MORTON, OLVER PERRY (1823-1877), American political leader, "war governpr" of Indiana, was born in Salisbury, Wayne county, Indiana, on the 4th of August 1823. After studying for two years ($1843-1845$) at Miami University, he practised law at Centerville, Indiana, and in 1852 was judge of the sixth judicial circuit of Indiana. In February 185^{6} he was a member of the Pittsburg convention which led to the organization of the national Repuhlican party, and in the same year he was a candidate for governor of Indiana; he was defeated, but his campaign resulted in the effective organization of the new party in his state. He was clected lieutenant-governor in 1860, and when Henry S. Lane (18111881), the governor, resigned, on the 16th of January 1861, Morton became governor. In 1864 he was re-elected. In meeting all the extraordinary demands resulting from the Civil War he displayed great energy and resourcefulness, and was active in thwarting the schemes of the secessionists in the aeighbouring state of Kentucky, and of the Knights of the Golden Circle, the Order of American Knights, and the Sons of Liberty (secret societies of Southern sympathizers and other opponents of the war) in Indiana. In 1863 a hostile legislature sought to deprive him of all control over the militia, and failing in this, adjourned without making the appropriations necessary for carrying on the state government. In this predicament Morton appointed a bureau of finance, and appealed for financial aid to private individuals, bankers, the counties, and even the Federal government. The response was so prompt that he was able to conduct affairs practically single-handed until $\mathbf{8 6 5} 5$, when a legislature more favourable to his policies assembled. In 1865, when Morton had a paralytic stroke and went to Europe for treatment, the president entrusted him with a confidential mission to Napoleon III. concerning the withdrawal of the French troops from Mexico. Morton resigned as governor in January 1867 to accept a seat in the United States Senate, in which be served during the rest of his life. He was recognized as one of the leaders of the Radical wing of his party, voting in favour of Johnson's impeachment, and being especially active on behalf of negro suffrage. In $\mathbf{5} 870$ Grant offered to appoint him minister to Great Britain, but dhe declined the honour on perceiving that a Democrat weuld acceed him in the Sente.

[^62]He was a candidate for the Republican nomination for the presidency in 1876, and at the national convention of his party received 124 votes on the first ballot; the nomination, however, finally went to Rutheriord B. Hayes. He died at Indianapolis on the 18t of November 1877.

See William D. Foulke, Life of Olier P. Morton (2 vole, Iadianapolis, 1899).

MORTON, THOMAS (1564-1659), English bishop, wes born at York, and was educated at York and Halifax grammarschools and St John's College, Cambridge, where' he became fellow on taking his degree. He was ordained in 1592, and held the office of university lecturer in logic till in 1598 he was presented to the living of Long Marston, Yorkshire. He gained a considerable reputation as a Protestant controversialist, and published numerous works against Roman Catholicism, chief among them being the Apologia calholice (1605) and A Calholicke A ppoale (1609). He held successively the deaneries of Gloucester (1606), Winchester (i609), and a canonry at York (1610). In 1616 he bocame bishop of Chester, in $16: 8$ bishop of Lichfield and Coventry, and in 1632 bishop of Durham. On the abolition of the episcopate in 1646 be was assigned a pension, but it was never paid, and the remainder of his life was passed in retirement.

MORTON, THOMAS (c. $1500-1646$), usually called Thomas Morton of Merrymount, English adventurer in America, was a lawyer of Clifford's Inn, London, and seems to have practised in the west of England. He spent three months in America in 1622; returned in 1625, and settled at Mount Wollaston, in what is now Quincy, Massachusetts; and in 1626, when most of the settlers removed to Virginia, be assumed command of the settement, and renamed it Merrymount. ${ }^{2}$ Morton, a Royalist rake, scon became a thorn in the fiesh of the sober colonists at Plymouth. On May-Day in 1627 his companions erected a May-pole, and, assisted by Indians, induged in all the revelry and licence then customary in England. "The setting up of this May-pole was a lamentable spectacle to the precise Separatists that lived at Now Plimmouth,"' says Morton. "They cermed it an Idoll; yea, they called it the Calf of Horeb, and stood at defiance with the place, . . . threatening to make it a woefull mount and not a merry mount." In disregard of a royal proclamation, Morton sold rum and fire-arms to the natives, not only injuring the trade of Plymouth, bat also endangering the safety of the colonists. Morton was therefore arrested and sent to England; and when John Endecott, with a patent from the council for New England, arrived soon afterward he visited Merrymount, which lay within his jurisdiction, rebuked the inhabitants, cut down the May-pole, and renamed the place Mount Dagon. In 1629 Morton returned to America, but was arrested on trivial charges by the Massachusetts authorities, and was confined in the stocks. Later his house was burned and he was sent to England, where be spent a term in the Essex gaol. After his release he wrote his Ney Euglish Canaan (1637), in which be describes the Indians and the natural leatures of the country, and heaps ridicule upon the New England colonists. In 1643 Morton returned to Amcrica. He was imprisoned in Boston in the following year, and was tried before the general court for complaining against the colony before the Privy Council; be was recommitted to gaol pending the gathering of further evidence, and after a year's confinement was fined froo and reloased. He retired to Agamenticus (now York), Maine, and in 1646 died poverty-stricken.
See the Nee Erglish Camaans, edited by Charles Francis Adams (Publications of the Prince Society. vol. ix. Boston 1883); C. F. Adams, Three Episades of Massachusedts Hislory (Boston, 1896): and, for a more favourable view of Morton. A fetv Obsernations on the Prince Sociely's Edition of the New English Canadn. revised and reprinted from the Churchman (New York. 1883). Morton's adventure have furnished material for Nathaniel Hawthorne's short story, The Maypole of Merrymount. and for John Lothrop Motley's novels, Morlon's Hope (1839) and Merry Mount (1849).
MORTUARY (Med. Lat. moriuarium, from mor/uus, dead), of or belonging to the dead, or, in particular, to the burial
${ }^{2}$ In his book Morton indulges his fondness for punning and display of Latinity by calling the place Mare-Moukt (Hill by the sea).
of the dead. The chief modern use of the word is for a building in which dead bodies awaiting burial thay be temporarily kept, for the purpose of inquiry, identification, post-mortem examination, \&c. But it has also been applied to many subjects connected with death and burial. In monastic institutions it was the duty of the almoner to send round to other monastic houses notice of the death of a member, asking for prayers for the soul of the dead. This notice was often beautifully illuminated. On being returned with the endorsement of the monastery to which it had been sent, it would be copied into the roll. Both the notice and the roll were known as a mortuarium, or mortuary (see Ahbot F. H. Gasquet's English Monastic Life, 1904). In the English Church a "mortuary " was in certain places a customary oblation or offering paid out of the estate of a deceased person to the church to which be belonged. An act of 1529 (21 Hen. VIII. c. 6) limited the amount to be paid in mortuaries, the highest being of the value of ros. in estates above f40. Mortuaries, 2 wbere customary, can only be enforced in the eeclesiastical courts. The custom has entirely died out, though claims have been made from time to time.
MORVAN, an clevated region forming the northern continuation of the central plateau of France, and extending over a large part of the department of Niedvre, and over portions of those of Yonne, Cote-d'Or and Saonc-et-Loire. Its area is a little over $1000 \mathrm{sq} . \mathrm{m}$. The average elevation is about 1600 ft ., the culminating point the Bois-du-Roi, attaining 2959 ft . It is traversed by the Yonne, which has its source on Mt Prenelay (2789 ft)., by the Cure and by several affluents of the Arroux. Geologically it consists chiefly of gneiss and granite. It contains much good pasturage and is abundantly wooded, the exploitation of its forests affording employment to large numbers of the inhabitants.

MORVI, a native state of India, in Kathiawar, within the Gujartit division of Bombay. Area, 821 sq. m.; pop. (1901), 87,496 , showing a decrease of 17% in the decade, due to famine; estimated revenue, $\left\{48,000\right.$; tribute, $£_{4000}$. The chief, whose title is Thakur sahib, is a Jadeja rajput, of the same clan as the rao of Cutch. The chief products are cotton and grain. The town of Morvi is situated on the river Machhu, 22 m . from the sea and 35 from Rajkot; pop. (1901) 17,820.

MORVILE, HUGH DE, one of the four English knights who perpetrated the murder of Becket. He appears in the service of Henry II. from 1158 . His principal estate was at Burghon Sands. After the archbishop's murder Hugh and his associates at first took refuge in Knaresborough Castic; afterwards the king sent them to obtain absolution from the pope. The story runs that all four were enjoined to go on pilgrimage to the Holy Land, but it is not known whether Hugh made his expiation in this way. The date of his death is unknown, but it was in or before 1201/3, when we find his English lands in the hands of his two daughters as co-heiresses.

See Eyton's Itinerary of Henry II. i Ramsay, Angevin England.

MORYSON, FYNES ($1566-1630$), English traveller and writer, was the son of a Lincolnshire gentleman, Thomas Moryson, member of parliament for Grimsby. After being educated at Cambridge, where he gained a fellowship at Peterhouse, Fynes Moryson spent many years in travel on the continent of Europe, in Palestine, and in Asia Minor. In 1600 he became secretary to Sir Charles Blount, lord-deputy of Ireland, in wbich country his brother, Sir Richard Moryson, held an important government appointment. In 1617 Morysion published ah account of his travels and of his experiences in Ireland, where he witnessed O'Neill's rehellion, in a voluminous work entitled An Itinerary. He died on the 12th of February 16jo. The Itinerary was originally intended to consist of five parts; but only three were printed, a fourth being preserved in manuscript in the library of Corpus Christi College, Oxford (partially printed in 1903 in Charles Hughes's Shakespeare's Europe). Another part of the Itinerary was republished in 1735 with the title History of Ireland - 1590-1603, wilh o short Narratise of the State of the Kingdom from
r169; and in 1 Bgo Henry Morley included in the "Carisbrooke Library " a volume, Irclond wnder Elizabelh and Jomes I., described by Spenser, Sir John Davies and Fynes Moryson. The Itinerary is a work of great value to the bistorian as a truthful picture of the social conditions prevailing in Europe at the beginning of the 17th century.
MOSAIC (corresponding to Lat. opus musiowm, from Gr. novaciov, an artificial grotto often decorated with mosaics; the word is only found in the sense of mosaic in late Greek, which generally uses $\downarrow \boldsymbol{\eta} \phi \circ \lambda \delta \gamma \eta \mu a)$, the fitting together of many, generally small, pieces of marble, opaque glass, coloured clays, or other substances, so as to form a pattern.

Ancient Mosaic.-The earlicst existing specimens of mosaic belong to one of the less important branches of the art-namely, the ornamentation on a small scale of jewellery, ivory thrones, and other furniture, or more rarely of some elaborate architectural ornament. Most of this sort of mosaic resembles in execution what are called cloisonnes enamels. In the Louvre and in the British Muscum are preserved some very beautilul ivory carvings in low relief, some from Nineveh and others from Egypt, in which figures of deitics, ornaments formed of the lotus and papyrus plants and royal cartouches are enriched by small pieces of glass or lapis-lazuli and other gem-like stones, which are let into boles made in the ivory. Each minute piece is scparated from the next by a thin wall or cloison of ivory, about as thick as cardboard, which thus forms a white outline and sets off the brilliance of the coloured stones.

Excavations at Tel-el-Yehudia in Lower Egypt have brousht to light some mosaics on a larger scale, but treated in the same way. These are caps of columns, wall tiles, and other ohjects, either of white limestone or earthenware, in which designs, chicfly some forms of the papyrus, are formed hy hits of glass or enamelled earthenware, let into a sinking in the tile or column. This form of mosaic was employed hy the Greeks: the Erechtheum at Athens, built in the middle of the sth century b.c., had the bases of some of its white marble columns ornamented with a plait-like design, ia which pieces of coloured glass were inserted to emphasize the main lines of the pattern.

Another, quite different, sort of mosaic was known to the Egyptians of the Ptolemaic and Roman periods. This is made entirely of glass and is extremely minute. The finest known specimen is in the British Museum: it is a small tablet about I in. square, apparently the bezel of a ring, on which is represented the sacred hawk-every feather on the bird's wing being produced with a great number of colours and tinis, each quite distinct, and so minute that a strong magnifying glass is required to distinguish its details,

The way in which this mosaic was produced is extremely ingenious. Numbers of long sticks of various-coloured glass were arranged in such a way that their ends produced the figure of the hawk; other sticks of blue glass were placed all round so as to form the ground. The whole bundle of sticks of glass when looked at end wise now presented the figure of the hawk with a blue background, immensely larger than it afterwards became. The bundle was then heated till the sticks melted together, and the whole thick rod, softened by fire, was drawn out to a greatly diminished thickness. A slice of the rod was then cut off and its faces polished-the design, much reduced in size, of course being equally visible at booh sides of the slice; and thus the microscopic minuteness of the mosaic was produced with astonishing delicacy and refinement; many slices, each showing the same mosaic. could be cut from the same rod.

Far more important was the use of mosacic on a large scale, elther for pavements or for walls and vaulted ceilings. We are told by Pliny (H.N. xxxvi. 184) that the practice of decorating pavements "after the lashion of painting" was due to the Greeks, and there is no reason to doubt the truth of this statement, although no mosaic pavement discovered in Greece can be dated with certainty to a period preceding the Roman occupation. This is true even of the pavement in the temple of Zeus at Olympia (fig. 1; Olympia, Baudenkmäler, vol. ii. pl. cv.).

The simplest classification of mosaics is that of Gauckler (Daremberg and Saglio, Dictionnaire des antiquites, s.v. " Mlusivum Opus '"), who distinguishes the following:-
a. Opus lessellatum, consisting of cubes of marble or stone, rogularly disposed in simple patterns. This was largely used for pavements, especially in Roman times.
b. Opus revmiculatum, consisting of cubes (not always regularly shaped) gencrally of coloured marble ${ }^{1}$ or more precious

Fig. 1.-Greek Pavement from the Temple of Zeus at Olympia.
materials, when these were obtainable, disposed so as to obtain a pictorial effect. The art of mosaic is mainly concerned with this branch of work.
c. Opus musinum, properly applied to the mosaic decoration of walls and vaulted ceilings (camerac), in which cubes of glass or enamel were used. The glass was reridered opaque by the addition of oxide of tin, and coloured with other metallic oxides; when melted it was cast into flat slabs, generally about \mid in. thick, and then broken into small cubes.
d. Opus sectile, a species of marqueterie in-marble or other coloured materials used to produce pictures and patterns. Under the later empire a particular variety of this, called opus alcxandrinum ${ }^{2}$ mainly composed of porphyry, red and green. ${ }^{3}$ was much in use.
Judging from the description given by Vitruvius (vii. 1), and an examination of numerous specimens of Roman tessellated mosaics, the process of manufacture was the following. The earth was first carcfully rammed down to a firm and even surface; on this was laid a thick bed of stones, dry rubbish, and lime, called "rudus," from 6 to 9 in . decp, and above this another layer, 4 to 6 in . thick, called "nucleus," of one part of lime to three of pounded brick, mixed with water; on this, while still soft. the pattern could be sketched out with a wooden or metal point. and the tesserae or small bits of marble stuck into it, with their smoothest side uppermost. Lime, pounded white marble, and water were then mixed to the consistency of cream, lorming a very hard-setting cement, called marmoratum. This cement. while fluid, was poured over the marble surface. and well brushed into all the interstices between the tesserac. When the concrete and cement were both set, the surface of the pavement was rubbed down and polished.
The usual Roman pavement was made of pieces of marble, averaging from balf to a quarter of an inch square, but rather
${ }^{1}$ In the less prosperous provinces of the empire, such as Britain. these costly materials could not be obtained, and native sandstone. ac.. was used.
${ }^{2}$ The biographer of Severus Alexander (Hist. Aug.. e. 25. 7) attributes the invention of opus alexandrinmm to thal emperor: but this is clearty a false derivation. This technique was doubtess invented at Alexandria.
${ }^{2}$ This latter is otten, but vrongly, called serpentine.
irregular in shape. A few other, but quite exceptional, kinds of mosaic pavements have been found, such as that at the lsole Farnese, 9 m . from Rome, made of tile-like slabs of green ghass, and a Gine "sectile" pavement on the Palatine Hill, made of various-shaped pieces of glats, in black, white, and deep yellow. In some cases-e.f. In the "House of the Faun" at Pompeii-glass tesserac in small quantitics have been mixed with the marble ones, for the sate of greater brilliance ot colour.

Few countries are richer than England in remains of Roman mosaics; the great pavements of York, Woodchester, Cirencester, and many or her places are as claborate in design and as skilfully executed as any that now exist even in Rome itself. In whatever country these mosaics are found, their style and method of treatment are always much the same; the materials only of which the tesscrae are made vary according to the stone or marble supplied by each country. In England, for instance, limestone or chalk often takes the place of the white marble so common in Italian and North African mosaics; while, instead of red marble, a fine sort of burnt clay or red sandstone is generally used; other makeshifts had to be resorted to, and many of the Romano-British mosaics are made entirely without marble. It is perhaps partly owing to the great wealth of Northern Airica in marbles of many colours and of varying shades that the finest of all Roman mosaics have been found in Algeria and Tunis, especially those from Carthage, some of which have been brought to the British Miuseum. See Arckoeologia, $x \times x v i i i .202$.

The range of colour in the marble tesserac is very great, and is made use of with wonderful taste and skill: there are three or four different shades of red, and an equal number of yellows and greens, the last colour in all its tints being almost peculiar to this part of A(rica, and one of the most pleasant and harmonious in almost any combination. Deep black, browns and

Fic. 2.-Part of a Perwian's Head from the Batte of Issus,
bluish-greys are also abundant. The mosaics from Certhage are no less excellent in design than in the richness and beauty of their materials. Large spaces are filled by grand sweeping curves of acanthus and other leaves, drawn with wonderful boldness and freedom of hand, and varied with great wealth of invention. Without the use of very small tesserac, much richnest of effect is given by gradations of tints, suggesting light and
shade, without a painful attempt to represent actual relief. The colours of the marbles used here and elsewhere by the Romans are so quiet and barmonious that it would bave been almost imposaible to produce with them a harsh or giaring design, and when used with the skill and strong artistic feeling of the mosaic workers at Carthage the result is a real masterpiece of decorative design.

The finest of the later examples in Rome is that which decorates the vault of the ambulatory of the circular church of S. Costanza, built by Constantine the Great, outride the walls of Rome. This very interenting mosaic might from its style and materials have been executed in the ist century, and is equal in beauty to any work of the kind in ltaly. It shows no trace whatever of the Byzantine influence which. in the next century. introduced into Italy a novel atyle of momac. in materials of the most glit tering splendour. Survivals of this classical style of mosaic are lound in North Africa and the East. At Kabr-Hiram, near Tyre, Renan discovered among the ruins of a small three-apsed Christian church of the 4 th century A. D. a fine mosaic pavement, covering lhe nave and aisles, thoroughly classical in style. A very similar mosaic, of about the same date, was discovered at Nebi Yunas, near Sidon.

Medieval Mosaics.-These may be divided into four principal classes: (1) those used to decorate walls and vaults, made of glass cubes; (2) those for pavements, made of marble, partly in large shaped pieces, and partly in small tesserae; (3) glass in small pieces, either rectangular or triangular, used to enrich marble pulpits, columns, and other architectural features; (4) wood mosaics.

1. In the Byzantine period the glass cube mosaic was exclusively employed in mural decoration. At first natural colouring was used, and backgrounds, if not in local colour, were generaliy blue; hut the use of gold, both for backgrounds and for the high lights on drapery. \&ce., gradually prevailed. Owing to the intence conservatism of Byzantine art, no regular stages of progression can be traced in this class of mosaic. Some of the 5th-century mosaics at Ravenma are, in every way, as fine as those of the 12 th, and it was not till the end of the isth century that any important change in siyle took place. The mosaics of the gth century are inferior in drawing and general treat ment to those both of the carlier and later time, while in Italy at least this art was almost entirely exlinct during the roth and inth centuries. Extreme splendour of colour and jewel-like brilliance combined with the most stately grandeur of form are the main characteristics of this sort of decoration.
A "'majesty." or colossal central figure of Christ with saints tanding on each side. it the most frequent motive. In many cases, especially in the 5 th and 6 th centuries, Christ was represented as a lamb, to whom the twelve apostles, in the form of sheep, are paying adoration. Christ, the Cood Shepherd, is sometimes depicted as a beardlest youth, seated among a circle of sheep-the creatment of the motive being obvioualy taken from Pagan representations of Orpheus playing to the beaska. The tomb of Galla Placidia has a good example of this subject, with much of the old Romang grace in the drawing and compomition. Frequently the Virgin Mary. or the patron sifint of the church. occupies the ceatral space in the apee, with ranges of other mints on each side.
The "Doom." or Last Judgment, is a fa vourite subject for domes and sanctuary anches: the Florence baptistery has one of the grandest momaic pictures of this eubject, executed in the $13^{\text {th }}$ century. The earlier beptisteries usually have the menc of Christ's baptism-the river Jordan being mometimes peroonified in a very classical manner, as aa old man with fowing beard, holding an urn from which a stream pours lorth. S. Vitale at Ravenna has in the sanctuary a very interesting representation of Justinian and his empress Theodora (see fig. 3), at tended by a numerous suite of courtiers and ladies: these mosaics are certainly of the σ th century, and may be coatemporary with Justinian. though the fact that he and Theodora are each represented with a circular nimbus appears to indicate that they were not then alive.

In mosaics of the best periods the treatment of the forms and draperics is hroad and simple, a just amount of relief being expressed by delicate gradations of tints. In mosaics of the gth century the drawing is very awkward, and the folds of the robes are rudely expressed in outline, with no suggestion of light and shade.

A further application of this work was to the decoration of broad bands over the columns of the nave, as at S Maria Maggiore in Rome, 4th century, and in the two churches of S. Apollinare at Ravenna, 6th century. In some cases almost the whole
interior of the church was encrusted in this magnificent way, as at Monreale Cathedral, the Capella Palatina of Palermo, and S. Mark's at Venice.

In these churches the mosaics cover soffits and angles entirely, and give the effect of a mass of solid gold and colour producing the utmost conceivable splendour of decoration. ${ }^{1}$ In many cases vaulted ceilings were covered with these mosaics, as the tomb of Galla Placidia, a.d. 450, and the two baptisteries at Ravenna, sth and 6th centuries. For exteriors, the large use of mosaic was usually confined to the west lacade, as at S. Miniato, Florense; S. Maria Maggiore, Rome; and S. Mark's,

Fig. 3.-Momic of Theodora and Attendante, from S. Vitale, Ravenna: over life kize.
Venice. In almost all cases the figures are represented on a gold ground, and gold is freely used in the dresses and ornaments -rich jewels and embroidery being represented in gold, silver, sparkling reds, blues and other colours, 30 as to give the utmost splendour of effect to the Gigures and their drapery.
The revival of the art of painting in Italy and the introduction of fresco work in the e4th century gave the deathblow to the
I Unfortunately the world-wide faave of S. Mark's and the other great churches of Italy has subjected these extraordinary works to the fatal process of "restoration," and wherever any sign of decay in the cement backing (the tesserae themselves are, quite indestructtble) has given the lease excuse the "restorers", have destroyed whole masses of ancient work, and supplied its place with worthess modern copics. The mosaics of ihe S. Mark's baptistery, and of the apscs at S. Miniato, at Pisa, and many other placen have in this way beea wantonly renewed in recent times.
true art of wall-monice. Thoush at first the simple and archaic style of Cimabue and his pupils Jacopo da Turrita, Giotto, and Taddeo Gaddi was equally applicable to painting or mosaic, yet soon the development of art into greater realism and complexity required a method of expression unfettered by the necessities and canons of mosaic work. Pietro Cavallini, a Roman artist, was one of the last who worked according to the old traditions. His mosaic of the birth of the Virgin in S. Maria in Cosmedin, Rome, executed about the middle of the i4th century, is not without merit, though his superior knowledge of form has only caused his composition to be somiewhal feeble and insipid compared with the works of the earlier artists. Even in the 15 th century a few good mosaics were produced at Venice and elsewhere. The mosaics from Titian's pictures on the west end of S. Mark's at Venice, Raphael's in the Chigd Chapel in S. Maria del Popolo, and many large pictures in S. Peter's in Rome are the most striking examples of these.

The following list, in chronological order, comprises a selection from among the most important glass rall-mosaics during the period when mosac-working was a real art. ${ }^{\text {a }}$

4th Centwry.

Rome.

Naples.
Revemna.
Rome.

Milan.
Pundi.
Nola.
Ravenza.

Rome.
Milan.
Consfantinople.
Thessalonica.
Trebisond.
Roms.

Jerusalem.

Rome.
Jerusalem.
Mount Sinai.
Rome.

Milan.
Cordona.
Jersusalem.
Constantinople.
Venice.
S. Cootanza.
S. Maria Maggiore-square panels over the columns of the nave.
S. Pudenziana.
S. Giovanni in Laterano-chapel of SS. Rufina e Seconda.
S. Reatituta-baptiatery. $5^{\text {th }}$ Century.
Orthodox Baptistery-vault.
Tomb of Galla Placidia-vault, 450.
Archbishop's Chapel-vault.
S. Paolo fuori te mura-triumphal arch.
S. Maria Maggiore-square pictures over nave columns, and triumphal arch (?).
S. Sabina-figures on west wall.
S. Ambrogio, Chapel of S. Satiro-vauit.

Cathedral-apae.
Cathedral-apse. 6ik Centary.
Arian Baptistery-vault.
S. Apollinare Nuovo-apse and nave, with gthcentury additions.
S. Vitale-apee and whole sanctuary, c. 547.
S. Apollinare in Clase-apoe and nave, 549.

SS. Cosmas and Damian-apse.
S. Lorenzo, Chapel of S. Aquilinus-vault.
S. Sophia-walls and vaule, c. 550 .

Church of St Gcorge-apse, \&kc.; and S. Sophiadome and apse.
S. Sophia-apse. 7h Century.
S. Agneme fuori le muri-apse, 626.
S. Teodoro.
S. Stelano Rotondo.
S. Venanzio, baptistery of Lateran.
"Dome of the Rock"-arches of ambulatory, 688.

8ik Conlury.
Baptistery of S. Giovanni in Laterano.
SS. Nereus and Achilles.
Mosque of Al-Aksa-on dome.
Chapel of the Transfiguration, oth Century.
S. Cecilia in Trastevere-apse.
S. Marco-apee.
S. Maria della Navicella-apsc, and "Chapel of the Column."
5. Prassede-triumphal arch.
S. Ambrogio-apoe, 832. roth Century.
Mihrab (senctuary) of Mosque. rith Contury.
"Dome of the Rock "-base of cupola. 1027.
Church of S. Saviour-walls and domes. ${ }^{224}$ Century.

It must be remembered that the earlier mosaics bave in most pases suffered much from restoration.

Capua.
Torcello.
Murano.
Salerve.
Palermo.
Monireale.
Bechlehem.
Cefalu.
Roma.

Florence.
Rome.
Cathedral-apae.
Cathedral-apec.
Cathedral-apse.
Cathedral-apes.
Capella Palatina, begun $1132-$ the whok walls.
Church of La Martorana-vauh.
Cathedral- the whole walls, 1170-1190.
Church of the Nativity, 1169 .
Cathedral-apse, 1148 .
S. Clemente-apme.
S. Francesca Romana-apme.
S. Maria in Trastevere-apae.
r3th Century.

Baptistery vault, begun c. 1225 by Fra Jacopo.
S. Miniato-apse and weat front.
S. Paolo fuori le mura-ape.
S. Clemente-triumphal arch. 1297.
S. Glovanai in Laterano-apre by Jacopo da Turrita, 1290.
S. Maria Maggiore-apoe and west end by Jacopo da Turrita and Taddeo Gaddi.
S. Maria in Trastevere-apee by Pietro Cevallini. 1291.

14at Contwey:
Florencs. Baptimery, finined by Andrea Taf.
Pisa.
Rome.
Caithedral-east apee by Cimabue, 1300, sorth and south apses br his pupila.
S. Peter's-navicella, in atrium by Giotto.
S. Maria in Cosmedin-on walls by Pietro Cevallini, c. 1340 .
SS. Giovanni e Paolo-in arch over effigy of Doge Morocini.

Vomice.

The Byrantine origin of these great wall-mosaics, wherever they are found, is amply proved both by internal and documentar: evidence. The gorgeous momaics of S. Sophia and S. Saviour's in Constantinople, 6th century, and the later ones in the monarteries of Mount Athos, at Salonica and at Daphne near Achens, are idenical in style with those of ltaly of the same date. Moreover, the even more beautiful momaic work in the "Dome of the Róck " at Jerusalem, 7th and 1sth ceraturies, and that in the zanetuary of the great moeque of Cordova, of the toth century, are known to be the work of Byzantine artiste, in spite of their thoroughly Orienal design. The same is the case with the rarer mosaics of Germany, such as those in S. Gereon at Cologne and at Parenzo.
A very remarkable, almost unique, specimen of Byzantine mopaic is now preserved in the "Opera del Duomo," Florence. This ia a diptych of the inth century, of exiremely minute, almosk microscopic work, in tesserae of glass and metal, perhaps the only example of tesserae made of solid metal. It has figurea of sainta and inscriptions, each tessera being scarcely larger than a pin'o head. This beautiful diptych originally belonged to the imperial chapel in Constantinople, and was brought to Florence in the r4th century.
2. The second medieval class, mosaic pavements, though of great beauty, are of lesa artistic importance. This so-called opus alexandrinum is very common throughout Italy and in the East, and came to greatest perfection in the 13 th century. It is made partly of small marble tesserac forming the main lines of the pattern, and partly of large pieces used as a ground

Fig. 4-Marble Mossic at Monreale Cathedral.
or matrix. It is generally designed in large flowing bands which interlace and enclose circles, often of one atone sliced from a column. The finest example is that at S. Mark's, Venice, of the tath century. The materials are mainly white martle, with green and red porphyry, and sometimes glase.

Beaides the countless churches in ltaly posesesing these beautiful pavements, such as S. Lorenzo, S. Marco, S. Maria Maggiore, and S. Maria in Trastevere, In Rome, there are in England, in the Chapel of the Confessor, and in front of the high altar at Westminster, very fine specimens of this work, executed aboat 1268 by a Roman artist called Odericus, who was brought to Eagland by Abbot Ware, on the occasion of a vistt made by the lattor to Rome. Another English example is the mosaic pavement in front of the shrine of Becket at Canterbury; this is probably the work of an Englishman, though the materiais are forsign, as it is partly inlaid with bronze, a peculiarity never found in Italy. Palermo and Monreale are especially rich in examples of sectite mosaic, used both for pavements and walls -in the latter case generally for the lower part of the walls the upper part being covered with the glass mosaics. Fig. 4 gives a specimen of this mosaic from Monreale cathedral. Its chief characteristic is the absence of curved lines, so largely used in the splendid opus Alexandrinum of Italy, arising from the fact that this class of Oriental design was mainly used for the delicate panelling in wood on their pulpits, doors, \&c.-wood being a material quite unsuited for the production of large curves.
3. Glass mosalc, used to ornament ambones, pulpits, tombs, bishops' thrones, baldacchini columns, architraves, and other

Fıg. 5.- Part of Marble Pulpit with klass marble objects, is chiefly Italian. The designs, when it is used to enrich flat surfaces, such as panels or architruves, are very similar to those of the pavements last described. The white marblc is used as a matrix, in which sinkings are made to hold the glass tesserae; twisted columns are frequently ornamented with a spiral band of this glass mosaic, or flutings are suggested by parallel bands on straight columns. The cloisters of S. Giovanni in Laterano and S. Paolo fuori le mura have splendid examples of these enriched shafts and architraves.

This style of work was largely employed from the 6th to the $14^{\text {th }}$ centuries. One family in Italy, the Cosmati, during the whole of the 13 th century, was espocially skilled in this craft. The pulpit in S. Maria in Ara Coeli, Rome, is one of the finest specimens (see fig. 5), as are also the ambones in S . Clemente and S. Lorenzo, and that in Salerno cathedral. The tomb of Henry III. (1291), and the shrine of the Confessor (1269) at Westminster are the only examples of this work in England, They were executed by "Pebrus civis Romanus," probably a pupil of the Cosmati.
In India, especialiy during the 17 th century, many Mahommedan buildiags were decorated wilh tine marble inlay of the class now called "Florentine." This is sectile mosaic, formed by shaped pieces of verious coloured marbles let into a martle matrix. A great deal of the Indian mosaic of this sort was executed by litalian workmen; the finete examples are it Agra, such as the Taj Mahal.
4. Mosaics in wood are largely used in Mahommedan buildings, especially from the 14tb to the 17 th centuries. The finest
specimens of this work are at Cairo end Damascus, and are used chiefly to decorate the magnificent pulpits and other woodwork in the mosques. The patterns are very delicate and complicated, worked In inlay of small pieces of various coloured woods, often further enriched by bits of mother-of-pearl and minutely carved ivory. This art was also practised largely by the Copts of Egypt, and much used by them to ornament the magnificent iconostases and other screens in their churches.
Another application of wood to mosaic work, called "Intarsiatura," was very common in Italy, especially in Tuscany and Lombardy, during the 1 th and early 16 th centuries. Its chief use was for the decoration of the stalls and lecterns in the church choirs. Very small bits of various coloured woods were used to produce geometrical patterns, white figure subjects, views of buildings with strong perspective effects, and even landscapes, were very skilfully produced hy an inlay of larger pieces. Ambrogio Borgognone, Raphael, and other great painters, often drew the designs for this sort of work. The mosaic figures in the panels of the stalls at the Certosa near Pavia were by Borgognone, and are extremely beautiful. The stalls in Siena cathedral and in S. Pietro de' Casinensi at Perugia, the latter from Raphael's designs, are a mong the finest works of this sort, which are very numerous in Italy. It has also been used on a smaller scale to ornament furniture, and especially the "Cassoni," or large trousseau coffers, on which the most costly and claborate decorations were often lavished.
Authorities.-Classical. An excellent account of the subject. with full references, is given by Gauckler in Daremberg and Saglio, Dictionwaire des antiquites, s.v. "Musivum opus"; the translations there given of the loci clossici of Pliny are, however, inaccurate Amongst earlicr works the following are important: G. Ciampini. Velerc monuments (1690-1699); A. Furietti, De musivis (1752): S. Lysons, Roman Antiquitics of Woodchester (1797) and Reliquice brilannico-romanae (1813): F. Mazois. Ruines de Pompti (18121838): Real museo borbonico (1824-1857); F. Artaud, Histoire de la peinture en mosaique (1835); Monmmentos arquitectonicos de Espaffo (1859-1883); Wilmowsky, Römische Mosaiken aus Trier und dessen Umpegend (1888).
Christian. Theophilus, Diversarum artium schedula, ii. 15; S. Kensington Museum Avi Inventory, pt. i. (1870): Renan, Afission de Phéricie (1875); Garrucci, Arle cristiona (1872-1882), vol. iv.; De Rossi, Musaice cristioni di Roma (1876-1894); Parker, A rchocology of Rome, and Mosaic Pictures in Rome and Ravenna (1866); Barbet de Youy, Les Mosaiques chrdtiennes de Rome (1857): Gravina, Dwomo di Aonreale, Palermo (1859 seq.): Serradifalco Monreale ed alire chiese siculonormanne (1838): Salazaro, Mon. dell' arse merid. d'lialia ($\mathbf{1 8 8 2}$): M. D. Wyatt, Geometrical Mosaics of the Middle Ages (1549): Salzenberg, Altchristliche Baudenkmale von Constansinopel (1854): Pulgher, Eglises byzantines de Constaminople (8883); Texier and Pullan, Byzantine Archisecture (1864); Quast, Alt-christbiche Banwerke von Ravenna (8842): I. P. Richter, Die Mosaiken :on Ravenna (1878); M. de Vogú, Eghises de la lerre sainue (I860): Milanesi, Del Arte del tetro pel musaico (r6th century, reprinted at Bologna in 1864): Rohault de Floury, Monuments de Pise (1866): J. Kreutz, Bastica di S. Marco. Venezia (1843); Gally Knight, Eiclesiostical Architecture of Itoly (1842-1844): C. G. Fossati, Aya Sophia (1852); A. N. Didron, "La peinture en mosaique," Gaz. des B. Arts, xi. 442; Gerspach, La Mosaigue (1883); A. L. Frothingham,
 Mosafque chrefienne pendon! les premiers stícles (1803); G. Clausse. Basiligues el mosarques chrétiennes (1893): Ainalov, Mosaiken des IV. \%. V. Jahhunderts (IB95): P. Saccardo, Les Mosaiques de Seimt Marc a V'enise (ı896): A. A. Pavlovsky, Iconographie de la cha pelle palarine (1895): Di Marzo, Delle Belle arli in Sicilia: Sangiorgi. Il Boltistero della basilica Ursiana dy Ravenna (1900); J. Kurth, Die Mosaiken der christlichen Aera, I. Die Mosaiken von Ravenna (190z): J. P Richter and A. C. Taylor. The Golden Age of Classic Chrsstian Art (1904: on the mosaics of S. Maria Maggiore, which the authors assign to the and or 3rd censury A.D., some excellent reproductions are given); Schmitt and Kluge, "Kachrie Djami " (Bulletion de l'msthitut imptriase russe à Comstantinople, xi., 1906; text in Russian).
Mostem.-Hessemer, Arabische wnd alt-stalienische Baurer. gierungen (1853): Prisse d'Avennes. L'Arl arabe (1874-1880); Prangey, Mosqued de Cordoue (i830); Owen Jones, Alhambra (1842): De Vogué. Temple de Jérusalem (1864): Texier, Asie Mineure (1862) and L'Arménie et la Perse (1842-1852); Bourgoin, Les Arls arabes (1868); Coste. Monuments modernes de la Perse (1867); Flandin and Coste. Voyage en Perse (1843-8854): Gayet, L'A riarabe (1893).
Wood Mosaic-Tarsia - Omah del coro di S. Pietro Cassinense di Perugia (1830); Caffi, various works on Rafaello de Brescia and - her intarsiatori (1851): Tarsic ed insagli di S. Lorenzo in Geroco (i 878): aad Scherer, Technik und Geschichle der Inharsia (1898).
(J. H. M. ; H. S. J.)

Moderm Masaic. -The art of mosaic for mural docoration has never been deeply implanted in the antistic sensibilities of the north of Europe, nor has it been employed much either in France, or Germany, or England. It ceased to be generally adopted in Italy when fresco, oil and tempera painting came into vogue. Gothic architecture is ill-suited to its robust clajms as a decorative art; and the incoming fashion for the latest and least interesting development of classical architecture, "Palladian," divorced not only it, but mural painting also, from all architectural schemes. To be properly consequent and effective, buildings, eccleniastical or public, should be constructed with the intention of being covered almost entircly by mosaics, which demand rich environment, marble or other colour; mosaic is essentially a colour medium. It is therefore scarcely surprising that when mural decoration became preeminently pictorial, and gestures and expression grew complicated, elaborate, and naturalistic, an art limited in its powers of presenting such manifestationof realistic design was relegated into the limbo of obscurity.

There are no instances of the use of mosaic In England after the Roman occupation. The Normans, who derived it from the Greeks and Saracens, and adopted it in Sicily, did not import it cither to France or England. Although English churches, and French also, were highly decorated with polychromy from early times up to the 16 th century, there is no evidence of mosaic ever having been used. The revival of a school of mosaicists in Rome during the 17th century, employed in the decoration of St Peter's, and bere and there sparsely engaged in other churches, led to the idea which Wren would have carried into effect, namely, making use of mosaic for the cathedral of St Paul's in London; but his scheme, if it was ever really entertained, was not carried out, as we all know; and the art, which might have become the lashion in England, remained an exotic. Even late into the years of the 1gth century mosaic decoration was regarded by classical purists as a barbarous art, and the glorious decorations in that material to be seen in Sicily, Italy, Greece, Asia Minor and Russia were disregarded as works of high art. They were in many cases cut out to provide room for extravagant and vulgar designs in fresco or tempera, unmeaning, undecorative, and wholly abominable as decoration. Those Roman mosaics over the altars in St Peter's, being coples of celebrated oil pictures, while they cannot be denied excellence as such and marvellous dexterity, reveal the worst possible taste, for they attempt to represent adequately, in cubes, touches of the brush which were spoataneous, fluid, thick and thin, and as sensitive and spontaneous as the finger pressure on the violin atring, so accurate that the least deviation from absolute position produces discord.

The restrictions on mosaic are many, and some are obvious. In the first place, mosaic is not suited for a small scale of design. It is true that in the Opera del Duomo in Florence there is a miniature mosaic (executed in the 12 th century) of extraordinary beauty, which must have taken a lifetime to execute; but still this remains a curiosity, a hit of craltumanship rather than a great work of art. There is also a copy of Mr Holman Hunt's "Finding the Saviour in the Temple," executed for Clifton College by assistants in Messrs Powell's establishment in Whitefriars, London; it is admirably done, no doubt, but it is a long way behind the original, which is a design wholly ill adapted to mosaic. There are several other instances, notably one hy Mr H. Holiday of "The Last Supper." where mosaic has been employed to translate a beautiful design which would have been more satisfactorily executed either in oil or water colours. The primal and most obvious fimitation is in metters of detaildetail as regards a muluplicity of forms, many gradations cither of colour or tone and naturalistic accidents. In this respect good mosaic is like good berso reliceo; it is accomplished by frmly pronounced outlines, unconfused masses, large planes unbroken up by small adjuncts, and generalized and conventionalized lorms and simple colour. So all small curves, as well as small tints, should be eliminated, because it is not in the nature of the material to do them juatice. One can ecescely conceive
a choice lese happy for moasic than the centre group taken out of the upper portion of the Disputa fresco in the Vatican by Raphael, yet this florid piece of work, s facile in creation, was chosen to be erecuted on the eastern wall of the morning chapel in St Paul's.

It is useless to illustrate the many similar mistakes that have been made. They were made in some of the earlier work in the choir of St Paul's. The best example of mosaic on in small ecale is in Ravenna, the tomb of Galla Placidia; the best upon a large scale is the great Christ at the east end of the cathedral at Monreale. These two works absolutely justily the means to the end. Interesting are the designs made by Sir Edward BurneJones for the mosaics lor the American church in Rome, but the execution and colour are alike monotonous. The cathedral of Chester contains a series of mosaic pictures designed by Mr Clayton. The Guards' chapel in St James's is adorned likewise by the same artist, under the direction of the late Sir Arthur Blomaield. In the chapel lor the school at Ciggleswick are mosaics designed by T. G. Jackson, R.A., admirably and broadly treated in true mosaic character; these were executed in sits, and not, according to the modern habit, upon paper, away from their environment and by a foreign firm. Those mosaic pictures which are placed in niches in the great gallery of South Kensington Museum are failures qua mosaic, though the designs in many instances are fine, notably those by Lord Leighton and Val Prinsep; but their execution is uninteresting, because the cubes are laid so flatly and so evenly that they suggest an oil picture appligut upon a flat ground.

Messrs Powell have been employed on several occasions to decorate churches with mosaic. This firm has adopted the old style, and rejected the new one initlated by Dr Salviati of Venice. If we observe the surface of a fine Greek mosaic, such as that of Andrea Tafi in the Baptistery of Florence, or the few remains of unrestored mosaic in St Mark's, Venice, or indeed other works scattered over Italy, we shall see that it is rough, not emooth; that the cubes are irregular in shape; that there is olways a space of the ground colour left, red or white, and visible between each cube. In modern mosaic, with rare exceptions, restoration or other, the cubes have been jammed up closely toget her, and the surface is as smooth as a piece of paper; thereby is engendered a mechanical and uninteresting surface, over which light plays with monotony, and hence that brilliant and scintillating effect so essentially the character of true mosaic is absent. This defect-and it is a grave one-is evident in the works in moasic more or less recently set up in Paris, notably in the apse of the Pantheon, the east end of the Madelifine, and the vaulting of the great staircase of the Louvre. Those In the apse are finely designed, but scarcely look like mostic, those in the Madeleine still less so, and the last not at all.

The artist who designs for this material must set aside all the principles he has learned to estimate in puint, either of oil or tempera. As an lnstance of a painter, pre-eminently delicate in his colour and tone, failing as a mosaic designer we may quote Cimabue, whose beautiful designs in the cethedral at Pisa would have been lar more effective had the artist painted them upon the wall with the medium in the requirements of which be was so great a master. The same criticiam may apply to the mosaics In recent years set up on the west front of Sance Maria del Fiore in Florence. The very first principles which go to make a fine pleture are just those which should be avoided in mosaicclaborate modelling, delicate transitions of Hight and shade and picturesque effects of dark and light, materialistic resemblance indeed. The designer for mosaic should ever bear in mind his material, and in his designs for it he should accentuate those characteristics which befong essentially and specifically to mosaic and to no other techniguc. If he is a painter, he must forget his lessons in that art and take up with new ones-lhose which teach broad masses of colour oblained in lines. He will find that effects gained by a technique employed in oil colour look bald and ridiculous when translated into mosaic. Watercolour and pastel are by far the best medin for cartoons to be copled in mosaic. We do sot know how these were excecuted
in ancient days; probably the design was drawn on the wall, and there were no cartoons. The master not only invented, but be was the master-workman also, and that is how it should be. The probability is that the custom of drawing the design upon the wall practised by the early Irescanti was the survival of a method adopted by the mosaicists, just as their method repeated that of Roman and Greek wall-painters. Ol course this direct method leads to a large style, a style harmonizing with envisonment, scale, \&ec. ; the tendency is to draw large in a large building, to draw small In a small one. Anyhow, this is quite certain, that all the fine Byzantine and 13 th century mosaics, as well as wall paintings, were executed in situ and not away, as was the usual custom in England and elsewhere until recently.

Mr Harry Powell has permitted the writer to make use of some of his reflections upon the mossicist's art in the following notes. The mosacist should not separate the artistic from the sechnical details of his craft. He must study not only the decorative effect, form, colour and spacing of his design, but the surface to be covered as well as the materials with which he builds.

Surface.-Good brick-work, the mortar joints slightly eut back, afiords the best foundation for mosaic. The hollow and sharpedged joints provide a key for the cement into which the culves will be set, and they diminish the risk of sagging. a not uncommon event il the cement is not welded to the wail by being well premed into the joints. If the mnaste is to be applied on stone. the stone must be rotched and well roughened to provide support. Whether the surface is brick or stone, it must be well saturated with boiled oil to prevent suction. because if too much suction takes place the powder only of the cement will remain and the cubes will drop out.
Cement.-A cement suitable for mosaic is one which retains its tenacity, which can be applied in layers, which sets slowly, and which is not liable to change colour after long exposure. These conditions are bext met by an oil cement. One consisting of equal weights of white oxide of zinc and carbonste of zinc. mixed with double boiled oil and containing small proportions of wax, gold sixe and slacked lime gives good results. This cement can either be white or red, white where greyness of tone is desirable. red where a richer effect is desirable. It is generally mixed with a small portion of oxide of iron or oxide of mangancoe, which prevents the whitenews of the joints from rendering a djacent tints grey from a distance.

Atmospheric Corrosion.-As the atmosphere of modern towns is more corronive than that of medieval Venice or medieval Rome, it im important that, In choosing the cement and the materials to be imbedded in it. the mosaicist should be certain that they are irmpervious to atmospheric impurities.

Glass.-Although marble, mother of pearl, and other substances have been, and are still. occasionally used, the predominant matcrial in ancieot as well as modern mosaics is glass. When prepared with due regard to the continuing proportions of its inqredients, glass is impervious to the action of ordinary acids, and is practically indestructible. It can be made to asoume almost every shade and cint of colour (see Glass). There are many kinds of glass, but for mosaic-work either a potseh-lead or a soda-lime glass is usually employed. Both of theoe glases can be rendered opaque by mixing with the ingredients either oxide of tin or a mixture of Telapar and fuorspar. Glase rendered opaque by the admixture of felspar and fluorspar has a bright, vitreous, casily cleaned surface, and readily develops brilliant colours.

Production of Colowrs.-Colours are obtained by mixing and melting with the ingredients of the opeque glape small proportions of certain metallic oxides. Oxide of chalk gives a purple blue; oxide of copper gives a peacock blue; oxide of copper with oxide of Iron givea a green: oxide of copper mixed with oxide of iron and a etrony reducing agent givea a red; oxide of chromium a green; oxide of nickel a purple; oxide of urapium a yollow: and oxide of manganese a violet-or a black if a larger quantity of oxide is used.

Manufocture of Class Slabs.-The mixtures, in a state of powder, are shovelied into crucibles stapding round the grate of a lurnace, and when fusion is complete the viscous glass can be coiled upon the heated end of an iron rod and removed for use, very much in the way that thick creacle may be coiled round the bowl of a spoon. A mams of molten glass, thus colleeted, is allowed to fall upon a flat iron table, and is preseed into a siab about 6 in. square and in. thick. The slaba are removed to an oven, where they are allowed to cool slowly, and when cool are removed and broken by a hammer or a miniature guillotine into teserae or cubes The fractured edge of the tesserae is used for the surface of the mosaic. Gold and Siluer Slabs.-The tesmerae contalning gold of sitver leaf are as impervious to surface corrosiona from the effects of atmouphere as the nolid colours. The process of manufacturing a gotd or silver alab for mosaic work is to spread the metallic leal on a very thin tray of transpareat gelasp about 5 in. in diameter,
and efter it has been heated to press upon the surface of the leaf a mises of motion gtass, so as to ercate colvision lictween the molten glase and the plass tray through the pores of the metallic leat. The stabs thus lormed contain gold, silver or platinum leal hermetically imprisoned lextween two layers of glass. The slabs are cut up into tesseree or cubes by means of a diamond or glass-cutter's whee. Only one surface can be used for monaic work.
Trmed d/etals.-By using coloured glase for the thin glan trays which form the surface of the metallic stabs a variety of tinted metallic effects are obtained. Moreover, if the glast which is to form the background is coloured. and if the slab after it has been cooled is strongly reheated, the leal becomes sufficiently disint tegrated to allow the colour of the background to show through, with the result that the colour effect of the metallic leal is modified.
Paletle and Tools.-The palette of the mosaic worker is a shallow box with many partitions, each division containing different. conoured tescerae. The only tools required are clippers, for shaping the tesserae, and a pointed awil for pricking through the carioon into the cement the outines of the design. Although the procest and tools are simple, it requires prolonged training of mind, hand, cye and fingers to enable a workman to create in mosaic a living rppresentation as distinguished from a lifeless copy of the master cralteman's design.

Drawing divectly on the Wall. Curoed Surfaces.-If the mosaicist desires to draw his cartoon directly upon the wall, a necessary procedure where curved surfaces are presented, he goes to work in the following manner. He causes a model to be made to scale of a dome, scmi-dome or spandrel and upon it he draws his design with a brush in strong red pigment, having previously squared up the whole surface to scale. This done, he causes the dome, semi-dome or spandrel to be oovered over with thick brown paper. This being attached to the wall with white lead sufficient only to give Lemporary adhesion, the brown paper is squared up to the scale of the small sketch; each square being relatively numbered. The master then sets his pupiis to work to draw mechanically and copy accurately from the small design on to the full-sized dome, semi-dome or spandrel. This done, the master follows on, correcting with charcoal or hrush until the whole design is developed in strong outline. Having made a slightly coloured sketch, the master with the aid of his pupils proceeds to mix all the tints in water-colour, adding colla di pesce or fish glue, and a litule boney to prevent cracking. He then applles every tint separately, keeping each distinct, and above all minding that the local colours of all half-tints are different from the colour of all shadows. This done, he dips his brush in black and draws all the outlincs, the thickness of which depends upon the distance which will intervene between his wort and the spectator; In order that the black may not appear cold from a distance, he will add to one side of the line, a red line, thicker or thinner than the black, according to the effect be wishes to produce. It is sometimes effective to add upon the other side of the black line a green line, so that the pusple effect of the black and red shall be modified.

Colow. We now come to the great question of colour and how to obtain it simply, and so that from a distance a blurred and woolly effect is not obtained. There should be a marked and sharp definition between all tints; they should not be fused; they should look sharply defined, as the squares upon a chessboard, and appear crude and brutal. The work which looks least refined near at hand looks more finished at a distance. Red and bloe lines alternately laid, either more red or more blue as the purple is intended to tend towards red or blue, make the best purple. Green is best made with yellow and blue lines, the masses being separated by red lines, and the shadows of green shouid be red or blue: if red, they should be outllned with blue; if blue, with red. Red should be treated flatly, shaded with a deeper red, which shoutd be of a warmer tone than the lights. Blue should be shaded with blue or red; and it is well to mix green tesserace with the bluse in the lights, and again green tescerae with the blue or red shades to modify crudity. Pure white should be very sparingly used: it expands greatly at a distance. The best white is that whict is of the tone of Naples yellow. Whenever it is necessary to ue pure white, either a yellow or pink line should be set on one side of it.
It is impossible to keep the fesh too simple. The local colour,' i.e. a red orange, is the staple colour. Features should tin drawn
in strong red or burnt sienna, or a rich brown. The outlines of limbs or the contours of faces should be made first with a green line, a little darker than the local tints, then a red line darker atill, then a black or brown line. White draperies are capable of being treated with endless variety. Their shadows may be green, red, blue, grey or yellow. If the white drapery is to take a peutral tone when seen from a distance, all these tints should be employed, because when mixed those positive colours appear neutral wien seen from afar.

Gold drapery has a fine effect. Bright gold expands to four times the width of the line, so that tbe lines of gold should be thin. It may be that the gold drapery is to appear greenish; when that is desirable the folds should be drawn in green outlined with red. All deep shades should be treated with red and hot browns. As gold expands so considerahly, a larger interval should be keft between the tesserac than between any other colour, even white. Each tessera should have a thin space of the. ground colour round it. The tesserae should never be jammed: it is that which causes so many modern mosaics to look like oil-cloth or chromo-lithographs.

The Finished Cartoon.-The finished cartoon, having been coloured in lines, should look exactly like the finished mosaic as regards effect; and the master, in making his cartoon, should always bear in mind that he is designing for mosaic, and not making a finisbed picture. The cartoon, when complete, is taken off the wail and cut up in pieces. Each piece is then carefully traced. The space upon the wall corresponding to each section is then covered with cement, but only upon that portion of the space which can be worked in mosaic in a day. The mosaic worker then applies the portion of the tracing upon the wet cement, and with a sharp point he pricks through the paper upon the lines thereon drawn; on removing the tracing he will find indents within the surface of the cement, which give him his cue to all the forms. Setting up the coloured design by his side, be takes the tesserae, which exactly correspond in colour and tone with those on the drawing, and begins his work, commencing from the outline and working inwards towards the centre, the lightest portioa being left to the last. Here comes in the real test whether the craftsman is capable or the reverse. This is soon judged by the master, who will put the work in and out until he is satisfied with the result. Unless the master has himself gone through the drudgery of laying the cubes he can be no teacher. He must be a craftsman as well as a designer, and must know by experience and practice in a very difficult craft what the material can do with ease and what it is not called upon to do by reason of its inberent limitations. If he has not so trained himself be is certain to pictorialize what he should conventionalize; and, moreover, he will set technical difficulties in the way which are impossible to overcome. He must aim at the greatest simplicity witbout dullness, at producing the greatest effect by the simplest means, and to do that he must know his material or fail.
(W. B. RI.)

MOSBY, JOHN SINGLETOM (1833^{-}), American soldier, was born in Edgemont, Powhatan county, Virginia, on the 6 th of December 1833. He graduated at the university of Virginia in 185a, was admitted to the bar in 1855 , and practised law in Bristol, Washington county, Virginia, until the heginning of the Civil War, when he joined the cause of the South. He enlisted as a private in the Washington Mounted Rifles, whith became a part of Genemal J. E. B. Stuart's ist Virginia Cavalry, and of which he was adjutant for a time. In June 1862, after having gone over the ground alone on scouting duty, he accompanied Stuart in his ride round McClellan's entire army. Early in 1863 be secured Stuart's permission to undertake a quasi-independent command. In Fairfax county and then is Fauquier and Loudoun counties (known as Mosby's Confederacy), within the Federal lines, he raised, mounted, armed and equipped a force of irregulars. On the night of the 8th of March 1863, with about 30 men, he penetrated the Federal lines at Fairfar Court-House asd took 33 prisoners, including Brigadier-General Edwin H. Stoughton, commanding the and Vermont brigade; and be became famous for other such exploits. In the North
he was regarded as a guerilla who disregarded the rules of war, and in the autumn of 1864, Sheridan, acting under orders from Grant, shot and hanged seven of Mosby's men without trial; in November Mosby retaliated by hanging seven of Custer's cavalry. men. Event ually, on the a ist of April 1865 , twelve days after the surrender of General Lee, he disbanded his men and surrendered; and through the influence of General Grant, who later became his personal friend, he was paroled. He returned to his legal practice, joined the Republican party, canvassed Virginia in 1872 for General Grant, in 1878-1885 was United States consul at Hong-Kong, and after practising law in San Francisco, was assistant altorney in the Federal Department of Justice from 1904 to 1910 . He wrote Mosby's Reminiscences and Stwarl's Cavalry Campaigns (Boston, 1887), and-a defence of Stuart and of Lee-Stuart's Capalry in the Gelfysburg Campaign (New York, 1908).
See J. Marshall Crawford, Mosby and his Men (New York, 1867); A Monteiro, War Reminiscences by the Surgeon of Mosby's Command (Richmond, Virginia, 18go). James J. Wifliamson, Mosby's Ranfers (New York, 1909); John W. Munson. Reminuscences of a Masby Guerrilla (New York, ${ }^{1906}$), John H. Alexander, Meosby's Mem (New York. 1907); a nd Partisan Life zouth Mosby (New York. 18671. by John Scott. who drafted the Partisan Ranger Law, under which Mosby's command operated.

MOSCEBLES, IGNAZ (1794-1870), Bohemian pianist, was born at Prague on the joth of May 1794, and studied music at the Conservatorium under the direction of Dionys Weher. At the age of fourteen be made his first appearance before the public in a pianoforte concerto of his own composition with marked success. In 1814 he prepared, with Beethoven's consent, the pianoforte arrangement of Fadelio, afterwards published by Messrs Artaria. In the following year he publisibed his celebrated Variadiomen ziber den Alexandermarsch, a concert piece of great difficulty, which he played with so great effect that he was at once recognized as the most brilliant performer of the day. He then started on a tour, during the course of which he visited most of the great capitals of Europe, making his first appearance in London in 1822, and there securing the friendship of Muzio Clementi and John Cramer. For a concert given by the latter he wrote his famous Hommage d Handed, a duet for two pianofortes, which afterwards became a lasting favourite with the public. During a visit to Berlin in 1814 he first hecame acquainted with Mendelssohn, then a boy of fifteen; and a friendship sprang up between them which was severed only by Mendelssohn's carly death (see Briefe son MenddisownBartholdy an Ignas und Charlolle Moscheles, 1888). In 1826 Moscheles married Charlotte Embden at Hamburg, and settled permanently in London. He was undoubtedly-for some considerable time the greatest executant of his age; but, using his hrilliant touch as a means and not as an end, he consistently devoted himsell to the further development of the true classical school, interpreting the works of the greal masters with conscientious fidelity, and in his extempore performanoes, which were of quite exceptional excellence, exhibling a fertility of invention which never failed toplease the most fastidious taste. In 1837 Moscbeles conducted Beethoven's Ninth Symphony at the Philharmonic Society's concerts with extraordinary succese, and by his skifful use of the baton contributed to the prosperity of this association. During the course of his long residence in London he laboured incescantly in the cause of art, until the year 1846, when, at Mendelssohn's carnest solicitation, be removed to Leipaig to carry on a similar work at the Conservatorium, then recenily founded. In this new sphere be worked with unabated zeal for many years, dying on the roth of March 1870. Moscheles' numbered works extend to 142, apart from minor pieces; his most important compositions are his Pianoforte Concertos, Sonatas and Studies (Eludes, op. 70; and Characteristische Studien, op. 95); Hommage a Handel; and his three Allegri di browwre.

See The Life of Mascieles (1873), a transtation by A. D. Coileridge of Mme Moveheles' Aus Mascheles Labes (1872).
moscembosch, JOHANM michazl (2601-1669), German satirist, was born al Willstadis near Strassburg, on the gth of March 1601. He received a careful early education at the

Latin School at Strassburg, and in 1620 began his academic career as a student of jurisprudence. After being for some years tutor in the family of the Gral von Leiningen-Dachsburg, be finally became privy councillor to the landgraviac of HesseCassel. He died at Worms on the $4^{\text {th }}$ of April 1669 . Under the name of "Der Träumende," Moscherosch was a member of the Frucklbringende Gescllschaft, a society founded by Prinice Ludwig of Anhalt-Cöthen, in 1617, for the purification of the German language and the fostering of Germaa literature. His most famous work is the Wunderliche und wakrhaflige Gesichie Philanders non Sillewald (anagram of Willstadt) (1642-1643), for which he took as his model the Suetios (visions) of the famous Spaniard Francisco Gomez de Quevedo y Villegas ($1580-1645$). Hardly inferior to the " visions" is the Insomnis cura parentum, Chrislliches Vermdechtnis eines Vajers, which was published at Strassburg in 1643 and again in 1647. Noteworthy is also Dic Patientic, discovered ia 1897 ia MS. in the municipal library at Hamburg.
Selections from Moscherosch's writings have been published by W. Dittmar (1830). F. Bobertag (in Kirsehner's Deutsche Nationalditeratur, xxxii., 1884), and K. Muller (in Reclam's Universolbibliotheh). Reprints of the Insomnis cura parentmm and Palientia beve been published by L. Pariser (1893 and 1897), who is also the author of Beitrage zu einer Biographie zon Moscherosch (1891). See also M. Nickels, Moscherosch als Pödagog (1883); J. Wirth Moscherosch's Gesichte (1888).

MOSCHOPULUS ("littie calf," probably a nickname), MANUEIn Byzantine commentator and grammarian, lived during the cad of the I3th and the beginaing of the 14th century. His chief work is 'Epotrijuara rpauнarıxa, in the form of question and answer, based upon an anonymous epitome of grammar, and supplemented by a lexicon ($\sigma v \lambda \lambda$ ory') of Attic nouns. He was also the author of scholia on the first and second books of the Iliad, on Hesiod, Theocritus, Pindar and other classical and later authors; of riddles, letters, and a treatise on the magic squares. His grammatical treatises formed the foundation of the labours of such promoters of classical studies as Manuel Chrysoloras, Theodorus Gaza, Guarini, and Constantine Lascaris.

A selection from his works under the title of Manuelis Moschopudi opuscula grammalica was published by F. N. Titze (Leipzig, 1822); gee also C. Krumbacher, Geschichte der byzantinischen Litheratur (1897) and M. Treu, Maximi manachi Planudis epistular (1890), p. 208.
: Moschus, Greek bucolic poet and friend of the Alexandrian gramma rian Aristarchus, was born at Syracuse and flouriahed about 150 B.c. He was the author of a short epic poem, Ewropa, and a pretty littie epigram, Love, the Runowey, imitated by Torquato Tasso and Ben Jonson. The epitaph on Bion of Smyrns, wrongly supposed to have boen bis tutor, was in-all probability written about the time of Sulla (see F. Buicheler in Rheinisches Museum, xxx., 1875). The poem on Megara (the wife of Heracles) is probably not his, but a fetw other pieces, undoubtedly genuine, have been preserved. His poems are neariy all in hexameters. They are usually printed in editions of Bion and Theocritus, and have been translated into many European languages.
The text has been edited by \mathbf{U}. von Wilamowitz-Möllendoiff, in the Oxford Scriptorum classicorum bibliotheca (1905): there are English cranslations by J. Banks in Bohn's Classical Labrary (1853). and by Andrew Lang (1889), together with Bion and Theocritus. See F. Susemiht. Geschichte der griechischen Litleralur in der Alexan. drinerneil. i. 231 (1891), and article Brow.
1 MOSCOW (Russian Moskoa), a government of Central Russia, bounded by the governments of Tver on the N.W., Vladimir and Ryazan on the E., Tula and Kaluga on the S., and Smolensk on the W., and having an are2 of $12,855 \mathrm{sq}$. m . The surface is undulating, with broad depressions occupied by the rivers, and varies in elevation from 500 to 850 lt . The government is situated in the centre of the Moscow coal-basin, which extends into the neighbouring governments. Its geology has been carefully studied, and it appears that in the Tertiary period the surface of this province was already continental; but during the Cretaceous period it was to some extent overflowed by the tea. Jurassic deposits are represented by their upper divisions
only; the lower ones, as well as Triassic and Permian deposits, are waating. The Carboniferous deposits are of a deep-sea origin, and are only represented by the upper division which lies upon Devonian deposits, discovered in an artesian well at Moscow at a depth of 1508 ft . The pendulum anomaly, mentioned by Kaspar Gottfried Schweitzer (1816-1873), has been investigated. It appears in a zone 10 m . wide and about 95 m . long from west to east, and is positive ($+10.6^{\prime \prime}$) to the north of Moscow and negative $\left(-2 \cdot 7^{\circ}\right)$ to the south.

The governmeat is drained by the Volga, which skirts it for a few miles on its northern boundary, by the navigable Sestra, which brings it into communication with the canals leading to St Petersburg, by the Oka, and by the Moskva. The Oka and Moskva from a remote period have been important channels of trade, and continue to be so notwithstanding the development of the railways. The Oka hrings the government into water communicatioa with the Volga. Extensive forests (39% of the entire area) still exist. The soil is somewhat unproductive; agriculture is carried on everywhere, but only two districts export com, all the others being more or less dependent on extraneous supplies. The principal crops are rye, oats, barley, potatoes, with some flax, hemp and bops.

The population, $1,913,700$ in 1873, numbered $2,430,549$ in 1897, and 2,733,300 ia 1906. They are nearly all Great-Russians and belong to the Greek Church (4% Nonconformists). The importance of the Moscow government as a manulacturing centre is steadily increasing, and it now stands first in Russia. The chief factories are for cottons, woollens, silks, clothing, chemicals, sugar refincries, distilleries, iron-works. There is besides a very great variety of minor industries-such as those concerned with gold thread and gold brocades, gold and silver jewelry, bronze, perfumery, swects, tobacco, tanneries, guttapercha, furniture, carriages, wall-paper, toys, baskets, lace, and papier-matche. The government is divided into 13 districts.

The prebistoric archacology of Moscow has been carcfully studied. This district has been inhabited since the Stonc Age. Bronze implements are rare, and there are places where instrumeats of stone, bone and iron are found together. The inhabitants who constructed the burial mounds in the roth to 122 h centuries seem to have been of Finnish origin, and were poorer, as a rule, than their coatemporaries oa the Volga.

Moscom. (Russian Moskoc), the second capital of the Russian empire, and chief town of the government of the same name, in $55^{\circ} 45^{\prime} \mathrm{N}$. and $37^{\circ} 37^{\prime}$ E., oa both banks of the river Moskva, a tributary of the Oka. It is by rail 400 m . from St Petersburg, 1017 from Odessa, and 814 from Warsaw, It lies to the north of the most densely poopled parts of Russia (the "black-earth region "), whilst the country to the north of it is rather thinly peopled as far as the Volga, and very sparsely beyond that. The space between the middle Oka and the Volga, however, was the cradle of the Great-Russian nationality (Novgorod and Pskov excluded); and four or five centuries ago Moscow had a quite central position with regard to that region.

The present city covers an area of 32 sq. m . (about 40 when the suburbs are included). In the centre, on the left bank of the Moskva, stands the Kreml or Kremlin, occupying the Borovitsky hill. To the cast of the Kremlin is the Kitay-Gorod, formerly the Great Posad, the chief centre of trade. The Byelyi-Gorod, which was formerly enclosed by a. stone wall (whence the name), surrounds the Kremlin and the Kitay-Gorod on the west, north, and north-east. A line of boulevards now occupies the place of its wall (destroyed in the i8th century), and forms a first circle of streets round the centre of Noscow. The Zemlyanoy-Gorod (earthen enclosure) surrounds the Byelyi-Gorod, including the Zamoskvoryechie on the right tank of the Moskva. The earthen wall and palisade that formerly enclosed it no longer exist, their place being taken by a series of hroad streets with gardens on both sides-the Sadovaya, or Gardens Street. The fourth enclosure (the Kamer College earthen wall) was made during the reign of Catherine II.; it is of irregular shape, and encloses the outer parts of Moscow,
whilst the suhurbs and the villages which have sprung up on the highways extend some miles beyond.
The Kremlin is an old fort of pentagonal (nearly triangula-) shape, about 100 acres in extent, occupying a hill 130 ft . above the level of the Moskva. It is enclosed by a high stone battic. mented wall 2430 yds. in length, restored durng the sgth century, and having nineteen towers. Its five gates are surmounted by towers and are all noteworthy. The Spaskiya (Saviour's) Gate was crected in 1491 by a Milanese architect; the Gothic tower (203 ft .) that surmounts it was advied in 1626 by the English architect, Holloway. A sacred picture of the Saviour (the "palladium of Moscow") was placed upon it in 1647, and all who pass through the gate uncover. The towers surmounting the other four gates were erected by order of Ivan III. Of the sacred huildings of the Kremlin the most venerated is the Uspenskiy cathedral. The former church of this name was erected in 1326 by the tsar, Ivan Kalita, but, on its falling into disrepair, a new one was built on the same place in 1475-1479, by the Bolognese architoct, Fioraventi, in the Lombardo-Byzantine style, with Indian cupolas. It was restored each time after being pillaged or burnt in 1493, 1547 , 1682 and 1812 . It contains the oldest and most venerated holy pictures in Russia, one of which is attributed to the metropolitan Peter, another to St Luke. The cathedral possesses also the throne of Viadimir I., and numerous relics of saints, some of which date from the suth century. The Russian metropolitans and patriarchs were consecrated in this cathedral, as well as the tsars after IVan IV. The Arkhangel catbedral. on the opposite side of the square, was originally built in 1333 . and a new one was erected in its place in 1505-1 508. It contains the tombs of the tsars from Ivan Kalita (1340) to Ivan Alexeivich (1696), and possesses vast wealth. The Blagovyeshchensk cathedral, recalling the churches of Mount Athos (in Turkey), was first built in 1397, rebuilt in 1484-1489, and restored in 1883-1896; the remarkable pictures of Rublev (I405) are still preserved. It was the private chape! of the tsars, and in it they are baptized and married. Vestiges of a very old church, that of the Saviour in the Wood, contemporaneous with the foundation of Moscow, still exist in the yard of the palace. A stone church took the place of the old wooden structure in 1330, and was rebuilt in 1527 . The Voznesensky convent, erected in $1389-\mathrm{r} 393$, and restored in the end of the 19 h century, is the burial-place of wives and sisters of the tsars. The Chudov monastery, erected in 1358-1365 and rebuilt in 1771, was the residence of the metropolitans of Moscow and a state prison. Close by, the great campanile of Ivan Veliky, erected in the Lombardo-Byzantine style by Boris Godunov, in 1600 , rises to the height of 27 ft . (318 ft . including the cross), and contains many bells, one of which weighs 64 tons. Close by is the well-known Tsar-Kolokol (king of the bells), 65 ft . in circumference round the rim, ig ft. high, and weighing ig8ł tons. It was cast in 1735 , and broken during the fire of 1737 before being hung. The treasury of the patriarchs in the campanile of Ivan Veliky contains not only such articles of value as the sakkos (episcopal robes) of the metropolitans with 70,000 pearls, but also very remarkable monuments of Russian archaeology. The library has 500 Greck and 1000 very rare Russian MSS., including a Gospel of the 8 th century.
The great palace of the tsars, erected in $\mathbf{1 8 3 8 - 1 8 4 9}$, is a fine building in white stone with a gilded cupola. It contans the lercms, or rooms erected by Tsar Michael Feodorovich for the young princes his sons in 1636 (restored in $1836-1849$, their former character being maintained), a remarkable memorial of the domestic life of the tsars in the ifth century. In the treasury of the tsars, in the Orujeynaya Palata, now public muscums, the richest stores connected with old Russian archaeology are preserved-crowns, thrones, dresses, various articles of household furniture belonging to the tsars, Russian and Mongolian arms, carriages, \&c. The Granovitaya Palata, another wing of the great palace, consists of a single-vaulted apartment built in 1473-1400, and is used as a state banqueting hall.

The four sides of the Senate Square are occupied by buildings
of various dates, from the 1 gih century onwards. Among them is the imposing senate, now the law courts, erected by Catherine II. (1771-1785). Facing it is the arsenal ($1701-1736$). The temple of the Saviour, begun in 1817 in commemoration of the events of the French campaign of 1812, was abandoned in 1827, and a new one was built during 1838 -1883 on a hill on the bank of the Moskva, at a short distance Irom the Kremlin. Its style is Lombardo-Byzantine, with modifications suggested by the military taste of Nicholas I.
The Kitay-Gorod, which covers 131 acres, is the chief commercial quarter of Moscow. It contains the new bazaars, a triple block of buildings erected in 1888-1893 in sandstone, at a cost of over $1,630,800$, and the Gostinoy Dvor, consisting of several stone buildings divided into 1200 shops. The Red Square, 900 yds. long, with a stone tribunal in the middle. Which was formerly the forum, market cross and place of execution separates the bazaar from the Kremlin. At its lower end stands the fantastic Pokrovsky Cathedral (usually known as Vasili Blazhennyi), one of the wonders of Moscow, on account of its towers, all differing from each other and representing, in their variety of colours, pine-apples, melons and the like. It was begun by Ivan the Terrible in 1554 to commemorate the conquest of Razan, but bot completed until 1679. It was plundered and desecrated by the French in 1812 , but restored in 1839-1845. The exchange, built in 1838 and restored in 1873 , is very lively, and its "exchange artels" (associations of nearly 2000 brokers) are worthy of remark. Banks, houses of great commercial firms, streets full of old book-shops carrying on a very large trade, and finally the Tolkuchy rynok. the market of the poorest dealers in old clothes, occupy the Kitay-Gorod, side by side with restaurants of the highest class. In this quarter are also situated the house oi the Romanovs, the reigning dynasty of Russia, rebuilt and refurnished in 1859 in exact conformity with its former shape; and the priating-office of the synod of the Orthodox Greek Church, founded in 1563 and containing about 600 MSS. and 10,000 very old printed books, together with a typographical museum. At the entrance to the Kitay-Gorod stands the chapel of the highly venerated Virgin of Tberia, a copy made in 1648, of a holy picture placed on the chief gate of the monastery of Mt Athos.
The northern parts of the Byelyi-Gorod are also the cenve of a lively trade. Here are situated the Okhotnyi Ryad (poultry and ganne market) and the streets Tverskaya, Petrovika and Kuznetsky-Most the rendervous of the world of fashion. Here also are the theatres, the industrial art museum, imperial bank (1894), and Rozhdestvenaky convent (founded in I386). In the south-west of the Byelyi-Garod, opposite the Alexander Garden on the west side of the Kremlin, stand the university (see below), museum of domestic industries, Rumyanisev Museum and church of the Redeemer. This last, huilt in the form of a Greek cross in $1837-1883$ at a cost of nearly $\{1,600,000$, is dominated by five gilded domes and faced externally with marble. The interior is harmoniously decorated with gold and marhle, and adorned with pictures by Verestctagin and other Russinn artists. In the east of the city are three monasteries all dating from the 14th century.
The Zemlyanoy-Gorod, which bas arisen from villiges that surrounded Moscow, exhibits varied characteristics. In the neighbourhood of the railway stations it has busy centres of traffic; other parts are manufacturing quarters, whilst othersfor instance, the small quiet streets on the west of the boulevard Prechistenka, called the old Konushennaya, with their wooden houses and spacious courtyards-are the true abodes of the families of the old, for the most part decayed, hut still proud, nobility The Zamoskvoryechic, on the right bank of the Moskva, is the abode of the patriarchal merchant families.

The climate of Moscow is cold and conunental, but healthy. The average annual temperature is $40^{\circ} 1^{\circ} \mathrm{F}$. (Jan., 14°; July, $60 \cdot 5^{\circ}$). The summer is warm ($64 \cdot 2^{\circ}$), and the winter cold and dry ($15 \cdot 8^{\circ}$), great masses of snow lying in the streets. The spring, as is usually the case in cold continental climates, is beautiful. The prevailing winds are south-west and south

The river Moskva is frozen, on the average, for 153 days (from Nov. 12 to April 13).
The Moskva is crossed by five bridges; a branch of it, or rather a channel, makes an elongated island in the middle of the city. Water of excellent quality, princıpally from the Mytishehi springs and pounds, if m . distant, has since 1893 been ied to fountains in different parts of the city, whence it is distributed by watermen.
-The population was estimated at only $\mathbf{r} 50,000$ in the middle of the 18 th century, and at 250,000 in 1812 . Since 1870 it bas been growing at the rate of about 2! \% per annum; (1872), 601,969; (1882), 753,469; (1902), $1,092,360$, or including the suburbs $1,173,427$; (est. 1907), 1,359,254. The housing problem is of great importance in Moscow, as it appears that over ro\% of the domiciles are underground. And while the average for the city is two occupants to each room, there are more than ro,000 domiciles which have more than four occupants to each room, representing one-fourth of the population. The average mortality is consequently high, namely 28 per 1000 (33 per 1000 If the chiidren inmates of the Foundling House be included). Fires occur very frequently. The inbabitants are mostly GreatRussians. They belong chiefly to the Orthodox Greek Church, or are Nonconformists; the Lutherans number 2% and the Roman Catholics 1%.
Since the rath century Moscow has been an important commercial city. About the end of the 1 th century its princes transported to Moscow, Viadimir, and other Russian towns no fewer than 18,000 of the richest Novgorod merchant families, and took over the entire trade of that rity, entering into direct relations with Narva and Livonia. The annexation of Kazan (1552) and the conquest of Siberia ($1580-1600$) gave a new importance to Moscow, bringing it into direct commercial relations with Khiva, Bokhara and China, and supplying it with Siberian furs. The fur-trade had a great fascination for all European merchants in the 16 h century, and an English company, having reccived the monopoly of the Archangel trade, caused their merchandise to be sent by the White Sea instead of by the Baltic. Moscow thus became the centre for nearly the entire trade of Russia, and the tsar himself engaged in large commercial operations. Situated at the intersection of six important highways, Moscow was the storchouse and exchangemart for the merchandise of Europe and Asia. The opening of the port at St Petersburg affected its commercial interest unfavourably at first; but the Asiatic trade and internal trade of Moscow have since then enormously increased. Here are concentrated the traffic in grain, in hemp and in oils sent to the Baltic ports; in tea, brought both hy way of Siberia and of St Petersburg; in sugar, refined bere in large quantities; in grocery wares for the supply of more than hall Russia and all Siberia; in tallow, skins, wool, metals, timber, wooden wares, iron and steel goods, wine, drugs, raw cotton, silk and all other produce of the manufactures of middje Russia. As a railway centre the city plays so predominant a part that \mid to f of all the goods carried by tbe railways of European Russia are loaded or unloaded at Moscow. The banks, including the mortgage banks, are the most important in Russia.

From the 15 th century onwards the villages around Moscow were renowned for the varicty of small industrics which they carried on; the first large manufactures in cottons, woollen fabrics, silk, chine and glass in Great-Russia were established at Moscow in the 17 th and 18 th centuries. After 1830 , in consequence of protection tarifs, the manufactories in the government of Moscow rapidly increased in number; hut two-thirds of them are now concentrated in the capital Moscow is in fact the principal manufacturing city in the empire, employing about 100,000 operatives in her mills and factories. Nearly one-half of them are engaged in the textile industries, especially calico-printing. Next in importance comes the preparation of food-stuffs, followed by the metal and metallurgical iadustries and the chemical works.

Moscow has many educational institutions and scientific societies. The university, founded in 1755, exercised a powerful

Infuence on the intcliectual life of Russia during the years 1830-1848; and it still continues to be the most frequented Russian university. In rgo4 it had over 5000 students, who are mostly poor. The library contains some 286,000 volumes, and has rich collections in mineralogy, geology and $200 \log y$. Among the muscums the Rumyantsev, now connected with the so-calied public museum, oceupies the first rank. It contains a library of 700,000 volumes and 2300 MSS., remarkable collections of old pictures, sculptures and prints, as well as an extensive mineralogical collection, and an ethnographical collection representing very accurately the various races of Russia. The private museum of Prince Golitsui contains a good collection of palntings and MSS. The Shchukin Museum contains Russian antiquities, pictures and objects of industrial art. A number of excellent free libraries have been opened, two of them containing vatuable collections of books and MSS. The remarkable Tretyakov gallery of pictures, chiefly of the Russian school, has been presented (1892) by its owner to the city. The philanthropic institutions include the vast foundling hospital (2764). The municipal relief of the poor was entircly reorganized in 1894, partly on the Elberfeld system and partly on quite new and original lines.
Moscow is surrounded by beautiful parks and picturesque suburbs. Of the former one of the most frequented is the Petrovsky Park, to the north-west, with a castle built in 1775 , burnt by the French in 1812 , but rebuils in 1840 . A little farther out is the Petrovskoye Razumovskoye estatc, with an agricultural academy (1865) and its dependencies (botanical garden, experimental farm, \&c.). Another large park and wood surround an imperial palace (1796) in the village of Ostankino. The private estates of Kuzminski, Kuskovo and Kuntsevo are also surrounded by parks; the last has remains of a very old graveyard, supposed to belong to the pagan period. In the southwest, on the right bank of tbe Moskva, which here makes a great loop to the south, are the Vorobyevy bills, which are accessible by steamer from Moscow, and afford one of the best views of the capital. In the loop of the Moskva is situated the Novo-Dyevichy or Virgins' convent, erected in 1524 and connected with Sophia, sister of Peter the Great, and many events of Russian history. In the south, on the road to Serpukbov, is the village of Kolomenskoye, founded in 1237, a favourite residence of Ivan the Terrible and Peter the Greal, with a church built in 1537, a striking monument of Russian architecture, restored in 1880 . The monastery Nikolo-Ugryeshskiy, 12 m . from the city, between the Kursk and Ryazan railways, occupies a beautiful site and is much visited hy Moscow merchants, to venerate a holy picture by which Dmitry Donskoi is said to have been blessed before going to fight (1380) the Mongols. In the north, the forest of Sokolniki, covering $4 \frac{1}{1}$ sq. m., with its radial avenues and numerous summer residences, is the part of Moscow most frequented by the middle classes.
History.-The Russian annals first mention Moscow in 1147 as a place where Yuri Dolgoruki, prince of Suzdal, met Svyatoslav of Syeversk and his allies. The site was inhabited from a very remote antiquity by the Merya and Mordvinians, whose remains are numerous in tbe neighbourhood, and it was well peopled by Great-Russians in the 12th century. To the end of the igth century Moscow remained a dependency of the princes of Vladimir, and suffered from the raids of the Mongols, who burned and plundered it in 1237 and 1293. Under Daniel, son of Alexander Nevsky (1261-1302), the prince of Moscow first acquired importance for the part he took in the wars against the Lithuanians. He annexed to his principality Kolomna, situated at the confluence of the Moskve with the Oka. His son in r 302 annexed Percyaslavl Zalesky, and in the following year Mozhaisk (thus taking possession of the Moskva from its source to its mouth), and so inaugurated a policy which lasted for centuries, and consisted in the annexation by purchase and other means of the neighbouring towns and villages. In 1300 the Kremlin, or fort, was enclosed by a strong wall of earth and timber, offering a protection to numerous emigrants from the

Tver and Ryazan principalities. Under Ivan Kalita (1325-1341) the principality of Vladimir-where the princes of Kiev and the metropolitan of Russia had taken refuge after the wars that desolated south-western Russia-hecame united with Moscow; and in 1325 the metropolitan Peter established his seat at Moscow, thus giving new importance and powerful support to the young principality. In 1367 the Kremlin was enclosed within stone walls, which proved strong enough to resist the Lithuanians under Olgierd (1368 and 1371). Kalita's grandson, Dmitry Donskoi, annexed the dominions of Starodub and Rostov, and took part in the renowned battle of Kulikovo (1380), on the Don in the government of Tula, where the Russians ventured for the first time to oppose the Mongols in a great pitched battle. Two years after the battle of Kulikovo Moscow was taken and plundered (for the last time) by Toktamish, khan of the Golden Horde of the Mongols.
The increase of the principality continued during the first half of the isth century, and at the death of Vasili (or Basil) the Blind, in 1462, it included not only the whole of what is now the government of Moscow, but also large parts of the present governments of Kaluga, Tula, Vladimir, Nijniy-Novgorod, Kostroma, Vyatka, Vologda, Yaroslav and Tver. It was not however until the reign ($1462-1505$) of Ivan III. that the prince of Moscow set up claims to other parts of Russia, and called himself "Ruler of all Russia." In 1520 Moscow was said to contain 45,000 houses and 100,000 inhahitants. Ivan IV. annexed Novgorod and Pskov to Moscow, and subdued Kazan and Astrakhan. But after his reign Moscow suffered from a long series of misfortunes. In 1547 two conflagrations destroyed nearly the whole of the city, and a few days later the Tatar khan of the Crimea advanced against it with 100,000 men. He was compelled to retire from the banks of the Oka, but in 1575, taking advantage of the state into which Russia was brought by the extravagances of Ivan, he took Moscow and burned all the city outside the Kremlin. The gates of the Kremlin having been shut, thousands of people perished in the flames, and the annals record that of the 200,000 who then formed the population of Moscow, only 30,000 remained. In 1591 the Tatars of the Crimea were again in Moscow and avenged their repulse from the Kremlin on the inhabitants of the unfortified town. Meanwhile the political influence of the boyars had gradually increased. The peasants, who settled on their lands, or on the estates which the prince bestowed upon his boyars, had become serís, and the political tendency of the hoyars, supported by the wealthier middle claseses (which had also a rapid development in the same century), was to become rulers of Russia, like the noblesse of Poland. During the reign of Feodor or Theodore ($1584-1598$), Boris Godunov, the regent, ordered the murder of the heir to the throne, Demetrius, son of Ivan IV., and himself became tsar of Russia. Moscow suffered severely in the struggle which ensued, especially when the populace rose and exterminated the Polish garrison, on which occasion the whole of the city outside the Kremlin was again burned and plundered. But in compensation it acquired in the cyes of the nation a greatly increased importance, as a stronghold against forcign invasions. The Novo-dyevichy or Virgins' nunnery, which the Poles besieged (1610) without taking, was invested with a higher sanctity. The city also by-and-by recovered its commercial importance, and this the more as other commercial cities were ruined, or fell into the hands of foreigners; and thirty years later Moscow was again a wealtby city. Owing, however, to the ever-increasing concentration of power in the hands of the tsar, and the steady development of autocracy, it lost mach of its political importance, and assumed more and more, especially under Alexis Mikhailovich ($1645-1676$), the character of 2 private estate of the tsar, its suburbs hecoming mere dependencies of his vast household.
During the whole of the $\mathbf{2 7}$ th century Moscow continued to be the scene of many troubles and internal struggles. The people several times revolted against the favourites of the tsar, and were subdued only by cruel executions, in which the strcltay-a class of citizens and merchants rendering hereditary military
service-supported the tsar. Afterwards appeared the raskol or nonconformist movement, and in 1648, when the news spread that Stenka Razin was advancing on Moscow "to settle his accounts with the boyars," the populace was kept from rising only by severe repressive measures and by the defeat of the invader. Later on, the strellay themselves engaged in a series of rebellions, which led the youthful Peter the Great to suppress them (1698) amid streams of blood. The opposition encountered at Mosoow to his plans of reforming Russia according to his ideal of military autocracy, the conspiracies of the boyars and merchants, the distrust of the mass of the people, all compelied him afterwards to leave (1703) the city, and to seck, as his ancestors had done, a new capital. This he founded at St Petersburg on the very confines of the military empire he was trying to establish.

In the course of the 18 th century Moscow became the scat of a passive and discontented opposition to the St Petersburg government. Peter the Great, wishing to see Moscow like other capitals of western Europe, ordered that only stone houses should be huilt within the walls of the town, that the strects should be paved, and so on; hut his orders were only partially executed. In 1722 the Kremlin was restored. In 1739 the city became once more the prey of a great conflagration; two others followed in 1748 and 1753, and gave an opportunity for enlarging some streets and squares. Catherine II. tried to conciliate the nobility, and applied herself to henefit the capital with new and uscful buildings, such as the senate house, the foundlings' and several other hospitals, salt stores, \&c.

The last public disaster was experienced by Moscow in 1812. On the isth of Septemher, six days after the battle of Borodino, the Russians troops evacuated Moscow, and the next day the French occupied the Kremlin. The same night, while Napoleon was wating for a deputation of Moscow notables, and received only a deputation of the rich raskolnik merchants, the capital was set on fire through the carelessness of its own inhabitants (it was no heroic deed of Roztopchin's), the bazaar, with its stores of wine, spirits and chemical stuffs, becoming the prey of the flames. The inhabitants abandoned the city, and it was pillaged by the French troops, as well as by Russians themselves, and the burning of Moscow became the signal of a general rising of the peasants against the French. The want of supplics and the impossibility of wintering in a ruined city, continually attacked by cossacks and peasants, compelled Napoleon to leave Moscow on the 19th of October, after he had unsucsessfully attempted to blow up certain parts of the Kremlin.
(P. A. K.; J. T. Be.)

MOSEL (Fr. Moselle), a river of France and Germany, a left-bank tributary of the Rhine. It rises at an altitude of 2411 ft . on the west flank of the Vosges, close to the FrancoGerman trontier, and a little N. of the Ballon d'Alsace. It flows first N.W. through the French department of Vosges, bends towards N. through that of Meurthe-et-Moselle, forms the Franco-German frontler for a short distance below Pagny, and enters Lorraine. From Sierck to Wasserbillig it forms the frontier between the Rhine Province and Luxemburg, then, turning N.E., it follows a sinuous course and reaches the Rhine at Coblenz. The principal towns on the banks of the Mosel are, in France: Remiremont, Epinal, Toul and Pont-a-Mousson; in Germany: Metz, Diedenhofen, Trier (Trèves) and Coblenz. The Mosel receives the waters of the Moselotte, Meurthe, Scille and Saar (its principal trihutary) on the right, and the Madon, Orne and Saucr on the left. Navigation for small vessels extends downwards from Fronard, a little below Nancy, the Mosel canal aflording communication from a point above Metz to the frontler. In the lower part of the valley are the vineyards from which the well-known Mosel wines are produced. The valley of the Mosel, especially the part between Trier and Kochem, is noted both for picturesque scenery and for many sites of antiquarian interest. The length of the river is 314 m .

MOSELLE-LINE, the designation of a line of French barrier forts (forts d'arra') on the upper Moselle between the fortresses
of Epinal and Belfort (see these articles, also Meuse Line and articles referred to therein). The purpose of this line, the separate forts of which command the relatively few lines of advance from upper Alsace through the Vosges, is to deflect a possible German invasion from Alsace cither towards Belfort or towards the open gap between Epinal and Toul called the Troute d'Epirial.

IIOSEN. JULIUS ($1803-1867$), German poet and author, was born at Mariency in the Saxon Vogtland on the 8th of July, 1803. He studied law at Jena, and, after two years in Italy, at Leipzig. In 1834 he settled in Dresden as an advocate. He had meanwhile shown great literary promise by his Lied oom Ritter Wahn (1831). This was followed by the more philosophical Ahaster (1838), and by a volume of poems, Gedichte (1836, 2nd ed., 1843), among which Andreas Hofer and Die Letzen Zehn pom vierlen Regiment have become popular. He wrote the inistorical plays Heinrich der Finkler (Leipzig, 1836), Cola Rienzi, Die Bräule ton Florcns, Wendelin und Helene and Kaiser Ollo III. (the four last being published in his Theoter 1842), and a politico-historical novel, Der Kongyess van Verona (1842), which was followed by a cbarming collection of short stories (Bilder im Moose, 1846). In 1844 Mosen accepted the appointment of dramaturge at the Court Theatre in Oldenburg, hut he was soon afterwards stricken with paralysis, and after remaining an invalid for many years, died at Oldenburg on the 10th of October 1867 . Of his later woiks may be mentioned Die Dresdmer Gemaldegallerie (1844), and the tragedies Hersog Bermhard (1855) and Der Sohn des Fiirsten (1858).
A collection of his works, Samtliche Werke, appeared in 8 vols. (1863 ; new ed., by his son, with a biography; 6 vols., I880).
MOSER, JOHANH JAKOB (1701-1785), Gcrman jurist, was born at Stuttgart on the 18th of Juauary 1701. He studied at the university of Tubingen, where, at the carly age of nineteen, he was appointed extraordinary professor of law. In 1729 he became ordinary professor, and in 1736 he accepted a chair and directorship in the university of Prankfort-on-the-Oder. On account, however, of differences with King Frederick William I. of Prussia, be resigned these offices in 1739 and retired to Ebersdorf, a village in the principality of Reuss, where for several years be devated himself wholly to study, and especially to the production of his Deulsches Slaatsreche. In 1751 he was recalled to Wurtemberg as district counsellor, and in 1759 was imprisoned at Hohentwiel on account of the steps he had taken in connexion with this office against certain tyrannical proceedings of the duke. In 1764 he received his liberty and was restored to office. He died on the 30th of September 1785 . Moser was the first to discuss in an adequate form the subject of European international law. He wrote more than 500 volumes, bis principal works being Dewlsches Slaaksecht (1737-1754), Neues dembsckes Staalsrech' (1766-1775), Deulsches Staatsarchiv (1751-1757), Grundriss dee keutigen Slaatsoerfassung non Deulsckland (1754).

See Schmid, Das Leben J. J. Mosers (i868); Schulve, J. J. Moser, der Vater des deulsches Staalsrechis (1869).

MOSER, JUSTUS (1720-1794), German publicist and staterman, was born at Osnabrick on the 14th of December, 1720. Having studied jurisprudence at the uplversities of Jena and Gottingen, he settled in his native town as a lawyer. The confidence he inspired among his fellow citizens soon led to bis being appointed adrocatus patrice (state attorncy). On the appointment of the duke of York (son of George III. of England) to the lay Protestant bishepric of Osnabrick, he was attached to the person of the new ruler as legal adviser, and continued in this office of trust for twenty years. From 1762 to 1768 he was justiciarius (chief justice) of the criminal court in Osnabrick; and in 1768 was made Geheimer Referendar (privy councillor of. justice). He died at Osnabruck on the 81 h of January 1794. Not only as a statesman and administrator, but also as a publicist, Moser occupied a leading position among the men of his time. His history of Osnabrbek (1768; and ed. 1780; 3 rd ed. 1819) is a masterly work. In his Patriotische Phantesien (1775-1786; and ed. hy his daughter, I. W. J. von Voigts, 1804;
new ed. by R. 28liner, 1871) he shows himself in advance of his times, pleading as he does for a national organic development of a state in the place of arbitrary laws imposed by the sovereign. His Vcrmischle Schriflen (published by F. Nicolai with a biography, 1797-1798) also display a deep insight into human nature and sparkle with humour and witty sallies. Mbser was also a poet of some repute and wrote a tragedy, Arminius (1749). A statue of him by Drake was unveiled in Osnahrick in 1836.
His eollected works, Samuliche Werke, were published by B. R. Abcken (10 vols, 1842-1844). See J. Kreyssig, Justus Moser (1857): L. Rupprecht, Juslus Mosers soziale und polkswirtschaflliche Anschauungen (1892); K. Mollenhauer, Mosers A nieil an der Wiedarbelebung des deulschen Ceistes (1896).
 prophet and mediator, and leader of the Israclites from Egypt to the eastern borders of the promised land. The records of his life and work are noticed in tbe articles Exodus, Numbers, Deuteronomy, where the scveral sources of the narratives are described. He appears in Midian at the " Mount of God" (Horeb) dwelling with its priest Jethro (g.v.), one of whose seven daughters be married, tbus becoming the father of Gershom and Eliezer. Of his carlier life it was said that he was born in Egypt of Levite parents, and when the Pharaoh commanded that every new-born male child of the Hebrews should be killed, he was put into a chest and cast upon the Nile. He was found by Pharaoh's daughter, and his (step-)sister Miriam contrived that he should be nursed by his mother; on growing up be killed an Egyptian who was oppressing an Israelice, and this becoming known, he sought refuge in flight.

The story of the youth of Moses is, as is commonly the case with great heroes, of secondary origin; moreover, the circumstances of his birth as related in Exod. ii. find numerous parallels in legend elscwhere, e.g. in the story of the historical Sargon (L. W. King, Early Bab. Kings, ii. 87 sqq.), in the myths of Osiris and many others (see, at length, A. Jeremias's Das Alle Test. im Lichie des allen Orients, 1906, pp. 408 sqq.; Bab. im N. Test. p. 30 seq.). The story of the adoption of Moses by the Egyptian princess appealed to later imagination (Josephus, Ant. ii. 9, $10 ;$ Acts vii. 20-22), and many fanciful fahles grew up around this and the other biblical statements. The name Mosheh, explained by the fact that tbe princess "drew him " (mdshdi) out of the waters, means properly "one who draws "; a derivation from Eg. mes((1), "child," finds more favour, but is nct certain.

At the boly mount, Moses reccived the divine revelation and was commissioned to bring the people a three-days' journey out of Egypt to sacrifice at this spot (Exod. iii. 12, 18; v. 3; viii. 27). The deity revealed himself in a new name, Yahweh, and with signs and wonders fortified Moses for his task. On his return he experienced a remarkable incident which is obscurely associated with the rite of circumcision. ${ }^{\text {I }}$ The plagues with which the reluctant Pharaoh was coerced culminated in the destruction of all the first-born, and Isracl escaped to tbe Red Sea. The pursuing Egyptians were drowned, and the miraculous preservation of the chosen people at the critical moment marks the first stage in the national history: (See Exodus, Tue.)
The other events need not be detailed. Kadesh (holy) was
${ }^{1}$ Exod. iv. 24-26; it possibly explains the (ransfcrence of the rite from the bridegroom to the new-born son. For a recent discussion, sce H. P. Smith, Jours. Bib. Lil. (1906), pp. 14-24; and the aricie Ciscuscision (with J. G. Frazer's essay in the Independeul Reviety 1904, pp. 204-218).
${ }^{2}$ The plagues appear to have been amplified. In Exod. iv. three signs are given: the hand of Moses is stricken with leprosy and restored (the sign (or Moses); his rod becomes a serpent (d. vii. 8-13. the sign (or Pharach): and the water is turned into blood (cf. vin. 17 sq9.). If Pharaoh still remains obdurate his first-born is threateoed (iv. 21 sqq.). As regards the crossing of the Red Sea, a perfectly rationalizing explanation can be lound: with a strong east wind its waters could temporarity recede and permit a passage (eee Jowrm. Vict. Inst, xxvi. 28; xxvili. 268, 277). To the lsracfites, however, it was a miracle, an unexpected intervention on the part of Yahweh, and the first of many marvels which he performed on behalf of the people of his choice. To rationalize this or any of the series mistes the whole point of the religious history
the chief centre. This was the scene of the "strife" at Meribah (striving) where Yahweh "shewed himself holy" (Num, x. 1-13); a parallel account joins the name with Massah (trial, prool) where Yahweh "proved" the people (Exod. xvii. 1-7). These two names (Deut. ix. 22, xxxii. 51) with their significant meanings recur with varying nuances (Ps. lxaxi. 7, ycv. 8 seq .). Here also in the wilderness of Shur, and possibly at En-mishpat (well of judgment, i.e. Kadesh, Gen. xiv. 7), Yahweh made for Israel "statute and judgment" and "proved them." This is apparentiy viewed as the goal of the three-days' journey (Exod. xv. 22-25). In this district the defeat of the Amalekites is more naturally located (Exod. xvii.; cf. I Sam. xxvii. 8) and here, finally, for some cause, now obscured, Moses and his brother Aaron (q.v.) incurred Yahweh's displeasure (Num. xx. 12, xxvii. 14; Deut. xxxii. 51; Ps. cvi. 3). Pisgah or Mt Nebo (the name suggests a foreign god), to the north-east of the Dead Sea became the scene of the death of Moses; his hurial-place was never known (Deut. xxxiv.).
In estimating the work of one who stands at the head of the religious and legal institutions of Israel, it is necessary to refrain from interpreting the traditions from a modern legal standpoint or in the light of subsequent ideas and beliefs for which the sources themselves give no authority. Much confusion has been caused by attributing to Moses more than the Pentateuch itself claims, and by misunderstanding the meaning of later references (Mat. xix. 8; Mark vii. 10, x. 5; xii. 26; Luke xx. 37; John vii. 22). Moreover, it is necessary to allow that the traditions reiating to both Moses and Aaron underwent change. The pricsthoods of Shiioh and Dan rould boast of an illustrious origin (i Sam. ii. 27 seq., Judges yviii. 30), but the religious practices associated with the former especially were not those of the purest type. When Aaron himself is connected with the worship of the goiden calf, and when to Moses is attributed a brazen serpent which the reforming king Hezekiah was the first to destroy, it is evident that religious conceptions developed in the course of ages. Although Moses was venerated as a prophet (Hos. xii. 13), a mediator (Jer. xv. I) and a leader (Mic. vi. 4; Isa. Ixiii. iI), much of tbe legal procedure ascribed to him must belong on internal grounds (religious, ethical and sociological evidence) to a postMosaic age. Many of the Mosaic laws find parallels and analogies in all ages outside the sphere of Israelite influence, notably in the laws codified several cent uries previousiy by the Bahyloman king Khammurahi (see Babylonian Law). The practice of finding in ancient authority a precedent for institutions new and old (cf. the law of booty, I Sam. xxx. 25, with that ascribed to Moses in Num. xxxi. 25 sqq.) is quite in accordance with Oriental custom and explains the growth of the present extremely compica sources. But this very development of Mosaism implies the existence of an original nucleus or substratum, although the recovery of its precise extent is very difficult. The legislation on Mt Sinai (Horeb) which apparently occupies a very lmportant place in tradition (Exod. xa. sqq.) is really secondary (cf. W. R. Smith, Prophcts of Isracl, p. 11i); more prominence is evidently to be ascribed to the influence of the half-Arabian Jethro or Hobab, and this must be taken into consideration with what is known of Kenite and kindred clans (Exod. xviii.; Num. x. 29-33; see Jeizro; Keniess). ${ }^{\text {I }}$ Yahweh appears to have been known to them before be revealed himself to Moses, and the ancestors of the Israclites are recognized as worshippers of Yahweh, hut are on another level (Exod. vi. 3). The traditions would seem to poiat to the institution of new principles in the religion of Yahweh, and would associate with it not merely Moses but those foreign elements which are subsequently found in Isracl and Judah. See Jews, $885,14,20$.
Bibliograpity.-See further articles, Aaron; Decaloget; Hebrew Religion; Levites. For the introductory questions, W. Rabertson Smith's OUd Test. in Jewnsh Church and Prophels of 1 srael are most helpful: see also J.M. Lagrange, Hist. Crif. and the Old Testoment ' (Eng., E. Myers. 1905), pp. 148-179; Wellhausen's

[^63]Prolegomena is a conclusive elaborntion of the initial stages of criticism. Al subaequent studies vary according to the writer's standpoint; W. R. Herper. Amos end Hosea (Internat. Crilical Commentary), pp. 84 sq9., gives a convenient summary. Among particular discussions may be named Cheyne, Ency. Bib. s.t., E. Meyer, Jsraditen, pp. 1-103; and the mythological treatment by H. Winckler, Gesch. Jsy, ii. 86-95; A. Jeremias, A\&e Test., Ioc. cit.: and Ed. Stucken, Agtralmythem d. Hebrder, \&c. pp. 431 eqqFor Jewish and other legends (to which jude 9 alludes), see Beer. Leben Moses (1863), M. Grinbaum, Newe Beitrage s. sem. Sagenkunde (1893), pp. $152 \mathrm{sqq} \cdot \mathrm{i}$ the Assumption of Moses, ed. R. H. Charles (1897); W. Tisdall. Sources of the Qup an (1905); and Ency. Bib. col. 3218,321 (with references). For the stories of Manctho, \&e., Ewald, Hist. Isr., ii, 76 sqq.; Kittel, Hist i. 26 seq., may be supplemented by Willich, Juden w. Griechen vor d. makiab. Erhebwne (1895), pp. 53 sqq-; G. Maspero, Rec. de travaux (igos), xxvii. 13 sqq., 22 seq.
(S.A.C.)

HOSEs, AssUTIPTIOR OF, an extra-canonical apocalyptic work of the Old Testament. The Assumption or Ascension of Moses (Avdinyss Mavatws) is a prophecy of the future reialing to Israel, put into the mouth of Moses, and addressed to Joshua just before the great lawgiver died. Founded upon the book of Deuteronomy, it is brief and unpoetical. But it seems to have' been large at first, for according to Nicephorus it consisted of 1400 stichs. It contains a brief history of Israel from Moses to the Messianic age. The most striking feature in this work is the writer's scathing condemnation of the priesthood before, during, and after the Maccabean period, and an unsparing depreciation of the Temple services.
This book was lost for many centuries till a large fragment of it was discovered and published by Ceriani in 186: (Monumenta sacra 1. i. 55-64) from a palimpsest of the 6th century. Very tittle was known about the contents of this book prior to this discovery. One passage found in this fragment is quoted in the Acta synodi Nicaenae, ii. 18. Most of the other references relate to the strife of Michael and Satan about the body of Moses, and ascribe it to the Ascensio Mosis, i.e. Avaj $\lambda \eta t$ ts Muvotus.
Various other works have been atıributed to Moses, such as the
 Moses (in Slavonic). \&c. See Charics, Assumption of Moses, pp. xiv,-xvii. ; Schllrer, Gesch. des juid. Volkes, iii. 220-221.

Date.-The book has been assigned to most dates between the death of Herod the Great and that of Bar-Cochba. But this text precludes finy date after A.D. 70. The true date sppcars to lie between 4 s.c. and a.D. 30. Herod is already dead (vi. 6), hence it is after 4 s.c.; and Herod's sons are to rule for shorter periods than their father, hence it must have been composed before these princes had reigned thirty-four years-i.e. before A.D. 30. But there are grounds for assuming that A.b. 7 is probably the earlier limit (see Charles, op. cit. Iv.-Iviii.).

Author.-The author was not an Essene, for he recognizes anlmal sacrifices and cherishes the Messianic hope. He was not a Sadducee, for he looks forward to the establishment of the Messianic Kingdom (x). Nor yet was he a Zealot, for the quietistic ideal is upheld (ix.), and the kingdom is established by Gad Himself (x.). He was clearly a Pharisaic Quietist, a Pharisee of a fast disappearing type, recalllng in all respects the Chasid of the eariy Maccabean times, and upholding the old traditions of quietude and resignation. His object is to protest against the growing secularization of the Pharisaic party through its adoption of popular Messianic beliefs and political jdeals. But his appeal was in valn, and so the secularization of the Pharisaic movement culminated in due course in the fall of Jerusalem.
The Latin Version a Translation from the Greek.-That our Latin text is derived from the Greek there can be no ,question. Thus Greek words are transliterated, as "chedria" from uspobu, "heremus "from trauos: Greek idioms are reproduced. as "usrque nos
 Greek is frequently neecessary in order to correct the misrendering 3 of the translator or the corruptions already inherent in the Greck. Finally. Irapmenss of the Greek version are still preserved.

The Greek a Translation from the Hebrew.-That the Greck was in turn derived from a Semitic original was denied by Hilgenfeld. Volkmar and orhers. But Ewald, Schmidt-Merx, Colani, Carrière Hausrath, Dalman, Rosmenthal and Burkitt decide in favour of \mathbf{a} Semitic. 'R. H. Charles (op. cil. xxxviii.-x|v.) is of opinion that it is possibie to prove that the Greck gnes back not to an Aramaie but to a Hebrew original, on the following grounds: (1) Hebrew

Giomatic phrtses survive in the text. Thue cirewmibo (ii. 7) $={ }^{1 "}$ i will protect," i.e. 3 row (ct . Deut. xuxii. 10), and in secerdotes
 and Isa. xlviil.2). =" they will call themselves pricus." (2) Frequently it is only through retranslation that we can understand the source of corruptions in the text. (3) in some casce we must translate not the Latin but the Hebrew presupposed by it. Thus in i. 7, successor

The Book may be the lose Testament of Moses.-The present book is possibly the long lost Δ reftory Mwustus mentioned in some of the ancient lists, for it never speaks of the assumption of Moacs, but always of his natural death (i. 15, iii. 13, x. 14). About 2 half of the original Testament is preserved in the Latin Version. The latter half probably dealt with questions about the Creation (see Fabric. Cod. psend. V. T., ii. 844 : Acla symodi Nicoence, it. 20). With this "Testament " the "Assumption," to which almost all the patristic references and that of Jude are made, was sulsequently edited.
Some views of A uthor.-Our a uthor's views on Moses are remarkable. He writes that Moses was prepared from before the foundation of the world to be the mediator of God's covenanit with his people (i. 14, iii. 12). During his life he was lsraci's intercessor with $\mathbf{G o d}$ (xi. 11, 17). Praying on their behalf as a "great ange"" (xi. 17). "' a sacred spirit who was worthy of the Lord manifold and incomprehensible" (xi. 16). Apparently his relation to lsracl did not ccase with death, as he was to be their intercessor in the spiritual world (xii. 6). His death was an ordinary one (i. 15, iit. 13, x. 12, 14), but no single place was worthy to mark the place of his burial, for his sepulchre was from the rising to the setting sun, and from the couth to the confines of the north-yea, the whole world was his cepulchre (xi. 8). On the doctrine of good works our author's views are allied to Oid Tcatament conceptions rather than to the rablinic doctrine of man's rightcousness, which bulks so largely in Jewish literature from A.D. 50 onwards. So far from representing man's righteousness as involving merit over against Cod, our author represents the greatest hero of isracl as leclaring " Not for any virtue or gtrength of mine, but in His cumpassion and long-suffering wes He pleased to call me " (xii. 7.)
Literature.-Editions of the Latin text: Ceriani Monumenta sacra et profana. J. i. 55-64 (1801); Hilgenfeld, Nop. Lest. exitra canonem receplum, 107-135 (1876); Volknar, Mose Prophelie und Himmedfahrl (1867) ; Schmidt and Merx. Dre Assumptio Mosis (Merx. Archiv. f. wissemsch. Erf. des A. Ts. i. ii. 111-152; 1868); Charles, $\dot{T}_{\text {he }} A$ ssumption of Moses (translation, with notes end introduction. 1897); Clemen, in Kautzsch's Apocr. und Psead., I1. $311-$ 3.31. Crihcal inquivies.-For a full account of these see Schorer iui. 222: Charles op. cil. xoxi-xoviii.
(R.H.C.)

MOSEs OF CHORENE, Armenian historian, was a native of Khor'ni in Tarôn, a district of the Armenian province of Turuberan. According to the History of Armenia which bears his name he was a pupil of the t wo fathers of Armenian litcrature, the patriarch or catholicos Sahak the Great and the vartabed Mesrob. Shortly after 431 he was sent by these men to Alexandria to study the Greek language and literature, and thus prepare himself for the task of translating Greek writings into Armenian. Moses took his journey by Edessa and the sacred places of Palestine. After finishing his studics in the Egyptian capltal he set sail for Greece; but the ship was driven by contrary winds to Italy, and he seized the opportunity of paying a flying visit to Rome. He then visited Athens, and towards tbe end of winter (440) arrived in Constantinople, whence he set out on his homeward journey. On his arrival in Armenia be found that his patrons were both dead. The History of Armenic speaks of its author as an old, infirm man, constantly engaged in the work of translating. In the later Armenian tradition we find other notices of this celebrated man ${ }^{-}$such as, that he was the nephew of Mesrob, that he was-publiciy complimented by the emperor Marclan, that he had been ordained bishop of Bagrewand by the patriarch Giut, and that he was buried in the church of the Apostolic Cloister at Mush in the district of Taronn; but these accounts must be received with great caution. This remark applies especially to the statement of Thomas Ardsruni," that Moses, like his Hebrew prototype, lived to the age of 120 years, and recorded his own death in 2 fourth book of his great work. The same caution must be extended to another tradilion, based on an arbitrary construction of a passage in Samuel of Ani, which piaces his death in the year 489 .
The Hislory of Armenia, or, as the more exact title runs, the
${ }^{1}$ Collected by Langlois, Collectión des historiens de Tarmenie, ui. 47 neq.
2 In Broset, Collection d'hisloriens armbniens, 1. 68 .

- The oldeat MS. is that of S . Laparo of the 12th century. Colla.

Genealogical Account of Creal Anmenia, consists of three books, and reaches down to the death of Saint Mesrob, in the second year of Yazdegerd II. (Feb. 17, 440). ${ }^{\text {. }}$ It is dedicated to Sahak Bagratuni (who was afterwards chosen to lead the revolted Armenians in the ycar 481), as the man under whose auspices the work had been undertaken. This work, which in coursc of time acquired canonical authority among the Armenians, is partly compiled from sources which we yet possess, viz. the Life of Saind Gregory by Agathangelos, the Armenian translation of the Syriac Doclrine of lie A posile Addai, the Antiquities and the Jewish War of Joscphus, and above all the History of Mar Abas Katina (still preserved in the extract from the book of Scbeos), ${ }^{\text {b }}$ who, however, did not write, as Moses alleges, in Syriac and Greck, at Nisibis, about 131 b.c., hut was a native of Medsurch, and wrote in Syriac aione about A.D. 383, or shortly thereafter. Besides these, Moses refers to a whole array of Greek authorities, which were known to him from his constant use of Euscbius, but which cannot possibly have related all that he makes them relate." Although Moses assures us that he is going to rely entircly upon Greek authors, the contents of his work show that it is mainiy drawn from native sources. He is chicfly indebted to the popular ballads and legends of Armenia, and it is to the use of such maicrials that the work owes its permanent value. Its importance for the bistory of religion and mythology is, in Iruth, very considerable, a fact which it is the great merit of Emin ${ }^{7}$ and Dulaurier 'to have first pointed out. For political history, on the other hand, it is of much less value than was formerly assumed. In particular, it is not a history of the people or of the country, but a history of the Armenian aristocracy, and, in opposition to the Mamikonian tendency which pervades the rest of the older Armenian historical literature, it is written in the interest of the rival Bagratunians. Down to the 3rd century it is proved by the contemporary Graeco-Roman annals to be ulterly untrustworthy-but cven for the times of Armenian Christianity it must be used far more cautiously than has been done, for exampic, by Gibbon. The worst feature is the confusion in the chronology, which, strange to say, is most hopeless in treating of the contemporarics of Moses himeclf. What can be thought of a writer who assigns to Yazdegerd I. (390-420) the cleven years of his predccessor Bahram IV., and the twentyone years of Yaudegerd I. to his succeswor Bahram V. (420-439)? A. von Gutschmids at one time attempted to explain this unhistorical character of the narrative from a tendency arising out of the peculiar, ecclesiastical and political circumstances of Armenis, situaled as it was between the castern Roman and the Persian empires, circumstances which were substantially the same in the 5 th as they were in the two following centuries. In the course of further investigations, however, he came to the conclusion that, besides the many false statements which Moses of Khor'ni makes about his authorities, be gives a false account of himself. That is to say, the euthor of the History of Armeria is not the venerable translator of the sth century, but some Armenian wriling under his name during the years between 634 and 642. The proof is furnished on the one hand by the geographical and ethnographical numendat ure of a later period tions of MSS. of Etchmiadzin and Jerusalem are given by Agop Garinian. Tiflis (1858), 4:0. The book has been edited and translated by Whiston (London, 1736, 410): and by Le Valliant de Florival (Vcnico and Paris, s.a., 1841), 2 vols. 8va

- The commencement of this king's reign has been fixed by Noldcke (Geschickte der Sassoniden ous Tabari, p. 423) as 4th Aogust 438; and this date has subsequently been eatablished by documentary evidence from the fact of the martyrdom of Petbion (sec Hoemann, Aussüge aus syrischen Akken persischer Merkyyer, P. 67).
- Translated in Langlois, i. "195 seq.

6For the following statcments, thic evidence may be found in the article "Ueber dic Glaubuurdigkeit der Armenischen Geschichte dea Moses von Khoren." by Alfred von Gutschmid, in the Berichte der phil. histor. Classe der komigl. sächs. Gesellschiff der Wissenschaflen (18,76), p. \& seq.

The Epic Songs of Ancient Armenia (Arm.) (Moecow, 1850).
"Etudes sur les chants historiques et les traditions populainea de l'ancienne Arménie," in the Journ. esiol., iv., ser. 19 (1852), p. 5 ...eq.
".."Ueber die Glaubwardigkeit," Ac., p. 8 seq.
and similar anachronisms,' which run through the whole book and are often closely incorporated with the narrative itself, and on the other hand by the identity of the author of the History with that of Gcography, a point on which all doubt is excluded hy a number of individual affinities, ${ }^{2}$ not to speak of the similarity in geographical terminology. The critical decision ats to the authorship of the Geography must settle the question for the History also.
The Geography is a meagre sketch, based mainly on the Chorography of Pappus of Alexandria (in the end of the 4 th century), and indirectly on the work of Ptolemy. Only Armenia, the Persian Empire, and the neighbouring regions of the East are independently described from local information, and on these sections the value of the little work depends. Since the first published text ${ }^{2}$ contains names like " Russians" and "Crimea," Saint Martin in his edition ${ }^{4}$ denied that it was written by Moses, and assigned its origin to the roth century. It was shown, however, by L. Indjidjcan'th3t these are interpolations, which are not found in better manuscripts. And in fact it is quite evident that a book which gives the division of the Sassanid Empire into four spahbehships in pure old Persian names cannot possibly have been composed at a long interval after the time of the Sassanidae. But of course it is equally clear that such a book cannot be a genuine work of Moses of Khor'ni; for that division of the empire dates from the early part of the reign of King Chosroes I. (531-579).4 Accordingly K. P. Patkanow, ${ }^{7}$ to whom we are indebted for the best text of the Geography, is of opinion that we have in it a writing of the 7 th century. If the limits within which the Gcograply was.composed are to be more nearly defined, we may say that, (rom isolated traces of Arab rule ${ }^{2}$ (which in Armenia dates from 651), it must have been written certainly after that ycar, and perhaps about the year 657°

Another extant work of Moses is a Manzal of Rictoric, in ten books, dedicated to his pupil Theodorus. It is drawn up after Greek models, in the taste of the rhetoric and sophistry of the later imperial period. The examples are taken from Hermogenes, Theon, Aphthonius, and Libanius; alchough the author is also acquainted with lost writings-e.g. the Peliades of Euripides. On account of the divergence of its style from that of the History of Armenia, Armenian scholars have hesitated to ascribe the Rhetoric to Moses of Khor'ni; but, from what has been said above, this is rather to be regarded as a proof of its authenticity.
Smaller works bearing the same honoured name are-the Letter to Sahak Arderwisi; the History of the Haly Mother of Cod
${ }^{1}$ Instances of these may be found in I. 14, where the arrangement of Armenian provinces, I., II.. III., IV., introduced in the year 536, is carried back to Aram, an older contemporary of Ninus; and in the passage iii. 18, according to which Shipar II. penetrated to Bithynia, although the Persians did not reach that till 608.
${ }^{2}$ See the confusion, common to both books, between Cappadocin I. and Armenia I., in consequence of which Mazaca and Mt Argaeus are transferred to the latter locality (Hisl. i. 14; Geogr. Saint Martin's ed., if. 354); also the pasasges which treat of China and Dchenbakur' (Hist. ii. $8:$ Geogr. if. 376), \&c.
${ }^{2}$ Edition with translation by Whiston (London, 7736, 4to).
${ }^{4}$ In the Memoires historiques et getographiques sur I Armenio (Paris, I819, 8vo), ii. 370 sec
${ }^{3}$ Antiquities of Armenia (Arm-), iii. 303 seq.

- See Noldeke's Tabari, p. 155, seq.
${ }^{\dagger}$ Armjanskaja gcographija evi. wodka por. Ch. (pripisiw awschajagja Moiseju Chorenskomu) (St Petersburg, 1877, 8vo). Befiore him Kiepert (in the Monatsb. d. Berliner Aked. (1873, p. 599 seq.) had substantially arrived at the right conclusion when he assigned the portions of the Ceography refcring to Armenia to the time between Justinian and Maurice. (See also Abhandhungen der koniglichen Gescilschaft der Wissensehaften zu Goutingen, philol. hist. Klasse. Nese Folge, Band iii. Nro. z, 1901) (in which Dr J. Marquart edits with commentary under the title Erannsahr the sections of the geography relating to Persia).
"The passage about the trade of Basra, which was founded in 635 , is decisive on this point (Saint Martin's edition. ii. 36.8).

The peculiar interest which the author (Saint Martin. ii. 340) takes in the origin of the Slavs in Thrace is best explained by the war against them which called the emperor Constans 11. away from the East in the year 657. In other respects the writer displays the most complete indifference, and even ignorance, with segard to the state of affairs in the Wert.
and her Image (in the cloister of Hogotsvanch in the district Andzevatsi of the province of Vaspurakan), which is also addressed to Sahak; and the Ponegyric on Saint Rhipsime. Of the sacred poems attributed to him, there is only one short prayer, contained in the hymnal of Sharakan, which can really claim him as its author.
.Of works passing under the name of Moses of Khor'ni, the following are regarded by the historians of Armenian literature as spurious: a \boldsymbol{H} istory (distinct from the Panegyric) of the wanderings of Saiul Rhipsime and her Companions; a Homily on the Transfisuration of Christ; a Discourse on Wisdom (i.e., the science of grammar); the Commentarics on grammar (an exposition of Dionysius Thrax). In the case of the grammatical writings, it has been suggested that there may have been some confusion between Moses of Khor'ni and a Moses of Siunich, who lived in the 7 th century.

Literalurc.-The date of the Hislory of Moses has been discussed in many monographs. See especially the brochure of A. Carriere. Noweelles scurces de Moise de Khoren (Vienna, 1893), who sets it in the 8ih century. A Russian critic, J. Khalateants.arrives at a similar conclusion in his Armianskie Epos (Mowcow. 1896). F. C. Conybeare in an article on "The date of Moscs of Khoren," in the Byzawtinische Zeilschrif!. vol. x., and in a second in vol. ii., entitued 'The Relation of the Paschal Chronicle to Malalas,' chalienges Professor Carrière's arguments, and contends that the History of Moses is a late 5th-century work, much interpolated in the immediately succeedias centuries.
(A.v. G.;F.C.C.)

MOSHEIT, JOHANS LORBNZ VON (c. 1694-1755), German Lutheran divine and Church historian, was born at Lubeck on the 9 th of October, 1694 or 1695. After studying at the gymnasium of his native place, he entered the university of Kiel (1716), where he took his master's degree in 1718. In 1719 he became ossessor in the philosophical faculty at Kiel. His first appearance in the field of literature was in a polemical tract against John Toland, Vindiciae antiquae christianormm disciplinae (1720), which was soon followed by a volume of Obserpationes sacrac (1721). These works, along with the reputation he had acquired as a lecturer and preacher, secured for him a call to Helmstudt as professor ordinarius in 1723. The Instiowtionum historiae ecclesiasticae libri IV. appeared in 1726, and in the same year he was appointed by the duke of Brunswick abbot of Marienthal, to which dignity and emolument the abbacy of Michaclstein was added in the following year. Mosheim was much consulted by the authorities when the new university of Gbuingen was being formed; especially in the framing of the statutes of the theological faculty, and the provisions for making the theologians independent of the ecclesiastical courts. In 1747 he was made chancellor of the university. He died at Göttingen on the 9th of September. Among his other works were De rebus christianorum ants Consfantinum commentarii (1753), Ketser-Gaschichte (2nd ed. 1748), and Siltentchre der heiligen Schriff (1735-53). His exegeLical writings, characterized by learning and good sense, include Cogitationes ins N. T. loc. selech. (1726), and expositions of i Cor. (1741) and the two Epistles to Timothy (1755). In his sermons (Heilige Reden) considerable eloquence is shown, and a mastery of style which justifies the position he held as dresident of the German Society.

There are two English versions of the Instifules, that of Archibald Maclaine, published in 1764, and that of James Murdock (1832), which is the more correct. Murdock's translation was revised and re-edited by James Seaton Reid in 1848, and by H. L. Hastinps in 1892 (Boston). An English translation of the De rebus christianormm was published by Murdock ia 1851.

MOSLER, HENRT (I841-), American artist, was bom at New York, on the 6th of June 1841, the family removing to Cincinnati when he was about ten years old. Studying drawiag by himself, he became a draughtsman for a comic paper, the Ommibus (Cincinnati), in 1855; in 1859-1861 he studied under James H . Beard, and in 1862-63, during the Civil War, was an art correspondent of Harper's Weekly. In 1863 he went to Dusseldorf, where for almost three years he was at the Royal Academy schools; he subsequently went to Paris, where be studied for a short time under Emest Hitbert. His "Le Retorar,"
from the Paris Salon of $\mathbf{1 8 7 \%}$, was the first American picture ever bought for the Luxembourg. He received a silver medal in Paris 1889, and gold medals at Paris, 1888, and Vienna, 1893. Examples of his work are in the Sydney Art Museum, N.S.W., and the art museums of Springfield, Mass., Cincinnati, Ohio and New York. His son, Gustave Henry Mosler (1875-1906), a pupil of his father and of Léon Bonnat, exhihited at the Salon in Paris, receiving a medal for his "De Profundis" in 1891; his portrait of Governor J. W. Stewart is in the State House, Montpelier, Vermont, and his "Empty Cradle" is in the Toledo Art Club.
MOSqUE (through Fr. mosqude; Span. metquila, from Arab. masjid, sajada, to adore), the house of prayer in the

1, Kibleh.
2, Minbar.
3. Tomb of 'Amr. 4. Dikka.
5. Fountain for ablution.

6, 6, Rooms built later.
7. Minaret.

8, Larioes.

Mahommedan religion, consisting generally of a large open court (sahn) surrounded by arcades (liwan), with a fountain (mida-a) in the centre of the court, for the ablutions necessary before prayer. The principal feature in the mosque is the niche (mikrab), which is sunk in a wall built at right angles to a line drawn from Meoca, and indicates the direction towards which the Moslem should turn when engaged in prayer. The arcades in front of the Mecce niche were sometimes of considerable depth, and constituted the prayer chamber (maksura), portions of which were occasionally enclosed with lattice work. By the side of the niche was the pulpit (winbar), and sometimes in front of the latter a platiorm (dikka) raised on columns, from which chapters from the Koran were read to the peopie.
Most mosques have endowed property, which is administered by a warden (nazir), wbo also appoinis the imams and other officials. The larger mosques have two imams: one is called (in Arabia and Egypt) the khatib, and he preeches the sermon on Fridays (the Moslem Sabbath); the other, the ratib, reads the Koran, and recites the five daily prayers, atanding close to the mikrab, and leading the congregation, who repeat the prayers with him, and closely follow his postures. The imams do not form a priestly sect; they generally have ot her occupations, such as teaching in a school or keeping a shop, and may at any time be dismissed by the warden, in which case they lose the ritle of imam. Moslem women, as a rule, are expected to say their prayers at home, but in some few mosques they are admitted to one part specially acreened off for them.

The earliest mosque erected was that at Mecca, which consisted of a great court, in the centre of which was the $\mathrm{Ka}^{\text {'ba }}$ or Holy Stone. The court was surrounded with arcades, all of which constituted the prayer chamber, so that its plan is necessarily different to the normal type; the existing buildings date only from the first half of the $17 \mathrm{th}^{\text {th }}$ century, as the whole mosque was destroyed by a torrent in 1626.
The normal type referred to is best represented in the mosque of 'Amr (see 'Alor-ibn-el-Ass) at Fostat, Cairo; built in A.D. 643 it still retains its original arrangement, though partly rebuilt and increased in its dimensions. The mosque (sce fig. 1), now in a somewhat ruined condition, covers an area of about $130,000 \mathrm{sq}$. ft . with an open court, 240 ft . sq., and a sanctuary or prayer chamber, 106 ft . deep, there being a central avenue and ten aisles on cit her side. The columns and capitals were all taken from ancient huildings, Egyptian, Roman and Byzantine, and they carry arches of different forms, semicircular, pointed and horseshoe.
The columns and other materials of the mosque of el-Aksa at Jerusalem were taken by Abdalmalik (A.D. 690) from the ruins of Justinian's church of St Mary on Mount Sion, and the central avenue or nave huilt with them presents the appearance of a Christian church; it however runs north and south, the Mecca niche being at the south end; originally there were seven aisles on each side, now reduced to three. The Kubbet-esSakhra, or Dome of the Rock, at Jerusalem, is only a shrine erected over the sacred rock, so that the title often ascribed to it as "the mosque of Omar " is misleading.
The mosque of the Omayyads in Damascus was built by the Caliph Walid in A.D. 705 on the foundations of the basilican church of St John: its plan differs therefore from the normal type in that its arcades run east and west, and the transept in the centre becomes the prayer chamber. The Mecca niche is sunk in the doorway of a Roman temple which formeriy occupied the same site, and the substruct ure of the minaret at the south-wast angle is of still more ancient date. The great court on the north side has a lofty cloister round it, so that in many respects it follows the normal type.
The mosque of Abmad Ibn Tulun, in Cairo (a.D. 879), is the first mosque erected in which the materials were not taken from ancient buildings; it has therefore a special interest as being the earliest genuine example of the Mahommedan styie (see Architecture: Mahommedan). The walle, piers and arches, are all built in brick, covered with stucco, a great portion of which is preserved down to the present day. The plan is of the normal type, with a great court in the centre, a prayer chamber four aisles deep on the Mecca side (south-east), and a double aisle on the other three sides. All the arches are pointed and slightiy borseshoe, preceding therefore by about two and a half centuries the introduction of the pointed arch into Europe. The piers carrying the arches have shafts at their angles, the earliest examples knowu, and the decoration of the walls consists of friezes, borders, and impost-bands, all enriched with conventional patterns interwoven with cufic characters and modelled in stucco. The windows in the outer walls are filled with pierced stone screens of geometrical design. The architect is said to have beena Coptic Christian whodeprecated the destruction of ancient buildings to obtain columns and blocks of stone, and who undertook to design a mosque which should be built entirely in brick, which when coated with stucco and appropriate decorative designs would rival its predecessors.

The next important mosque is that of Kairawan in Tunisia, which was founded by Sidi Okba in a.D. 675 , but was partly rebullt and added to in the following two centuries. Its court covers an area of $36,000 \mathrm{sq}$. ft ., and its prayer chamber is 150 ft . deep, having a central a venuc and cight aisles on each side.

The chief interest of the mosque at Kairawan lies in its being the prototype of the great mosque at Cordova, which was built hy Abdarrahman in A.D. 780; the earliest portion of the mosque is the prayer chamber (135 ft . wide by 220 ft . deep), which is in front of the ent rance gatemy to the great court, and consists of a central avenuc with five aisles on each side. In A.D. 961 this
portion was extended 150 ft . in the rear by Hakim II., the mihrah and Mecca wall being rehuilt; about 20 years later a further enlargement was made, and eight more aisles were added along the whole eastern side, so that the prayer chamher covered an area of over $148,000 \mathrm{sq}$. ft . In the $13^{\text {th }}$ century a portion of Hakim's addition was pulled down to make way for the first cathedral, which was dedicated to the Virgin. The most beautiful portion of the mosque, however, still exists in the prayer chamber of Hakim, where are to be found the earliest examples of the cusped arch and the origin of many of the geometrical patterns in stucco at the Alhambra.
The mosque of el Azhar, "the splendid," was begun about A.D. 970 hy Jauhar, the gencral of the Fatimite Caliph Moizz, who captured Fostat and tounded el Kahira, the present town of Cairo. It was based, therefore, on the greal mosque at Kairawan, and although more or less rehuilt, it still preserves its original plan. It has a special interest in being the chief university of the Moslem world, containing some thousands of students (mujaxirin), for whom certain parts of the mosque (rixaq) are screened off, according to the country from which they come. Thus special parts are reserved for natives of the various provinces of Egypt, of Morocco, Syria, Arabia, India, Turkey, \&ic. Each student can, if he is too poor to hire lodgings, live, eat and sleep in. the mosque. Each has a large chest in which to keep his clothes and books; these are piled against the walls to a height of seven or eight feet. The students pay no fees, hut the richer ones give presents to the lecturers, who sit on the matting in verious parts of the sanctuary or cloister, while the students sit round each lecturer in a circle. The usual course of study lasts for three years, though some students remain for much longer. The chief of the lecturers, called the Sheik el-Azhar, receives about $f 100$ a year, the others little or nothing, as regular pay. The Koran, sacred and secular law, logic, poctry, arithmetic, with some medicine and geography, are the chief subjects of study.

Of other mosqucs in Catro, the finest is that of Sultan Hasan (fig. 2), completed in A.D. 1360 . It differs from the normal type in many respects, as it includes residences for various sects, so that portions of it, with the several storeys externally, resemhle an immense mansion or warchouse, and this would seem to have led to an important change inside, as instead of a cloister of two or more eisles there are four immense halls all covered with pointed barrel vaults. Beyond the Mecca wall is tbe tomb of the founder, covered with an immense dome.

The entrance doorway on the northeast side is over 80 ft . in height, its summit being decorated with stalactite vaults, one of the grandest leatures in Mahommedan architecture, only equalled hy the magnificent portals of the mosques in 1ndia The central square court, of moderate dimensions, with halls and great recesses, is followed in other examples in Cairo, among which the Tomh Mosque of Kait-Bey (c. A.D. 1470) is the most graceful (fig. 3). In this case the central court is roofed over, and has an octagon lantern in the centre; the recestes are covered with horizontal ceilings carried on great beams, the whole being elaborately carved, coloured and gilded; the tomb is covered with the later type of dome, built in stone, and elaborately carved outside with delicate conventional patterns in reliel.

Although the conquest of Persia hy the Arabs took place in A.D. 641 there are no remains of mosques there earlier than the I3th century, and the oldest example at Tabriz is evidently, as far as its plan is concerned, a copy of a Byzantine church, departing entirely therefore from the normal plans. ${ }^{1}$ The great mosque at Isfahan, huilt by Shah Abbes the Great (1585 1629), has one great court (225 It . by 170 ft .) and two smaller ones, all with fountains in them. The prayer chamber is a lofty structure, quite unlike those of Egypt and Kairawan, with a dome 75 ft . in diameter and halls on each side divided into two aisles, each compartment being covered with a dome, in this respect also not following the early normal type, in which domes were only found over tombs.
The mosques of Constantinople are all copies more or less of S. Sophia: they have courts in front with a range of arcades round, and the centre portion forms the prayer chamber, the side aisles serving as passages. The central dome has but a slight elevation outside, but with the numerous cupolas round, and the minarets, it forms a picturesque group which is wanting in the mosques of Kairawan, Cordova, and other eramples in North Africa.
In India as in other countries the Mahommedans took posseasion of the ancient huildings and adapted them to their religious requirements. The materials of the native styles of India, however, did not lend themselves to their utilization as in Syria, Egypt and North Africa, where the columns and capitals formed the substructure of the arcades which surrounded their courts. In the earliest mosque at old Delhi, they adopted the piers and bracketed capitals of the Jaina huilders, whom they probably employed to huild their mosque. They, however, had no confidence in the arch, which, as the Hindu says, " never sleeps but is always tending to its own destruction," so that the pointed arch, which had almost become the emblem of the Mahommedan religion, had to be dispensed with for the covered aisles which surrounded the great court, and in the triple entrance gateway the form of an arch only was retained, as it was comstructed with borizontal courses of masonry for the haunches, and with long slabs of stone resting one against the otber at the top. A similar construction was employed in the great mosque at Ajmert, built A.D. 1200-121r at the same time as the Delhi mosque. The ohjection to the arch is more clearly shown "It is very generally held that this "Blue Moeque" dates only
from the isth century (gee Tagpit). from the isth century (ee Tapriz).
in the entrance giteway of the Lal Darwazia or Red Gate mosque at Jaunpur, where an arch (of two rings of ogee shape) is carried by a solid wall, built under it, which is pierced with three doorways with bracket-capitals and architraves, returning therefore to trabeated construction. The covered aisles of the court of the Jumma Musjid at Jaunpur are in three storeys with piers, bracket-capitals and arcbitraves, bearing therefore no resemblance to the arcades of Kairawan and Cordova, and constituting a different style. There is however one feature which throughout the Mahommedan mosques in India is always found, viz. the dome. . But this also in India is built in horizontal courses, so that the form only and not the construction of the Cairene domes is followed. The chief peculiarity of the mosques at Ahmedahad is that, as the style progressed, it became more Indian; in the Jumma Musjid (a.d. 1420) and the Queen's mosque at Mirzapur, the pointed arch exists only in the fagades of the prayer chambers; in the mosques built 30 to 40 years later the whole is constructed without a single arch, all the pillars have braeket-capitals, and the domes, which are of very slight elevation, are all built in the trabeated style. As a contrast to the Ahmedabad mosques, the Kadam Rasul mosque at Gaur in Bengal possesses some characteristies which resemble those of the mosque of Tulun in Cairo, possibly due to the fact that it is entirely buill in brick, with massive piess carrying pointed arches.

The climax of Dfahommedan work in India is reached in that of the Mogul emperors at Agra, Delbi and Fatehpur-Sikri, in which there is a very close rescmblance in design to the mosques of Syria, Egypt, and Persia; the four-centred arch, which is in the Mogul style, finds general acceptance, and was prohably derived from Persian sources. The mosque at Fatehpur-Sikri possesses in its great southern gateway, buill by Akbar in the second half of the 16th century, the masterpiece of IadoSaracenci architecture. As a rule, the mosques of India followed the normal plan, with a great central court and aisles round and a prayer chamber in front of the Mecca wall, which in India is always at the west end.
(R.P.S.)

MOSQUITO (Span. masquilo, a gnat, diminutive of mosca, a fy), a term originally applied to many species of small blood-

Fic. 1.
A. Larva of Anopheles.

B, Pupa of A nopheles.
C, Larva of Stegomyic.
D, Pupa of Culex.
E, Egp float and further enlarged detached egs of Culer.

F, Female Anopheles costalis, Loew.
G, Head of 8 Culex H, Head of of Anopheles, Head of of Culex. 1. Eggs of Anopheles.
sucking Diptera (q.o.), belonging to various families, but now by common consent restricted to those known to naturalists es Culicidee, or gnats. Before the year 1899 mosquitoes had never been collected systematically, and had received little notice from entomologists, so that but few genera and comparatively few species were known. Although it had long been suspected that these insects were in some way connected with malaria and other diseases, while that the species now called Stegomyia colopus was the carrier of yellow fever had been asserted by Finlay as early as 1881 , it was not until the closing years of the agth century that the brilliant researches of Ross in

India, and of Grassi and others in Italy, directed the attention of the whole civilized world to mosquitoes as the exclusive agents in the dissemination of malerial fever. The restult has been that in subscquent years mosquitoss have been collected, studied and described by naturalists and medical men in all parts of the globe. Nearly 100 generz and about 700 species of mosquitoes are now recognized, but in all probability the total number of species is not less than 1000 .

In general appearance mosquitoes resemble-many harmless midges (Chironomidac), but may be distinguished by the following characters. (1) The prolongation of the lower lip or labium into a prominent proboscis, which in the female gex contains the full complement of piercing organs found in blood-sucking Diptera, mamely paired mandibles, paired maxillae, a tubular hypopharynx (the common outlet of the salivary giands), and an upper lip or labrum. (2) The presence of variously formed scales on the body and its appendages: the head is clothed with scales, the thorax with hairs or scales, and the abdomen with either hairs or scales, or both; the legs and veins of the wings are always covered with scales, and the palpi are often (as in some Anopheclinae) conspicuously scaly. (3) The fact that the costal or marginal vein runs completely round the wing. The wings exhibit six longitudinal veins (seven in Heplaphlebomyia), two of which are characteristically forked. The antennae, usually bottle-brush shaped (plumose) in the male sex, are less hairy in the lemale. The palpi vary in form and in the number of their component segrents, and the proboscis, though usually straight, may be curved (as in Megorhinus) or otherwise modified in shape.

In dividing the Culicidae into genera reliance is placed chiefly upon characters derived from the scales on the three divisions of the body and on the wingr. A fairly satisfactory attempt at grouping the genera has been made by Luts (1904), who divides the family in the first place into the Exculicidoe with a piercing proboscis (i.e. all ordinary mosquitocs) and the cuficimorphoe or forma without a piercing proboscis (Mochlonyx, Coredhra, \&c.). It has since been proposed to treat the Culicimorphae as a distinct lamily undet the sitle Corelhridae, and it is probable that with this modification Lutz's scheme will meet with general acceptance. The Exculicidee are divided into the Asiphonatoe (- Anophelince), the larvae of which have no respiratory miphon, and the Siphonatae, or forms in which a respiratory siphon is present in the larval state. The divisions of the Sipho:alag are the Ankylorkynchae (genera with curved proboscis, e.g. Megarkinus and Toxorhynchites) and Orthophyphce (genera with etraight proboscis). The fatter again are divided into Mefonopsilae (In which the metanotum or posterior region of the thorax is bire) and Mclanotrichae (in which the metanotum is clothed with bristles or scales). The Metanopsilae are made up of the Heleropalpoce (palpi long in the male, short in the female; sub-families Culicinae (Culex, \&c.) and Heptaphlebomyince (Heplaphlebomyia)] and Micropalpae [palpi short in both pexes; sublamilies Aedince (Aedes, \&c.) and Hasmagoginae (Hacmagogus, Uranolaenia, \&c.)]. The Melanotrichae are similarly divided on the basis of the palpal characters into two groups, the Heleropalpae or Myloronapinae (Joblotia, Rhymchomyia, \&c.) and Micropalpae or Dendromyinae (Wyeomyia, Sabethes, Limatus, \&c.).

The old genus Anophdes (characterized by the palpi being long in both sexes) is now divided linto a number of genera according to the character and shape of the scales on the different regions of the body and on the wing. These genera make up the sub-lamily Anophelinae, and tnge her include over 100 species. The genus Culex, from which ils family taloes its name, though it has been similarly split up, is still in its restricted sense larger than any other, and some 200 zsseies are comprised in it alone.

Mosquitoes are found in all parts of the world. Even within the Arctic Circle they are in many localities abundaat and excessively bloodthirsty during the short summer. Under such conditions the deeply-rooted nature of the blood-sucking instinct is most remarkable; for insects whose ancestors for many generations may not have tasted blood will seek for it with the utmost keenness and pertinacity to soon as an opportunity presents itself. Some species are normally phytophagous, and the vast majority, at any rate, appear to be capable of continuing to exist and reproducing their kind upon a purely vegetarian diet. As a rule the blood-sucking habit is confined to the females, but in the case of a few species it is said to be common to both sexce The thirst for blood is stimulated by heat, and ic temperatc climates it is only during hot weather that mosquitoes are troublememe. Some species of mosquitoes, such
as the common gat (Cw/ex pipiens), are rarely found away from buman habitations; others seldom or never enter houses, but are met with either in more or less open country, or in the recesses of forests and woods. In Europe and North America the continued existence of species is ensured by the hibernation of impregnated females, or else the winter is passed in the egg or occasionally in the larval state. In tropical climates with a well-marked dry season mosquitoes pass into a semi-dormant condition during the period when there is little water In which to deposit their eggs. Culicidae are by no means confined to lowlying districts, and have even been met with in the Himalayas at an altitude of 13,000 feet. The wide distribution of certain species is undouhtedly attributable to the agency of ships and trains; under natural conditions mosquitoes seldom travel far from tbeir breeding grounds, although the powers of flight of some species are greater than has been supposed.

The preliminary stages of all mosquitoes are passed in water, either fresh or salt, stagnant or slightly moving. The nature of the breeding-place varies greatly according to the species, and while many of the mosquitoes that infest houses will breed even in the smallest accidental accumulation of water such as may have collected in a discarded bottle or tin, the larvae of other species less closely associated with man are found in natural pools or ditches, at the margins of slow-moving streams, in collections of water in hollow trees and bamboo-stumps, or even in the water-receptacles of certaln plants. The eggs are usually deposited on the water itself, and while in the case of certain species, such as Culex pipions or the widely distributed C. fatigans, they are agglutinated together in masses known as "boats" or "rafts" containing from 50 to 400 ova , those of others, such as the Arophelinae and many Culicinoe (e.g. Steg. onvice calopus), are laid separately. The larvae are active and voracious little grub-like creatures (known in the United States as "wrigglers"), with large heads and jaws provided with a pair of brushes, which sweep food-particles into the mouth. Their food consists of minute animal and vegetable organisms,

(Redrawn Dy permisslon from Farmers Bulletin 15s, Burean of Ent.,
U.S. Dept. Of Agriculture.)

F1G. 2.-Stegomyia calopws (Culare fasciativs, Slegomyia fasciate).
algae, and probably decaying vegetable matter; they are often cannibals, and feed on their own species. The larvac of species belonging to the Culicince have a prominent breathing tube, or respiratory siphon, on the penultimate (eighth) abdominal segment, and when taking in air hang head downwards (often nearly vertically) from the surface film. Larvae of Anophelinae, on the other hand-which are grey, green or brown in colour, and often extremely difficult to sec-have no respiratory siphon
and lie almost horizontally at the surface; they frequently appear as though anchored by the tail to a weed or other object, and possess the cusious faculty of completely rotating the head so as to browse on the surface film. Mosquito pupae are commashaped (see fig. 1), and breathe by means of a pair of respiratory trumpets on the thorax.

The majority of mosquitoes are dull in bue, but certain species are brilliantly coloured or conspicuously banded or spotted with white. The Anophelinae have narrow bodies, and generally spotted wings, and when at rest keep body and proboscis in a straight line, often at a considerable angle with the supporting surface; in this way they can be distinguished from Culicince, which have a humped-up thorax with which the proboscis forms an angle, and in the resting position keep the body parallel to the support.

The disseminators of malaria are exclusively Anophelince, hut even among these it is only certain species that are dangerous, since the others appear to be incapable of acting as hosts of the parasites. Slegomyia calopus, on the other hand, a very widely distributed species and the almost certain carrier of yellow fever, belongs to the Culicinae. In the case of filariasis due to Filaria bancrofti, which is common throughout the Tropics, the embryos of the parasite are disseminated by various Culicinae and Anophelinae (Culex pipiens in Queensland; C. faligans in the West Indies; Mytomyic rossii in India; Pyrelophorus costalis' in a iarge portion of tropical Africa; \&c.). Six or seven species of mosquitoes are also the intermediate hosts of Filaria immitis; which infests the right auricle and pulmonary artery of the dog, and occurs throughout the tropics, in southern Europe, the United States of America, and elsewhere. There is reason to belleve that malaria, yellow fever and filariasis are not the only diseases disseminated by mosquitoes.
(E. E. A.)

MOSQUITO COAST AND RENERVE (MOSQUITA or RESERYA Mosquita), a division of the republic of Nicaragua, officially styled the department of Zeiaya. Pop. (2905), about 15,000 . Although its name is sometimes applied to the whole eastern seaboard of Nicaragua-and even ta Mosquitia in Honduras, i.c. the coast region as far west as the Rio Negro or Tinto-the Mosquito Coast is more accurately defined as a narrow strip of territory, fronting the Caribbean Sea, and extending from about $11^{\circ} 45^{\prime}$ to $14^{\circ} 10^{\prime} \mathrm{N}$. It stretches inland for an average distance of 40 m ., and measures about 225 m . from north to south. In the north, its boundary skirts the river Wawa; in the west, it corresponds with the eastern limit of the Nicaraguan highlands; in the south, it is drawn along the river Rama. The chief towns are Bluefields or Blewfields, Magdala on Pearl Cay, Prinzapolca on the river of that name, Vounta near the mouth of the Cuculaia, and Carate pear the mouth of the Wawa. Bluefields (pop. about 2000) is the capital and the largest town. It is the seat of a Moravian mission, and has a good harbour, with regular steamship services to Greytown in Nicaragua, and to New Orleans. It exports bananas and other fruit.

The Mosquito Coast is so called from its principal inhabitants, the Misskito Indians, whose name was corrupted into Moequito by European settlers and has been entirely superseded by that form except in the native dialects. The Mosquito Indians, of whom there are several tribes, are an unusually inteligent people, short of stature and very dark-skinned. Their colonr is said to be due to intermarriage with shipwrecked slaves.

The first white settlement in the Mosquito country was made in r630, when the agents of an English chartered company-of which the earl of Warwick was chiairman and John Pym treasurer -occupied two small cays, and established friendly relations with the Indians. From 1655 to 1850 Great Britain claimed a protectorate over the Mosquito Indians; but little success attended the various endeavours to plant colonies, and the protectorate was disputed by Spain, the Central American republics, and the United States. The opposition of the United States was due very largely to tbe fear that Great Britain would acquire a privileged position in regard to the proposed interoceanic canal. In 5848 , the scizure of Greytown (San Juan del Norte)
by the Mosquito Indians, with British support, aroused great excitement in the United States, and even involved the risk of war. But by the Clayton-Bulwer Treaty of 1850 both powers pledged themselves not to fortify, colonize or exercise dominion over any part of Central America; and in Novemher 1859 Great Britain delegated its protectorate to Honduras. This caused great dissatisfaction among the Indians, who shortly afterwards revolted; and on the 28th of January 1860 Great Britain and Nicaragua concluded the treaty of Managua, which transferred to Nicaragua the surerainty over the entire Caribbean coast from Cape Gracias a Dios to Greytown, but granted autonomy to the Indians in the more limited Mosquito Reserve (the ares described above). The local chief accepted this change on condition that he should retain his local authority, and receive a yearly subvention of $£ 1000$ until 18700° But on his death in 1864 Nicaragua refused to recognize his successor. The reserve nevertbeless continued to he governed by an elected chief, aided by an administrative council, which met in Bluefields; and the Indians denied that the suzcrainty of Nicaragua connoted any right of interference with their internal affairs. The question was referred for arbitration to the emperor of Austria, whose award published in 1880, upheld the contention of the Indians, and affirmed that the suzerainty of Nicaragua was limited by their right of self-government. After enjoying almost complete autoiomy for fourteen years, the Indians voluntarily surrendered their privileged position, and on the 20th of November 1894 their territory was formally incorporated in that of the repuhlic of Nicaragua, as the department of Zelaya.
Brbliograpay.-See "A Bibliography of the Monquito Coast of Nicaragua," by Courtney de Kalb, in Bullelin of the American Gcof; Soc., vol. xxvi. (1894); and "Studies of the Mosquito Shore in 1892 ," by the'same author, and in the same publication, vol. xxv. (1893). "A Forgotten Puritan Colony," in No. 165 of Blachevood's Magasime (Edinburgh, 1898), described the attempt at colonization made in 1630 . See also?' Die Streit um die Mosquito-Küste,' by J. Richter, in Zeischr. f. Gesellschaft d. Erdkunde, No. 30 (Berlin, 1893).

MOSS, a seaport of Norway, in Smaalenene amit (county), on the east shore of Christiania Fjord, 37 m. S. of Christiania by the Gothenburg railway. Pop. (1900), 8941. Here was signed, on the i4th of August 1814, the convention which united Norway to Sweden. Timber and wood pulp are chicf exports, grain and coal are imported. The port affords i_{3} to 22 ft . of water beside the quays.
mossamedes, a town of Portuguese West Africa, capital of the district of Mossamedes, on the gouth side of Litule Fish Bay (Bay of Mossamedes or Angra do Negro). Pop. about 5000. The harbour affords excellent anchorage. A railway (over 100 m . long) starts from the harbour and croses the semi-desert 'coast region to the fertile Chella plateau. Mossamedes is the headquarters of an important fishing industry (sec La Glographic, March 1908).

MOSsEL BAY, the name of a bay, town and division of the Cape province, South Africa. The bay lies midway between Table Bay (Cape Town) and Port Elizabeth roodstcad. Like most of the South African bays it does not afford good anchorage. Westward, however, it is sheltered by Cape St Blaize, on which is a lighthouse. The town lies on the west side of the bay, Cape St Blaize stretching beyond to the S.E. Mossel Bay is 250 m . hy sea and 312 m . by rail E. by S. of Cape Town. Pop. (rg04), 4500. The port ranks fourth in importance among the seaports of the Cape and does a large forwarding trade. Vessels load and discharge hy means of lighters. Mossel Bay is a station on the direct Cape Town-Port Elizabeth railway. The Mossel Bay division of the province has an area of $707 \mathrm{sq} . \mathrm{m}_{\text {n }}$ and a population (1904) of 10,700 , of whom 49% were whites.

MossLby, a market town and municipal borough in the Prestwich parlmmentary division of Lancashire, England, $10 \frac{1}{\mathrm{~m}}$. E.N.E. from Manchester, by the London \& North-Western railway. Pop. (190r), 13,452. It lies in the valley of the Tame, cloge to the junction of the boundaries of Lancashire, Cheshire and Yorkshire, and is surrounded by sharply-rising high ground, especially eastward. The Huddersfield canal pasees it. Across the river from the town ancient earthworks (Bucton Castle), of

British origin, are seen, and a Roman soad pasaing them, and running north and south is also traceable. Mossley has foundries, mill-works, woollen factories, and large cotton-spinning mills. It was incorporated in 1885, and the corporation consists of a mayor, 6 aldermen, and 16 councillors. Area, 3622 acres.

MOSSOP, HRNRY ($1729-1774$), Irish actor, was born in Duhlin, and made his first stage appcarance there, at the Smock Alley Theatre, as Zanga in Young's tragedy, The Revenge, in 1749. His first London appearance was made in 1751 under Garrick's management, as Richard III. He returned to Ircland in 1759, and, playing with Barry, added to his laurels, hut when he attempted management on his own account, he ruined Barry and went hankrupt himself, dying in poverty on the 27 th of December 1774.

MOST, JOHN [JOSIPH] (1846-1906), " German-American anarchist, was born in Augsburg, Bavaria, on the 5th of February 1846. He was apprenticed to a bookhinder, worked at this trade in Germany, Austria, Italy and Switzerland in 1863-1868, and then became 2 writer of Socialist pamphlets and paragraphs, and editor of Socialist sheets in Chemnitz and Vienna, both suppressed by the authorities, and of the Freic Presse in Berlin, being repeatedly arrested for his violent and cynical attacks on patriotism and conventional religion and cthics, and for his gospel of terrorism, preached in prose and in many songs such as those in his Proletariar-Liederbuch (sth ed., 1875). Some of his experiences in gaol were recounted in Die Bastille am Ploteensee: Blawer aus meinem Gefongniss-Tagebuch (1876). In 18741878 he was a member of the German Reichstag, hut he failed to be re-elected, was expelled by the Socialist organization, went to France but was forced to leave in $\mathbf{1 8 7 9}$, and then settled in London. There he founded the "red "organ-it was printed in red-Die Freihei, in which he expressed his delight in June 1881 over the assassination of Alexander II. of Russia and for this was imprisoned for a year and a half. He then resumed the publication of Die Freiheif in New York. He was imprisoned in 1886, again in 1887, and in 1902, the last time for two months for publishing after the assassination of President McKinley an editorial in which he argued that it was no crime to kill a ruler. He died in Cincinnati on the 17 th of April 1906. See his Memoirem (New York, 1903).
MOSTAQAREM, chief town of an armondiseement in the department of Oran, Algeria, 44 m. E.N.E. of Oran, on a plateam 278 ft . high, half a mike from the Mediterranean coast. The town is separated into European and native quarters by a deep ravine, the Ain Sefra, through which passes a considerable stream. The native quarter, caHed Tijit, occupies the eastern alopes of the ravine and the level ground above, and is dominated by the kubbas of two marabouts. A railway line, completed in 1889, 122 m . long, connects Montaganem with Tiaret, the most convenjent place for visiting the Jedars monuments. (See Aigeria.)

Mostaganem occupies the site of a Roman town. The amcient harbour was destroyed by earthquake in the reign of the ensperor Gallien. The present port is entirely artificial. The existing town appears to date from the time of the Almoravides, who huilt the citadel, now tarned into a prison. It passed into the posscsaion of the rulers of Tlemgen and was captured by Arouj Barbarossa in 1516, and became part of his brother Khair-ed-Din's kingdom. In the 16th century the town enjoyed a period of great commercial prosperity, and its popalation rose to 40,000 . The re-awakening of the town dates from the French occupation in 1833 . Pop. (1906) of the town, 19,528, of the commane $2 \pi, 011$, of the arrondissement, comprising 27 communes, 332,684 -
In the vicinity of Montaganem are the Dahra mountains, honeycombed with caves. In 1845 , in one of these caves, a French force, commanded by Colonel PEliscier, afterwards commander-in-chief of the French army in the Crimea, destroyed over 800 Arabo-men, women and chiddren-by suffocation, by filling the mouths of the cave with faggots and then setting them on fire.

MOSTAR, the capital of Herzegovina, situated 81 m . S.W. of Serajevo, on the river Narenta; and on the railway from Serajevo
ta Ragusa. Pop. (1900), about 14,500 including the garrison. Mostar is the seat of Roman Catholic and Orthodox bishops, a district court, and an Austrian garrison. Half Turkish, half Italian in character, it commands the gateway through which all heavy traffic must pass on the seaward road. A single arch of great beauty, $89 \frac{\mathrm{ft}}{}$. in span, and or ft . high, leads to the Roman Catholic quarter, on the right hank of the river. This hridge has been the theme of many legends, and its origin has been much debated. Probably it was huilt by the Turks, in the 1 th or 16 th century, after Italinn designs; but some antiquaries ascribe its foundation to the Romans. Since 188 r , when an iron bridge was opened, its use has been confined to foot passengers. Mostar possesses a gymnasium, a school of viticulture, and a massive Orthodox cathedral.

The present name of the city has been derived from the SerboCroatian moss, a hridge, and star, old. Its carlier Slavonic name was Virrinicha. Whether it may be identified with Pons Vetus, Andretium, Bistuae, Saloniana, or Sarsenterum, it certainly dates from Roman times. Mostar was enlarged in 1440 by Radivoi Gost, mayor of the palace to Stephen, first duke of St Sava. Immediately on their conquest of Herzegovina it was chosen by the Turks as their headquarters. The environs of the city are ipteresting. Within a few miles are the sources of the Buna, a small affluent of the Narenta, which issues from a cavern at the foot of Podvelež, amid scenery celebrated for its wild grandeur.

See Sir G. Wilkinson, Dalmatia and Montenegro (London, 1848), vol. ii. (view and plan at pp. 59,60); J. Asboth, An Official Tour through Bosnia and Hersegovina (London, 1890), pp, 255-262; and R. Munro, Bosnia and Herregooina (Edinburgh, 1900), pp. 179-188.

MOSOL a town of Mesopotamia, capital of a Turkish vilayet and sanjak of the same name, on the right bank of the Tigris, in $36^{\circ} 35^{\prime}$ N., $43^{\circ} 3^{\prime}$ E. Pop. 40,000 (Moslems 31,500, Christians 7000, Jews 1500). In Mosul, as in Bagdad, only part of the space within the walls is covered with huildings and the rest is occupied by cemeteries; even the solid limestone walls of the ancient town are half in rulns, being serviccable only in the direction of the river, where they check inundations. Of the town gates at present in use, five are on the south, two on the west, two on the north, and the great bridge gate on the east. Leaving Mosul by the last named, the traveller first crosses a stone bridge, 157 ft . long; then a kind of island (140 ft), which is overflowed only in spring and summer by the Tigris; next a stretch of the river which, at such times as it is not fordable, is spanned by a bridge of boats, the bridge proper covering only one-sixth of the full width of the stream. During the season of low water excellent vegetables, particularly water-melons, are grown upon the isiands and dry portions of the river-bed.

The interior of Mosul has an insignificant appearance, only a few of the older buildings being left, among which may be mentioned the Great Mosque, with its leaning minaret, formerly a church dedicated to St Paul. The streets are for the most part hadly paved and very narrow, a small square in the market ${ }^{-}$ place, overlooked by airy coffee-booths, being almost the only open space. The shops are few and poor. The industry in comparison with former times, when the town had so considerable a manufacture in muslin as to give is name to that fabric, is very unimportant; trade also, which is almost exclusively in the hands of native merchants, has fallen of greatly, although the town remains the collecting and distributing centre for the north Mesopotamian desert and Kurdistan. The exports and most of the imports pass through Bagdad. Mosul is the meetingpoint of roads from Aleppo, Diarbekr, Bitlis, morth and west Persia and Bagdad; and it is on the projected line of railway from Constantinople to the Persian Gulf. Gall nuts, gathered on the neighbouring Kurdish mountain slopes, are mostly exported, but are also made use of by native dyers; and hides, wax, cotton and gum are sold. Christians and Moslems have lived together on better terms here than elsewhere. Both are animated by an active local patriotism, and both honour the same patron saints, Jirjis (St George) and Jonah; the grave of the hattet is pointed out on an artificial mound on the left bank of the Tigris.

The language of the people of Mosul is a dialect of Arabic, partly influenced by Kurdish and Syriac. The Moslems call themselves either Arabs or Kurds, but the prevalent type, very different from the true Arabian of Bagdad, proves the Aramaean origin of many of their number. Of the Christians the community of the Chaldacans, i.e. those who have gone over from Nestorianism to Catholicism, seems to be the most important; there are also Syrian Catholics and Jacobites. Mosul has for several centuries been a centre of Catholic missionary activity, the Dominicans especially, by the foundation of schools and printing-offices, having made a marked impression upon an intelligent and teachahle population. There are very few Protestants. The town is the geat of British, French and Russian consulates.

Mosul shares the severe alternations of temperature experienced hy upper Mesopotamia. The summer beat is extreme, and in winter frost is not unknown. Nevertbeless the climate is considered healthy and agreeable; coplous rains fall in general in winter. The drinking water is got from the muddy Tigris. At the north-east corner of the town is a sulphur apring, and 4 leagues to the south there is a hot sulphur spring (Hammim ${ }^{\prime}$ Ali), much frequented by invalids.

Mosul probably occuples the site of a southern suburb of encient Nineveh (q.0.) but it is very doubtful whether the older name of Mespila can be traced in the modern A1-Mausil (Arab., "the place of connexion "); it is, bowever, certain that a town with the Arabic name Al-Mausil stood here at the time of the Moslem conquest (636 A.D.). The town reached its greatest prosperity towards the beginning of the decline of the caliphate, when it was for a time an independent capital. The dynasty of the Hamdanids reigned in Mosul from 934, but the town was conquered by the Syrian Okalids in 990 . In the inth century it belonged to the Seljuks, and in the 12th, under the sway of the Atabegs, particularly of Zenki, it had a short period of splendour. Saladin besieged it unsuccessfully in 1182 . The Persians occupied Mosul for a short time in 1623, until it was, soon afterwards, recovered by sultan Murad IV. The governorship of the pashalik was long hereditary in the originally Chrtstian family of the 'Abd-al-Jalil, until the Porte, during the course of the 19th century, succeeded after a long and severe contest in establishing a more centralized system of government.

The Vilayet of Mosul lies mainly east of the Tigris. It is divided into three sanjaks, Mosul, Shehrizor and Suleimanieh, and has an area of 29,000 sq. m. Pop. 295,000 (Moslems 245,000, Yezidis 15,000, Christians 30,000 and Jews 5000).
See Karl Ritter, "Asien," vol. vii. in Die Erdhunde (Berlin, 1844). A map of the town accompanies J. Cernik's paper, "Studienexped: tion durch die Gebicte dea Euphrat und Tigris," in Erganzungsheft No. 45 of Petermanns Mitteilungen (Gotha, 1876); Parry, Six Months in a Syrian Monastery (1895); E. Sachau, Am Euphraf und Tigris (Berlin, 1899): Baron von Oppenheim, Vom Mittelmeer sum Persischew Goff (Berlin, 1900).

YOSZKOWAKI, MORITZ (1854-), Polish musical composer, was born at Breslau, and stadied at Dresden and Berlin. He started as a.pianist, and had a great success at the chief European centres. He was made a member of the Berlin Academy in 1899. In 1897 he settled in Paris. He became a prolific composer both for pianoforte and for orchestra, but is best known by his Spanish dances, written for four hands on the piano, and his waltres. His opera Boabdil was performed at Berlin in 1892 .

Horala, a lown of Sweden, in the district (lans) of Ostergitland, on the east side of Lake Vecter al the outfow of the river Motala, $175 \mathrm{~m} . \mathrm{S} . \mathrm{W}$. by W. of Stockbolm by rail. Pop. (1900), 3047. It is on the Gota canal route (q.v.). The town was founded in 1880, hut the Motala mechanical works, 2 m . east, were founded in 1823 by the Gota Canal Company under the direction of Daniel Fraser, an Englishman. Iron was-shipa, rail way locomotives, iron bridges, machinery, kc., are built; the company has brasches In Norrkoping, Gothenburg, and elsewhere.
mopahabesi, striclly al Mutanabet' (Aed-f-Taytis Abmad IBN AL-HUsain or KUFA) ($915 / 6-965$), the mot famous represen-
-I I.e. "the who plays the prophet."
tative of the last period of Arabic poetry, was the son of a watercarrier, and is said to have picked up much of the literary knowledge for which he was afterwards famous by haunting the book-stalls of bis native city. He spent too, some years of his youth among the nomads of the Syro-Arahian desert, learning their purer dialect, and becoming imbued with their self-reliant spirit. Thus he grew up a brave proud man, a gallant warrior as well as a poet, not easily satisfied either with wealth or honours, indifferent to the Koran and to the fasts and prayers of Islam, hut untainted by the looseness of morals common to the poets of those days. At first he essayed a perilous road to distinction, appearing in the character of a prophet in the desert between the Euphrates and Syria, where he formed a considerable party, but was arrested by the governor of Emesa (Homs). A prison cooled his enthusiasm. The name of al-Mfuianabbi clung to him, however, and is that by which he is still commonly known. Regaining his liberty, he had to struggle for a time with poverty and neglect. But his poetical talents at length found him patrons, and in 948 he became attached to the court of the famous warrior and patron of letters, Saif ad-daula, prince of Aleppo, to whom many of the best fruits of his muse were dedicated, and by whose side he approved his valour in the field. But he had rivals who knew how to inspire jealousy between him and the prince, and an angry scene with the grammarian Khalawaih, In which the latter closed a philological dispute by striking Motanabbt, in the very presence of the prince and without rebuke from him, led the poet to leave the court and seek a new career in the realm of the Ikshids (957). He now took as his patron and the object of his eulogies Kifar, the regent of Egypt-a black eunuch who knew how to open the poet's lips by great gifts and honours. Motanabbi, however, sought a higher reward, the government of Sidon, and at length broke with Kafor, wrote satires against him, and had to fly for his life to Kufa (961). His next great patron was 'Adod ad-daula of Shirgz, and on a journey from Shiraz to Kufa he was waylaid and slain by a chicftain of the Asad, whose kinsfolk he had satirized (September 965).
The poetry of Motanabht is to European taste much less attractive than the verses of the ancient Arab poets, being essentially artlicial and generally unreal, though it has great technical merits and displays lively fancy and considerable inventive power.
Oricntal taste places him on a very high pedestal, as may be judged from the faet that more than forty commentaries were written on his Divuàn (H. Khal., iii. 306). Dieterici's edition of the poet (Berlin, 1858-1861), gives the commentary of Wähidi (d. 1075); the Egyptian edition of 1870 has the commentary of Ukbari (d. I219). A convenient edition is that published with a commentary of Nasif ul-Yaziji at Beirut (t882). See R. A. Nicholson, A Literary History of the A rabs (London, 1907), pp. 304-313.

MOTET, a musical art-form of paramount importance in the 161 h century. The word is of doubt ful ety mology, and probably its various uses and forms in the $13^{\text {th }}$ and $14^{\text {th }}$ centuries connect with more than one origin. Thus molulus suggests modulus or melody; and prohably represents the notion underlying the use of the term motctus or motcllus to designate one of the middle parts in a vocal combination. On the other hand the obvious connexion bet ween the Italian word mottetlo (diminutive of motto) with the French mot (in the sense of bon mot) is in conformity with the use of a profane art-form contemporary with the conductus and rondel of these early epochs of music.
The only really definite and mature art-form denoted by the word motet is that of the 6 th-century pieces of ecclesiastical music in one or two (rarely more) continuous movements, for the most part on Biblical or other ecclesiastical prose texts. The word is, however, used for any single Latin-text composition in continuous form, not set sectionally verse by verse, and not forming a permanent part of the mass. Thus Palestrina's Slabal water is includent among his motets; though the text is metrical and rhymed, and the style, though continuous, is far from being that of the typiral polyphonic motet. The title of motet is also occasionally loosely used for non-ecclesiastiral
works, such as many of the numbers in the Mognum opus musicum of Orlando di Lasso and the dedicatory motet at the beginning of Palestrina's fifth book. And in this way it is sometimes applied to compositions not to Latin text; as in Josquin's Deploration de Jehan Okenheim, where all except the canto fermo is in French.

The most important kind of motet is that which is intimiately connected with the solemn mass for a particular holy day. Such motets are sung between the Crede and the Sanctus of the mass. They are, in typical cases, founded on the Gregorian tones of their texts, and the mass is founded on the same themes, thus giving the whole service a musical unity which has never since been approached in any church music even under Bach. When a motet was not founded on Gregorian tones it was still possible for the composer to design a mass on the same themes, and most of the titles of 16 th-century masses, when they do not indicate a secular origin, indicate either the motet or the Gregorian tones on which they are founded. Thus Palestrina's masses Assumpla est Maria; O admizabile commercium; Dum complerentur; Hodic Christus nalus est; Dies sanificalus; Veni sponsa Christi, and the second Missa Tu es Pelrus, are magnificent examples selected almost at random from the masses which the composer has founded on his own motets of the same name. When such masses are performed, whether in a concertroom or church, it is indisputable that the motet ought always to be included. Sometimes one composer founded a mass on another composer's motet; thus Soriano's fine Missa, Nos autcm gloriari, is based upon a motet by Palestrina. When a motet was in two movements the second movement almost always ended with the last clauses of the first, both in text and in music, thereby sometimes producing a distinctly modern impression of da capo form.

In later times the term motet is little more than a name for any choral composition of clearly single design; and the fact that such compositions have often been sung, like the 16 th century motet, between the Credo and Santtus of High Mass, has nothing to do with their character as an art-form. Bach's motets are great German choral works in several movements, with no written accompaniment, though there is internal and external evidence that they were accompanied from score by the organ. Handel's motets beiong to his Itahian period and are simply Latin cantalas of various kinds, with instrumental accompaniment. The later meanings attached to the word are quite indefinite, and have no common idea, except that the motet is nowadays the shortest kind oi sacred choral music.
(D. F.T.)

MOTH, in entomology, any lepidopterous insect belonging to the division Heteroccra, as distinguished from the Rhopalocero, or butterfies; formerly confined to the small nocturnal insect (belonging to the genus Tinea), which breeds in fur, clothes, \&c. (sce Lepidoptera). The word in O Eng. is moplec, and corresponds to Ger. DIolle.

MOTHER, the term for the femaie parent of a child. The woid, like father, is common to Indo-European languages, cf. in Teutonic languages, Ger. $\mathcal{L A}^{\prime}$ ulter, Du. moeder, Swed. and Dan. moder; Gothic is the exception in Teutonic languages, the word being ailhei, cf. alta, father; from Lat. nater come, in Romanic, Fr. merre, Ital., Span. and Port., madre. Greek has $\mu \nmid r \eta \rho_{1}$ (Attic and Ionic), μ ártp (Doric). The Russian word is maf. The Sansk. mato points to an original derivation from a stem $m a$, to measure, or make. Of the many transferred applications of " mother " may be mentioned those to the church, to nature, to the earth, and to a city or nation, as the parent of other cilies, nations, colonies, \&c. As a title " mother" is particularly applied to the head of a religious community of women. For "mother-of-pearl" see Pearl. There is a particular application of " mother" to the scum which rises to the surface of a liquor during the process of fermentation, and also to a mass of gummy stringy consistency formed in vinegar in the process of acetous fermentation, hence known as " mother of vinegar " (see Vinegar). This is usually, however, tahen to he another word altogether, and connected with Du. modder. mud, mire.

MOTRTMWELL, MLINAM (1797-1835), Scottish poet, antiquary and journalist, was born at Glasgow on the r3th of October 1797, the son of an ironmonger. At the age of fifteen he was apprenticed in the office of the sherif-clerk at Paisley, and appointed sheriff-clerk depute there in 181 g . He spent his leisure in collecting materials for a volume of local baliads which he pioblished in 1819 under the title of The Harp of Renfretoshire. In 1827 he published a further instalment in Minstrelsy Ancient and Modern, prefaced hy an excellent historical introduction. He contribufed verses to newspapers and magazines, Jeanic Morrison, My Heid is hike to rend, Willis, and Wearie's Cauld Well being his best-known poems. He became editor of the Paisley Advertiser in 1828, and of the Glasgow Courser in 1830.
A amall volume of his poems was published in 1832, and a larger volume with a memoir in 1846 , reiseued, with additions, in 1848.

- MOTHERWELL, a municipal and police burgh of Lanarkshire, Scotland. Pop. (1851), 900 ; (1901), 30,418. It is situated near the right bank of the Clvde, 13 m . S.E. of Glasgow by the Caledonian railway. It takes its name from an old well dedicated to the Virgin, and owes its rapid increase to the coal and itton mines in tbe neighbourhood. It has large iron and steel works, hridge-building being a distinctive industry. Boilers, steam-cranes and ironmongers' ware are also made, and there are brick, tile and freclay works. The public buildings include the town-hall, theatre and bospital; the park was presented in commemoration of Queen Victoria's Jubilee.
MOTION (Lat. molio, from movere, to move), in English law, an application made to a court during the progress of an action, and eith, r before or after judgment has been pronounced. The object of a motion is to invoke tbe assistance of the coust in matters that are of a pressing character, and require to be speedily dealt with. A motion differs from a petition in that it is made viva voce in open court and is founded on a written statement. Motions are either motions of course or special motions. A motion of course is made ex parte without notice, and is not mentioned in court, the party being entitled as of right. Motions of course are confined to the chancery division of the High Court. A special motion is made in open court, and must be supported by proper evidence. Special motions are made either ex parte or on notice. On all ex parle applications the utmost good faith must be observer. Ex parte motions, in the king's bench division, are usually made to a divisional court. A motion for judgment is a proceeding whereby a party to an action moves for judgment of the court in his favour. See Rules of the Supreme Court, Ors. xl., lii.

HOTION, LAWS OP. Before the time of Galileo (1564-t642) hardly any attention had been paid to a scientific study of the motions of terrestrial bodies. With regard to celestial bodies, however, the case was different. The regularity of their diurnal revolutions could not escape notice, and a good deal was known 2000 years ago about the motions of the sun and moon and planets among the stars. For the statement of the motions of these bodies uniform motion in a circle was employed as a fundamental type, combinations of motions of this type being constructed to fit the observations. This procedure-which was first employed by the great Greek astronomer Hipparchus (and century b.c.), and developed by Piolemy three centuries later-did not afford any law connecting the motions of different bodies. Copernicus (5473^{-} 1543) employed the same system, and greatly simplified the application of it, especially by regarding the earth as rotating and the sun as the centre of the solar system. Kepler (1571r630) was led by his study of the planetary motions to reject this met bod of statement as inadequate, and it is in fact incapable of giving a complete representation of the motions in question. In 1609 and 1619 Repler published his new laws of planetary motion, which were subsequently shown by Newton to agree with the results obtained by experiment for the motion of terrestrial bodies.

The earliest recorded systematic experiments as to the motion of falling bodies were made by Galileo at Pisa in the latter years of the 16th century. Bodies of different substances were
employed, and slight differences in their behaviour accounted for by the resistance of the air. The result obtained was that any body allowed to fall from rest would, in a vacuum move relatively to the earth with constant Acoubredion acceleration; that is to say, would move in a straight
line, in such a manner that its velocity would increase by equal amounts in any two equal times. This result is very nearly correct, the deviations being so small as to he almost beyond the reach of direct measurement. It has since been discovered, however, that the magnitude of the acceleration in question is not exaclly the same at different places on the earth, the range of variation amounting to about 1%. Galileo proceeded to measure the motion of a body on a smooth, fixed, Inclined plane, and found that the law of constent accelcration along the line of slope of the plane still held, the acceleration decreasing in magnitude as the angle of inclination was reduced; and he inferred that a body, moving on a smooth horizontal plane, would move whth uniform velocity in a straight line if the resistance of the air, and friction due to contact with the plane, could be eliminated. He went on to deal with the case of projectiles, and was led to the conclusion that the motion in this case could be regarded as the result of superposing a horizontal motion witi uniform velocity and a vertical motion with constant acceleration, the latter identical with that of a merely falling body; the inference being that the path of a projectile would be a parabola except for deviations attributed to contact with the air, and that in a vacuum this path would he accurately followed. The method of superposition of two motions may be illustrated by such examples as tbat of a body dropped from the mast of a ship moving at uniform speed. In this case it is found that the hody falls relatively to the ship as if the latter were at rest, and alights at the foot of the mast, having consequently pursued a parabolic path relatively to the earth.

The importance of these results, limited though their scope was, can hardly be overrated. They had practically the effect of suggesting an entirely new view of the subject, namely, that a body uninfluenced by other matter might be expected to move, relatively to some base or other, with uniform velocity in a straight line; and that, when it does not move in this way, its acceleration is the feature of its motion which the surrounding conditions determine. The acceleration of a falling body is naturally attributed to the presence of the carth; and, though the body approaches the carth in the course of its fall, it is easily recognized that the conditions under which it moves are only very slightly affected by this approach. Moreover, Galileo recognized, to some extent at any rate, the principle of simple superposition of velocities and accelerations due to different sels of circumstances, when these are combined (see Mechanics), The results thus obtained apply to the motion of a small body, the rotation of which is disregarded. When this case has been sufficiently studied, the motion of any system can be dealt with by regarding it as built up of small portions. Such portions, small enough for the position and motion of each to be sufficiently specified by those of a point, are called " particles."

Descartes helped to generalize and establish the notion of the fundamental character of uniform motion in a straight line, but otherwise his speculations did not point in the direction of sound progress in dynamics; and the next coatromalal substantial advance that was made in the principles of the subject was due to Huygens (1629-1695). He attained correct views as to the character of centrifugal force in connexion with Galieo's theory; and, when the fact of the variation of gravity (Galileo's acceleration) in different latitudes first became known from the results of pendulum experiments, he at once perceived the possibility of connecting such a variation with tbe fact of the eartb's diurnal rotation relatively to the stars. He made experiments, simultaneously with Wallis and Wren, on the collision of hard spherical bodies, and his statement of the results (1669) Included a clear enunciation of the,conservation of linear momentum, as demonstrated for these cases of collision, and apparently correct in certain other cases, mass being estimated by weight. But Huygens's moet important contribation to the
subject was his invesligation, published in 1673, of the motion of a rigid pendulum of any form. This is the earliest example of a theoretical investigation of the rotation of rigid bodies. It involved the adoption of a point of view as to the relation between the motions of bodies of different forms, which practically amounted to a perception of the principle of energy as applied to the case in question.
We owe to Newton (1642-1727) the consolidation of the views which were current in his time into one coherent and universal anlleoNewtor Theary. system, sometimes celled the Galileo-Newton theory, but commonly known as the "laws of motion"; and the demonstration of the fact that the motions of the celestial bodies could be included in this theory by means of the law of universal gravitation. A full account of his results was first published in the Principic in 1687.
Such statements as that a body moves in a straight line, and that it has a certain velocity, have no meaning unless the base, relative to which the motion is to be reckoned, is defined. Accordingly, in the extension of Galieo's results for the purpose of a universal theory, the estahlishment of a suitable base of reference is the first step to be taken. Newton assumed the possibility of choosing a base such that, relatively to it, the motion of any particle would have only such divergence from uniform velocity in a straight line as could be expressed by laws of acceleration lependent on its relation to other bodies. He used the term "ahsolute motion" for motion relative to such a base. Many writers on the subject distinguish such a base as "fixed." The name" Newtonian base " will be used in this article. Assuming such a base to exist, Newton admitted at the outset the difficulty of identifying it, but pointed out that the key to the situation raight be found in the identification of forces; that is to say, in the mutual character of laws of acceleration as applied to any given body and any other by whose presence its motion is infuenced. In this coancxion he took an important step by diatinguishing clearly the character of "mass" as a upiversal property of bodies distinct from weight.
There can be no doubt that the development of correct views as to mass was closely connected with the results of experiments with regard to the collision of hard bodies. Suppose two small smooth spherical bodies which can be regarded as particles to be brought into collision, so that the velocity of each, relative to any base which is unaffected by the collision, is suddenly changed. The additions of velocity which the two bodies receive respectively, relative to such a base, are in opposite directions, and if the bodies are alike their magnitudes are equal. If the bodies though of the same substance are of different sizes, the magnitudes of the additions of velocity are found to be inversely proportional to the volumes of the bodies. But if the bodies are of different substances, say one of iron and the other of gold, the ratio of these magnitudes is found to depend upon something else besides hulk. A given volume of gold is found to count for this purpose for about two and a half times as much as the same volume of iron. This is expressed by saying that the density of gold is about two and a half times that of iron. In fact, experiments upon the changes of velocity of bodies, due to a mutual inftuence between them, bring to light a property of bodies which may be specificd by a quantity proportional to their volumes in the case of bodies which are perceived by other tests to be of one homogeneous substance, but otherwise involving also another factor.
The product of the volume and density of a body measures what is called its "mass." The mass of a body is often loosely defined as the measure of the quantity of matter in it. This definition correctly indicates that the mass of any portion of matter is equal to the sum of the masses of its parts, and that the masses of bodies alike in other respects are equal, but gives no test forcomparison of the masses of bodies of different substances; this test is sapplied only by a comparison of motions. When, as in the case of contact, a mutual relation is perceived between the motions of two particles, the changes of velecity are in opposite directions, and the ratio of their magniludes determines the ratio of the masses of the particles; the motion being reckoned
relative to any base which is unaffected by the change. It is found that this gives a consistent result; that is to say, if by an experiment with two particles A and B we get the ratio of their masses, and by an experiment with B and a third particle \mathbf{C} we get the ratio of the masses of B and C, and thus the ratio of the masses of A and C, we should get the same ratio by a direct experiment with \mathbf{A} and C . For the numerical measure of mass that of some standard body is chosen as a unit, and the masses of other bodies are obtained by comparison with this. Masses of terrestrial bodies are generally compared by weighing; this is found by experiment to give a correct result, but it is applicable only in the neighbourhood of the earth. Familiar cascs can readily be found of the perception of the mass of bodics, independently of their tendenry to fall towards the earth. The mass of any portion of matter is found to be permanent under chemical and other changes, and this fact adds to its importance as a physical quantity. The study of the structure of atoms bas suggested a connexion of mass with electrical phenomena which implies its dependence on motion; but this is not inconsistent with the observed fact of its praclical constancy, to a high degree of accuracy, for bodics camposed of atoms.
The Galileo-Newton theory of motion is that, relative to a suitably chosen base, and with suitable assignments of mass, all accelerations of particles are made up of mutual (so-called) actions between pairs of particles, whereby the two particles forming a pair bave accelerations in opposite directions in the line joining them, of magnitudes inversely proportional to their masses. The total acceleration of any particle is that obtained hy the superposition of the component accelcrations derived from its association with the other particles of the system severally in accordance with this lew. The mutual action between two particles is specified by means of a directed quantity to which the term "force " is appropriated. A force is said to act upon each of two particles forming a pair, its magnitude being the product of mass and component acceleration of the particle on which it acts, and its direction that of this component acceleration. Thus each mutual action is associated with a pair of equal forces in opposite directions. Instead of the operation of superposing accelerations, we may compound the several forces acting on a particle by the parallelogram law (see Mecianics) into what may be called the resultant force, the total acceleration of the particle being the same as if this alone acted. The theory depends for its verification and application upon the fact that forces can be identified and classified. They can be recognized by Appleation their reciprocal character, and it is found to be of the possible to connect them hy permanent laws with the mwor. recognizable physical characteristics of the systems in which thcy cocur. A generalization of Galileo's results takes the form that under constant conditions of this kind, force (defined in terms of motion) is constant, and that the superposition of two sets of conditions, if their independence can be secured, results in superposition of the forces associated with them separately. Particular laws of force may be suggested hy a study of the simpleat cases in which they are manifested, and from them results may be obtained by calculation as to the motions of syatoms of any given structure. Such results may be tested by direct observation.
It should be noted that, within a Umited range of application to terrestrial mechanics, the most convenient way of attacking the question of the relations of forces to the physical conditions of their occurrence may be by balancing their several effects in producing motion; thus avoiding in the first instance both the choice of a base and the consideration of mass. This procedure is useful as a preliminary step in the study of the subject. It does not, however, afford a convenient starting-point for a general theory, hecause it is apt to involve some eonfusion of phenomena which, from the point of view of the Galileo-Newton theory, are distinct in character.

Newton's law of gravitation affords the most notable example of the process of verification of a law of force, and incidentally of the Galileo-Newton theory. As a law of acceleration of the planets relatively to the sun, its approximate agreement with

Kepler's third law of planetary motion follows readily from a comsideration of the character of the acceleration of a point

Gravitor

trom. moving uniformly in a circic. Newton tells us that this agreement led him to adopt the law of the inverse square of the distance about 1605-1666, before Huygens's results as to circular motion had been published. At the same time he thought of the possibility of terrestrial gravity extending to the moon, and made a calculation with regard to it. Some years later he succeeded ln showing that Kepler's clliptic orbit for planetary motion agreed with the assumed law of attraction; he also completed the co-ordination with terrestrial gravity by his investigation of the attractions of homogeneous sphericai bodics. Finally, he made substantial progress with more exact calculations of the motions of the solar system, especially for the case of the moon. The work of translating the law of gravitation into the form of astronomical tables, and the comparison of these with observations, has been in progress ever since. The discovery of Neptune (1846), due to the influence of this planet on the motion of Uranus, may be mentioned as its most dramatic achievement. The verification is sufficiently exact to estahlish the law of gravitation, as providing a statement of the motions of the bodies composing the solar system which is correct to a high degree of accuracy. In the meantime some confirmation of the law has been obtained from terrestrial experiments, and observations of double stars tend to indicate for it a wider if not universal range. It should be noticed that the verification was begun without any data as to the passes of the celestial bodies, these being selected and adjusted to fit the observations.

The case of electro-magnetic forces between two conductors carrying electric currents affords en example of a statement of motion in terms of force of a highly artificial kind. It can only be contrived by means of complicated mathematical analysis. In this connexion a statement in terms of force is apt to be displaced by more direct and more comprehensive methods, and the attention of physicists is directed to the intervention of the ether. The study of such cases suggests that the statement in terms of force of the relations between the motions of bodies may be only a provisional one, which, though it may summarize the effect of the actual connexions between them sufficiently for some practical purposes, is not to be regarded as representing them completely. There are indications of this having been Newton's own view.

The Newtonian base deserves some further consideration. It is defined by the property that relative to it all accelerations of particles correspond to lorces. This test involves Nomtondat only changes of velocity, and so does not distinguish bet ween two bases, each of which moves relatively to the other with uniform velocity without rotation. The establishment of a true Newtonian base presumes knowledge of the motions of all bodies. But practically we are always dealing with Hmited systems, so any actual determination must always be regarded as to some extent provisional. In the treatment of the relative motions of a llmited system, we may use a confessedly provisional base, though it may he necessary to introduce corrections, either exact or approximate, to take account either of the existence of bodies outside the system, or of the rotation of the base employed relative to a more correct one. Such corrections may be made by the device of applying additional unpaired, or what we may cali external, forces to particles of the system. These are needed only so far at they introctuce differemces of accelerations of the several particles. The earth, which is commonly employed as a base for terrestrial motions, is not a very close approximation to being a Newtonian base. Differences of acceleration due to the attractions of the sun and moon are not important for terrestrial systems on a small scale, and can usually be ignored, but their effect (in combination with the rotation of the earth) is very apparent in the case of the ocean tides. A more constdetable defect in due to the earth having a diurnal rotation relative to a Newtonian base, and this is never wholly ignored. Take a base attached to the centre of the earth. but without this duraal rotation. A small body hanging by a etring, at rese relatively to the earth, moves relatively to this
base uniformly in a circle; that is to say, with constant acceleration directed towards the earth's axis. What is done is to divide the resultant force due to gravitation into two components, one of which corresponds to this acceleration, while the other one is what is called the "weight " of the body. Weight is in fact not purely a combination of forces, in the sense in which that term is defined in connexion with the laws of motion, but corresponds to the Galikeo acceleration with which the body would begin to move relatively to the earth if the string were cut. Another way of stating the same thing is to say that we introduce, as a correction for the earth's rotation, a force called " centrifugal force," which combined with gravitation gives the weight of the body. It is not, however, a true force in the sense of corresponding to any mutual relation between two portions of matter. The effect of centrifugal force at the equator is to make the weight of a body there about 35% less than the value it would have if due to gravitation alone. This represents about two-thirds of the total variation of Galileo's acceleration between the equator and the poles, the balance being due to the ellipticity of the figure of the earth. In the case of a body moving relatively to the earth, the introduction of centrifugal force only partially corrects the effect of the carth's rotation. Newton called attention to the fact that a falling body moves in a curve, diverging slightly from the plumb-line vertical. The divergence in a fall of 100 ft . in the latitude of Greenwich is about 1_{1}^{1} in. Foucaule's pendulum is another example of motion relative to the earth which exhibits the fact that the earth is not a Newtonian base.

For the study of the relative motions of the soler system, a provisional base established for that system by itself, bodies outside it being disregarded, is a very good one. No correction for any defect in it has been found necessary; moreover, no rotation of the base relative to the directions of the stars without proper motion has been detected. This is not inconsistent with the law of gravitation, for such estimates as have boen made of planetary perturbations due to stars give results which are insignificant in comparison wilh quantitics at present measurable.

For the measurement of motion it must be presumed that we have a method of measuring time. The question of the standard ta be employed for the scientific measurement of Masampo time accordingly demands attention. A definition of meate of the measurement dependent on dynamical theory has Tima been a characteristic of the subject as presented by some writers, and may possibly be justifiable; but it is neither necessary nor in accordance with the historical development of science. Galileo measured time for the purpose of his experiments by the flow of water through a small hoie under approximately constant conditions, which was of course a very old method. He had, however, some years before, when he was a medical student, noticed the apparent regularity of successive swings of a pendulum, and devised an instrument for measuring, by means of a pendulum, such short periods of time as sufficed for testing the pulse of a patient. The use of the pendulum clock in its present form appears to date from the construction of such a clock by Huygens in 1657. Newton dealt with the question at the beginning of the Principia, distinguishing what he called "absolute time "from such measures of time as would be afforded by any particular examples of motion; but he did not give any clear definition. The sclection of a standard may be regarded as a matter of arbitrary choice; that is to say, it would be possible to use any continuous time-measurer, and to adapt all scientific results to it. It is of the utmost importsnce, however, to make, if possible, such a choice of a standurd as shall render it unnecessary to date all results which have any relation to time. Such a choice is practically made. It can be put into the form of a defnition by saying that two periods of time are equal in which two physical operations, of whatever character, take place, which are identical in all respects except as regards lapse of time. The validity of this definition depends on the assimption that operations of different kinds all agree in giving the same measure of time, such allowances as experience dictates heing made for changing conditions. This assumption has successfully stood all
tests to which it has been subjected. All clocks are constructed on the basis of this method of measurement; that is to say, on the plan of counting the repetitions of some operation, adopted solely on the ground of its being capable of continual repetition with a certain degree of accuracy, and possibly also of automatic compensation for changing conditions. Practically clocks are regulated by reference to the diurnal rotation of the earth relatively to the stars, which affords a measurement on the repetition principle agreeing with other methods, but more accurate than that given by any existing clock. We have, however, good reasons for regarding it as not absolutely perfect, and there are some astronomical data the tendency of which is to confirm this view.
The most important extension of the principles of the suhject since Newton's time is to he found in the development of the theory of energy, the chief value of which lies in the Theory of fact that it has supplied a measurable link connecting the motions of systems, the structure of which can be directiy observed, with physical and chemical phenomena having $t 0$ do with motions which cannot be similarly traced in detail. The importance of a study of the changes of the wis vioc depending on squares of velocities, or what is now called the "kinetic energy " of a system, was recognized in Newton's time, especially by Leibnitz; and it was perceived (at any rate for special cases) that an increase in this quantity in the course of any motion of the syatem was otherwise expressible by what we now call the "work" done by the forces. The mathematical treatment of the subject from this point of view by Lagrange (1736-1813) and others has afforded the most important forms of statement of the theory of the motion of a system that are available for practical use. But it is to the physicists of the igth century, and especially to Joule, whose experimental results were published in 1843-1849, that we practically owe the most notable advance that has been made in the development of the subject-namely, the establishment of the principle of the conservation of energy (see Enercetics and Energy). The energy of a sybtem is the measure of its capacity for doing work, on the assumption of suitable connexions with other systems. When the motion of a body is checked by a spring, its kinetic energy being destroyed, the spring, if periectiy elastic, is capable of restoring the motion; but if it is checked by friction no such restoration can be immediately effected. It has, however, been shown that, just as the compressed spring has a capacity for doing work by virtue of its configuration, so in the case of the friction there is a physical effect produced-namely, the raising of the temperature of the bodies in contact, which is the mark of a capacity for doing the same amount of work. Electrical and chemical effects afford similar examples. Here we get the link with physics and chemistry alluded to above, which is obtained by the recognition of new forms of energy, interchangeable with what may be called mechanical energy, or that associated with sensible motions and changes of configuration.
Such general statements of the theory of motion as that of Lagrange, while relensing us from the rather narrow and strained view of the subject presented by detailed analysis of motion in terms of force, have also suggested a search for other forms which a statement of elementary principles might equally tale as the foundation of a logical scheme. In this connexion the interesting scheme formulated by Hertz (1894) deserves notice. It is important as an addition to the logic of the subject rather than on account of any practical advantages which it affords for purposes of calculation.
Autnorifins.-Galileo, Dialogwes \{translations: "The Sybtem of the World " and " Mechanica and Local Motion," in T. Salusbury"s Mathematical Collections and Transtations (1661-1665); Machanics and Local Motion, by T. Weston (1730); Huygens, Horologium Oscilloloritem (1673); Newton, Philosophiae nataralis principia mathematica (1687 ; translation by A. Motre, 1729) : W. W. Rouse Ball, A* Essay on Newton's Principia (1893): Whewell, History of the Induciive Scirnces (1837); J. Cherk Maxwell. Matter and dootion (1882); H. Streintz, Die phyzikalischen Grundlagen der Mechanik (1883): E. Mach. Die Mfechanik in ihrer Entwickelung historisch. hrifisck dargeskelit (i883; 2nd edition (1889 translation) by T. I. MeCormack, 1893): K. Pcarson, The Gravimar of Science (1892);
A. E. H. Love, Thearatical Mechatmics (1897). H. Hertz, Die Prinstpien der Meckanik (1894, translation by Jones and Walley 1899).
(W. H. M.)

MOTIVE (from Lat. movers, to move), in psychology, a general term signlfying any element of consciousness which prompts all agent to a decision. The older psychology usually regarded motives as strictly analogous to mechanical forces exerting pressure or tension, and explained human action as necessarily determined hy the resultant of various, possibly conficting, motives. Contemporary psychological research tends to show with increasing clearness that we must recognize a power of decision in the self, and that the analogy of mechanical forces is inadequate to explain the facts. On this view motives will be regarded as sollcitations to act in a certain direction, while the self decides hy throwing its volitional weight on the side of the motive which it regards as preferable. The solicitations may come from the most diverse sources: they may he mere desires to avoid some pain or to gratify some appetite; or they may be of higher origin, such as the motive of patriotism, or the desire to advance knowledge. Purposes or ends are often termed motives. "Confict of motives " means sometimes a conflict of purposes, when the agent has adopted two different lines of action and has difficulty in comhining them; or it may mean a conflict of solicttations. It is hetter to call purposes or ends by those names when they have been definitely adopted hy the agent: while they are still under deliberation the term " motive" may be used.
MOTLEY. JOHN LOTHROP ($1814-\mathrm{I877}$), American historian, son of Thomas Motley, was born on the 15 th of April 1814 at Dorchester (now a part of Boston), Massachusetts, and graduated at Harvard in $\mathbf{5 8 3}$. He then studied at Gotuligen and Berlin, becoming a friend of Bismarck at 'Gyttingen, and after a period of European travel returned in 1834 to America, where he continued his legal studies. In 1837 he married Mary Benjamin (d. 1874), a sister of Park Benjamin, and in 1839 be puhlished anonymously a novel entitled Morton's Hope, or the Memoirs of a Provincial. In 1841 he entered the diplomatic service as secretary of legation in Russia, hut resigned his poat within three months. Returning to America, he soon entered defiaitely upon a literary career. Besides contributing various historical and critical essays to the North Americas Reoiew, including a remarkable essay on the Polity of the Purtians, be published in 1849, again anonymously, a sceond novel, entitled Kerry Mount, a Romance of the Massachzselts Colony. About 1846 the project of writing a history of Hollandihad begun to take shape in his mind, and he had already done a large amount of work on this subject when, finding the materials at his disposal in the United States inadequate, he went to Europe in 185r. The next five years were spent at Dresden, Brussels and the Hague in investigation of the archives, wbich resulted in 1856 in the publication of The Rise of the Dutch Republic, which became very popular. It speedily passed through many editions, was translated into French, and also into Dutch, German and Russian. In 1860 Motley published the first two volumes of its continuation, The Unitad Nedherlands. This work was on a larger scale, and embodied the resuilts of a still greater amount of original research. It was brought down to the truce of 1609 by two additional volumes, published in 1867 . In 1861, just after the Civil War had broken out in America, Motley wrote two letters to The Times defending the Federal position, and these letters, afterwards reprinted as a pamphiet entitled Causes of the Cisil War in America, made a favourable imprestion on President Lincoln. Partly owing to this essay, Motley was appointed United States minister to Austria in 1862, a position which be filled with great success until his resignition in 1867. Two years later he wes sent to represent his cometry in London, but in November 1870 he was recalled hy President Grant. After a short visit to Holland, be again took up his residence in Englath, where the Life and Doalh of John Barmasld appeared in two volumes in 1874. Ill health now began to interfere with his literaty work, and he died at Frampion Court, near Douchester, Dorset, on the 29th of May 1877, leaving three daughters. The merits of Mocloy as an historian are undeniably great. He has
told the story of a stirring period in the history of the world with full attention to the character of the actors and strict fidelity to the vivid details of the action. But it may safely be said that his tale is best where most unvarnished, and probably no writer of the same rank has owed less to the mere sparkle of highly polished literary style.
An excellent edition of his historical works was published in mine volumes in London in 1903-1go4. See the Correspondence of John Lothrop Molley, edited by G. W. Curtis (New York, 1889); O. W. Holmes, John Lothrop Molley. a Memoir (Boston. 1878); M. D. Conway, Biographical Introduction to The Rise of the Dutch Reprublic (London, 1896); and John Lothrop Mfolley and his Family: Fwither Letters and Records (1910), edited by his daughter, Mrs Susen St John Mildmay.

MOTLEY, s.e. of many colours, a term particularly used of the parti-coloured dress of the professional " fool " (g.v.) of the middle and later ages. The origin of the word is probably to be found in " mote" (O. Eng. mot), a particle of dust, \&c., hence a spot or patch. "Mottle," a blotch or spot, is probably a back formation of molley.

MOTIOT. According to Hernandez in his Historia avium Nowe Hispanice (p. 52), published at Rome in 1651, this is the Merican name of a bird which he described well enough to leave no doubt as to what he meant; but the word being soon after printed Momod by Niesemberg and others gave rise to the Latinized Momofw, invented by M. J. Brisson as a generic term, which has since been generally adopted by ornithologists, though motmot has been retained as the English form. Linnaeus knew of only one species of motmot, and referred it' to his genus Ramphastos (properly Rhamphastus) under the name of \boldsymbol{R}. momota. This is the Momorms brasiliensis of modern ornithologists, and from its geographical range cannot be the original Molmot of Hernandez, but is most likely the "Guirc gwainumbi" of Marcgrave.

The motmots form the sub-family Momolinace, which with the Todinoe (sec Tody) form the family Momotidae of Coraciiform birds, the nearest allies being rollers (q.v.) and kingfishers (g.v.). In outward appearance the motmots have an undoubted resemblance to bee-eaters, but, though brautiful birds, various skades of blue and green predominating in their plumage, they do not exhibit such decided and brilliant colours; and, while the beeeaters are only found in the Old World, the motmots are a purely Neotropical form, extending from southern Mexico to Paraguay, and the majority of species inhabit Central America. Their ordinary food is small reptiles and fruits, and insects caught on the wing. The nest of one species, as observed by Robert Owen, is at the end of a hole bored in the bank of a watercourse, and the eggs are pure white and glossy (Ibis, 1861, p. 65). Little clse has been recorded of their ways.

The Momolidae form but a small group, containing about six genera, of which the best known are: Momolus, Baryphihengus, Hylomathes, Eumomota, Aspatha and Prionorhynchus, and the number of species is very small. While all have a general resemblance in the serrated edges of the bill and many other characters, Momotus has the normal number of twelve rectrices, while the rest bave only ten, which in Hylomanes have the ordinary configuration, but in adult examples of all the others the shaft of the median pair is devoid of barbs for the space of about an inch a little above the extremity, so as to produce a spatulate appearance, such as is aftorded by certain hamming-birds known as "racquet-tails" (see Hincarng-Brid), kingfishers of the genus Tanysiplera (see Knngrisher), and pariots of the group Prionifurws. C. Waterton (Wanderings, Journey 2, chap. iil.), mentioning the species M. brosiliensis by its native name "houton"" long ago asserted that this peculiarity was produced by the motmot itself nibbling off the barbs, and this extraordinary statement, though for a while doubted, has since been sbown by O. Salvin (Proc. Zool. Society, 1873, pp. 429-433), on A. Bartlett's authority, to be perfectly true.
(A. N.)

Morors, RLECYRIC. Fundamentally, electric motors are electric generators reversed in function: they convert into mechanical energy the continued stressea between two electro-
magnetic fields relatively movable, just as generators convert into electromagnetic stresses the mechanical energy applied to them. Since no transformation of energy is ever absolutely quantitative, the conversions just considered are not accomplished without loss of energy to about the same extent in both cases. The sources of this loss are ohmic loss in the conductors, hysteresis, friction of bearings and brushes, air friction and eddy currents; the sum of these losses in large modern machines does not exceed 5 or 6%. The torque of the motor is the dynamical result of the electromagnetic stresses between the magnetic field of the motor and that due to the armature currents, the latter feld being proportional to the strength of the current sheet due to the numerical strength of the current and the number of its effective convolutions. This applies to all types of motors, if one remembers that whenever either of these two stress factors is a periodic variahle, as in the case of alternating motors, the torque is proportional to their geometrical 0 -directed product and mot mercly to their namerical product. At this point it will be convenient to distinguish between the various types of motors. The first broad distinction is between continuous-current and alternating-current motors, a distinction rather of convenience than of neceasity, for in point of fact the two depend upon the same broad principles and can be considered on precisely the same lines.

Electric motors.may be conveniently divided as follows:-
(A) Continuous Current.
t. Separately excited.
2. Series-wound constant current.
3. Series-wound constant potential.
4. Series-wound interdependent current and potential.
5. Shunt-wound constant potential.
(B) Allernaling Current.

1. Synchronous constant potential.
2. Induction-polyphase constant potential.
3. Induction-monophase constant potential.
4. Repulsion-commutating-
5. Series-commutating.

Of these, the series-wound constant potential, shunt-mound constant potential, and polyphase induction motors do a very large proportion of the active work of power transmission: the first mentioned furnish power for electric railways; the second chiefly power distribution from public electric supply stations; while the third are mainly relied upon in long-distance transmission systems. The fourth and fifth groups of class (B) are old in principle but have been slow in practical development. They Include many modifications and transition forms not involving radical changes in the principles or properties of the machines. Their chief use has been for electrical traction, with reference to Which they have, in the main, been developed, and their performance is best at low frequency, 15 to 25 cycles per second.
In class (A) in general, for a certain value of the torque current must be forced through the armature against the motor electromotive force which results from the rotation of the armature in a given field. This demands a certain greater applied electromotive force to produce the current required, which is determined by the effective electromotive force, equal to the geometrical difference between the applied and motor electromotive forces, and by the impedance of the armature. For steady currents this last is of course the same as the ohmic resistance, just as for stendy electromotive force the geometrical and the numerical difference of the applied and motor electromotive forces are coincident. The torque depends, as heretofore noted, on the field strength and the strength of the current sheet dee to the current thus determined. For small values of the torque the speed practically depends upon the applied electromotive force and the ficld, so that if the former and the latter be constant the speed is also sensibly constant. This is likewise the case if the armature resistance be very small; and in general the variations of speed at constant potential are determined hy the product of this resistance and the torque, while the absolute speed depends essentially upon the field strength. Motors for low speed or hish
electromotive force must have both a strong field and many turns upon the armature, so that both the fundamental stresses may be large. As the field is generally strong-to secure economy of iron-low-voitage and high-voltage raachines differ principally in the number of armature turns. For veriable speed, this latter factor being fixed, field strength and applied electromotive force are the factors easily altered, and most of the speed variation is accomplished hy changing one or both of them. Torque, neglecting field distortion, is at a maximum when the current is the greatest possible at the given applied voltage-that is, when the motor is at rest. With a small armature resistance this current is generally far too great for convenience; bence the motors are usually started with a rheostat in series with the winding if the current is not limited by the generator itself. The torque then depends on the sum of the resistances in circuit, and can be made just sufficient to start the motor under the required load. By the same device the motor can run at reduced speed, although with a considerable loss of energy in the rheostat; it is indeed, as a rule, difficult to get effective speed variation in motors of any kind without serious loss of energy. The field can be changed within wide limits only by a considerable increase of the fron in the magnetic circuit, the applied electromotive force cannot usually be varied except by increasing the resistances in circuit, and the number of armature turns cannot be varied without complication, although the effective number can be modified by shifting the brushes, probably at the expense of sparking. Altogether, if the speed variation demanded be more than 15 or 30%, it causes, in one way or another, considerable expense and trouble, particularly if each speed must be closely held irrespective of load. No large change in absolute speed can readily be made without considerable change in the percentage variation of speeds at various loads. Practically, the best results are obtained from motors of very low armature resistance, in which the field or the applied electromotive force, or both, are varied. The whole problem is nearly identical with the production of constant potential or constant current from generators driven at constant speed, and is solved by similar means. For any one absolute speed a generator can be made to give constant potential, nearly irrespective of load, by compound winding. Similarly, a motor may give a very nearly constant speed at constant potential by a diferential winding in series with the armature, weakening the field as the armature current rises. This device, however, obviously increases the energy required for magnetization, and decreases the effective torque at starting. Practically, the best continuous-current motors can be made to bold their speed to within r or 2% from no load to full load. Commercial machines, however, generally vary from 5 to 10% in speed. With respect to the direction or rotation of a motor, the torque changes sign with a change of sign in either field or armature current, but not with a change of sign in both. The input of the motor is numerically equal to the product of the current and the applied electromotive force, while the output is determined by the product of the current and motor electromotive force; hence the efficiency of the motor as a transformer of encrgy is the ratio between these two quantities. The output is a maximum when the applied electromotive force is double the motor electromotive force, and the efficiency is a maximum when the motor and applied electromotive forces are substantially equal. At the point of maximum output the speed is that sufficient to reduce the current to one-half its static value. No motor is worked at or near this point, except momentarily, on account of the low efficiency and sevcre heating in the armature. These theoretical values are slightly modified in practical macbines by the small miscellaneous losses subject to independent variations.
The practical output of electric motors is limited in machines of normal design by the temperature they can safely endure. As a rule the working temperature, which is commonly reached only after six hours or more of continuous running, should not rise more than 40° to $50^{\circ} \mathrm{F}$. above the temperature of the surrounding air. In case of traction motors and others subjected to occasional aevere overloads, separated by periods of rest or of subnormal lond, the temporary rise of temperature toderated may be much
higher, say 60° to $75^{\circ} \mathrm{F}$., after a run of an hour or so. The temperature of the air is assumed at $70^{\circ} \mathrm{F}$. in most cases, and the temperature of the motor-windings is preferably ascertained by the rise in electrical resistance due to the heating. Thermometers can seldom be so applied as to measure the full heating effect.

The actual output ohtainable from a motor structure of given dimensions under these conditlons with respect to heating depends chiefly upon the practicable rotative speed of the armature, since the chicf losses are proportional to the torque, while the mechanical output at given torque is approximately proportional to the speed. Most makers utilize a single structure for several standard motors varying in speed and output, a 15 h.p. machine at, say, 1200 r.p.m. becoming a 10 h.p. at 800 r.p.m. or a $20 \mathrm{~h} . \mathrm{p}$. at $1600 \mathrm{r} . \mathrm{p} . \mathrm{m}$. There is no practically fixed relation between the rating and the speed, although it is approximately linear, for in winding the same carcass for different speeds the ratings are settled rather by commercial convenience than by exact determinations. Motors generally have approximately the same efficiencies as the corresponding sizes of generators. Small motors, say from 1 to $5 \mathrm{~h} . \mathrm{p}$. , are commonly of $70-80 \%$ efficiency at full load, medium sized machines of 5 to $50 \mathrm{~h} . \mathrm{p}$. about 80 to 90%, and the larger sizes run up to 95% or theroabouts. In the effort to get low-speed motors without imimoderately increasing the cost they are generally dropped a litule in efficiency and allowed to run hotter than if wound for higher speeds.

The weight of motors per h.p. of output is therefore very variable. In machines of medium size and speed it is likcly to be 50 to 75 ib per h.p., falling to 30 or 40 in large or specially high speed machines, and rising to 80 or 100 th in small or very low speed motors. High-voltage motors, particularly if small, lose so mewhat in relative output on account of the space taken up hy the necessary insulation.
In all ordinary motors the magnetization of the iron is, for economy of material, pushed high; and hence the field, even at heavy loads, is fairly stable and the conditlons of commutation remain good. When, however, motors are designed to stand severe overloads, or to admit of a wide range of speed regulation by varying the field strength, the commutation is bikely to be unstable, and severe sparking may result. To meet this condition the commutating.pole motor-really a recrudescence of an old idea-has been introduced on a considerable scale. In this construction auxiliary pole picces, excited by series coils from the motor circuit, are set midway between the ordinary field poles. The office of these poles is to neutralize the magnetomotive force due to the armature winding, tbus checking field distortion, and also to ensure the proper reversal of the current in the armature coil directly under the brush. Of the total magneto-motive force due to the windings of the commutating pole, tbe major part, perhaps three-fourths, is devoted to the former work and the remalnder to the latter, the proportion varying widely according to the design of the motor. The result of this construction is excellent, sparkless commutation being ensured over a wide range of load and field strength. The com-mutating-pole motor is intrinsically more expensive and slightly less efficient than the ordinary type, but for the particular kind of service it is designed to perform is extremely effective. It gives promise of especial value in high-voltage traction motors.
(A) 1. Separately excited Motors are interestlng principally on account of the very efficient method of apeed regulation possible by their use. In this method the field of the motor is excited from the supply mains and the armature current is furnished by a motor: generator running at constant speed. A rheostat in the shunt field of the hatter element enables the applied electromotive force to be varied to any desired extent, and hence the working motor can be given full corque at any apeed up to that aseigned by the maximum value of the etectromotive force which can be applied to the armature. Morcover, if the armature renistance be small. the motor is fairly self-regulating at all speeds. The effect is rather startling, since the motor may be giving a very great torque when it is merely turning over at a few revolutions per minute; and although the process is complicated, it leads to excellent resultes, and is widely used where delicate speed regulation is required.
(A) 2. Series-monnd Conslant-current Molors were carly worked to a considerable extent on arc-lights circuits, but have now passed out of use save in a small number of constant-current power-transmisaion systems on the continent of Europe. In these motors the motor electromotive force is directly proportional to the output, the torque being constant. They will not start with more than a certain definite load, but once started the speed will incrcase until added work (intemal or external) balances the torque. The type is inerinsically bad in speed regulation, and must be treated by the same methods as are adopted to secure constant current in arc machines. The most successful device in most cases is to vary the field strength by shunting the field coils or to vary the number of effective arma. ture conductors by shifting the brushes. Both methods are carried out mechanically mather than by purely elcctrical means-in the first case by an automatic rheostat, and in the secoad by an automatic brush shifter, but neither is wholly satisfactory. Nevertheless, euch motors have proved capable of excellent commercial service in some of the European plants, especially in the larger sizes.
(A) 3. Series-mound Conslani-polential Molors comprise nearly all motors used for electric traction-aggregating not less, probably. than one and a half million horse-power; hence they are of great practical importance. These traction motors are usually highly specialized machines with very powerful armatures and fields strongly anturated at all working values of the current. The brusbes have an invariable position. Such motors behave much like separatelyexcited motors, having a rather large armature resistance. Speed regulation has to be obtained by varying the applied electromotive force. In early traction motors this variation depended upon inserting a rheostat: in modern practice it is customary to employ two, or even four, identical motors on each car, operated in series for low opeeds and in parallel for full speed. In practice, however, resistances are inserted when necessary, to prevent too sudden changes of speed and to secure intermediate steps between those obtained by the series-parallel connexions. In rare instances a still further varfation is secured by the usc of a field only partially saturated at ordinary londs.
(A) 4. Series-wound Moiors trilh Interdependen! Current and PolenAal are used only in connexion with generators of similar design, motor and generator forming a dynamical unlt. This system is occasionally used with good results in power transmission. Assuming the motor field to be saturated, if the speed is to be constant the applied 'electromotive force must rise with the load to an amount depending on the resistances in circuit. If the corresponding generator has a field less fully saturated, the increase in current demanded by the increment of torque in the motor can be made not only to raise the applied electromotive force enough to compensate for armature resistance, but for the total resistances in circuit, including the line. With this difference in saturation the motor will automatically maintain constant speed. The fields of the machines need not be designed for a given saturation, gince shunting them with a suitable resistance will give the same result.
(A) 5. Shunt-wound Motors at Constant Potential are the mainstay of continuous-current distributions for industrial purposes. At constant potential the field remains sensibly constant and the torque is dlrectly proportional to the current. The motor then behaves much like a separateiy-excited motor, and the armature resistance being generally very small, the speed is very nearly constant, varying less than 5% from no load to full load in the best commercial machines. Operating on a compound-wound generator, a single motor of this type can be made to requlate with great precision, as in the previous case. If the motor ficid be only moderately saturated, its strength, and hence the motor clectromotive force, rises and falis with the applied electromotive force; and therefore at constant load these motors run at very nearly constant opeed, in spite of small variations of voltage. If speed variation be required, it can be obtained to a moderate extent by a rheostat in the field circuit. At starting a rheostat is necessary in the armature circuit. The differentially wound modification is now seklom used.
(B) 1. Synchronows Aliarnaling-current Motors.-The simplest starting point in the consideration of this class is the continuouscurrent generator. This machine actually generates within the armature alternating currents; and if the cominutator be replaced by two or snore slip-rings connected symmetrically to two or more points on the armature winding, alternating currents, monophase or polyphase, aecording to the number of conncxions and the points touched, can be withdrawn therefrom. The simplest case involves onfy two slip-rings, joined to the winding at diametrically oppoeite points. Consider two cuch modified machtnes as motor and generator. The condition of complete reversibility is that the instantaneous values of the currents, and the instantaneous values of the angular displacements betveen poles and armature coils, shall be equal throuphout. This evidently requires that the rotation of the motor should be gynchronous, pole for pole, with that of the generator. Here, as before, the torque depends on the two fundamentai erresses, bot the torque has no determinate sifn in the abserice of an initial rotation. The instantancous value of the torque depends on the instantancous value of the current and on its angular diaplacement. The speed of the motor being invariahle, its motor -lectronotive force depends onily on the effective excitation, including
the armature reactions, and it may or may not, according to the conditions of load, be in phase with the ippressed electromotive force. In the case of the continuous-current motor, the motor output is numerically equal to the product of current and motor clectromotive, force; and since, in the alternating circuit, these quantities are usually not in phase, in alternating motors the activity is determined by the co-directed part of their product. The current in the aliernating motor depends, not on the ohmic resistance alone, but upon the impedance and upon the geometrical difference between the applied and motor electromotive forces. At a given applied electromotive force, and an armature impedance assumed constant, the fundamental variables in the motor are the output, motor electromotive force, and motor current. The two last factors are interdependent, so that the current may have a wide range of values, according to the excitation, while the out put remaing constant, or, itself remaining constant, may cover a variety of values of the power corresponding to different excitations. These changes involve changes in the phase angle between the motor electromotive force and the current, so that at given output the power-factor of the motor-that is, the ratio between the numerical and geometrical products of current and electromotive force-may be given various values at will by changing the field excitation of the motor, a most unique and valuable property. If the motor clectromotive force be fixed and the output varied, the phase angle between current and motor electromotive force varies by reason of the armature taking up a new angular position with respect to the field, backward for increasing load, forward for decreasing load. The minimum value of the current for a given load is reached when the excitation is such that the applied electromotive force and eurrent are in phase, at which point the real and the apparent energy in the circuit coincide. The input can then be accurately measured by voltmeter and ammeter readings, and the motor is working at its beat efficiency for the given load. For greater values of the motor electromotive force the current leads in phase with respect to the applied electromotive force; for lesg values it lags. The former condition is accompanied by the rising of the electromotive force at the motor terminals, the latier by its fall. It the refore becomest possible to use a synchronous motor, if the necessary current due to the load be not too great, as a voltage and phnse regulator upon nn alternating circuit, a function very valuable in power-trant mission work. If the excitation be set to produce leading phate at small loads, the phase angle will gradually diminish as the load rises, and then. passing through zero, increase again with the dagging current, thus holding the'power-factor ncer to unity at all working loads. In a well-desigued cynchronous motor, by proper initiad adjustment of the ficid, the power-factor can casily be kept between 0.95 and i from quarter load to full load, and very elose to unity within the ondinary working range. Save for its inability to start independently, the synchronous motor is a highly desirable addition to a transmission system. Starting is generally accomplished by the help nf na induction motor or other auxiliary power, and the motor is treated exactly like an alternator, to be thrown in paralle with the supply eircuit. A synchronous motor will pull itself up to synchronism if brought near to fits wynchronous speed, but thrs requires a very large amount of current. Operating from a generato of its own, it can be brought to specd by giving it a small initial rotation and raising the generator speed very carefully and gradually, when the two machines will acceferate in synchronism. Polyphase symchronous motore obey these same general laws; they can. however, be started as quasi-Induction motors with an open field circuit, the pole faces serving as secondary conductors, but require so large currents in thus starting themselves that it is better practice to bring them to speed by extraneous means.

Synchronous motors sometimes cause serious trouble by ac pumping." a phenomenon closcly allied to the surging of current between aliernators in paraliel, and due to sitnilar causes. If not due ta defective governing of the prime mover, it usually starts with a change of load or of phase, producing fuctuations in the electromotive force in the system great enough to interfere berioualy with incandescent lighting, and continuing with nearly uniform amplitud and frequency for hours if unchecked. The amplitude varies with the conditions, but in the same machine the frequency is nearly constant. The fluctuation affects both the armature and the field circuits, the latter inductively by changes in the armatare maguetomotive force, but it can as a rule be controlled by varying the excio tation until a neutral point is found, usualiy when the phase angle is near to zero. Motors with solid pole pieces give little trouble of thia sort, the oscillations being rapidly damped by the eddy currents. In motors with laminated fields the most effective remedy is chamfering away the edges of the pole pieces 50 as to admit heavy coppers shoes running along and under the edges, and even bridging the spaces between the pole pieces, The eddy currents in these sboes completely check the " pumping."

Symchronows and other Converters.-It eeems heve appropriate to refer to these converting devices. not In their general functions, but werely in 80 far as they are directly related to motor practice. The synchronous converter proper is in effect a synchronous motor, in spite of its commutating function. Owing to the fact that the direct current voltage is dependent on the alternating current voltage of eupply, the converter canchot advantrigeoushy be qued te control
the power factor by variation of the field etrenth, but the field can be adjusted once for all to hold the power factor reasonably near unity, provided independent means are available for 60 adjusting the applied alternatlog voltage as to give the required result at the commutntor. If close regulation of the direct-current voltage is not demanded tho converter field can be used more freely. As a matter of fact the synchronous converter finds its chief use in electrie traction where close regulation is not important, and motor-generators in one form or another have been found more suixable for electric-lighting work. The synchronous converters have the liability to "pumping "or " hunting " to which reference has already been made, sometimes even of sufficient amplitude to throw the machine out of step, and are often provided with the shoes or bridges found useful with ordinary synchronous motors.

Synchronous motor-generators, so far as the motor function is concemed, present no peculiarities at all. Synchronous commutators, "permutators," and the like, usually have motor-parts of very moderate capacity, and must be kept rigorously free of hunting In order to preserve the conditions of commutation.

In many irstances, particularly in American practices motor generators with induction motors have been used for ease of starting and to secure immunity from hunting. A modification of interest from the motor standpoint is found in the "cascade converter." In this machine the rotor of an induction motor is directly coupled to the armature of a commuting converter of equal output, the windings of the two being in serics and approximately cquivalent. In this case the normal motor-electromotive force is reached at approximately half synchronous speed, and half the encrgy is deJivered to the output end of the machine by the rotor acting as frequency changer, the rest by torque on the shaft. Commutation talecs place therefore at hall the initial frequency, which is often a great advantage.
(B) 2. Polyphase Induction Motors.-Speaking broadly, an induction motor is one in which the armature current is introduced into the armature windings by electromagnetic induction instead of by brushes. It ls at once an alternating current teansformer and an alternating current motor, operating in the latter function by virtue of the current received from the tormer. In the commonest form the alternating currents are of two or more phases interacting in carrying on these duplicate functions. Induction motors consist of two concentric masses of laminated iron taking the form of short hollow cylinders, of which the outer is fixed and the inner fited to revolve. The outer surface of the inner drum and the inner surface of the outer drum are slotted or perforated to receive the primary and secondary windings of the apparatus. The outer winding is usually the primary, and the inner (or armature) winding the secondary. The primary winding is almost universally a multipolar drum in character; the secondary is, in the most highly developed motors, of the same character, but very often consists merely of numerous insulated armature bars united af each end of the drum hy a common end-plate or end-ring, forming the structure usually known as a "equirncl-cage" winding. In polyphase motors of the usual type the primary drum winding is in duplicate or triplicate, resembling very closely the armature winding in a two- or threephase generator. The actions which go on in these motors have been the subject of much debate; most of the theoreticaldiscussions of the matter have been based upon the concept of a rotary magnotization produced by two simple sinusoidal magnetisms superimposed in quadrature upon the same core, or, in the case of a three-phase motor, three auperimposed in a similar symmetrical manner. This hypothesis is often most conveoient, being merely an application of the general physical thesis that two equal simple harmonic motions in quadrature produce circular motion as in the case of the conical pendulum. Ali the results of this hypothesis follow, however, from the introduction of two alternating magnetizations, acting in quadrature in time but independently; and one or the other view of the matter is convenient according as, in the structare considered, the effective magnetizations do or do not produce a definite physical resultant. There is no discrepancy between the two hypotheses; they are merely two points of view of the same phenomena. In the general case, one need make no supposition as to the existence or mon-exiatence of the phyaical reauitant rotary magnetination; it is merely necessary to note that if one phase-winding predominately produce a magnetic fieid, and the other a current in the rotary member fitted to react with that field. torque' will result, whether the two phase-windings act upon the same magnetic structure or upon two entirely separate magnetic structures mereiy connected by the leads which deliver current from one to the other.

Induction motors having both these forms of structure are in successful use. If one considers the latter case, the two-phasewindings have exchanged functions every 90° in the two-phase erecture, each phase-winding scrving to produce a magnetic field and to deliver, almost as if it were merely a pair of brushes, current to react with this field alternately, and the two halves of the motor structure exchange functions every 90°. Consideting the motor in which the two-phase-windings are superimposed on the same core, there is a virtual magnetic resultant rotating at a opeed determined by the frequency of the current and the number of poles, and setting up induced currents in the secondary member,
rotary motlon. At rest, the secondary electromotive force produced by the machine as a transformer is a maximum; when the motor is running at speed. unloaded, it is a minimum, and an increment of load causes the secondary member merely to slip behind synchronous speed lar enough to receive an increment of transformed energy sufficient to carry the new load. If the secondary member is of very low resistance, the slip behind synchronism is very small, even at fult load-less than 2% in motors developed for this particular property. An increase of secondary resistance produces increased falling behind from synchronous speed; and if resistance be added to the secondary member by interpolating rheostats in its circuits, the motor can be made to produce uniform torque over a very wide range of speed as is the case with continuous current motors. The percentage of slip is the percentage of energy lost in the secondary member, as likewise in continuous-current motors if one regards their synchronous speed as that at which the motor electromotive force would equal that impressed. Polyphase Induction motors start, when property designed, with a very powerful torque, even up to three or four times the full load running torque of the same motor. With a very low-resistance secondary member this torque demands an immensely large current, the structure acting almost like a shortcircuited transformer, and the lag in the secondary circuit is considerable. In motors in which this large starting current is objectiomable, it may be reduced very greatly by interpolating resistances in the secondary circuits at starting, the effect of these being to diminish the lag in the secondary circuit and to decrease the demand for primary current. A certain critical value of this resistance gives a maximum torque per ampere in the primary circuit with a given motor, being approximately that total secondary resistance which equals the secondary reactance. For maximum torque obviously both resistance and reactance should be equal and as small as possible. Where a small primary current in starting is of considerable importance, this extra resistance is frequently introduced at starting and cut out afterwards, particularly in cases where large torque is necessary. If great starting torque is not necessary, the primary electromotive force is often diminished by induetive resistances, or a change in the connexions of the tranaformer from which the motor is fed. Both methods of starting are in commercial use on a very large scale.

In efficiency and closeness of speed regulation and good general running properties polyphase induction motors approximate very closely to the best continuous-current practice. They produce, however, a certain amount of lag between primary electromotive force and current, which causes the apparent input to be larger than the real input, as generally happens in alternating-current work The ratio between the real and the apparent watts input is the power factor of the motor. In well-designed modern machincs this is usually from 85 to 90% at rated load; it should seldom fall below the former figure, and rarely rises more than 1 or 2% above the latter, though in rare instances power-factors as high as 94 or 95% have been obtained. Condensers have sometimes been employed in connexion with such motors to increase the power-factor, and with considerable success, partlcularly in maintaining the power-factor at low and moderate loads; but their use is generally unnecesary and condensers of sufficient capacity at any reasonable value of the voltage have proved troublesome to build and maintain. The weakest point in thesc polyphase induction motors is the importance of employing a very small clearance between armature and field, in onder to increase the power-factor by making the structure nore efficient, considered merely as a transformer. The clearances in ordinary use are seldom greater than it in., even in motors as large as $100 \mathrm{~h} . \mathrm{p}$, and in smaller machines are frequently not more than la in. Induction motors, however possess many valuable properties, and are the mainstay of long-distance power-transmission work at the present time.
(B) 3- Monophase Indwetion Motors closely resemble the polyphase motor in construction, but have only a single-phase winding in the primary, The theories of their action are very similar to those of polyphase motors, The essential point of difference it thit the stable angular displacement betwecr the feld magnetization and the armature currents which co-act with it is obtained in the polyphase motor by the time-displacements in the several phase windings, whilc in the single phase motor it is obtained by the angular space-displacement of the armature, which has to be set up by an initial rotation. Single-phase motors therefore are not inherently self-starting, and run in either direction equally well when once started, The torque is always in the direction of the initial rotation. This rotation is sometimes given by hand and somerimes by auxiliary phase-windings supplied by derived current from the main circuit, or merely short-circuited on thernselves and recoiving induced currents from the main winding. Both these devices give a small initial torgue in a definite direction, setting up a sn-called elliptical rotary field, i.e. one produced by the composition of two unequal magnetizations, in this case at some indeterminate angle, seldom large, Once up to speed, the single-phase mutors act much like the polyphasc. They are conspicuously weal in the matter of power-factor, liowever, as well as in that of startingtorque, and have as yet not come into very extensive commercial us. although under special conditions they have been and are successiully employed. A theorctically interesting form of induction
motor is a modification which runs at absolutely syochronous speed, receiving the necessary energy in the secondary not in virtue of slip behind synchronous speed, but from great difference in wave form between the primary and secondary circuits, so that energy duc to harmonucs of the fundamental frequency is periodically received by the armature in spite of synchronism in speed. Such motors are not employed commercially, but sometimes find a field for usefulness in the laboratory.
(B) 4. Repulsion-commulating Molors constitute a class of ainglephase altermating-current motors which has risen to considerable commercial importance. They are fundamentally induction motors in the sense that the armature currents are supplied by the inductive action of the ficid. The armature winding is, however, provided with a commutator and (for a two-pole motor) two diametrically opposite brushes, which are short-circuited on each other and placed at an angle with the line of field magnetization. By this device the magnetic axis of the armature is held at a fixed angle with the field fux, so that the condition for steady torque is alwaye fulfilled, its amount depending on the position of the brushes. Were these cither in line with, or exactly at right angles to, the field poles, the torque would be zero-in the first case from lack of angular displacement, in the second from lacik of secondary current. The brushes being sicewed, however, the secondary current is maintained at a suitable value, and the motor runs in a definite direction. The general principle is merely that of a transformer with a movable secondary under magnetic thrust. During reversal of the current the torque relation remains fixed, since the primary and secondary currents both change sign, preserving the magnetic relations as in a series-wound continuous-current machine.

If such a motor is of moderate reactance, the currents are large and the torque very considerable. The repulsion-commutating connexion is considerably used as a starting device for single-phase induction motors, the commutator being short-circuited as a whole when the armature reaches synchronous speed. Thereafter the machine operates as a pure induction motor of the sort lust described. The advantage of this change is that the commutator is eliminated, eave at starting and the motor becomes practically a constant upeed machine like any other properly-designed simple induction motor. Such motors can be made to start if necessary with several times the normal running torque and a nearly proportionate increase of current. The short-circuiting of the commutator is generally performed automatically by a centrifugal governor. When at speed, efficiency and power factar are those of the typical motor of class(B)3.

The pure repulsion-commutating motor, worked as such, on the other band, resembles a series-wound motor in its characteristics, having no fixed speed and being capable of running far above nominal synchronism. This results from the fixed angular relation maintained by the brushes between the armature and field magnetizations, whereby the torque conditions are preserved. Above the nominal synchronous speed, however, difficulties of commutation set in, so that some modifications of this simple type are desirable for wide ranges of speed. The power factors of these motors compare well, both in starting and in running, with those of the best pure induction motors, and their efficiencies are similar. These machines are reversible, serving as alternating generators when driven mechanjoally at " negative " speed.

Instead of simply skewing the brush line in the repulsion motor, an entirely analogous effect may be produced by dividing the field coits into pairs placed in quadrature, the brush line being paratlel to one pair and at right angles to the other. This merely amounts to dividing the function of the original field physically into its components, a change which 20 metimes tends to improve the stability of the running conditions.

A more radical departure is found in the group of so-called "cons-pensated-repulsion ' motors, of which there are several members, due to various inventors, all material improvements on the pure repulsion type just described. Their common characteristic is that while possessing like simple commutator-repulsion motors, a transformer field acting upon the armature as secondary. and a pair of chort-circuiting brushes holding the resulting armature magnetizstion in definite alignment, they also send the primary current in Beries through the armature via a second pair of brushes in quadrature with the first. The substantial effect of this series connexion is to cut down the virtual reactance of the armat ure as the epeed fises, practically annulling it at synchronous speed. In alternating motors the motor-electromotive force is not merely that due to the motion of the armature conductors but the geometrical resultant of this and the reactance E.M.F.'. In the motor here considered and analogous machines an auxiliary E.M.F. is applied cither as here, conductively or inductively, in such direction as to compensate more or less perfectly the armature reactance E.M.F. The result Is to secure, at least for a certain specd, a power factor near unity, as in the motor under discussion, although the starting conditions are not particulariy good and the performance deteriorates above synchronism. In sonic motors of this type the compensating E.M.F. is introduced by an auxiliary winding In series and in quadrature with the main ficid, instead of by supplementary brushes, The modifications of the general scheme are rather numerous, and out of them have come some excellent single-phase motors now widely used for traction purposcs.
(B) 5. Serict Commulatine Motors.-This important and Interenting type is derived directly from the ordinary series motor for continuous current. The torque in these does not change sign with reversal of the current in both field and armature, and consequently alternating current can atill produce in thom unidirectional torque. Practically the first step toward an alternatiog current series motor is lamination of the field to reduce parasitic currents; the second is to keep down the reactance. A laminated field motor performs fairly well at a frequency of 10 periods or thereabouts, but to render it useful at ordinary frequencics requires modification in design. The motor E.M.F. being as before the geornctrical sum of the reactance E.M.F. and that due to motion of the armature conductors, the first improvement can be made by making the lacter dominant, i.e. by making the armature relatively very powerful. The plain series commutating motor has then a relatively weak laminated field and a powerful armature. To check trouble with commutation due to short-circuiting coils under a brush, it usually has high reaistance commutator leads, and thus equipped is capable of very fair performance, having the same general characteristics as the continuous-current series motor. Even so the armature reactance is somewhat excessive, 80 that with this simple construction the power factor is apt to be bad. Practically the plain aeriea commutating motor is hardly used at all, but rather modifications of it corresponding very clonely to thove mentioned in connexion with the repulsion motor. In other words, an auxiliary electromotive force tending to annul the reactance E.M.F. of the armature is imposed upon the smature circuit. This is accompliahed generally by a "compensating coil" in series and in space-quadrature with the main field. In another modification the compensating coil is closed upon itself, forming a short-circuited secondary, to which the armature itself acts as primary. The end to be mttained is the addition of an E.M.F. guch that the vector gum of the E.M.F.'s in the armature shall roduce as nearly as may be to the E.M.F. due to the mation of the armature conductors, as in a continuoue-curreat motor. Obviously it is difficult to secure full compensation for all loads and speeds, but it can be made nearly complete for eame partieular load and speed.

These " series-compensated " motors behave much life continuouscurrent series motors, and, when properly deagned, run well on continuous current. They have been daveloped particularly for heavy traction purposes, to which they are well adapted, owing to their ability to work well at all speeds. They give a very high maximum power factor and a ressonably good one over a contiderw able range of speed and load. Obviously both the field proper and the compensating field can be made subject to regulation to increage the range of succeasful action. Motors of this type have already come into cuccessful use for fast and heavy railway mervice. Commutation appears to be reasonably good, although it is a far more difficult problem than with continuous-current machines.

The efficiency and output for unit weight in all alternatingcurrent motors is a little less favourable than with continuouscurrent motors. In the last resort the supply of energy to a singlephase motor is esseritially discontinuous, and there is inevitable extra loss from hysteresis and parasitic currents, whether the motor is single phase or polyphase. The result is that an alternatingcurrent motor requires, other things being similar, more or better material, and loses a Little more energy than a contiruous-current motor of equal output. Motor desiga is a compromise, and white any one property can be exaggerated, it will be at the expense of others. One could probably build, for instance, a series-compensited motor of as high efficiency or as large output per unit weight as any commercial motor, but there would be sacrifice somewhere, in cost if not conspicuously elsewhere. As a matter of fact, the difference in efficiency usually amounts only to a very few per cents, and tha difference in output per unit weight to a few more. The gain in the use of altermating-current motors is in facility and economy of distribution, which in many cases is far more than enough to overweigh any inherent disabilitics in the machines themidelves. Hence they are coming steadily into extended uxe. (L. BL.)

YOMOR VRHICLBe. The term "motor-car" is one which was primarily employed in America to denote the car or carrage containing the electro-motor used for propelling an electric tramcar or train of carriages on rails, but of late years it has been more usually applied in Great Britain to light aulomobile or mechanically-propelled carriages running on common roads. On the continent of Europe and in the United States the usual expression for these vehicles is "automobile"; the term "autocar" has also been employed. We shall deal here first with the history of mechanically propelled carriages, and with tho evolution of the lighter type used for conveying people for pleasure and sport; and secondly with the beavier type used for the carriage of goods.

Light Vehicles.-The first practical steam carriage was made by Richard Trevethick in 1802 (fig. 1), though Cugnot had produced a rudimentary one in France in $\mathbf{t 7 6 9}$; but very little was done in
this direction until 1824, from which date a number of these vehicles were constructed and used with considerable success, taking the form of stage coaches propelled by steam, and weighing some 3 or 4 tons unloaded. Some of these ran regular passenger services, notably between Cheltenham and Gloucester, attaining average speeds of 10 to 14 m . per hour; but great

Fig. 1.-Trevethick's Steam Carriage of 1802 : side view and plan. opposition was met with owing to the narrow prejudice of those whose interests related to horse-haulage, and every obstruction was offered in the shape of prohibitive tols and legislative enactments. The result was that steam carriages were driven off the roads in favour of railways, although the select committee of the House of Commons appointed in 1831 to inquire into the subject reported completely in favour of their adoption (as did also that of 1873). In 186ı the first Locomotives on Highways Act was passed, but the crushing blow came in 1865, when the legislature prescribed (1) that the number of persons required to drive the locomotive should be increased to three; (2) that a man should precede with a red flag; (3) that the maximum bimit of speed should be reduced to 4 m . per hour; and (4) that they should be forbidden ever to blow off steam, \&c. These restrictions were confirmed rather than relieved by the 1878 act. Although these acts were created to deal with heavy traction, the famous 1881 appeal in the court of queen's bench placed every type of self-propelled vehicle, from a traction engine down to Bateman's steam tricycle, under their narrow limitations. This resulted in the development of the heavy traction engine, and light motor vehicles were little more heard of in Great Britain. There were a few exceptions, however, notably the steam vehicles of Rickett (1860), Carrett (1861), Tangye (1862), Yarrow (1862), Holt (1866), Todd (i870), Perkins (1870), Mackenzie (1875) and Blackhurn (1878), and some electrical carriages made by Elwell (1884), Ward (1886) and Volk (1888). An important departure was that of Butler, who constructed in 1885 what is helieved to be the first vehicle (a tricycle) propelled by an internal combustion engine in England (fig, 2); be used the vapour of benzoline exploded electrically. Later, Roots successfully employed heavy oil, as did Knight. The chief prohibitory clauses of the acts were repealed in $\mathbf{2 8 9 6}$, when the development of the internal-combustion engine had opened up entirely new prospects and suggested new possibilities.
Gottlieb Daimler's invention in 1885 of the internal-combustion motor using petrolcum spinit was the first step towards the production of the modera self-propelled road vehicle, the next
step being the recognition in 1887 of the edvantages of Daimler's system by M. Levassor and his application of that system to the propulsion of a carriage. In the nine years that immediately followed Freach manufacturers spent large sums of money in experimenting with and developing the motor-car, and by 1896 , when the Enabling Act was passed, there were a few practical

Fig. 2.-Butler's Motor Tricycle of 1885.
vehicles in England but, perhaps, fewer probable buyers. British makers, starting as they did in the wake of the French manufacturers, were able to profit by the experience gained by the latter, and thus to avoid many otberwise inevitable mistakes; they may not be able to claim to have originated many of the fundamental details of the modern motor-car, but their experience was gained at a comparatively small cost.
Gottlieb Daimjer's engine marked a great advance in the production of a source of motive power, for its efficiency was large as compared with its total weight, whilst the simplicity of its fuel system brought it within the scope of the person of average mechanical instincts and intelligence, for, even in its early days, the internal-combustion motor did not demand that its user should possess an intimate knowledge of engineering. Daimler fitted one of his motors to a bicycle in 1885 , and afterwards applied the system to the propulsion of boats, one or more of which were running on the river Seine in connexion with the Paris Exhibition of $\mathbf{8 8 7}$. It was this fact that brought the invention to the notice of M. Levassor, of the firm of Panhard \& Levassor, makers of wood-working machinery, who saw the possibilities of its application to the propulsion of a road carriage. MM. Panhard \& Levassor secured the French patents from Daimlet, and M. Levassor devised the transmission system which, as far as its general scheme is concerned, is unaltered to-day, despite many efforts on the part of skilful inventors and designers to secure something better. M. Levassor placed the engine in front, the axis of the crank-shaft being parallel with the side members of the frame of the vehicle. The drive was taken through a clutch to a set of reduction gears and thence to a. differential gear on a countershaft from which the road wheels were driven by chains. With all the modifications of details, the combination of clutch, gear-box and tranamission remains
uneltered, wo that to France, in the person of M. Levassor, must be given the honour of having led in the development of the motor-car.

Progress in the improvement of design was slow until the year 1894, when a great impetus was given to the French industry by the organization, by the Petif Journal, of a trial run of motor vehicles from Paris to Rouen. The measure of success attained by the cars caused considerable surprise, and in the year 1895 a race was organized from Paris to Bordeaux and back, a distance of 744 m. , when the winning vehicle covered the journey at a mean apeed of 15 m . per hour. From that date onward, until 1908 , racing played an important part in the development of the motor-car; in fact, it is not going too far to say that, up to 1904, it played a vitally important part therein. The effect was a rapid development in speed, efficiency and reliability, and others besides the sportsman and the individual seeking for new sensations were attracted towards the new vehicle. Racing was not indulged in in England or Scotland, the authorities having no power to close the roads for the purpose.
radical changes in previously-existing designs. So arar as British makers were concerned, the Merceded fastion was allowed to predominate, but some of the older French makers were less willing to follow the lead of the great German bouse. This fact assisted the British makers to forge ahead in their competition with the French. But the great factor in the triumph of British motor engineering arose from the fact that, in England, there was a great wealth of knowiedge concerning the propertics of steels and steel alloys, and that knowledge, which was advancing all the time, was turned to such good use that it is safe to say that, in only the very best of French cars is the same strength and efficiency obtained from the same weight of metal as would be used in the construction of quite a number of British cars. Lightness of moving parts has led to increased engine efficiency and to economy of fuel, whilst the inert parts oi the mechanismthe frame and other fixed details-by being lighter, call for a smaller expenditure of power to overcome their inertia. Apart from the employment of special steels for motor-car construction, in which England took a leading part, many improvements

Fic. 3.-The 40-50 h.p. Six-cylinder Rolls.Royce Pullman.Limousine.

In July 1902 , Mr S. F. Edge, driving a 50 h.p. Napier car, won the Gordon-Bennett Cup in the course of the open race from Paris to Vienna. This trophy has played an important part in the history of the motor-car. It was offered for competition among cars, entered by recognized Natlonal Automohile Clubs, no more than three cars being permitted to represent a country, and every car had to be built entirely in the country of its origin. The length of the race had to be not loss than 500 kilometres (3101 m .). The first two races in 9900 and 1901 had been won by French cars and, as these contests had been run concurrently with the big city-to-city races, the importance of the Gorion-Bennett race was overshadowed. But it stood out in bold relief when an English car wrested the international trophy from its French rivals in 1902. The Automohile Club of Great Britain and Ireland (now the Royal Automobile Club) at once secured parliamentary sanction for the use of certain roads in Ircland for a limited period, and proceeded to organize a race worthy of the issue at stake. The race was won by the Mercedes car, the latest production of the famous house of Daimler.
The Mercedes car set quite a new fashion, for it showed advancement in a large number of its mechanical details, and many of these details were cither copied or used as the basis for
in design and method have originated in Great Britain. For instance, the multiple-disk clutch, which permits a car to bo started without shock, is an English invention, as are the detachahle wheel, the spare wheel and the six-cylindered engine. The latter, introduced by the Napier Company and employed extensively by them, by Rolls-Royce and others, has exerted a great influence upon British tastes, hecause it created a growing dislike to noise, one of the consequences being the rapid development of the silent car.

The representatives of Great Britain in the Gordon-Bennett race of 1903 were selected by means of a series of eliminating trials, and in 1904 and 1905 races were held annually in the Isle of Man for the same purpose. In the yeurs 1906, 1907 and 1908 races were held in that island with such limitations on fuel or on the diameter of the cylinders as were calculated to encoorrge the development of small but efficient transmissions, and it has been conceded generally that these races served an extremely useful purpose.

Concurrently with its development into a reliable, silent, odourless and smokeiess power-propelled vehicle, the motor-car gradually came into more general use. It no longer appealed only $t 0$ a few but gained converts daily, and its final triumph carme when it began seriously to displace the bossed vehicke.
becoming the private carriage of the wealthier classes to be used on all occasions.
If the motor-car in the guise of a private carriage has developed at an astonishing rate, its adaptation to the needs of the community, as a public service vehicle, has been even more rapid. The first cabs placed on the streets of London in 1903 were by no means a success, but the cabs constructed by the French house of Renault and first introduced in London in 1906 rapidly effected a revolutionary change in the means of individual transport. Apart from the improved speed of the motor-cabs, they gained popularity hecause of the use, on each one of them, of the taximeter, showing at a glance the amount of the fare, thus preventing overcharge on the part of the driver. One effect of the employment of motor-cabs and motor-omnibuses has been to reduce slightly the total number of vehicles, and to quicken a large volume of the traffic; it is now being recognized that to increase the speed of the whole of the traffic of London by about 5 m . an hour is practically equivalent to doubling the width of the whole of the main streets.

The new British act of 1903, which was enacted for three years only, was, during the parliamentary session of 1906 and subsequent sessions, continued from year to year because of the difficulty that was experienced in reconciling conflicting views about the control of motor-cars. The 1903 act raised the speed limit to 20 m . per hour and gave the local government boand power to close to motor traffic such roads as, on inquiry, might be deemed unsuited therefor, and to impose a speed limit of 10 m . an hour or less in dangerous places, such as narrow streets in a town or through a village. A few serious accidents in England, and many abroad, have kept alive the fear that the motor-car is a dangerous vehicle that should be restrained or beld in check by stringent legislation. Thus from 1904 onwards, the motorist was under continuous police supervision. Police traps, or measured distances, over which the motor-car is timed by the police, were established in most of the counties of England, and, whilst, without a doubt, many real offenders were caught, it is equally true that many an innocent driver was unfairly accused, whist motorists guilty merely of technical infringements of the law were summoned.

The attitude of the police in showing littie or no leniency in the application of the law probably, however, did good in other directions, although these were not contemplated either by the law-givers or the police themselves. It considerably. limited the use of excessively powerful cars (for example, a 60 or 90 h.p. car that could easily attain 60 m . an hour), and experisnce has demonstrated the fact that, intersected as England is with a network of narrow roads carrying considerable traffic, there is little opportunity for the full power of such a car to be used. The result has been that the comparatively low-powered vehicle has been developed in efficiency, bringing with it the advantages of economy in running, simplicity of mechanical details, cheapness of maintenance and case of control and management.

The principle of the internal-combustion engine has not been altered since Daimler's day, but the mechanical details of the engine have undergone constant revision and improvement, until in igro it was safe to say that a four-cylindered engine, with a cylinder bore of 4 in., constructed, we will presume, in 1899, might have developed 20 h.p. or less, whereas engines of the same cylinder bore made in 1908 and 1909 actually developer $60 \mathrm{~h} . \mathrm{p}$. and more, and the attainment of even greater efficiency was in sight in 19ro. Experience showed that the saving of weight meant greater economy in fuel and also in tires, the two principal items in the upkeep of the motor-car. Engine design has undergone unceasing improvement, and constructional methods have been continuously advanced, with the end in vicw of attaining lightness, not only in the moving parts, but in the inert parts. Lightness in reciprotating parts, such as the pistons, connecting rods and valves, has enormously improved crank-shait specd. Cylinder castings are now made far lighter, whilst the water jacketing, for dissipating the excess of heat from the cylinder wails, is now
of sufficiently ample proportions and, in consequence, better lubrication of the cylinder walls can bo maintained. This again conduced to piston speed. The induction valves of engines of the earlier types were opened under atmospheric pressure, the reduced pressure in the cylinder, cansed by the downward movement of the piston, enabling the pressure of the outer atmosphere to open the valve against its light spring, and to carry in a charge of the carburetted alr that constituted the explosive mixture. But it was found that tho automatic or atmospheric inlet valve opened late on the induction stroke and closed early, so that the engine only received an attenuated charge. One of the earliest improvoments in engine design, therefore, was the employment of the mechanically-operated inlet valve operated by a cam exactly as the exhaust valve is operated. This valve could be fully openedras soon as the piston had begun its downward or induction stroke, and could be held open during the momentary period when the piston was at rest at the bettom of the stroke, thus ensuring a full charge of explosive mixture. The method of exploding the charge in the cylinder has undergone revolutionary changes. The first method, that of heating the exterior of a closed tube connected with the cylinder, quickly gave way to electric ignition because it was found that the charges could not be exploded by the hot tube until the piston had reached the top of its stroke, and, at the comparatively high piston speed of these engines, the piston had moved some distance on its downward stroke before the exploded gas had begun to expand. Electric ignition was an improvement because it enabled a "lead" to be given to the explosion, a low voltage current (from four to six volts of about one ampere being sufficient for the purpose) being automatically switched on to the primary circuit of a coil, the induced current in the secondary circuit being of a voltage sufficiently high (calculated at from 5000 to 10,000 volts of a very small amperage) to jump across a gap left in a sparking plug inserted in the cylinder. By rotating the body of the switch (called the contact breaker) the ignition could be timed to suit exactly the speed of the pistons and, in this way, greater piston speed was obtainable. The great development of this system was the introduction by Mr F. R. Simms, in conjunction with Herr Bosch, of the magneto machine, known as the Simms-Bosch magneto, the prototype for many such appliances. This machine, in its simplest elements, produces a low voltage current (assumed to be of about eight or ten volts) by the rotation of an armature in the magnetic field of a set of magnets, the rotation being effected through the timing-gear wheels of the engine. The low tension current is conveyed through a primary circuit inducing the secondary current which is employed for igniting the charges. The advantages of the magneto are, firstly, that the primary current is created by the engine, and that the need for an accumulator as a source of that current is avoided and, secondly, that the spark is more efficient because the faster the armature is revolved the more intense is the primary current and the induced current, consequently, the charge is ignited more rapidly. The magneto machine has almost entirely displaced the accumuletor system for ordinary running, although, as the latter makes for easier starting, it is often fitted as an addition.

Great gain in power has been secured from improvements in the lubrication of the internal-combustion engine. It is now recognized that a small supply of oil to the journals and hearings of such an engine is insufficient, but in the early days it was found difficult to give the journals and bearings more oil without too much getting on to the cylinder walls, because the latter were lubricated by the oil that was thrown on to them by the spinning action of the webs of the crank-shaft and by the connecting-rod ends, these latter dipping into a well of oil in the lower part of the crank-case. The modern method has overcome this difficulty. The cranks and connecting-rod ends no longer dip into the oil, for the latter drains away into a sump or reservoir below the base of the crank chamber. Thence it is passed through a filter and pumped to ducts which convey the oil under pressure to the crank-shaft journals. Sometimes it is conducted thence along ducts bored in the crank-shaft and
through the webs and crank-pins, whence it feeds the connectingrod bearings, enough squirting out to splash on to the cylinder walls. Sometimes, a shallow trough is placed under each con-necting-rod end, to hold oil to a certain depth and no more, and a scoop on the big end collects enough oil to effect the lubrication of the connecting-rod bearings and cylinder walls. The aim has been to secure definite lubrication of all moying parts, and, at the same time, to prevent oil being present on the cylinder walls in such quantities as will permit the piston to carry it up into tbe combustion chamber. Any oil present in the combustion chamber is burnt during the explosion, but, its combustion being imperfect, smokiness of the exhaust is the result. By reducing the oil on the cylinder walls to the minimum necessary for lubrication, smoking has been abolished, whilst clogging, or carbonizing, of the valves has been materially reduced.

Methods of carburation bave also undergone improvement, so that the carburation shall not materially vary with varying engine speed. The only other feature in the engine that calls for mention is the method of cooling. With the introduction
of the honeycomh type of radiator, by which the water is made to flow through canals an eighth or a sixteenth of an inch wide, the efficiency of the cooling system has been doubled because of the large amount of surface, in a given size of radiator, for dissipating the heat. A fan is generally employed, cither situated behind the radiator and driven by the engine, or the flywheel is vaned so as to induce a current of air through the radiator.
To deal now with the transmission mechanism, the drive is taken through a clutch and gear-box as in the earliest days, but, for the final drive, chain transmission to the road wheels running on a fixed axie has largely given place to propeller drive on to a live axle. The leather-faced conical clutch, although still employed, has in many cases given way to the multiple-disk clutch in which a number of disks bearing against each other, either flat in section, or (as in the Hele-Shaw clutch) having annular tapered grooves, aro contained in an oil-tight box. These plates are capable of being separated laterally from each other when "out of gear," or brought into frictional contact with each other when it is desired to start the car. Metal-to-metal cone clutches, expanding metal shoe clutches, single metal plate cutches and coil apring clutches have all at some time found favour with dosigners wishing to avoid a leather clutch. Hydraulic and electro-magnetic clutches have also been tried, but these have not gained any vogue. In the matter of the gearbox, the sliding into mesh of the gear-wheels as employed by Levassor is still the standurd practice, although that pioneer himself regarded the method as barbarous, and looked upon it as a merc temporary expedient. But details of the gear-boz have materially improved. A single lever is usually employed.for engaging any of the forward gears or the reverse, so that the mistake of simultancously engaging a reverse and a forward-gear is not possible. The spur-wheels are generally mounted in pairs on two sleeves, so that, by means of a selector mechanism that compels one sleeve to be hrought to the neutral position before the olher can be moved, no two gears can ever be engaged together. By means of "dog clutches," the clutch shaft can generally be coupled direct with the bevel-wheel driving the back axie, the "drive" on the highest gear being thus transmitted without passing through any spur-wheels. This reduces noise and frictional losses. Except for cars of great weight, chain transmission is fast dying out, the power being generally transmitted through a propeller shaft (with universal joints at one or both ends) to a bevel-drive on the back axle; such axie being divided into two revolving or "live" axles carrying the differential gear between them. The bevel-wheels, differential gear and live axles are enclosed and run in a lubricant.

Wire suspension wheels are growing considerahly in favour, a saving in weight being thus effected. The liability of the preumatic tire to defiation, through a puncture or burst.
hat led to the introduction of detachable rims and detachable wheels. The detachable rim is bornc on the periphery of the wheel (which is bonded) and secured in position by various methods. When the tire is punctured or demaged the rim and tire are removed bodily and replaced by a spare rim with its tire already in position and inflated, a change capable of being effocted in five minutes or less. The detachable wheel is mounted upon a shell which fits over and is secured to a sleevc,
four cylinders (according to the choice of the ridens) developing some 3 to 8 h.p. with magneto ignition and belt drive. The engine was usually started by the rider ruaning alongside the machine, and causing the machine to rotate the crank-shaft through the belt and pullicy until the initial explosion was ohtained, when he would jump into the seat. Trailers were employed at first for carrying passengers, but, the length of the combined vehicle being between nine and ten feet, a side-car,

Fig. 5-Plan Vlew of the 40-50 h.p. Six-Cylinder Rolls-Royce Chasme (1910 type).
which fatter turns and is secared apon the fixed axle. In the case of tire trouble, the wheel intact is removed from the sleeve (which in the case of a driving-wheel carries the driving filtings, the brake-drums, \&ec.) and a duplicate wheel is substituted. The pneumatic tire has undergone continuous improvement, particularly in the matters of the selection of the material and the proportioning of the strength of the "body" to the work which the tire is to be called upon to perform. Various methods have been devised for the prevention of skidding or " side-slip" on greasy surfaces, and, whilst certain mouldings on the rubber treads have proved advantageous, the method most adopted is that in which a large number of sted studs stand about a quarter of an inch above the surface of the tire.

It will be seen that the general lines of the car of 1889 have not required to be radically altered. Every detail has been improved so that the cars are more efficient, easier to control and manage, and infinitely more comfortable, but, in essence, Levassor's scheme is as good to-day as it was when planned by him.

The steam car is made by five or six British manufacturers at the most, whereas the actual manufacturers of petrol cars in Great Britain numbered at the end of the year 1909 about seventy, whilst some four hundred other firms were actively engaged in the construction of cars and their parts, accessories and sundries. But the steam car appeals to those men who are or bave been steam engineers, and to them the management of the steam generator and the burners constitutes no difficalty. The limitations under which the early steam car laboured have, in the main, disappeared, for the modern steemer can travel nearly an far without requiring to refill the boiler as a petrol car can travel without replenishment of the fuel tank. The electric car is still the luxury to be employed in towns and in covering short distances, for tbe weight of the accumulators has not been greitly reduced, despite sensational announcements made from time to time.

An interesting feature of the motor movement has been the steady growth in popularity of the motor cycle. The motor tricycle was developed up to the year 1903, and then gradually became displaced by the motor bicycle, which had been introduced in rgo1. Motor bicycles gradually increased in popularity, until in numbers they were in excess of cars. The standard machines of 1909 had an air-cooled motor of one, two or even
placed at the side of the cycle and secured theteto by detachable fittings, largely displaced the trailer and also the "fore-car," in which the passenger was carried in a body placed in front of three- and four-wheeled cycles.
The rapid growth of the motor movement in Great Britain may le judged from the fact that by the 3oth of September 1905 the number of motor vehicles of all kinds registered had totalled to 74.038, and by the 30th of September 1908, three years afterwards, to no less than $\mathbf{1 5 4 . 4 1 5 \text { . Of these, } 1 3 7 . 3 2 3 \text { were registered in }}$ England and Wales, 10,907 in Scotland, and 6185 in Ireland. 71 r.405 were private motor-cars; 12,104 were trade motor-cars ; 5880 were public service vehicles and 65,026 were motor cycles.
A year later (Sept. 30, 1909) the figures showed a further remarkable increase, the total number of vehicles registered in the United Kingdom being 183.773, giving an increase of 29,358 in the year. Of these, private motor-cars numbered 84,840; trade motor-cars 15,181: public service vehicles 8752; and motor cycles 75,000. The numbers registered in England and Wales were: 74,748 private motor-cars: 13.961 trade motor-cars; 8131 public service vehicles and 66,341 motor cycles, or 163,181 in all. The Ggures lor Scotland were: 6157 private motor-cars; 1056 trade motor-cars; $\mathbf{5}^{8}+$ public service vehicles and 5296 motor cycles or 13,093 in all. The figures for Ireland were: 3935 private motor-cars; 164 trade motor-cars; 37 public service vehicles and 3363 motor cycles, or 7499 in all. In the yeas private motor-cars In the United Kingdorn increased by 18.8%; trade motor-cars by 25.4%; public service vehicles by 48.8% and motor-cycles by 15.3%.
It is possible to obtain a better idea of the number of motor vehicles in use from the returns of the commissioners of intand revenue. The total number of privately-owned cars for which licences were issued in 1908 was 48.019 , of motor cycles $\mathbf{3 5 . 7 8 4 .}$ and of motor-driven hackney carriages 17.300. These bgures may be compared with the registration figures already given for the year ending the 30th of September 1908. As accounting partly for the difference, a certain proportion of the registered vehiclee (eecing that the figures include all vehicles in use on and alter the ist of January 1904 , less those in respect of which the registrations have been cancelled) must have fallen into disuse and come vehicles will have been sold out of the country, whilst othern will have been sold and re-registered with different authorities. But the life of the mechanism of a car, in one form or another, is of condiderable length (there were, for instance, in use in 1910, as commercial vehicles, motor chassis that were put on the road in $\mathbf{8 9 6}$). and it is considered that many registered but unlicensed cary remain for years capable of rendering useful service in emergencies or on special occasions, such as at election periods.
In 1906 an act of parliament authorized a census of production, which was taken in 1908, the statistics relating to 1907. These fizures show that the output of complete motor vehicles in the United King dom in that year was 11,700 completed cars and chassis and 3600 motor cycles. the total value of the productive work
done in the motor trade being $f 6,327,000$ inclusive of repair work and the production of parts and accessories.

The nuruber of cars and chassis imported into and retained in the country (those imported and afterwards re-exported being excluded from the statistics) in 1909 was 7747 as compared with 6530 in 1908. The absence of a classification, in 1907 and previous years, for chassis prevents further comparison in the matter of numbers, but taking the value of the motor-cars, parts and accessories imported into and retained in the United Kingdom, there is a total of $\{4,170,121$ in 1907, $\{3.753 .140$ in 1908, and $\{3.922 .781$ in 1909: the average value per car falling from $\{432$ in 1907 to $\{333$ in 1909. The value of the motor cycles and their parts imported into and retained in the country was $\{7,1,101$ in $1907,\{52,206$ in 1908 , and $\{48,327$ in 1909.
The number of British made cars and chassis exported in 1909 was 2802 as compared with 2441 in 1908, and of British made motor cycles 1893 in 1909 as compared with 1048 in 1908 and 800 in 1907; the total value of the exports of cars, parts, chassis and moror cycles in 1909 being $\{1,669,361$ as compared with fi $, 315,913$ in 1908 and $\{1,378,180$ in 1907.

With the growth of the motor-car movement there have, naturally, been great developments in the outside industries catering for the motorist. Most affected hy that movement has been the oil trade, considerable changes having taken place. In the distillation of crude petroleum for the production of lamp oils, \&e., quantities of volatile spirit were obtained, the outlet for which, formerly, was small, as the spirit was mainly used for cleaning purposes. With the introduction of the petrol motor this spirit came into demand, and, as the demand inereased, the situation changed and the crude petroleum had to be distilled mainly for spirit, thus leaving a surplus of the heavier oils. The situation was largely met by a gradual conversion of the petrol-consumers from spirit of .680 specific gravity to a spirit of 715 specific gravity, whilst for commercial motors even heavier grades were employed. The quantity of -715 spirit obtainable from a given quantity of crude oil is considerably greater than the guantity of 680 that could be produced, so that a better balance between the demand for motor spirit and that for lamp oil has been effected. The total quantity of motor spirit used in the United Kingdom in 1909 was $60,000,000$ gallons, of which about one-half came from the Dutch East Indjes, whilst a third canie from America. Rumania supplied aloout $6,000,000$ gallons and Russia about $3,000,000$ gallons. Large quantities of lubricating oil were obtained from America, whilst the remainder (about onetenth of the total) came from Russia.

France is the centre of the motor-car industry in Europe, and up to the year 1906 it undoubtedly led in the production of motor velicles, but in that year the United States of America, as we shall have occasion to note, took the lead. The number of private cars in use in France had risen from 143^{8} in 1899 to about 23.000 in the year 1909. whilst industrial vehicles have increased even more rapidly in number. The following figures are obtained from the tilxation schedules:-

Year.	Number of Vehicles in use.		Total.
	Pleasure Cars.	Industrial Cars.	
1899	1,438	234	1,672
1900	2,354	543	2,897
1901	4,427	959	5.386
1902	7,358	1,849	9,207
1903	9,922	3,062	12,984
1904	12,519	4,588	17.107
1905	15,011	6,532	21.543
1906	17,358	8,904	26,262
1907	19,601	11,685	31,286
1908	22,252	15.334	37,586
1909	26,000	20,000	46,000

The figures for the year, in the absence of the official return, are estimated.

The average h.p. per car (pleasure vehicles) has steadily risen from 5.06 in 1901 to 13.28 in 1908 , the number of cars seating more than two persons having increased in greater proportion tban those seating one or two persons.

The export of French motor vehicles had sisen in value from $4,259,000$ francs in 1899 to $144,352,000$ francs in 1907 . In 1908 the exports fell to $127,300,000$ rrancs, and in 1909 an improvement to about $145,594,000$ francs had taken place. The imports of foreign motor vchicles to France rose from 473,000 francs in 1899 to $8,676,000$ francs in 190%, and since that period there has been an annual decrease.
In Germany the number of motor vehicles of all kinds in use on the first of January in each year is shown in the following table:Year. Number of motor vehicles.

In 1910.45% of the total consisted of motor cycles, $\mathbf{4 9 . 3} \%$ consisted of pleasure vehicles and 57% consisted of commercial vehicles, the proportion of pleasure vehicles having consistently risen in the four years.

The development of motoring and of the motor industry in the United States has been exceedingly rapid. As good roads multiply and extend the use of cars must be still further developed. The American farmer has discovered that he can make conwderahle use of the motor-car in connexion with his industry, and this fact largely accounts for the demand for high-wheeled buggies, and for vehicles having ample clearance between the machinery and the road level.

In the early days of the movement the American taste inclined towards steam cars, and the mistaken view that tbe vehicle driven by an internal-combustion engine could never be made to run as silently as a steam car was generally held. But in Europe the petrol engine became refined so rapidly that its equality with the steam engine in the matter of silence, together with its superiority in the matter of simplicity and suitability for the man who is not an engineer, soon created for it a popularity that prevented any material expansion of the business in steam cars. The makers of steam cars in Arnerica are able to cope with the major portion of the world's demand for this particular type of vehicle.

The introduction of the Dingley tariff, asscssing an import duty of 45% ad palorem on motor-cars (in the classification of "manufactured metal"), added to a further charge of about 5% for freight, encouraged American capitalists to embark upon the manufacture of motor-cars, and in 1899 thirty manufacturers produced 600 cars. In 1909 the number produced by 200 concerns was 114,891. Set out in tabular form such figures as are obtainable are very, striking:-

Cars Produced.		
Year.	Number.	Value.
		$\$$
1899	600	$1,290,000$
1903	10,576	$16,000,000$
1904	13.766	$24,500,000$
1905	20,787	$42,000,000$
1906	23,000	$50,000,000$
1907	42,694	$105,000,000$
1908	49.952	$83,000,000$
1904	114,891	$135,000,000$
1910	200,000	$225,000,000$

The number of cars for 1906 is approximated and the number of cars and their value for the ycar 1910 are based upon the cstimated output of the various manufacturers In 1908, whilst the number of cars constructed showed an increase over the number for 1907, the total value had decreased owing to the commercial crisis of that year. In $1 g 09$ those manufacturers who had formed the Association of Licensed Automobile Manufacturers, and who agreed to recognize the validity of the Selden patents, paid licence fees upon 94,89I cara, the remaining 20,000 cars heing estimated as the output of the concerns that did not belong to the association.

Of the 200,000 motor vehicles estimated to be cnnstructed in 1910, 165,000 were to be petrol-driven pleasurc cars, 30,000 were to be petrol-driven high-wheeled buggies, and 5000 steam and electric carriages and comrnercial vehicles.

The history of the Selden patent may be given bricfly A patent was applied for on the 8 th of May 1879 by George B. Selden, of Rochester, New York, for a gas compression engine Cor propeliing road vehicles. A patent was granted to him on the 5th of November is95 for an improvernent in road engines, and he claimed that any velicle propelled by an internal-combustion engine, manufactured since that time, was an infringement of his rights under the patent.
At the commencement of the year 1910, 7 I manufacturers admitted At the commencement of the year 1910, 71 manufacturers admitted
this claim and paid to the Association of Licensed Automobile Manufacturers $1 \frac{1}{3} \%$ of the catalogue price of their products as Manufactu

The imports of motor vehicles into the United States of America are not numerous, as will be seen from the following figures:-
 1904.: 605 " " 1054 " 1908 . 1387 " "

The exports rose" from" \$599,927 in value in the year 1902 to $\$ 5,502,241$ in 1907 with a falling of to $\$ 5,277,847$ in 1908 .
Authorities.-Baader, Dis Uwmoglichkcui Dampfwãges ouf gewohntichen Strassen mif Vortheil einsuführen (Nuremberg, 835); Badminton Library, Molors and Mofor Driving (London, 1goz): Beaumont. Molor Vehicles and Motors (London, 1900), and "Mechanical Road Carriages " (Cantor Lectures, London, 189s); Brander, L'Automobile de 1822 d 1835 (Brussels, 1898); Farman, Les A utomobiles (Paris, 1896), and Autocars, Cars, Ecc. (London, 1896); Fietcher, Steam Lacomotion on Common Roads (London, 1891):

Gordon, A Tratise on Elemenfary Locomolion by Means of Skam Carriages on Common Roods (London, 1832, 1834 and 1836); Gore, Propulsion of Carriages on Common Roads by Power other thas Animal Power (London, 1893): Graffigny, Afanuel pratique dus constructeur el du conduclear de cycles al d'aulomobiles (Paris, 1900); Grand Cartaret, Le Voiture de demain (Paris, 1898): Gray and otbers, The Motor Year Book (London, 1905 and 1906); Gucrdon, Manuel pratique au conduclew dianomobiles (Paris, 1897); Gurncy, Steam Carriages on Turnpike Roads (London, 1832); Hancock, Sleam Carriages an Common Roads (London, 1838); Jenkins, Pouter Lacomorion on the Highway (a guide to the literature; Londun, 1896); E. H. Knight, American Mectanical Dictionary, "Kaad Locomotives,: vol. iii. (New York, 1876) ; J. H. Knight, Notes on Motor Carriages (London, 1896); Lardner, The Sleam Engine (7th ed., pp. 419-440: London, 1840): Lavergne, Manuel theorique ef pratique de l'automobile sur route (Paris, 1900): Lavergne and Hasluck, The Aulomobiic (London, 1902); Lieckicld, Die Pclroleumund Benxinmotore": (Munich and Leipzig, 1894); Littic, Aulonotor and Horseless Velide Journal (London, 1898); Lockert, Traite des pehicules aulonsobiles (4 vols., Paris, 1896-1897); Petroleum Motor Cars (London, 1898): Maceroni, Facls concerning Elemenhary Locomotion (3nd ed., London. 1831); Poners and Qualities of Maceroni's Steam Carriage Demonstrated (London, 1835); Steam Power on Roads. \&cc. (London, 1835): Mann, New Method of Propelling Locomotive Machines (compressed air) (London, 1830); Medhurst. A New System Machines (compressed air) (London, 1830); Medhurst, A N.
of Inland Connoyance for Goods and Passengers (com. pressed air) (London, 1827); Milandre and Bouquet, Traite de la construction, de la conduile et de l'entretien de voilures aulomobiles (4 vols.. Paris, 1898-1899); O'Gorman, Molor Pocket Book (London, 1904); Perisse and Godfernaux, Trachion mécanifuce sur rails e! sur rontes (Paris, 1900); Rose, A Record, $;$ Motor Racing (London, 1909); Salotrons, The Horse Carriage (London, 1895); Suunior L'Automobile thecrime et pratique (2 vols., Paris. 1899 1900); Sennett, \boldsymbol{H}.rseless Road Locomolion (L.ondon, 1900) Smith, History of English Carriages and Motor Cars (Tun bridge Wells, I876); S.P.T.A. (Scli-Propelled Traffic Association), Trials of Motor Vehicles for Heary Traffic (Llverpool, 1898,1899 , and 1901); Sir H. Thompson, The Holor Car: its Nature, Use, Manngement (London, 190a); Wallis-Taylor, Molor Cars or Pawer Carriages for Common Roads (London, 1897): R. B. Whiman, Motorcar Principles (New York, 1909): Witz, Molears a gaz ed a petrole, vol. iit. (Paris, 1899): Yarrow, "On Sleam Carriages," Proc. Soc. of Eug. (Lundon, 1863): Young, The

Economy of Steam Power (London, 1860); Filson Young,
The Complete Motorist (London, 1904); vol. xxxvi. (Head the Compler on Corist (London, "904); Inst CE (Lond) "Steam Reports of Select Committees of the House of Commons (1873) $1831,1834,1835,1836,1839$, 1873, 1881).

Heavy Commercial Vehicles

Heavy types of motorcars are now widely employed for commercial purposes. The earliest British-built type was the steam-propelled wagon, and its evolution was largely encouraged and hastened by important competitive trials, at Liverpool, in the years 1898, 1899 and 1901, which were conducted by the Self-Propelled Traffic Association. Other series of trials were held by the Royal Agricultural Society of England and the Royal Automobile Club.

From the end of 1806 to early in 1905 no commercial motor vehicle was legal in England if its unladen weight exceeded 3 tons, and this limitation caused much financial loss to purchasers who overloaded them. The Heavy Motor Car Order of 1904 , which came into force on the ist of March 1905, increased the maximum unladen weight to 5 tons, whilst limiting the gross weight to 12 tons; by the same order, the combined unladen weight of a motor wagon and the single trailer which it is allowed to draw was fixed at 61 tons. In effect, the gross weight of a trailer and its load nay not exceed 8 tons, thus yielding a total gross wcight, for Ioaded wagon and loaded trailer, of 20 tons. Excesses in any particular cause a commercial motor to be treated as a "heavy locomotive," or traction engine, when its freedom of movement, speed, scc., are restricted more severely.

Miniature traction engines, constructed to comply with the requirements of the Motor Car Acts and Orders, have progressed since 1905; they are chiefly used where it is a convenience to separate the power and carrying units, as hy furniture-removal and other contractors.

The working cost of a steam wagon with a 5 -ton load, in Great Britain, inclusive of provision for interest on capital, depreciation and maintenance, varies from 7 ld . to gd. per mije
run, on an average basis of 180 m . a week; with a trailer carrying another 3 tons the corresponding figures vary from gd. to is. per mile run. according to nature of roads, gradients and fued availabie. The inclusive working cost of a tractor, on macadamized roads, is gencrally about 15% less than for a 5 ton wagon, but a standard tractor cannot haul more than a gross load of 8 tons behind the drawbar-except on dry and level roads. On granite setts the extra vibration often causes undue wear and tear, unless the suspension of the tractor be very good.

Vehicles in which the power is derived from internal-combustion engines are commonly known as "petrol "vehicles. Petroleum spirit of 0.700 specific gravity is usually the fucl, but many are now supplied with spirit of 0.760 specific gravity; the sange of boiling points is the critcrion of satisfactory use-not the density. Petrol vehicles are, practically, stoutly-built motorcars, and some of the models now in use have been developed from accepted designs of lighter types. There are, however, numerous manufacturers who construct solely for utility purpozes. Below net loads of 2 tons, the petrol-propelled vehicle Summary of Working Costs for Petroldriven Vehicles (Exclusive of Management) in England.

Particulars.	Net loads carried: Costs in pence per vehicle-mile.				
(Petrol at tod, per gall.) Average weekly milcage	$\begin{gathered} 10 \mathrm{cwt} . \\ 400 \\ \hline \end{gathered}$	$110 n$ 400	$\begin{gathered} 2 \text { tons } \\ 390 \\ \hline \end{gathered}$	$\begin{gathered} 3 \text { tons } \\ 350 \\ \hline \end{gathered}$	$\begin{gathered} 5 \text { tons } \\ 300 \\ \hline \end{gathered}$
Driver's wages	0.8 .4	0.84	$1 \cdot 00$	$1 \cdot 09$	$1 \cdot 60$
Fuel (petroleum spirit)	0.55	0.77	0.95	1.25	1.67
Oils and grease. .	0.12	0.12	0.14	0.16	0.24
Rubber tires : ${ }^{\text {R }}$	0.50	0.75	1.15	I 50	2.60
Repairs (material and wages)	0.55	0.85	$\underline{1} \cdot 03$	1-17	1.55
Rent, rates and lichting	0.12	0.15	0.25	$0 \cdot 40$	0.50
Insurance and clams.	0.12	0.24	0.35	0.42	- 6.65
Depreciation	0.65	0.90	1.66	1.36	1.60
Interest on capital.	0.15	$0 \cdot 25$	0.33	0.47	0.64
Totals	$3 \cdot 60$	4.87	6.26	7.82	11.05

has a virtual monopoly of use in England; above that, it shares the trade with steam. A tabular statement of current working costs of approved petrol vehicles is published herewith.

Before proceeding to describe and illustrato representative types of vehicles, tractors and special machines, a bticf summary of the outstanding points in the English statutes and orders which apply to heavy motor-cars may well be given. Any motor-car with an unladen weight in excess of 2 tons is held to he a " heavy motor-car," and a "traller" means a vehicle drawn by a heavy motor-car. The expression "axle weight" means the aggregate weight transmitted to the suriace of the road or other base whereon the heavy motor-car or the traiter moves or rests by the several wheels attached to that axle when the heavy motor-car or trailer is loaded. The expression "weight," in relation to heavy motor-car or traiier when unladen, means the weight exclusive of the weight of any water, fuel or accumulators used for the purpose of propulsion. All heavy motor-cars have to be registered with a county council, county borough, or other registering authority, and owners have to declare, on suitable forms, the undaden weight, the axle weight of each axle, and the diameter of each wheel. When a registration certificate is issued it bears these data, in addition to a statement of the width and the material of the tyre on each wheel, and the highest rate of speed at which the heavy motor-car may be driven. The owner, after registration, must cause to be painted, or otherwise plainly marked, upon some conspicuous part of the offside of the heavy motor-car, the registered weight unladen, and the registered axle weight of each axle, whilst, upon the near side of the heavy motor-car, he must similarly cause to be painted the highest rate of speed at which it may travel. Width of tires, which in no case may be less than 5 in ., varies in relat lon to imposed load and wheel diameter, and a table of these is issued by the local government board. It is specified that " the width shall not be less than thint
number of half-inches which is equal to the number of units of registered axle weight of the axle to which the wheel is attached." Taking a wheel 3 ft . in diameter as a basis, the unit of registered axle weight is $7 \frac{1}{2}$ cwt.: this unit increases in the proportion of 1 cwt . per 12 in . increase of diameter, and decreases at the rate of 1 cwt . for every 6 in . reduction in diameter below 3 ft . The speeds at which heavy motor-cars may travel vary from 5 m . an hour to 12 m . an hour. Heavy motor-cars fitted with tires of a soft ory clastic material may travel, at higher rates of speed than if they were not so fitted.

Any motor-car used for trade purposes, but whose unladen weight does not exceed 2 tons, is allowed to travel as fast as 20 m . an hour, and is regarded as an ordinary motor-car.

- Molor-buscs.-The first double-deck metor-bus, of the type of which upwards of 1000 are in regular service in London, was licensed hy the police authorities in September of 1904. The type of chassis employed is practically identical with those used for loads of 3 tons in the goods-haulage branches of the industry, and the accompanying chart, which is prepared from

data exclusively collected by the Commertial Molor (London), indicates the growth in the totals since the inception of this departure in the public conveyance of passengers. The growth of motor-bus traffic has resulted in the displacement of some 25,000 horses and 2200 horse omnibuses, during the five years ending the zoth of June r910, and it is estimated that there will be practically no horse omnibuses in London, except upon a few suburban routes, by the end of rgri. The inclusive working cost of a London motor-bus, with good management, varies
between gd. and rod. per mile, which figures cover interest, depreciation and administration.

Successful provincial motor-bus undertakings, in the United Kingdom, are numerous, and those at Eastbournc, Kcighley and Hull may be particularly mentioned of municipal undertakings, whilst the Great Western Railway Company alone has 130 such vehicles al work.
Motor-cabs.-Spasmodic efforts to introduce motor-cabs in London were made during the years 1905 and 1906. It was, however, only in the month of March 1907 that the General Motor-cab Company put the first 100 vehicles of lts present large fleet into regular service. The growth of motor-cabs is indicated by the foliowing numbers, for which the author is indebted to the Commercial Motor (London), and these are of vehicles licensed at the dates given: December 31, 1905, 19; December 31, 1906, 96; December 31, 1907, 723; December 31, 1908, 2805; April 30, 1909, 3203; April 30, 1910, 4941. It is estimated that, at the joth of June rgro, there are only 1200 borse-drawn hansoms in regular use, and not more than 2500 horse-drawn four-wheclers, in London. In 1 ga4 London had a total of 11,055 borse-drawn hackney carriages, and two self-propelled hackncy carriages. The London hiring rate for motor-cabs fitted with taximeters is: for the first mile or part thereof, 8d., subject to an additional charge at the rate of 2d. per 2it minutes for any waiting time or travelling below the rate of 6 m . per hour; 2d. per additional 440 yds ., or $2 \frac{h}{2}$ minutes of waiting or of travelling below 6 m . an hour; with the addition of ad. per package for any package carried outside, and 6d. for a bicycle and $6 \mathbf{d}$. each for each passenger above two, for any distance. The horsedrawn hansom-cab is $1 s$. for the first 2 m. , which od. for each additional mile or part of a mile, and with a charge of 8 d . per 15 minutes of waiting, after the first 15 minutes completed. Taximeter cabs cannot be engaged by time in London, hut horsodrawn cabs may be so engaged at 2s. 6d. per hour for a hansom, and at 2s, per hour for a four-whecler. The taxicab rates apply throughout the Metropolitan Police area, which in some directions extends as far as 20 m . from Charing Cross, but horsevehicle rates (except those of time) are doubled for any distance beyond a four-mile radius.

Steam Vehicles.-Steam wagons may, generally speaking, now be divided into three distinct types, and these are distinguished chiefly by the particular form of final drive adopted by the designer. There are in general use by the well-known

Fige 6-9-Standard and Rapresentative Types of Present-day Steam-wagon Construction
makers, at the present day, only three methods of efiecting such a drive: (1) by means of spur or double-helical gear to a live back axle, as illustrated in figs. 6 and 7 ; (2) with two side chains transmitting the drive from a difierential intermediate countershaft to the whecls on a fixed back axle, as shown in fig. 8; and (3) by meains of a single chain transmitting the drive from an intermediate shaft to a differential gear on a live back axle, as depicted in fig. 9 .
The transmission on the first type of vehicle (figs. 6 and 7) is by means of gearing throughout, and is completely enclosed, thus ensuring protection from dust, and more perfect lubrication. Change gears to give two speeds are provided. This form of drive necessitates a special disposition of the spring mounting, in order to ensure that there shall be no sliding motion taking place bet ween the teeth of the reducing gear, due to the distance between the centres of the countershaft and the back axle varying with the changes in the spring defexion. The gear drive offers advantages which, for heavy loads, are not offered by any other form of drive.

The features which are common to all steam wagons of the second of these types are: vertical fire-lube or water-tube boiler; horizontal compound engine; two-speed gear; differential counterslaft; and two sprockets which transmit the final drive, through chains, to the rear road wheels. The exact form which the boiler takes is a point which has considerably exercised the ingenuity of individual designers, in order to arrive

Fig, Io.-The Unique Type of Steam Wagon made by the Yorkshire Patent Steam Wagon Co.
efficient, aimple of conatruction, easy to clean and repair, strong and reliable, and one which will not prime. The vertical type of boiler lends itself admirably to the general design of a steam wagon, because it takes up so little of the total length of the vehicle, whilst the fittings can be mounted in much more accessible positions than are possible with the majority of loco-type boilers. The efficiency is not, however, so high as is the case with the latter type. It may be generally stated that boilers of the vertical class, as used on 5 -ton or 6 -ton steam wagons, have a total heating surface of about 90 to 95 sq . ft., with about 4 sq . ft. of grate area, and the working pressure is from 200 th to 225 tb per square inch. The usual and necessary fillings include: pressure-gauge; two safetyvalves, two check-valves, and a blow-off cock. The feed water is normally supplied to the boiter by a plunger pump driven from the crank-shaft. The compound engine has all the valve motion completely enclosed and running in an oil-bath, and is provided with means whereby high-pressure steam can be supplied to the low-pressure cylinder, in order that extra power may momentarily be obtained. The change-speed gear pinions, cut from solid steel, are most often mounted on an extension of the crankshait, and mesh with machine-cut gear wheels which are mounted on the intermediate shaft, on which the differential gear is also mounted. The gears provide for two ratios of reduction from engine to road wheels; the higher one is for ali ordinary running, and the lower one is for steep hills or for very bad roads. The outer ends of the difierential shafts are fitted with chain sprockets, from which the drive is taken to the back wheels by means of chains.
The third type (fg. 9) of steam wagon is particulariy businessHike in appearance, and sound in construction and dcsign. It
is the outcome of many years' experience in the design of road locomotives, on the lines of which it is constructed. The locolype of boiler is very economical in fuel consumption, and is a very efficient stoamer. Comparing this type of boiler with the vertical type, the former can be made of a much lighter construction for a given rate of evaporation, and the smoke-box door at the forward end offers a most simple and easy means of access to the smoke tubes for cleaning purposes. No vertical boiler offers such ready means of effecting this operation. The engine, which is mounted over the boiler in this type, is in full view of the driver, and, should it become necessary to make any repair or adjustment when on the road, this can easily be effocted without, grovelling under the wagon or removing any of the load. Objection may be raised to the position of the engine, on the score of its necessitating such a long chain drive to the back axle; this objection has not been sustained in practice, as many wagons employing this form of drive have been running for lengthy periods without giving any trouble on that score. The engine, which is a compound one, is close up to the source from whence it is supplied wilh steam, and consequently receives the steam in a much drier condition; there is less condensation in the main steam-pipe, because the length of this is reduced to a minimum. The short steam-pipes should tend to lessen the risk of their being broken from the sagging or twisting of the frame, a fault which is not unknown with vehicles having the engine a considerable distance from the boiler. This type, like types I and 2 , also has two change-speed pinions, mounted on an intermediate shaft. These pinions may be of the sliding type, or may be operated by means of dog-clutches. The pinions mesh with two wheels that are mounted on a countershaft, on which is also fixed a chain-sprocket, from which the drive is transmitted, through a long chain, to a chain-wheel surrounding the differential gear mounted on the back axle.' Traction-engine type of steering gear, with revolving forecarriage, is most generally adopted, and is rendered sufficiently rapid in its movement by suitable gear, operated by a diagonal shaft and wheel, from the driver's footplate.
Fig. 10 shows the general disposition of the main parts of a "Yorkshire" stcam-wagon. This machinc follows the general lincs of those of type 3, so far as transmission gearing is concerned، but its boiler is of very distinctive construction, as may be seen from the sectional vidw in fig. un; its engine is one of the verical compound type, and is mounted directly behind the driver.

Fig. 11.-The Yorkshire Steam Wagon Co.'is ingenioua Loco-type Transverse Boiler.
The Sheppee stcam-wagon, or "steam-gas " vehicle as it is emmetimes tamid, on account of the high degree of superheat to which the steam is raised, and which superhcat gives to the steam many of the characteristics of gas, is show'n in fig. 24, and, it may be seen. this wagon is entirely dissimilar to any other machine with which this article deals. The generator and paraffin burner are housed within a "bonnet." and the temperature of the steam is controlled by a very simple form of thermostat. After leaving the engine, some of the heat in the exhaust steam is utilized to heat up the feed water before it is passed into the generator; the steam then passes in scries through two condensers--one in front and one underneath the vehicle.
Another vehicle which embodies many novel and practical features is the new Leyland stcamer, the construction of which includes one of the well-known Leyland fire-tube boilers, as shown
in 6g. 18, a three-cylinder, single-acting, vertical engine, and an all-gear drive to the rear wheels.
Boilers.-The locomotive type of boiler is shown diagrammatically
of heat is provided in the mass of the heated tubes, and the rapidity of flame application by the burner, and not in a mass of heated water. The steam, too, is very highly superheated, and necessitates the use of a specialiy-designed engine with mushroom valves.

Figs. 12-15.-Fig. 12 shows the Beipaire type of fire-box construction as compared with the more usual type shown in fig. 13. Fig. 14 and fig. 15 show the form of locomotive boiler fitted by Sidney Straber a Squire, Ltd. The back of the fire-box is sloped so as to accommodate the gear shafts without unduly lengthening the frame.

Belpaire type of fire-box outer shell, and, by its side fig. I3 shows the oider form of construction. The Belpaire fre-box is a development of recent years, and its undoubted superiority over the older type is meeting with increasing recognition a mongst boiler makera. The sloping back plates of the fire-box, as shown in fig. 15, are Intended to give plenty of room for the housing of the change-speed gearing without undue lengthening of the vehicle or reduction of the area of the fire-grate.

Fig. 19 ahow one form of parafinin burner, which type is used in conjunction with semi-flash boilers. The fuel is first vaporized. by being passed through a heated coil.
Steam Engines for Vehicles and Tractors.-The Beatiey superheated steam engine, which is fitted to Colonel Crompton's tractor, is shown in fig. 20.

It has four high-pressure cyfinders, and four in which low-pressure steam is operative. In a number of teats which were made

Figs. 16, 17, 18.-Fig. 16 shows the Toward Vertical Boiler, Gig. 17 Allcy \& MacLelian's Sentinei Water-tube Boiler, and fig. is the Vertical Snoke-tube Boiler fitted on Leyland Steam Wagons. The smoke tubes in the last-named boiler are provided with copper sleeves to prevent corrosion.

Figs. 16. 17 and 18 show vertical boilera made, respectively, by Toward, of Newcastle, Alley \& MacLeHan, of Glaspow, and the Leyland Co., of Leyland. The smoke tubes of the last-named boiler are provided with copper slecees, the object of which is the prevention of corrosion of the outer surfaces of the tubes. Allcopper tubes have ieen tried, but they are too soft to withstand the abrasive action of the fine particles of coke which are ejected from the fire.
In flash or semi-flash boilers, or steam generators, such as are fitted by the Darracg-Serpollet Co., the Sheppec Motor Co., of York, and to the tractor made to the designs of Colonel Crompton, C.B. (fic. 26), only a very small volume of water is at any time in the tubes. The tubes are exceptionally strong and thick, and they are made of cold-drawn steel; the water is only foreed into them stroke for stroke of the engine. The essential difference between this class of generator and any ordinary motor-wagon boiler, whether of the water-tube or fire-tube patterns, is that the reserve

Fic. 19,-The Lune Valley Paraffin Burner.
with an engise of this type it was found ponible to work it on an expenditure of 13 io of water per brake-horse-power hour. Another interesting auperheated steam engine is the two-
type does not neoemitate the fitting of eccentrica; the second system entails the use of one eccentric for each cylinder; whilst Stephenson's system necessitates the provision of two eccentrics per cylinder.

Fic. 20.-The Bentley Eight-gylinder Diagonal Tandem-compound Superheated-Steam Engine.
cylinder, double-acting engine made by the Sheppee Co., and illustrated in fg. 21. In this engine the cam-ahaft by which the steam and exhaust valves are operated is situated midway of the cylinders' length, and is driven by bevel gearing from the crankshaft. Fig. 22 chows a combined steam and hand-operated water pump, for use in conjunction with cither of the engines mentioned.

'Fig. 21.-The Sheppee Motor Co.'scompact Doublencting Superheated "Steam-gas " Engine.
The Sentinel wagon, built by Alley \& MacLelisn, Ltd., 'is perhaps the only heavy steam wagon with a two-cylinder, simple, double-acting engine controlled by cam-actrated poppet valves; this engine is shown in section in ing. 23, and, in some reapects, it greatly resembles the Sheppec engine.

The four special engines already named-those by Leyland, Bentley, Sheppee and Alley \& MacLeilan-differ totally from the type which is fitted moot ustrally on steam-propelled commeroial motors, yet they are very practical emmples of apecial practice. The majonity of steam vehicles are provided with twocylinder compound engines, in which the steam distribution is effected and controlied by one or other of the proved link motions, euch as the Joy, the Salms or the Stephenson. The first-named

Sheam Tractors.-The great popularity which the light steam tractor enjoys is undoubtedly due to its extreme usefulness in cases where the employment of steam wagons could not prove remunerative. For brickmakers, builders, market gardeners and a host of others whose business demands that separate loads of heavy material must be moved from place to place without involving terminal delays, the tractor offers a simple and ready means of attaining the desired end. The first coat is comparativoly low, and such a "steam horse" can be kept constantly at work if there is sufficient demand. A steam tractor is economical and efficient; it can be ueed on roade where a steam wagon would be impracticable on account of ita

Fig. 22.-The Sheppee Combined Steam-driven or Hand-operated Water-pump.
grest axle weight, and, when not used for hauling, it can be put to other work such as driving pumps or builders' machinery, or for a host of other purposes requiring a portable power installation. The fact that the motor is separate from the wagon, or trailer, which conveys the load, and can haul a loaded trailer to its destination, leave it, and return with, or for, another loaded trailer, without waiting for the first load to be unshipped, not only makes this class of motor extremely useful to agriculturists and others, but it makea for greater efficiency, in a large number of cases, becsuse the power unit is not allowed to stand idle during the loading or unloading operations. Another vital point is the low ennual cost of maintenance.

Since the passing of the 1903 Motor Car Act, and the coming into force of the rgo4 Heavy Motor Car Order, many of the well-known makers of road locomotives have tumed their attention to the production of a machine which would come within the prescribed constructional limits, and would meet popalar demand. These machines are buitt on proved traction-engine lines, but with all the parts of suitably reduced size so far as is consietent with trength and the work which the machines are
called upon to perform. The locomotlve type of boiler, with large fire-box, a heating suriace of about 6 s sq . ft ., and a grate area of some 3 sq . ft ., is used by the leading makers.

Fio. 23.-Alley \& MacLellan's Twin-cylinder Steam-engine as fited to the Sentinei wagons. The steam and exhaust ports are operated by a cam-shaft.

Some of the early tractors were fitted with single-cylinder engines, but, although this type is still supplied by several makers, the more general practice is to provide a compound engine, with a multiplying valve which admits high-pressure steam into the low-pressure cylinder, thus enabling the engine to develop considerabiy more than its normal power for short periods. The engine is mounted ovet the boiler, with its crankshaft at right angles to the axis of the barrel. Two changes of gear ratio are usually provided; one for normal running, and a lower one for very soft ground or steep hills. The driving axle is of the differential or live type, and provided with means for locking the compensating gear and rendering it inoperative

Fig. 24.-The Sheppee "Steam-gas", or Superheated Steam Vehicle.
when necessary, as would be the case if one driving-wheel were on hard ground and the other one on soft or greasy ground. A winding-drum is fitted, and this may be driven by the engine without, at the same time, driving the tractor: this result is
attained by making the dtum free on the axle but providing' means of securely locking it thereto when desired. A flywheel generally fitted to one end of the crank-shaft, and this may be used for driving external machinery.
Many makers have recently given much attention to the improvement of the spring-suspension systems of their reapective machines, and chief amongst these is William Foster \& Co., Ltd., of Lincoln, in which company's "Wellington" tractors the effective spring base has been so vastly increased that it may safely be termed the most stable of steam tractors. The life of all the working parts of a tractor may be considerably lengthened by the elimination of road shocks, or the prevention of their transmission, through the gearing, to the engine and the boiler plates. Foster's tractor ia illustrated, in diagrammatic form, in fig. 25.

Fic. 25.-Foster's " Wellington "Compound Steam Ttactor with outside spring suspension.

An ingenious machine of the tractor class is that built to the designs of Colonel Crompton, and shown in fig. 26. This machine is intended for military purposes, or for operation in undeveloped countrics. Steam is generated in a "semi-flash" boiler, and is used expansively in a four-pair, diagonal-compound engine of the type shown in fig. 20. A two-speed epicyclic gear is enclosed by the flywheel casing, and the power is then transmitted. by worm gearing, to a differential countershaft, and from sprockets on the ends of this shaft the drive is finaliy transmitted to the 7 ft. diameter road wheels by means of side chains. In this tractor, very fong bearing springs are ermployed, and these are situated below the axie, so that, instead of the springs resting on the axle boxes, the whole frame and the power plant is suspended from the axle boxes. When hauling a load, the winding cable is permanently secured to the drawbar, and, when the machinc becomes "bogged "or is otherwise unable to haul ite trailer directly by the drawbar, a single bolt may readily be removed from the drawbar, and the winding cable may then be paid out as the tractor proceeds alone. The trailer may then be hauled up by means of the cable. The average of a number of tests with this machine, made while hauling a gross load of 8 tons, showed that its burners consumed from -65 to 85 of a gailion of shale oil for each mile travelled, and that the consumption of water was at the rate of 5 gallon per mile. The gross weight of the machine, with sufficient fuel and water for well ower 100 m . of running, is aboat 7 tona.

Vehicles Driven by Internal-Combustion Engines.-The general principles of the working of a steam engine are better understood than are those of the gas or oil engine, owing to the wide use of the former class of prime mover since the early part of last century, but it is beginning to dawn upon the public at large that the internal-combustion engine, or the "petrol " motor, as it is more popularly termed by those who talk or write about motor vehicles, is even more simple than the steam engine.
The fundamental reason for the use of the words "internal combustion " is that the fuel, in the case of the petrol engine, is burnt (or fired) inside the working cylinder, whereas it it burnt externally in the case of a steam engine, i.e. underneath the boiler or generator. The number of units of heat which can be turned into useful work is very much greater in the casc of internal combustion than of external combuation, the efficiency of the petrol engine in this respect being, on the average, about three times as great in practice as is found to be the case with typical steam engines other than those where bighly-superbeated
steam is used, and where the whole of the parts are maintained in the best condition.'. The amount of petroleum spirit, or of paraffin, required to propel a steam vehicle 1 m . would, other conditions being equal, propel a yehicle fitted with an internalcombustion engine over a distance of 3 m .

The essential parts of any internal-combustion system are: the carburetter; the engine; the radiator; the clutch; the chango-speed gears and the final transmission. The carburetter is a vessel in which the liquid fuel is converted into a combustible gas or vapour, for, as there is no connexion to any gas main, the ordinary petrol engine has to make its gas "on the premises." The production of the gas is automatic, and calls for practically no attention from the driver, because, once the engine is started, the necessary aspiration to draw through the correct quantities of air and fuel is provided by the action of the valves and pistons.

A smart turn of the starting handle is required to set the pistons and crankshaft in motion, so that an initial supply of the combustible mirture may reach one of the cylinders. This first charge of gas is automatically ignited by an electric apark, the current for which is furnished and controlled without the necessity for any hand regulation, and there is then nothing

Fio. 26.-Colonel Crompton's Superheated Steam Tractor.
further for the driver to do, as regards power, except to move a convenient lever which opens or closes a "throttle" valve between the cylinders and the carburetter.

An internal-combustion engine would get very hot if no precaution were taken to cool it, and it is usual to surround the cylinder with water spaces: These spaces are called jackets, and the water is forced through thern, either by a pump or by thermo-siphon (natural circulation) action. It is expedient to keep down the weight of water, and for that reason pipes, tubes or small boxes are built up in such a manner that a large cooling surface is exposed to the air. A fan, which is driven from the crankshaft of the engine by gear or a belt, is employed to aid this cooling by reason of the increased volume of air that passes round the outside of the components of the radiator members. The general scheme is the same, both for heavy and light motor-cars.

It is very important that the driver should have a convenient means of scparating the engine from the driving mechanism, and of putting the two in connexion again, whenever it becomes necessary, without jar or shock. The common practice is to use a leather-faced, circular member with a coned face, and to control the a mount of "grip" between this member and a corresponding enclosing member attached to the engine flywheel by means of a pedal and springs. When the driver wishes to disengage the two members, he has mercly to depress the foot lever. It will be clear that a clutch of this description can be made to engage without any difficulty, there being no fixed positions or steps such as one associates with the ordinary jawclutch, and this gradual application of the load can only be accomplished by the aid of two or more surfaces in frictional contact, and by the holding together of these surfaces by the pressure of one or more strong springs. The Hele-Shaw multiple-disk clutch gives very good results, and is casy for drivers to use in traffic.

An internal-combustion engine cannot develop power unlest
the crank-shaft can rotate at a relatively high number of revolutions, and the rate of doing work is lowest when the angular velocity is at its minimum. It is, therefore, necessary to introduce a system of levers between the engine and the road wheels, in order to permit the number of revolutions of the crankshaft to be maintained when hill climbing, or when the vehicle is carrying a heavy load, and the common practice is to introduce

Fig. 27.-The well-known 16 h.p. Two-ton Albion Chassis. three or four sets of different sizes of toothed wheels, any pair of which can be put into engagement by the movement of a single lever, which lever is placed near the driver's right hand as a rule. The lowest of these gear ratios, i.e. the one which allows the crankshaft to make the greatest number of revolutions to one revolution of the road whecls, is required for starting purposes, and the highest gear ratio, i.e. the one which allows the road wheels to make the greatest number of revolutions in relation to those of the crankshaft, is employed for high-speed travelling on the road. From the last change-speed shaft the power must be transmitted to the road wheels through a differential gear and through one or other of the types of final drive which are now employed by representative makers. The great distinction from the axle of a horse-drawn vehicle is that there must be both a mechanical connexion, yet a differential action, bet ween the two back wheels. The wheels on horse vchicles revolve loosely on the axle, and one can overrun the other at curves, but the special device known as the " differential gear" has to be introduced into all motor vehicles between the

Fic. 28.-Halley's Van or Lorry Chassis with zo h.p. Engine. change-speed gears and the driven road wheels. Such a device permits one of the two driving wheels to be driven round at a quicker angular speed than the other, the difference being determined by the radius of the curve around which the vehicle is turnmg.

The most common form of final drive is, pertaps, that in which two "roller" or "silent" chains transmit the power from
sprockets on the ends of the differential shaft to chain rings which are bolted 10 the rear road wheels. Figs. 27, 28 and 29 show typical vehicles, ranging in load capacity from 30 cwt . to 6 tons, on which the side-chain method of final drive is adopted. One of the chief advantages of the side-chain drive lies in the fact that there is, with it, less weight below the springs than with any other form of final drive. The only parts below the springa are: the fixed back axle; the chain rings (bolted to the road wheels); the road wheels themselves; the road-wheel hrakes and part of the weight of the chains. The differential gear and chain sprockets are carried in a countershaft casing, which is securely bolted to the main frame.

Fig. 29.-A typical Six-ton Petrol Wagon Chassis, by Commercial Cars, Led., Luton.
In a number of very successful vehicles the final drive is transmitted hy means of spur pinions. These are mounted on the ends of bevel-driven differential shaft, and mesh with internally toothed or externally-toothed gear rings on the road wheels. Milnes-Daimer and De Dion commercial vehicles are amongst the machines on which the internally-toothed form of gear is employed, whilst Ryknield is the most representative vebicle embodying the extcrnally-toothed form of inal drive.
The direct drive, from the ends of the differential shaft, as is shown in fig. 30, is another type of final transmission that has met with a considerable amount of success, particularly on the Leyland machines of five-ton and six-ton capacity. The differential gear and the bevel-drive reducing gear are both enclosed within a casing that is bolted to a fixed hack axle; the ends of the driving shaft pass through tunnels in the axle body; and claw pieces on the outer ends of the differential shaft engage with similar claws on the road-wheel hubs. The two last-named forms of gear are highly efficient, provided the pitch and shape of the teeth are carefully considered and the designs provide for the encasing of all the pinions and gear rings.

Fig. 30,-The Back Axle of the Leyland Six-ton Petrol Wizon.
The only other type of final drive which is used to any great entent for commercial motors is that which employs a handened and ground steel worm meshing with a machine-cut phosphorbronze worm wheel which is bolted to the differential-gear cage of a Yve back axle. The employment of this type of gear for ibe final transuission on commercial motors generally leads to
increased efficiency, on account of the ease with which all the parts can be enclosed in an oil-tight casing. It also gives silence of running. The strongest advocate of the worm drive for heavy vehicles is the Guildford manufacturer, Dennis Broa., Ltd., one of which company's machines is illustrated in fig. 31. Although there are many difficulties in the matter of the manufacture of worm gearing, they are not insurmountable, and, given proper attention at the hands of the designer, followed by

Fig. 31,-A typical Worm-driven Live-axic Chastis, by Dennis Bros., Lta., of Guildiord.
accurate workmanship, probahly no other mechanical means of transmitting power can approach it for smooth and silent operation. Both thrust bearings on the worm shaft should be on one side of the worm, to avoid lack of truth in meshing if any heating occurs between the worm and the wheel. There are many examples of the worm drive to be found in London on public-service passenger vehicles, and also on delivery vans. One of the great charms of this type of transmission is that a very large gear reduction may be obtained without making the worm wheel unduly large in diameter; this is an important factor in the design of a back axle, as every inch of rosd clearance is of value for operating on rough country roads. As a large gear reduction is thus rendered possible on the hack axie, it will readily be understood that the change-speed gear-box may be made considerably smaller than would be necessary for a beveldriven live axde, where a large gear reduction is not permissible, both on account of its size and because such a gear would be very noisy in its working.

Fic. 32. The Hallford-Stevens Petrol-electric Chassis.
Although the use of tooth wheels is still the only practical method of obtaining variable transmission for motor vehicles, the fundemental defects of transmission in this way are inherent to the system and must always be present; they are now less apparent, thanks to the remarkable improvement which has taken place in the use of suitahle matecials and improved design.

It is still the hope of some manufacturess that a form of infinitely variable change-speed device will be produced, which will

Fic. 33-70 h.p. Six-cylinder Dennis Fire-engine with Gwrynne Centrifugal Pump.
replace the step-by-step movement of toothed gearing; the two chief directions in which this has been attempted are clectrical and hydraulic. Of these two, electrical devices are really

Fig. 34-60 h.p. Six-cylinder Halley Fire-engine with CentriSugal Pump.
step hy step, and the hydraulic method is apparently the only one that permits of infinite variation. Enormous sums of money have been spent in the scarch for an effective hydraulic

Fig. 35--One of Barford \& Perkins's Water-ballast Rollers.
gear; the work of Hall, Pittler, Jannay, Hele-Shaw, Renault and others is, perhaps, the best known. It must he confessed, however, that in 1910 none of these gears could be said to be on the market for motor vehicles, although hydraulic gears were being successfully applied in connexion with other problems, such as the steering of ships, the movement of turrets, \&c.

Electrical transmission systems, too, have been tried, and appear to have been attended with more success than those of the bydraulic type. Such systems include vehicles which carry heavy batteries of accumulstors, the current from which is utilized for the driving of the vehicle by means of electric motors. Other variations include the Hallford-Stevens system, shown in fig. 32, in which it may be seen the petrol engine drives a dynamo, and the current is then caused to drive an electrie motor at each side of the chassis. Each motor drives one of tbe

Fic. 36.-Marshall's 30 h.p. Agricultural Tractor. back road wheeis, through a worm and worm wheel. The changes of vehicle speed are effected by altering the method of grouping the electrical windings of the dynamo and motor field-magnets and armatures. This system of control is known as the series-parallel, and is effected hy a single lever, which actuates a mechanical switch, or "controller."

In one of the most-recently-introduced petrol-electric systems -the " K.P.L." system, as worked by the Daimler Co., of Coventry-each of the rear road wheels is provided with a separate power unit, consisting of a four-cylinder petrol engine, which is direct coupled to a dynamotor, the armature of the latter being coupled to a worm which meshes with a worm wheel attached to the road wheel. A small electrical storage battery forms part of the system, and this receives the excess of current from the dynamotors when the whole power of the engine is not required for the propulsion of the vehicle. When the machine is being driven up a steep incline, or when it is required to travel in a reverse direction, the battery may be cailed upon to supply current to the dynamotor, and, in this manner, the power of the engine is augmented by the dynamotors' working as eiectric motors.

Still another petrol-electric system is that invented by Mr Thomas. In this system, which is at the same time the simplest and most practical forra of petrol-electric transmission, two dynamotors and an epicyclic gear are employed so that the electrical load is at no time greater than one half of the total load; consequently, the risk of a " burn out " of the windings, as the result of sudden and unforeseen periods of overload, is materially minimized.

Special Applications.-Amongst the special applicatinns of the petrol-engined commercial vehicie is the motor fire-engine, which has brought to the front in this branch several enterprising motor manufacturers, amongst whom Dennis Bros., of Guildiord, Halley, of Glasgow, and Leyland, of Preston, are prominent. The general construction of the chassis closely follows the lines of other petrol vehicles of equal load capacity, but the gear-box tail-shaft is prolonged to the after-end of the machine, and is direct-coupled to the rotary member nf a multistage centrifugal pump. In the Dennis fire-engine, the vacuum which is necessary in order to lift the water in the suction hose is obtained by mears of priming the pump chamber, further assisted by a water ejector and a small water tank which is carried on the machine. This machine is shown in fig. 33, whilst fig. 34 shows the successful motor fire-engine built by Halley's Industrial Mfotors, Lid., of Yoker, Glasgow. In the latter machine, as also in the Leyland and other fire-engines which employ centrifugal pumps, the vacuum is created by means of reciprocating air pumps. These machines have given very satisfactory results in the hands of practical firemasters, in various parts of the United Kingdom and ahroad. Merryweather and Shand-Mason, who were formerly builders of steam fire-engines, now also build petrol-engined machines, these makers favouring reciprocating water pumps.

Otber special applications of the internal-combustion motor are for grass mowing and rolling, and for road mending and rolling gravel paths, \&c. One of the latter type of machines is shown in fig. 35. In this machine a petrol or paraffin engine

Fig. 37.-45 h.p. Thornycroft Military Oil Tractor.
drives a water-ballast roller through the medium of a clutch, a simple form of change-speed gear-box, and a single roller chain. The leading roller, by which steering is effected, is also filled with water, in order to obtain the dead weight necessary for rolling. Marshall, Sons \& Co., Ltd., of Gainsborough, Thornycroft, of Basingstoke, and Broom \& Wade, of High Wycombe, have also produced special machines for agricultural and military purposes, and one of the smallest tractors huilt by the first-named maker is shown in fig. 36. The engine is one of the two-cylinder type, consuming paraffin fuel, and driving the live back axle through a substantial gear-box and a final drive of the externally-toothed type. Such a machine is well below the weight limit for heavy motor-cars. Fig. 37 shows a more powerful oil tractor by Thornycroft. This machine is the same type which was so successful in the tractor trials promoted by the British War Department in Mfarch 1909. It is capable of hauling a gross load of seven tons practically
anywhere, and even of lifting that load vertically by means of its winding cable. The engine has four cylinders, and the fuel may be paraffin, alcohol or crude oil.
(E.S.S.)

MOTRIL, a town of southern Spain in the province ol Granada, at the foot of an offshoot of the Sierra Nevads and on the edge of a rich alluvial plain, about 1 m . from the Mediterrancan and 40 m . S.S.E. of Granada, with which it is connected by a good carriage road. Pop. (1900), 18,528. The climate is semi-tropical, and the vega or plain of Motril has been found peculiarly adapted for the culture of sugar-cane and sugar-beet. In the district, and especially at Salobrefs, $\mathbf{3} \mathrm{m}$. wiest, there are numerous sugarfactories; cotton is also grown and manufactured, and alcohol, flour, soap, iron goods and cotton stuffs are among the other industrial products. The neighbourhood is rich in cinc and lead; and copper is also found. Motril itsclf is a port of the second class, but the anchorage at Calahonda, $4 \frac{1}{2} \mathrm{~m}$. mouth-east, is much better. Grapes, bariey, esparto grass, dry figs, almonds and zinc are exported.

MOTT, LUCRETIA [COFIN] (1793-1880), American reformer, was born at Nantucket, Massachusetts, on the 3rd of January 1793. She was descended on her mother's side from Peter Folger, one of the first settlers of Nantucket, and the grandfather of Benjamin Franklin; her father's ancestors, also, were among the first settiers of Nantucket. At thirteen she was sent to a Friends' boarding school, at Nine Partners, near Poughkeepsie, New York, where James Mott (1788 -x868), who like her was of old Quaker stock and whom she married in 1811, was then a teacher. In 1810 James Mott entered the employ of Lucretia's father in Philadelphia, but the business was not successful and in 1817 Lucretia opened a small school under the care of the Pine Street Monthly Meeting, but gave it up a year afterwards and in the same year was recognized by the Friends as an "acknowledged minister." Her huaband had as early as 1822 espoused the cause of Elias Hicks against the "Orthodox" Friends, and in 8827 , when the Society divided, Lucretia joined the Hicksites. Hicks's teachings on slavery had impressed both James and Lucretia; in 1830 James gave up a lucrative cotion commission business that he might not profit from the products of slave labour; and both took an active part in the campaign against slavery. About 1840 Mrs Mott also took up the cause of woman's rights. On lecturing tours she and her hushand travelled as far west as Indiant and into Maryland and Virginia. In 1848 she addreased the AntiSabbath Convention in Boston, and with Elizabeth CadyStanton, whom she had first mat in London in 1840, called a convention " to discuss the social, civil and religious condition and rights of women," which met at Seneca Falls and passed a "Declaration of Sentiments," modelled on the Declaration of Independence. Her husband, who was prominent among the founders of Swarthmore College (1864), died in Brooklyn, New York, on the 26th of January 1868; and Mrs Mott died on the 11th of November $\mathbf{r} 880$ near Philadelphia.
See James and Lucretia Molt: Life and Lellers (Boston, 1884), edited by their granddaughter, Mrs Anna Davis Hallowell.

MOTT, Valentine ($1785-1865$), American surgeon, was born at Glen Cove, New York, on the 2oth of Auguat 1785. He graduated at Columbia College, studied under Sir Astley Cooper in London, and also spent a winter in Edinburgh. After acting as demonstrator of anstomy he was appointed professor of surgery in Coiumbia College in 1800 . From 1811 to 1834 he was in very extensive practice as a surgeon, and most successful as a teacher and operator. He tied the innominate artery in 1818; the patient lived twenty-six days. He performed a similar operation on the carotid forty-six times with good results; and in 1827 he was also successful in the case of the common iliac. He is said to have performed one thousand amputations and one hundred and sixty-five lithotomies. After spending seven years in Europe (1834-r841) Mott returned to New York and founded the university medical college of that city. He translated A. A. L. M. Veipeau's Operative Surgery, and was foreign associate of the Imperial Academy of Medicine of Paris. He died on the 26th of April 1865.

MOTTEDX, PIBRRE ANTOME ($1663-1718$), English translator and dramatist, of French parentage, was born at Rouen on the 25th of February 1663 . After the revocation of the Edict of Nantes he settled in London with his kinaman and godfather, Paul Dominique Motteux. He acted as an auctioneer of pictures, and in 1706 he had a shop in Leadenhall Street for the sale of lace, stuffs, Chinese and Japanese commodities, duly advertised in the Spectator by his friend Richard Steele. He had not been six years in England when he obtained sufficient mastery of the language to edit the monthly The Gendieman's Journal, which contained verses by himself and by the chief wits of the day. In 1693 he edited the third book, hitherto unpublished, of Sir Thomas Urquhart's translation of Rabelais, and in the next year printed the first and second books of Urquhart's transtation. In 1694 be completed Urquhart's work by a translation of the fourth and fifth books, which, allhough not to be compared with the racy, nervous writing of Urquhart, shows a perfect mastery of colloquial English and an intimate and adcquate sense of Rabelais's meaning. The complete translation appeared in five volumes in 1693^{-1694}, and was reprinted as The Whole Works of Francis Rabelais, M.D. (2 vols., 1708), described as the work of "Sir T. Urchard, Knight, Mr Motteux and others." His first play, a comedy in five acts entitled Love's Jest, was produced at Lincoln's Inn Ficlds in 1696, and next year followed The Laves of Mars and Venus. He wrote other works for the stage of no grcat consequence. More important than his dramatic work is his History of the Renowned Don Quixote de la Mancha (4 vols., 1701; 2nd ed., 1712), "translated from the original by many hands and published by Peter Motteux," one of the most mastcrly and spirited translations in English. His later years appear to have been given to the shop in Leadenhall Strect. He was murdered on the 18th of February 1718 at a house of ill fame in Star Court, near St Clement's Church, London, under circumstances which have never come to light. The manner of his death was no criterion of his life, which appears to have been sober and decent.
An excellent life by Henri van Laun is prefixed to the 1880 reprint (4, vols.) of J. G. Lockhart's edition of Motteux's Don Qxixote. See also a prcfatory note by Charles Whibley in vol. iii. of Sir T. Urquhart's Rabelais (Tudor Translations, 1900), reprinted from a rare 1693-1694 edition.

HOTYEVILLE, FRAYCOISE BERTAUT DE (c. 1621-1689), French memolr writer, was the daughter of Pierre Bctaut, a gentleman of the king's chamber, and niece of the bishop-poet Jean Bertaut. Her mother, a Spaniard, was the friend and private secretary of Anne of Austria, wife of Louis XIII. At the age of seven Francoise was also made a member of the queen's household and given a pension. The influence of Richelieu, however, who wished to separale the queen from her Spanish connexions, exiled mother and daughter to Normandy, where in 1639 the young girl was married to Nicolas Lenglois, seigneur de Motteville, president of tbe Chambre des Comptes of Rouen. He died two years later at the age of eighty-two, and in 1642 the queen summoned Mme de Motteville to court, being now her own mistress by the death of Richelieu and Louis XIII. Through all the intrigues and troubles of the Fronde Mme de Motteville preserved the honourable reputation of being devoted to her mistress without any party ties or interests. Some letters of hers are preserved-especially a curious correspondence with "La Grande Mademoiselle" on marriage, but her chicf work is her Memoires, which are in effect a history of Anne of Austria, written briefly till the date of Mme de Mottevillc's relurn to court, and then with fullness. They give a faithful picture of the life of the court at that time.

The best edition of her Memoires is that of M. F. Riaux (2noied. Paris, 1891,4 vols.). containing the essay by Sainte-Beuve from vol. y. of his Causeries du lundi. The Memoirs were translated into English in 1726 and again by K. P. Wormeley in 3 vols. 1902 For details concerning her family gee Recherches sur Medame de Mowevill el sur sa famille, by Chartes de Beaurepaive (Rouen, t900).

EOTHL, FRLIE (1856-), German conductor and composer, was born near Vienna, and had a successful career at the Vienna Conservatoire. He became known as a gifted conductor
of Wagner's music, and in 1876 was engaged for the Ring des Nibelungen at Bayreuth. From 1881 to 1903 he was conductor at the Carlerube Opera, and made a wide reputation for his activity there, particularly in producing the works of Wagner and Berlioz. In 1886 he directed the performance of Trisfan und Isolde at Bayreuth. In later years he visited London and New York, and became known as one of the most brilliant conductors of his day; and in 1904 be was made a director of the Academy of Music at Berlin. He composed some operas, of which Agnes Bernawer (Weimar, 1880) was the most successiul, and numerous songs and other music.

MOTTO (an Italian word, from Late Lat. multum, a low sound, a mutter or murmur, cf. mutere, to mutter; the Latin word also gives Fr. mol, word), a "legend" consisting of a significant phrase or sentence, sometimes even of a single word attached to an emblem or device, and, in heraldry, placed on a scroll below the achievement or above the crest. Mottoes express sometimes a sentiment, a favourite principle, emphasize the meaning or symbolism of the emhlem or device, and, in heraldry, often allude to one or more of the "charges" in the coat of arms, \&c.

There are many publications which give lists of some of the bestknown mottoss, such as Fairbaim. Book of Family Crests, ${ }^{1856}$; Wachbourne, Book of Family Cresis (2 vols., 1882); Chassant and Tansin, Dictionnaire des devises hisloriques et héraldiques, $\& c$. (1878); Diclitz, Die Wahl-und Denkspruche, Feldgeschreic. Losungen, Schlachtund Volksrufe, besonders des Mittelallers und der Newzeit (4 vols. 1888). Gatfield's Guide to Printed Books and MSS. raloting to Heraldry (1892) contains a bibliography.

MOTYA, an ancient Phoenician settlement in Sicily, on a low island [mod. S. Panfaleo), 5 m . north of Lilybaeum [mod. Marsala]. It was the centre of the Phoenician trade in Sicily. It was accessible from the mainland by a mole, which is stil used as a track for wagons. The line of the dity wall, of rough rectangular blocks of stone without mortar, may still be traced all round the coast, with two gates, one on the north towards the mole, which is still in part preserved, and one on the south. The date of its foundation is uncertain. In 398 b.c. it was taken after a desperate struggle (which, owing to the height and strength of the houses, continued even after a breach had been made in the city wall) by Dionysius of Syracuse, but recovered in the next year: it was, however, abandoned by the Carthaginlans, and its place taken by Lilybacum on the mainland.
(T. As.)
 French astronomer, was born at Madrid of French parents on the 24th of August 1821. At the age of sixteen he entered the naval school at Brest, and after serving with diatinction in various ships, was appointed in 1856 to the command of the "Bisson." Towards the close of the Franco-Pruscian War he made an admirable defence of Brest, and his organdsation of the French expedition to the island of St Paul to observe the transit of Venus in 1874 obtained his election to the Academy of Sciences and his promotion as commander of the Legion of Honour. On the 27th of June 1878 he succeeded Urbain Leverrier as director of the National Observatory of Paris, and was raised to the rank of rear-admiral. The fourteen years of his directorship were marked by a great increase in the activity of the institution. The observatory grounds were enlarged; two powerful instruments of the novel kind known as conds equatorials were installed; a spectroscopic department was established, and the gigantic task of re-observing all Lalande's stars was completed. He publiabed twenty-one volumes of Annales, as well as the first two volumes of the great Catalogue de C'obsersatotre de Parts; founded the Bulletin astronomigue, and set on foot two schools of practical astronomy, one at Paris, the other at Montsouris, for the special instruction of naval and militaty officers, explorers and surveyors Hils most memorable work, bowever, was the mauguration of international operations for charting the heavens. The adveaces in stellar photography made by Paul and Prosper Henry and others suggested to him the magnificent idea of obtaining, through the collaboration of estrenomers in all parts of the world, ats
autographic picture of the entire spbere containing more than fifty million stars, which should faithfully record in future ages the state of the sky at the end of the roth century. Although he did not live to see its completion, he had the satisfaction of knowing that the ultimate success of this vast scheme was assured. He died suddenly at his country seat at Wissous, near Antony, on the 25 th of June 1892.

- See Month. Nolices Roy. Astr. Society, liii. 226; Observatory, xv. 305 (D. Klumpke): Nature, xivi. 253; Rapport annuel sup l'observaleirs de Paris pourl'annde 1892.
(A. M. C.)

MOUFLON, or Murlon, the wild sheep (Ovis musimon) of Corsica and Sardinia, where it is now very local. The ewes are either hornless or provided with quite small horns, the hornless form being probably characteristic of one island and the.horned of the other. The rams carry good horns, and in summer show a conspicuous light saddle-shaped mark on the otherwise dark-coloured coat. The Armenian mouflon (O. orientalis), of Persia, Armenia, and the Troodos range of Cyprus, is typically a larger and redder sheep, with the horns curving in the reversc direction; but the Cyprian race is small. (See Sheep.)

MOULD. (x) (O. Eng. molde, from a Teutonic root meaning to grind, reduce to powder, cf. "meal"), loose fine earth, rich in organic matter, on the surface of cultivated ground; especially the made garden soil suitable for the growth of plants. In the sense of a furry growth, consisting of minute fungi found on animal or vegetable substances exposed to damp, the word may be either an extension of "mould," earth, or an adaptation of an carly " moul," with an additional d due to "mould." "Moul" is a Scandinavian word, cf. Swed. mogla, to grow musty, and the Eng. colloquial "muggy." (2) A form or pattern, particularly one by means of which plastic materials may be made into shapes, whence " moulding," the form which the material so shaped takes. The word comes through the O. Fr. modle, molle, from Lat. modulus, a measure, or standard. The English " model" is another derivative of the same word.

MOULDINGS, the term in architecture for the decorative treatment given to projecting or receding features in stone, wood and other materials, by means of curved forms, whereby those features are accentuated and varied owing to the play of light and shade on the surfaces. The principal characteristics of aif the European styles are to be found in the mouldings employed in them and in their ornamental decoration. In some of the earlier styles, such as the Assyrian and the Persian, there are no mouldings: coloured bands in brick, enamelled tiles or beton, were deemed sufficient to mark the divisions of their storeys or to decorate their buildings. The Egyplians employed two mouldings only, the cavello (fig. r), a deep moulding sometimes of great dimensions which crowned their pylons, temples and decorative shrines, and the corus, a semicircular projecting moulding which was carried above the architrave and down the quoins of their buildings. The Greeks were the first to recognize, in their temples, the special value possessed by mouldings which, nccupying an intermediate position between
Fint
Cavetto
Tons

Fig. 1.

Fig 2.

Fia. 3.

Fig. 4
the ornamental sculptures and the simple architectural lines of the main structure, gave a richly decorative effect to the latter without interference with the beauty of the former.

The Classic mouldings may be divided into two classes, simple and compound; to the former belong the cavetio (of sonall dimensions when compared with the Egyptian cavetto) and the Scotia (fig. 2), employed for the bases of columns, which are seen below the eye, both concave mouldings, whilst the ovolo or echinus-Fr. ore or guart de rond-(figs. 3 and 4)
and the torus are conver mouldings. The compound mouldings are those composed of curves of contrary flexure, such as the cymurecta or cymatium (fig. 5), of which the upper part is concave and the lower convet, a moulding constantly amployed for the upper memher of the cornice, and the cyma-reversa or ogee (fig. 6)-Fr. falow-in which the upper portion is convex.

Fic. 5.

Fig. 6.

Fic. 7.

The Greeks sometimes varied the ogee moulding, the upper portion of which is turned back and the lower portion brought forward, and to this the term quirked ogee (fig. 7) is given. Another Greek moulding. of compound form is the bird's

Fig. 8.

Fig. 9. beak (fig. 8), employed as a drip moulding above the conona. Of smaller dimensions is the astragal (fig. 9), a moulding invariably carved with the bead and reel, which in Greek work is constantly: used in conjunction with the enriched echinus and cyma-reversa mouldings (figs. 18, 20) and below the necking of Ionic capitals; and the listel or fillet, employed chiefly in the separation of curved mouldings one from the other; in the cymatium constituting its upper termination (fig. 5), and in the Scotia (fig. 2) its upper and lower border. In Classic work generally the cavetto is only employed for the apophyge under the capftal and over the base, but in Roman work, as in the theatre of Marcellus, it sometimes took the place of the cymatium of the cornice. Although exiremely simple in its form, the finest Greek moulding, and the one to which the Greeks apparently attached the greatest value, was the echinus under the abacus of the Doric capital. The earliest archaic example exists in the capital of the shafts flanking the tomb of Agamemnon at Mycenae (a, fig. 10), where it consisted of a large torus decorated

Fig. 10.
with the chevion (see Capitals), and an apophyge carved with the petals of a flower; a similar decoration of the apophyge is found in two or three early Doric capitals, as at Paestum and Metapontum, but this is the only example known in which the echinus of the Doric capital was carved, though traces of painting and gilding bave been found on them. Other examples showing the gradual development of the echinus are shown in fig. 10; b being from the temple at Corinth, c from the Parthenon at Athens, d from the portico at Delos, c an early Roman example (c. 60 B.c.) of the temple at Cori, and f from the theatre of Marcellus, where it nearly approaches the quarter round always employed in late Roman work and in the Renaissance.
There is one other important decorative feature which forms the most characteristic feature of the bedmoukd of the Ionic cornice, viz. the dentil comice (fig. 1I). derived originally from the ends of the squared timhers which carried the comice of the primitive Ionic temple, and in the earlier stone examples copied more or less literally; it subsequently in the $4^{\text {th }}$ century was introduced as a part of the bedmould of the cornice of the Ionic Order, the temple of Minerva Polias at Priene in Asia Minor being one of tbe best examples. It consists of a scries of projecting blocks with intervals between them equal to half
the width of the block. In the Greek Corinthian Order it was first introduced into the Choragic monument of Lysicrates. It was constantly employed by the Romans in their temples of the Ionic and Corinthian Orders, the finest example being in the bedmould of the temple of Castor in Rome, where it is twice the beight of the other mouldings.

In the Romanesque style the mouldings consist almost entirely of rounds and hollows, the former known as the bowtel,

and in England, France, Spain and Germany employed to decorate or soften the angle of an arch mould. As the Romanesque arch frequently consisted of two or more rings of arches, projecting one in front of the other, to which rings the term "order" is sometimes given, the repetition of this simple moulding constituted an ample decoration by itself, but in the Norman work in England and the north of France there is found the constant recurrence of mouldings broken into eigang lines and other decorations coming under the head of ornamental mouldings described below. The simple bowtel (fig. 12) was retained in France far into the Gothic period, but in the Early English style the mouldings (fig. 13) became lighter, being more boldly cut than in the Romanesque styles. Here again, as in the earlier style, each ring or order is enriched with a succession oi alternate rounds and hollows, the latter very deeply cut, and a few small fillets. The bowtel also is brought cut to an angle which is sometimes emphasized by a small fillet; this is sometimes called the keel moulding from its resemblance in section to the bottom of a ship. Sometimes the angle of the ring is splayed, and the moulclings are worked on the splay, and this is very often found in the mouldings of the ribs of a vault (fig. $13 a$), giving greater lightness to the rib. The mouldings of the Decorated period (fis. 14) are more diversi-

fied than those of the Early English, and the hollows towards the end of the period become shallower and hroader, ogees being frequently employed. One of the chief characteristics of the Perpendicular period (fig. 15) is the prevalence of large shallow hollows and the employment of tyo oges in close contact with the convex sides next each other.

The French mouldings of the Gothic period in Normandy and adjacent parts follow very much on the same lines as those in England, but in the south of France and in Germany theyare very much stmpler, and one rarely finds the deep hollow which.forms the chief characteristic of English mouldings. In French flamboyant and late German Gothic work the meuldings run through, penetrating one another; these in Germany were sometimes cut off, having the appearance of the smaller stems of a tree from which some of the boughs have been lopped.

Ornamental Mouldings.-Although the mouldings in Greek and Roman architectural works are in general form much tho
same, they vary materially in their profiles and also in the refinement of their enrichment with carving. It is probable that the earliest decoration of mouldings was confined to the painting only of their surfaces, and in one or two of the more archaic examples traces of painting only are found on them. The desire to accentuate the ornament would seem to have led the Grecks at a very early date to incise or raise in relief the decorative designs which originally were painted only; at first this was done very sparingly, and in the earlier huildings but few mouldings were employed; in course of time they increased in number, and in the Augustan period in Rome the carving extended to the flat surfaces of the corons, and the fascia and soffits of the architrave.

The four principal Classic mouldings, so far as their enrichment with carving is concerned, were the cyma-recta or cymatium; the cyma-rcversa or ogee; the echinus or ovolo; and the torus: The cymatium was almost always decorated with a conventional treatment of the flower of the acanthus plant, known generally as the anthemion and sometimes as the honcysuckle; the finest example is that which is found in the cornice of the north doorway of the Erechtheum (fig. 16). Although in some cases the flower of the acanthus is

Fig. 16 repeated in the Roman cymatium, the rigidity of the other lines does not seem to have appealed to the Roman sculptor, who preferred more folinge, such as is shown in the cymatium

Fig. 17.
of the Farum of Nerva (fig. 17), there being endiess variety of denign in Roman exampies. The ogee-moulding in Greek work was always carved (fig. 18) with the Lesbian leaf (Fr. rais-locoswr; Ger. Herslaub), which in Roman work received a peculiar interpretation of the original design; not understanding the

Fig. 18.

Fig. 19.
modelling of the ieaf and requiting a deeper shadow, the Roman drilled holes in it and evolved another composition of two leaves, so that the outer edge of the Lesbian leaf formed a trefoil cuap (Fr. talon irefe), constituting a new description of border, as shown in fig. 19, from the temple of Castor at Rome.

The ovolo moulding, whether employed in the bedmould of a cornice, on the captal of ant anta, or in the lonic capital, was always carved (fig. 20) with the cgg and dart entichment (Fr. ore al dard; Ger. Eierslab), which was spread out wider by the

Roman carver, while holes plerced on esch side of the tongue changed its desigh into that of the egg and tongue (fig. 21). In both the enriched ogee and the carved ovolo the design was never complete without the bead and reel underneath (figs. 20 and 21), there being always two beads and four reels to each leaf or egg. When employed as the crowning moulding of an architrave, the ogee is always capped by a fillet; and the same applies to the cymatium of the comice. When the ogee moulding was of small size and employed in a sibordinate position, as is constantly done in Roman work, crowning the modillioa
or subdividing the fascia of the architrave, a simpler leaf pattern was employed.
Though not a moulding, the modillion, which was invented by the Romans to give additional support to the corona, forms part of the bedmould of the cornice, and may thercfore be described here. It consists of a small hrackct (fig. 22), the

Fig. 22. design of which was probably derived from the vertical console bracket which carned the cornice of the Greck doorways, but which in the Roman cornice was employed horizontally. The desiga of the outer side is that of an Ionic volutewithits cushion; on the inner side the volute is reversed and is of greater size, the soffit being masked by a lcaf.
The torus moulding of the base in early examples was fluted but not carved, and the earliest example so treated is that cound in the base of the columns of the Erechtheum, where it was enriched with the triple guilloche. In the tempic of Apollo Branchidae, near Miletus in Asia Minor, where they would seem to have attempted to rival the figure decoration of the temple of Diana at Ephesus, the torus mouldings were claborately carved with the acanthus plant and the laurel leaf; but it was in the Augustan age in Rome that the greatest claboration was given to the torus of the hase; in the Ara Pacis, set up in A.D. r3, it was carved with the double guilloche; the finest Roman example of an enriched torus being that of the base of the Trajan column in Rome, which is carved with laurel leaves tied at intervals with bands.

The principal enriched Byzantine moulding is that known as the Venetian dentil (fig. 23), in consequence of its constant
 employment in Venice and the towns in its vicinity. Its earliest appearance, however, is in Sta Sophia at Constantinople (A.D. 537). The other carved Byzantine mouldings are those which throughout Syria form richly carved string-courses, taking the place of the Classic cornice, and the hood moulds of arches. The Byzantine string-course, which is

Fic. 24 the zigzag or chevron (figs. 84, 25), of which there are many varieties; then iollow the single and double billet (fig. 26), the double cube, the

Fig. 25. ball flower (fig. 30) follow, these being all carved in the hollow
found in St Mark's, Venice, and in most of the towns bordering on the Adriatic, is a cyma-recta carved with the acanthus leal.

The earichments of the mouldings of the Romanesque style are of great variety; in parts of Italy and in the south of France they were largely influenced by Byzantine work; but In Sicily, Apulia, Normandy and England the Normans introdaced a series oi purely geometrical forms in which the chief peculiarity is the mare occurrence of foliage. The most characteristic example is that of indented, the beakhead (fig. 27), atc. In the transition period in England, flowers and foliage begin to be introduced, and the rosette (fig. 28), the dog-tooth (6g. 29). which develops into a four-lcaf flower, and the

Fig. 26.

Fic. 27.
of cavelto mouldings. In the Decorated and Perpendicular styles, the flowers and foliage introduced in mouldings become more natural, till one reaches the Tudor rose (fig. 31), e precise copy of the flower, beyond which it was difficult to go.

In the 16th century the enrichment of mouldings passed through a transitional stage, being half Gothic and half Classic. and on the introduction of the purer Italian style Roman profiles and decoration were again employed. The Greck revival at

FIc. 30.

Fig. 31.
the commencement, and the Gothic revival in the middle, of the 19th century naturally brought about a rcaction in favour either of purer Classic forms or of Cothic work, but the vernacular types could not be displaced by the passing fashion, and the influcnce of Robert Adam is again paramount to-day.
(R. P. S.)

MOULIN (Fr. moulin, a mill), in physical geography, the name given to the swirling cascades which are formed by glacicr streams pouring into crevasses, and result in the formation of giant's kettles.

MOULIN QUIGNON, a quarry neat Abbeville, France, celebrated for the discovery in 1863 by Boucher de Perthes of a buman jaw-bone believed to be referable to the Quatemary period. By his collection of ftints Boucher de Perthes had been the first to attempt to establish the existence of man in remote ages; but it had been objected that if the filnts were indeed the work of man, human remains would have been found in association with them. Considerable excitement therefore was created both in England and France by the "find " of bones at Moulin Quignon, and a commission of fnquiry was appointed. The report was favoarable to the genuineness of the relics, but latterly doubts have arisen as to whether they can be regarded as earlier than the Neolithic age.

MOULINS. a town of central France, capital of the department of Allier, 121 m . by rail N.W. of Lyons. Pop. (1906), 18.997. The town is situated on the right bank of the Allier, which is here crossed by a remarkable bridge of the 18 th century about 1000 ft . in length. Moulins did not attain any importance till the 14 th century, before which it consisted chiefly of some mills belonging to the dukes of Bourbon. The medieval town occupled a small area, the boundaries of which are marked on the N.E. and S. by the central boulevards occupying the site of the old moats. The modern town, expanding from this nucleus, is limitod on the east and south by the railway, the southern portion being traversed by agreeable promenades. To the north is the spacious avenue known as the Cours de Bercy. close by the hospital and the lycte. The more interesting buildings lie within the old enceinte. The chicf of these is the cathedral, which consists of a huge choir of the 15 th and 16th centuries, and a nave in the early Gothic style but modern in construction and terminated by two towers with stone spires rising to a heiglit of 312 ft . The church possesses a fine triptych attributed to Domenico Ghirlandajo (d. 1494), and finc windows of the 15th and 16th centurics. Among the oldest huildings in the town are the square tower of the 14th century (used as a prison) which is the chief relic of the chatcau of the dukes of Bourbon, and a belify of the 15 th century. Part of an old Jesuit college serves as the court-house, which contains an archaeological museum. The library, which possesses a valuable Bible of 1115 , is part of the hotel-de-ville. Numerous mansions of the 15 th and r6th centuries border the streets of the
old quarter of the town. There is a statuc of the poet Thbodore de Banvilie, born at Moulins in 1823. The town is the seat of a prefect, a bishop, and a court of assizes, and has tribunals of first instance and commerce, and a branch of the Bank of France. Yzeure, if m. E. of Moulins, has an interesting Romanesque church (r 2 th century); 7 l m. W.S.W. of Moulias is Souvigny, formerly famous for its Cluniac priory. Its church, a fine building of the Inth and wath centuries, restored in the 15 th century, contains the splendid tombs of Louis II. and Charles I., dukes of Bourbon in the 15 th century, and other tombe of the Bourbon family, now in ruins.

Moulins became the residence of the dukes of Bourbon about the middle of the 14 th century, and capital of the duchy towards the end of the $15^{\text {th }}$ century. In 1566, under Charles IX., an important assembly of notables was held in the town, at which the judicial system of France was reorganized.

MOULMEIN (or Maulaein), the port and headquarters of Amberst district and Tenasserim division of Lower Burma. The population in 1901 was 58,346 , and the increase in the last quarter of a century has been very slight. Ship-building, which formerly was an important industry, nas now been given up. but there is still a considerable export of teak and rice, and tbere are several steam rice-and saw-mills. The total exports average more than a million sterling. Three steamers run weekly to Rangoon. Germany and Siam are represented by consuls; Pérsia, Denmark, and Norway and Sweden by vice-consuls; and Italy and the United States of America by consular agents. The garrison of Madras native infantry, formerly stationed in the town, was withdrawn in 1898 . The town, which has the appearance of being on a river, the Salween, is reaily on the sea, with the island of Bilugyun in front. It is one of the most picturesque ports in the East. There is a branch of the Bank of Bengal, and two newspapers are published-one in English and one in Burmese.

MOULT, a term for the shedding of feathers at the periodic renewal of the plumage by birds, and so transferred to the periodic shedding of the old skin, shell, \&c., by other animals. The word is seen in O. Eng. in the verb bimatian, to exchange; from Lat. mutare, to change; cf. mod. Ger. mausen, mausern; tbe carlier forms in English are mout, mule; the insertion of the l, as in "fault," dates from the 16 th century.

MOULTON, LOUSSE CHANDLER ($1835-1908$), American poet, story-writer and critic, daughter of Lucius L. Chandler, was born in Pomirel, Connecticut, in 1835 . In 1855 she married a Boston publisher, William U. Moulton (d. 1898), under whose auspiees her carliest literary work had appeared in The True Flag. Her first volume of collected verse and prose, This, That and the Other (1854), was followed by a story, Juno Clifford (1855), and by My Third Book (1859); her literary output was then interrupted until 1873 when she resumed activity with Bod-time Stories, the first of a serics of volumes, inciuding Firclight Stories (1883) and Stories fold at Twilight (1890). Meanwhile she had taken an important place in American literary society, writing regular critiques for the New York Tribune from 1870 to 1876 and a weekly literary letter for the Sunday issue of the Boston Herald from 1886 to 1892 . In 1876 she published a volume of notable Poems (renamed Swallow-fights in the English edition of 1877) and visited Europe, where she began close and lasting friendships with leading men and women of letters. Thenceforward she spent the summers in London and the rest of the year in Boston, where her salon was one of the principal resorts of literary talent. In 1889 another volume of verse, In the Garden of Dreams, confirmed her reputation as a poet. She also wrote several volumes of prose fiction, including M iss Eyre from Boston and Other Storics, and some descriptions of travet, including Lasy Tours in Spoin (1896). She was well known for the extent of her literary influenee, the result of a sympathetic personality combined with fine critical taste. She died in Boston on the Ioth of August 1908.
See Lilian Whiting. Lowise Chandler Mowllon (Boston, 19ro).
MOULTRIE, JOHN (i799-1874), English poet, was born in London on the joth of December 1799 . He was educated at

Eton, and many of his best verses were contributed to the Elonion. He entored Trinity College, Cembridge, in 1819, and in 1832 began to reside at the Middle Temple. Three years later he was ordained, and was presented to the living of Rugby by Lord Craven. Ai Rugby he became intimate with Thomas Arnold, to whom two of his best sonnets are addressed. He died at Rugby on the 26th of December 1874. He published several volumes of verse during his lifetime, and a compiete edition of his poems was published (2 vols., 1876) with a memoir by Derwent Coleridge. They include, a mongst much that is dull, some popular pieces, "Godiva," "Three Minstrels," an account of meetings with Wordsworth, Coleridge and Tennyson, "My Brother's Grave," and some excellent hymns.

MOULTRIR, WILLIAM (1730-1805), American soldier, was born in Charleston, South Carolina, on the 23rd of November 1730. His father, a physician, and a graduate of the University of Edinburgh, migrated to Charleston before 1729. The son was elected to the Commons House of the Assembly in 1754, 1769 and 1772 ; and in 1760 he was captain of a provincial regiment in the expedition under Governor William H . Lytelton against the Cherokees. Although he was connected by many ties to the British, he espoused the American cause on the outbreak of the War of Independence, and was a member of the first provincial congress (1775) of South Carolina, which in June made him a colonel of the Second South Carolina regiment; and he was 8 member of the second provincial congress (1775-1776). On Fort Johnson, on James Island in Charicston harbour, he raised what is said to have been the first American hattle-flag-blue, with a white crescent in the dexter corner, inscribed with the word "Liberty"; the flag was devised by him in September 1775. In March 1776 he took command of a palmetto fort which he had built on Sullivan's Island, off Charleston, which he held against the attack of Admiral Sir Peter Parker on the 28th of June, and which soon after the battle was renamed Fort Moultrie by the General Asscmbly. He was thanked by Congress, was made a brigadiergeneral in the continental army in September 1776, and was placed in command of the department of Georgia and South Carolina. He dislodged the British from Beaufort, South Carolina, in Fcbruary 1779, and in April made it possible for the city of Charleston to put itself. into a state of defence by delaying the advance of General Augustine Prevost. He was one of those who advised against the surrender of Charleston, where he commanded the garrison until the arrival of General Benjamin Lincoln. His imprisonment after the surrender of Charleston (May 1780) lasted until his exchange with others for General Burgoyne in February 1782. In October 1782 he was made a major-general. He was governor of South Carolina in 1785-1787 and in 1792-1 794. He died in Chatleston on the 27th of September 1805.
He wrote Memoirs of the Revolution so far as it Related to tho States of North and South Carolina (2 vols., 1802).

MOUND, now used in the sense of a pile or heap of earth, artificial or natural, especially such a pile raised over a gravo or burial-place, a tumulus, or as a means of defence, and so used to translate Lat. agger. The earliest use in English is for a hedge or other boundary bet ween adjoining lands; this only survives dialectically. The word is obscure in origin, hut was early influenced by "mount," i.c. hill; Lat. mons, montis. A connexion with O. Eng. murd, guardianship, hand, has been suggested. The "orb," i.e. a glohe of gold surmounted by a cross, as forming part of the regalia (q.v.), is often known as a " mound "; this is a translation of Fr. monde; Lat. mindus, world.
MOUND-BUILDEAS, in North America, the name given to the prehistoric inhabitants who chiefly centred in the valieys of the Mississippi and Ohio, and who seem to have possessed a measure of civilization far in excess of that of the North American Indians when first met by the whites. The remarkable mounds, which have given occasion for the name, are fortified enclosures and tumuli of the most varied appearance, round, conical, or in the shape of animals. They are scattered
over an immense tract of conntry from the great lakes to the Gulf of Mexico, and from the Rockics to the Atlantic, but are spocially frequent in the valley of the Mississippi, along its left tributaries, in Arkansas, Kansas and the basin of the Ohio. But the old theory that the mound-builders were a distinct race of highly civilized agriculturists, who had lived from remote antiquity in the regions of the mounds and were eventually exterminated by the nomadic hordes coming from the northward, represented to-day by the present Indians, is no longer supported hy the priacipal American ethnologists, who hold that the Indians are their descendants.
In Ohio there are thousands of mounds, some in the form of circles, others four-sided and in a few cases eight-sided. Sometimes a square and a circle are united. Altar-mounds, small rounded heaps of earth, are found in Ohio. At their centre is a basin-shaped mass of hard clay showing effects of fire. These basins are 3 or 4 ft . across, and contain ashes and charcoal. Upon these altars are found many ohjects.
The most famous mound in Ohio is the "Great-Serpent," in Adams county. It lies upon a narrow ridge between three streams which unite. It is a gigantic serpent made in earth. Across the widely-opened jaws it measures 75 ft .; the body just behind the head measures 30 ft . across and is 5 ft . high; and, following the curves, the length is 1348 ft . The tail is in a triple coil. In front of the monster is an elliptical enclosure with a heap of stones at its centre. Beyond this is a form somewhat indistinct, thought by some to be a frog.
In Wisconsin the most, interesting mounds are the effigy mounds-carthen forms of mammals, pirds and reptiles-nasually in groups and of gigantic size. Among them are buffalo, moose, elk, deer, fox, wolf, panther and lynx. Some panthers have tails 350 ft . long, and some eagles measure 1000 ft . from tip to tip of outspread wings. Occasionally the figures are cut or sunk in the earth, and near them are hundreds of simple borial mounds. It seems most probable that the purpose of these effigy mounds are totemic, and that they were objects of worship as guardians of the villages.

Further south in west Tennessee another class of mound is found. This contains graves made of slabs of stone set on edge. The simplest have six stones, two at the sides, two at the ends, one at the top and one at the bottom. Sometimes there is one of these graves in a mound, sometimes many. In one, 12 m . from Nashville, 45 ft . across and 12 ft . high, were found a hundred skeletons, mostly in stone graves ranged one ahove the other. The skeletons in the upper graves had been buricd stretched at full length. The lower graves were short and square, and the bones in them had been cleaned and plled in little heaps.
The mound-builders were Stone-Age men, and made many beautiful objects of stone, shell, bone and beaten metals, but they had no knowledge of smelting. That they were not one race is proved by a study of the skulls from the mounds,
Authorities.-E. G. Squier and E. H. Davis, Ancient Monuments of the Mississippi Valley (1847); 1. A. Lapham, Antiquitics of Wisconsim (1855); Stephen D. Pcet, Emblemalic Mounds; Cyrus Thomas, "Burial Mounds of the Northern Soctions of the United States," in the Fifth Report (Washington, 1887), and " Mound Explorations" in the Twelfth Report (1894) of the Bureau of American Ethnology.

MOUNDSVILLE, a city and the county-scat of Marshall county, West Virginia, U.S.A, on the Ohio river, 12 m. S. of Whecling. Pop. (1900) 5632; (1910) 8918. It is served by the Baltimore \& Ohio rilroad, by an electric line to Wheeling, and by boats to Pittsburg, Cincinnati and intermediate ports. Near Moundsville, at the mouth of Grave Creek, is Grave Creck Mound, one of the largest relics of the "American moundbuilders '; it is in the form of a regular cone, and is about 320 ft . in diameter at the base and 70 ft in height. Two sepulchral chambers were discovered in it in 1838 . In the upper chamber, about half-way between the centre of the bese and the apex, was a single skcteton, adorned with beads, copper bracelets and. plates of mica; in the lower chamber, directly under the upper and partly in the natural earth, were two
skeletons, one adorned with beads and the ochar whithout crnament. On the sidea and top of the lower chamber was a framework of timbers, which seems to indicate that the mound is of comparatively recent date. The city of Moundeville was formed in 1866 hy the consollidation of the rown of Moundevile (laid out on the Ohio river in 1835, and incorporated in 1832), and the town of Elizabethtown (laid out, about $\frac{1}{} \mathrm{~m}$. from the river, in 1798, and incorporated in 1830).

MOUNETSULLY, JBAN (1841-), Freach actor, was born at Bergerac, on the 28ith of February, 184r. He entered the Conservatoire at the age of twenty-ane, and took the firat prize for tragedy. In 1868 he made his dethut at the Od\&on without attracting much attention. His carecr was interrupted by the Franco-Prussian War, and the liking he developed for soldiering had almost decided him to give up the stage, when he was offered the opportunity of playing the part of Oreste in Racine's Andromaque at the Combdie Francaise in 1872. His striking presence and voice and the passionate vigour of his acting made an immediate impression, and the eventual result was his election as sociatatre in 1874. He became one of the mainatays of the Comedie Francaise, and distingaished himself in a great varicty of tragic and romantic parts. Perhaps his most famous impersonation was that of Oedipus in L'Oedife roi, a French version by Jules Lacroix of Sophocles's drama. This was first performed in the old Roman amphitheatre at Orange fin 1888. Other prominent parts in Moanet-Sully's referioire were Achille in Racine's Iphigenie en Aulide, Hippolyte in Phedre, Hamlet, the title parts in Victor Hugo's Hernani and Ruy Blas, Prancis I. in Le Roi s'amuse, and Didier in Marion Delorme. He was created chevalier of the Legion of Honour in 1889. He also wrote a play, La Bupeuse de larmes, and in 1906, in collaboration with Pierre Barbier, La Vieillesse de Don $J_{\text {man }}$ in verse.

ZOUNIER, JEAN JOSEPR ($1758-1806$), French politician, was born at Grenoble (Isère) on the 13th of November 1758. He studied law, and in 1783 obtained a judgeship at Grenohle. He took part in the struggle between the pariements and the court in 1788, and promoted the meeting of the estates of Dauphine at Vizille (July 20, 1788), which on the eve of the Revolution created an immense stir. He was secretary of this assembly, and drafted the cahiers of grievances and remonstrances presented by it to the King. Thus brought into prominence, Mounier was unanimously elected deputy of the third estate to the states general of 1789 . There, and in the Constituent Assembly, he was at first an upholder of the new ideas, pronouncing himself in favour of the union of the Third Estate with the two privileged orders, proposing the famous oath of the Tennis Court, assisting in the preparation of the new constitution, and demanding the return of Necker. On the 28 th of Septenber 1789 he was elected president of the Constituent Asserably. Being unable, however, to approve the proceedings which followed, Mounier withdrew to Dauphiné, gave in his resignation as deputy, and, becoming suspect, took refuge in Switzerland in 1790 . He returned to France in 1801 , was named by Bonaparte prefect of the department of Ille-et-Vilaine, which he reorganized, and in 1805 was appointed councillor of state. He died in Paris on the 28th of January 1806. His principal writings are Considerations sur les goujernements (1789); Recherches sup les causes qui ont emplehe les Frangais de devenir libres (1792), and De I'rnfuence attribule aux philosophes, aux framcs-magons ef aux illuminds sur la revolution de La France (1801).
Sce F. A. Aulard, Les Oratewrs de Tassemblice constituante (2nd ed., Paris, 1905) : De Lanzac de Laborie, Un Royaliste libdral em 1789: J. J. Mowniar (Paris, 1887); A. Rochas, Brographic dw Dapplind (Paris 1856); Berriat St Prix, Eloge historique de M. Mounier (iso6); F. Boianovski, "Quelques lettres Ińdites de J. J. Mounier," in the Revie historique (1898).
MOUNT, WILLIAM SIDNEY ($1807-1868$), American artist, was born at Setauket, Long Island, New York, on the 26th of November 1807. He, studied in the schools of the National Academy of Design, New York, and in 1832 was made a full Academician. Among his better-known works are "Turning
the Grindstone" and "Farmer's Nooning," Jonathan Sturgis collection; "Turn of the Lcaf," Lenox Library, New York; "Bargaining for a Horse," New York Historical Society; "Rafling for a Goose," M. O. Robert's collection; "Long Story," Corcoran Art Gallery, Washington; and "War News," Metropolitan Muscum of Art, New York. He died at Setauket, Long Island, on the 19th of November 1868 . His brother, Shepard Alonzo Mount ($1804-1868$), also an artist, best known as a portrait painter, became a National Academician in 1842.

MOUNTAIR (O. Fr. montaigne; popular Lat. mondanea, an adjectival form from the classical mons, montis, whence Eng. "mount," a form usually used along with the name of an individual mountain, c.g. Mt Everest), a natural elevation of the earth's surface. The term properly connotes height superior to that of a hill (O. Eng. hyll, cognate with Lat. collis); but the distinction depends on the prominence of a given elevation in relation to its surroundings, and in some degree to the bold or gentle character of its outline.

For the classification of mountains according to the various processes of their formation, sec Geography. I Principies of Geography; and for further details Geology, $\$$ viii.

MOUNTAIN, THE (La Montagne), the name applied during the French Revolution to a political group, whose members, called MIontagnards, sat on tho highest benches in the Assembly. The term, which was first used during the session of the Legislative Assembly, did not come into general use until 1793 . At the opening of the Convention the Montagnard group comprised men of very diverse shades of opinion, and such cohesion as it subsequently acquired was due rather to the opposition of its leaders to the Girondist leaders than to any fundamental hostility between the two groups. The chief point of distinction was that the Girondists were mainly theorists and thinkers, whereas the Mountain was composed almost entirely of uncompromising men of action. During their struggle with the Girondists, the Montagnards gained the upper hand in the Jacobin Cluh, and for a time Jacobin and Montagnard were synonymous terms. The Mountain was successively under the sway of such men as Marat, Danton, and Robespierre, and the group finally disappeared after Robespierre's death and the successes of the French arms.

See also the articles Jacobins, Girondists and French RevoLution.

MOUNTAIN ASH, an urban district of Glamorganshire, south Wales, in the Aberdare valley on the Cynon, a west bank tributary of the Taff, with stations on the Taff Vale and Great Western railways, 18 m . N.E. of Cardiff. Pop. (1901), 31,093. A branch of the Glamorganshire canal passes through the place. At the beginning of the roth century Mountain Ash was a small village known oniy by its Welsh name of Aberpenar, hut from 1850, with the development of its collieries, the population rapidiy increased. The district has an area of ro,504 acres and comprises; besides Mountain Ash proper, a string of villages, the chief being Cwmpenar, Penrhiwceiber, Abercynon or Aberdare Junctlon (at the confluence of the Cynon with the Taff) and Ynysybwl, 3 m . to the weat on the Clydach. The public buildings include St Margaret's (r86z) and St Winifred's (1883), the parish churches of Mountain Ash and Penrhiwceiber respectively; old and new town halls (r864 and 1904), cottage hospital (1896), and a library institute and public hall erected in r899, at a cost of $£ 8000$, by the workmen of Nixon's Navigation collierles. There is a park of 7 acres given in 1897, by Lond Aberdare, whose residence, Duffryn, is in the district. There are also a workmen's institute and a public hall at Penmiwceiber. The older part of the urban district is incladed in the parlinmentary borough of Merthyr Tydfil, and also shares with Merthyr and Aberdiare the services of a sijpendiary magistrate.

MOUNTANEERMNG, the art of moving about safely in mountain regions, a roiding the dangers incidental to them, and attainlog high points dificult of actess. It consists of two main divisions. rock-craft and snow-craft. Rock-craft comaith in tbe inteligent selection of a line of route and in gymmastic
skill to follow the line chosen. In snow-craft the choice of route is the result of a fuli understanding of the behaviour of snow ander a multitude of varying conditions; it depends largely upon experience, and much less upon gymnastic skill. The dangers which the craft of climbing has been developed to avoid are of two main kinds: the danger of things falling on the traveller and the danger of his falling himself. The things that may fall are rocks, ice and snow; the traveller may fall from rocks, ice or snow, or into crevasses in ice or snow. There are also dangers from weather. Thus in all there are eight chief dangers: falling rocks, falling ice, snow-avalanches, falls from difficult rocks, falls from ice slopen, falls down snow slopes, falls into crovasses, dangers from weather. To select and foilow a route avoiding these dangers is to exercise the climber's craft.

Falling Rocks.-Every rock mountain is falling to pieces, the process being specially rapid above the snow-line. Rock-faces are constantly swept by falling stones, which it is generally possible to dodge. Falling rocks tend to form furrows in a mountain face, and these furrows (couloirs) have to be ascended with caution, their sides being often safe when the middle is stoneswept. Stones fall more frequently on some days than on others, according to the recent weather. Local experience is a valuable help on such a question. The direction of the dip of rock strata often determines whether a particular face is safe or dangerous; the character of the rock must also be considered. Where stones fall frequently dehris will be found below, whilst on snow slopes falling stones cut furrows visible from a great distance. In planning an ascent of a new peak such traces must be looked for. When falling stones get mixed in considerable quantity with slushy snow or water a mud avalanche is formed (common in the Himalaya). It is necessary to avoid camping in their possihle line of fall.

Folling Ice.-The places where ice may fall can always be determined beforehand. It falls in the broken parts of glaciers (seracs) and from overhanging cornices formed on the crests of narrow ridges. Large ícicles are often formed on steep rockfaces, and these fall irequently in fine weather following cold and stormy days. They have to be avoided like falling stones. Serars are slow in lormation, and slow in arriving (by glacier motion) at a condition of unstable equilibrium. They generally fall in or just after the hottest part of the day, and their debris seldom goes far. A skilful and experienced ice-man will nsually devise a safe route through a most intricate ice-fall, but such places should be avoided in the afternoon of a hot day. Hanging glaciers (i.c. glaciers perched on steep slopes) oiten discharge themselves over steep rock-faces, the snout hreaking off at intervals. They can always be detected by their débris below. Their track should be avoided.

Snow Avolancher.-These mainly occur on steep slopes when the snow is in bad condition, early in the year, or after a recent fresh fall. Days when snow is in bad condition are easily recognized; on such days it may be inadvisable to traverse snow-slopes which at another time may be as safe as a high-road. Beds of snow collected on rock-ledges in bad weather fall of when a thaw comes, and are dangerous to rock-climbers. Snow that has recently fallen upon ice slopes is always liable to slip of bodily. Such falling masses generally make the lower part of their deacent by couloirs. Snow avalanches never fall in unerpected places, but have their easily recognizable routes, which can be tvoided in times of dinger by experienced mountaineers.

Falls froms Racks.-The skill of a rock-climber is shown by his choice of handhold and loothold, and his adhesion to those he has chosen. Much depends on a correct estimate of the firmaness of the rock where weight is to be thrown upon it. Many loose rocks are quite firm enough to bear a man's weight, but experience is needed to know which can be trusted, and skill is required in transferring the weight to them wilhout jectings On all difficult rocks the rope is the greatest safeguard for all except the first man in the ascent, the last in the descent. In such places a party of three or four men roped together, with a distance of is to 20 ft . between one and another, will be
able to hold up one of their number (except the top man) if one only moves at a time and the others are firmly placed and keep the rope tight between them, so that a falling individual may be arrested before his velocity has been accelerated. In very difficult places help may be obtained by throwing a loose rope round a projection above and pulling on it; this method is specially valuable in a difficult descent. The rope usually employed is a strong Manila cord called Alpine Club rope, but some prefer a thinner rope used double. On zotten rocks the rope must be handled with special care, lest it should start loose stones on to the heads of those below. Similar care must be given to handholds and footholds, for the same reason. When a horizontal traverse has to be made across very difficult rocks, a dangerous situation may arise unless at both ends of the traverse there be firm positions. Even then the end men gain little from the rope. Mutual assistance on hard rocks takes all manner of forms: two, or even three, men climbing on one anotber's shoulders, or using for foot hold an icc-axe propped up by others. The great principle is that of co-operation, all the members of the party climbing with reference to the others, and not as independent units; each when moving must know what the man in front and the man behind are doing. After bad weather steep rocks are often found covered with a vencer of ice (verglas), which may even render them inaccessible. Climbing-irons (crampons, steigeisen) are useful on such occasions.

Ice Slopes.-Climbing-irons are also most useful on ice or hard snow, as by them step-cutting can sometimes be avoided, and the footing at all times rendered more secure. True ice slopes are rare in Europe, though common in tropical mountains, where newly-fallen snow quickly thaws on the surface and becomes sodden helow, so that the next night's frost turns the whole into a mass of solid ice. An ice slope can only be surmounted by step-cutting. For this an ice-axe is needed, the common form being a small pick-axe on the end of a pole as long as from the elbow of a man to the ground. This pole is used also as a walking-stick, and is furnished with a spike at the foot.
Snow Slopos are very common, ard usually easy to ascend. At the foot of a snow or ice slope is generally a big crevasse, called a bergschrund, where the final slope of the mountain rises from a snow-field or glacier. Such bergschrunds are generally too wide to be strided, and must be crossed by a snow hridge, which needs careful testing and a painstaking use of the rope. A steep snow slope in bad condition may be dangerous, as the whole body of snow may start as an avalanche. Such slopes are fess dangerous if ascended directly than obliquely, for an oblique or horizontal track cuts them across and facilitates movement of the mass, New snow lying on ice is specially dangerous. Experience is needful for deciding on the advisability of advancing over snow in doubtful condition. Snow on rocks is usually rotten unless it be thick; snow on snow is likely to be sound. A day or two of fine weather will usually bring new snow into sound condition. Snow cannot lie at a very steep angle, though it often deccives the eye as to its slope. Snow slopea seldom exceed 40°. Ice alopes may be much ateeper. Snow slopes in early morning are usually hard and safe, but the same in the afternoon are quite soft and possibly dangerous; hence the advantage of an early start.

Crevasses.-These are the slits or deep chasms formed in the substance of a glacier as it passes over an uneven bed. They may be open or hidden. In the lower part of a glacier the crevasses are open. Above the snow.line they are frequently hidden by arched-over accumulations of winter snow. The detection of hidden crevasses requires care and experience. Alter a fresh fall of snow they can only be detected by sounding with the pole of the ice-ane, or by looking to right and left where the open extension of a partially hidden crevasse may be obvious. The safeguard against aecident is the rope, and no one should ever cross a anow-covered glacier umless roped to one, or better to two, companions.

Weather. - The main group of dangers caused by bad weather centre round the change it effects in the condition of anow and
rock, making ascents suddenly perilous which before were easy and so altering the aspect of things as to make it hard to find the way or retrace a route. In storm the man who is wont to rely on a compass has great advantage over a merely empirical follower of his eyes. In large snow-fields it is, of course, easier to go wrong than on rocks, but a trained intelligence is the best companion and the surest guide.

Hislory.-The first recorded mountain ascent after Old Testament times is Trajan's ascent of Etna to see the sun risc. The Roche Melon (1 r,600 ft.) was climbed in $\mathbf{r} 358$. Peter III. of Aragon climbed Canigou in the Pyrences in the last quarter of the 13th century. In 1339 Petrarch climbed Mt Ventou near Vaucluse. In 1492 the ascent of Mt Aiguille was made by order of Charles VIII. of France. The Humanists of the $\mathbf{6 t h}$ century adopted a new attitude towards mountains, but the disturbed state of Europe nipped in the bud the nascent mountaineering of the Zürich school. Leonardo da Vinci climbed to a snow-field in the neighbourhood of the Val Sesia and made scientific observations. Konrad Gesner and Josias Simler of Zürich visited and described mountains, and made regular ascents. The use of axe and rope were locally invented at this time. No mountain expeditions of note are recorded in the $17^{\text {th }}$ century. In 1744 the Titlis was climbed-the first true snow-mountain. Pococke and Windham's historic visit to Chamonix was made in 1741 , and set the fashion of visiting the glaciers. The first attempt to ascend Mont Blane was made in 1775 by a party of natives. In 1786 Dr Michel Paccard and Jacques Balmat gained the summit for the first time. De Saussure followed next year. The Jungfrau was climbed in 181 r, the Finsteraarhorn in 1812, and the Zermatt Breithorn in 1813 . Thenceforward tourists showed a tendency to climb, and the body of Alpine guides began to come into existence in consequence. Systematic mountaineering, as a sport, is usually dated from Sir Alfred Wills's ascent of the Wetterhorn in 1854. The first ascent of Monte Rosa was made In 1855. The Alpine Club was founded in London in 1857, and soon imitated in most European countries. Edward Whymper's ascent of the Matterhorn in 1865 marks the close of the main period of Alpine ronquest, during which the craft of climhing was invented and perfected, the body of professional guides formed and their traditions fixed. Passing to other ranges, the exploration of the Pyrenees was concurrent with that of the Alps. The Caucasus followed, mainly owing to the initiative of D.W. Freshfiald; it was first visited by exploring climbers in 1868, and most of its great peaks were climbed by 1888. Trained climbers turned their attention to the mountains of North America in 1888, when the Rev. W. S. Green made an expedition to the Selkirks. From that time exploration has gone on apace, and many English and American elimbing parties have surveyed most of the highest groups of snow-peaks; Pike's Peak ($14,147 \mathrm{fl}$.) having been climbed by Mr E. James and party in I820, and Mt Saint Elias ($\mathrm{r} 8,024 \mathrm{ft}$.) by tho duke of the Abruzei and party in 1897. The exploration of the highest Andes wes begun in 1879-1880, when Whymper climbed Chimborazo and explored the mountains of Ecuador. The Cordillera between Chile and Argentlna was attacked by Dr Gussfeldt in 1883, who ascended Maipo (17,752 (t.) and attempted Aconcagua ($23,393 \mathrm{ft}$). That peak was first climbed by the Fitzgerald expedition in 1897. The Andes of Bolivia were explored hy Sir Martin Conway in 1898. Chilean and Argentine expeditions reveated the structure of the southem Cordillerz in tbe years 1885-r898. Sir Martin Conwey visited the mountains of Tierra del Fuego in 1898. The Alps of New Zealand were first attacked in 1882 by the Rev. W. S. Green, and shortly afterwards a New Zealand Alpine Ctub was founded, and by their activities the exploration of the range was pushed forward. In 1895 Mr E. A. Fitzgetald made an important journey in this range. Of the high African peaks, Kilimarjaro was climbed in 1889 by Dr Hans Meyer, Mt Kenya in $\mathbf{8 8 9}$ by J. E. S. Mackinder, and a peak of Rnwenzori by H. J. Moore in $\mathbf{1 9 0 0}$. The Asiatic mountains have as yet been little climbed, though those that lie within the Britiak Empire have been aurveyed. In 1892 Sir Martin

MOUNT BARKER-MOUNTED INFANTRY

Convay explored the Karakoram Himalayas, and climbed a peak of $23,000 \mathrm{ft}$. In 1895 A. F. Mummery made a fntal attempt to ascend Nanga Parbat, whilst in 1899 D. W. Freshfield took an expedition to the snowy regions of Sikcim. In 1890, 1903, 1906 and 1908 Mrs Fannie Bullock Workman made ascents in the Himalayas, including one of the Nun Kun peaks ($23,300 \mathrm{ft}$.). A body of Gurkha sepoys were trained as expert mountaineers by Major the Hon. C. G. Bruce, and a good deal of exploration has been accomplished by them. The only mountains of the northern polar region that have been explored are those of Spitzbergen by Sir Martin Conway's expeditions in 1896 and 1897, and the peaks in the north of Norway and the Lofotems hy various Alpine Club and Norwegian parties. (W. M. C.)

Brbliografry.-J. D. Forbes, Tratels throngh the Alps ids43, new ed., 1900): J. Ball and E.S. Kennedy, Peaks. Passes ard Clacieps (1859-1862); E. Whymper, Scrambles Among the Alps (1871); C. King. Kownlaincering in the Sierra Nezada (1886, new cd., 1903): Sir W. M. Conway, Climbing in the Karakoram, Himalayas (1894); Sir W. M. Conway, The Alps from End to End (last (d., 1900); 'Sir W. M. Conway, The Alps (190,1); Francis Criblle, The Story of Alpine Climbing (1904): Sir W. M. Consay, The Bolivian Andes (tooi): A. F. Mummery, My Climbs in the Alps and Caucasus (t895): E. A. Fitzgerald, Climbs in the New Zealand Alps (1896); F. de Filippl, The As ent of Mount Saini Elias (1g00): W. D. Wilcox. Camping in the Camodran Rockies (Igoo): H. C. M. Stutfeld and J. N. Collie, Climbs a Exploration in the Canadian Rockies (1903); Momalaimearing, in tlu: Badnanton Library (1900).
EOUMT BARKRR, a town of Hindmarsh county, South Australia, at the foot of the mountain of the same name, 341 m . by rail E. of Adelaide. It has an extremely fine climate and is much frequented as a health resort in summer. It is the centre of a populous and fertile district producing quantities of fruit, wheat and dairy produce; important cattle sales are held weekly, and there are several engineering works, four mills and tanneries in the town, which also is the seat of a wattle-bark industry. Pop. about 2000; but the inhabitants of the Mount Barker district number over 34,00 .
MOUNT CAREMEL, a borough of Northumberland county, Pennsylvania, U.S.A., at the head of Shamokin Creek, about 50 m. N.N.E. of Harrisburg. Pop. (1890), 8254; (1900), 13,179, of whom 3772 were foreign-born; (1910 census) 17.532. It is served by the Lehigh Valley, the Philadelphia \& Reading, and the Shamokin Division of the Northern Central (Pennsylvania system) railways. Anthracite coal abounds here, and the mining and shipping of it, together with the manufacture of mining machinery and miners' supplies are the borough's principal industries. This locality was settled late in the i8th century. About 1848 Mount Carmel was laid out as a town, and in 1862 was chartered as a borough.

MOUNT CLEMENS, a city and the county seat of Macomb county, Michigan, U.S.A., on Clinton river, about 5 m . (about 2 m . in direct line) from its entrance into Lake Saint Clair, and 20 m . N. by E. of Detroit. Pop. (1890) 4748; (1900) 6576 (1194 forcign-born); (1904, state census) 7108 ; (1910) 7707. It is scrved by the Grand Trunk railway and by two electric lines to Detroit. The mineral waters of Mount Clemens are beneficial to patients suffering from rheumatism, biood discases and nervous disorders. The city's principal manufacturcs are beet sugar, barrels and other cooperage products, wagons, carriages, sleighs and egricultural implements. Mount Clemens was settled in 1802, was incorporated as a village in $\mathbf{1 8 3 7}$, and was chartered as a city in 1879.

MOUNT DESERT, an island in Hancock county, Maine, U.S.A. It is about 16 m . long and 10 m . wide in its widest part, with an approximate area of 100 sq , m. and a population (igio) of 8014. The Maine Central railroad runs a ferry from its nearest station on the mainland (Mount Desert Ferry), and the island is also accessible during the warmer months by steamship lines irom New York, Boston, Portland, and several other ports. On the north across Mount Desert Narrows, a bridge connects the island with the mainland. Eagle Lake, at the northeast base of Green Mountain, is a beautiful sheet of water about 21 m . long, and $\frac{1}{\frac{1}{2}} \mathrm{~m}$. wide, and Great Pond, 4 m . long. Hes near Somesville bet ween Beech Hill and Western Mountain. There are numerous
outlying rocky islets. The surface of Mount Desert is generally so rocky that the greater part of it has never been inhabited or cultivated, but wherever there is a thin soil the hills are wooded with apruce, alder, birch, maple and mountain ash. The hilly scenery, the cool summer climate, and the facilities for boating and fishing attract many thousands of visitors each summer, and the maintenance of the permanent population is derived very largely from the summer residents. The Penobecot and Passamaquoddy Indians come here in the season to sell their basket-work, toy canoes, moccasins, bows and arrows, \&ec. The villages most frequented by summer visitors are Bar Harbor (q.v.) on the north-east coast; Northeast Harbor, Southwest Harbor and Seal Harbor on the south cosst; and Somesville, at the head of Somes Sound. Along the western shore are several quaint old hamlets.

Mount Desert Island was discovered and named by Samuel de Champlain on the 5th of September 1604. French Jesuits established a settlement, St Sauveur, at the entrance to Somes Sound in 1609 , but this was destroyed four years later by Samuei Argall. In 688 the island was granted by Louis XIV. to Sieur de la Mothe Cadillac, but no permanent settlement was established until 1762, when the general court of Massachusetts granted one-half of the island to Covernor Francis Bernatrd and under his encourogement a settlement was begun at Southwest Harbor. During the War of Independence all the American estates of Bernard were confiscated, but in 1785 his former interest in Mount Desert was conveyed to his son, John, and two years later heirs of Cadillac, among them his granddaughter, Mme de Gregoire, who had come to Maine in 1786, received from the general court a grant for the remaining portion. Until the summer visitors came, the settlers gained only a scanty livelihood, chlefly by fishing, lumbering, boat building and farming. Practically all of them lived along the shore; they had boats, hut few horses, and the roads were only rough trails. There is no record of any mail service until 1820 , and as late as 1870 the only means of reaching the island was by stage from Bangor or by steamboat twice a week from Portland.
See George E. Street. Mownh Deserh, a History (Bonton, 1905).
COUTTEBANK (Ital. montambanco, montimbanco, from montare, to climb up on, mount, and banco, bench, cf. saltimbanco, an acrobat or dancer, one who dances or leaps on a bench), a wandering juggler, story-teller, seller of quack medicines, \&c., who performs his entertainment on a platform or raised bench, hence any charlatan or quack.

MOUMTED INPANTRY, infantry soldiers who ride instead of marching on foot from one place to another. As combatants they are infantry pure and simple, being neither armed nor trained to fight on horseback, and their special characteristic is the power to move from one point to another with great rapidity. They are therefore uscful (a) in wars, such as colonial wars, in which cavalry proper finds no scope for its activity, and (b) in performing duties for which mounted troops, but not necessarily troops that can fight mounted, are required. In these two roles mounted infantry is obviously a substitute for cavalry. As cavalry is both a most expensive arm and one which cannot be improvised, there is an ever-recurring tendency in all armies to consider it as being more ornamental than usefui, and in consequence to substitute mounted infantry under one name or another (the original dragoons for example were mounted infantry) for " shock action" cavalry. In recent times, owing to the development of the long-ranging magazine rife, this tendency has been intensified to such a degree that Russia, for example, converted the whole of her cavalry into dragoonsthe term being used in its old sense-and trained it to act dismounted in large bodies. It is however significant of the failure of this wholesale conversion that after the Russo-Japanese War the regiments that were formerly hussars and lancers were reorganized as such and ceased to be styled and trained as dragoons.

It is difficult, but at the same time important, to differentiate bet ween dragoons or " mounted rifles," as they are often called to-day, and mounted infantry in a narrower sensc of the word.

Mounted rifies are half cavalry, mounted infantry merely epeciaHy mobile infantry. The American cavalry in the Civil War, the Boers in the South African War, the Russians in the Manchurian campaign, were mounted rifes, and the question of their advantages and disadvantages, as compared with what is generally called "regular" cavalry, is purely a cavalry one. The main question as regards mounted infantry is whether its existence as a special arm is justified by the kind and degree of assistance which it is peculisrly qualified to give to the other arms in war. If this be answered in the affirmative for a particular army, then that army, having raised mounted infantry, may require of it such additional services as it would be more or less uneconomical to assign to regular cavalry. Mounted infantry in this case may and in fact does assume the role of mounted rifles; for example, in the British regular army the duties of divisional mounted troops are performed by mounted infantry, while in the territorial army the sameduties are performed by yeomanry mounted riffes.

In the British mounted infantry, which is the only force in any army specially trained as such, ${ }^{1}$ the course of instruction lasts four months and is based on the assumption that officers and men under instruction are already fully trained as infantry (M.I. Training, 1909). All words of command, bugle sounds, formations, \&c, are similar to those used in the infantry, and as a rule spurs are forbidden. The mounted infantry horse is a handy cob (14.2 to 15). The organization adopted is by battalions and companies, each company having 6 officers and 153 men, and the battalion consisting of three such companies and a machine-gun section. Mounted infantry battalions and companies do not exist in peace, but are formed on mobilization from the qualified men available who can be spared from the infantry. Since many more men are trained than would be required for the 24 or 26 companies forming part of the expeditionary forse, the arm is capable of considerable expansion, while the men first selected for the service are in every way picked men. As already mentioned its duties are (a) with respect to the cavalry, first to assist and secondly to supplement or replace it-by the judicious use of the rifle, and (b) with pespect to the infantry to relieve the unmounted man as far as possible of reconnoitring and orderly duties, and above all of the necessity of hurried and exhausting movements to scize points of aupport.

Cyclists.-The application of the bicycle to military purposes was first suggested in Great Britain, and military cycling became the special and almost exclusive property of the volunteer force, in which, when cycling became universally popular and the machines cheap, practically all battalions had sections and most of them companies of cyclists. In those days, however, the want of a common organization separated the yeomanry from the volunteers, and the latter, possessing no mounted troops of its own, employed its numerous cyclists in reconnoitring, protective and orderly work indifierently. Provisional battalions were frequently formed, and in spite of their heterogeneous composition and inadequate staft they proved capable of manceuvring as units. Movements in brigade were practised at Aldershot in 1gor, the brigade composed of 3 battalions of about 650 riffes each, drawn from some forty volunteer infantry units under training at the time, being trained in combined movements by parallel roads and night matching, as well as in field operations. When the fusion of the yeomanry and volunteers in the territorial force ($1907-1908$) released cyclists from the duties of mounted troops which had hitherto been imposed on them, the cyclist companies in the infantry battalions were disbanded, and their place taken by 10 cyclist battalions specially trained for protective work in large tactical bodies. The regular army, which is generally employed in almost roadless countries, only maintains a few cyclists for orderly work.

Amongst the regular armies that of France was certainly
${ }^{2}$ The infantry " mounted scoucs" of the Russian aad French armies are simply auxiliaries and have no existence apart from their regimente.
the pioneer in the matter of cycling. Infantry support for cavalry is a fundamental principle of the French doctrine of tactics, and this infantry support in so well-roaded a country as France paturally takes the form of strong cyclist groups. The French military cyclists are equipped with a folding bicycle, which allows of cross-country movement being undertaken without leaving the bicycles unguarded. In Germany very few military cyclists are maintained-one small section in each infantry or cavalry regiment. The field service regulations permit the grouping of these sections for united action as a company, hut only under special circumstancea. In Italy, however, whole battalions of the fast-moving light troops, Bersagtieri, have been within reoent years provided with the cycle.

Cyclists are mounted infantry in the strictest possible sense of the phrase. They possess over all horsemen the inculculable advantages of being able to make longer marches; for they can cover 80 or 90 m . a day for several days; ${ }^{2}$ of exemption from forage anxieties; of freedom from the necessity in action of * leaving one-third or one-quarter of the men to hold the horses; and of actual speed, an ordinary cyclist being able to move faster along a good road than a staff officer mounted on a thoroughbred. On the other hand cyclist troops can never be as free to move across country as horsemen; a cyclist column, owing to its speed and great length in proportion to its numbers, is peculiarly liable to surprise; and the condition of the roads or a strong head wind materially reduces its rate of marching.

MOUNTFORT, WILLIAM (c. 1664-1692), English actor and dramatic writer, was the son of a Stafordshire gentleman. His first stage appearance was with the Dorset Garden company about 1678 , and by 1682 he was taking important parts, usually those of the fime gentleman. Mountfort wrote a number of plays, wholly or in part, and many prologues and epilogues. He married, in 2686, Susanna Percival (see Verbrucgen, Mes), the actress. Owing to jealousy of Mrs Bracegirdle's supposed interest in Moundfort, Captain Richard Hill, an adventurer, who had annoyed ber with persistent attentions, accompanied by Charles, fifth Baron Mohun, murdered Mountfort in Howard Street, Strand, on the gth of December 1692. Hill made his escape. Lord Mohun was tried hy his peers and acquitted by a vote of 69 to 14.

MOUNT GAMBIER, a town of Grey county, South Australia, 305 m . by rail S.E. of Adelaide. It stands on the northern base of the mountain of the same name, an extinct volcano. It is a handsome town with many fine buildings of white limestone and grey and red dolomite, which abound in the neighbourhood, the church of St Paul being the finest edifice of its kind outside Adelaide. The agricultural society has a good showground where two shows are held annually. Two splendid lakes lie near the town-Blue Lake, 160 acres in extent, and Valley Lake, 97 acres, from the first of which the water-supply of the town is derived. Mount Gambier is the centre of one of the ricbest grain-growing districts in Australia. Pop. (1go1), 3162; and including the suburbs, about 8000 .

MOUNT HOLYOKE COLLEGE, the pioneer institution in America for the higher education of women, situated in the village of South Hadley, Massachusetts, near Mount Holyoke. It was founded by Mary Lyon (p.v.), and was chartered as Mount Holyoke Female Seminary in 1836 (opened in 1837), but the name was changed to Mount Holyoke College in $\mathbf{1 8 9 3}$. Besides the recitation halls and laboratories there are the Dwight Mernorial art building (igoi), a library building (1905), the John Payson Williston observatory, botanical gardens (rgoi), a gymnasium, a hospital, and seven residence halls. For undergraduates the college offers two years of wort in prescribed courses in Latin, Greek, French, German, Eaglish, history, Biblical literature, profane Jiterature, physics, and chemistry, and two years of work in elective courses; for graduates it offers one year of advanced wori, including courses in education designed for those preparing to teach. To make college expenses
${ }^{2}$ The lose of men by accidents to the machines, punctures, dc., has been shown in manceuvres to be nearly negligible.
lighter and to " promote a spitit of democracy and of considerathon for others" every student helpe either in housewort or in the academic departments. In $1908-1909$ the college had 110 instructors and 748 students.
MOUMTJOY (or Montjoy), BARONS AND VISCOUNTS. Sir Walter Bloumt (d. 1474), of Elvaston, Derbyshire, grandson of Sir Walter Blount, who was an adherent of John of Gaunt, succeeded his father, Sir Thorass Blount, as treasurer of Calais in 1460 , becoming governor a year later aba a reward for service rendered to King Edward IV. at the battle of Towton. Edward conferred on him rich estatcs forfeited by the earl of Devon; and in 1465 Blount was made lord high treasurer and created Baron Mountjoy. This creation is noteworthy as ane of the carliest examples of a baronial title not being of a territorial character; nor tho title of a dignity already existing. Blount's great-grandfather had marricd Isolda, daughter and heiress of Sir Tbomas de Mount joy, and the title was probably chosen to commemorate this alliance.
Willenk Blount, th Baron Mountjoy (c. 1478-1534), was lamous as a scholar and patron of learning. He was a pupil of Erasmus, who called him inter nobiles doctissimus: His friends included Colet, More and Grocyn. He held a command in the force sent 10 suppress Perkin Warbeck's rebellion in 1497. In 5513 he was appointed governor of Tournai, and his letters to Wolsey and Henry VIII. describing his vigorous government of the town are preserved in the British Muscum. He was present with Henry VIII. at the Field of the Cloth of Gold in 1520 , and at the meeting with Charles V. in 1522. He had been master of the mint since 1509, and chamberlain to Catherine of Aragon since 1512. It fell to him in this office to announce to the queen Henry's intention to divorce her; he also signed the letter to the pope conveying the king's threat to repudiate the papal supremacy unless the divorce were granted. Mountjoy, who was one of the wealthiest English nobles of his time, died in 1534. His son Charles, 5 th Baron Mountioy ($1516-1544$), was also a patron of learning.

Charles Blount, carl of Devonshire and 8th Baron Mountjoy ($1563-1606$), lord-lieutenant of Iretand, grandson of the preceding, was the most notable of the later bolders of the title. The favour which his youthful good looks procured for him from Queen Elizabeth excited the jealousy of the eart of Essex, and led to a duel between the two courtiers, wbo, however, soon became close friends. Between 1586 and 1598 he was much on the continent, serving in the Netherlands and in Brittany. He joined Essex and Sir Walter Raleigh in their expedition to the Azores in 1597, his brother, Sir Christopher Blount ($1565-$ 1601), who was afterwards executed for complicity in Essex's treason, being also of the party. In 1600 Mountjoy went to Ireland as lord deput y in succession to Essex, where he succeeded in suppressing the rehellion of Hugh O'Neill, carl of Tyrone, whom Essex had failed to subdue. In July \mathbf{x} (1 Ifountjoy made himself master of Lough Foyle, and in the following December he defeated O'Neill's Spanish auxiliaries at Kinsale, and drove them out of the country. In 1602 the earl of Tyrone made his submission to Mountroy in Dublin (see O'Neilu); and on the accession of James I. Mountioy was continued in his office with the more diatinguished title of lord-lieutenant. Returning to England, he was one of Sir Walter Raleigh's judges in 1603 ; and in the same year he was made master of the ordnance and created earl of Devonshire, extensive castates bejing also granted to him. He died in London on the 3 rd of April 1606 . About 1500 Mount joy took as his mistress Penelope, wife of Lord Rich and sister of the earl of Eseex. Alter the death of her brother in 1601, Lady Rich was divorced from her husband in the ecclesiastical courts. Mountjoy, by whom she had already had several children, was married to the lady in 1605 by his chaplain, William Laud, afterwards archbishop of Canterbary. As he left no legitimate children the earl's titles became extinct at his death.

His eldest netural son by Lady Rich, Moontjoy Blount (c. 1597-1606), inherited a large property by his father's will, and was a favourite with James I. The family title was revived
in his favour in 1618, when be was created Baron Mountjoy, of Mountioy Fort, Co. Tyrone, in the peerage of Ireland; and Baron Mountjoy of Thurveston, Derbyshire, in the peerage of England. In 1628 he was further created earl of Newport in the Iste of Wight. In the same year he was appointed to command, with the rank of rear-admiral, the expedition for the relicf of Rochelle; in 1634 he was made master of the ordnance. He took the popular side at the beginning of the trouble between Charles I. and the parliament, and was an eager opponent of Strafiord. When the Civil War hroke out, however, Newport served in the royalist army, and took part in the second battle of Newbury in 1644. In January 1646 he was taken prisoner and conined in London on parole. He died at Oxford on the 12th of February 1666, leaving two surviving sons, who in turn succeeded to the earidom of Newport and barony of Mountjoy. Both titles became extinct on the death of Henry, the younger of these sons, in 6681 .
In 1683 Sir Willinx Stewart (1653-1692), who owned large property in the counties of Donegal and Tyrone, and whose grandfather was created a baronet in 1623, was raised to the peerage of Ircland as Baron Stewart of Ramelton, Co. Donegal, and Viscount Mountjoy. Having served abroad, Mountjoy returned to Ircland in 1687 , where he became brigadiergenoral. At the revolution he remained loyal to James II.; but being a Protestant he was distrusted by Tyroonnel, the viceroy, and was removed with his troops from Londonderry to Dublin. When the gates of Londonderry were closed against James's representative, Tyrconnel sent Mountjoy and Robert Lundy with a force to the north. After negotiations which resulted in Lundy being admitted as governor to the city, Mountjoy was sent with Sir Stephen Rice to Paris to report on the state of affairs to James II. On their arrival, Rice acting on secret instructions, denounced Mountjoy as a traitor, and the latter was thrown into the Bastille, where he remained till 1692. He then went over to William III., and was killed at Steinkirk on the 3rd of August 1692.
Wrluan, 3rd Viscount Mountjoy (1709-1769), was in 1745 created earl of Blesington, his mother having been sister and sole beiress of Charles, and and last Viscount Blesington. On his death without issue in 1769 all his tilles became extinct. Anne Stewart, daughter and theiress of Alexander Stewart, second son of the above-mentioned William, rst Viscount Mountjoy, married Luke Gardiner, vice-treasurer of Ireland; and her grandson, Luke Gardiner ($1745-1998$), who inherited a large portion of the Mount joy family estates, was created Baron Mountjoy of Mountjoy, Co. Tyrone (1789), and Viscount Mountjoy (1795), both in the peerage of Ireland; hut on the death without male issue in 1829 of his son Charies John, who in 1816 was crented earl of Blesington, all these titles again became extinct.
Thomas Windsor, or Hickman-Windsoz (c. 1670-1738), second son of Thomas, Lord Windsor de Stanwell, ist earl of Plymouth, was in 1699 created Viscount Windsor of Blackcastle, in the pecrage of Ireland. In 1712 he was created a peer of Great Britain with the title of Baron Mountjoy of the Isle of Wight, being descended in the female line from Sir Andrew Windsor (c. 1475-1543), 1st Baron Windsor de Stanwell, who married Ehzabeth Blount, sister and co-beir of Edward, 2nd Baron Mountjoy of the first creation, who died an mfant in 1475. On the death of Thomas's son Herbert in 1758 the title of Mountjoy again became extinct; butit was revived in favour of John Staart, earl of Bute, who married Charlotte Jane Hickman-Windsor, Herbert's daughter and sole heiress, and who in 1796 was created Viscount Mountjoy of the Isle of Wight. earl of Windsor, and marquess of the county of Bute, all of which titles are held by his descendant, the present marquess of Bute.
See Sir Alexander Croke, The Genealosical History of the Croke Samily, originaky named Lo' Wloume (2 volz, Oxiord, 1823). For the lrinh tord cloputy, mee also W. B. Deveroux, Limes qud Letuers of the
 Ilinerary (London, 1617). Aloo, G. E. C., The Complete Pecrage (London, i889).

MOUNTMELLICK, a market town of Queen's county, Ireland, pleasantly situated on the Owenass (an affluent of the Barrow) which nearly encircles it. Pop. (1901), 2407. It is the terminus of a branch of the Great Southern \& Western railway, $7 \frac{1}{2} \mathrm{~m}$. N. of Maryborough and 581 W.S.W. of Dublin. A branch of the Grand Canal also reaches the town, providing water communication with Dublin, and with Waterford by the river Barrow. There are industrics of malting, tanning, woollen and salt manufactures, and iron-founding. A settlemeni of Quakers bas contributed largely to the prosperity of the toun. A provincial school of the Leinster Society of Friends was founded bere in 1796.

MOUNT MORGAN, a municipality of Raglan county, Queensland, Australia, 28 m . by rail S.S.W. of Rockhampton. Pop. (Igor), 6280. Railway communication was opened in 1898. The town has been considered to stand on the richest gold site in Australia, the gold being very fine and pure.
MOUNT SORREL, a market town in the Loughborough (Mid) parliamentary division of Leicestershire, on the river Soar, 7 m . N, of Leicester. Pop. (1901), 2417. The Sileby station on the Midland main line lics 14 m . E. The position is beautiful, a steep hill, once crowned by a castle, rising above the wellwooded valley. At Barrow-upon-Sonr, $2 \frac{1}{2}$ m. N. (pop. 2409; Barrow and Quorn railway station), lime is worked extensively. The village of Quorndon or Quorn, ik m. N.W., is the headquarters of the well-known Quorn hunt. Quorndon is an urban district (pop. 2173).

MOUNTSTEPHRN, CEOROE STEPHEN, BARON (1829-), Canadian financier, was born on the $5^{\text {th }}$ of June 1829 at Dufftown, Banfishire, Scotland, the son of Williain Stephen and Elspeth Smith. He was educated at the parish school, aiter which he was for a time a berd boy. In 1850 he went to Canada and soon became a prominent business man in Montreal. In 1878 he joined with his cousin, Donald Smith (afterwards Lord Strathcona), in the purchase of the St Paul \& Pacifie railway. This led to his interest in the development of western Canada, and from 1881 onwards he was associated with his cousin in the construction of the Canadian Pacific railway, for his services in connexion with which he was in 1886 made a baronet, in 1891 raised to the peerage; and in 1905 made G.C.V.O. In 1888 he left Canada, and thercafter lived in England and Scotland. He gave lavishly to charity and education, and with Lord Strathcona built and endowed the Royal Victoria haspital at Montreal.

MOUNT-TEMPLE, WILLIAM FRANCIS COWPER-TEMPLE, Baron (181i-1888), English politician, second son of the 5th Earl Cowper, was born at Brocket Hall, Hertfordshire, on the 13th of December 181i. He was educated at Eton, and entered the Royal Horse Guards, attaining the rank of brevet-major in 1852. His mother, Emily Mary, was sister to the prime minister, Lord Melbourne, whose secretary William Cowper became in 2835 ; in this year be entered parliament as member for Hertford, which be continued to represent until 1863. As commissioner of works (1860-1866) be carried the bills for the Thames Embankment (1862), and for the new law courts (1863); but he is best known for the amendment, known as the "Comper-Temple clause," which he introduced into the second reading of the Education Bill of 1870 , that mo catechism nor denominational tcaching of any kind should be included in the religious instruction given in rate-aided schools. His mother, who married Lord Palmerston as her second busband, died in 1869, and under his stepfather's will William Cowper sncceeded to some of the Palmerston estates in Ireland and Hampshire, and assumed the additional name of Teraple. He was M.P. For South Hampshire from 1868 until 1880 when he was raised to the peerage as Baron Mount-Temple of MountTemple, Sligo. He died at Broadlands, near Romsey, on the 16th of October 1888. He was twice married, but left no children, the Palmerston estates descending to the Right Hon. Evelyn Ashley ($1836-1007$), who was under-secretary of state for the colonies from 1882 to 1885.

MOUMT VERNON, a city and the county-seat of Jefierson county, Illinois, U.S.A., about 75 m . E. by S. of St Louis. Pop. (1890), 3233 ; (1900), 5216 (111 foreign-born); (1910), 8007. It is served by the Chicago \& Eastern Illinois, the Louisville \& Nashville, the Wabash, Chester \& Western, and the Southern railways. It is the headquarters of the fourth appellate court district of the state. Mount Vernon was settled in 1819, incorporated as a village in 1837 and chartered as a city in 1872. Many of its buildings were destroyed by a cyclone on the 19th of February 1888.
MOUNT VERNON, a city and the county-seat of Posey county, Indiana, U.S.A., on the Ohio river, in the extreme south-west corner of the state. Pop. (1890) 4705; (1900), 5132, including 892 negroes and 262 foreign-horn; (1910), 5563 . It is served by the Evansville \& Terre Haute, the Louisville \& Nashville, and the Evansville \& Mount Vernon (electric) railways. The city is a trading centre lor the surrounding farming region. It has a valuahle river trade, and various manufactures. The first settlement here was made in 1803 , and in 1819 a town was laid out and named Mount Vernon. It became the county-seat in 1825, and was incorporated as a town in 1846 and chartered as a city in 1865.

MOUNT VERNON, a town of Linn county, Iowa, U.S.A., 16 m . E. of Cedar Rapids. Pop. (1900), 1029; (1010, U.S. census), 1532. Mount Vernon is served by the Chicago \& North Western railway. It is the seat of Cornell College (Methodist Episcopal; coeducational), which was opened as the Iowa Conference Seminary in 1853, and was chartered in 1857 under its present name, adopted in honour of William W. Cornell (1823-1870), an iron manufacturer of New York City and a bencfactor of the institution. Cornell College includes a collegiate department, an academy, a conservatory of music, a scbool of art, a school of oratory and a summer school; in 19071908 it had 40 instructors and 755 students. Mount Vernon was settled in 1842, was laid out in 1847, and was incorporated as a town in 1869.

MOUNT VERNOM, a city of Westchester county, in southeastern New York, U.S.A., on the Bronx river and. Eastchester Creek, 13 m . from the Grand Central station, New York City. Pop. (1890), 10,830 ; (1900), 20,346, of whom 5265 were foreignborn (many being Italians) and 516 negroes; (1910, census), 30,919. It is served by the New York Central \& Hudson River and the New York, New Haven \& Hartford railways, and by electric lines to New York City, Yonkers, New Rochelle, \&c. The city has various manufactures, but in the main is a residential suburb of New York; the finest residences are in the eastern, central and north-eastern sections, the last being known as Chester Hill; the foreign-born element is largely concentrated in the western part. Mount Vernon is in the township of Eastcbester, which was settled from Connecticut in 1664, possibly in the bope of pushing Connecticut's boundary nearer the Hudson. It was called "Ten Farms" or East Chester. A parish of the same name was established in 1693, hut was disallowed in England. About 1682 the "Ten Farmers" established a Iree schook In 1764 the foundations were laid of the present St Paul's (Protestant Episcopal), which was used through a part of the American War of Independence as a British military hospital. St Paul's churchyard dates back to the close of the I 7 th century. Along the White Plains noad (now Lincoln Avenue) Washingtor retreated, pursued by General Henry Clinton, before the battle of White Plains in 1776. The city of Mount Vernon was founded in 185 I by several readty companies. The postal authorities objected to the name Monticello, originally used, and Mount Vernon twas adopted instead. Mount Vernon was incorporated as a. village in 1853 and was first chartered as a city in 1892. West Mount Vernon was founded by the Teutonic Homestead Association and was annexed to Mount Vernon in 1869.
See William S. Coffey, "East Chester," pp. 720-764 of vol. il. of J. T. Scharf's History of Wertchester County, N. Y. (2 vole, Philadelphia, 1886).

MOUNT VERNON, a eity and the county-seat of Knox county, Ohio, U.S.A., on the Kokosing river, about 45 m . N.E. of Columbus. Pop. (1890), 6027 ; (1900), 6633 , including 359 foreignborn and 230 negroes; (1910), 9087. Mount Vernon is served by the Baltimore \& Ohio and the Cleveland, Akron \& Columbus, railways. The city is the seat of the state hospital for tuberculosis, has a fine court-house, a public library, and various manufacturing establishments. Natural gas is found in the vicinity. Mount Vernon was laid out in 1805; it became the county-seat in 1807, was incorporated as a town in 1845, and became a city in 1853 .
IOUNT VERNON, the former home of George Washington, in Fairlax county, Virsinia, U.S.A., on the Potomac river, 15 m . below Washington, D.C., reached by steamer from Washington and by electric railway from Alexandria, Virginia. The mansion-housc, which is the centre of interest, stands on a hluff overiooking the river. The house is built of wood, but the siding is of wide thick boards so panclled as to give the appearance of cut and dressed stonework. The rooms contain much of the furniture which was in them when they were occupied by General Washington and his family; and the furniture that had been lost has been in part replaced by other furniture of historic interest and of the style in use in Washington's day. In the main hali hangs a glass casket containing the key to the Bastille which Washington received from Lafayette in $\mathbf{1 7 9 0}$. From each end of the house a curved colonnade and a pavement lead westerly to a row of out-buildings which partially enclose a bowling green and spacious lawn with shaded drives and walks, and beautiful gardens (with trees planted by Washington, Franklin, Jefferson, Lafayette and others). A short distance south-west of the mansion-house and between it and the wharf is a plain brick tomb, which was built by Washington's direction on a site choeen by himsclf, and contains the remains of Washington and Mrs Washington (removed to this tomb from the old family vault in 1831), and of about thirty relatives -merabers of the Washington, Blackburn, Corbin, Bushrod, Lewis and Custis families.
The estate, originally called "Little Hunting Creek Plantation," was devised in 1676 by John Washington (the first of the family in America) to his son, Lawrence, who in turn devised it to his daughter, Mildred, hy whom (and her husband Roger Cregory) it was deeded in 1726 to her brother Augustine (George Washington's father). On Augustine's death (1743) it passed to Lawrence (George's half-brother), who built in 1743 the villa which forms the middle portion of the present mansion-bouse and named the estate Mount Vernon, in honour of his former commander, Admiral Edward Vernon (1684-1757). Lawrence left it (1752) to his widow Anne Fairfax (who in the same year married George Lee) with the proviso that it should pass at her death to George Washington, who meanwhilc rented the estate, gaining full possession at her death in 1761. In 1784-1785 he enlarged the villa into the mansion-house with its present dimensions by building an addition at each end, erected several of the out-buildings, and adorned the grounds, all according to his own plans and specifications. At General Weshington's death (1799) Mount Vernon passed to his widow; at her death (180a) it passed to his nephew, Bushred Washington, and at Bushrod Washington's death (1829) to his nephew John Augusline Washington, who devised it in 1832 to his widow, by whom it was devised in 1835 to their son John A. Washington. This last was authorized by his father's will to sell the estate to the United Stales government, and in 1847 offered the property for $\$ 100,000$, but the offer was refused. In 3860 the mansion-house and 200 acres of the original estate, fast falling into decky, were bought for $\$ 300,000$ (much of which had been raised through the efforts of Edward Everett) by the Mount Vernon Ladies' Association of the Union. This association under its charter (1856) bound itself to restore the estate as far as possible to the condition in which it was lo the lifetime of Washington and to keep it sacred to his memory, and Virginia agreed to exempe it from taxation as long as these terms were fulfilled.

Ser B. J. Lossing The Home of Washimelon: of Mownt Vermen end its A ssociations (Hiartiord, 1870).

MOURNINE (from the verb " to mourn," to be sorrowful, O. Eng. murnan; cf. O.H.G. morman, Goth. mamrnam, to be anxious, O.N. morna, to pine away; by some referred to root seen in Gr. Mepypa, sorrow, by others to root mar-, to dic), the expression of grief or sorrow particularly for the dead; moro specifically the outward or conventional signs of such grief. The public exhibition of this grief for the dead has taken various forms among different races and in different ages, from shaving of the head, or allowing the beard and hair to grow, from diafiguring the face and uttering loud wailing cries, to the wearing of clothes of a particular colour, now among Western races usually black, and to the purely conventional custom of using black-edged note-paper, cards, \&c. (See further Funeral Rites.)
mOUSE, in its original sense probably the name of the semidomesticated house-mouse (Mus musculus), the type of the genus Mus and of the family Muridac. Zoologically, there is no distinction hetween mice and rats; these names being employed respectively for most or-all of the smaller and larger " mouselike" and " rat-like" representatives of the Muridae, whether they belong to the genus Mus or not. It is true indeed that in zoological nomenclature some of these are distinguished as "voles" (see Vole), but this is not in accord with popular usage, where such creatures come under the designation either of water-rats or field-mice. The distinctive characters of the typical mice (and rats), i.e. those included in the genus Mus, are dealt with in the article Rooentia. With the exception of Madagascar, the genus Mus ranges over practically the whole of the Old World, having indigenous representatives even in Australasia; while the house-mouse, with man's involuntary aid, has succeeded in establishing itself throughout the civilized world. The following is a brief notice of the species of true mice (that is to say, those generally included in the genus Mus) inhabiting the British Isles. These are three in number. M. musculus, the house-mouse, originally a native of Central Asia; has spread to all the inhabited parts of the globe. M. sylvaticus, the wood or long-tailed fieid-mouse, is a species common in many parts of England, often taking to barns and out-houses for shelter during the winter. It is of about the same size and proportions as M. musculus, hut of a bright reddish-grey colour, with a pure white belly. M. minulus, the harvest-mouse, is the smallest of the European mice, seldom exceeding al or 3 in . in length; and of a yellowish-red colour, with comparatively short ears and tail. It lives entircly away from houses, commonly taking up its abode in wheat or hay fields, where it builds a round grass nest ahout the size of a cricket-ball, in which it brings up its young. Its range extends from England to Japan. In regard to the first it is noteworthy that house-mice isolated on a small sandbank near Duhlin have developed a special colouring of their own; also that distinct local varietics, M. musculus muralis and M. m. foeroensis, inbabit respectively St Kilda and the Faeroes. In Central Asia there exists a wild mouse (M. bactrianus), and likewise a second species (M. woagneri), with the habits of a house-mouse, both of which are closely allied to M. musculus; while there is a third kind (M. gentilis), also nearly related, in the descrts of North Africa. According to Major G. E. H. Barrett-Hamilton it is probable that M. bactrianus and M. musculus are respectively desert and house modifications descended from some Central Asian ancestor more or less nearly allied to \boldsymbol{M}. wagneri. As regards the other two British species, it must suffice to say that there are several local races of each; $M u s$ sylvalicus being represented by several in the British Isles, alt hough there is but one British representative of M. minulus. It may be added that by some nat uralists both M. sylvaticus and \boldsymbol{M}. minulus are separated from Mus as Micromys.
See G. E. H. Barrett-Hamilton. "Note on the Harvest-Mice of the Palacarctic. Region." Anmods and Magasimp of Nat. History (Aprit 1899): "On the Species of the genus Mus inhabiting Si Kilda," Proc. Zool. Soc. (London. 1899): "On Geographical and Individual Variation in Mus sytualicus and its Allies." op. ril. (1900): W. E. Clarke. "On Forms of Mus musculus, with Description of a New Subapecies from the Faeroce Lalands," Proc. Ray. Phys. Soe (Edinburgh. I904), vol. 2v.
(R.L.)

MOUSE-BIRD (Du. Musooge), the name by which in Cape Colony and Natal the members of the genus Colius of M. J. Brisson are known-probably from their singular habit of creeping along the boughs of trees with the whole tarsus applied to the branch. By the earlicr systematists, Colins was placed among the Fringillidae; but the investigations of J. Murie and A. H. Garrod on its internal structure showed that it was not a true Passcrine, and it is now placed in a separate family, Coliidae, amongst Coraciiform birds, near the rogons and swifts ($g .0$.). The Coliidae are smail birds, with a racher

Mouse-Bird.
finch-like bill, a more or less crested head, a very long tail, and generally of a dun or slate-coloured plumage that sometimes brightens into. blue or is pleasingly diversified with white or chest nut. They feed almost wholly on fruits, but occasionally take insects, in quest of which they pass in hands of fifteen or twenty from tree to tree. Seven species are believed to exist, all belonging to the Ethiopian region (of which the Family is one of the most characteristic), and ranging from Abyssinia southwards. Three specics inhabit Cape Colony.
(A. N.)

MOUSSORGSKY, MODESTE PETROVICH (1835-188ı), Russian composer, was born at Karevo, government of Pskov, in March 1835 , and entered the army at an early age. He came of a musical family, and was himself a talented amateur, and an acquaintance with Balakirev and Dargomijsky led him to more scrious study of composition, so that in 1857 be left the army and devoted himself to music, though this step entailed his earuing his living as a government clerk and a prolonged period of poverty. His greatest opera, Boris Godounoo, based on Pushkin's drama, was produced in St Petersburg in 1874, and on it his reputation stands as one of the finest creative composers in the ranks of the modern Russian school. He also wrote a number of songs and orchestral works, of a realistic national type. In later life he suffered much from ill-health, and died in St Petersburg on the 26th (28th) of March 1881.
mOUSTACHE, or Mustachio. the hair worn unshaven on the upper lip (sce Beard). The spelling "moustache," now the most common in English usage, is the French form of Jtal. musfachio, an adaptation of a Doric dialectical mícra ξ, upper lip, alco hair on the lip; this is generally taken to be a variant of $\mu \dot{\alpha} \sigma \tau a \xi$, jaws, mouth, connected with $\mu \dot{\sigma} \sigma a \sigma \theta a$, , to chew; cf. " mastic." chewing-gum, and " masticate," to chew.

MOUSTERIAN, the name given by the French anthropologist G. de Mortillet to the second epoch of the Quaternary Age, and to the earliest in his system of cave-chronology. It is so named from a cave (Le Moustier), on the right bank of the Vezere, an affluent of the Dordogne, above Les Eyzies and Tayac; wlich has yielded typical palaeolithic implements. The epoch was characterized by cold wes climate by the supposed existence
of Man of the Olom type, that is, nearly as dolichocephalous as the Neanderthal type, but with superciliary ridges flat, and frontal bones high, and by the occurrence of the musk-ox, the horse, the cave-bear, Rhinoceros tichorhinus and the mammoth. The typical implements are fint points or spear-heads, left smooth und flat on one side, as struck from the cave, pointed and edged from the other side; a scrnper treated in the same way, but with edge rather upon the side than at the end, as in the succeeding Solutrian and Madelenian epochs. Relics of the Mousterian age have been also found in Belgium, southern Germany. Bohemia and southern England, some of the "finds " including human remains.

MOUTH AND SALIVARY GLANDS. The mouth (A.S. mads), in anatomy, is an oval cavity at the beginning of the alimentary canal in which the food is masticated. The opening is situated between the lips, and at rest its width reaches to the first premolar tooth on each side.

The lips (A.S. lippa) are fleshy folds, surrounding the opening of the mouth, and are formed, from without inward, by skin, superficial fascia, orbicularis oris muscle, submucous tissue, containing numerous lahial glands about the size of a small pea, and mucous membrane. In the decper part of each lip lies the cosonary artery, while in the midd-line is a reflection of the mucous membrane on to the gum forming the fraenum lahii.
The cheeks (A.S. céace) form the sides of the mouth and are continuous with the lips, with which their structure is almost identical save that the buccinator muscle replaces the orbicularis oris and the buccal glands the labial. In the subcutancous fascia is a distinct mass of fat, specially large in the infant, which is known as the sucking pad. On the huccal surface of the cheek, opposite the second upper molar tooth, is the papilla which marks the opening of the parotid duct, while, just behind, are four or five molar glands, larger than the buccal, the ducts of which open opposite the last molar tooth. The mucous membrane of the check, like that of the rest of the mouth, is of the atralified squamous variety (sce Eptrhelani. Tissues) and is reflected on to the gums.

The gums (A.S. goma) consist of mucous membrave connected by thick fibrous tissue to the periosteum of the jaws. Round the base of the crown of each tooth the memhrano rises up into a little collar.

The vestibule of the mouth is the space between the lips and cheeks superficially and the gums and teeth deeply. It communicates with the true cavity of the mouth by the clefts het ween the teeth and by the space hehind the last molar teeth.

The roof of the mouth is concave transversely and anteroposteriorly, and is formed by the hard and sofl palale. The hard palate consists of mucous membrane contimuous with that of the gums and bound to the periosteum of the palatine processes of the maxillae and palate bones by firm fihrous tissue. In the mid-line is a slight ridge, the palatine raphe, which ends in front in a little eminence called the palatine papilla, marking the position of the anterior palatine canal. From the anterior part of the raphe five or six transverse ridges or rugac of the mucous membrane run out ward. (For a description of the soft palate see Pharynx.)

The floor of the morth can only be seen when the tongue is raised, then the refiection of the mucous membrane from the gums to it is exposed. In the mid.line is a prominent fold called the froenwim limgnae, and on each side of this a stblingua papille, on to the summit of which the duct of the submaxillary gland opens. Running outward and hackward from this is a ridge called the plica subliugualis, which marks the upper edge of the sublingual gland, and on to which most of the ducts of that gland open. (For a description of the Tongur and the Teeth see special articles on those structures.)

The salivary glands are the parotid, submasillery and sublingual, though the small scattered glands such as the lahial. buccal, molar, lingual, \&c., probably have a similar function.

[^64]the mouth the gland looks more or less triangular, its outer wall or base being bounded by the parotid lascia, its anterior by the jaw, and its posterior by the mastoid process and sterno mastoid muscle. Where the anterior and posterior walls meet to form the apex is the atyloid process. Above the gland reachea to the sygoma, and below to the level of the angle of the jaw, where a strong process of the deep cervical fascia, called the siylo-mandibular ligament, oeparates it from the submaxillary gland; indeed the parotid is often described as lying in a bag formed by deep cervical fascia. The outline of the gland is obscured by several processes, one of which, the facial lobe, runs forward, superficial to the masseter muecle, accompanying the duct. A separate part of this is called the socia parolidis; another, known as the plerygoid lobe, passes forward, deep to the ramus of the jaw, to the space between the two pterygoid muscles. A third wrapt jound the front of the styloid process and may be

Fig. 1.-The Salivary Glande and their Ducts.
The greater portion of the body of the mandible has been removed to expoec the sublinguai and the deeper parts of the submaxillary glands. Four ducts of the sublingual gland are shown opening on the floor of the mouth over the gland, a fith is shown opening into the anterior end of Wharton's duct. The course of Wharton's duct is shown by a dotted line.
termed the pre-styloid lobe, while a fourth, the post-styloid, insinuates itself behind that procest. The upper part of the prestyloid lobe sometimes reaches the back part of the glenoid cavity, and is then called the glenoid lobe. All these processes, however, are very variabie, and depend a good deal on the position of the head and neck. The facial nerve, the temporo-maxillary vein, and the termination of the external carotid artery, among other structures, are embedded in the gland. The parolid duch (Stensen'r duct) crosses the upper part of the masseter and then pierces the buocinator on its way to the mouth; it is about 2 in. long. Les position is described \ln the article on Anatouy (Superficial and Artistic), and its opening in the earlier part of this article.
The submaxillary gland lies deep to the posteriur half of the body of the lower jaw; in is about the size of a walnut, and has an external, internal and inferior surface. The external surface rests against the submaxillary fossa in the jaw, the internal is in contact with the mylohyoid and hyoglossus muscles, while the inferior is sulcutaneous. The whole gland is enclosed in a sac of deep cervical lascia, while a process, from which the duct arises, passes deep to the mylohyoid. The facial artery is embedded in the upper part of the gland. The submaxillary duct (Wharton's duct) runs forward to the sul)lingual papilla already mentioned.

The sublingual gland is placed further forward than the submaxillary; it is like an almond in shape though larger: its outer
flattened curface reate against the sublingual foose in the lower jaw, while the inner one is in contact with the genio-hyoglossus muscle, the submaxillary duct and the lingual nerve. Its upper edge forms the sublingual fold (plica sublingualis) In the mucous membrane of the mouth, and along this its ducts, which are small and numerous, open; these are sometimes called the ducts of Ripini, but the term "sublingual ducts" in simpler and more expressive. Occasionally an anterior sublingual duct (duct of Bartholin) opens with or into the submaxillary duct.

Embryology.

- The fore-gut (see Almentary Canal) at first ends blindly, ventral to tha region of the hind brain, while In front of it is the overhanging fore-brain. When the heart develope, veptral to the fore-gut, it aleo projecta forwand toward the fore-brain, mo that a transverse cleft, without a ny lateral boundaries and lined by ectoderm, is left between these two structures. This is the stomatodosum or primitive mouth, the ectoderm of which rests against the entoderm of the fore-gut to form the bucco-pharyngeal membrame, and so separates the two chambers. The potition of this membrane does not correspond to the fauces or hinder limits of the adult mouth, but is much more oblique, so that the front part of the roof of the pharynx ia formed by stomatodaeum while the greater part of the floor of the permianent mouth is foregut. During the third week tha membrane disappears, and it is probablo that to its early atrophy is due the lact that no traces of it can be seen in the adult. Growing down from the region of the lore-brain if the fronto-nasal process, which forms the nose and the middle piece of the upper lip, while the lateral parts of the mouth are closed in by two procesees, on each side of which the lower or mandibular process rapidly meets its lellow in the mid-line to form the lower jaw and lip, thus separating the heart from the mouth cavity. The upper or maxillary process grows inward more alowly, hut at last joins with the frontonasal process, and in the adult the lines of union are eeen on each side as ridges of skin which run down from the nostril to the margin of the lip, and enclose that alightiy depressed vertical gutter to which the term philirum is given. Besides forming the philtrum the fronto-nasal process is responsible for that part of the roof of the mouth which corresponde to the promaxillary bones, an aree marked out by lines drawn on each side from between the lateral incisor and canine teeth to the palatine papilla. At first the cavities of the mouth and nose are one, but they are later divided by the palatal processes, which grow in like ahelves from the maxillary procemsand meet in the mid-line. The mubmaxillary and sublingual salivary: glaode develop as solid outgrowtha of the buccal epithelium which are canalized later, while the parotid according to Hammar (Archiv. f, mikr. Anaf. LXI., 1902) appears first as a groove. The parotid is ectodermal in origin, all the others entodermal.
For further detaile and literature see Quasin's Anat vol. i. (London; 1908); I. P. McMurrich Development of the Human Body (London, 1907); O. Hertwig, Handbuch der Entwrikelungslehre Th. II., (Jena). Comparative Anatomy.
In the acrania (amphioxus) the mouth is developed on the left side and gradually shifts to the mid-line; Later an extra chamber the oral hood, is formed in fromt of it, the external opening of which is provided with bristle-like cirrhi, 00 that in the aduit the mouth is merely an aperture in the velum or membrane which separates the oral hood from the pharynx.

In the cyclostomata (lampreys and hags) the mouth is a auctorial organ, and remernbles a funnel, the narrow end of which opens into the pharynx It is always open and is provided with horny teeth and a tongue. At this low stage of the vertebrate scale no jaws have yet appeared, but in the larval lamprey (ammocoetes) an oral hood, resembiling that of amphioxus, is present. In the fishes jaws are present and the mouth can be closed at will. In the elamobranchs (sharks and rays) the opening is crescentic and situated weli on the ventral surface of the head, hut in other fishes it is at the anterior end of the body. Until the dipnoi (mud fish) are reached there is no communication between the mouth and the nose, but in these fiches the Internal or ponterior nares open into the froat part of the roof of the mouth, thus adapting them to air-breathing. In the Amphibia the mouth has usually an enornous gape, and the position of the posterior nares resembles that of the dipnoi. It will be notleed that at this stage of phylogeny the condition resembles that of the ontogeny of man before the palatal procemes appear. The premaxillary part of the fronto-namal procem separates the nasal cavity from the mouth in front, but behind that the cavity is the rudiment of the mouth and nose which no palate has yet appeared to separate. In Reptiles the hard pulate appears, and henceforward the digentive and respiratory tracts oaly form one pamage in the pharynx. In mammais definite lips provided with muscles first appear, though the Monotremes have ieuch specialized mouths that lips are not found in that order. Many monkeye have the vestibule enlarged to form the cheek pouches.,
(F. G. P.)

Surgery of the Mowik.

In surgical operations upon the interior of the mouth which are likely to be accompenied with much bleeding, it is much tbe
custom now to have the patient lying upon his back, with the head hanging over the end of the table, so that the blood may sink into the dome of the pharynx and escape by the nostrils, instead of running the risk of finding its way into the windpipe and lungs. (See Cleft Palate.)
Mumps.-Inflammation of the parotid gland is apt to occur as an epidemic, children being chicfly attacked. The disease, which is highly infectious, is called mumps, and is associated with much swelling below and in front of the ear, or ears. There is stiffess of the jaw and there is a difficulty in swallowing. There is slight local tenderness, and the temperature may, perhaps, run up a degree or two. For the sake of others, the child should be kept away from school for three or four weeks.

Salivary Calculus.-Sometimes a deposit of phosphate and carbonate of lime slowly takes place from the saliva, and gives rise to the formation of a small concretion in the duct of one of the salivary glands. When the concretion blocks the duct, so that the saliva is unable to find its way into the mouth, a fluid swelling forms behind the blockage, giving rise to inconvenience and unsightliness. The swelling is at its greatest during a meal, when the secretion of the saliva is necessarily rapid; subsequently it disappears, recurring, however, at the next meal-time. In many cases the patient is conscious of the fact of there being a hard, movable "kernel," the size, perhaps, of a barleycorn, a cherry-stone or even of a small almond, in the course of the duct. In the removal of the calculus every endeavour should be made to effect its escape into the mouth, as, if the skin were incised for its extraction, the wound might refuse to heal, a solivary fistula resulting.
(E. O.")

MOUTHPIECE (Fr. embouchurc; Ger. Mundstick; Ital. bocchino), in music, that part of a wind instrument into which the performer directs his breath in order to induce the regular series of vibrations to which musical sounds are due. The mouthpiece is cither taken into the mouth or held to the lips; by an extension of the meaning of the word, mouthpiece is also applied to the corresponding part of an organ-pipe through which the compressed wind is biown, and containing the sharp edge known as " lip." or the reed necessary for the production of sound. The quality of a musical tone is due primarily to the form or method of vibration by means of which sound-waves of a distinctive character are gencrated. each consisting of a pulse or half-wave of compression and of a pulse of rarefaction; the variety in the quality of tone, or "timbre," ohtainable in various wind instruments is in a great measure due to the form and construction of the mouthpiece, taken in combination with the form of the column of air within the tube and consequently of the bore of the latter. The principal functions of the mouthpiece are (1) to facilitate the production of the natural harmonic scale of the instrument; (2) to assist in correcting errors in pitch as the ear directs; (3) to enable the performer to obtain the dynamic variations whereby he translates bis emotional interpretation of the music into sound. Mouthpieces, therefore, serve as a means of classifying wind instruments. They fall into the following divisions:-

1. The syrinx or pan-pipe mouthpiece consists merely of the open end of the tube across (not into) which the player directs his breath in a current which impinges obliquely against the sharp edge of the pipe, producing the series of shocks or pulses requlred in the air stream from his lips; this in turn, when in a state of vibration, serves to generate the sound-waves within the pipe. This principle was embodied in the nay, or long oblique flute of the ancient Egyptians, which was probably the first mouthpiece discovered and put into practical use by prehistoric man. A modification of this principle has been applied to the transverso flute (q.a.), in which the air stream or exciting current is directed across a lateral hole in the head joint of the instrument.
2. The whistle mouthpiece is based on that of the flute with this modification, that the air current, instead of being compressed by the lips of the performer and then directed through ambient alr to break against the sharp edge of the lateral hole, is compressed mechanically in passing through a narrow channel
so constructed within the mouthpiece that the stream of air impinges with force against the sharp edge of a lip cut into the pipe below the channel. The principle of the whistle mouthpiece has been applied with slight modifications to a variety of instruments such as the recorder (q.v.) family in England (Fr. filte d bec, fiute douce, flate anglaise; Ger. Schnabelfiote, Plockfiote, Ital. fauto dolce, in which the channel assumes the form of a beak, the flageolet ($q .8$.), the penny whistle, \&c. All these whistle or fipple pipes have at all times enjoyed great popularity owing to the ease with which they can be played. ${ }^{1}$

The flute or flue-work of an organ is the result of the adaptation of the same principle to both open and stopped pipes (fig. 1). Compressed air is fed in at an even pressure through the foot AB, and passing through the slit or channel EC. impinges with force against the lip D, producing the requisite scries of pulsations in the pipe FF. By this climination of the human element in the organ, all possibility of communicating the emotion of the performer becomes impossible. With a rigid mouthpiece any increase in wind pressure would affect the pitch, causing the note to become unsteady or to jump to the harmonics; the result could in no case be a crescendo.
3. Rced Mouthpieces.-There are three kinds of reed mouthpieces: the double, the single or beating, and the free reed. The function of the reed, a term originally applied to part of a stalk of the Arundo donex or soliva, hut now extended to any vibrating tongue of wood or metal. is to break up an exciting current of air, otherwise flowing in an uninterrupted even stream, into regular beats or pulses, corresponding with the beats or vibrations of the reed. Reeds proper or wooden vibrators, being flexible, are compelled to vibrate synchronously with the column of air within the tube and to accommodate their frequency of vibration to the length of the tube as it varies according to tbe lateral holes which remain open?
A. The double reed is the most primitive and probabiy the oldest of the reed mourhpieces: it was used by the ancient Egyptians.' A straw flattened at one end and inserted into a pipe having at the mouthpiece end the same diameter as the straw contains all the rudimentary features of the doublereed mouthpiece common to the members of the oboe family. i.e. cor anglais, bassoon, contra-fagotto, to the sarrusophone, and to the chaunter of the bagpipe. The earliest Greck aulos (q.o.) was probably played by means of a double reed. since the mouthpiece was known as seivos, signifying a pair of like things. The oboe reed (fig. 2) is made from two pieces of reed stalk. flattened and thinned at the end and bound logether with waxed thread, thus forming a tube with a coostriction in the middle, above which the section is oval and below eircular.
A double-reed mouthpiece may be enclosed in an air-chamber or reservoir, as in the 161 h-century cromorne ((q.e.), in the chaunier of the bagpipe (q.e.), in the reeds of organ-pipes and in certain instruments popular in France during the 17th century known as "hautbois de Poitou." In all of these the air-chamber is supplied wih compressed sir by the mouth of the performer. whose lips do not come into contact with the reed, a method which makes the production of harmonics impossible, and thus restriets the natural scale. As soon as the practice of over-blowing, i.e. the production of harmonics by increased pressure of hreath accompanied by a proportional tension of the lips, became known, the air-chamber

[^65]of the obot wat liparded and the reed taken directly into the mouth. It is certain that the ancient Greeks obtained the full

Rudill, Curte \& Ca Fig. 2. - Oboe
double-reed double-ree
mouthpiece. compass of the aulos by overblowing, since the process by which a modern performer on the oboe or clarinet obtains the harmonics is described by Aristotle ${ }^{1}$ and others.

The vibrating length of the reed is controlled by taking the latter more or less deeply into the mouth and by varying the pressure of the lips upon it; the shorter the free end the higher the pitch of the note or harmonic obtained. The action of the lipe on the reed is imitnted to some extent in reed organ-pipes by means of a tuning-wire, with the difference that, the lips being mobile, different noted can be obtained from the same pipe, whereas in the organ cach reed is adapted to its own pipe and gives one note only.
B. The beating- or single-reed mouthpiece, also known as the clarinet monthpiece, is likewise of great antiquity; the principle is the same as that of the modern Egyptian arghoul (g.v.), which has been traced once at least in the hieroglyphics and in a fresco from the tombs at Saqqara. ${ }^{3}$ The mouthpiece of the arghoul is the primitive form of beating-reed known popularly in rural districts as a "squeaker." A lateral slit is made in a piece of reed and a little tongue is detached by slitiing the reed back from the slit towards cose and open the aperture at regular intervals, and the exciting agent here act by means of a serics of coneussions. The metal vibrator known da the beating-recd of organ reed-pipes is similarly constructed, except that the congue is a separate piece of metal fixed by means of nuts over an aperture, the vibrating length being regulated by means of n tuning'wire (see Frer Rego Vigrator). The clarinet mouthpiece (fig. 3) has the appcarance of a beak with the
 point bevelled and thinned at the edge to
correspond with the end of the reed, shaped correspond with the end of the rece, shaped piece is lattened in order to form a table for the support of the reed, which is adjusted thereon with great nicety by means of a ligature or metal band fastened by serews. A longitudinal aperture in. long and in. wide. communicating with the bore, is cut in the table and covered by the reed, so that the only opening is at the polnt, where for the distance of f to t in. the reed is thinned and the table carves backwards, leaving a gap of about 1 mm . between itser and the reed-tongue (for the Bb clarinet). The curve of the table and the dimensions of the gap are therefore of considerable importance. The reod is set in vibration by the breath of the performer, and being flexible it beats against the table, alternately opening and closing the gap, and producing, as alrcady mentioned above, a serics of concussions in
harmony with the vibrations of the aircolumn within the tube, according to the length determined by the opening of the

FiG. 3--Clarinet Mouthpiece.
a. The mouthpiece, the position of the bore inside being indicated by dotted lines.
b. The single or beating-reed.
lateral holes and keys.
C. The frce-reed. illustrated under Fret Reed Vibrator. is similar in construcion to the beating-reed, but the metal vibrator is cut slightly smaller than the aperture, through which it pasess frecly, alternately opening and closing it without concussion and whth complete elasticity. The main difference in practice between these two outwardly similar reeds is a very important one. The reed being froe remains uncontrolled, and increased pressure of wind therefore produces not an harmonic overtone but a creacendo. The principal use of the frec-red is in the harmonium ($q=0$) and in the reed-work of organs on the continent of Europe In English organs the beating-reed is almost universal. The free-reed is further used in the Chinege cheng (q.0.), through which it became known in Europe in the 18 th century, and in the acrordion. concertina and mouth-organ. under which headings its acoustic properties are more fully discussed.
4. Cup-Mouhpieces.-Brass wind instruments arc played by means of cup or funnel-shaped mouihpieces, gencrally made of
${ }^{1}$ See De audib. p. 804 a.
2 Porphyrius (ed. Wallis), pp. 249 and 252.
' See Victor Loret. L'Egyple au temps des Pharaoms (Paris, 1889). illustrated on pp. 139 and 143 . The aulhor gives no information as to this fresco except that it is in the Musbe Cuimet ; it is probably identical with the second of the mural paintings described on p. 190 of the Patit guide illustrt dx Mushe Guimet (Paris, 19go).
silver. The principal feature of the cup is the shape of the aperture in the bottom, where it communicates with the bore of the tube (known as the "gruin " or " throat "), and its distance from the rim. The shallower the cup the more suitable it is for producing the higher harmonics. The lips of the performer rest lightly but firmly against the rim of the mouth. piece, vibrating like double reeds from the force of the breatb and communicating these vibrations in the form of pulses to the breath as it issues from them in a stream. This stream or exciting current passes into the cup ready to generate sound. waves in the air column contained within the main tube. If, as in the trumpet and in a lesser degree in the trombone, the curve of the bottom of the cup terminates at the hole in an abrupt angle, the quality of the tone developed is brilliant and blaring, being broken up by the sharp edge of the throat. In the horn, which has a funnel-shaped mouthpiece, the timbre is in complete contrast when the instrument is properly played, ${ }^{4}$ being elastic, sonorous and very mellow, qualities which may be attributed to the absence of angle or bottom to the cup, the sides gradually sloping and converging insensibly into the bore of the tube.
(K. S.)

MOVERS, PRANZ KARL ($1806-1856$), German Roman Catholic divine and Orientatist, was born at Koesfeld in Wiestphalia, on the 17th of July 1806. He studied theology and Oriental languages at Münster, was parish priest it Bericum near Bonn from 1833 to 1839 , and professor of Old Testament theology in the Catholic faculty at Breslau from 1839 to his death on the 28 th of September 1856 . His elaborate works, Die Photisier (1841-1850) and Phonixische Textc, erklart (18451847), attained a high reputation. Of his other writings two biblical studies were of some importance, his Krilische Unter. suchungen nber die alltestamentliche Chronik (1834), and his Latin essay on the two recensions of the text of Jeremiah, D_{a} utriusque recensionis vaticiniorum Joremias. . .indole et arigino (1837).

M0W. (1) To cut down standing hay or corn with a scythe or with machinery drawn by a horse or mechanical power (see Reaping). The word in O.Eng. is matoan, a verb common to the West German languages, cf. Du. modien, Ger. maken; the root is also seen in "meadow," Gr. apây and Lat. metcre, to reap, cut, cf. messis, harvest. (2) A stack or rick of hay. corn, and sometimes also of beans, peas or other crops. The word in O.Eng, is miga, mitho, and is cognate with Swedish and Norwegian mugo, heap, cf. Swedish allmoge, crowd of people, Danish almuc. "Mow" is chlefly dialectal in England, where it is a' common name, e.g. the Barley Mow, on the sign-boards of country inns. From these two words mist be distinguished (3) "mow," a grimace, now obsolete or parely literary, and generally found in combination with " mop," cf. " mopping and mowing" in King Lear, iv. l. 64. This is the same word as the modern Fr. moac, pout, which is of obscure origin.

MOWAT, SIR OLIVER (1820-1903), Canadian judge and statesman (Q.C. 1856 , LلL.D. 1872, K.C.M G. 1892, G.C.M.G. 1897), was the son of John Mowat, who fought in the Peninsular War under Sir Arthur Wellesley (afterwards duke of Wellington). Born at Kingston, Ontario, on the 22 nd of July, 1820 , he was educated by private tuition and in 1836 began the study of law under Mr (afterwards the Rt Hon. Sir) JohnA Macdonald. Called to the bar in 1841, he soon became a leading Chancery counsel and in 1856 "took silk." He entered perliament in 1858 as a Liberal and in 1863 became postmaster-general. He took a prominent part in the procecdings of the Quebec Confer: ence of 1864, which settled the terms of the Confederation of the British North American provinces, and in the same ycar was appointed vice-chancellor of Upper Canada. Eight years aftervards (1872) the Hon. Edward Blake resigned the premier. ship of the province of Ontario, and Mowat was called 10 fill the vacant post. He cont inued to be premier of Ontario until the izth of July 1896. Assisted by ahle colleagues and holding atways a strong majority in the house, he gave to Ontario a

4 The horn may be so played, by forcing the breath in a certain manoer, that its timbre spproximates to that of the trumpet.
body of laws many of which have been copied by other provinces of the dominion and by several states of the American Union. In eight important cascs which he argued before the Judiciad Committee of H.M. Privy Councii, be established, as against the contention of Sir John A. Macdonald, the proposition that the provincial iegislatures were co-ordinate with and not subordinate to the parliament of Canada. To weaken his influence the Conservatives at Ottawa attempted to extend the boundaries of Manitoba, thereby reducing the area of Ontario; but Mr Mowat again appealed to the Judicial Committee and was again successful. According to Sir John A. Macdonald, Ontario contained under the "Quebec Act" only 116,782 sq. m.; but Mr Mowat gave it an area of $260,862 \mathrm{sq}$. m . When he returned home after this great victory he received an ovation unparalleled in the history of any Canadian stateaman. One of his prominent characteristics was his loyalty to Britain. Between 1886 and 1896 Canadian trade was depressed, and men were leaving the country in thousands for the United States. Dr Goldwin Smith and other prominent men advocated commercial union with the United States, viz. that the two countries should maintain a uniform tariff against the rest of the world, with free trade as between themselves. Sir Oliver Mowat saw in this " veiled annexation," and by letters, speeches and pamphlets he crushed the movement so completely as to make his party more imperialist than the Conservatives had ever been. In July 1806 he was called to the senate of Canada and made minister of justice. In November 1897 he was appointed lieutenant-governor of his native province, and this office he beld until he died at Government House, Toronto, on the 191 h of April 1903.

See C. R. W. Biggar, Sir Oliver Mowat, a Biographical Sketck (Toronto; 1905).
(C. R. W. B.)

MOWBRAY, the name of an Anglo-Norman baronial house, derived from Mont bray (Manche) in Normandy south of St Lo. It was founded at the Conquest by Geoffrey (de Montbray), bishop of Coutances. His brother's son Robert, who rebelled with him against William Rufus on the Conqueror's death, was made, after their reconciliation, earl of Northumberland, as his uncte's beir but was forfeited and imptisoned for life on rebelling again in rogs. A sister of Bishop Geoffrey was mother by Roger d'Aubigny (of Aubigny in the Cotentin) of two sons, Nigel and William, who were ardent supporters of Henry I., and were rewarded hy him with great estates in England. William was made king's butler, and was father of William d'Aubigny (" de Albini"), first earl of Arundet (sce Arundel); Nigel was rewarded with the escheated fief of Geoffrey de la Guerche, of which Metton (Mowbray) was the head, and with forfeited lands in Yorkshire. Nigel married, by dispensation, the wife of his cousin, the imprisoned cati, but afterwards divorced her, and by another wife was father of a son Roger, who took the name of Mowbray.

Roger, a great lord with a hundred knights' fees, was captured with King Stephen at the bat le of Lincoln, joined the rebellion against Henry 1I. (1173), founded abbeys, and went on crusadc. His grandson William, a keader in the rising against King John, was one of the 25 barons of the Great Charter, as was his brother Roger, and was captured fighting against. Henry 111. at the rout of Lincoln (1217). His grandson Roger (1266-1 298), who was summoned to parliament by Edward I., was father of John (1286-1322), a warrior and warden of the Scoltish March, who, joining in Thomas of Lancaster's revolt, was captured at Boroughbridge and hanged. His wife, a Braose beiress, added Gower in South Wales and the Bramber lordship in Sussex to the great possessions of his house. Their son John (d. 1361) was father, by a daughter of Henry earl of Lancaster, of John, Lord Mowbray (c. 1328-1 368), whose fort unate alliance with the heiress of Lord Scgrave, by the heiress of Edward I.'s son Thomas, earl of Noriolk and marshal of England, crowned the fort unes of his race. In addition to a vast accession to their lands, the earldom of Nottingham and the marshalship of England were bestowed on them by Richard II., and the dukedom of Norfolk followed (see Noryoix, Tyomas Mowbray, 1at duke of.

The ist dute left two sona, of whom Thomas the elder was only recognized as earl marshal. Beheaded for joining in Scrope's conspiracy against Henry IV. (1405), he was succeeded by his brother John, who was restored to the dukedom of Noriolk in 1424. His son Jobn, the third duke, was father of John, $4^{\text {th }}$ and last duke, who was created carl of Warrenne and Surrey in his father's lifetime (1451). At his death (1475) his vast inheritance devoived on his only child Anne, who was married as an infant to Edward IV.'s younger son Richard (created duke of Norfoik and earl of Nottingham and Wartenne), but died in 1481 .

The next heirs of the Mowbrays were then the Howards and the Berkeleys, representing the two daughters of the first duke. Between them were divided the estates of the house, the Mowbray dukedom of Norfolk and carldom of Surrey being also revived for the Howards (1483), and the earldom of Nottingham (1483) and earl marshalship (1485) for the Berkeleys. Both families assumed the baronies of Mowbray and Segrave, but Henry Howard was summoned in his father's lifetime (i640) as Lord Mowbray, which was deemed a recognition of the Howards' right; their co-heirs, from 1777, were the Lords Stourton and the Lords Petre, and in 1878 Lord Stourton was summoned as Lord Mowbray and Segrave. The former dlgnity is claimed as the premier barony, though De Ros ranks before it. Lord Stourton's son claimed, but unsuccessfully, in 1901-1906 the earldom of Norfolk (1312), also through the Mowbrays. Of the Mowbray estates the castle and lordship of Bramber is still vested in the dukes of Norfolk. The heraldic badge of the house was a mulberry-tree.
(J. H. R.)

MOWBRAY, HARRY SIDDONS (1858) , American artist, was born of English parents at Alexandria, Egypt, on the 5th of August 1858. Left an orphan, be was taken to America by an uncle, who settled at North Adams, Mass. After a year at the United States Military Academy at West Point, he went to Paris and entered the atelier of Leon Bonnat, his first picture, "Aladdin," bringing him to public notice. He was made a full member of the National Academy of Design in 1891. Subsequently he was best known for his decorative work, especially "The Transmission of the Law," Appellate Court House; ceiling for the ressdence of F. W. Vanderbilt; and the ceiling and walls of the library of the University Club-all in New York. This last was executed in Rome, where, in 1903, he was made director of the American Academy.

MOWBRAY, ROBERT (d. 1125), a Norman who was appointed carl of Northumberland between 1080 and 1082. In 1088 he and his uncle Geoffrey, bishop of Coutances, aided with Robert, duke of Normandy, against William Rufus, but they were pardoned at the close of the rebellion. In rogi Mowbray defeated Malcolm Canmore of Scotland, who had invaded Engiand, and in 1093 surprised and slew this king near Aln wick; soon after this event he succeeded to his uncle's vast eatates. In 1095 he led a rebellion which had for its object the transference of the crown from the sons of the Conqueror to Stephen of Aumale. Rufus marched against the earl in person, and Mowbray shut himself up in Bamborough Castle, hut he was captured by treachery, escaped, and was captured again. He was then deprived of his possessions and kept a prisoner for the rest of his life, nearly thirty years.
See E. A. Freeman, William Rufus, especially Appendices C.C.F.F. (Oxford, 1882).
KOXON, EDWARD (L801-1858), British poet and publisher, was born at Wakefield in 1801 . In 1826 he published a volume of verse, entitled The Prospect, and other Poems, which was received with some favour. In 1830 Moxon was started by Samuel Rogers as a London pablisher in New Bond Strcet. The first volume he issued was Charies Lamb's Album Verses. Removing to Dover Street, Piccadilly, Moxon published an illustrated edition of Rogers's Italy, $\{10,000$ being spent upon the illustrations. Wordsworth entrusted him with the publication of his works from 1835 onwards, and in 1839 he issued the first complete edition of Sheliey's poems. Some passages in Queen Mob were the cause of a charge of blasphemy being
made aginst Moxon in 1841. The case was tried before Lord Denman. Serjeant Talfourd defended Moxon, but the jury returned a verdict of guiky, and the offensive passages were for a time eliminated. In 1840 be published Browning's Sordello; and in succeeding years works by Lord Houghton, Tom Hood, Barry Cornwall, Lord Lytton, Browning and Tennyson appeared. Edward Moxon died on the 3rd of June 1858, his business being continued by Mr J. B. Payne and Mr Arthur Moxon, who in 1865 published Swinburne's Atalanta in Calydon; hut in 1871 it was taken over hy Messrs Ward, Lock \& Tyler.

MOXOS, MOjOs, MOHOS, a tribe of South Amcrican Indians living around the head-waters of the Madeira river, northern Bolivia, particularly on both banks of the Mamore. They subraitted to Inca domination, but in 1564 gallantly repulsed the Spaniards. A century later, however, the Jesuits were welcomed; and the Mozos became devout Calbolics. Tbey number some 30,000.

MOZA MBIQUE [Sano Sebastiao de Moçambique], ann of Portuguese East Africa, seat of a Roman Catbolic bishopric in the province of Goa, in $15^{\circ} 4^{\prime} \mathrm{S}$., $40^{\circ} 44^{\prime} \mathrm{E}$. The town ocrupies the whole of a small coral island at the mouth of Mossoril Bay. The name Mozamhique, used first to designate the island, was also given to the town and extended to the whole of the Portuguese possessions on the east coast of Africa. There are three forts. of which the principal, St Sebastian, at the northern extremity of the island was built in r 510 entirely of stone brought from Portugal. It is quadrangular, and has bastioned walls nearly 70 it. high. In it are mounted some modern guns. The harbour is small, but deep enough to admit vessels drawing 25 feet.

The inhabitants, who number about 7000 , consist chiefly of Mahommedan negroes of mixed descent speaking a dialect of the Makwa language. There are Parsec; Banyan, Goanese and Arab traders, and about 300 Europeans, besides half-caste Portuguese. The annual average value of the imports for the three years 1904-1906 was $£ 97,035$, of the exports $£ 71,636$. The import trade is chiefly with Great Britain and India, the articles in chief demand being coiton, coloured shawls and hardware. The exports are chiefly groundnuts, ruhber of inferior quality, sesamum and other oil seeds, tortotse-shell and ebony: Germany has a large share of the exports.

Mozambique was discovered by Vasco da Gama In 1498. There was then a flourishing Arab town on the island, oi which no trace exists. The history of the Portuguese town is closely identified with that of the province, lor which see Portuguese East Aprica. The commercial and political importance of Mozambique has been eclipsed by Lourenco Marques.
mozarab [Spanish Mosdrabe, a corruption of the Arahic Musha'rib, coll. Musta'ribal, a general term for persons not Arab by race who have assimilated themselves to the Arabs. It was applied by the Moslems in Spain to the Christian communities existing among them, In Cordova, Seville, Toledo and other large cities, in the exercise of their own laws and religion. The ancient liturgy used by the Christians of Toledo is commonly known as Mozarabje.
mozart, wolpang amadeusi (1756-1791), German composcr, was born at Salzburg on the 27th of January 1750. He was educated by his father, Leopold Mozart, a violinist of high repute in the service of the archbishop oi Salzburg. When only three years old he shared the harpsichord lessons of his sister Maria, five years his senior. A year later be played minuets, and composed little pleces, some of which are stil preserved in Maria's music-book. When five years oid he performed in public for the first time, in the hall of the aniversity. In 1762 Leopold Mozart took Wolfgang and Maria on a musical tour, during the course of which they played before most of the sovereigns of Germany. The little "Wolferl's" ${ }^{2}$ charming appearance and disposition endeared him to every one; and 80 innocent and natural were his manners that at Vienna he sprang

[^66]upon the empress's lap and'kissed her. The emperor Francis I. sat hy his side while he phayed, and called him his " little magician." When he slipped one day on the polished floor the archduchess Marie Antoinette, afterwards queen of France, lifted him up, whereupon he said, "You are very kind; when'I grow up I will marry you.". Yet, in spite of the petting he received at court, he remained as gentle and docile as ever, and so amenable to parental autbority that he used to say, "Next after God comes my father." In 1763 the whole family started again. Wolferl now sang, composed, and played on the harpsichord, the organ and the violin, winning golden opinions everywhere. At every court he visited he was loaded with caresses and presents; but the journeys were expensive, and the family terribly poor. In Paris they lodged at the Bavarian embassy, giving performances on a grand scale both there and at Versailles, where Wolferl's organ-playing was even more admired than his performance on the harpsichord. Here, also, he published his first compositions-two sets of sonalas for the harpsichord and violin.
On the 10th of Aptil 1764 Leopold Mozart brought his family to England, engaging a lodging in Cecil Court, St Martin'g Lane, whence he afterwards removed to Frith Street, Soho. On the 27th of Apria and the 1gth of May Wolferl played before the royal fa mily with immense success, accompanying the queen in a song and playing at sight anything that the king set before him. He now made his first attempt at the composition of a symphony; published a third set of sonatas, dedicated to the queen; and wrote an anthem for four voices entitied God is our Refuge, for presentation to the British Museum. ${ }^{2}$ On the 17th of Septeraber 1765 the family left England for the Hague, where they remained some time, and where in March 1766 the young composer made his first attempt at an oratorio, commanding in Holland a success as great as that he had already attained in London; and astonishing his hearers at Haarlem hy performing on what was at that time the largest organ in the world. In September 1767 he pald a second visit to Vienna, and at the suggestion of the emperor Joseph II. composed an opera buffa, La Finta sentplice. which, though acknowledged by the company for which it was written to be "an Incomparable work," was suppressed by a miserable cabal. The archbisbop of Salaburg hearing ol this commanded a representation of the rejected work in his palace, and appointed the young composer his " maestro di capella." The office, however, was merely an honorary one, and, since it did not invoive compulsory residence, Leopold Mozart determined to complete his son's education in Italy, to which country he himself accompanied him in December 1769.

Wolfgang, now nearly fourteen years old, was already an accomplished musician, needing experience rather than instruction, and galning it every day. At Milan he received a commission to write an opers for the following Christmas. Arriving in Rome on the Wednesday in Holy Week, he went at once to the Sistine Chapel to hear the celebrated Miserere of Gregorio Allegri, which, on returning to his hotel, he wrote down from memory note for note-a feat which created an immense sensa. tion, for at that time the singers were forbidden to trauscribe the music on pain of excommunication. Returning to Rome towards the end of June, he was invested by the pope with the order of "The Golden Spur,' of which he was made a cavaliere,' an honour which be prized the more highly because, not many years before, it had been conferred upon Gluck. In July he paid a second visit to Bologna, when the Aocidemia Filarmonica, after subjectlng him to a severe examination, admitted him to the rank of "compositore," notwithstianding a statute restricting this preferment to candidates of at least twenty years old. The exercise which gained hlm this distinetion is a four-part composition (Kochel's Catalogue, No. 86) in strict counterpoint on the antiphon Quoerilo primum, written in the ievere ecelesiastical atyle of the 16 th century and abounding in points of ingeniopa imitation and device.

[^67]In October 1770 Wolfgang and his father recurned to Milan for the completion and production of the new opera. The libretto, entiled Mitridate, Re di Ponto, was furnished by an obscure poet from Turin, to the great disappointment of the young maestro, who had hoped to set a drama by Metastasio. The progress of the work was interrupted from time to time by the miserable intrigues which seem inseparable from the lyric stage, exacerbated in this particular case by the jealousy of the resident profeasors, who refused to believe either that an Italian opera could be written by a native of Germany, or that a boy of fourteen could manage the orchestra of La Scala, at that time the largest in Europe. Fortumately the detractors were effectively silenced at the first full rehearsal; and on the 26 th of December Wolfgang took his seat at the harpsichord and directed his work amidst a storm of genuine applause. The success of the piece was unprecedented. It had a continuous run of twenty nights, and delighted even the most captious critics.

Wolfgang's triumph was now complete. After playing with his usual success in Turin, Verona, Venice, Padua and other Italian cities, he returned with his father to Salzburg in March 1771, commissioned to compose a grand dramatic serenata for the approaching marriage of the archduke Ferdinand, and an opera for La Scala, to be performed during the season of 1773. The wedding took place at Milan on the 21st of October; and the serenata, Ascanio in Alba, was produced with an effect which completely eclipsed the new opera of Hasse, Ruggiero, composed for the same festivity. Hasse generously uttered the oftenquoted prophecy, "This boy will cause us all to be forgotten." ${ }^{1}$

During the absence of Wolfgang and his father the good archbishop of Salzburg died; and in the spring of the year 1772 Hieronymus, count of Colioredo; was elected in his stead, to the horror of all who were acquainted with his real character. The Mozart family did their best to propitiate their new lord, for whose installation Wolfgang, after his return from Milan, composed an opera, Il Sogno di Scipione; but the newly-elected prelate had no taste for art. and was utterly incapable of appreciating the charm of any intellectual pursuit whatever. For a time, however, things went on smoothly. In October the father and son once more visited Milan for the preparation and production of the new opera, Lucio Silla, which was produced at Christmas with a success quite equal to that of Mitridate, and ran bet ween twenty and thirty nights.

In the meantime Wolfgang continued to produce new works with incredible rapidity. In 1775 he composed an opera for Munich, La Finta giardiniera, produced on the 13th of January. In the following March he set to music Metastasio's dramatic cantata, Il Re pastore. Concertos, masses, symphonics, sonatas and other important works, both vocal and. instrumental, followed cach other without a pause. And this fertility of invention, instead of exhausting his genius, seemed only to stimulate it to still more indefatigable exertions. But the pecuniary return was so inconsiderable that in 1777. Leopold Mozart asked the archbishop for leave of absence for the purpose of making a professional tour. This was refused on the ground of the prelate's dislike to "that system of begging." Wolfgang then requested permission to resign his appointment, which was only an honorary one, for the purpose of making the tour with his mother. The archbishop was furious; but the plan was carried out at last, and on the 23rd of September the mother and son started for Munich. The results were ent encouraging. Leopold hoped that his son, now twenty-one years old, might obtain some profitable court appointment; but in this he was disappointed. And, worse still, poor Wolfgang fell in love at Mannheim with Aloysia Weber, a promising young vocalist, whose father, the prompter of the theatre (uncle of the great composer Weber), was very nearly penniless. On hearing of this Leopold ordered his wife and son to start instantly for Paris, where they arrived on the 23rd of March 1778 . Woligang's usual success, however, seemed on this occasion to have deserted him. His reception was a cold one; and, to add to his misery, his mother fell seriously ill and died on the 3 rd of July. Reduced

1" Questo ragaseo ci fard dimenticar bulli.
almost to despair by this new trouble, he left Paris in September, rested for a while on his way home in Mannheim and Munich, was received by Aloysia Weber with coldness almost amounting to contempt, and in June 1779 returned to Salzburg, hoping against hope that he might make some better terms with the archbishop, who relented so far as to attach a salary of 500 florins (about f50) to his "concertmeister's" appointment, with leave of absence in case he should be engaged to write an opera elsewhere.

Two years later the desired opportunity presented itself. He was engaged to compose an opera for Munich for the carnival of $\mathbf{1 7 8 1}$. The libretto was furnished by the abbate Varesco, court chaplain at Salzburg. On the 29th of January 178I the work was produced under the title of Idowseneo, re di Creta, with triumphant success, and thenceforth Mozart's position as an artist was assured; for this was not only the finest work he had ever written but incontestably the finest opera that had ever yet been placed upon the stage in any age or country.

And now the archbishop's character exhibited itself in its true colours. Art for its own sake he utterly disdained; but it flattered hls vanity to retain a famous artist in his service with the power of insulting him at will. On hearing of the succeas of Idomenco he instantly summoned the composer to Vienna, where he was spending the season. Mozart lost not a moment In presenting himself, but he soon found his position intalerable. That he should be condemned to dine with his patron's servants was the fault of the age, but the open disrespect with which the lowest menials treated him was due to the archbishop's example. His salary was reduced from 500 to 400 florins, he was left to pay his own travelling expenses, and he was not permitted to add to his means by giving a concert on his own account or to play anywhere but at the archiepiscopal palace. Archbishop Hieronymus was hated at court, and most of all by the emperor Joseph, who, on retiring to Laxenhurg for the summer, did not place bis name on the list of invited guests. This offended him so deeply that he left Vienna in disgust. The household were sent on to Salaburg, but Mosart was left to find lodgings at his own expense. Thercupon he sent in his resignation; and for this act of contumacy was insulted by the archbishop in terms too vulgar for translation. He persevered, however, in his resolution, taking lodgings in a house rented by his old friends the Webers، and vainly hoping for pupils, since Vienna at this season was perfectly empty. Happily he had a sincere though not a generous well-wisher in the emperor, and a firm friend in the archduke Maximilian. By the emperor's command he wrote a German opera, Die Entfilirung aus dem Serail, which on the 16 th of July 1782 was received with acclamation, and not long alterwards was performed with equal success 2t Prague. This great work raised the national "Singspici" to a level commensurate with that which Idomenco had already attained for the Italian " opera seria."

The next great event in Mozart's life was not what one would have wished for him. Though Aloysia Weber had long since rejected him, his renewed intimacy with the family led to an imprudent marriage with her younger sister, Constance, a woman neither his equal in intellect nor his superior in prudence. The wedding took place at St Stephen's on the 16th of August 1782. By the end of the year the thrifuless pair were deeply in debt. Mozart composed incessantly, played at numberless concerts, and was in greater favour than ever at court and with the nobility; but to the last day of his life his purse was empty. He had, however, many kind friends, not the least affectionate of whom was the veteran Haydn, who was sincerely attached to him. With Gluck he was on terms of courteous intercourse only. Salieri detested him, and made no secret of his dislike.

Mozart's next dramatic venture was a German singspied in one act, Der Sckauspieldircktor, produced at Schönbrunn, on the jth of Februgry 1786. Not quite three months later, on the 1st of May, he produced his marvellous Le Norse di Figaro, the libretto for which was adapted from Beaumarchais by the abbe da Ponte. The reception of this magnificent work was ent husiastic But Vienna was a hotbed of intriguc. Everything that could
be done by jealous ploters to mar the composer's success was dane, and that so effectively that Mozart declared be would never bring out another opera in the city which treated him so meanly. Fortunately, Figoro, like Die Enefiuhruns, was repeated with brilliant succese at Prague. Mozart went there to hear it, and received a commission to write an opera for the next reason, with a fee of 100 ducats. Da Ponte furnished a libretto, founded on Tirso de Molina's tale, El Convidado de piedra, and entited ll Don Giosanni. By the 28th of October 1787 tbe whole was ready with the exception of the overture, not a note of which was written. This circumstance has led to the idea that it was composed in haste, but it is certain that Mozart knew it all by heart and transcribed it during the night from memory, while his wife told fairy tales to keep him awake.

The opera was produced on the 29th of October with extraordinary effect, and the overture, though played without rehearsal, was as successful as the rest of the music. ${ }^{1}$ Yet, when reproduced in Vienna, Don Giovanni ploased less than Salieri's comparatively worthless Tarare.

On returning to Vienna Mozart was appointed kammercompositor to the emperor, with a salary of 800 gulden ($£ 80$). In April 1789 he accompanied Prince Lichnowald to Berlin, where King Frederick William II. offered him the post of "kapellmeister" with a salary of 3000 thalers ($\mathcal{C}_{4} 50$). Though most unwilling to quit the emperor's service, he informed him of the ofer and requested leave to resign his appointment in Vienna. "Are you going to desert me, then?" asked the emperor; and Mozart, wounded by the reproach, remained, to starve. The emperor now commissioned Mozart to compose another Italian opera, which was produced on the 26th of January 1790 under the title of Cost fan tutue. Though the libretto by Da Ponte was 100 stupid for criticism, the music was delicious, and the opera wouid probably have had a long run but for the emperor's dealh on the 20th of February. In March ingr Mozart consented to write a German opera upon an entirely new plan for Schikaneder, the manager of the little theatre in the Wieden suburb. The piece was to be addressed especially to the Freemasons, and to contain ceaseless allusions both in the words and music to the secrets of the brotherhood. Deeply interested in the affairs of a body of which he was himself a member, Mozart excelled himself in this new work, which took shape as Dte Zaubarfibic. He was rewarded for his labours by a brilliant artistic success, but Schikaneder alone reaped the financlal benefit of the speculation.
Before the completion of Die Zaxberfide a stranger called on Mozart, requesting him to compose a Requiem and offering to pay for it in advance. He began the work under the influence of superstitious fear, believing that the messenger had been sent from the other world to forewarn him of his own approaching death. Meanwbile he received a commission to compose an opera, La Clemenza di Tito, for the coronation of the emperor Leopold II. at Prague. He worked incessantly and far beyond his strength. The coronation took place on the 6th of September, and its spiendours threw the opera very much into the shade. Die Zauberfote was produced on the 3oth of September and had a splendid run. But the Requiem still remained unfinished; the stranger therefore made another appointment, paying a lurther sum in advance. Mozart worked at it unremittingly, hoping to make it his greatest work. In the Requiem he surpassed himself, but he was not permitted to finish it. When the stranger called the third time the composer was no more. The score of the Requiem was reverently completed by Sussmayer, whose task may have, been simplified by instructions received from Mozart on hls deathbed. It is now known that the work was commissioned by Count Walsegg, who wished to perform it as his own.
Mozar died on the sth of December 1791, apparently from typhus fever, though he believed himself poisoned. His funeral was a disgrace to the court, the emperor, the public, society itself On the afternoon of the 6th his body was hurried to a
${ }^{1}$ Michael Kelly, in his Reminiscences, hes keft a delightful account of the circumstances.
pauper's grave; and because it rained, Van Swieten, Slassmayer, and three other "friends" turned back and left him to be carried to his last long home alone.
(W. S. R.)

Mozart's work falls conveniently into three periods, though O. Jahn makes out, more accurately, five. Our first petiod may be said, in sober seriousness, to begin at the age of five and to merge into the second somewhere about the age of sixteen or seventeen. It was fortunate that the infancy of the sonataforms (q.r.) coincided with the infancy of Mozart; for while this coincidence gave his earliest attempts a marvellous resemblance to the work of the fully-grown masters of the time, It secured for his meatal activity a healthy and normal relation to the musical world which.infant prodigies can never attain in a modern artistic environment. The little pieces composed by Mozart in his fifth and sixth years are a fascinating study in the unswerving progress made by a child who masters every step, not by some miraculous intuition that ensbles him to dispense with learning, but by a hardly less miraculous directness of thought that prevents him from either making the same mistake twice or exactly repeating a form once mastered. The violin sonatas written in London and Paris at the age of seven in no way fall below the accepted standards of the period, while they already show that variety of invention and experiment which, by the time he was tweive, caused some sober-minded critics to regard him as a dangerous person. His studies in the severer contrapuntal forms speedily gave him the greatest technical mastery of choral music attained since Bach; and more than one stray piece of church music, or movement from a mass or litany, written before he was fifteen, deserves to take rank as a true masterpiece of which the date is immaterial. At the age of fifteen we see a loss of freshness, espectally in the numerous operas which show at its worst that hopeless condition of operatic art from which only Gluck's most drastic reforms could rescue it. Fortunately, Mozart had at fifteen acquired more than enough technique to rest upon; and thus the growing boy could keep his spirits up. continuing his public successes and indulging his easy sense of mastery, without putting a strain upon his brain which nature need revenge tben or afterwards.
Lucio Silla, though loaded with conventional bravura arias, nevertheless shows him approaching the age of seventeen with clear signs of a man's power, and in higber qualities than mere variety and fancy. Some of its recitatives and choruses strike a solemn dramatic note hitherto undreamt of in stage music, except by Gluck. La Finta giardiniera first gave Mozart scope for the exercise of his wonderful stage-craft and power of characterization. Though it has not kept the stage, yet it marks the beginning of Mozart's true operatic career, just as the Masses in \mathbf{F} and D , written in the same year, mart the close of his first really representative period as a composer of church music. It is, however, difficull to draw such lines definitely; for there is no period of Mozarl's career in which he did not practise all artforms at once; and the difficulty of drawing inferences as to the relative importance of different forms in his intellectual development is increased by his invariable mastery, which seems to depend neither on method nor on inspiration. Most of the pianoforte sonatas and many of the best-known violin sonatas belong to his early manhood. To the same period also belong those unfortunate masses which, together with sceveral spurious works, were at one time so popular, and have since been accepted as evidence that he had not the depth of feeling and earnestness necessary for church music. Idomeneo and Die Entijilhrung are currently regarded as quite early works, but they are later than any of the masses except the great unfinished work in C minor, and there is some really great church music of his later period in the shape of stray pieces, litanies and vespers (i.e. collections of psalms sung at evening service) which is almost totally neglected, and which shows a consistent solemnity and richness of style no less in keeping with Mozart's new artistic developments than worthy of the glories of Handel and Bach.
Idomenee is the only opera of Mozart which unmistakably shows the influence of Gluck; because, with the exception of 20 Clemenza di Tito, it is the only opera seria by which Mozart it
known; and only a serious opere on a classical subject could furnish occasion for Gluck's phraseology and range of feeling to appear at all. How profoundly and independently Mozart seizes Gluck's method and style may best be seen by comparing the oracle scenes in Idomereo and Alcesto. In the management of the chorus, however, Mozart has, as was to be expected, incomparably the advantage. He bas all, or rather more than all, Gluck's power for portraying panic and managing, by the motion of his music, the flight of a crowd; but he also has an inexhaustible harmonic and contrapuntal invention which lay heyond Gluck's scope.
The problems of comic opera presented a far more fruitful field. In Dis Entfuhrung he speedily showed a dramatic grasp for which opera seria, in spite of all the influence of Gluck, gave him no scope. He had a wonderful feeling for character, and did not imagine, like many French and other disseminators of musicaldramatic ideas (including, in moments of weakness, even Gluck himself), that the expression of character in music was a mere matter of harping on special types of phrase. His melodic invention was clearly and subtly characteristic without mannerism. It is of hardly minor importance that his own literary sense was far higher than that of many a writer of ostensibly superior gencral culture; and that Osmin, the most living figure in Die Euffuhrung, is Mozart's creation, words and all.

After Die Enffulyung, Mozart's record is a series of masterpieces, accompanied, hut not interrupted, by a running commentary of pieces d'occosion. With tare exceptions, everything he writes illustrates the perfect solution of an art-problem, and he often achieves an artistic trjumph with the most eccentric materials. The modern organist can find since Bach no grander piecc in his repertory than the two fantasias which Mozart wrote for the barrel of a musical clock. Shortly before bis death he wrote a beautiful adagio and rondo for the glass harmonica, to which he devised the curious but eminently natural accompaniment of flute, ohoe, viola and violoncello. And when at an earlier period it occurred to him to write some processional music for two flutes, five trumpets and four drums, the result, although not artistically important, might well have seemed to indicate long experience in handling the combination. His work in the larger instrumental forms is further discussed in the articles Sonata Forus and Instrumentation. While Mozart's trcatment of form has often been attacked as conventional, and his range of thought despised as childish, his instrumentation and general sense of euphony are at the present day more unreservedly admired by the most progressive propagandists than anything else in classical art.

Mozart's later operas, from Figazo onwards, represent the nearest approach to a perfect art-form attainable in pre-Wagnerian opera. What he might have attained in serious opera bad he been spared to sce the solemn triumphs the French operatic stage realized in the austere sincerity of Cherubini and Méhul it is impossible to guess. But we cannot doubt that a Mozart of yet riper experience than we have known would have giveh tragic opera a history in which Fidelio did not stand in lonely splendour. For Mozart, however, serious opera was an Italian art form, only temporarily rescued from the tyranny of bravura singers by Gluck. After Idomeneo he handled it only once, at the very close of bis carcer, and then, as if to seal its fate, in a piece d'occasion with an impossibly dull and unsympathetic lihretto (La Clemenza di Tito). For comedy, however, his harmonic and rhythmic range was perfectly adapted; and in Figaro he had the advantage of a libretto.which was already a finished literary product of consummate stagecraft before it ever became an opera. The perpetual surprises of its absurdly complex intrigues impose no real strain, for no one attempts to follow them; hut they keep every character on the stage in a state of excitement which is so heightened and differentiated by the music that, while Beaumarchais's Mariage de Figaro has its modest but definite place in literature, Mozart's Figaro is, with all its lightness of touch, one of the most ideal classics in all art. The subject is not edifying; but Mozart does not analyse it from that point of view. His characters are irresponsible, mischievous
and fairy-like. Theirs is the world described by Lamb-" the Utopia of gallantry, where pleasure is duty and the manners perfect frcedom."

In Don Giovami the matter is less clear. Mozart rose, not only in the music of the ghostly statue, hut also in the music of Donna Anna and Donna Elvira, to heights that can only becalled sublime; yet he never lost sight of the true metbods of that comedy of gailantry to which Don Giovanni stands in some sense as a grotesque tragic finale. It is the business of an artistic intellect to grasp the artistic possibility of a warld in which the "Utopia of gallantry" is at war with a full-blooded and incipiently moral humanity until the critical moment determines, not the breaking up of the artistic unity, but the right conclusion of the story. If it is absurd to treat Donna Anna and Donna Elvira as Wagnerian beroines, and so to complain of the inadequacy and conventionality of much of their utterances and attitudes; so, also, is it no less absurd to regard them as "secretly rather gratified than otherwise to be on Don Giovanni's list." Donna Elvira has suffered more cruelly from stolidly tragic singers and no less stolidly flippant critics than she ever suffered from Don Giovanni himself. She comes upon the stage expressing berself in thoroughly conventional music, and we are told that the formulas of Italian opera are inadequate for the expression of her sorrows. Look at the sforando in the second violins at the words Ah se ritroso l'empio. Mozart is depicling a young girl facing a position she does not in the least understand; expressing herself in stercotyped phrases as much from inexperience of their meaning as from lack of anything that may better say what she really feels. What Mozart's music with exquisite humour and simplicity expresses is as yet nothing more serious than the wish to scratch Don Giovanni's eyes out; as soon as his character is revealed to her in Leporello's comic aria of the "catalogue," she determines that others at all events shall not suffer as she has suffered; and from that moment her character steadily develops in seriousness and dignity. She is not all strength, and Don Giovanni fools her to the top of her bent; hut nevertheless Mozart realizes, on bints of which the librettist was hardly conscious, a consistent scheme of development as dramatic as it is in keeping with the most sublime possibilities of comic opera. Yet it is a common practice to insert Elvira's last confession of weakness, the aria Mi tradi, immodlately after Leporello's catalogue arial Perhaps the first place where an intelligent tradition of Mozart as a comic genius of the highest type has been restored is Munich, where the standard set under the conductorship of Richard Strauss will not soon be forgotten.
In Coss fan tutle Mozart's struggles with an absurd libretto show even clearer evidence of the accuracy and power of his genius than wben he is working under conditions where success is possihle. Space forbids our dwelling further on this subject. nor can we do more than glance at his last great opera, Die Zouberflote. Beethoven thought it his greatest work; for the simple literal-minded sincerity with which Becthoven regarded the question of operatir libretto made Figaro frivolous and Don Giovanni scandalous in his sight. Mozart's very seriousinterest in freemasonry, which in its solemn ritual furnished an edifying contrast to the frivolity and uncongeniality of the existing state of church music, inspired him with the most sublime ideas hitherto brought upon the operatic stage. He was further stimulated hy the feeling that freemasonry was to some extent a perseculed institution; and the circumstance that his librettist was a skiliul stage manager secured for him that yariety of action and effectlveness of entry and exit, compared with which an intelligible plot is of almost negligible importance as a source of inspiration to the classical composer, or even as a means of retaining popular favour. Thus Die Zauberfibte is an achievement unique in opera; combining as it does the farcical gorgeousness of a pantomime with the solemnity of a ritual and the contemporary interest of a political satire.
From the solemnity of masonic ritual there is but one step to that most pathetic of unfinished monuments, Mozart's RegwiemThe finished portions of this work contain the most sublime and perfect church music between Bach and the Missa solemnis of

Beethoven. The unauthentic portions. supplied by Süssmayer, are so well designed thet even their comparative slightuess of material hardly militates against the suggestion that he may liate had some inkling of Mocart's intentions. In particular, the return of the first number at the words $L u x$ aetcrna, which enables Süssmayer to end with ten pages of authentic Mozart. is splendidly placed (though Mfozart is reported to have contem. plated an independent final number); while the latter part of the Lacrimosa, though not in Mozart's handwriting, must surcly have been dictated by him. The instrumentation of the incomplete numbers is based for the most part on highly authentic evidence, though there are doubtful proints; but that of thic supplied numbers, especially the Bencticlus, is far below the intellectual level of their design. In this, his last work, as in many wonderful polyphonic experiments immediately before it, Mozart showed unmistakable signs of the growth of a new style, which would undoubtedly have had an iutluence even more powerful on the history of music as being embodied in worky surpassing his ripest known achievements as these surpass the marvellous productions of his childhood. Nevertheless, what he has given us is unique, and the imtelligent love of Mozart's work is a liberal education in the meaning of art.

Mozart's extant works (as catalogued by Köchel in 626 item, beginning with minuets writen at the age of four and ending with the Requiem) comprise 20 masses (including the Requiem and the great unfinished Mass in C minor); 8 sets of vesperac and litanics; 40 smaller Latin pieces of church music: 6 cantatas and oratorin works. of which the greatest. Duridde penitente, is adapted frort the C minor Mass; 17 "organ somatas (i.e. litile movements fop organ and an organ-loft bend, for use in church); 23 operas (includ. ing fragments and operettas); 66 arias and ot her pieces for insertion into operas or for concert use; 41 songs with pianoforte aeconipani. ment; 23 canons (mosily rounds); 17 pianoforte sonatas; 5 fantasin and a Handelian suite (unfinished): 22 smaller pianoforte piece : 36 cadenzas to his own pianoforte concertos; 11 works for piannforte dquatre mains; 45 sonatas, including fragments and variations, for pianoforte and viulim; 8 pianoforte trios: 2 pianoforte quartet and I quintet for pianoforte and wind; 2 duets for violin and viola: 2 string trios; 29 string quartets; 2 quartets for fute and string ; I quartet for oboe and strings; 9 string quintets, of which I is for the singular combination of I violin, 2 violas, violoncello and horn, and another is the famous clarinct quintet: 49 symphonies; 33 cassations, eerenades and divertimenti, many for the odedest or chestral or solo combinations: 27 smaller orchestral and other pieces, also often for strange combinations of surprising beauty: 29 sets of orchestral dances; 6 violin concertos (the 6 th is either quite spurious or extremely corrupt) and 4 single violin movement ; 2 double concertos (one for 2 violins, the other for violin and viola) ; 10 concertos and concert picces for various wind instrument (fute, horn, bassoon, clarinct, flutc and harp): 27 pianoforte con. certos (including one for 2 and one for 3 pianotortes) and a concert rondo. Then there is an enormnus number of fragments, many of them peculiarly promising, as if Mozart was full of ideas that wert in advance of cuen his mistery of form; there is, for example, magnificent and comparatively carly opening tutti for a doubic concerto for pianolorte and violin, and a very large string quarlct movement in A (probably a finale), which breaks off at an exciting moment at the beginning of its development.

No composer's reputation has suffered more from forgeries and false attributions than Mozart's and the tale begun during the lifetlme of his widow is not yet ended at the present day. The concertante for 4 wind instruments which recently went triumphantly round the orchestral societies of Europe as a long-lost wort written during Mozart's visit to Paris (though it is not for the same Instruments) ?s not so bad as the notorious forged masses, but it is, to any one acquainted with Mozart's style at any period of hit career, almost as obviously spurious. Nozart of ten wrote without thought, but never, even when the was six years old, without mastery; and there is much genuine work that is as dull as thi concertante, but none that is obviously constructed by a fool. A panegyric of the concertante has been inserted in the latet (posthumous) edicions of Jahn's biography, which it is very difficult. to believe would have mei with that great scholar's approval.

On the other hand, twelve recently discovered divertimentif 2 clarinets and bassoon are delightful little works which, with alt cheir slightness, only Mozars, and Mozart in full mazurisy, coult have written. A seventh violin conecrto appeared in Novemic. \mathbf{F}. 1907: and, though inferior to the earlicr ones, is undoubed y genuine, every detail and quality of its organization being exactiy in keeping with Mozart's progress in 177%. Uts altcencd datc.

Many genuine works itre known in spurious formis; thus the motet Splemdente te Deus is an unatithorized arrangement of a chor from Kowig Thames, and most of the flute-music mentioned in th.
article Finte in Grow's Dichionary (now ed.) consists of apurious arrangements, while several important genuine works are ignored.
(D. F. T.)

MOZDOK, a lown of Russia, in Caucasia, and in the province of Terek, on the left bank of the river Terek, 60 ft . above sea. level, in $43^{\circ} 41^{\prime}$ N. and $44^{\circ} 39^{\prime}$ E., 50 m . N. of Vladikavkaz. The population, 8760 in 1863, numbered 14,583 in 1897 , and consisted of Kabardians, Chechens, Ossetes, Gcorgians and Armenians. Built in 1763 by the prince of Kabardia, Mozdole soon became an important point in the Russian advance towards the Caucasus, and was fortified. In 840 it was attacked by the Circassian patriot Shamyl and 5000 mountaineers. The melons and water-melons of Mozdok are widely famed; and vine-growing and silkworm breeding prosper.

MOZLEY, JAMES BOWLING (1813-1878), English theologian, was born at Gainsborough, Lincolnshire, on the $15 t h$ of September 1813, and was educated at Oriel College, Oxiord. He was clected to a fellowship at Magdalen in 1840 . He took an active part in the Oxford movement, but could no more follow Newman into the Roman commuaion "than fy." He was joint editor of the Chrisian Remembrancer, but withdrew from the position because of his substantial agreement with the famous Gorbara decision. He was one of the earliest supporters of the Geardian. In 1856 he became vicar of Shoreham, in 1869 canon of Worcester, and in 1871 regius professor of divinity at Oxford. He died at Shoreham on the $4^{\text {th }}$ of January 1878 .

He wrote A Treatise on the Augustinian Docirime of Predestination (1855); The Primitite Doctrine of Baptisnul Regeneration (1856); A Review of the Baptismal Controsersy (1862); Subrcription to the Articles: a Letter (1863); Levilures on Mfiracles, being the Bampton Lectures for 1865 ; and Ruling Ideas in Early A pes and their relation to the Old Testamant Faith (1877). Esseys, Historical and Theo logical, appeared in 1878 (2 vols.), with a biographical prelacc by his sister Annc, who also edited some of his Letters (1884).

HOZLEY. THOHAS ($1806-1893$), English divine and writer, was botn at Gainsborough in 1806, the son of a bookseller and publisher in that town. From Charterhouse school he procceded to Oricl College, Oxford, where he became the pupil, and subsequently the intimate friend, of John Henry Newman. In 183 I he was ordained, and became, in 1836 , rector of Cholderion, Wiltshire. He was, from its beginning, a strong supporter of the Tractarian movement, and after contributing for some time to the Brilish Critic, the chief organ of the movement, succeeded Newman as editor in 184r. In 1843 he was on the point of joining the Roman Catholic Church. Newman, however, strongly advised him to take two ycars to reficct, and long before that period had clapsed Moaley had determined to remain an Anglican. In 1844 he began 10 write leading articles for T the Times, and continued to do to regularly for many years. In 1847 be resigned his country living and settled in London, but in 1868 accepted the living of Plymiree, Devonshlre. From 1876 1880 he was rurai dean of Ottery St Mary's, Devon. He resigned his living in 1880, and removed to Cheltenham, where he diod on the r7th of June 1893 .

He was the author of Reminiscencer, chicfly of Oriel, and the Oxford Movement published in 1882.

MPONGWE (Poncos), a gettied Bantu people of the Gahun, West Africa, constantly confused with the Mpangwe or Fang (q.v.). The Mpongwe, who call thomselves A yogo or "the Wise," have a rich collection of national songs, myths and traditiona, and the tribal elders know the "Hidden Words," a kind of secret language of unknown origin. Their language, a Bantu dialect, has been the means of communication between the tribes of the interior and the Europens. The tamily organization is intricate and very similar to the Roman patria paketos; wives, children and slaves being all subservient to the father, who alone is really free. They practise the poison ordeal, and reverence vague and malignant spirits who require propitiation by offerings and ceremonies. The ghosts of the dead are especially feared.

MTEASK (popularly Amchensh), town of Russia, in the government of Orel, on the navigable Zusha River, 17 m . from its confluence with the Oka, and on the Moscow \& Kursk railway, 32 m . N.E. of the city of Orel. Pop. (1900), 9390 . It is
mentioned in the Russian chronicles as early as 1147. From 1320 to 1530 it was under the rule of Lithuania; in the latter year it was taken by Russia, and became one of her chief strongholds against the raids of the Tatars. It is now an important centre for trade in grain, hemp, hemp-seed oil, tobacco and spirits.

MTEKHET, a decayed town of Russian Transcaucasia, in the government of Tiflis, 13 m . by rail N.N.W. of the city of Tifis, at the confluence of the Aragva with the Kura, at an altitude of 1515 ft . Pop. (1897), 1221. One of the oldest places in Georgia, it was the capital of that country until supplanted by Tiflis in the last year of the 5th century a.D. The mest ancient seat of the Georgian kings was the castle of Arma-tsikhe, Armasis, or Harmozica, crowning a bill opposite to Miskhet. The most memorable relic of the latter is the cathedral, said to have been originally founded in the 4 th century, though the existing building dates from the $\mathbf{r g t h}$ century and was restored in the 18th. In the graveyard attached to this convent graves have been opened which yielded objects of the Iron and Stone ages, and others of the era of the Roman emperor Augustus.
mubarrad, or Mobarrad [Aba-I 'Abbas Mahommed ibn Yazid ul Azdi] (c. 826-8g8), Arabian grammarian, was born in Basra, and became the leader of the Basran grammarians against the Kufan school. His judgment, however, was independent, as is shown by his attack on some points in the grammar of Sibawaihi, the greatest writer of his own school. He died at Bagdad.
His main work is the grammatical one known as the Kamil (Perfect), which has been edited by W. Wright (Leipzig, 1864 seq .), and published at Constantinople (1869) and Cairo (1891). Two or three other works exist in MS.: cf. C. Brockelmann, Gesch. der arabischen Lillerafur, i. 109 (Weimar, 1898).
(G. W. T.)

MUCH WENLOCK, a market town in the municipal borough of Wenlock ($q . v$.), and the Ludlow parliamentary division of Shropshire, England, $t_{3} \mathrm{~m}$. N.W. from London on the Great Western railway. It lies at the north end of Wenlock Edge, a range running south-west from the Severn valley. A priory was founded here as a nunnery by St Milburg, granddaughter of Penda, about 680, and after being destroyed by the Danes was refounded by Leofric in 1017. Afterwards it was reroodelled by Roger de Montgomery for Cluniac monks. There are beautiful remains of the priory church, chictly Early English; but there is a chapter-bouse of ornate Norman work. The prior's house, still inhabited, is a remarkable specimen of 15 th-century work, adjoining and incorporating remains in earlier styles. The parish church of Holy Trinity, close to the ruins, is of mixed styles from Norman onwards. There is a picturesque balf-timbered guildhall ($\mathbf{x} 589$). Trade is mainly agricultural, but there are limestone quarries in the neighbourhood. Wenlock received the grant of 2 market from Henry III. in 1224. It was incorporated by Edward IV. in 1448, when it also received the privilege of returning members to parliament, hut in $\mathbf{8 8 5}$ it ceased to have separate representation.

MUCIANUS, LICINIUS, Roman general and stateaman, lived during the ist century a.D. His name shows that he had passed by adoption from the Mucian to the Licinian gens. About a.D. 55 he was sent by Claudius, who had become suspicious of his intimacy with Messallina, to Armenia with Domitius Corbulo. Under Nero he regained the imperial favour. After the death of Galba (69), Mucianus and Vespesian (who was at the time in Judaca) both swore allegiance to Otho, but when the civil war broke out Mucianus persuaded Vespasian to take up arms against Vitellius; who had seized the throne. It was agreed that Vespasian should stay behind to settle affairs in the East, while Mucianus made his way through Asia Minor and Thrace to attack Vitellius. He reached Rome the day after the desth of Vitellius, and found Domitian, Vespasian's son, at the bead of affairs, but until the arrival of Vespasian the real master of Rome was Mucianus. But he never wavered in his allegiance to Vespasian, whose favour he retajned in spite of his arrogance. As no mention is made of Mucianus during the reigns of Titus or Domitian, he probably died during the reign of Vespasian. He wes a clever writer and historian. He made a collection of the speeches and letters of the Romans of the older republican period, probably
including a corpus of proceedings of the senate (Acla senalus), and was the author of a work, chiclly dealing with the natural history and goography of the East, which is often quoted by Pliny as an authority, especially for fabulous statements.

See monograph hy L. Brunn (Leiprig, 1870).

MUCIC ACID, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{6}$ or HOOC (CHOH$)_{4}$ - COOH , is obtained by the oxidation of milk, sugar, dulcite, galactose, quercite and most varieties of gum by nitric acid. It forms a crystalline powder which melts at $213^{\circ} \mathrm{C}$. It is insoluble in alcohol, and nearly insoluble in cold water. When heated with pyridine to $140^{\circ} \mathrm{C}$., it is converted into allowwcic acid. When digested with fuming hydrochloric acid for some time it is converted into aa' furfurane dicarboxylic acid (see Furfurane); while on heating with barium sulphide it is transformed into a-thiophene carboxylic acid (sec Thiophene). The ammonium salt yields on dry distillation carbon dioxide, ammonia, pyrrol and other substances. The acid when fused with caustic alkalles yields oxalic acid.
MUCILAOR (from Late Lat. mucilago, a mouldy juice, from mucere, to be mouldy), a term which denotes a viscid or glatinous mixture of water and any gummy vegetable substance (see GUn). Mucilages are useful in medicine as vehicies for various insoluble and other drugs, and in the arts as thickeners (in calico-printing, dyeing, \&c.). The British pharmacopocia contains the mucilages. of acacia and tragacanth.
MUCKERS (Ger. Muckern, i.e. canting bigots, hypocrites), the nickname given to the followers of the teaching of Johann Heinrich Schonherr (1770 -1826) and Johann Wilhelm Ebel (1784^{-} 1861). Schonherr, the son of a non-commissioned officer at Memel in Prussia, was educated at the university of Königsberg, where at that time the theological faculty, under the infuence of Kantian idealism, was strongiy rationalist in tendency. The Jad, who was miscrably poor, was dissatisfied with a philosophy which stopped short of an explanation of the "thing in itself," and, having been reared in the strictest orthodoxy, he set to work to develop, with the aid of the Bible, a philosophy of his own. In the end he believed himself to have reached ultimate knowledge, and became the prophet of a dualistic theosopiny ${ }^{1}$ so closely analogous to Gnosticism that it might have been taken for a deliberate revival, had not Schönherr's lack of education precluded any such idea. Among his converts was Ebel, who from 1810 on wards gained a great reputation in Konigsberg as an earnest preacher of the orthodox doctrines of sin, grace and redemplion, and in 18.6 was appointed "archdeacon," i.e. principal pastor, at the old church in Konigsberg. In the pulpit he was orthodox; but he gathered about him a select circie of the initiated, to whom in private he taught Scbönherr's doctrines. Schönherr himseif sank into the background, and eventually died in 1826. But Ebel continued his teaching, and was joined in 1827 by Heinrich Diestel, also a Lutheran pastor of Kbnigsberg. They became father confessors to a wide circle of silly fashionable people in the Prussian capital. In view of their peculiar teaching as to "the purification of the flesh," which involved the minute regulation of the intercourse of married peopie, scandal was
${ }^{1}$ Schönherr distinguished two primal powers or principles-one male and active, the other female and passive-baving both personality and volition; he called them Light and Darkness, Fire and Water. They moved freely in the void, and from their uitimase contact God and the world sprang into being. Evil came inso existence owing to the fall of Lucifer, a Light-being created by God, who in revenge lent his aid to the powers of Darkness. Sin came with the Fall of Man; and this infection, inherited with the blood. necessitated redemption in order to restore the harmony of the prinal powers. This was the work of Christ, who descended into a world the inhabitants of which are divided into children of Light and shildren of Darknem. The power of the Holy Ghost, emanasing from Christ, perfocts the higher antures in whom Christ's " law of right. eousness " is represented and who to a certain extent ehare in bis being it becomes their duty to obtain control over the lower natures so as to struggle against the powers of Darkness in them-powers which can be overcome by prayer, fasting and self-mortification generally. The end was near and the triumph of the Light assured. Anti-christ (Napoleon) had already appeared, and when Christ came he would find no faith on the earth (Lule xviii. 8) because faith would be swallowed up in knowledge.
incritable. Matters came to a head in $\mathbf{1 8 3 5}$, when Count Pinckenstein, himself formeriy an initiate, denounced the two pastors and accusod them of immonality. Diestel wrote two violent tirades against the count, who brought an action for slander and won it. The evidence taken in the case was then laid before the conslatory, and proceedings followed which became famons to the "Konigsberger Religionsproxese" ($1835-1841$) ${ }^{1}$ eading in mentences of deprivation on both Ebel and Diestel. The charges of actual immorality were dismissed; but there is no doubt that some of their followers established practices akin to those of the Agapemone and the Perfectionists. Some of them migrated to Brazil, where in 1874 at Porto Alegre a company of them came inte collision with the military.
See J. 1. Mombert, Faih Viclorious (London, 1882); Hepworth Dixom Spiritual Wives (1868); and, more especially the article on Schonherr. by P. Tschackert, in Herzog-Hauck, Realencyklopidis (3rd. ed., Leipeig, 1906), xvii. 676.
MuCOMA, a genus of twining plants, belonging to the natural order Leguminosae, and natives of the tropica. M. pruriens is popularly known as cowhage or cowitch, a corruption of the Hindu Kfwach. It is'a tall annual climber with large dark purple pealike flowers, and golden-brown velvety pods recalling those of the sweet'pea, the hairs or bristles on which often raise blisters on the skin. It is common in the tropical regions of India, Africa and America, and the hairs on the pod have long been used in medicine as a vermifuge.

IUDAFIA (anc. A pamea Myrlea), a town of Asia Minor, on the south coast of the Sea of Marmora, and the port of Brusa. It is connected with Brusa hy a railway and a carriage road, and with Constantinople by steamers. Olive oil is produced. Pop., 5900, of which two-thirds are Groeks.

IUDFOL, a native state of India in the southern division of Bombay. Area, 368 sq. m.; pop. (igbi), 63,001 ; revenue, $£ 20,000$. It wes a Mahratta principality dating from. Mahomreedan rule before the rise of Sivaji. The family name of the chief is Chorpade. The.town of Mudhol stands on the left bank of the Ghatprabha; pop. (1901), 8359.

MUDIE, CEARLES EDWARD (1818-1890), Engllsh pablisher and founder of Mudie's Lending Library, was born at Chelsea on the 18th of October 1818, the son of a secondhand bookseller and newsagent. In 1840 he established a stationery and bookselling business in Bloomshury, London. He was the first publisher of James Russell Lowell's poems in England, and of Emerson's Man Thimking. In 1842 he began to lend books. This department proved so successful that in 1852 he moved his "Select Library" to larger premises in New Oriord Street, London. In 1860 these premises were substantially enlarged, and branches of the business established, and in 1864 "Mudie's " was converted into a limited compeny. Mudie himself died on the a8th of October 1890.

MUPF, an article of outdoor apparel, open at either end, for holding the hands in and keeping them warm, generally made of fus, but also of velvet, silk, \&c. Muffs are now only used in England by women, but in the 17th and 18th,centuries were fashionable for men. In Roman times the place of the glove was taken by long sleeves (mamicos) reaching to the hand, and in winter special sleoves of fur were worn (cf. Cic. Phil. ii. 11, 26). In Medicval Latin we find the word maffulac, defined by Du Cange (Closs., s.v.) as chirothecos pellitae at hibernoe. He quotes from a cartulary of the year 81 , 'of the issuing to monks of aheepskin coverings to be used during the winter. These may have been, as the Roman certainly were, separate coverings for each hand, although the cartulary cited also distinguishes the glove for summer from the muffulae for winter wear. The O . Fr. mouple meant a thick glove or mitten, and from this the Da. mof, Walloon momfec, and thence Eng. " muff," are probebly derived. From the Fr. moufe have come the various uses, verbal and substantivil, of "muffe," viz. to wrap round for protection, for deadening sound \&ec., and for a chamber or receptacle in a furnace to protect objects from contact with fire while exposed to heat. The slang use of " mufl" for a clumsy, awkward person is of late origin. It appears in the middle of the 19th century.
${ }^{1}$ The_contemptuous designation Muakers dates frow this time.

COFFLMG, FRIEDHICR KARL FBRDMAND, FRIMERR vON, called WEISS (1775-1851), Prussian general field marshal, was born on the 12th of June 1775, and entered the Pruasian army in 1790. In 1799 he contributed to a military dictionary edited by Lieutenant W. von Leipedger, and in the winter of 1802-1803, being then a subaltern, be was appointed to the newly-formed general staff as "quartermaster-lieutenant." He had already done survey work, and was now charged with survey duties under the astronomer F. X. von Zach (1754-i83a). I I 1805, when in view of a war with France the army was placed on a war footing, Maffing was promoted captain and assigned to the general staffs, successively, of General von Wartensleben, Prince Hohenlohe and Blacher. In 1806 he served under Hohenlohe, the duke of Sare-Weimar, and Blacher, and was included in the capitulation of the latter's corps at Ratikau, after which he entered the civil service of the duke of Weimar. He rejoined the army on the outbreak of the War of Liberation in 1813 , and was placed on the headquarters staff of the army of Silesia. His husiness qualities and common sense were greatly valued, though the temperamental differences between Muffling and Gneisenau often led to friction, especially as the former was in a measure the representative of the antiquated "topographical" school of strategists, to whom (rightly in the main) the disaster of Jena was attributed. In the interval between the first occupation of Paris and the Hundred Days, Muffling served as chief of the staff to the Russian general Barclay de Tolly and to General Kleist von Nollendorf. He was Prussian commissioner at the duke of Wellington's headquarters in the Waterloo campaign, and was involved in the various controversies which centred round the events of the 16 th of June 1815 . After the final fall of Napoleon he served on the staff of the army of occupation in France and was for some mont hs military governor of Paris. He spent a part of his time on the Rhine in survey work, and was employed by Frederick William III, in various diplomatic missions. In 1821 he became chief of the general staff at Berlin, and though he has been accused of indulging his taste for topographical work at the expense of training for war, his work was not wasted, for he gave an excellent organization to the general staff, and executed elaborate and useful surveys. In 1829 he visited Constantinople and St Petersburg in connexion with negotiations for peace between Russia and Turkey. He took a prominent part in the military and civil history of Prussia, and from 1838-1847 was governor of Berlin. Failing health compelled his retirement in the latter year, and he died on the 16th of January $\mathbf{1 8 5 1}$, at his estate of Ringhofen near Berlin.
Under the initials of C(arl) yon W (ciss), he wrote various importat works on military art and hietory: Operatiowsplaw der premss-scchs. Armes 1800 (Weimar, 1807); marrinalia on the archduke Charles; Grundsdise der hoheren Rriegskunst filr die Generdle der oestert. Armec, and on Rohle von Lilienstern's Bericht ziber die Vorgenge bei der Hohenloheschen Armee 1806; Die prewssisch-russische Kampogne bis sum Wafonshillslando I813 (Berlin, 1813); Geschichte dor Armose matior Wollinglons yad Blicher 1815 (Stuttgart, 1817); 2M Kriegsesch. der Jaire 1815-1814: die. Feldsixge der schlesischem Armee von der Beendigung des Waffenstillstandes bis swr Eroberung von Paris (Berlin 1824); Betrachsungon saber die grossen Operationem wrd Scluachtem $1813-1815$ (Berlin, 1825): Napoleent Strategic 1813 (Berlin, 1827); and an esaay on the Roman roads on the fower Rhine (Berlin, 1834). Muffling was also the inventor of a system of hachuring for mapa. His reminiscences, Aus meinem Leben, were published at Berlin in 1851.
MUFI, a consulting canon-lawyer in Islam, who, upon application, gives fatwas (fetros) or legal opinions on points of canon law (see Maromician Law). These are asked and given in strictly impersonal form, but the cadi, or judge, then applies them to the case and decides in accordance with them. In theory, any learned man whose opinion is respected and whose advice is sought can give fatwh. But generaily in a Muslim state there are muftis specifically appointed by the government, one for each school of canon law in each place. Each of these renders opinions in accordance with the law-books of his school;

[^68]he has noscope for free interpretation; everything h fixed there, and he must follow the precedents of the elders. In Turkey there is a chief muftr, called the Sheikh al-Islam, whose office was created by the Ottoman sultan, Mahommed LI., in 1453, after the capture of Constantinople. He is, in a sense, the head of the ecclessastical mide of the state, that oontrolled by canon law; while tbe grand vizier is at the head of secular mattera. Altbough his powers are delegated by the sullan-caliph, and he is appointed and can be dismissed by him, yet in his fatwi-issuing power be is independent. The sultan may dismiss him before he has a chance to issue a fatwa; but if he once issues it the result is legally automatic, even though it means the deposition of the sultan himself. Thus it was by a fatwa of the Sheikh al-Islam that the sultan Abdul Hamid was deposed.

- See Juynboll. De mokammedaansche Weh, 40 sqq; De Slane's trane. of Ibn Khaldun's Prolizominnes 1. Lxxviil. 447 see.; Turkcy in Exrope. by "Odyweus," 131 seq.; Young, Corps de droit oltoman, 1. x., 285, 289.
(D. B. MA.)

MUGOLETON, LODOWICKE ($1600-\mathrm{r} 698$), English sectarian, was born in Bishopsgate Street, London. His father was a farrier, but he himself was bred to be a tailor. In I6gi he began to have revelations, and to proclaim himself and his cousin John Reeve, whose journeyman he was, as the two witnesses mentioned in Rev. xi. 3. In 1652 they put out their "commission book" under the title The Transcondent Spiriiuall Treatise. An exposition of their doctrines was published in 1656 under the title of The Divine Looking-Glass. Among other views (besides the doctrine of the divine mission of the authors) this work taught that the distinction of the three persons in the Trinity is merely nominal, that God has a real human body, and that He ieft Elijah as His vicegerent in beaven when He Himself descended to die on the cross. Muggletor's opinions gained some notable adherents, but also called forth much opposition. In 1653 be Was imprisoned for blasphemy, and twice (1660 and 1670) his own followers temporarily repudiated him. His attack on the Quakers drew forth William Penn's book, The New Withesses proved old Heretics (1672). In 1677 Muggieton was tricd at the Old Bailey, convicted of blasphemy, and fined $£ 500$. Reeve died in 1658 , hut Muggleton survived till $x 698$.
His colliected works, including the poathumous A dst of the Witnesses, were published in 1756 ; and in 1832 some sixty Muggletoniang wubecribed to bring out a new edition of The Works of Re Teone and Z. Mugedeton (in 3 vols. 4to). Even as lete as 1846 The Disine Looking-Glass was reprinted by members of the then almost extinct sect. See A. Jessopp, The Coming of the Friars (1888).
YUGWUMP, in American political slang, a name applied to any independent voter, and especially to those independents in the Republican party who refused to support James G. Blaine, When nominated by that party for the presidency in 1884; as since adopted in England it usually means one who stays neutral and votes for no party. Originally " mugwump" (mogkiomp) was a North American Indian word, in the-Massachusett dialect of the Algonquian, meaning "great man" (mogki, great; omp , man); and in New England it was used of self-concelted politicians.
muhaman (Mohanoerah), a town of Persia, in the province of Arabistan, in $30^{\circ} 26^{\prime} \mathrm{N} ., 48^{\circ} \mathrm{II}$ E., on the Hafar canal, which joins the Karun with the Shott el Arab, and flows into the latter 40 m . nbove its mouth at Fao and about 20 m . below Basra. It has post and telegraph offices, and a population of about 5000 . With the opening of the Karun river, as far as Ahvaz, to international navigation in 1889 , Muhamrah acquired greater importance, and its customs, which until then were leased to the governor for \& 1500^{5} per annum, rose comsiderably, and paid £8000 until taken over hy the central castoms department under Belgian officials in ryoz. It is estimated that the value of the imports and exports into and from Muhamrah; excluding specie, is about $f_{300,000}$ per annum, paying customs amounting to about 118,000 . Until 1847 , when it definitely became Persuan territory in accordance with art. ii. of the treaty of Erserum, Muhamrah was alternately cleimed and occupied by Persia and Turkey, its ruler, an Arab sheikh. helping either power as he fourd it convenient. Since then the governor of the town and
adjoining district has been a sheikh of the K'ab or Chasb Araba, a powerful tribe of the Shi'ah branch of Islam. At the close of the Anglo-Persian campaign in 1857 Mubamrah was taken by a British force.

MUHLBERG, a town of Germany, in Prussian Saxony, on the left bank of the Elbe, 8 m . below Riesa. Pop. (rgos), 3980. It carrics on a considerable trade by water in timber and corn. Muhlberg is famous for the victory gained here, on the 24th of April 1547, by the emperor Charies V. over the elector of Sazoay, John Frederick.
See Lenz. Die Schlacht bei Mdhlberg (Gotha, 1899); and Bertram, Chrowik der Stad M Muhberg (Torgau, 1864).

MUHLENBERG, HENRY MEICELOR (1711-1787), GermanAmerican Lutheran clergyman, was born in Einbeck, Hanover, on the 6th of September 171I. When he was twelve years old his father, a member of the city council, ditd. The son entered the university of Göttingen in 1735, and his work among the poor of Grttingen led to the establishment of the present orphan house there. In 1738 he went to Halle to finish his theological st udies; he was a devoted worker in the Franckesche Stiftung, which later served as a pertial model for his great-grandson's community at St Johnland, Long Island. He was deacon at Groeshennersdorf, in Upper Lusatia, in 1739-1741. In 1742, in reply $^{-1}$. to a call from the Lutheran churches of Pennsylvania, he went to Philadelphia, and was joined from time to time, especially in 1745, by students from Halle. Muhlenbergoccupied himself mare particularly with the congregation at New Providonce (now Trappe), though he was practically overseer of all the Luthoran churches from New York to Maryland. In 5748 he organized the first Lutheran synod in America: Muhlenberg married in 1745 Anna Maria Weiser, daughter of J. Conrad Weiser, a well-known Indian interpreter, and herself said to have had Indian blood in her veins; hy her he had eleven children. Throughout the War of Independence he and his sons (see helow) were prominent patriots. He died at Trappe on the 7th of October 1787 . The importance of his work in organizing and building up the American Lutheran Church, of which he has been called the Patriarch, can hardly be exaggerated; but his example in preaching. in English as well as in German was, unfortunately for the growth of the Lutheran Church, not followed by his jmmediate successors. He had no sympathy with the Old Lutherans and their strict orthodoxy-on the contrary he was friendly with the Reformed congregations, and with Gcorge Whiteficld and the Tennents.
See Life and Times by William J. Mann (Philadelphia, 1887).
MUHLENBERG, JOHN PLTER GABRIEL ($1746-1807$), American preacher and soldier, son of H. M. Muhienberg (q.0.), was born at Trappe, Pennsylvania, on the ist of October 1746. With his two brothers be was educated in Germany. He entered the Lutheran ministry, had charge of churches at New Germantown and Bedminster, New Jersey, and alter r772 of a church in Woodstock, Virginia, and there in 1775 raised the 8th Virginia (German) regiment, of which ho was made colonel; in February I777 be became a brigadier-general in the Continental Army; and in September 1783 was breveted major-general. He took part in the battles of Brandywine, Germantown and Monmouth, and at Yorktown commanded tbe first brigade of light infantry. After the war he removed to Pennsylvania. He was a member of the Virginia convention of 1776 , was vice-president of the supreme-executive council of Pennsylvania in 1787 -1788, and Was a representative in Congreas in 1789-1791, in 1793-1795, and in 1799-1801. In 1801 be was elected as a DemocraticRepuhlican to the United States Senate, but immediately resigred to become supervisor of revenue for the district of Penthsylvania. He became collector of the port of Philadelphia in ${ }_{1}$ E33. He was a friend of Thomas Jefferson and of James Monroe.
See Lifo hy Heary, A. Muhlenburg (Philadelphia, 1849).
Fis brother, Fezderick Augustus Contad Mublembere (1750-1801), became his fathet's assistant in Philadelphis in r770; was pastor of the Christ (or Swamp) German Lutheran Church of New Yort City from 1773 to 1776; and in 1777-1 779 was assistant to his father at New Hanover. In 1779-I780 he was
a member of the Continental Congress, in r $780-1783$ of the Penosylvania general assembly (then consisting of only one bouse), and in $1989-1790$ of the state constitutional convention. He was president of the Pennsylvania convention which ratified the sederal constitution, and was. a member in $1789-1797$ of the nalional House of Representatives, of which be was speaker in 1789-1791 and 1793-1 795. On the 29th of April 1 796, as chairman of the committee of the whole, he cast the deciding vote for the laws necessary to carry out Jay's treaty.

Another brother, Gotthilf Henry Einest. Muitenberg (1753-1815), was a prominent Lutheran clergyman, and was pastor of a church in Lancaster, Pennsylvania, from 1779 to his death; but he is best known as a botanist, and published Calalogns planlarym Americas seplentrienalis (1813) and Descriptio uberior graminow et plariarum calamariarum Americae seplendrionalis indignarum at circurum (1817).

See John M. Maisch. G. H. E. Muhleniderg als Bolaniber (1886).
Gothill's som, Henry Aucustus Muhanererg (1782-1844), was pastor of a Lutheran Church in Reading, Pennsyivania, in 1802-1828, was a Democratic representative in Congress in 18291838 , and was United. States minister to Austria in $1838 \sim 1840$.
MUHLENBERG, WILLIAM AUGUSTUS (1796-1877), American philanthropist and Protestant Episcopal clergyman, great-grandson of H. M. Muhlenberg and grandson of F: A. C. Muhleaberg, was born in Philadelphia, Pennsylvanla, on the 16th of September 1796. He graduated at the university of Pennsylvania in 1815. In 1817 he was ordalned a deacon in the Protestant Episcopal Church, and became assistant to Bishop William White ($1748-1836$) in the rectorship of Christ Church, St Peter's and St James's, Phlladelphin. In 1820 he was ordained priest and until 1826 was rector of St James's Church, Lancaster, Pennsylvania. Largely owing to his efforts, Lancaster was the second public school district created in the state. His interest in church music and hymnody prompted his pamphlet of 1821, A Plea for Christion Hymns; he drew up for the use of his own parish a collection of Church Poetry (1823); and in 1823 he was appointed by the General Convention a member of the committee on psalms and hymns, whose collection, approved in 1826, contained eeveral of Muhlenberg's own composltions, including "I would not live alway," "Shout the glad tidings," and "Saviour, who thy flock art feeding." From 1826 to 1845 he was rector of St George's, Flushing, Long Island, where in 1827 he became head of the Flushing Institute, probably the first Protestant Episcopal "church school" in the United States. He founded a St Paul's College, to Include the institute, but the panic of 1837 and the refusal of a charter by the state legislature brought it to an end; and the property was sold a few years after Muhlenberg left Flushing. The methods of this institute were however copied widely; church schools sprang up everywhere; and St Paul's School, Concord, New Hampshire, and the Groton School in Afassachusetts were established in accordance with his ideas. In $\mathbf{r} 845$ he removed to New York City, where in $\mathbf{1 8 4 6}$ he became rector of the Church of the Holy Communion, a " free " church built by his sister, Mrs Mary A. Rogers. Here Muhlenberg founded the first American order of Protestant Episcopal deaconesses, the Sisterhood of the Church of the Holy Communion, begun in 1845 and formally organized in 1852 . The work of the sisterhood led to Muhlenberg's establishment of St Luke's Hospital (opened in 1858), for which his congregation made offerings each St Luke's Day after 1846. In 1866 he founded on Long Island the Church Industrial Community of St Johnland. He bought 535 acres (mostly wooded), with a shore front of $1 \frac{1}{2} \mathrm{~m}$. on Long Island Sound, near King's Park, 45 m . from New York City, to be a home for the aged and for young children, especially cripples. The plan was not reformatory nor purely
${ }^{1}$ The Society of St Johnland, incorpornted $\ln 187$ e, has a chapel, the Church of the Teatimony of Jesus (186g), St John's Inn, the home for old men (also buift in 1869), Sunset Cortage, a home for twelve aped couples, Muhlenberg House for old women. the Fabbri Home, the Sunbearn Cottage (given by Mr and Mrs Cornelius Vanderbit in 1881) Lawrence House, for babies, a library and village hall, a kindergarten, a school house, and the " mansion," Dr Muhlenberg.'s home at St Johnland and later the home of Sister Apne Ayres, h is biogripher, during her superintendence of the society.
charitable, and a moderate rent was charged for the cottages In the St Johnland cemetery is the grave of Dr Muhlenberg, who died on the 8th of April 1877 in St Luke's Hospital, New York City. His ideal of the church was that it was missionary and evaingelical as well as catholic with formal government and ritual; hence he called himself an "evangelical Catholic" and wrote the Evangelical Catholic Papers, which were collected and published by Anne Ayres in 1875-1877.
See Anne Ayres, Life and Work of William, Angustus Muhlenberg
(Nrw York, 1880), and W. W. Newtoa, Dr Muhtenberg (Boston, (Nrw York, 1880), and W. W. Newtoa, Dr Muhtenberg (Boston, 1890), in the "American Religious Leaders" series.

MUHLHAUSEN, a town of Germany, in Prussian Thuringia, on the nght bank of the Unstrut, 25 m . N.W. of Gotha by rail. Pop. (1005), 34,359. It consists of a new and an old town, surrounded by five suburbs, and has numerous old churches and towers. The most interesting churches are those of St Mary and of St Blasius, dating respectively from the 14 th and the 12 th cen'ury; the town-hall is also a fine medieval structure. The chief industries are the spiming and wcaving of woollen and cotion. Other manufactures include needies, machinery, cigars, soap, hosiery, furniture and shoes. There are also establishments for dyeing, tanning, lime-burning, iron-making, brewing and the preparation of liqueurs.

Muhhausen is one of the oldest towns in Thuringia, and Is said to have been fortified in 925 . Its early importance is shown by the grant of privileges made to it by the German King Henry I., and by the diet held here in 1135. During the Reformation period Muhlhausen became notorious as one of the chief seats of the Anabaptists. Thomas Manzer, one of their leaders, was captured in tbe vicinity and executed in the town. Internal dlseensions and injuries received during the Thirty Years' War and tbe Seven Years' War afterwards reduced Mathausen to unimportance. In 1802 it lost its independence and passed to Prussia, in 1807 it was attached to the kingdom of Westphalia, but in 18 I 5 it again became Prussian. The Teutonic Order established itself at Muhlhausen in 1200.

See E. Heydeareich, Aus der Gaschichte der Reichsstadt Muht kausen (Halle, 1900) ; Nebelsieck, Reformallonsgeschichuc der Slad Mullhausen (Magdeburg. 1905); Herquet. Urkumdenbuch der chemaligen freien Reichsstadt Mi whihausen (Halle, 1874); F. Stephan, Verfarsungseeschichte der Reichsstadt Muhlhausen (Sondershausen, 1886): Jordan, Chronit der Stade Müihamses (Mahihausen, 19001906); and Fuhrer durck Muiklhousen und Ungegend (1901).

MUIR, JOHN (1810 -1882), Scottish Orientalist, was born on the 5 th of Fcbruary 1810 in Clasgow, where his father, William Muir (d. 1821), was a merchant. He was educated at tbe grammar school of Irvine, the university of Glasgow, and the East India Company's College at Haileybury. He went to India in 1829, and served with distinction in various offices, as assistant secretary to the board of revenue, Allahabad, as collector at Azimgarh, as principal of the Victoria College, Benares, and as civil and session judge at Fatchpur. He encouraged the study of Sanskrit, and furthered schemes for the enlightenment and amclioration of the Hindus. In 1853 he retired and settled in Edinburgh, where he continued his Indian labours. In 1862 he endowed the chair of Sanskrit in the university of Edinburgh, and was the main agent in founding the Shaw fellowship in moral philosophy. He was a D.C.L. of Oxford, LL.D. of Edinburgt and Ph.D. of Bonn, and was one of the first to receive the distinction of C.I.E. He died on the 7 th of March 1882.

Io 1858 appeared vol, in of his Oriqimal Sonstirit Taxts (2nd ed. 1868); it was on the origin of caste, an lnquiry intended to show that it did not exist in the Vedic age. Vol. ii. (sst ed., 1860; 2nd. 1871) was conccrned with the origin and racial affinities of the HIndus. exhibiting all the then available evidences of their connexion. their linguistic, social and political kinship. with the other branches of the Indo-European atock. Vol. iiii. (git ed., 1861 ; 2nd, 1868) was on the Vedas, a full inquiry as to the idens of their origin, authority and inspiration held both by the Vedic and later Indian writers. Vol. Iv. (Ist ed., 1863; 3nd, 1873) was a comparison of the Vedic with the later representations of the principai Indian deities, an exhibition of the process by which three gods hardly known to the Vodia hymns became the deities of the former Hindu Trimurti. Vol. v. (i870) was on the Vedic mythology. Dr Muir was also the author of a volume of Malrical Translations from the Sanskrit, an anonymous work on Inspiration, several works in Sanskrit, and many essays in the Journal of the Royal Asictic Sociely and elsewhere.

MUIR, 8IR WILLIAI ($\mathbf{1 8} 19-1905$), Scotish Orientalist, hrother of the preceding, was born at Glasgow on the 27th of April 1819. He was educated at Kilmarnock Academy, at Glasgow and Edinhurgh Universities, and at Haileybury College, and in 8837 entered the Bengal Civil Service. He served as secretary to the governor of the North-West Provinces, and as a member of the Agra revenue board, and during the Mutiny he was in charge of the intelligence department there. In 8865 he was made forcign secretary to the Indian Government. In 8867 he was knighted (K.C.S.I.), and in 1868 he became lieutenantgovernor of the North-West Provinces. In 1874 he was appointed financial member of the Council, and retired in 8876 , when he became a member of the Council of India in London. He had always taken an interest in educational matters, and it was chiefly through his exertions that the central college at Allahabad, known as Muir's College, was built and endowed. In 1885 he was elected principal of Edinburgh University in succession 10 Sir Alexander Grant, and held the post till 1903, when he retired. Sir William Muir was a profound Arahic scholar, and made a careful study of the history of the time of Mahomet and the early caliphate. His chief books are a Life of Mahomet and History of Islam to the Era of the Hegira; Annols of the Early Caliphate; The Caliphate, an abridgment and continuation of the Annals, which brings the record down to the fall of the caliphate on the onset of the Mongols; The Koran: its Composition and Teaching; and The Mokammodan Controversy, a reprint of five essays published at intervals between 1885 and 1887 . In $\mathbf{1 8 8 8}$ he delivered the Rede lecture at Camhridge on The Early Caliphate and Rise of Islam. He married in 1840 Elizabeth Huntly Wemyss (d. 1897), and had five sons and six daughters; four of his sons served in India, and one of them, Colonel A. N. Muir (d. 1899), was acting resident in Nepal.
mUkADDASI ${ }^{1}$ (the appellation of Shams ad Din Ahu Abdallah Mahommed ibn Ahmad] (β. $967-98 \mathrm{~s}$), Arabian traveller, author of a Description of the Lands of Islam which is the most original and among the most important of Arabic geographies of the middle ages. His family name was Al Bashari. His paternal grandfather was an architect who constructed many public works in Palestine, especially at Acre, and his mother's family was opulent. His maternal grandfather, a man of artistic and literary tastes, migrated to Jerusalem from Jurjan province in Persia, near the frontier of Khorasan. His descriptions rest on extensive travels through 2 long series of years. His first pilgrimage was made at the age of twenty (in A.F. $356=$ A.D. 967), but his book was not published till A.E. 375 (A.D. $985-986$), when he was forty years it:
The two MISS. (at Hecrin and Constantinople) represent a later recension (A.H. 378). The boot vecame known in Europe through the copy brought from India lv jprenger, and was edited by Professor M. J. de Gocje as the thit part of his Bibliothecca Geographorum Arabicorum (Lleriden, ${ }^{1877}$). See also the English translation (unfinished) by G. S. A. Ranking and R. F. Azoo, in Bibliotheca Indica, New Series, Nus: 899, 952, 1001 (Bengal Assiatic Society: 1897-t901); Mukaddasi's Syrian chapter has been separately rranslated and edied in English ty Guy le Strange (London, Palestine Pilkrims Text Society, INkt); in German by J.Gildemeister

uUKDEN (Chinese Shengking), the capital of Manchuria, on the Hun-ho, irom. N.E. of Niuchwang, in $41^{\circ} 51^{\prime}$ N., $123^{\circ} 38^{\prime}$ E., with a population of 250,000 . It is a centre for trade and also for missionary enterprise. It was formerly the headquarters of the Manchu dynasty, and their tombs lie within its confines. Mukden is a fine town, with splendid walls, about a mile long each way. The suburbs extend a considerable distance from the city and are surrounded by mud walls. In the centre of the cown stands a small palace sarrounded by an inner wall and roofed with yellow tiles. The boots and pack of Nurhachu, the founder of the present Chinese dynasty, who was a pedlar, are preserved there. Nurhachu's son, the emperor T'ien-tsung ($1627-1636$), built temples to heaven and earth in the neighbourhood of the city in imitation of those at Peking. These are much dilapidated. Four or five miles to the east of the town stands the Fu-ling or "happy tomb," where the remains of Nurhachu rest, the outer "Al Muksaddani- " the Jerualemite."
gates of which are adorned with a green majolica representation of an imperial dragon. The Emperor K'ien lung (1726-1796) 2 wrote a poem on Mukder, which was translated into French by Pere Amiot and attracted the attention of Voltaire. During the Russo-Japanese War in 1905 some of the heaviest fighting took place before Mukden, what is known as the "battle of Mukden " covering operations from the igth of February till the Japanese occupied Mukden on the soth of March and the Russians retreated northward on the 12 th.

MUKDISEHU (Magodoxo), a seaport of Italian Somaliland, East Africa, in $2^{\circ} 1^{\prime} N ., 45^{\circ} 24^{\prime} \mathrm{E}$. It is built on the sandy coast which separates tbe Webi Shebeli fron the sea. The barbour is open. Mukdishu, formerly extensive, is largely in ruins; it consists of two villages, Hamarhwin to the aouth and Shingani to the north. There are some houses in the Moorish style and a mosque among the ruins bears date 636 a.t. (i.e. A.D. 1238). Between the two settlements is the governor's palace and north of the town is a massive square tower built by the Portuguese in the 16th century. The population, about 5000 , is mainly composed of descendants of negro staves known is Abesh. There are also Somali, Arab and Hindu settlers. Mukdishu is mentioned by Marco Polo and described by Ihn Batuta as an "immense". city. This was in the early part of the 14th century. It was a flourishing port and had many fine mosques when captured by the Portuguese (about 1510). Under Portugal the place fell into decay. It passed in the 17 th century into the possession of the imams of Muscat, hut in the 28th century became practically independent. . It was reconquered by Seyyid Said c. 8830, and on the division of his dominions fell to 7anzibar. In r892 it was transferred to Italy (see Somaliland, Ifalias). The name of the town is spelt in a great variety of ways, including Madeigascar, whence the nameof the island of Madagascar. Alfred Grandidier points out that the Portuguese, misled hy Marco Polo's description of Mukdishu as an island, fancied they had discovered the land of which he wrote when they touched at Madagascar.

MULA, a town of eastern Spain, in the province of Murcia; on the left bank of the Mula, a small right-hand tributary of the Segura, periodically liahie to destructive floods. Pop. (1900), 12,731. The Sierra Espuis rises on the south to a height of nearly 5200 ft . Mula has a small trade in agricultural produce, wine and olive oll. About 4 m . east are two groups of houmes known as the Baros de Mula, with warm sulphurous springs of considerable local repute.

MULATTO (Span. and Port. mulato, diminutive of medo, Lat. mulus, a mule, used as denoting a hybrid origin), a person one of whose parents is of a white race and the other a negro. In Latin America such half-breeds are sometimes called mestizas.

MULBERRY ${ }^{2}$ (botanically Morws; nat. ord. Moraceac), a genus of about ten species growing in the temperate regions of the northern hemisphere and in the mountains of the tropics They are deciduous trees or shrubs with alternate, toothed, often three-fobed leaves and unisexual flowers in catkin-like inflorescences.

The black mulberry (Morus nigra), a native of western Asia, spread westwards in cultivation at an early period; it was cultivated by the Grecks and Romans, and in northern Europe by the oth and woth centuries. Up to the 1 sth century it was extensively grown in Italy for rearing silkworms, but has since been superseded by M. albo. It is now mainly cultivated for its oblong purplish-black compound fruit-the so-called sorosis, formed from the whole female inflorescence in which the perianth leaves of the single flowers have become fleshywhich is wholesome and palatable if caten fresh before acetow, fermentation has set in. The mulberry succeeds as a standard in the warmer parts of England, especially in sheltered situations, but in the north of England and the less favoured parts of Scotland it requires tbe assistance of a wall. The standard trees require no other pruning or training than an occasional thinning out of the branches, and are generally planted on lawns, to prevent the fruit being damaged when it

[^69] "berty," sf. Ger. malberve, O.H.G. malberi, walberi.
falls. The tree succeeds best in a rich, deep, and somewhat moist loam, but grows well in any good garden ground. It is usually propagated eitber by cuttings or layers, which latter, if made from the older branches of the tree, come sooner into bearing. Cuttings planted in the spring should consist of well-ripened shoots of the preceding year, with a joint of two-year-old wood at their base, or if planted in autumn should have the shoots well matured, and furnished with a heel of two-year-old wood. The branches and even stout limbs are sometimes employed as cuttings instead of the younger shoots, especially when the object is to obtain a bearing tree quickly.

Mulberry (Morus nigra) Shoot bearing Fruit. 1. Catkin of male flowers.
3. Cluster of female flowers.

4, Two female flowers.
2, A male flower.
The branch should be plarted deeply in autumn in good soil, and if necessary supported in an upright position by a stake. The most common mode of propagation, however, is by layering the young branches. The mulberry may be grown in pots, and gently forwarded in an orchard house, and under these conditions the fruit acquires a richness of flavour unknown in the fruit ripened out of doors. If cultivated in this way it requires abundance of water while the fruit is swelling, and also frequent dressings of artificia! fertilizers.
The white mulberry (M. alba), so called from its nearly white fruit, is the one mainly employed in scriculture. It is a natlve of China and has been cultivated from the earliest times in Asia and since the 1 ath century in Europe, especially in the Mediterranean region. There are many varieties, among which the Philippine mulherry (var. mullicaulis) is perhaps most highly esteemed. The Indian species, M. indica (not to be confounded with Morinda citrifolia, a rubiaceous tree, sometimes also called Indian mulberry), is also cultivated for the same purpose.
M. rubra, the North American red mulberry, is the largest of the genus, often reaching a height of 70 ft . It produces dark red berries much inferior in flavour, however, to those of M. nigro.
Broussonelia papyrifera, a member of a closely allied genus, is the paper mulberry, a native of Burma, China and Polynesia, and widely cultivated in Japan, where the bark is used for paper-making. The Tapa-cloth of the South Sea Islands is also made from it. The plant is a shrub or small tree with large mulberry-like lobed or entire hairy leaves. Several forms are cultivated, differing chiefly in the shape of the leaves.
yOLDe, a river of Germany, a left-bank tributary of the Elbe. It is formed by the confluence, just below Koldite, of the Zwickauer Mulde, which rising in the Vogtland of Saxony passes Zwickau, Glauchau and Rochlitz, and the Freiberger Mulde, which, rising in the Bohemian Eragebirge, touches

Freiberg, Dobela and Leisnig. The united.river flows north to Grimma and thence past Wurzen, Eilenburg and Bitterfeld to Dessau, where it joins the Elbe. The total lengtb of tho united river is 75 m :

MULB (Lat. mulws), a term not unfrequently applied to the produce of any two creatures of different species, and synonymous with hyhrid, but In its ordinary acceptation employed to designate the offspring or "cross " between the equine and asinine species. There are two kinds of mule-the Mule proper (Equus asixus, var. $\boldsymbol{\gamma}$; Mulus; Fr. Mulet or Grand muled; Ger. Grosser Maulesel), which is the hybrid produce of a male ass with a mare, and the Hinny (Equus asinks, var. d; Hinnws; Fr. Bardot or Petid mulet; Ger. Kleiner Mauleseh), the offspring of the stallion and female ass. Tbe mule is the more valuable of the two, and to its production the attention of breeders is entirely directed.
In its short thick head, long ears, thin limbe, small narrow hoofs, short mane, absence of chestnuts (horny growths) inside the hocks, and tail destitute of hair at the root the mule is asinine; while in height and body, shape of neck and croup, uniformity of coat, and in teeth it is cquine. It has the voice neither of the ass nor of the horse, but emits a feeble hoarse woise. The most common colour of the mule is a brown or bay-brown-bay, or bright bay, or piebaid being rare; a chestnut tint is sometimes noticed. It possesses the sobriety, patience, endurance and sure-footedness of the ass, and the vigour, strength and courage of the horse. As a beast of burden it is preferable to the horse, being less impatlent under the pressure of heavy weights, while the skin being harder and less sensitive renders it more capable of resisting sun and rain.

The mule has been in use from early times; the inhabitants of Mysia and Paphlagonia are said to have been the first breeders. With the Greeks and Romans, the latter especially, the mule was valued, being employed to draw carriages and carry loads. In modern times it has been largely used for military transport.

The principal mule countries in Europe are the south of France, Spain, Portugal and Italy, where they are used for pack and draught. The French muies are most numerous on the borders of the Pyrenés, in Gascony, and in Poitou. In Spain mules are used m the Catalan provinces, in the mountainous districts of Andalusia, and in the province of Alicante. Good draught-mules are bred in La Mancha and in the districts on the slopes of the Pyrenees, where they are employed to carri' loads. But in Spain, Italy, and some other countries they are also extensively used in carriages; in Spain particularly, where large, fine mulcs are bred for this purpose, a pair of these animals will often cost more than a pair of horses. The mules of Asia Minor, Syria, Cyprus, Egypt and Algeria, as well as those of the district between the Tigris and the Persian frontier and in Nortb China, are good. In the Punjab provinces of British India many excelient mules are bred, breeding being promoted by the government. Good mules are reared in North and South America, the principal districts for breeding them in the United States being Texas, Missourl, Mississippi, Tennessce, Alabama, Gcorgia, Arkansas and Kentucky. The Kentucky mules are well shaped and showy, being derived from nearly thoroughbred mares known as Kentucky trotters, while those reared in Missourl are hardy. The Mexican mule, bred by a male ass out of a mustang mare, is also a hardy, strong and useful animal.
France is perhaps the most important mule-raising country in Europe, four centres being more particularly devoted to this kind of industry: Poitou, the mountainous districts of central France, the Pyrences and Dauphine. The mules of these different parts differ chiefly in height; those of Poitou are large, powerful, and long in the body, and are mainly exported to the departments of Languedoc and Provence, as well as to Spain, Italy and America; those of Dauphine are of medium height, with a short, thick body; while those of tbe centre and the Pyrenees are lighter and smaller, but more active.
Mule-breeding in Poitou is supposed to date from the time of Philip V. of Spain, when the particular breeds of horses and
asoes were imported into thet region and Gascony. But there is evidence to show that as early as the roth century the mules of Poitou were of excellent quality.

MULGRAVE, EARLDOM OF, a title dating from 1626 , when Edmund Sheffield, zrd Baron Shefield of Butterwicke, was created earl of Mulgrave. He was succeeded hy his grandson Edmund, the and earl, who was one of the nine truc peers who sat in Oliver Cromwell's House of Lords. Edmund's son John, 3td carl, was created marquess of Normanby in 1694, and duke of Buckingham and Normanby in 1703; hut on the dexth of his son, the and duke, without heirs in 1735, the titles became extinct. The and duke devised the estates of the Shefficld family to his mother Catherine, a natural daughter of James II., who had married as her first husband the 3rd carl of Annesley, hy whom she had a daughter Catherine, who married William Phipps and had a son Constantine Phipps. The latter succeeded to the estate of Mulgrave in Yorksbire in 1743 on the death of his grandmother, and in 5767 be was created Baron Mulgrave of New Rose in the peerage of Ireland. His son was created a peer of Great Britain in 1790 with the title of Baron Mulgrave of Mulgrave; and the latter's brother Henry, the next in succession, who was secretary of state for foreign affairs in 1805 and held other high government offices, was created Viscount Normanby and earl of Mulgrave in 1812. The and earl of this creation, who like his father held several high cabinet offices, Fas advanced in the peerage at the coronation of Queen Victoris, being created marquess of Normanby in 1838 .

MIIHAUSEN (Fr. Mifhowse), a town of Germany, in Upper Alsace, on the III, an affuent of the Rhine, and the RhineRhone canal, ahout 56 m . S. of Strassburg and 21 m . N.W. of Basel hy rail. The old town, surrounded by arms of the Ill, has narrow and irregular streets, while to the south, on the canal, lle the handsome villas and promenades of the new town. Most of the older buildings have made way for factories, 50 that the town-hall, dating from 155 r , is an almost solitary witness to the town's medieval prosperity. The most importent intercst of Mülhausen centres in the making of cotton goods. This industry was introduced in 3746 , and has since prospered in the hands of several wealthy families which are closely connected by intermarriage, and lend each other support. A large proportion of the inhabitants of the town and the neighbourbood is engaged in woollen, and ofher textile manufactures, the products of which are exported to. all parts of the world. The manufactures of machinery, especially locomotives and railway plant, chemicals, and hardware are also important. A noteworthy feature is the attention paid by the manufacturers to the weil-being of their workpeople. In 1853, Johann Heinrich Dollfus ($1800-1887$), mayor of the town, founded the " artisans" town " (aile owrrière) to the north-east of the old town, consisting of about 1200 model dwellings with public hath-, wash- and hakehouees, and library. The houses were let on a system hy which the occupant hecame the owner after the payment of a ceriain number of instalments. Of recent years, however, the operatives have moved into the suhurbs, leaving the model houses of the "artisnns' town " to small tradesmen. A " societe industrielle" for the encouragement of original discovery and invention among the workmen has existed since 1825 , and there are various benevolent societics. Molbausen carries on an active irade in grain, wine, colorial produce and timber, which is facilitated by its river harbour. After the annexation of Alsace to Germany in IByr the French sympathies of the inhabilants were shown by the entroordinary decrease in theit number. The population has since increased, amounting in 1905 to 94,514 , of whom about two-thirds are Roman Catholics.

Mentioned as early is 7r7. Milbausen was thised to the rank of a free town of the empire in 1198, and received very extensive privileges from Rudolph of Hapsburs in 1:73. It suffered considerably in the various wars of the middle ages, but generally managed to maintain its independence. In r466 it formed an alliance with the Swiss, and this beceme a permanent union in I5I5. By the petco of Westphalia (r648) it was recegnited as an indepeodent aliy of the Swiss Lengue. In 1797 if 80 ught
incorparation with France from motives of comnerchal policy, and in 1871 it passed to Cermany.

See A. Metzger, La REpublique de Mulhouse 777-1708 (Basel, 1884): Schall, Das A rbeiterquarier won Mwhawhen (Berlin, 1877); Herkner, Dic ober -elsiss ische Bawnowallindustrie wid ihre Arbeiter (Sirassburs. 1887); and E. Tourmer, Milhausen im 16. Jahrhundert (111yach, 1894).

M边HEBIMAM-RHIEN, a town of Germany, in the Prussian Rhine province, on the right bank of the R hine, 2 m . below Cologne, of which it is practically a suhurb, and on the main lines of railway Cologne-Dusseldori and Cologne-Elbenfeld. Pop. (1905), 50,807. There are important manufactures of silk, ribbons, velvet, sailcloth, tobacco, vinegar, yara and chemicals, in addition to rolling-mills, boiler works, telegraph works, breweries, tanneries and a ship-huilding yard. Mulheim also carries on a brisk trade by rail and river.

Of ancient foundation, Mülheim received municipal rights in 1322. Its industrial prosperity is in great part due to the influx of Protestants expelled from Cologne at the beginning of the 17 th century. In 1784 the town suffered severely from an inundation caused by the rapid hreaking-up of the ice on the Upper Rhine.

MULHEIM-AN-DER-RUHR, a town of Germany, in the Prussian Rhine province, on the Ruhr, an affluent of the Rhine, about 7 m . W. from Essen and at the intersection of several railways. Pop. (1905), 93,598. It has a parish church dating from the zath century. Like most of the towns in this district, Milbeim finds its thief industry in iron-working, and contains numerous blast-furnaces, rolling-mills, foundries and engineworks; it elso carries on manufactures of leather, wool, cotton, calico, tobacco, paper, beer, and other miscellaneous goods. An enormous traffic, by river and rail, is carried on in coal, and there is also a considerable trade in timber and colonial produce. In the neighbourhood are important sandstone quarries, glaseworks, and a carpet manufactory. Matheim was formerly included in the duchy of Berg, and became a town in 1508 . In z8rs it passed to Prussia.

MULVI, KURSENDAS (1832-1875), Indian journalist. and social reformer, was bora on the asth of July 1832, of a family belonging to the Bhatia or trading caste of western India. Being repudiated by his family on account of his.views on widow remarriage, he became a vernacular schoolmaster, and atarted a weekly paper ia Gujanati called The Satya Prokask. In this he attacked the immoralities of the Maharajas or hereditary high priests of the Vallabhacharya seet of Vaishnivism to which the Bhatias telong. In a suit for libel hrought against him in the High Court at Bombay in $\mathbf{7 8 6 2}$, be won a victory on the main issue. After a visit to England on hesiness in connexion with the cottonetrade, which was not successful and brought on him excommanication from bis caste, he was eppointed in 1874 to administer a native state in Kathiawar during the minority of the chief; and there he died in August 1875.

See Bistory of the Sect of Meharafas or Wallabbocharyes of Westorn Indis (1865).

MDLL, the largest island of the Inner Hehrides; Argyllshire. Scotiand. Pop. (rgor), 4334. It is bounded on the W. and S. by the Atlantic, on the N. and N.E. by the Sound of Mull, and on the E. and S.E. hy the Firth of Lornc. It has an area of about 367 sq. m., its greatest length being 27 th . and its greatest breadth 20 m . The coast is much indeated, the principal sealochs being Loch Mingary, Loch Cuan, Loch Tus, Loch-na-Keal. Loch Scridain, Loch Buy, Loch Spelve and Loch Don. Among several freshwater lakes Loch Frisa, Loch Ba and Loch Uis\% are the chief. The principal mountains are Ben More (3585 ft .), Ben Buy (2354 ft .) and Ben Creach (2289 ft .). In the brisatic clifis near Carsaig are numerous arches and ceverns. The prevailing rocks are igueous (generally basaltic, gahbre in the mountains in the south-east, granite in the Rass). The valleys ate filled up with lava flows and volcanic ashes of Miocene age. At a few places there are gneissose rocks, chalk, sandstone lias and quartz porphyry. Sheep and cattle are raised, and berley, oats and potatoes grotn. Owing to the dimp climate the island is better uited for grazing than for cultivation.

Granite and freestone are quarried. Ben More deer foreat and the excellent fishing and shooting attract many sportsmen. There are several ancient castles, the principal being those of Duart and Aros. Close to the former is a lighthouse erected in memory of William Black, the novelist (d. 1898). About midway between Mull and Lismore is the Lady Rock, visible at low water, on which, in 1523 , Lachlan Maclean of Duart exposed his wife, a daughter of the second earl of Argyll, expecting that she would be drowned by the flowing tide. She was, however, saved by her clansiolk and her husband was afterwards slain by her brather. Joanna Baillie ($\mathbf{7 7}_{72-1851}$) made the incident the icading theme of her drama of The Fawily Legend. Tosermory (" the Well of Mary," so called from a spring of local celebrity) is the only town (pop. 1175). It is placed on a pretty bay, the houses standing on tree-clad heights. It was founded in 1788 as a station for fishing-bonts, and the herring fishery is still of some consequence. It has regular communication by steamer with Stornoway, Oban and Glasgow. Off the north-western shore of Mfuil, separated by a narrow strait, lies the isle of Ulva, $4 \$ \mathrm{~m}$. Jong and 2$\} \mathrm{m}$. broad, whose inhabitants are mostly engaged in fishing and kelp-gathering. Close to Ulva, and practically one with it at low tide, is the isle of Gometra, about $1 \ddagger \mathrm{~m}$. long and 2 m . broad, the people of which are chicfly occupied with fishing. Little Colonsay lies about 2 m . south of Ulva. Farther west is the small group of the Tresinisu Isles.

MULL. (i) A soft plain muslin exported largely from England to India, \&c., and used also in some qualities for summer dresses in the home trade. The name is an abbreviation of the Hindu mulmulu. (2) A word, derived from the same root as seen in " meal" and " mill," meaning that which is ground or reduced in other ways to powder or small particles Thus a snuff-box is in Scotland called a " mull," from the early machines in which the tohacco was ground. Large snuff-mulls, which remained stationary on a table, as opposed to the small portable boxcs, often took the form of a ram's head ornamented in silver. Possibly from the ground or grated spices with which ale or wino is flavoured when heated, comes the expression " mulled," as applied to such a beverage. The colloquial expression "to make a mull," i.e. to muddle or make a failure of something, also perhaps connected with "to muil," to reduce to powder. (3) The Scots word " mull," meaning a promontory or headland, as the Mull of Galloway, the Mull of Kintyre, represents the Gaelic maol, cf. Icelandic muli in the same sense; this may be the same as mall, snout, cf. Ger. Mfaul.
MULLAH (Arabic maula, a term which originally expresses the legal hond connecting a former owner with bis manumitted slave, both patron and client belng called moula, and thus suggests the idea of patronage), in Mahommedan countrics, a learned man, a teacher, a doctor of the law, In India the term is applied to the man who reads the Koran, and also to a Mussulman schoolmaster. In countries like Afghanistan the mullahs exert an influence over the populace which sometimes rivals that of the amir himself, and they have been responsible for many disturbances in Kabul. Among the democratic tribes of the north-west frontier of India they almost take the place of a secular chief. In the Indian frontier rasings of $1897-98$ the "mad mullah " of Swat led the atteck upon the Malakand, while the Hadda mullah was largely responsible for the risings amongst the Mohmands, Afridis and Orakzais. The leader of the risings in Somaliland in 1899-1910 was similarly known as the "mad mullah."
mbller, FERDINAND VON, Baron (1825-1896), German botonist and explorex, was born at Rostock on the 3oth of June 1825, and was educated, after the early death of his parents, in Schleswig. He studied the flora of Schleswig and Holstein from 1840 to 1847, when he emigrated to South Australiz and travelled through the colony from 1848 to r852, discovering and describing a large number of plants previously unknown. In 185^{2} he was appointed government botanist for Victoria, and examined its flora, and especially the Alpine vegetation of Australia, which was previously unlunown. Then, as phyto-
graphic naturalist, he joined the expedition sent out under Augustus Gregory by the duke of Newrastle, socretary of state for the colonics. He explored the river Victoria and other portions of North Australis, was one of the four who reached Termination Lake in 1856 , and accompanied Gregory's expedìtion overland to Moreton Bay. From 1857 to 1873 he was director of the Botanical Gardens, Melbourne, and not only introduced many plants into Victoria, but made the excellent qualitics of the blue gum tree (Eucalypies globulus) known all over the world, and succeeded in introducing it into the south of Europe, North and South Africa, California, and the extratropical portions of South America. For these services be was decorated by many foreign countries, including France, Spain, Denmark and Portugal; was created K.C.M.G. in 1879, baron of the kingdom of Wurtemberg in 187I, and F.R.S. in 1861. He published eleven voiumes of Fragmenta phytographica Australiae (1862-1881), two volumes of the Plazts of Vicloria (1860-1865), and other books on the Eucalyptus, Myoporaceae, Acacias, and Salsolaceac, all profusely illustrated. He also co-operated in the production of G. Bentham's Flore Australiensis. He took a leading part in promoting Australian exploration, especially the Burke and Wills expedition, which was the first to eross the continent, and in the various attempts to unravel the mystery which attended the fate of his fellowcountryman Ludwig Leichhardt ($\mathrm{IB}_{13}-184 \mathrm{~B}$). He died at Melbourne on the gth of October 1896.

MULLER, FRIEDRICH (1749-1825), German poet, dramatist and painter, usually known as Maler (i.e. painter) Muller, was born at Kreuznach on the 13th of January 1749. He studied painting at 2 weibrücken, and in 1774-1775 sottled in Mannheim, where in 1777 he was appointed court painter. In 1778 he was enabled by a public subscription to visit Italy, which remained his home for the rest of his life. In 1780 he became a Roman Catholic. He was unfavourahly influenced by the study of Italian models, and gradually gave up painting and devoted himself to the study of the history of art; his services as cicerone were especially in demand among German visitors to Rome. Before he left Mapnheim he had Lried his hand at literature, under the infuence of the Sturm and Drang movement. A lyric drama, Niobe (177^{8}), attracted little attention; but Fausts Leben dramatisiert (1778) appealed to the turbulent spirit of the time, and Golo wnd Genoversa (begun in 1776, but not published till 1811) was an excellent imitation of Goethe's Gdz von Berlickingen. He struck out a more independent path in his idylls, nolably Dic Schafschuy (1775) and Das Nusskernen (1811), in which, emancipating himself from the artificiality of Gessaer, he reproduced scenes-not without a touch of satire-from the German peasant-life of his day. He died at Rome on the 23 rd of April 1825.
Maler Moller'a Werke appeared in 3 vols. (1811-1825); In 1868 H. Het tner published two volumes of Dichturgen zon Maler Mullar which contain most of his writings Gedichie mon Maler Friadrich Müller; eine Nachlese zu dessen iberken appeared in 1873 and his Fansis Leben was reppinted by B. Seuffert in 188 I . Sce A. Sauce, "Sturmer und Drtinger"" vol. iii. (Kurschner'' Deudsche National. liberatur, vol. 8L, 1883); and B. Seuffert, Maler Miviler (I877).
MULER, GBORGE ($8805-1898$), English preacher and philanthropist, was born near Halberstadt, Germany, on the 27th of September 1805 , the son of an exciseman. He subsequentiy became a naturalized British subject. Educated in Germany, be resolved in 1826 to devote himself to missionary werk, and in 1888 went to London to prepare for an appointment offered him by the Society for promoting Christianity among the Jews. In 1830 bowever ho gave up the idea of missionary work, and became minister of a small congregation at Teignmouth, Devonshire. He contended that the temporal as well as the spiritual needs of life could be supplied by prayer, and on this principle abolished pew reats and refused to take a fixed salary. After two years at Teignmouth, Millicr removed to Bristol, where be spent the rest of his life. He devoted himseh particularly to the care of orphan children. He began by taking a few under his charge, bet in course of time their number increased to 2000, setiled in five iarge houses erected for the
purpose at Ashley Down, near Bristol. The money required for the carrying on of this work was voluntarily contributed, mainly as a result of the wide circulation of Muiler's narrative The Lord's Dealings with George Maller. When he was over seventy he started on a preaching mission, which lasted nearly seventeen years and included Europe, America, India, Australia and China. He died at Bristol on the 10th of March 1898.
See A. T. Pierson, Georgs Muller of Bristal (1899).
MULLER, JOHANMES PETBR (1801-1858), German physiologist and comparative anatomist, was born at Coblenz on the $14^{\text {th }}$ of July 1801. In 18rg he entered Bonn University, where he became privatdocent in 1824, extraordinary prolessor of pbysiology in 1826, and ordinary professor in 1830. In 1883 be removed to the university of Berlin, where be filled the chair of anatomy and physiology with great distinction until his death on the 28th of April 1858. Muller made numerous researches in various depertments of physiology, and in particular be extended knowledge as to the mechanism of voice, speecb and hearing, and as to the chemical and physical properties of lymph, chyle and blood. The appearance of his Handbuch der Physiologic des Menschen between 1833 and 1840 (translated into English by Dr William Baly, and published in London in 1842) marked the beginning of a new period in the study of pbysiology. In it, for the first time, the results of buman and comparative anatomy, as well as of cbemistry and other departments of physical science, were brought to bear on the investigation of physiological problems. The most important portion of the work was that dealing with nervous action and the mechanism of the senses. Here be stated the principle, not before recognized, that the kind of sensation following stimulation of a sensory nerve does not depend on the mode of stimulation but upon the nature of the sense-organ. Tbus light, pressure, or mechanical stimulation acting on tbe retina and optic nerve invariably produces luminous impressions. This he termed the law of the specific energy of sense substances. In the later part of his life he chiefly devoted himself to comparative anatomy. Fishes and marine invertebrata were his favourite subjects. Maller numbered sucb distinguished physiologists as H. von Helmholtz, E. Du Bois Reymond and, K. F. W. Ludwig among his pupils.

In addition to his Hardbuch der Physiologie, his publications include Zar nergleichenden Physiologie des Gesichissinns (1826); Uher die phantastischen Gesichiserscheinungen (1826); Bildungsgeschichts der Genitalien (1830), in which he traced the development of the Mallerian dact; De glandularum secernentium struatura (1830); Vergleichende Anatomie der Myximoiden (183.4-1843): Systematische Beschreibung der Plagiostomen (18.41) with F. G. J. Hente: Sys/am der Asteriden (1842) with F. II. Truschel; and Horae ichtayologitas (1845-1849) with the same. After the death of J. F. Meckel ($1781-$

HOLLER, JOHANNES VON (1751-1809), Swiss historian, was born on the 3rd of January 1752 at Neunkircb, near Schaflhausen, where bis father was pastor. In 1760 the family removed to Schaffhausen. In his youth his maternal grandfather, Schoop (d. 1757), roused in him an interest in the history of bis country. At the age of eight he is said to have written a history of Schafhausen, and at eleven he knew the names and dates of all the kings of the four great monarchies. His ardour for historical studies was further stimulated by Schlozer, when Müller went (1769) to the university of G8ttingen, nominally to study theology. In July 1771 he undertook a sketch of Swiss history (no detailed history of Switzerland having so far been written) (or a publisher of Halle, but his theological studies and the preparation of a Latin dissertation on the Bellum cimbricum (publ. in 1772) prevented mucb progress. In April 1772 be passed his theological examination, and soon after became professor of Greek at the Collegium Humanitatis. Early in 1774, on the advice of his friend Cbarles Victor de Bonstetten, he gave up this post and became tutor in the Tronchin family at Geneva. But in 1775 be resigned this position also, and passed his time with various friends in Geneva and Vaud, engaged in carrying his historical scheme into effect. Having accumulated much material, he began the actual composition
of his work in the spring of 1776 , and the printing in the summer of 1777. But difficulties arose with the censor, and matters came to a standstill. In 1778-1779 Mullicr delivered a brilliant set of lectures on general history, which were not published till 1839 under the title of Vierundswanaig Bucher allgemeiner Geschichte. In 1780 the first volume (extending to 1388) of his.Geschichter der Schweizer appeared, nominally at Boston (to avoid the censor), though really at Bern; and it was well received. In 1781 he published at Berlin, in French, his Essais kisforiques. He was on his way back to Switzerland when the landgrave of Hesse Cassel named him professor of history. He stayed at Cassel till 1783 , publishing in 1782 his Reisen der Papste, a book wherein certain leanings towards Romanism are visible. On his return to Geneva (1783) he accepted the post of reader to the brother of his old patron, Tronchin, and occupied bimself with remodelling his published work of 1780 . In order to im prove his financial position, be accepted early in 1786 the post of librarian to the elector-archbishop of Mainz, who bestowed many important offices upon him and obtained his elevation to nobility from the emperor in 179 r . In June 1786 be issued vol. i. (reaching to 1412) and two years later vol. ii. (to 1436) of the definitive form of his Swiss history, which was received wit b great praise. In 1787 he issued an important political tract, Zur Darstellung des Firrstenbundes. But in October 1792 Mainz was taken hy the French, so that Muller bad to seek for another post. In February 1793 he entered the service of the emperor as an imperial aulic councilor. At Vienna he spent many years, becoming chief librarian of the imperial library in 1800. and in 1795 he issued vol. iii. (to 1443) of his Swiss history. In 1804 be became historiographer, war councillor, and member of the Academy at Berlin. In 1805 vol. iv. (to 1475) appeared. But in 1806 be became strongly inclined towards Napoleon, by whom he was received in audience (Nov. 1806), and from whom he accepted (end of 1807) the office of secretary of state for the kingdom of Westphalia, exchanging this position early in 1808 for the posts of privy councillor and general director of public instruction. At the end of 1808 he published vol. v. (to 1489) of bis great work. He died at Cassel on the 29th of May 1809. His Swiss History now possesses a literary value only, but it wis an extiltent wort in cucry way for the 18tb century.

Muller's works were published under the care of his lurother at Tubingen, in 27 vols. ($1810-1819$), and re-issued, in te vols, at Stuttgar1 (1831-1835). The Swiss II isfory was re-issued t Leipzig and Zurich, in 15 vols. (1824-1853), with continuations by GluzzBlozheim (to 1517). Hottinger (to 1531), Vulliemin (to 1712) and Monnard (to 1815). A French translation of the German edition (as above) appeared, in 18 vols, at Paris and Geneva ($183 ;-1851$).
See the biographics by heeren (1809). Döring (1835) and Monnard (1839); also in G. v. Wyss's Geschichie der Mistoriograf lie in der Sciveiz (Zürich, 1895), pp. 305-311, and in the Festschrit der Stadt Sthaflgusen (Schafthausen, 1891), pt. v. pp. 83-99. F. Schwars's prophlet, J. son Muller und seine Schnerisergeschichte (BIte, 1884), traces the genesis of the Hisfory. Muller's letters to Fi. in (177 1- $^{-}$ 1807) were issued at Zürich (1812), and those to Ch. Be met, ac, at Stutegart (1835). Those addressed to him hy various Iriends were published by Maurer-Constant, in 6 vols. (Schaffhausen, 18391810); and those written to him ($5789-1809$) by his brother, \mathcal{F}. Müller, appeared, under the editorslipo of E. Haug, at liravenfeld, in 2 wols. (1891-1892)

MULLER, JULIUS ($180 \mathrm{x}-1878$), German Protestant theologian, was born at Brieg on the rotb of April 8801 . He studied at Breslau, Göttingen and Berlin, first law, then theology; and in 1839 became professor ordinarius of theology at Halle (1839). In 1848 he helped to found the Deulsch-evang. Kirchenlas, and two years later founded and edited (1850-1861), with Neander and K. I. Nitzsch, the Denlsche Zeilschrifl flr christliche Wistenschafl und christliches Leben. He died at Halle on the 27th of September 1878. A disciple of Neander and Iriend of Ricbard Rothe, Maller bitterly opposed the philosophy of Hegel and the criticism of F. C. Baur. His book, Ober den Gegensats des Protestantismus und des Calholicismms (1833), called forth a reply from Baur, and he was one of those who attacked D. Stranss's Life of Jesus. In 1846 be had been deputed to attend the General Evangelical Synod at Berlin. Here be supported the Consensus-Union, and afterwards defended
himself in the pamphiets Die arste Cenaralsynods day coang. Landeshirche Preussens (1847) and Die onangalische Union, ihr Wesen wand gotliches Rechl (1854). His chief work, however, was Die christiche Lehre der Sunde (a vols., 1839; 5th ed., 1867; Eng. trans. from 5thed.), in which he carried scholasticism so far as " to revive the ancient Gnostic theory of the fall of man before all time, a theory which found no favour amongat his theological friends" (Otto Pfleiderer).

Maller's other worka include Dogmat Abhandimagen (1870), and Das chrislicho Leben (3rd ed, 1847). See M. Kahler Juliws Muller (1878); Ls Schultze, Julius Mïller (1879) and Juliws Miller ads Elhiker (1895).

MÜLER, KARL OTFRIED (1797-1840), German scholar, was born at Brieg in Silesia on the 28th of August 1797. He was educated partly in Breslau, partly in Berlin, where his enthusiasm for the study of Greck literature, art and history was lostered by the influence of Bockb. In 1817, after the publication of bis first work, Aeginelicorum liber, he received an appointment at the Magdaleneum in Breslau, and in 1819 he was made adjunct professor of ancient literature in the university of Güttingen, his subject heing the archacology and history of ancient art. His aim was to form a vivid conception of Greek life as a wbole; and his books and lectures marked an epocb in the development of Hellenic studies. Muller's position at Göttingen being rendered unpleasant by the political troubles which followed the accession of Ernest Augustus (duke of Cumberland) to the throne of Hanover in 1837, he applied for permission to travel; and in 1839 he left Gemany. In April of the following year he reached Greece, having spent the winter in Italy. He investigated the remains of ancient Athens, visited many places of interest in Peloponnesus, and finally went to Delphi, where he began excavations. He was attacked by intermittent fever, of which he died at Athens on the ist of August 1840.

Among his historical works the foremost piace belongs to his Geschichlen kellenischer Stümise und SLüdic: Orchomenos und die Minyer (1820), and Dic Doricr (1824; Eng. trans, by H. Tufnell and Cornewall Lewis, 1830 , including the essay Uber die Makedonier, on the settlements, origin and early history of tbe Macedonians). He introduced a new standard of accuracy in the cartography of ancient Greece. In 1828 he published Die Elrusker, a treatise on Etruscan antiquities. His Prolegomena mu ciner woissenschafllichen Mythologio (1825; Eng. trans., J. Leitch, 1844), in whicb he avoided the extreme views of C. F. Creuser and C. A. Lobeck, prepared the way for the scientific investigation of myths; while the study of ancient art was promoted by his Handbuck der Archdologic der Kunst (1830; Eng. trans., J. Leitch, 1847), and Denkmsler der alten Kunst (1832), which he wrote in association with C. Osterley. In 1840 appeared in England his Hislory of the Literalure of Ancient Grecec; the original German work from which it had been translated being issued in Germany in 1841 (4th ed. by E. Heitz, 1882). Chapters i.-xxil. were translated by Sir George Cornewall Lewis; chapters $x \times i i i .-x x^{2} v i$. by J. W. Donaldson, who carried the work down to the taking of Constantinople by the Turks. It is still one of the best books on tbe subject. Muller also published an admirable translation of the Eumenides of Aeschylus with introductory essays (1833), and new editions of Varro (1833) and Fastus (1839).
See memoir of his tife by hls brother Eduard, prefixed to the posthumous edition of K. O. Maller's Kleine deulsche Schrifon (1847); F. Lícke, Erimnerungen an K. O. Müller (Göttingen, 1841); F. Ranke. K. O. Müller, ein Lebensbiid (Berlin, 1870): C. Burcian, Geschichte der klassischen Philologic in Deulschla nd (1883), ii. $1007-$ 1028; C. Dilthey, Offried Miller (Gottingen, 1898): E. Curtius, Allerium und Gegenwart; and J. W. Donaldson's essay On the Life and Writings of Karl OIfried Mülcr in vol. i. of the English translation of the history of Greek literature. A biography composed from his letters was published by O. and E. Kern, R. O. Muller. Lebensbild in Briefen an seine Ellern (1908): see also J. E. Sundys. Hist. of Classical Sckolarship, iii. (1908)، 213-216.

MOLLER, LUCIAN (1836 -r898), German scholar, was born at Mersehurg in Prussian Saxony on the 17th of March 1836. Having studied at Berlin and Halle, he resided for five years in Holland, where be collected the materials for his Geschichle
der hlassischen Philologis in den Niederlanden (1869). Unable to obtain a university appointment in Germany, he accepted (1870) the professorship of Latin at the Imperial HistoricoPhilological Institute in St Petersburg. There he died on the 24th of April 1898. Muller was a disciple of the metbods of Bentley and Lachmann. His De re melrica poetarum latinorum (1861; and ed., 1894) represents a landmark in the investigation of the metrical system of the Roman poets (the dramatists excepted), and his Metrik der Griechen und Romer (and ed., 2885) is an excellent treatise in a small compass (Eng. trans. hy S. B. Platner, Boston, Mass., 1892).
His other chief publications were: C. Lucili salurarum reliquice (1872), including the fragments of Accius and Sueius; Leben und Werke des Gaius Luciliws (1876; suppt. Luciliana, 1884); text of Horace (1869; 3rd ed., 1897); Quintus Horatius Flaccus, eine lillerarhislorische Biographte (1880); Quintus Ennius (1884), an introduction to the study of Roman poetry i Q. Enni carminum reliquiae (1884); Livi Andronici et Cn. Noevi (abularum religuiae (1885); Der salumische Vars und seine Dewkmáler (1885): Noni Marcalli compendiasa doctrina (1888); De Pacuoii fabulis (i889); De Accii fabulis dis. putatio (1890).

MULLER, WILBELS (1794-1827), German lyric poet, was born at Dessau on the 7th of October 1794, the son of a shoemaker. He was educated at the gymnasium of his native town and at the university of Berlin, where he devoted himself to philological and historical studies. In 1813-1814 he took part, as a volunteer, in the national rising against Napoleon. In 1817 he visited Italy, and in 1820 published bis impressions in Rom, Romer und Romerinnct. In 1818 he was appointed teacher of classics in the Dessau school, and in 1820 librarian to the ducal library. He dicd at Dessau on the 3oth of Scptember 1827. Müler's earliest lyrics are contained in a volume of poems, Bundesbluten, by several friends, which was published in 18.6. His literary reputation was made by the Gedichte aus den hinterlassenen Papieren eines reisenden Woldhornisten (2 vols., 1821-1824), and the Lieder der Griechen (1821-1824). The latter collection was Germany's chief tribute of sympathy to the Greeks in theirstruggle against the Turkish yoke, a theme which inspired many poets of the time. Two volumes of Neugriechische Volkslieder, and Lyrische Rcisen und epigrammatische Spasiergange, followed in 1825 and 1827. Moller also wrote a book on the Homerische Vorschule (1824; 2nd. ed., 1836), translated Marlowe's Faustus, and edited a Bibliothek der Dichlungen des 17. Jahrhunderts (1822-1827; 10 vols.). His poetic genius was kindred to that of the composer Schubert, who set many of his lyrics to music.
Withelm Muller's Gedichte were first collected in 1837 (4th ed., 1858); edited by his son, F. Max Müller (1868): there ate also numerous more recent editions, notably one in Reclam's Univepsalbibliotheh (1894): critical edition by J. T. Hatfield (1906). Müller's Vermischte Schrifen were edited with a biography by G. Schwab (3 vols., 1830). Sie F. Max Müller's article in the Allgemeine deutsche Biographi: O. Franck, "Zur Biographic des Dichters W. Maller" (Mitheilungen des Vercins fiur anhalhische Geschichte, 1887): J. T. Hatfield, "W. Müllers unveroffensliches Tagebuch und scine ungedruckten' Brif f

MOLLER, WILLIAM JAMES (1812-1845), English landscape and figure painter, was born at Bristol on the 28th of June 1812, his father, a Prussian, being curator of the museum. He first studied painting under J. B. Pyne. His early subjects deal mainly with the scenery of Cloucestersbire and Walcs, and he learned much from his study of Claude, Ruysdael, and earlier landscape-painters. In 1833 he figured for the first time in the Royal Acaremy with his "Destruction of Old London Bridge-Morning," and next year be made a tour through France, Switzerland and Italy. Four years later be visited Atbens, extending his travels to Egypt, and in the sketches executed during this period and the paintings produced from them his power and individuality are apparent. Shortly after his return he left Bristol and settled in London, where he exhibited regularly. In 1840 he again visited France, where he executed a series of sketches of Renaissance architecture, twenty-five of which were lithographed and published in 1841, in a folio entilled The Age of Prantis I. of France. In 1843 he accompanied, at his own request and his own charges, the government
expedition to Lycia, where he made a number of masterly aketches. He died at Bristol on the 8th of September 1845 .
The print room of the British Museum possesses, through the bequest of Mr John Henderson, a rich collection of Muller's sketches. A biography by N. Neal Solly was published in 1875.
MULLET, the name of two different kinds of fishes, distinguished as red mullets and grey mullets.

Red mullets (genus Mullus, the name given by the ancient Romans) are marine fishes, with two short dorsal fins remote from each other: the first is composed of feeble spines, the second of branched rays; the anal fin is similar to the second dorsal. The body is covered witb large thin scales. The form of the head is peculiar; its anterior profile slopes downwards to the small mouth, which has very small and feeble teeth, and from which two cylindrical barbels are suspended. These organs of touch are generally laid backwards and hidden in a groove between the branches of the lower jaw, but can be erected and called into action independently. About forty different species of red mullets are known, chiefly from the tropical and subtropical parts of the Indo-Pacific ocean. In European waters two forms are known which have received different specific names, Mullus surmuletus and Mullus barbatus. The former in addition to the general red colour has three to five bright yellow bands along the sides from head to tail; these are absent in the other form. It bas been proved tbat this is not a sexual difference, the two forms are varieties or species. The striped form is usually found on the coasts of England, where the plain form is rare or absent. In the Mediterranean both kinds occur, but it is probable that the striped form, whicb is larger, is more common in the Atlantic and the plain form in Mediterrancan and southern waters.

Red mullets do not attain any considerable size, the largest of the tropical species weighing only two or three pounds. They are ground-feeders, evidently using their barbels in discovering tbeir food, wbich consists of crustacea, worms, and, in the larger species, of small fishes; that they feed on putrid flesh is not borne out by the evidence drawn from their fecble jaws and dentition, but it is probable that they are attracted to a decomposing body by the presence of the small crustaceans which least upon it. Altbough tbe colours of tbese fishes are brilliant, they are simple and evanescent; only a few of the tropical species exhibit ornamentations in the form of black spols or bands. In many, as also in tbe European species, red colour prevails, and its preservation after death is considered to enhance the fitness of the fish for the table, and consequently its market value. To produce the intensity of thls red colour, fishermen scale the red mullet immediately before its death, a process by which the red pigment cells or chromatophores are excited to expand; fishes which are allowed to die in the water show little red, and therefore red mullets caught by the trawl are less valuable than those obtained in a trammel-net, by which the majority are secured alive. All the species are esteemed as food; but none equals the European species, which was held in exaggerated esteem by tbe gourmands of Rome. They exhibited the living fish and allowed tbem to die at the table immediately before they were consigned to the cook; they kept them in large reservoirs until they were wanted, and paid iabulous prices for fishes somewhat above the average size. Littlo is known about the babits of red mullets; during winter they retire into deep water, late in spring and during summer thoy approach the coasts and enter even brackish water, but the state of their sexual organs shows tbat they do not come towards the shore to breed. At Naples they spawn from May to August, and their ova are buoyant and transparent. In Junc, July and August the young are about an inch long, and already furnished with the two barbels.
The grey mullets form a videly different and distinct family, Mugididae. They are not exclusively marite, but enter brackish water, live always close to the shore, and sorme of the tropical forms inhahit the pure fresh water of atreams and rivulets, without, however, penetrating far inland. Their body is elegantly formed, wedge-shoped, and covered with scales of
moderate size, firmly adherent to the skin. The two short dorsal fins are remote from each other, and the anterior is composed of four stiff spines. The anal fin is similar to the second dorsal; the caudal fin strong and bilobed. The form of the snout is peculiar; the mouth narrow, transverse in the true Mugil, and without, or with hut feeble, teeth. About seventy difierent species are known, from almost every coast of the temperate and tropical zones; they swim in small schools and are abundant wherever they occur. Two species are found on tbe British coasts-Mugil copito and Mugil chelo, the first being the more common, Some of the fresh-water grey mullets of the tropics, especially those of the West Indian and Indo-Pacific islands, have the mouth more lateral or have distinct though minute teeth; they therefore have been formed into separate genera, A gonostoma and $12 y x u s$.

Grey mullets, at least some of tbe species, grow to a weight of 10 or 12 lib ; but the fish which usually come into the market rarely exceed half that weight. Those in which distinct teetb are developed feed principally on small aquatic animals, whilst the diet of those without tecth consists of animalcules or minute organic substances mixed with the mud or sand which they swallow in large quantities; also confervoid growths to which small shells adhere are freely taken. To prevent the gills from being clogged by sand or mud, a peculiar apparat us separates tbese organs from the pharynx. Each branchial arch is provided on each side, in its whole length, with a series of closely-set gill-rakers, each scries fitting into tbe series of the adjoining arcb; they constitute toget her a sieve permitting the passage of the water, while, retaining other substances in the cavity destined for mastication. The structure of the intestinal tract is also adapted to the diet of these fishes. One portion of the stomach is globular and surrounded by a thick mass of muscles, the cavity being small and coated with a tough epithelium. This structure reminds us of the stomach of birds, in which it also serves for the trituration of hard substances. The intestine itself is six or seven times as long as the fish. Grey mullets are plainly coloured, generally greenish on the upper parts and more or less silvery on the side. They are wholesome food, well flavoured when taken out of clean water. In the fish-farms of western Italy grey mullels are among the principal fish caltivated.
(J. T. C.)

MULLGATAWNY, the name, derived from the Tamil milagu-lannir (i.e. pepper water), given to a favourite hot East Indian soup, made with curry-powder and otherwise highiy scasoned, and served usually with rice.
MULLINGAR, a market-town, and the county town of county Westmeath, Ireland, near the river Brosna and on the Royal canal, 50 m . W. by N. of Dublin. Pop. (1901), 4500. It is a junction on tbe Midland Great Western railway where the branch for Longford, Sligo and Cavan leaves the main line. The principal churches are the parish church (18r3) with tower and spire, and the Roman Catholic cathedral for the diocese of Meatb. Tanning, brewing, and the manufacture of coarse woollens are carried on, and the town is the centre for the agricultural trade of the district. Mullingar was one of the ancient palatinate towns, but its present appearance is modern. It possessed an Augustine convent founded in 1227, and a Dominican convent founded in 1239, but both were dissolved by Elizabeth. The town was the headquarters of William Ill. before the siege of Athione. It formerly returned two members to parliament, but was disfranchised at the Union in 1800 Mullingar is a centre for the trout-fishing in the Westmeath loughs, being in proximity to Lougbs Ennell and Owel.

MULLION (corrupted from "munnion "; this is derived from Fr. moignon, stump), in architecture, the English term for the perpendicular pieces of stone, sometimes like columas, sometimes, like slender piers, which divide the bays or lights of windows or screen work from each other; equlvalents are Fr. meneau, Ihal. regolo, Ger. Fensterpfoste. H. Wedgyood (Did. of Eng. E(ym.) points out that the mullion is "the stump of the division before it breaks out into the tracery of the window." In all styles, in leas impartant worl, the mullions are often
simply plain chamfered, and more commonly have a fat hollow on each side. In larger buildings there is often a bead or bowte! on the edge, and often a single small column with a capital; these are more frequant in foreign work than in English. Instead of the bowtel they often finish with a sort of double ogee. As tracery grew richer, the windows were divided hy a larger order of mullion, between which came a lesser or subordinate set of mullions, which ran into each other.

MULLNER, AMANDUS GOTTPRIED ADOLP (1774-1829), German dramatic poet, nephew of Gottried August Burger, (g.v.), was born at Langendori near Weissenfels on the ibth of October 1774. After studying law at Leipzig he established himself as advocate at Weissenfels and made his début as an author with the novel Incest, oder der Schuiageist von Avignon (1799). He next wrote a few comedies for an amateur theatre in Weissenfels; these were followed by more pretentious pieces: Der engolische Kater (1809) and Der Blite ($\mathbf{1 8 1 4 , 1 , p u b l . 1 8 1 8 \text {), }}$ after French models. With his tragedies, however, Der neun-und-rwausigste Febrway (18 I 2), and especially Die Schuld ($\mathrm{IB} \mathrm{BI}_{3}$; publ. 1816), Mullner became the reprosentative of the so-called Schicksalsdramatiker, and for several years "fate-tragedies" on the model of Die Schuld dominated the German stage. His later plays, Konig Yngurd (1817) and Die Albameserin ($\mathbf{x} 820$), were less important. Notwithstanding his Iterary success, Mulliner did not neglect his profession, and was given the title of Hofrat; he also edited various journals, and had a reputation as a vigorous if somewhat actimonious critic. , He died at Weissenfels on the rith of June 1829.

Mallner's Vermischte Schrificn appeared in 2 vola. (r824-1826); his Dramatischs Werke in 8 vols. (1828; 2nd ed., 1832). In 1830 four supplementary volumes were published containing mainly criticism. Sce F. K. J. Schatz, Mulliners Jeben, Charakter und Geist (1830): J. Minor, Die Sckicksalstragodie in ihten Haupprettectern (1883), and the same author's volume. "Das Schicksalscrama" (1884), in KÖrschner's Deulschs Nationalliteralwr, vol. 15 I.

MULOCK, SIR WLLLIAX (1843- 1), Canadian statesman and jurist, was born at Bond Head, Ontario, on the soth of January 1843, the son of T. H. Mulock, M.D. From 1882 to 1905 he was a prominent member of the Liberal party in the Federal house; postmaster-general from 1896 to 1905, and minister of labour from 1900 to 1905. He introduced many improvements into the Canadian postal service, and in 1898 In face of much opposition induced the Inter-Imperial Postal Conference to adopt the principle of penny postage within the British Empire. In 1905 he resigned office, and was appointed chief justice of the exchequer division of the High Court of the province of Ontario. From 188I to 1900 he was vice-chancellor of the univeraity of Toronto, and was largely responsible for the succeas of the movement leading to the federation between that body and the Victoria University (Methodist).

MULREADY, WILLIAM ($1786-1863$), English subject painter, was born at Ennis, Co. Clare, on the 30h of April 1786. When he was about five years old his father, a leather-breeches maker by trade, removed to London, where the son received a tolerable education, chiefly under Catholic priests. He was fond of reading, and londer still of drawing. ${ }^{1}$ When eleven years old Mulready was employed by an artist named Graham as the model for a figure in his picture of "Solomon Blessed by his Father David." The painter's Interest in the lad did much to confirm his artistic procivities; and, having studied at home for two years, Mulready applied for advice to Banks the sculptor, who sent him to a drawing school and permitted him to work in his own studio. In 1800 he was admitted a student of the Academy, and two years later he gained the silver paiette of the Society of Arts. About this time he was associated with John Varley, the eccentric water-coloar painter and drawing-master, whom he assisted in the tuition of his pupils, who included Coz, Fielding, Linnell, William Hunt, and

[^70]Turner of Oxford. At eighteen he married a sister of Varley's, and at twenty-four he was the father of four sons. The marriage was unhappy, and the pair separated before many years. He "tried his hand at everything," as he said, "from a miniature to a panorama." He painted portraits, taught drawing, and up till 1809 designed illustrations to a series of children's penny books. His first pictures were classical and religious subjects of no great merit, and the early works which he sent to the Academy were mainly landscapes; but he soon discovered his special aptitude for genre-painting, and in 1809 produced the "Carpenter's Shop," and in 1811 the "Barber's Shop," pictures influenced by the example of Wilkie and the Dutch painters. In I8r3 he exhibited his "Punch," a more original and spontaneous work, which brought the artist into notice, and two years later his "Idle Boys" procured his election as associate. Next year he recerved full academic honours, and the election was justified by the "Fight Interrupted" which he then exhibited. It was followed by the "Wolf and the Lamb" (1820), the "Convalescent" (1822), "Interior of an English Cottage" (1828), "Dogs of Two Minds " (1830), the "Seven Ages" (1838), and in 1839 and 1840 by the "Sonnet and First Love," two of the most perfect and poetical of the artist's works. In 1840 he deaigned an allegorically covered postal envelope (the "Mulready envelope," soon discontinued ${ }^{\text { }}$) for Rowland Hill, and a set of illustrations to The Vicar of Wakefield, which were succeeded by his paintings of the "Whistonian Controversy" (1844), "Choosing the Wedding Gown" (1846), and "Sophia and Burchell Haymaking" (i849). His later works, like the "Bathers" (1849), "Mother teaching her Children" (1859), and the "Toy Seller" (1862), show declining powers, mainly attributable to failing health. The last evening of his life was spent at a meeting of the Academy, of which, for nearly fifty years, he had been a most active and efficient member. He died of heart disease on the 7th of July 1863 .

MUETAN, or Mooltan, a city, district and division of British India, in the Punjab. The city is 4 m . from the left bank of the Chenab, near the ancient confluence of the Ravi with that river. It has a station on the North-Western railway. Pop. (1901), 87,394. The city is enclosed on three sides by a wall, but open towards the south, where the dry bed of the old Ravi intervenes between the houses and citadel. Large and irregular suburbs have grown up outside the wall since the annexation in 1849 . Within the city proper, narrow and tortuous streets, often ending in culs de sac, fill almost the whole space; but one broad bazaar runs from end to end. The principal buildings include the shrines of two Mahommedan sainte and the remains of an ancient Hindu temple. The cantonments form the headquarters of a brigade in the grd division of the northern army. Multan has manufactures of carpets, silk and cotton goods, shoes, glazed pottery and enamel work, and an annual horse fair. It is moreover one of the most important trade-centres in the Punjab. It is a station of the Church Missionary Society.

The District of Multan occupies the lower angle of the Bari Doab, or tract between the Sutiej and the Chenab, with an extension across the Ravl. Area, 6 ro7 sq. m. The population in 1gor was 710,626, showing an increase of 11.7% in the preceding decade, due to the extension of irrigation. The principal crops are wheat, millets, pulse, oil-seeds, cotton and indigo. There are factoties for ginning and pressing cotton. Indigo is made only by native processes. Irrigation is largely conducted by inundation channels from the boundary rivers, but the centre of the district is harren. The district is traversed by the main line of the North-Western railway from Lahore,

[^71]which crosses the Sutlej by the Empress Bridge opposite Bahawalpur. It is also entered hy the branch from Lyallpur to Khanewal junction, crossing the Ravi.

The early Arab geographers mention Multan as forming part of the kingdom of Sind, which was conquered for the caliphate by Mahommed bin Kasim in the middle of the 8th century. On the dismemberment of the Mogul Empire in the middle of the 18th century, Multan fell to the Aighans, who held it with difficulty against the Sikhs. At length, in 1818, Ranjit Singh after a long siege carried the capital hy storm; and in 1821 he made over the administration of Multan with five neighbouring districts to Sawan Mal, who raised the province to a state of prosperity by excavating canals and inducing new inhabitants to settle. After the establishment of the council of regency of Lahore, difficulties arose between Mulraj, son and successor of Sawan Mal, and the British officials, which led to his rebellion, and culminated in the second war and the annexation of the whole of the Punjab. The city of Multan, after a stubborn defence, was carried by storm in January 1849. The district at once passed under direct British rule, and order was not disturbed even during the Mutiny.
The Division of Multan is the south-western division of the Punjab. It was abolished in 1884, but reconstituted in 1901. Its area is 29,516 sq. m . and its population in 190r was $3,014,675$. It includes the six districts of Mianwali, Jhang, Lyallpur, Mfultan, Muzaffargarh, and Dera Ghazi Khan.

MULTIPLEPOINDING, in Scots law, the technical term for a form of action by which conflicting claims to the same fund or property are determined. The action is brought either by the holder or by a claimant in his name. All who have any claims in the fund or property in question are ordered to appear and give in their claims; the court then prefers them according to their respective rights, and the holder of the fund or property in dispute on payment or delivery is absolved from any further claim in regard to it . It corresponds to the process of inter-pleader in English law.

MULTITUBERCULATA, a group of extinct mammals, mostly of small size, whose remains are met with in strata ranging from the Trias to the Eocene, both in Europe and in North America. They are mostly known by their lower jaws, and take their name from the fact that the grinding teeth (fig. 2 , $m .1$ and 2 ; and fig. 3 a. b. c.) bear two or three longitudinal rows of tubercles, or are provided with tubercles round the edges. From this feature these otherwise unknown animals are believed to be related to the existing egg-laying mammals (duck-billed platypus and spiny ant-eater), constituting the order Monotremata, and are therefore provisionally placed near that group. The largest representative of the Multituberculata is Polymastodon from the Lower Eocene of New Mexico; the same beds also yield the smaller Ptilodus; while from corresponding strata at Rheims, in France, has been obtained the nearly allied Neoplagiaulax. The latter takes its name from its resemhlance to Plagiaulax (figs. I and 2) from the Purbeck

Fig. 1.-Lower Jaw of Plagiaulax becclesi, from the Purbeck Strata of Swanage.
strata of Swanage, Dorsetshire, which was one of the firstknown members of the group. These have cutting teeth in front and multituberculate molars behind. Allodon and Clenacodon represent the group in the Cretaceous of North America; and the Englist Purbeck genus Bolodon, in which all the cheekteeth are multituberculate, also belongs here. Stercognathus (fig. 3) is another English Upper Oolitic type. Single teeth from the Rhactic of England and Worttemberg described as Microlestes apparently indicate the carliest member of the group. A skull
from the Upper Triassic Karoo beds of South Africa described ats Tribylodon longaevus, which has multituherculate molar teeth, was also at first placed in this group, but has beea subsequently regarded as a reptile, although Dr R. Broom considers that the

Fig. 2.-L-Dwer Jaw of Plagiaulax minor, from Swanage. p. 1.4 premolars; m. 1 and 2 molars

Fic. 3.-Fragment of Jave of Stereognathus dalithicus in matrix. abc, molars.
original determination is correct. Possibly a fore-limb from the same formation described as Theriodesmus phylarchus indicates a similar or allied animal. Not improbably Tritylodon indicates a direct link between the multituberculate mammals and the anomodont reptiles of the Permian and Trias.
(R. L.*)

MUMMERS, bands of men and women in medieval and later England and elsowhere, who, during periods of public festivity, particularly at Christmas, dressed in fantastic clothes and wearing masks or disguised as animals, serenaded the people outside their houses or joined in the revels within. In a more restricted sense the term is applied to the actors in the old English rural folk-plays of St George, \&c.; and "mumming" thus becomes a contemptuous synonym for any form of stageplaying. The origin of the word mummer (older spelling " mommer," Fr. momeur) is not satisfactorily explained; but the verb "to mum" means both to mutter and to be silent, and "mummer" apparently comes from one or both of these senses. Mumming seems to have been a survival of the Roman custom of masquerading during the annual orgies of the Saturnalia. "The disguisyng and mummyng that is used in Christomase tyme," Langley writes in his synopsis of Polydore Virgil, \because in the Northe partes came out of the feasts of Pallas, that were done with visars and painted visages, named Quinqatria of the Romaynes." Aubanus, writing of mumming in Germany, saye that "in the Satumalia there were frequent and lururious feastings amongst friends, presents were mutually sent, and changes of dress made: that Christians have adopted the same customs, which continue to be used from the Nativity to the Epiphany: that exchanges of dress too, as of old among the Romans, are common, and ncighbours by mutual invitation visit each other in the manner which the Germans call mummery." Christmes was the grand season for mumming in England. Some were disguised as bears, others as unicoms, or wore deer's hide and antler's or ram's horns. Mumming led to such outrages that Henry VIII. issued a proclamation declaring the wearing of a mask or disguise a misdemeanour. Stow gives an account of an claborate mummery held in 1377 by the London citizens to amuse the son of the Black Prince, then living at Kennington (Suroey, 1603, p. 97). In Scotland, where mumming still exists at Christmas, Hogmanay, New Year's Day and Handgel Mondey, mummers are called "guisards." They usually present on these four nights a rude drama called Galutian, which, in various versions, is common throughout the Lowlands of Scotland (see Chambers's Populor Rkymes, p. 170).

IUMMIUS, LUCIUS (2nd century s.c.), surnamed Achatcus, Roman statesman and general. Consul in 146 b.c. Mummius was appointed to take command of the Achaean War, and having obtained an easy victory over the incapable Diaeus, entered Corinth unopposed. All the men, women, and children were put to the sword, the statues, paintings and works of art were seized and shipped to Rome, and then the place was reduced to ashes. The apparently needless cruelty of Muramius in Corinth, by no means characteristic of him, is explained by Mommsen as due to the instructions of the senate, prompted by the mercantile party, which was eager to get rid of a dangerous commercial rival. According to Polybius, his inability to resist the pressare
of those around him was responsible for it. In the subsequent settlement of affairs, Mummius exhibited considerable administrative powers and a high degree of justice and integrity, which gained him the respect of the inhabitants. He specially abstained from offending their religious susceptibilities. On his return to Rome he was honoured with a triumph. In 142 be was censor with the younger Scipio Africanus, whose severity frequently hrought him into collision with his more lenient colleague. Mummius was the first novus homo of plebeian origin who received a distinctive cognonen for military services. His indifference to works of art and ignorance of their value is shown by his well-known remark to those who contracted for the shipment of the treasures of Corinth to Rome, that "if they lost or damaged them, they would have to replace them." For the theatrical pageants exhibited by him he erected a theatre with improved acoustical conditions and seats after the Greek model, thus marking a distinct advance in the construction of places of entertainment.

His brother, Spurius Munarus, a man of greater refinement and intellectual powers, accompanied Lucius as his legate to Achaea, whence he sent letters to his friends at Rome, describing his experiences in humorous verse. These letters, which were still popular a hundred years later, were the first example of a distinct class of Roman poetry-the poctic epistle. Both he and his brother are alluded to by Cicero as mediocre arators, whose style was simple and old-fashioned, although Lucius, as - Stoic, was more concise.

MUMMY (from the Persian mumiai, pitch or asphalt), a dead body, as preserved by the ancient Egyptian method of embalming. The preservative climate of Upper Egypt and the belief of the Egyptians in life after death must be the causes which led them to take unuaual care for preserving the bodies of their dead. In prehistoric times in Egypt the dead were laid in the graves on mats in the crouching position common in the burials of primitive peoples, and were supplied with jars of food, flint instruments, \&c. Perhaps the attempt was already made to preserve the bodies by drying or otherwise. In a few instances, such bodies, probably more than five thousand years old, have been found with skin and hair well preserved though dried and shrunken; usually everything but the bones has decayed. With the advent of the Dynasties the bodies of some of the principal people are found lying extended at full length. By the time of the VIth Dynasty it was usual to lay the corpse on its left side in the attitude of sleep, and a wooden coffin was of ten provided upon which were inscribed magic formulae that had already been employed for ages in ritual. In the Middle Kingdom necropolis of Beni Hasan, Garstang found many intact interments in coffins, and in one case the body was well preserved. Soveral were accompanied hy boxes divided into four compartments and inscribed with the names of the four deities who represented the internal organs of the body. This indicates that the custom of taking out these organs and wrapping them separately was already in vogue in the mpst lavish form of burial. But the parcels, examined by an expert, contained no trace of organic remains, proving how much the Egyptians depended on magic imitations and make-believe. It was not until the New Kingdom that the processes of embalming reached a higb degree of elaboration. Later still, in the last miliennium s.c., it seems that even the bodies of the poor were pickled. The embalmers were accustomed to keep the corpse in all for seventy days before burial (cf. Gen. L. 3; Herod. ii. 86), to be soaked, wrapped in linen bandages, and put in the coffin. This is confirmed by the monuments as far back as the age of Rameses II. (c. 1300 B.c.) and may be conjectured to have been established still earlier.

The Egyptians did not stop at the mummification of the human body; sacred animals, hirds, reptiles, fishes, and even insects were treated in a similar way, and the meat offerings deposited with the wealthy dead were likewise "preserved." Vast cemeteries of animals which belonged to the revered species have been discovered; more especially may be mentioned that of the cats at Bubastis the remains of which, charred hy some
great fire, until recently filled numberless chambers of crude brick in the ruins at Zagazig. In the hawk cemeteries hirds were pickled and buried in long bundles, forming sometimes an assortment that is not without incongruities from the naturalist's point of view. From a few of these bundles may be extracted not only numbers of raptorial birds, large and small, including owls, but also the hawk-like cuckco, the shrike, and even the swallow. The farger animals were represented in mummics by the head and a selection of the bones. Boncs of bulls and male calves, especially crania, were collected and formed into huge ox-like mummies.

What the Egyptians really thought of mummification can only be partially guesoed. Custom, changing in some degree from century to century, governed their practice, and no doubt was regulated by the pricsts. At first the luxury of mummification was reserved for the king, who was identified witb Osiris and was buried with an abundance of ritual and magic words. But the king required his courtiers, and his courtiers in turn needed their servants in permanent attendance. Partly in consequence of this, the deification of the king, with all its concomitants, was gradually extended through the ranks of the nohle and wealthy until it came within the reach of the humblest, and even animals shared the honour of deification after death. Finally, in a papyrus of the Roman age, the word "god" is practically defined as "buried," i.e. with due rites. Beliefs regarding the gods and life after death were self-contradictory and variable, but none interfered with the custom of preserving the body. It was always the prayer that the soul (bai) should be able to revisit the corpse (khat), and some inscriptions show an expectation of the body itself being revivified, " tbe mouth speaking," "the legs walking," and everything conforming with its previous terrestrial life. At the same time the ko ("life," "activity," and almost "ghost,") which clung to the neighbourhood of the tomb and enjoyed the ghosts of offerings in ghostly fashion, had some of the independent enterprise which the bai possessed in abundance. The mummified corpse as a divine thing-not the mere khat-was called the sahw (an oid word meaning "noble") or $i k k$, which in the latter period meant a spirit or demon. As the corpse was found generally to disappear and decay in spite of preservative magic, especially in the early ages, various substitutes were resorted to; statues and statuettes were thought efficacious, but, apart from their costliness, even these were subject to decay or destruction by violence, and in the absence of anything more substantial the Egyptians doubtless reflected that magic words alone in the last resort made everything right.
Under the Old Kingdom the attendance on and services for a dead magnate-tbe sacrifices and libations at his tomb-were left, together with endowments, to a staff of priests, called "servants of the $k o(k a)$," whose offices were hereditary. This system led to disputes and neglect, and was so unworkable that we find in the texts of the Middle Kingdom the whole responsibiity put upon one well-endowed "ko-servant," who passed on his office to a single heir. How these things were managed during the New Kingdom we do not know. In the last thousand years b.c. the life of the Egyptians consisted largely in every kind of religious and superstitious observances. Papyri of the. Ptolemaic age or somewhat earlier afford much information about the people of the necropolis. In this age the choachylae, as the Greeks called them ("lihation priests," or "shrine-openers" in Egyptian), belonged to an inferior grade of the priesthood, equivalent to the pastophori of the deities, and were organized in gilds for the different cemeteries. A single choachyte would have an interest, not always the sole interest, in a iarge number of mummies, and these interests could be disposed of by will or contract, bought and sold. The taricheulac, or embalmers, had no permanent interest in the mummies they prepared.
Thanks to the great care expended on the preservation of the royal dead, although the mummies of all the other kings have disappeared, a wonderful series of the Theban kings and queens of the New Kingdom from the XVIIth Dynasty to the XXIst

Dynasty has come down to us. It comprises some of the most notable figures in Egyptian history-Ahmosi (Amasis) 1., who freed Egypt from the Hyksos, Tethmosis I. and III., the conquerors of Syria and makers of the empire, Amenophis III., the great builder, whose likeness is preserved in the colossi of Memnon, probably also his son, Amenophis IV. (Akhenaton), the heretic king, and Seti (Sethos) I. and his son Rameses II. The mummy of Seti I. is in the finest possible preservation, but others, after being brutally plundered, were rewrapped by the piety of later generations.

In Lower Egypt practically all the mummies have perished; but in Upper Egypt, as they were put out of reach of the inundation, the cemeteries, in spite of rifling and buraing, yield immense numbers of preserved bodies and skeletons; autention has from time to time been directed to the scientific examination of these in order to ascertain race, cause of death, traces of accident or disease, and the surgical or medical processes which they had undergone during life, \&c. This department of research has been greatly developed by Dr Elliott Smith in Cairo. He has examined not only the more recently found of the royal mummics, but also multitudes of skeletons, \&c., which have been brought from the official excavations of the government and from other work. His researchgs, in perticular instances, prove their high importance for the history of discase, for characterization of the races inhabiting Egypt, and in other ways. The cemeterics just south of the First Cataract on a first examination reveal a prehistoric race of Egyptian type, a group of male negro mercenaries, a group of male prisoners exccuted by hanging during the New Kingdom, while from a necropolis of Christian forcigners of about the 6th century comes the first instance of gout in an ancient body from Egypt. Among the prehistoric people are many female skeletons with a fractured right ulna sustained in warding off blows, and some of these women had died while still wearing splints. Circumcision is traceable on all the male bodies which are in a state to show its effects. The royal mummies furnish evidence of age at death as well as of healeh and physical character. A series of forty-four mummies of pricsts and priestesses of the XXIst Dynasty furnished the material for an important monograph. Earlier, the processes of mummification produced a skeleton merely clothed in a dry and shrunken skin. At this time, however, the flesh was replaced by a stuffing of sawdust, sand, or other lasting material, introduced with great skill through a few incisions and apertures, so that the natural forms were completely restored. The heart was left in place, but the liver, lungs, stomach and intestines were pickled and wrapped separately and then restored to the body cavily. Later, the form was reproduced by elaborate external wrappings of the different parts of the body before the final swathing; later still, in the Ptolemaic age, by coarse padding with plenty of linen and pitch. The XXIst Dynasty marks the highest level of the art. The Christians of the early centuries, looking for corporeal resurrection, avoided the incisions, extraction of organs, \&c., practised by their pagan forefathers, and buried the body entirc after pickling it in salt. Their stricter leaders, however, objected to a custom which so easily led to the worship of relics and the continuance of pagan observances; and with the advent of Islam embalming fell into disuse.

Outside Egypt mummification was practised amongst the ancient Peruvians, who took advantage of the desiccating
atmosphere and salt soil of their caves for preserving the dead in good condition without any embalming process. Among the Guanches of the Canary Islands, however, the Egyptian methods of emptying the body and padding he skin were closely paralleled.
A word may be added about the use of mummy in medicine. The name, as has been pointed out above, is derived from the Persian mumiai, meaning pitch or asphalt, which substance occurs frequently in the prescriptions of the Greek and Roman medical writers. Medicval physicians in the East conceived the happy idea that the highest virtue would exist in that which had been already employed by the Egyptian priests in preserving the human body. Thus the bituminous and fatty matters found about the mummies and their wrappings were employed as a sovereign remedy, perticularly for wounds and contusions, and a brisk trade began in these "exudations" of mummies. This led further to the medicinal use of fragments of the mummies themselves; and, finally, the starting-point was lost sight of, so that the dried or prepared fiesh of criminals became one of the standard forms of mummy in the pharmacopocia. It was not till the 18th century that the importance of nummy in all its forms waned, and in some of the least progressive quarters of central Europe it survived evea to the middle of the 1 gth .
See T. I. Pettigrew, A History of Egyptian Mummies (London. 1834): G. Elliott Smith, A Contribution to the Study of Mummification in Egypl (Cairo, 1906); The Arckaeological Survey of Nubia Budletins (Cairo, 1908 seq.); Dr Lortet and M. C. Gaillard, La Fame momifire de l'ancienne Egypte (Lyons, 1905); A. Wiedemann, "Mumie als Heilmittel," in Zeitsclirifl des Vercins für rheinische und westfalische Volkskunde (1906).
(F. LL. G.)
${ }_{4}$
MUMPS (syn. Cynanche parotidaca, parotilis; also, "The Branks "), a specific infectious disease characterized by inflammatory swelling of the parotid and other salivary glands, frequently occurring as an epidemic, and affecting mostly young persons. The name "mumps" (O. Eng. "to mump," meaning to sulk) originated, no doubt, in the patient's appearance. The disease generally sets in with symptoms of a cold or catarrh accompanied with slight febrile disturbance; but soon the nature of the ailment is announced by the occurrence of swelling and stiffening in the region of the parotid gland in front of the ear. The swelling speedily increases in size and spreads downwards towards the neck and under the jaw, involving the numerous glands in that locality. The effect is to produce much disfigurement, which becomes still greater should the inflammation spread, as often happens, to the glands on the other side of the face and neck. Pain is present in the swollen parts, but it is seldom severc, nor is there much redness or any tendency to suppuration. There is, however, considerable interference with the acts of mastication and swallowing. After continuing for four or five days the swelling and other symptoms abate, and the parts are soon restored to their normal condition. During the period of convalescence there occasionally occur some swelling and tenderness in other glands, such as the testicles in males (orchitis), and the mammae or ovaries (odpherilis) in females, and possibly involvement of the pancreas, hut these are of short duration and usually of no serious significance. Mumps is in generial a mild discase, and requires fittle treatment beyond a gentle laxative, the application of warm fomentations to the swollen and painful parts, the use of soft food, and rest.

[^0]: Thomas Simon, master and chief graver of the mint. Mont of the medals of this period were his work, and they are considered to be amongst the bere specimens of the medalic art that have been produced in the counsry.

[^1]: ${ }^{1}$ An emeelleat reprodaction of this modal, both obverse and reverse, is given in Plate 8, Gige 4 and 5 , of the same work, and on Prate, 9 will be found equally well reproduced facsimiles of the three medals for "Victories over the Dutch. 1653. ." figs. 1, 2 and 3 and of the "Medal of the Parliament, for Sea Service, 1649," fig. I.

[^2]: ${ }^{1}$ Most of the authorities on medals, including Mr Thomas Carter and Captain Tancred, style as the reverse of the medal what above is styled the obverse and vice versa. We, however. prefer to agree with the description of the medal as given by Mayo and for this reason. The side of the medal which is described above as the obverse depicts a chief incident of the war; the allegorical representation on the other side is after all but the pictorial equivalent of a verbal inscription, and so is properly the reverse of the medal.

[^3]: 'Captain Sayers of the royal navy, who commanded the "Leda" 36, and landed in command of the 500 seamen who erected and manned the batteries for the attack of Fort Cornelis, reccived the mall medal for Java. This is the only case of the Army Cold Medal having beea conferred on a naval officer.

[^4]: Issued to the Royal Navy and Royal Marines only.

 * For combatants present at both actions.
 - Only clasp not issued to Royal Navy and Royal Marinea.

[^5]: ' By Royal Warrant of 31 st of May 1895 , medals both for distinguished conduct in the field and for long service were authorized to be awarded by the various colonies possessing regular or volunteer troops, " under regulations similar, as far as circumstances permit. to those now ranking for Our Regular and Auxiliary Forces."

[^6]: - The space between the railing and the tomb is meldom entered except by the servants of the mosque. it contains the treasures of the mooque in jewels and plate, which were once very consider. able, but have been repeatedly plundered, hat of all by the Wahhilbis in the beginning of the 19th century.
 ${ }^{1}$ The word rauda also means a mausolcum. and is applicd by Ibn Jubair to the tomb itself. Thus the tradition that the space between the pulpit and the tomb was called by the Propiot ow of the gardens of Paradise probably aroce from a mistake.

[^7]: ${ }^{2}$ He read the usual service. but omitted everything that taught a propitiatory eacrifice; he did not elevate the Host. and he gave boch the bread and the cup into the hands of every communicant.

[^8]: ${ }^{1}$ It is to be noted also that the name is of the same form at Adoni-zedek, king of Jerusalem (Josh. x. I), and that the utHebraic Araunah of 2 Sam. xxiv. 16 is probably a corruption of the similar compound Adonijah (so Cheyne, Enncy. Bib. cul. 290\%

[^9]: ${ }^{2}$ For a full account of the species of Cucumis and of the varicties of melon by Charles Naudin, sce Annules des sciences neturelles, ser 4 vol. xi. p. 34 (1859).

 1 Naudin, loc. cil. pp. 39, 76.

[^10]: ${ }^{1}$ After Mendelssohn's death this house was sold to the Prussian government; and the "Herrenhaus" now stands on the site of the garden-bouse.

[^11]: ${ }^{1}$ See W. L. Hoffman in the hourteenth Report (Washington, 1896) of the Burcau of American Eshnology and A. E. Jenlea in the Nimoteenih Report (1900).

[^12]: The fact that Bulwer-Lytton's son, the 1 st Earl of Lytion, Mercdith's junior by threc ycars, took the pen-name of "Owen Meredith." led occasionally to some confusion among uninstructed contemporarics, and even the augestion of a family connexion.

[^13]: - In gencral the Tigris is considered to belong ta Assyria or Babye Ionia, and all west of the Euphrates to Arabia or Syria.
 - Ci. Riter, xi. $253-265$

[^14]: - Ungrad, Beitr. 2, Assyr. VI. v. 13.
 : See e.q. P. Schnabel. SIud. z, bab-ass. Chrow. p. 35 (1908).
 - Winckler has identified the Kharri with the Aryans, to whom he asigns a statr in Armeria (Or. Liz-Leit, July 1910).

[^15]: ${ }^{1}$ See M. Streck, 2eif, Assyr., 18, 157.
 ${ }^{1}$ On a wrongly supposed ruuch earlier occurrence of the name Achlamu, see Klio, vi. 193 n. 3.

 - So for example A. Sanda, Die Aromder. 5 (1902).

[^16]: ${ }^{1}$ From this word Trapani derives its name.
 2 This acoount is at variance with the fiterary evidence and rests on that of the coins, as set forth by 1. H. Dodd in Journal of EICllervic Sludies, zxviii. (1908) $56 \mathbf{9 q 9}$.

[^17]: As with his master, his reasons for this view are derived, not from a direct proof that unconscious Nature has the mental attribute supposed, but from human psychology and epistemology. Like Leibnice, we procteds from the fact that our perceptions ate

[^18]: ${ }^{1}$ Seating accommodation, 2,374.425.
 : Ouher preaching-pleces, 1565. 2 Sunday and Thursday Schoola. - Methodism is also represeated in soveral Europaan countrien by Conferences and Missions affiliated tothe Methodist Episcopal Clurch of America, and their membership is included in the tigures given

[^19]: ${ }^{1}$ Santa Anna tried to get back to politics in Mexico aftes Maximilian's fall. without succesa. He was amnestied with other exiles in 1874 , and died in obscurity in 5876 .

[^20]: ${ }^{1}$ By a strange fortune of war it was the occupation of Cottiogen by the French in the Seven Years War, and the friendly relations he formed with the officers. that procured him the Paris MS. from which be edited Abulfeda's dewcription of Esype.
 'Curae in ectus apasiolorum syriacas (1755).

[^21]: ${ }^{1}$ This is the northernmost point of the mainland: the most northerly of the islands north-east of isle Royal and belonging to Michigan is more than 40^{\prime} further north.
 ${ }^{2}$ In addition, within the boundaries of Michigan, are approximately $16,653 \mathrm{sq} . \mathrm{m}$. of Lake Superior, 12,992 sq. m. of La ke Michigan. 9925 mq . m. of Lake Huron and 460 sq . m. of lakes St Clair and Erie.

[^22]: 1 President Angell graduated In 1849 at Brown University, where he was assistant librarian in 1849-18j0 and was professor of modern larguagee in 1853-1860; was editor of the Providence Journal in 1860-1866: was president of the University of Vermont in 1866-1871, was United States minister to China in 1880-1881, was a member of the joint commission of 1887-1888 to sctile fishery disputes between the United States and Great Bricain, was chairman of the international deep waterwaye commiscion in 1896 , and in $1897-1898$ was United States minister to Turkey.

[^23]: When it is remembered that the messurements of the Srpuves, Dembowski. Secchi, the Bonds, Mackear and of most modern European astronomers have been made with Fraunhofer or Merz micrometers il is not too much to say that fig. 5 represents the instrument with which a half of the astronomical meacurements of the 19th century were mada.

 P For the corrections applicable to mesaures of position-angle in difficrent hour angles. on account of errors of the equatorial instrument and of refractlon, see Chauvenet's Practacal and Spherneal Astronomy, i. 392 and 450 .

[^24]: ' See " Geology of Part of the London Basin." Mem. Geol. Survey, 2 vols.: "Soils and Subcoile," ditto; Proceedings of the Geologasts' Association. A large model of the eoology of London is exhibited in the Museum of Practical Ceology, Jermyn Street, London.

[^25]: ${ }^{2}$ See, on this paint. Jew. Ency. viii 549 seq., 352,576 ; Schechter, op. cu. p. 62; Strack. op. cit. pp. to sqq.
 ; Sec more fully Jew. Ency. viti. 553. Cf. for the structure, the hopeful concluding notes in the prophecies (e.e. Arnos) and the discourse after the reading of the lesson from the prophets in Luke iv. 17 sqq ., Acts xiji. is sqq.
 -See 1. Abrahams in Swete's Cambridge Bibl. Essays (1909), pp. 174 meq.

[^26]: 'They contain (as I. Abrahams has pointed out to the present writer) a good deal of haggada. but far more halakic matcrial ihan those which follow. The latter (nos $48 q q$.) also contain halaka, but the chief contents are haggadic and homiletical.
 ${ }^{2}$ I. Abrahams points out to the writer that the rest is more nummary. This difference is accouoted for by the fact that Exod. xii. onwards and the rest of the Pentateuch have Independent Midrashim: the Law proper was held by the Rabbis to begin at Erod. xib.

[^27]: ${ }^{1}$ The figurea relate onfy to the entigranta of each nationality emigrat－ ing from their own country to countriea outside of Europe
 ${ }_{3}$ Exclusive of emigrants to Spanish colonies．
 ${ }^{2}$ Russian emigrants from Cerman ports．

[^28]: ${ }^{1}$ Various dominions and colonies of the Bricish Empire have militias, for which wee UNITED KINGDOM: Army. For the Swiss Militia System, which is in many respects the archetype of modern militias, see SwITzEXLAND; and for the organized militia of the United States aee Unitind STates.

[^29]: I In this and the following tables a welection is given of somat of the bem－hroppa minoral waters in racieus Eurppean countripe that pomess emablishmenta．Their chief peculiaritien α elevation a temperature and constituents are briefly noted．The curative effects，necessarily alluded to very generally，are those navially qutributed to them．

[^30]: T See the Carmine Burana, ed. J. A. Schmellier, 4th ed., Breshau,

[^31]: 1 Used by John of Salisbury (Polycraticus, i. 8) as a generic term to cover mimi, salii or salictes, balatrones, aemiliani), gladiatores, palanarinae, gignodii, praestigiatores.

[^32]:
 ${ }^{6}$ Rogers Ruding. A neals of the Coinage, 3rd ed. iin. IISw

 - Grueber, op, cil. p. $\mathbf{z x v}$ ERuding, op. cil. i. 36

[^33]: 1 This was one of the points discusved at the council of Florence, and Cardinal Bessarion for a time succeeded in persuading the Greeks to give up the Epiklesis.
 ${ }^{8}$ Quam collectam dicunt, Ord. Rom. $I L$.

[^34]: ${ }^{1}$ Socrates, H.E. i. 15 ; Soxomen ii. 24 ; Theodoret i. 22
 ${ }^{2}$ Socrates, H.E. i. 20: Sowomen ii. 7; Theodoret i. 24
 Theodoret, H.E., v. 30.
 "See A. W. Haddaa, " Scote on the Continent," Remeins, \& 256.

[^35]: *Church. Gifts of Ciriltmation, P. 330 EBedc, H.R. v. 19.
 ""Annal. Xentensen," Perz, Lom. Germini. 220

 - Bede, H.E. v. 10.
 - See Lightfoot, Anciemt and Modern Missiome
 - See Hardwick, Middle Ages. pp. 109-1 14 .
 ${ }^{4}$ Stanley, Easlern Ghanch, p. 294

[^36]: ${ }^{1}$ See F. P. Noble, The Redemprion of Africa; I. Stewart, Dawn in the Dork Comtinent: Sir Hamy Johnston; "The Negro and Religion " in Nindecult Comury, june IgIo.

[^37]: ${ }^{1}$ South Carolina ceded its western lands' to the United States in 17^{87} and Georgia in 1802. The government added them to Miseis sippi in 1804 . The seizure of West Florida was supplemented by the treaty of 1819-1821 in which Spain surrendered afl of her claims.
 ${ }^{2}$ The seats of government havc been Natchez (1798-1802). Washington (1802-1817). Natchez (1817-1821). Columbia (1821-1822). Jackeon (IB_{22} seq.).
 This syatem proved uneatisfactory, and in 1869 was abandoned.

[^38]: 4 Under the constitution of 1832 the president of the senate succeeded the governor in case of a vacancy.
 Governor Quitman resigned because of charges agaiast him of aiding Loper's expedition against Cuba.
 ${ }^{2}$ On the 4th of November the term for which Guion had been elected as a senator expired and he was succeeded in the governor; ship by Whitfield, elected by the senate to be its president.
 ${ }^{7}$ Served from the 5th of January (when Foote resigned) to the toth, when McRae was inaugurated.

[^39]: Counting the St Francis projection the length in 328 m .
 2 Borh the Orark region and the prairie region are divided by minor excarpments into tea or twdve sub-regions.

[^40]: 4 la 1907. in Miswouri, as la various other staten, passenger rates were reduced by law to 2 centa per mile; but this law was declared unconstitutional is 1909;

[^41]: ${ }^{1}$ The constitutional provision requiring assessments at cash valuations is not at all observed: according to the State Revenue Commission of 1902 the average tax valuation was 40 to 50% of the real value. The national censuses of 1880 and 1890 (no estimate being made in 1g00) put the total value of all property at $\$ 1.562,000,000$ and $\$ 2,397,902,945$ respectively.
 iln 1902 the bonded debts of counties and townships aggregated $88,066,878$; that of towns and citiea (mostly that of St Louis), 831,193,870.

[^42]: ${ }^{1}$ Thus liberating about 114,000 blacks, of a tax valuation of $\$ 40,000,000$.
 ${ }^{2}$ The Liberals were those who thought unjuat the proacriptionary legislation passed against the Secessionists and Democrats; and to this issue of local politics were added the issues of national reform which the course of President Grant's administration had forced upon his party. A convention of Liberale that met at Jefferson City in January 1872 issued to ali Republicans favourable to reiorm within the party an invitation to meet at Cincinnati in May; and this was the convention of revolters against General Grant that nominased Horace Greeley of New York and B. Gratz Brown of Missouri as Liberal Republican candidaten for the presidency and vioe presidency respectively. The first definite organization of the Liberal Rcpublican party may therefore be said to have been made in Missouri in 1870.
 ${ }^{1}$ From 1820-1844 the ciections were in August and inaugurations in November; Governor King served from the 27 th of December 1848 till January 1853: thereafter the inauguration was in January. and beginning with 1864 the election was in November. The term was four years excopt under the coastitution of 1865 .

[^43]: - ${ }^{2}$ There \& moch difference of opinion in regard to the lings of Pontus culied Mithradates to the accession of Miitradates Eupator. Ed. Meyer reckons five. T. Reinach three.

[^44]: ${ }^{1}$ See further, H. Winckler, All. Lest. Unlersuch. (i892), pp. 168-174
 ${ }^{2}$ So, too, according to one passage, Tiglath-pileser IV. appoints - governor over Musri before Egypt itself had actually been conquered.

[^45]: ${ }^{1}$ See G. Smith, Ashurbanipal (p. 288, cyl. A. viii. 51, B. viii. 37); 1. B. Paton, Syria and Palestine, p. 269 seq.: R. F. Harper, Ass. and Bab. Lit., pp. 118 sqq.; H. Winckler, Keilinsckr. w. das alle Tad, 3rd ed., p. 151.
 ${ }^{2}$ Excavation alone can supplement the scanty information which the present evidence furnishes. For a representation of a Moabite warrior (god ?), see G. Perrot and C. Chipiex, Art im Phoenicia, ii. 45 seq.

[^46]: ${ }^{3}$ See W. R. Srrith, Religion of the Semites (2nd ed.), which may be supplemented by the scattered gleanings in Clermont-Canneau's Recueil d'archéologic orientale: and more especially by P. Antonin Jaussin's valuable monograph. Coxtumes des Arabes as pays de Moab (Paris, 1908). (Sce also Hebrew Religion.)
 -Ernst Frenkei, An-Nakhäs' Commentar sur Mu'allags des Jmunul-Qais (Halle, 1876), p. viii.

[^47]: ${ }^{1}$ See Tabarf's Geschichte der Perser und Araber . . . Tbersetat pon 7. Nöldeke (Ieiden, 1879), p. 171.

 E See Noldeke's Tabari, Pp. 170,172.

 - ibid p. 311.

[^48]: ${ }^{1}$ Compare W. Schott, Varswich eber dio talarischen Sprachen (Bertin, I836); UJber das allar'sche oder finnisch-batarische Sprachengeschtecht (Bertin, 184g); Allajische Studicn, parts i.-v. (Berlin, ${ }_{1860-1870}$); and A. Castrén, Etsnologiche Vorlesxmen ubsp dis Albsi'schen Volker, ed. by A. Schiefner (St Petersburg, 1857).

[^49]: - The mame seems to occur first in John of Damascus.

 PPaut; speaking for the monophytite biehops, had zaid that what Was particularty pepmgetant in the definition of Chalcedon ($q . \psi_{1}$) was the implication of two wills in Christ. See Hefele, Concilicseesch. iii. 124 sen. (1877), who also traces the previous history of the expresslons ula tripreae, osandpant Ivipyea, especially as found in the writing of the Peetdo-Dionysius Arcopaglis, which first appoured in Egypt in the 5 th century.

 - In two letters Honorius expreseed himself in accord with the monothelite view, for which he was denounced as heretical by the Sixth General Council and anathermatized by Pope Leo II.

[^50]: ${ }^{1}$ An earlier church appears to have existed at Monreale since the 6th century, but no uraces of it now nemain.

[^51]: ${ }^{2}$ Theodotus, "the first steward of the New Prophecy." was a fellow-worker with Montanus, and almost certainly a prophet. Later on, Firmilian, writing to Cyprian, menions a prophetess who appeared in Cappadocia atout A.D. 236, and Epiphanius (Hacr. 49) tells of another called Quintilla.-(ED.)

[^52]: Duklea is the name still borne by the ruins of the Roman Dociea, often, but wrongly, written Dioclea, from its association with the Emperor Diocletian.

[^53]: ${ }^{4}$ The krose ${ }^{-10 d}$. English.

[^54]: ${ }^{1}$ Life by B. R.
 2 Ibid.
 ${ }^{4}$ Roper, Lita

[^55]: 'Some of the sects transfer the scese of the sacrifice to the "Chapel of Abrahem"' in the precincts of the Holy Sepulchre Church.

[^56]: ${ }^{2}$ Rigdoa had formerty been mell known and respected in Hirare, which was a stronghold of the Disciples; there be had taught Latira and Greek to the lather of Mrs James Abram Garfield.
 "Young received al this time the title of "The Lion of the Lord "; Lyman Wright and Parley Pralt, who also became apomkes, were called respectively", The Wild Ram of the Mountains "and "The Archer of Paradive."

 - The existence of this organization has been denied by Mormons, but tbere is abundant evidence that it did exist. See Linn, po. 212-214. and Bancroft. pp. 124-126; the latter, friendiy to the Mormone, says (p. 124) that of the existence of the Denites" there is no question."

[^57]: ${ }^{1}$ One of the early charges against the Mormons in Missouri was that they invited free negroes and mulattoes to mettle with them; and this rather than any disgust at their religious teachings may have been the first source of opposjition to them.

 Such solociame are not infrequent in the Mormon Bible.

[^58]: * Brigham Young. Orson Pratt, and others of the Twelve mere cmpaigning for Smith's candidacy for president of the United States, a campaign which he had undertaken because neither Henry Clay nor John C. Calhoun would give hion atisfactory pledges as to the attitude he would take toward the Mormons if elected president.
 i Rigdon attempted. with bricf succrss, to establish in Pittabury a Church of Christ, independent of the Latter Day Stints, but based on much the ame plan. He spent his late years at Priendship. Allegany county. Net Yoric.

[^59]: ${ }^{1}$ Gemtilo in La Geographic. No. 3 (1908). describes the Sirove rexion. which. N.N.W. of Tikirt, connects the Anti At las and the High Allas. The Siroua volcano compares with the finest volcanoes of Europe.

[^60]: * Kaid Sir Harry Maclean (b. 1848) after mervine in the British army became instructor to the Moorish army, which he acrompanied in several expeditions. He was also colonel of the sultan's body. guard. For services rendered to the British government he was made a C.M.G. in 1898 and a K.C.M.G. in 1901 . On the eccasion of his capture he had gone, as he thought, to receive the mbmiseion of Raisüli, and had with him one or two attendants only. The sum paid ror his ransom was subsequently relunded-as to $\mathbf{E 1 5 , 0 0 0}$ by Raisoli himself and the remainder by Mulai Hafid.

[^61]: ${ }^{1}$ A Spanish force of 600 men was also sent to Casablanca. Throughout the crisis Spain, with some misgiving, co-operated in the actions of France.

 In September 1908 the German consul at Casablanca gave safe-conduct to six deserters from the Foreign Legion, of whom three were Germans On the way to embark for Hamburg, and while under guard from the German consulate, all six deserters were forcibly arrested by a French patrol. The matter created gneat excitement both in Germany and France, chiefly from the demand of the German government ihat France should express regret for the action of ite agents before the facts were fully entablished. A way of encape was found in the formula " the two governments, regretting the evepts which occurred at Casablanca. . . . refer the mattor to arbitration... and agree to express regret ... according to the judgment of the court." The case then went to The Hague Court of Arbitration, which gave its decision in May 1909, substantially in favour of France. In July the French goverament perdoned the descrtera.

[^62]: ${ }^{1}$ His earliest ancestor in America was George Mourt. or Morton (d. 1624), a merchant of York, England, who seems to have been in London in $1621-1622$ as financial agent for the Plymouth colonists. He published Mourl's Redation, or Journal of the Beginning and Proceedings of the English Planiation at Plimoih (16a2), apparently written by William Bradford and Edward Winslow, and went to Plymouth, Mass., in the "Anne" in 1623.

[^63]: ${ }^{1}$ See K. Budde, Religion of Israel to the Exile, ch. i. According to Gen. iv, 26, co far from the name Yahweh having been made known to lsrael by Moses (Exod. iii. 13 sqq., vi. 2 \&q9.), the worship goes beck to the earliest ages.

[^64]: The parotid gland (Gr. ri.pa beside, our car), is the largest of these glands, and is situated bet ween the car and the ramus of the mandible. Io trensverse eection threugh the bead about the level of

[^65]: ${ }^{1}$ See Rev. F. W. Galpin, "The Whistles and Reed Instruments of the American Indians of the North-West Coast." Proc. Musical Assoc. (1903-1904), p. 115, with illustrations.
 ${ }^{1}$ See Victor Mahilton, Eléments d'acoustique masicale (Paris, 1873). pp. 167 and 83 .

 A case excavated in Egypt was found to contain two plpes, and in addition five picces of reed without bore or holes, and three pieces of straw suitable for making double,reed mouthpieces. See Vicior Loret, " Les Fiates egyptiennes antiques," Jounwal asiatique (Paris, 1889), [8], xiv. pp. 119, 200, 201 (note), 207. 211 and 217,

[^66]: ${ }^{1}$ In the baptismal register bis name stands, Joonnes Chrysostomus Wolfgangus Theophilus (Lat. Amadeus, Ger. Golllieb).

 3'he German diminutive of Wolfgeng.

[^67]: "The original antograph is numbered "Select Case C, 21. d."
 4 Auratiae militiac eques.

[^68]: The use of the word for plain or civilian clothes worn instead of uniform is originally Angio-Indina. It may have been suggented by the loose flowing robes of the atage " mufti," and thus implied asy salay dreme worn by an officer when out of uniform.

[^69]: ${ }^{2} M$ ulberry stands for murberry or morberry; i.e. morus and

[^70]: ${ }^{1}$ Some reproductions of bis early attempts in this direction are given, along with details of his tife, in a scarce volume for the young, entitled The Lookimg-Glass, written by William Godwin under the entitled The Looking-Glass, Written by William Godwin und
 som de plume of Theophilus Marcliffe, and published in 1805

[^71]: *"Considerable diversion was created in the city to-dey [May 1, 1840 by the appearance of the new penny-post devices for envelopes, half-sheet letters, and bits of sticking;plaster for dabbing on to letters. . . [The elephants on the Mulready cover] are symbolic of the lightness and rapidity with which Mr Rowland Hill's penny-post is to be carried on. . Withal the citizens are rude enough to believe that these graphic embellishments will not go down at the price of 1 s .3 d . per dozen for the envelopes. : . . and of ig if per dozen for the. sticking-plaster." This banter I \quad anvu ise money article of an eminent daily paper.

